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The development of truly three-dimensional nanodevices is currently impeded
by the absence of effective prototyping tools at the nanoscale. Optical trapping is
well established for flexible three-dimensional manipulation of components at the
microscale. However, it has so far not been demonstrated to confine nanoparticles,
for long enough time to be useful in nanoassembly applications. Therefore, as part of
this work we demonstrate new techniques that successfully extend optical trapping
to nanoscale manipulation.

In order to extend optical trapping to the nanoscale, we must overcome certain
challenges. For the same incident beam power, the optical binding forces acting on a
nanoparticle within an optical trap are very weak, in comparison with forces acting
on microscale particles. Consequently, due to Brownian motion, the nanoparticle

often exits the trap in a very short period of time. We improve the performance of



optical traps at the nanoscale by using closed-loop control. Furthermore, we show
through laboratory experiments that we are able to localize nanoparticles to the trap
using control systems, for sufficient time to be useful in nanoassembly applications,
conditions under which a static trap set to the same power as the controller is unable
to confine a same-sized particle.

Before controlled optical trapping can be demonstrated in the laboratory, key
tools must first be developed. We implement Langevin dynamics simulations to
model the interaction of nanoparticles with an optical trap. Physically accurate
simulations provide a robust platform to test new methods to characterize and im-
prove the performance of optical tweezers at the nanoscale, but depend on accurate
trapping force models. Therefore, we have also developed two new laboratory-based
force measurement techniques that overcome the drawbacks of conventional force
measurements, which do not accurately account for the weak interaction of nano-
particles in an optical trap. Finally, we use numerical simulations to develop new
control algorithms that demonstrate significantly enhanced trapping of nanoparticles
and implement these techniques in the laboratory.

The algorithms and characterization tools developed as part of this work will
allow the development of optical trapping instruments that can confine nanoparticles
for longer periods of time than is currently possible, for a given beam power. Fur-
thermore, the low average power achieved by the controller makes this technique
especially suitable to manipulate biological specimens, but is also generally benefi-
cial to nanoscale prototyping applications. Therefore, capabilities developed as part
of this work, and the technology that results from it may enable the prototyping of

three-dimensional nanodevices, critically required in many applications.
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Chapter 1

Introduction

New techniques have been developed to address key challenges that currently
prevent optical tweezers from being widely adopted as a prototype and test tool
to fabricate nanodevices. Flexible and fast prototyping tools are an essential com-
ponent when developing and testing novel designs of nanoscale devices and can
accelerate their inclusion in commercial products. Our ability to prototype even
basic three-dimensional designs is severely limited due to the rudimentary state of
current nanoassembly tools. Optical trapping, which uses light to hold components
and move them to their assembly locations, can provide a powerful, yet flexible
tool for nanoassembly without some of the drawbacks inherent in other competing
techniques that are discussed later in this chapter. At the microscale, optical trap-
ping has been successfully demonstrated, to perform pick and place manipulation of
multiple components, in parallel and arrange them in non-trivial three-dimensional
patterns — a capability that is currently unparalleled by other assembly techniques.

However, optical trapping has so far not been extended to nanoscale assembly.
The behavior of nanoparticles in an optical trap is qualitatively different than larger
particles, for a constant incident power and beam geometry. For example, nano-
particles experience significantly weaker optical binding forces in comparison with

larger particles. Consequently, as a result of Brownian motion, nanoparticles escape



the trap easily. Therefore, confining a nanoparticle to an optical trap requires the
use of very high laser powers, which can then result in damage to the specimen.

In this work, we have developed new algorithms and characterization tools
that collectively improve the performance of optical traps at the nanoscale. We
have implemented a closed loop control system that confines nanoparticles to an
optical trap, when a static trap set to the same power is unable to do so. Moreover,
the control algorithms we develop are able to confine particles to the trap for tens
of seconds, so as to be useful for nanoassembly operations, and for a low average
beam power.

Figure 1.1 gives an overview of the techniques and tools developed as part of
this work to enable the manipulation of nanoparticles. From the figure, we see that
in order to implement enhanced trapping techniques in the laboratory, we must first
develop a combination of theoretical (THR), simulation (SIM) and laboratory-based
(LAB) tools as described below.

We improve the trapping of nanoparticles by using a control system, which
allows us to confine a particle to the trap for long times, so it can be useful in
nanoassembly applications. However, developing control algorithms directly in the
laboratory is often time-consuming, but can be made more efficient through the
use of numerical simulations. Therefore, we have developed physically accurate
simulations that model the diffusion of nanoparticles in a fluid under the influence of
binding forces from an optical trap. We have designed and implemented a simulation

framework that allows us to easily test control algorithms and play a central role



Chapter 3/ Appendix C

SIM: Physical | | SIM:Simulation |
Validation Framework EChapter 4
SIM: Verify Force THR: New Force
Measurement
Measurements .
Techniques
¥
LAB: Validate and
__________________________________________________________________ i | Measure Trap Force
iChapter 5 :
| THR: Theoretical Force
Models (e.g. GLMT) \

LAB: Hardware SIM: Develop
Development Control Algorithms

Objective: Enhanced Trapping
of Nanoparticles (LAB)

Figure 1.1: Overview of tools and techniques developed for enhanced trapping of
nanoparticles. Enhanced nanomanipulation techniques are developed using a com-
bination of theoretical (THR), simulation (SIM) and laboratory-based (LAB) tools.

in key aspects of developing this approach as seen in Figure 1.1. For simulations
to be effective, we must also include an accurate force model of the optical trap.
Therefore, we have developed methods within our simulation framework to allow
the inclusion of tabulated force data from a variety of experimental and theoretical
sources.

Existing theoretical models do not sufficiently capture the non-ideal behavior
in an optical trap, which can arise from spherical aberrations or diffraction. On the
other hand, current experimental techniques, which are designed for larger particles,
do not work very well for nanoparticles that experience a very weak interaction with

the trap. Therefore, we have developed two new techniques to directly measure the



trapping force in the laboratory, which address the drawbacks of current methods
in accurately measuring the trapping force experienced by nanoparticles. We test
these methods using simulations (see Figure 1.1) and then implement them in the
laboratory.

Finally, we develop control algorithms that allow nanoparticles to be confined
within an optical trap, for much longer times than is currently possible, using com-
parably lower power than a static trap. We test new algorithms using numerical
simulations and successfully demonstrated them in the laboratory. Consequently,
tools developed as part of this research will provide the basic framework required
to allow optical trapping to evolve into a practical prototyping and test tool for

nanoassembly:.

1.1 Motivation

The ability to rapidly prototype novel nanodevices from a wide selection of
materials and arbitrarily shaped components is necessary for the rapid and sus-
tained advancement of nanotechnology. Similar to rapid prototyping methods at
the macroscale, prototyping tools with quick turn-around times will allow us to test
the feasibility of new designs, in order to mass manufacture robust nanodevices eco-
nomically. Unfortunately, current techniques (described in Section 1.2) that allow
us to prototype even moderately complex three-dimensional designs are glaringly
inadequate. Therefore, new techniques are required that provide the requisite capa-

bilities to quickly and accurately prototype functional nanodevices.



Optical trapping is currently the only deterministic assembly technology —
where we can pick and place multiple components, made from a variety of materials,
in three-dimensions. Furthermore, it can be used for the simultaneous transport of
multiple components by time-sharing a single optical beam [52]. Components with
diverse shapes ranging from microspheres to nanowires and even biological cells
and liposomes have been trapped and arranged into non-trivial patterns [3, 21].
Since optical tweezers use light to hold and manipulate individual components, they
do not suffer from sticking between the probe and the particle or spatial interfer-
ence between multiple probes, which can limit the effectiveness of other techniques
such as scanning probe methods. Moreover optical tweezers is fully compatible
with microfluidics systems and can be parallelized, if necessary, to be used in large
throughput systems.

Optical trapping is currently limited to microscale assembly and has not yet
been successfully demonstrated for small nanoparticles. Moreover, the flexibility
that optical trapping provides at the microscale makes it an attractive candidate
for nanoscale assembly. As described previously, it is challenging to keep a nano-
particle confined within an optical trap for extended periods of time. Increasing the
power of the trapping beam can, up to a limit, improve the the localization of the
nanoparticle close to the center of the trap and keep it confined within the trap for
longer periods of time. However, the additional power absorbed by the particle can
be sufficient to destroy it. Increased power from the optical beam can also signifi-
cantly raise the temperature of the surrounding fluid, causing it to boil and thereby

destabilize the trap. Therefore new techniques, which are able to take advantage



of the flexibility offered by optical trapping, must be developed in order to improve
the time nanoparticles can be confined within the trap, while minimizing the power

input to the system.

1.2 Background

1.2.1 Applications of Nanotechnology

Nanotechnology holds tremendous promise to significantly impact everyday
products. One area where nanotechnology’s impact is already evident is in the
design and manufacture of novel materials. Nanoscale additives, such as carbon
nanotubes and colloidal gold or zinc oxide particles are commonly incorporated
into polymer matrix materials to enhance their properties, as shown in Figure 1.2
[16]. Polymer composite materials that include carbon nanotubes have very high
strength, while being much lighter than metals of comparable strength, driving
their use in structural elements, especially in aerospace and automotive applications
[99]. The ability of small quantities of nanoscale additives to radically alter basic
physical properties of materials, such as their strength, flame resistance or electrical
conductivity, has allowed unprecedented control over their properties. This in turn
has led to the development of precisely engineered materials that suit the desired
application.

Likewise planar semi-conductor devices, with characteristic dimensions of tens

of nanometers, fabricated using well-established photolithography processes, have



Figure 1.2: Cross-sectional TEM image of a symmetric polystyrene-b-poly(2-
vinylpyridine) diblock copolymer containing gold nanoparticles [16].

revolutionized consumer electronics devices. Conventional photolithography tech-
niques have also been used to develop microelectromechanical systems (MEMS),
which have found use in everyday products, such as accelerometers and pressure
Sensors.

Nanotechnology has also started to make a significant impact in medicine,
especially in the detection and treatment of cancer. Nanoparticles linked with can-
cer targeting ligands allow high contrast imaging and detection of cancers earlier
than was possible before [5, 73]. Moreover in many cases nanoparticles have been
used with existing imaging technologies in order to make these benefits available
immediately. One example is the use of iron oxide nanoparticles as a contrast
agent in magnetic resonance imaging (MRI), which has resulted in detailed three-
dimensional images of tumors [140]. Nanotechnology can also play an important
role in drug delivery. Current treatments for cancer are non-specific and signifi-
cantly damage healthy tissue in addition to targeting cancerous cells. By linking
drug nano-complexes with cancer targeting ligands, drugs can be tailored to target

only cancerous cells, which greatly reduces the side effects from cancer treatments.



Nanotechnology has also been instrumental in developing new cancer therapies. In
one example, gold nanoparticles, conjugated with a ligands which specifically attach
to cancer cells are used to deliver nanoparticle selectively. Subsequently infrared
radiation, which does not significantly heat biological matter is used to heat the
nanoparticles and thereby destroy the cancerous cells, leaving surrounding healthy
tissue undamaged [157]. New therapies can also include, specific anti-cancer agents,
such as ribonucleic acid (RNA), enclosed in functionalized self-assembled bags made
from phospholipid bi-layers called liposomes. The functionalized liposomes attach
themselves to cancer cells and are subsequently absorbed into the cell. When the
payload delivered by the liposome is a RNA strand, this can result in the expres-
sion of specific genes coded by the RNA, which can then induce apoptosis in the
cancerous cells [121].

While several nanotechnology-based products are commercially available and
many more are under development, almost all existing non-molecular devices are
planar with designs that are largely limited by the capabilities of existing fabricating
techniques. Next, we outline some of the nanofabrication techniques commonly used

in manufacturing nanodevices.

1.2.2 Nanodevices: Manufacturing Methods

There are several available routes to manufacture of nanodevices. While they
all offer distinct advantages, to the best of our knowledge, none of them are perfectly

suitable for the prototyping and test of three-dimensional devices made from het-



erogeneous nanocomponents. Nanofabrication techniques can however be classified
into bottom-up techniques and top-down techniques. In bottom-up methods, assem-
blies are built by bringing together individual building blocks to build the device.
Bottom-up approaches are commonly used at the molecular level to self-assemble
structures, one molecule at a time, but are also applicable for larger components us-
ing deterministic assembly techniques. On the other hand, top-down approaches can
fabricate complicated structures by removing material from bulk substrates using
conventional machining operations. Methods such as micromachining and lithogra-
phy are prominent examples of top-down approaches. Key competing technologies
that promote nanoscale fabrication and assembly are discussed below to highlight

their relative strengths and weaknesses.

1.2.2.1  Self-Assembly

Self-assembly is a remarkable example of a bottom-up assembly technique
that is commonly found in nature and may some day provide the key to the large
scale manufacture of functional three-dimensional nanodevices. Self-assembly occurs
routinely in biological cells and is responsible for many cellular functions. Examples
of self-assembly in cells include the assembly of lipids to form the cell membrane, the
assembly of single deoxyribonucleic acid (DNA) strands into double stranded helical
DNA or the self-assembly of cellular proteins into secondary structures such as alpha
helices or beta sheets and even tertiary and quaternary structures. However, self

assembly has also been demonstrated at the nanoscale and even the macroscale, as



shown in Figure 1.3 [165]. Self-assembly operates under the principle that interacting
components can be driven to spontaneously form ordered assemblies when they
interact under the suitable conditions. Specifically, self-assembly is successful when
there is a suitable balance of attractive and repulsive forces between the individual
components. [165]. Electrostatic forces are primarily responsible for self-assembly
and these forces can arise from Coulomb interactions between the components. Self-
assembly can therefore be guided by carefully engineering forces and by leveraging

shape complementarity between interacting components.

Figure 1.3: Examples of two-dimensional self assembly: (A) Open hexagonal array
and (B) hexagonal lattice formed around circular templates [165].

Engineering the electrostatic forces requires the precise control of the chem-
istry of interacting components and generally involves optimizing many free system
parameters. This makes self-assembly particularly challenging and the process has
so far only been successful in creating ordered structures of identical components,
whereas the assembly of truly three-dimensional nanodevices from heterogenous
components has so far been elusive [10]. Finally, while self-assembly is a promising

route to the eventual large scale manufacture of nanodevices spanning the nanoscale
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to the macroscale, the challenges in perfecting the chemistry that drives the process
makes it’s impact as a prototyping tool, to test and validate new device designs, less

evident.

1.2.2.2 Scanning Probe Methods

Scanning probe methods (SPM) have also been used extensively in manipu-
lating nanoscale components. Individual nanocomponents can be pulled or pushed
by a single probe or gripped by two or more probes and then transported for as-
sembly into a structure. Probe based methods such as scanning tunneling micro-
scopes have been used to manipulate individual atoms, whereas atomic force micro-
scopes (AFM), which were originally developed for imaging with atomic resolution,
are more commonly used to manipulate components that range in size from a few
nanometers to several micrometers in 2D. Probe-based manipulation methods offer
several advantages over other techniques. Being a bottom-up approach, these tech-
niques can be used to build complicated assemblies using heterogeneous building
blocks. AFM has long been used to manipulate spherical nanoparticles, nanowires
and other shapes made from a variety of materials into assembled structures, such
as the example shown in Figure 1.4 [127]. Moreover since AFM was originally devel-
oped as an imaging tool, it is able to combine precise manipulation with extremely
high resolution imaging of the workspace. The more recent development of MEMS
technology has resulted in the miniaturization of SPM tools, which have several

probes in parallel. This has since been extended to include large arrays of probes
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that can operate simultaneously for large throughput operation [88].
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Figure 1.4: Examples of 2D AFM Manipulation: (top) pushing technique to manip-
ulate microspheres and (B) example assemblies created using AFM [127].

However scanning probe methods also suffer from several drawbacks that pre-
vent them from being widely used as a prototyping tool for three-dimensional nanos-
tructures. Tools with only a single probe often rely on pushing components to
the desired location, which prevents them from working outside a two-dimensional
workspace and makes three-dimensional operation extremely difficult. Even in sit-
uations where two or more probes are used to grip components, out-of-plane move-
ment of the components is difficult. Moreover, electrostatic forces at the nanoscale
pose formidable challenges to releasing the particle at the desired location. Fur-
thermore the manipulation of non-spherical shapes is also limited due to the need
for several probes to simultaneously operate in a confined space to adequately sup-

port the specimen. Due to these drawbacks, dynamic three-dimensional assemblies
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of nanocomponents using AFM has so far not been achieved, rather probe-based

methods are used to build stacked planar structures, one layer at a time [129)].

1.2.2.3 Photolithography

Photolithography is a top-down approach that has been widely adopted when
manufacturing devices with nanoscale features. In the simplest form of photolitho-
graphic processes, a substrate such as silicon is first coated with a uniform layer of
photoresist, which cures when exposed to light of a certain wavelength, generally in
the ultra-violet region of the electromagnetic spectrum. A photomask, which con-
tains a negative of the pattern of the device being manufactured is then placed over
the photoresist and then exposed to light, which causes regions in the photoresist
that are part of the device to be cured. Any uncured photoresist is then removed,
thereby exposing the substrate. Finally an etching process is used to machine the
substrate leaving behind raised device features. The photolithography process steps
are shown in Figure 1.5. The process is generally repeated several times to cre-
ate multi-level features for use in functional devices. In addition, metals and other
materials can be applied in thin layers at specific points in the process to create
heterogenous device components.

Photolithography processes have been developed over several years and are
widely used in the large scale manufacture of semi-conductor devices. Advances
in photolithography have resulted in electronics with characteristic sizes of only

tens of nanometers and this has resulted in ever more powerful computers that
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Figure 1.5: Steps in the photolithography process.

are more energy efficient and economical. Photolithography techniques have also
been employed to develop MEMS and more recently nanoelectromechanical systems
(NEMS). MEMS technology, in particular has resulted in a few commercial products
such as accelerometers in automobile and consumer electronics,miniature sensors
for pressure and temperature, as well as gyroscopes [89, 144]. Despite their success
and widespread adoption, lithography methods are able to manufacture devices in

individual planar layers that are stacked on top of each other.

1.3 Objectives and Outline

The primary objective of this work is to develop new tools to advance optical
trapping towards nanoscale prototyping and test. One component of this tool set
is new control algorithms that improve the amount of time nanoparticles spend in

an optical trap, to enable nanoassembly, while minimizing the power. In order to
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realize such algorithms, we must develop new characterization tools to better un-
derstand the interactions of nanoparticles with weak optical traps. Developing new
control algorithms directly in the laboratory can be challenging and time-consuming.
Therefore we must also develop numerical simulations to assist in the discovery and
validation of new laboratory methods. Therefore this work has the following objec-

tives:

(i) Develop and implement new methods, such as control systems, to significantly
improve the amount of time we can confine nanoparticles to the trap using low

average powers.

(ii) Implement a simulation framework to allow the realization of new tools re-

quired to realize nanomanipulation with optical tweezers.

(iii) Develop new characterization tools, such as force measurement methods, to

assist the development of enhanced nanomanipulation techniques for optical
trapping.

In order to realize these objectives, we have developed several tools that work
in conjunction, as seen from the overview in Figure 1.1. In Chapter 3, we describe
numerical simulations based on Brownian dynamics to model the diffusive behavior
of nanoparticles in a fluid, which allows the inclusion of an external force like that
from an optical trap. As part of this work, we have also developed a modular
simulation framework (described in Appendix C) that easily allows us to configure
the simulation for multiple applications for use throughout this work, as shown in
Figure 1.1.
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An important component for developing new techniques for nanomanipulation
is the inclusion of an accurate trapping force. Existing theoretical models and exper-
imental techniques fall short of accurately describing the weak interactions between
a nanoparticle and an optical trap. Therefore, in Chapter 4 we have developed
two new methods to measure the optical binding force experienced by nanoparticles
in the trap. The force measurement techniques are first validated using numerical
simulations and then implemented in the laboratory, as seen from Figure 1.1.

Finally, we have successfully increased the trapping time of nanoparticles long
enough to be useful for nanoassembly operations, with an average power at which
a static trap is unable to localize particles. As discussed in Chapter 5, numerical
simulations in conjunction with theoretical and experimental trapping force models
have played a crucial role in guiding the discovery and development of new control
techniques. New algorithms developed as part of this work will allow us to extend
the trapping time of nanoparticles in an optical trap, thereby overcoming a key
challenge to extending optical tweezers to nanoscale assembly. Moreover, the tools
and methods developed as part of this work completed the basic toolset required to

extend optical trapping for flexible nanoscale prototyping and test.
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Chapter 2
Literature Review

2.1 Introduction

The ability of light and other electromagnetic radiation to exert a force on
material objects was first predicted by Maxwell in 1874 and later demonstrated ex-
perimentally by Nichols and Hull and Lebedev [13]. However, the magnitude of force
generated by radiation pressure is too small to significantly influence macro scale
objects. With the invention of lasers, the use of radiation pressure to manipulate
microscale objects became practical and was first demonstrated by Ashkin in 1970
[11]. The first optical traps were simple experiments, which levitated small objects
using radiation pressure, to overcome gravitational forces. The expression for the
force generated from the radiation pressure (F,) is given in Equation 2.1, where n,,
is the refractive index of the fluid surrounding the particle, ¢ is the speed of light
in vacuum, P is the power of the incident beam and @) is a dimensionless efficiency

factor.

F=""g (2.1)

The maximum radiation force is achieved when light is reflected by a perfect
mirror opposite to the direction of propagation. In this case the efficiency factor in
Equation 2.1, ) = 2 and for 1 W of power, the maximum radiation force can be
calculated to be approximately 10n/N. However, in most practical optical traps
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is much smaller and the optical trapping forces acting on the particles in the trap
are correspondingly smaller than the case of the perfectly reflecting mirror.

The simplest optical traps still use radiation pressure from a single beam to
levitate small particles [11]. The position of the particle can then be controlled
along the direction of propagation by varying the beam power. However, a more
commonly used setup includes two opposing beams to confine the particle axially.
Optical levitation works best with dielectric particles made with materials such as
silica. This technique has also been successfully demonstrated using droplets of oil
or water. In most experiments a laser power of 1 W is typically used to levitate
particles ranging in diameter from 1 um to 40 um [151].

The most common trap geometry (also the trap geometry used in this work)
in optical trapping experiments is the single beam gradient force optical trap, which
has been used to trap and manipulate a wide variety of particles such as micro-
spheres, nanowires and biological molecules [52, 3]. In gradient optical traps, a
tightly focussed optical beam is used to exert a force and effectively grip the par-
ticle to form a stable trap close to the focus of the beam. The shape of the beam
results in the creation of two components, a gradient force component that pushes
the particle towards the focus of the beam and a scattering component, which di-
rects the particle along the direction of propagation of the beam. A stable optical
trap is formed when the gradient force overcomes the scattering force. The gradient
force acting on the trap varies as a function of the particle’s position in the beam
— the gradient force is zero at the center and approaches it’s maximum value at a

point some distance away from the center of the trap, before decreasing again. An
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example plot of the gradient optical force acting on a 100 nm diameter gold nano-
particle, with 50 mW of incident power using a trapping beam with a wavelength
of 1064 nm is shown in Figure 2.1. An ideal optical trap is symmetric about both
sides of the center and consequently the trapping force varies symmetrically as well.
Deviations from ideal behavior, such as misalignments in the optics can sometimes

lead to asymmetries in the trapping force.
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Figure 2.1: The gradient optical force experienced by a 100 nm diameter gold nano-
particle.

The magnitude of the trapping force, which includes the sum of gradient and
scattering force components, can be estimated using Equation 2.1 above, if the
efficiency factor @) is known. The factor () is then a function of the particle dis-
placement, but also depends on other parameters such as the size of the particle, the
size and geometry of the trapping beam and material properties of the nanoparticle
and the surrounding fluid. The maximum (), which accounts for scattering and

gradient trapping efficiencies, for a 216 nm diameter polystyrene particle in an op-
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tical trap with wavelength of the incident beam, A = 1064 nm, has been calculated
theoretically to be 5 x 1073, at a distance of approximately 200 nm from the center
of the beam [136]. Therefore the maximum force can then be estimated for 1 W of
laser power using Equation 2.1 to be approximately 22 pN. Moreover we see from
Equation 2.1 that the maximum force varies linearly with the power of the incident
beam.

The mechanism by which single beam gradient force optical traps exert a force
on microscopic particles is qualitatively described in Figure 2.2, using a geometric
optics approximation, valid for particles that are considerably larger than the wave-
length of the incident trapping beam [12]. Figure 2.2(a) describes the case where a
particle is displaced laterally with respect to the trapping beam. The incident beam,
shown in the figure has a Gaussian intensity profile. In the case of geometric optics,
the beam is modeled as individual rays, where the thickness of each ray in the fig-
ure corresponds to it’s intensity. Ignoring reflections at the surface, the refraction of
light by the sphere causes a small momentum change in the light, which then induces
an opposing momentum change in the sphere due to conservation laws. This in turn
exerts a net force on the sphere, which can be decomposed into a scattering com-
ponent, along the direction of propagation of the light and a gradient component,
which moves the particle towards the center of the beam (these force components
are not shown in Figure 2.2). A stable trap is formed when the contributions from
each ray of light acting on the sphere are summed and the net gradient component
of the force exceeds the disruptive scattering component. A similar analysis can

be applied to the case where the sphere is displaced axially along the direction of
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propagation of the beam as shown in Figure 2.2(b). The net result is an optical
trap that is stable in three-dimensions. The geometric optics description of optical
trapping is only strictly valid for dielectric sphere that are significantly larger than
the wavelength of the trapping light. On the other hand, the trapping force acting
on particles that are very small in comparison with the wavelength of the incident
can be calculated by treating the particle as a simple dipole oscillator [148]. However
for most particles with sizes on the order of the wavelength of the incident light,
the trapping force is estimated by calculating the momentum change between the
incident electromagnetic field and the field obtained when light is scattered by the
particle in the trap [23, 134]. One technique which analytically describes the scat-
tering of light by a spherical particle is Mie theory, which has been used to calculate

the trapping force for both metallic as well as dielectric particles [67].
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Figure 2.2: A qualitative description of optical trapping in the geometric optics
regime, strictly valid for particles that are much larger than the wavelength of the
incident light. Sub-figure (a) shows the case where the particle is displaced laterally
from the center of the trap and (b) shows the trapping force generated due to the
axial displacement of the particle.
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Optical tweezers are most commonly operated in liquids such as water, al-
though they can also operate in air. In either case, micro and nano components in
the fluid undergo a random statistical fluctuation due to numerous collisions with
the surrounding fluid molecules resulting in Brownian motion. Although the ran-
dom motion of microscopic particles in fluids has long been observed, the discovery
of Brownian motion is credited to Scottish botanist Robert Brown in 1827, who
observed the random motion of pollen in water. The mathematical formalism of
Brownian motion and diffusion was later developed, almost simultaneously, by Ein-
stein in 1905 [50] and Smoluchowski in 1906 [160], who each independently described
the relationship between the diffusion constant, D of a particle in a fluid and its

mobility ., which is the ratio of the particle’s terminal drift velocity to an externally

applied force. This relationship is shown in Equation 2.2, where D = gfﬁ, kp is

Boltzmann’s constant, n is the viscosity of water, as a function of it’s temperature
T and a is the radius of the particle. The Einstein-Smoluchowski relationship is
built upon the observation that the random forces exerted by fluid molecules on the
particle, are also responsible for a drag force acting on the particle as it is pulled
through the fluid.

A common example of diffusion is the gradual mixing of a droplet of dye in a
liquid. The droplet spreads as molecules of the dye diffuse into the liquid and the
size of the droplet increases as the square root of time and can be described using

the relationship given in Equation 2.3. The dependence of the spreading of the dye
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on the square root of time makes diffusion a very slow process. The diffusion process
described for the droplet of dye also holds for nanoscale and microscale particles,
which undergo Brownian motion in a fluid. For an ensemble of particles, starting
the at the same location at time, ¢ = 0, the spread of the particle distribution can
also be modeled using Equation 2.3. Moreover, since the diffusion constant, D in
Equation 2.3 is directly proportional to the temperature, the distribution of particles

spreads more rapidly with an increase in temperature.

oc=V2Dt (2.3)

For a constant time, the size of a particle distribution, also called the diffusion
length, increases with decreasing particle radius as shown in Figure 2.3, where the
diffusion length is calculated at the end of one second. This implies that in a given
time, smaller particles diffuse much farther than larger particles and this has direct
consequences for nanoassembly using techniques such as optical trapping, described
more below and also in later sections. Moreover, as expected from Equation 2.3, the
diffusion length of a particle for a given time scales as 1/4/r, where r is the radius
of the particle.

All nanoparticles undergo a random thermal motion inside an optical trap.
Large particles, typically with diameters greater than several hundred nanometers
experience very strong optical binding forces. Consequently, the force from the op-
tical trap overcomes the random thermal motion experienced by the particle and it
is therefore stably trapped. In other words, the optical trapping potential formed
by the interaction of light with the microscale particle has a depth that is signifi-
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Figure 2.3: The diffusion length at the end of one second, as a function of particle

radius is shown. The diffusion length for a constant time is found to scale as the
inverse of the square root of particle size.

cantly larger than the thermal energy of the particle. However, the optical binding
forces decrease rapidly with particle size and for particles with a diameter of only a
few nanometers, the potential well depth can become comparable with the thermal
energy of the particle. Moreover as seen in the discussion above, smaller particles
diffuse much farther than larger particles in the same amount of time. Therefore
weaker optical traps and faster diffusion together makes it significantly harder to
trap small nanoparticles and keep them localized in the trap for long periods of
time. Therefore techniques that improve the time nanoparticles can be confined in
an optical trap are needed to adapt optical trapping for nanoscale manipulation. We
demonstrate such techniques in the laboratory using a closed loop control system,

discussed in more detail in Chapter 5.
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2.2 Overview: Applications of Optical T'weezers

Single beam gradient optical traps are an important tool in many areas of
research, but have been particularly important in biophysical experiments. The
ability of optical tweezers to perform non-contact and non-invasive manipulation
of micrometer sized particles, organelles and even entire cells has opened up new
avenues of research in measurement and characterization of biological systems that
were previously difficult to achieve. Moreover optical tweezers has enabled the pre-
cise measurement and metering of mechanical forces imparted to biological macro-
molecules so as to allow the careful characterization of the mechanical or kinetic
properties of such systems. Visscher et. al. have used optical tweezers to directly
measure the mechanical properties of biological systems, such as the force exerted by
molecular motors [159]. Optical tweezers have also been used in cellular studies by
attaching probes made from dielectric materials to biological cells and using these
probes to measure the stiffness of the cell wall in red blood cells [103]. Block et al.
have studied the mechanics of motion of kinesin, a common molecular motor respon-
sible for vesicular transport along actin microtubules, by attaching a functionalized
glass bead, held in an optical trap, to the kinesin molecules [34]. The motion of
other molecular motors such as myosin and RNA polymerase, under an applied load
have also been studied using optical trapping and used to characterize translocation
rates, step sizes and pauses [143, 108, 130]. Optical trapping, in combination with
video fluorescence microscopy has been used successfully to study the dynamics of

the relaxation of stretched double stranded DNA in the absence of a stretching force
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[118]. More recently the unfolding kinetics of folded single stranded RNA and DNA
sequences have been studied by pulling on the folded strands using an optical trap
[111, 69]. Biophysical experiments using optical trapping require an accurate mea-
surement of the trapping force and often use closed-loop control to precisely control
the amount of force applied to the biological systems. The methods employed for
force measurements of microscale particles are discussed further in Section 2.4, while
commonly used techniques for closed-loop feedback are outlined in Section 2.5.
Colloidal studies have benefitted greatly from the use of optical trapping to
study the formation and properties of 3D crystal structures. Novel structures, not
found naturally have been constructed using holographic optical tweezers [27]. Fig-
ure 2.4 shows an example of a three-dimensional face centered cubic (FCC) colloidal
crystal, constructed using 3 um polystyrene spheres and which includes a line defect
with a 60° bend used as waveguides in photonic devices. Such arrangements of col-
loids are significantly harder to reliably manufacture with self-assembly techniques,
but are easily fabricated with optical trapping. The dispersion of uniform colloids
into a solution under certain conditions results in their spontaneous self-assembly
into crystal structures. Pertsinidis and Ling [120] have studied the effect of creating
single point defects in 2D crystal structures using optical trapping. The diffusion
constant obtained by tracking the motion of the defect through the colloidal crystal
using image processing shows good agreement with simulations of this process [43]
and can provide valuable insight into the dynamics of two-dimensional crystals. Op-
tical tweezers have also been used for the repair of colloidal crystals manufactured

using other techniques. Korda and Grier [83] have shown that it is possible to man-
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ufacture large defect free colloidal crystals by annealing a defect region in a crystal

using localized heating from an optical trap and subsequently allowing relaxation.

Figure 2.4: Assembly of a FCC colloidal crystal that includes a line defect using
optical tweezers [27]. The line defect is shown in red in part (a) and can be seen
more clearly at a slightly different focus shown in (b). Part (c¢) shows the fully
assembled crystal.

Integrated photonic circuits [92] and electronic devices using nanowires such
as diode junctions (Figure 2.5), as well as nanowire photonic devices such as laser
cavities [114] have also been developed using optical trapping. Optical tweezers
have also been used successfully in cytometry of colloids as well as biological cells
[97]. By flowing an assorted mixture of particles through dynamically generated 3D
holographic optical lattice, microsphere as well as cells can are easily sorted by size
[47, 46]. Moreover the ability to dynamically reconfigure the optical lattice makes
the optical tweezers based cytometric system a particularly powerful and flexible
tool.

Optical trapping is a powerful and flexible tool for assembly and test at the
microscale. However, in order to advance optical trapping to the nanoscale, new

techniques and algorithms are required, which extend the trapping time of nano-

particles in the trap, while minimizing the incident power on the particle. Develop-
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Figure 2.5: Assembly of GaN and SnO, nanowires into prototypical diode junctions
[114].

ment of such algorithms, in turn require a combination of modeling, simulation and
experimental verification tools. Three relevant areas, important to the development

of optical tweezers for nanoscale assembly are therefore discussed next. These are:

1. Development of simulation techniques to model the movements of components

in an optical tweezers assembly volume (Section 2.3).

2. The accurate experimental measurement of trapping forces imparted to a

trapped nanoparticle by an optical trap (Section 2.4).

3. Development of algorithms, including closed-loop control systems to improve

the performance of optical tweezers at the nanoscale. (Section 2.5).

2.3 Physically Accurate Simulations

Physically accurate simulations play an important role in the development

of new techniques to improve the performance of nanoparticles in an optical trap.
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Currently, few techniques exist that maximize the time a nanoparticle spends in an
optical trap while, minimizing the amount of power absorbed by either the particle or
the surrounding fluid. One route to achieving improved trapping time is through the
development of active control systems, which react very quickly to the displacement
of the particle away from the center of the trap as described in Chapter 5.

Developing new controller algorithms directly in the laboratory can be chal-
lenging. Moreover, many measurements required to quickly characterize the perfor-
mance of controllers may not be directly accessible, as described in more detail in
Chapter 5. A physically accurate simulation, on the other hand, provides a more
tractable route to the development of new control algorithms for nanomanipulation.
Furthermore, instrument limitations, which can play a limiting role in the feasibil-
ity of a particular design are easily included in the simulations and can be used to
quickly quantify their effect on controller design.

Physically accurate simulations can also be used to develop new characteriza-
tion techniques, such as force measurements, to improve the understanding of the
weak interactions between nanoparticles and an optical trap. Data from the force
measurements, once implemented in the laboratory, can then be used as input to the
simulation, further improving the fidelity of the simulation by including information
about non-ideal effects such as misalignments and aberrations in the optics.

Small particles undergo a random thermal motion not only in the assembly
volume of the optical tweezers, but also within the trap. Therefore, a central com-
ponent of a physically accurate simulation algorithm is a model for diffusive motion
of nanoparticles in a fluid. The simulation must also allow the easy inclusion of ex-
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ternal forces, relevant to the experiment being performed, such as the binding force
from an optical trap, electrostatic forces from interactions between a nanoparticle
and a surface and hydrodynamics forces between two or more particles. In order
to be practical, the simulation must also sufficiently account for non-ideal behav-
ior, such as instrumentation limitations including finite bandwidth and time-delays.
Two classes of simulation algorithms, molecular dynamics and Brownian dynam-
ics, commonly used to model the trajectories of microscale and nanoscale particles

diffusing in fluids are discussed next.

2.3.1 Molecular Dynamics Simulations

Molecular dynamics (MD) is a classical simulation technique that is used to
compute the equilibrium properties of many-body systems, whose properties are
difficult to compute analytically [56]. In a typical MD simulation, a system of in-
teracting particles is first defined, by specifying their initial positions and velocities.
For particle diffusion, MD simulations must explicitly model the particle and the
surrounding fluid molecules. Moreover, at each time-step interactions between the
fluid and the particle, as well as interactions among the fluid molecules must be ac-
counted for explicitly. This system must then be solved numerically using appropri-
ately sized time-steps, which are often extremely small due to the fast characteristic
times of the molecular interactions.

At each time-step, the force between the interacting particles in the system is

calculated and then Newton’s equations of motion are solved for the system. The
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output of the MD simulation is a time-series of the positions and momenta for each
particle. Physical quantities, relevant to the physical system being studied and that
can be expressed in terms of the particle position or momentum, are calculated
at the end of each time-step. Omne example of an observable physical quantity,
often calculated using MD, is the temperature of the system. Temperature can
be expressed in terms of the equipartition energy per degree of freedom using the
relationship shown in Equation 2.4, where kp is Boltzmann’s constant, N is the
number of particles in the system, Ny = 3N — 3 is the number of degrees of freedom,
m; and p; are the mass and momentum of the i*" particle. The system reaches
thermal equilibrium when the net change in the temperature between successive

time-steps is negligibly small.

T=% _n (2.4)

i3 mikpNy

MD simulations using the technique described above have been used extensively in
investigating diffusion driven transport phenomenon. Diffusion driven processes are
particularly important in cell biology and are responsible for the inter-cellular and
intra-cellular transport of ions, molecules and particles. The transport of organic
molecules, not actively controlled by cellular proteins, as is the case for the trans-
port of amino acids and sugars, across cell membranes are currently not very well
understood, but directly affect drug delivery and toxicity studies. MD simulations
have played an important role to improve our understanding of these phenomenon.
Consequently, many groups have studied the diffusion and permeation of small or-

ganic molecules across a phospholipid membrane using atomic level MD simulation
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with good success [169, 26, 25, 100]. However, MD simulations very computationally
intensive due to the extremely short time-steps required to capture molecular pro-
cesses, which have very small characteristic times [40]. In order to overcome these
drawbacks, Orsi et al. [112] have developed a coarse grain simulation of the lipid
bi-layer and surrounding water molecules, while computing the transport of the or-
ganic molecules with atomic resolution. They show that these approximations do not
significantly affect the permeation and diffusion coefficients, which agree well with
other MD simulations performed at the atomic level, as well as experimental mea-
surements of these coefficients. Another area where MD simulations have played an
increasingly important role is in ion transport through gated or non-gated channels
[119, 32, 31]. The crystallization of cell membrane pores have revealed new details
about their physical structures and subsequently MD simulations have been used to
better understand the conformational and chemical changes ion channels undergo
during the process of proton transport. Wang and Voth have studied proton trans-
port through an antiporter using MD simulations and reported the reorientation of
a protein side chain within the antiporter as the conformational change necessary
to facilitate the transport [162]. Nemukhin et al. have performed molecular level
simulations of the transport of ions through the Gramicidin A channel and found
that their results agree with previous experimental observations [106].

Processes at the molecular scale have very short characteristic times. Con-
sequently, MD simulations run with very short time-steps, typically approaching
femto-seconds. Therefore, MD simulations, which typically include hundreds of

molecules are very computationally expensive, even after including multi-scale coarse
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grained models and it can often take several days to gather only a few nanoseconds
of simulation data. Diffusion processes for modeling nanoparticles in an optical trap
often do not require a description of the system at the molecular level. A more

computationally efficient approach to model such systems is described next.

2.3.2 Brownian Dynamics Simulations

Brownian Dynamics (BD) simulations have been developed to model the mo-
tion of micro and nanoparticles in a fluid using Langevin’s equation, a modified
form of Newton’s equation of motion that includes a rapidly fluctuating stochastic
force term. Unlike MD simulations, where the collisions of the fluid molecules with
the nanoparticles are modeled individually, the stochastic force term in Langevin’s
equation accounts for the average force from numerous molecular collisions. There-
fore BD simulations can be computationally more efficient than MD simulations.
Equation 2.5 gives Langevin’s equation for a particle with mass m and velocity V (t)

at time ¢t. The characteristic time-scale of this model is the relaxation time, %

Y
where v = 67na is the drag coefficient. The scaling constant for the stochastic noise

term I'(t) is given by ( = y/2yKgT and is obtained by imposing the requirements

of the fluctuation-dissipation theorem [84, 68].

WO _ Yy 4 S (2.5)

dt m m

BD simulations have been used in colloidal science to describe the self-assembly
of dilute polystyrene solutions into colloidal crystals without considering the effect

of inter-particle hydrodynamic interactions [91, 2]. However, hydrodynamic interac-
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tions between neighboring particles are important when studying the self-assembly of
microspheres and were developed and integrated into BD simulations by Ermak and
McCammon [51], who describe the diffusive behavior of N interacting microspheres,
in addition to the stochastic effects from the fluid surrounding the suspension. This
model was later extended to include the behavior of particles of arbitrary shape
in the presence of hydrodynamic effects and an external force field [53]. Equation
2.6 gives a version of Langvin’s equation that includes hydrodynamic interactions

Dijm; 1
kgT and 055 = kT Zz DZ]Cl]v

for multi-body systems [51]. In this equation, 7;; =
where D;; is the diffusion tensor, m; is the mass of the i" particle and ¢;; is a scaling
coefficient. Hydrodynamic effects are introduced by deriving expressions for cross
terms in the diffusion tensor to model the interaction between particles in the sys-
tem. Finally, Equation 2.6 is integrated numerically to obtain position trajectories

for each particle in the system.

. : 1
Zﬂ'jl’j = —-’Ez“l—mZDijFi"‘ZUz‘ij (2.6)
j j j

Brownian Dynamics simulations have been used in colloidal science to model
a wide range of interesting physical phenomenon. Simulations of self-assembly pro-
cesses for heterogeneous components using Brownian dynamics have started to con-
tribute to the understanding of these phenomenon under wide ranging conditions.
Lin et al. have shown the self-assembly behavior of rod-like and coil-like copolymer
molecules using BD simulations [93]. By modeling the inter-molecular forces, as well
as the electrostatic forces between individual copolymer systems, their simulations

predict the realignment and packing of the copolymers, in agreement with experi-
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mental observations. BD simulations have also been successfully used in templated
self-assembly. Haghgooie et al. have demonstrated how such simulations can be
used to develop the design of efficient templates for use in the self-assembly of mag-
netorheological fluids in microfluidic channels [71]. Using BD simulations they have
shown how specific geometric constraints in template design can not only induce the
assembly of these colloids, under a magnetic field, but also transition the system
between ordered and disordered states.

Brownian dynamics simulations have also been combined with other simula-
tion methods, most notably molecular dynamics, to result in multi-scale simulations.
Allen and Rutledge have demonstrated one such approach, where they use the re-
sults from a MD simulation to create an approximate model of the solvent density,
which is then input into a Brownian dynamics simulation [6]. This approach is
particularly useful in improving the accuracy, while retaining the computational ef-
ficiency of BD simulations, when studying solvents whose density varies close to the
solute particle, as is often encountered when modeling proteins and other biologi-
cal systems. Molecular level simulations have also been combined with rotational
dynamics simulations to model the behavior and aggreagation of claylike colloids
[75], while more recently Sané et al. have studied the hydrodynamic interactions of
disk-like colloidal particles using multi-scale simulations [138].

Physcially accurate particle simulations are important in advancing nanoassem-
bly using optical trapping. However, very few simulations exist that model the
behavior of nanoparticles in an optical trap. Rohrbach et al. have developed a

three-dimensional simulation using Brownian Dynamics to model a nanoparticle in
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an optical trap for use in a thermal motion-based imaging system [133]. They in-
clude a physical, but idealized force calculation of the optical trapping force and
use their simulations to calculate the spring constant of kinesin, immobilized at one
end and attached to a latex bead, held in an optical trap, at the other. Based on
the relative position and orientation of the bead with respect to the anchor, they
obtain between 5% and 13% agreement their calculated values and the measured
value of kinesin’s spring constant. More recently, Gong et al have used Monte Carlo
simulations to calculate the stiffness of an optical trap using the thermal noise of
a particle in the trap [65]. Their simulation results show that insufficient acquisi-
tion time can be a significant cause of inaccurate estimation of the trap stiffness.
Xu et al. have studied the collision dynamics, including hydrodynamic effects, of
two particles trapped using an optical tweezers, also using Monte Carlo simulations
[170]. They show that multiple particles in an optical trap have little impact on
the stiffness of the trap and the frequency of collisions of the particles in the trap
decreases, as expected, with the separation distance. More recently Roichman et al.
have used BD simulations to interpret laboratory results, where they observe that
microscale particles undergo a steady-state circulation in an optical trap due to the
presence of the forward scattering force [137].

Brownian dynamics simulations play can play an important role in optical
tweezers-based assembly and the performance of BD simulations can be signifi-
cantly improved by porting these algorithms to inexpensive graphics hardware as is

discussed next.
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2.3.3 Physical Simulations on Graphics Hardware

In recent years graphics intensive programs have greatly benefitted by offload-
ing geometric operations to the inherently parallel and pipelined architcture of the
graphics processing unit (GPU) [80]. More recently key architectural [1] and soft-
ware changes have allowed general purpose calculations to be offloaded to the GPU
and the results returned for use in further analysis or computation. The introduc-
tion of high level application programming interfaces (API) such as nVidia compute
unified device architecture (CUDA) have made it even simpler to implement existing
scientific applications to the GPU [74].

Many general purpose calculations have been successfully implemented on the
GPU facilitating its use as a cost-effective parallel processor. Geometric modeling
applications have heavily leveraged the capabilities of the GPU [125, 79] and meth-
ods to solve partial differential equations (PDE) as well as linear systems of equations
have also been successfully implemented. This in turn has led to the development
of finite element algorithms [48] and spring mass systems. Development of sorting
and search methods such as bitwise or a nearest neighbor search have helped the
implementation of fluid dynamics problems on graphics hardware. Kipfer et al. [81]
have developed a GPU based particle engine that can simulate a million particles
with collision detection using a simple sorting algorithm. Kolb and Cuntz adapted
a Lagrangian model that directly simulates particle motion where they propose to
eliminate the need to sort interacting particles to determine the effect of nearest

neighbor interactions [82].
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More recently MD simulations have been implemented entirely on the GPU
9, 57, 145] to include the calculation of force fields and integration of the force
equation to yield trajectories of the individual molecules, with reported speedups
of 150 times over traditional simulation techniques [153]. Auffinger et al. [15] have
developed MD simulations using the GPU to study the binding of K+ and Mg?**
ions to binding sites on 5 S rRNA. The GPU has also been used successfully in
Monte Carlo methods to demonstrate the migration of photons on a surface [4],
simulations of ligth modulation [90], as well as the 2D and 3D simulation of the
Ising model [123].

A majority of GPU implementations however, emphasize the performance of
their respective algorithms on graphics hardware over accuracy. The field of GPU
architecture is rapidly evolving. However, most GPU’s to-date store data in 32-
bit floating point format compared with double-precision 64-bit formats that are
common on the CPU, degrading accuracy and potentially resulting in large roundoff
errors [19, 102]. The problem is further aggravated by the fact that most GPU
vendors (with the exception of nVIDIA Tesla architectures) do not strictly adhere
to the IEEE floating point representation standard, causing the round-off errors to
vary significantly between GPUs. The availability of 64-bit GPUs in the future is
likely to improve the accuracy in some applications, but the characterization of GPU
errors will remain an important component in porting scientific calculations to the
GPU successfully. The problem of GPU rounding errors is even more important
in particle simulations like those proposed for optical trapping, which involve the
generation of long trajectories over millions of time-steps, where rounding errors can
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accrue and thereby pose serious challenges to producing physically accurate results.
We discuss the effect of GPU rounding errors on an optical tweezers simulation in

more detail in Chapter 3.

2.4 Measurement of Optical Trapping Forces

The accurate measurement of the optical trapping forces with sufficient sensi-
tivity has been greatly beneficial in many applications of optical trapping, especially
in studying the mechanics of biological systems such as biological motors. In most
experiments, large microspheres with diameters of several micrometers, are attached
to the biological systems. The optical trapping force is then estimated for these large
particles, held in the optical trap. Large microspheres are very strongly bound to
an optical trap and undergo very little movement away from the center of the trap
due to Brownian motion. For very small displacements close to the center, the op-
tical trap can be approximated by a harmonic oscillator and the optical trapping
force, under this harmonic approximation, varies linearly with the displacement of
the particle.

Several techniques, developed to measure the trapping force on a strongly
bound particle in an optical trap using a harmonic approximation of the trapping
force are described below. The harmonic approximation, which results in a linear
spring stiffness is appropriate and works well when measuring the trapping force
experienced by particles larger than several hundred nanometers. Force measure-

ment techniques employing the harmonic approximation generally require that the
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displacement of the particle be measured with nanometer precision and are sensitive
to very small changes in the trapping force. Accurate measurements of the force ex-
erted by an optical trap are critical in several biological experiments. Probe particles
such as silica microspheres ranging in diameter from several hundred nanometers
to several micrometers, held in an optical trap, are often attached to biomolecules.
Therefore force measurement techniques so far have centered around calibrating
the linear stiffness of optical traps, close to the center. However, the optical trap-
ping force experienced by a particle reduces signicantly for smaller particles and
the trapped particle is no longer strongly confined in the trap. Consequently, the
particle exhibits larger excursions away from the trap center, where the harmonic
approximation for the trapping force is no longer valid. New force measurement
methods that estimate the trapping force without any prior assumptions about the
shape of trapping potential are described in detail in Chapter 4.

We start by discussing particle detection techniques commonly used in mea-
suring the optical trapping forces (Section 2.4.1) followed by current techniques to
measure the optical trapping force on microspheres. The power spectrum method
is discussed in Section 2.4.2, followed by the drag force method in Section 2.4.3 and
the equipartition method in Section 2.4.4. A summary of the discussed techniques

is then presented in Section 2.4.5.
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2.4.1 Particle Detection Methods

The accurate measurement of the trapping force often depends on sensitive
position measurement techniques. Techniques to accurately measure the position of
a nanoparticle in an optical trap include video microscopy and laser interferometry
and their use is determined by the requirements of the particular experiment being
performed.

Digital video microscopy is a versatile sensing and measurement tool that is
appropriate for low bandwidth applications, where sampling rates between 30 Hz
and 1kHz are sufficient [60, 42]. More recently high speed video microscopy has
been developed to track gold nanoparticles, tagged with fluorescent dyes, with a
bandwidth of up to 40 kHz [59]. Position information is generally recovered with
sub-pixel resolution using image processing algorithms, such as image centroiding
to locate the center of a spherical particle, which results in an accuracy of approxi-
mately 10nm [24]. Leveraging fast image centroiding algorithms, video microscopy
has been used extensively in tracking suspensions of colloids to determine their
structure as well as dynamics [70] and to study the hydrodynamic interactions of
two spherical particles close to a plate [49]. Digital image processing techniques
have also been used successfully to recover Boltzmann’s constant from a dilute sus-
pension of microspheres [105]. More recently digital image processing techniques
have been developed for the three-dimensional tracking of microspheres [115] and
nanowires [116, 117] in a fluid suspension for use in path planning algorithms us-

ing optical tweezers. Video microscopy methods, even with the use of high-speed
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charge-coupled device (CCD) cameras are not generally used in real-time, due to
the high computational time of processing the acquired image, in comparison with
the acquisition time. Therefore their use in online application such as closed-loop
feedback control is limited.

Laser based detection techniques have been developed for translucent parti-
cles as an alternative to image processing, especially in real-time applications where
high detection bandwidth is desired. One common detection technique relies on
the interference between orthogonally polarized light, analogous to differential in-
terference contrast (DIC) microscopy [107]. In this technique, an incoming linearly
polarized beam is first split by a Wollaston prism into two orthogonally polarized
components that are spatially shifted relative to each other [45, 149, 158]. Each
of these beams form an overlapping spot at the specimen plane, separated by a
few nanometers [38]. After passing through the specimen plane, the two polarized
components of light are recombined by a second Wollaston prism and the resulting
polarization of the recombined beam is measured. For a particle, at equilibrium and
aligned with the center of the trap, the path length and thereby the phase shift in
each arm of the interferometer is the same and the recombined beam retains a lin-
ear polarization. However, as the particle moves away from the center of the trap,
the recombined beam becomes elliptically polarized (on account of uneven phase
shifts in each path), with the degree of the polarization varying as a function of
the displacement. The polarization state of the recombined beam is measured by
splitting the beam into two orthogonal components using a polarizing beam splitter
and measuring the power in each beam path with a photodiode. This technique is
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extremely sensitive to particle displacements in the trap, however it’s main draw-
back is that it is limited to one-dimensional measurements aligned with the axis of
the Wollaston prism [45].

Another laser based detection method for translucent particles is shown in
Figure 2.6. This technique monitors a detection beam, which passes through a mi-
crosphere and is imaged at the back focal plane (BFP) of the microscope condenser
(63, 8]. The detection beam is then projected onto a quadrant photo-diode (QPD)
located in a plane, conjugate to the BFP. The QPD is a four element detector,
which uses differential intensity signals from its four detectors to generate a two-
dimensional position signal, proportional to the displacement of the beam. In this
system a lateral movement by the sphere in the specimen plane, causes a correspond-
ing deflection at the BFP and thereby also on the QPD. Back focal plane detection
is commonly used in optical trapping and provides a sensitive measurement of the
motion of the particle relative to the trap. However, in certain applications, such as
when closed-loop control of the trapped particle is desired, a separate low-power de-
tection beam is incorporated [86] into the experiment and aligned with the trapping
beam to provide independent position measurements. The power and wavelength
of the detection beam are important parameters to be considered when designing
an independent detection system. The detection beam must have sufficiently low
power, so as to not generate significant optical trapping forces at the specimen plane.
This is achieved by limiting the beam power to a few milli-watts and choosing a laser
line to which the detector is very sensitive. A common combination used in optical

trapping experiments is a visible red laser with a silicon photo-diode.
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The position detection methods discussed above only measure the lateral po-
sition of a particle in a trap, but not axial displacements, which are important for
three-dimensional optical trapping. Axial position measurements are typically ob-
tained by measuring the intensity of light at the back focal plane of the condenser
(or a plane conjugate to it) using a photo-diode [122]. In the axial direction, light
passing through the focal plane of the objective lens acquires a phase shift of m
called the Gouy phase [135]. However, light scattered by a particle located at the
specimen plane (close to the focus) does not acquire the full Gouy phase shift, but
instead acquires a phase shift proportional to it’s axial displacement [107]. This
results in intensity fluctuations as a function of the particle’s axial displacement,
which are recorded using a photo-diode. Lateral and axial position measurement
techniques have been combined to provide three-dimensional tracking of a particle
in an optical trap with high resolution and bandwidth [135].

The bandwidth obtained using laser-based detection methods is sensitive to
the wavelength of the detection beam, as well as the power. Typical silicon detectors
used in position measurement have poor absorption of light at wavelengths above
850nm and consequently a poor response to the particle position, which in turn
leads to unintended filtering and lower bandwidth [29, 30]. Typical bandwidths for
silicon detectors at 1064 nm (a popular laser line for optical trapping and detection)
have been reported to be approximately 8 — 9kHz [107]. Improved performance
is obtained by using an independent detection beam with wavelength in the visible

region or by using photodiodes built with a different material, such as indium gallium

44



Digital Analog
Processing Processing
Lens
Dichroic \
Mirror A f A é}
...................... s

Quadrant
Photodiode Y

BFP

Condenser

Specimen

Objective

Figure 2.6: Back focal plane detection setup used to measure lateral displacements
of trapped microspheres [63].

arsenide (InGaAs) which have better response than silicon in the infrared spectrum.

The response of detectors such as quadrant photo-diodes to a change in the
particle position is generally unknown and must therefore be calibrated prior to use
in a force measurement. Calibration is typically performed by immobilizing a bead
on a coverglass and using a nanopositioning stage to move the particle across the
field of view of the detector in discrete steps [142]. The response of the detector to
the particle position is then recorded as a function of the particle position, shown
in Figure 2.7 [66]. In many experiments, it is advantageous to limit the position
measurement of the particle to a region close to the center of the detector, where
the sensitivity is the largest. The plot shown in Figure 2.7 is for one-dimensional
position detection, however Lang et al. have also performed the QPD calibration

in two-dimensions [86]. Force measurement methods for strongly trapped particles,
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which rely on accurate position measurements are described next.
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Figure 2.7: Calibration of a quadrant-photodiode response to the position of an
immobilized bead [66, 142].

2.4.2 Power Spectrum Method

All trapped particles, regardless of their size undergo some random motion
in an optical trap. Leveraging this principle, power spectrum methods have been
developed to recover the trap stiffness for strong optical traps by analyzing the
motion of a particle in the trap in the frequency domain [159, 147, 8]. In order to
calculate the power spectrum of a particle in a trap, we start with the motion of a

particle in a harmonic potential, given by the following Langevin equation [39].

mE(t) + v a(t) + ka(t) = 2kgTy I'(t) (2.7)

In Equation 2.7, m is the mass of the particle, v = 6mnea is the Stokes drag coefficient
for a spherical particle with radius a in a liquid with viscosity n at temperature T
and x(t) is the trajectory of the particle. The stiffness of the harmonic trap is given
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by k, while & and # represent the first and second time derivatives of the position
trajectory of the particle. The factor € in the drag coefficient v, which takes into
account the correction to the viscosity of the fluid due to particle motion parallel to

the walls of the sample cell, at a distance h, is given by Equation 2.8 [36].

1
T fyla/h) + 5oy — Bla/h) = 5 (a/h)P

€ =

(2.8)

For over-damped systems (such as trapping microscale or nanoscale particles in wa-
ter), the second order term in Equation 2.7 is ignored and the power spectrum Py is
obtained as a function of frequency f by first taking the Fourier transform of Equa-
tion 2.7 and then calculating it’s magnitude to obtain the power spectral density.
Under an assumption of an over-damped system, the power spectrum is known to
have the Lornetzian form given in Equation 2.9, where f. is the corner frequency
of the trap. The corner frequency is recovered experimentally by calculating the
power spectrum from a time-series of a particle’s position in the optical trap and
then fitting this data to the Lorentzian function shown in Equation 2.9 [37]. The
corner frequency (f.) recovered from the power spectrum of the particle’s position

in a trap is then related to the stiffness using the relationship given in Equation

2.10.
- kT
YT megE e ) 29
Kk =21y fe (2.10)

A typical power spectrum for a trapped spherical particle is shown in Figure

2.8. As seen above, the corner frequency (at the point where there is knee in the

47



Y
o o
|
> -
|

&
|
|

X Position (nm)
o
{

L
o

(=]
Y
(o]
[=]

200 300 400 500 600
Time (s)

o
D —

I(IIIHI 1 I/
W
(1]
w
O
W
L1 11

X Noise Amplitude (nm/VHz)

T T T
1 1 ||]||||

10 10 10° 10 10
Frequency (Hz)

Figure 2.8: A typical power spectrum for a bead stuck to the surface of the sample

cell and for one trapped above the surface. The power spectrum of the bead trapped
above the surface has Lorentzian form [86].

plot) of the trapped bead in the figure corresponds to the stiffness of the optical
trap. As the particle size decreases, the optical trapping force and therefore the
trapping stiffness decreases and the corner frequency will shift to the left. Similarly,
as the power input to the particle is increased, the corner frequency will shift to
the right leading to an optical trap with a higher stiffness. The power spectrum
method has been extensively studied and has been used to measure trap stiffness
for transverse displacements [38], axial displacements [58] and both the transverse
and axial displacements of the particle simultaneously [37]. This method is sensitive
to extraneous sources of noise in the instrumentation (which appear as peaks in the

power spectrum) as well as any misalignment or instability in the optical beam
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path (which result in a distortion of the Lorentzian shape of the power spectrum).
However, the accuracy of the measured stiffness is directly influenced by detector
bandwidth. Therefore for optimal performance, the bandwidth of the detection
system must be at least an order magnitude greater than the expected bandwidth
of a particle in the trap [107]. Inadequate detection bandwidth (even with the
inclusion of a low pass filter) leads to underestimating the corner frequency and
thereby the stiffness of the trap. On the other hand, since the stiffness of the trap
depends only on the corner frequency, detector calibration is not required for this
method to provide accurate results.

The power spectrum method has been improved to take into account the ef-
fects of finite sampling frequency on trap stiffness, the effect of electronic filters
and the unintended filtering arising from slow response of silicon photo-diodes to
infrared beams [30, 29, 110]. These improvements to the power spectrum method
have resulted in lower uncertainties in the measurements. Luki¢ et. al [96, 95] have
carefully characterized the influence of hydrodynamic memory effects arising from
the inertia of the fluid surrounding a trapped particle. The inclusion of corrections
from such memory effects greatly improves the accuracy of stiffness measurements.
While the influence of hydrodynamic memory effects generally diminish with par-
ticle size, they find that this decrease is non-trivial and varies significantly with
detector bandwidth and trap strength. Moreover particles with a diameter as large
as 270 nm were found to be influenced by this phenomenon. The power spectrum
method can yield moderately accurate results when the Stokes drag coefficient ~ is

accurately known [38]. In many cases accurate measurement of the Stokes coeffi-
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cient, which depends on the fluid viscosity is difficult. In order to overcome this, the
power spectrum method has been combined with an online drag force measurement
(described next), which eliminates the need to know the fluid viscosity beforehand

37, 152].

2.4.3 Drag Force Method

A direct measure of the optical trapping force can be obtained by moving a
particle through a fluid with a constant velocity [139, 61], generally performed by
moving the sample stage relative to a stationary trap. In this case, the force exerted
by the trap on the particle is balanced by a viscous drag force from the fluid, given by
Stokes law. As the particle moves relative to the fluid surrounding it, it is displaced
from its equilibrium position in the trap by an amount proportional to it’s velocity.
By accurately measuring the velocity (v,) of a particle, with radius a, the force
acting on the particle can be calculated using Equation 2.11, by ignoring inertia
and thereby assuming that the system is over-dampled. The viscosity of the fluid
surrounding the particle is 7 (as a function of the temperature T') and e accounts
for corrections due to particle’s proximity to the surface of the sample cell, given by
Equation 2.8.

Firag = 6mneav, (2.11)

The experiment is performed several times and with each iteration, the ve-
locity of the particle v, is increased and the displacement of the particle from it’s

equilibrium position is recorded, until the particle escapes the trap past some critical
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velocity known as the escape velocity. The drag force calculated from the velocity
v, using Equation 2.11 is then plotted against the displacement of the particle from
it’s equilibrium position as seen in Figure 2.9 for the transverse case [85]. The linear

stiffness of the optical trap (k) is then simply the slope of the plot in Figure 2.9.
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Figure 2.9: The optical trapping force Fy.q, plotted against the displacement of a
spherical particle from it’s equilibrium position in the trap [85]. The experiment

is performed with positive and negative velocities in order to measure the trapping
force on either side of the equilibrium position.

The drag force method has been successfully used to calculate the transverse
[85, 98, 166] as well as the axial trapping stiffness [61] and has also been used to
map out the linear region of the trapping potential close to the center of the trap.
Since the measurement is slow compared with techniques such as the power spec-
trum method or the equipartition theorem method, the bandwidth requirements for
detectors used in this technique are not very stringent. Moreover since this tech-
nique depends on accurate measurement of the displacement of the particle from its

equilibrium position, detector calibration plays a crucial role in achieving high ac-
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curacy. However as in the case of the power spectrum method and the equipartition

method, an accurate measurement of the viscosity of the fluid is necessary.

2.4.4 Equipartition Method

The equipartition theorem relates the average energy of a particle to it’s tem-
perature (7'). It has been used to calibrate the stiffness of an optical trap under
the assumption of harmonic motion of the particle within the trap [55, 107]. As
seen in Equation 2.12; the potential energy for an optical trap under a harmonic
approximation is equated with the thermal energy experienced by the particle in the
optical trap, where the stiffness of the optical trap is given by «, kg is Boltzmann’s
constant and ((z — z)?) is the mean-squared displacement of the particle from the

center of the trap (zy).

;kBT = ;/i<(x — 70)?) (2.12)

The equipartition method depends on the position of the particle in the trap,
but requires a calibrated position detector with sufficiently high bandwidth [158]
since insufficient bandwidth often results in underestimating the trap stiffness. This
method is explicitly developed under the harmonic approximation of the trapping
potential and is therefore suitable for large particles that only explore a small region
close to the trap center. Like the power spectrum method, this force measurement
technique is also susceptible to unintended filtering effects [30, 29, 110] as well as

the influence of hydrodynamic memory effects [96, 95].
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2.4.5 Comparison of Force Measurement Techniques

Several techniques to measure the stiffness of an optical trap formed by a
tightly focussed laser beam have been described above. These techniques have been
compared with each other experimentally and show moderate agreement [95]. How-
ever, very little data exists that compares experimental force measurement methods
with existing theory. In one case, where theoretical calculations for dielectric par-
ticles have been compared with the stiffness of the optical trap, the errors between
the theoretical and experimental values vary significantly with particle size [132]. In
these measurements, smaller particles showed moderate agreement with theoretically
predicted values (varying from approximately 3% to 50 %), while for micrometer
sized particles the errors were even larger. This highlights the continuing difficulty
in obtaining agreement between laboratory results and current theoretical models
over a wide range of particle sizes and materials. These results also imply that new
techniques, developed using numerical simulations, to localize nanoscale particles
within an optical trap cannot fully rely on theoretical models. Instead, we develop
new laboratory-based force measurements for nanoparticles (described in Chapter
4) and use this data as input to numerical simulations to drive the discovery of new

control algorithms to enhance optical trapping at the nanoscale.

2.5 Closed-Loop Control Systems for Optical Tweezers

Particles confined in an optical trap undergo a constant random thermal mo-

tion, which in some cases can limit the accuracy with which nanostructures are
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assembled. This uncertainty in the particle position due to Brownian motion can
be reduced using a closed-loop control system, which continuously monitors the po-
sition of the particle in the trap and uses it’s displacement away from the center,
to servo the trap and return the particle to equilibrium. The first controlled optical
trapping experiments were performed by Ashkin and Dziedzic using a levitating op-
tical trap, shortly after the optical tweezers were invented [14]. In these experiments
(performed in air as well as in vacuum), the displacement of the particle away from
equilibrium, along the direction of propagation of the beam, was recorded using a
photodiode and then used to control the power to the optical beam, to bring the par-
ticle back to it’s equilibrium position. A simple proportional controller was found to
be sufficient to hold the particle steady, when running the experiment in air, since
the air molecules provided natural damping to suppress oscillations. However, a
derivative term was added to the controller when trapping particles in vacuum, to
suppress high frequency oscillations of the particle in the trap.

Current closed-loop controllers employ proportional-integral-derivative (PID)
control to suppress the Brownian motion of microscale particles. Two techniques
are commonly utilized to change the magnitude of the trapping force acting on the
particle: intensity control, and scan control. In intensity control, the intensity of the
beam is varied, typically using an electro-optic modulator (EOM), in response to a
displacement of the particle from the center of the trap, thereby directly increasing
the amount of force acting on the particle. On the other hand, in scan control,
the intensity of the beam is kept constant, but the trap is moved rapidly, using
an actuator such as an acousto-optic deflector (AOD), to oppose the motion of the
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particle from its equilibrium position in the trap.

Experiments that study biological systems have benefitted from both intensity
and scan control. Such systems often use a large dielectric particle held in an optical
trap and tethered to the biological molecule being studied. Wang et al. use intensity
control techniques to study the micromechanical properties of RNA polymerase
(RNAP), a motor protein complex, critical in the transcription of nascent RNA
with a template DNA strand, capable of exerting large translocation forces during
the transcription process [163]. They first held a polystyrene bead, tethered to the
DNA strand, at a fixed position in an optical trap, by controlling the intensity of
the beam and thereby changing the force exerted on the bead. The force from
the optical trap, transmitted to the RNAP motor through the DNA tether, was
steadily increased, eventually causing the RNAP motor to stall. The force applied
to the RNAP as a function of time was then used to calculate the efficiency of this
molecular motor. A similar experimental setup was also used to study the force
required to stretch DNA and thereby compare the measured mechanical properties
of DNA with theoretically predicted values [164].

Scan control has also been used successfully in the control of tethered micro-
scale particles. Block et al. have used scan control to study the mechanics of the
power stroke, responsible for the motility of kinesin molecules [33, 86]. A microscale
spherical bead attached to a kinesin molecule was confined to an optical trap and
scan control in two-dimensions was employed to maintain a constant force on the
particle, as the kinesin motor tugged on the it. They found that the velocity of

kinesin motion was heavily dependent on the directionality of the applied force and
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while forward and sideways forces had little impact on the motility of the molecule,
small backward forces caused it to stall. This experiment provided new insights into
the operation of kinesin, however the exact mechanics of the kinesin power stroke
are still uncertain. Scan control methods have also been used by Finer, Simmons
and Spudich to measure the forces generated by myosin, when taking discrete steps
along microtubules in muscles [54].

Simmons et al. first demonstrated closed-loop scan control on freely diffusing
particles in two-dimensions using a single laser for trapping and detection [142].
Using proportional and integral control, they demonstrated an increase in the stiff-
ness of the optical trap by a factor of 400. This measurement has been repeated
more recently by Wallin et al., who use separate trapping and detection beams
in their experiment [161]. Using a proportional controller, implemented on a field
programmable gate array (FPGA), they demonstrate a several fold increase in the
trap stiffness. Recent efforts have focussed on developing a more rigorous treat-
ment of controlled optical trapping by applying the principles of control theory.
Ranaweera and Bamieh have modeled the optical trapping instrument and applied
online system identification techniques to obtain controller parameters in real-time
[128]. They then demonstrate, through simulations, the benefit of using feeback
control algorithms, such as proportional control, linear-quadratic-Gaussian or non-
linear control, on the suppression of Brownian motion as well as increasing the trap
stiffness.  Wulff, Cole and Clark have developed techniques to select parameters
that improve the performance of closed-loop controllers used in optical trapping
[168, 167]. Much like Ranaweera and Bamieh, they model the optical tweezers
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instrument and develop adaptive online identification methods to determine the pa-
rameters of the controller. They also derive appropriate relationships that help in
selecting the controller gain for the suppresion of Brownian motion. However, their
experimental system is only capable of suppresing low frequency motion, due to lim-
itations in their actuation bandwidth. Moreover, they use a single beam for trapping
and detection, which has the drawback of potentially increasing the uncertainty in
the absolute particle position significantly. The modeling of control systems for
Brownian motion suppression has been further extended by Gorman et al., who not
only provide a detailed treatment of how to select optimum controller gains, but
also discuss the effect of actual instumentation limitations, such as time-delays and
instrumentation bandwidth, on the performance of the controller [66].

The development of efficient and optimal control systems for microscale par-
ticles is still a nascent field, however the application of control systems to localize
nanoscale particles is virtually non-existent. Developing closed-loop control sys-
tems to control nanoparticles in an optical trap have several advantages. Feedback
controllers using either scan control or intensity control can be used to corrall nano-
particles and keep them confined in the trap for sufficient time, for use in practical
nanoassemblies. Control systems can also be used to reduce the uncertainty with
which a nanoparticle is assembled into a structure and reduce the amount of power
required to trap and localize the particle. The development of control systems for
nanoparticles is however more challenging in comparison with microscale particles,
since nanoparticles have weaker interactions with the optical trap and consequently

diffuse out of the trap rapidly. Furthermore, limitations in instrumentation, such
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as time-delays and bandwidth, can also play a more decisive role in limiting the

performance of such control systems and must therefore be overcome.

2.6 Summary

Optical tweezers have evolved to be a powerful prototype and test tool for
microscale assembly. However, they have so far not been extended to the nanoscale.
Extending optical trapping for nanoscale prototyping requires overcoming some
key challenges. As seen earlier, the optical trapping force decrease drastically for
nanoscale particles and consequently it is significantly harder to keep nanoparticles
stably trapped within an optical trap. Therefore new techniques must be developed
that increase the amount of time nanoparticles remain trapped, without also in-
creasing the amount of power. One route to improved optical tweezers performance
at the nanoscale is through the use of closed-loop control systems, but the devel-
opment of efficient control algorithms also requires development of supporting tools
such as physically accurate simulations and trap characterization techniques.

Physically accurate simulations of diffusion processes are discussed in Section
2.3. Existing techniques include using molecular dynamics simulations or Brownian
dynamics simulations to model diffusion. Since we are more interested in modeling
the diffusive behavior of microscale and nanoscale particles, rather than molecular
systems, Brownian dynamics simulations offer the more efficient route to developing
physically accurate simulations. However, these methods require small time-steps

and therefore can take a long time to complete. The computational efficiency of
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such simulations can be greatly improved using commodity graphics hardware and
the details of this development and the benefit to optical trapping are discussed in
more detail in Chapter 3.

The interactions of nanoparticles with optical traps are currently not very
well understood The behavior of nanoparticles in an optical trap is significantly
differently than that of microscale particles and new methods that quantify the
optical binding force acting on nanoparticles in an optical trap, can greatly improve
our understanding of these interactions. However, accurately measuring the optical
trapping potential in the laboratory and using that data to improve the fidelity
of our simulations, will also yield to better algorithms to improve the performance
of optical tweezers at the nanoscale. Existing methods used to detect microscale
particles and measure the force exerted on them by the optical trap were discussed in
Section 2.4. However these techniques are inadequate at the nanoscale and therefore
two new force measurement methods, developed and tested through simulations and
laboratory experiments, are discussed in Chapter 4.

Finally, closed-loop control systems, which play an important role at the micro-
scale, especially in biophysical experiments are discussed in Section 2.5. Control
systems for microspheres, which have only recently started to be carefully charac-
terized, can play a central role in the extension of optical trapping to the nanoscale.
However, control systems are currently not used for nanoscale manipulation with
optical tweezers. In Chapter 5, we demonstrate new methods that improve the

trapping time of nanoparticles in an optical trap using closed loop control systems.
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Chapter 3
Development and Characterization of Physically Accurate

Simulations for Diffusion of Nanoparticles in a Fluid

In this chapter!, we develop a Brownian dynamics simulation to model particle
diffusion in a fluid, under the influence of an external force. This model forms the
foundation of a simulation environment for nanoassembly using optical tweezers.
The simulation algorithms are implemented on the central processing unit (CPU)
of the computer, as well as the graphics processing unit (GPU), choosing parts of
the graphics pipeline that provide the most computational benefit. The simulation
is tested against the well-known theory of diffusion in order to characterize it’s
physical accuracy. We also quantify the accuracy of the GPU simulation in relation
with a double precision CPU implementation of the algorithm. Finally, we show
that the GPU implementation provides appreciable speedup in comparison with a
CPU implementation with the necessary accuracy.

Physically accurate simulations provide a versatile platform and serve as a
powerful discovery tool to develop and test new techniques, which will allow us to
extend optical trapping to nanoscale assembly. We have already used the numeri-
cal simulation techniques, developed in this chapter, to test the feasibility of new

characterization techniques for use in the laboratory, such as the enhanced force

!The work in this chapter is derived from the published work in [19].
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measurement methods outlined in Chapter 4. Physically accurate simulations have
also played an important role in developing the control algorithms demonstrated
in Chapter 5, which improve the time a nanoparticle remains confined to an opti-
cal trap. When developing control systems to enhance the performance of optical
tweezers, simulations are one of the only practical tools that allow us to quickly
prototype and test new algorithms.

Numerical simulations also have other important uses, outside the scope of
this work, which make them an invaluable tool for optical trapping. Simulations
can be used in a batch mode to test the effectiveness of new assembly algorithms,
by repeating an assembly operation several times in order to collect statistical in-
formation about the repeatability and reliability of the process. Such operation is
desirable, when access to the physical instrument may be restricted or the desired
assembly operation is time or cost intensive to prototype directly in the laboratory.
Moreover , in some cases simulations may be able to quantify trapping behavior in
ways that is not practical in the laboratory. In these situation, numerical simula-
tions combined with select experiments run in the laboratory can be used to provide
quantitive information about the performance of optical traps. Numerical simula-
tion algorithms, which run in real-time can be included within a closed-loop control
loop for feed forward operation. Similarly, real-time numerical simulations can be
used for operator training, where the simulation completely replaces the physical

optical tweezers instrument.
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3.1 Motivation

All particles in a fluid undergo random thermal motion, the result of millions of
collisions of the surrounding fluid molecules with the particle. For large particles in a
strong optical trap, the magnitude of the thermal motion away from the trap center
is small. However, for a constant beam power, the trapping force acting on a particle
decreases significantly as it’s size decreases. Therefore small nanoparticles are able
to make large excursions away from the trap center, eventually escaping the trap in
times that are too short to allow their use in practical nanoassemblies. Closed-loop
control algorithms, discussed in Chapter 5, have been developed to increase the time
particles spend in an optical trap. Physically accurate simulations provide a flexible
and perhaps the only route to rapidly prototype and test such control algorithms.
Control algorithms, developed to improve the performance of optical traps acting
on nanoparticles, can be sensitive to practical limitations, such as time-delays and
finite bandwidth of instrumentation. It is difficult to account for these effects in
analytical calculations that model controller behavior. However, such limitations
are easily imposed in simulations and therefore physically accurate simulations are
an invaluable tool to develop effective control algorithms for nanomanipulation with
optical tweezers.

We develop a physically accurate model of particle diffusion in a fluid using
Brownian dynamics, which forms the foundation of a simulation platform for optical
tweezers based nanoassembly. Brownian dynamics simulation algorithms developed

to model diffusion of nanoparticles in a fluid require the use of very small time-steps
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(on the order of pico-seconds for particles smaller than a few hundred nanometers)
and therefore millions of iterations are required to generate sufficiently long runs of
simulation data. Often, data from several hundred simulation runs are combined
to calculate equilibrium averages or gather additional statistical properties of the
physical process, which take a very long time to complete. However, the independent
nature of the simulations, which do not consider interactions between particles, lends
itself very well to parallelization.

Current GPUs have considerable parallel computing power that make them an
attractive option to speed up scientific calculations. One drawback of many current
GPUs is that they only support single precision floating-point numbers and do not
follow the IEEE floating-point standard, which has been universally implemented
on the CPU. Moreover, the implementation of floating-point numbers varies across
GPU vendors, which causes the rounding errors on individual GPUs to significantly
vary. Recently there has been a surge in the adoption of GPUs for general purpose
physical models but little work has addressed the issues of accuracy and precision
for deterministic systems [48]. Such characterization has not been attempted, to the
best of our knowledge for iterative systems that generate long trajectories and may

accumulate errors over millions of steps. The focus of this chapter, therefore is to:

a) Develop Brownian dynamics simulations of particle diffusion in a fluid for use in

optical tweezers based nanoassembly.

b) Characterize simulation results against established theory to verify the accuracy

of results represented by physical quantities such as energy conservation or the
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value of the diffusion constant.

¢) Implement the simulation model on the GPU, using parts of the architecture
that provide most benefit and evaluate the accuracy of GPU simulations against

the results from the CPU.

The simulation model for a freely diffusing particle system (Section 3.2) is first
described followed by an overview of the GPU architecture (Section 3.3). Special
attention is given to how the stages of the graphics pipeline map onto our simulation
model and which stages of the graphics hardware provide the most benefit for a
given operation. Finally, results (Section 3.4) highlighting the accuracy achieved
by running the simulation on the GPU and the measured speedup are presented,

followed by a discussion of the results and conclusions (Section 3.5).

3.2 Brownian Dynamics Model for Particle Diffusion in a Fluid

A large particle in a fluid is bombarded by the surrounding molecules, which
gives rise to a randomly fluctuating force on the particle that consequently imparts
some velocity to it. As the particle moves through the liquid with finite veloc-
ity, it also feels the effect of a systematic drag force. The randomly varying force
acting on the particle is intimately related to the drag force through the fluctuation-
dissipation theorem [84]. Langevin’s equation, which is simply Newton’s equation
of motion coupled with a properly scaled randomly fluctuating force, is used to for-
mally describe this phenomenon [87, 39]. Langvein’s equation is shown in Equation
3.1 for a particle with mass, m, radius a and velocity V' (¢) at time ¢ in a fluid with
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viscosity 7, which is a function of temperature 7. The characteristic time-scale of

m

o where v = 67na is the drag coefficient

this model is given by the relaxation time,
(from Stoke’s law for a spherical particle), and is the time taken by the particle to

reach thermal equilibrium with the fluid, by gaining or losing velocity.

WO Ty S (3.1)

dt m m

The scaling constant, ( = /2vkgT, in Equation 3.1 is obtained by impos-
ing the requirements of the fluctuation-dissipation theorem [68], where kp is Boltz-
mann’s constant. The presence of the stochastic force term, (I'(¢) prevents the direct
analytical solution of Langevin’s equation, which does not have a unique solution.
Instead, solving Langvein’s equation results in an infinite number of trajectories from
which we can calculate the average behavior of the system. Therefore, in order to
calculate a single random trajectory, we first express Langevin’s equation in a finite
difference form and then proceed to integrate it numerically using an appropriate
integration algorithm. Assuming a uniform time-step d¢ and constant acceleration
over 0t, we can write the acceleration of the particle at the end of a time-step in the
finite difference form shown in Equation 3.2. A force term (F,,;) has been added to
allow the inclusion of an external force, such as an optical trapping force, but is set
to zero for the free particle. Simulations that include an optical trapping force are

implemented in Chapter 4.

v C Femt
Aty = ——V(t =TI'(t — 3.2
()=~ LV(0)+ =T(0) + == (32)
As stated before, a particle moving with velocity, V(¢) in a fluid bath at

temperature 7" undergoes many collisions with the molecules in the liquid [62]. In
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the finite difference form, the stochastic force in Equation 3.2 is the result of these
collisions over a finite period of observation, dt. Furthermore, the stochastic force
that arises from these collisions is found to be normally distributed with a mean
of 0 and a standard deviation proportional to % [68]. Therefore we can replace
['(t) in Equation 3.2 with a properly scaled normal distribution N (0, é) Using the

property of the normal random variable, N(au,a?c?) = aN(u,0?), we can absorb

(%)% into the scaling constant, (. The final form of the acceleration at the end of

the time-step is then given by Equation 3.3, where y = 4/ ZVEfT‘

F ext
m

Alt) = —LV(t) + %N(O, 1) + (3.3)

m

The acceleration of the particle must be numerically integrated in order to
obtain the new position and velocity of the particle. Several numerical integration
algorithms exist to perform the integration, however simulations based on Brow-
nian dynamics models use explicit finite difference methods, which are simple to
implement and provide good energy conservation [35]. The most popular explicit
finite difference methods are the Gear predictor-corrector method [7] and the Verlet
method [154, 155]. The Gear predictor-corrector, as the name suggests, consists of
two steps — an initial prediction step that provides the initial estimates of the quan-
tities being calculated, based on their values at previous time-steps, followed by a
correction step. Often, the process is repeated to reduce the error in the trajectory.
However, since each additional correction step requires another evaluation of the
force function, this technique can become computationally expensive. Moreover,

the error in the equilibrium energy increases very rapidly for large time-steps. The
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Verlet algorithm, on the other hand, is easy to implement, compact and computa-
tionally efficient. The Verlet algorithm provides good energy conservation at long
times, with little drift [113, 7]. Eventually, an integration method must be selected
that a) satisfies conservation laws with acceptable accuracy, b) is computationally
cost effective and c¢) permits the use of the largest possible time-step. For our appli-
cation, we choose the velocity form of the Verlet algorithm (which explicitly includes
a velocity term in the calculation of the position in contrast with the original Verlet
algorithm) due to its ease of implementation, the possibility to use larger time-steps
and excellent energy conservation at long times. Next, we obtain expressions for the
position (R(t)) and velocity (V (t)) of the particle for the velocity form of the Verlet

integration algorithm.

N~ R(t + 0t) — R(t — 0t)

() =V(D)~ — (34)
R ) = A(p) ~ BF0) = 2R() + Bt — &) 35

0t?

In order to obtain the expressions for the position and velocity of a nano-
particle using the velocity form of the Verlet algorithm, we first define approximate
expressions for the first and second derivatives of the position R(t), with respect to

time, as shown in Equation 3.4 and Equation 3.5 [150].

R(t+ 6t) = A(t)6t* + 2R(t) — R(t — dt) (3.6)

We then obtain an expression for the position of the particle at the next time-step
(t+ dt) by treating Equation 3.4 as an equality and solving for R(t+ dt) as shown in

Equation 3.6. Finally, we substitute the expression for R(t — 6t) from Equation 3.4
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Figure 3.1: Steps involved in calculating the acceleration, position and velocity of
the free particle to advance the simulation by one time step. The light gray boxes
are the quantities used to calculate the acceleration, position and velocity in the
dark gray box at time, ¢ + 0t (adapted from Allen and Tildesley [7])

into Equation 3.6 to obtain the final expression for the particle at the next time-step

(R(t + 6t)), shown in Equation 3.7.
1
R(t + 0t) = R(t) + V ()0t + 5A(t)&t? (3.7)

We obtain an expression for the new velocity of the particle as shown in Equation
3.8 below by substituting Equation 3.7 into Equation 3.4 and simplifying. The
expressions for the velocity and acceleration terms, calculated from a position time-

series are shown graphically in Figure 3.1.

A(t) + A(t + ot)
2

V(t+6t) = V(t) + 5t (3.8)

At each simulation time-step, we advance the position, velocity and accelera-
tion of each particle in the system. We first calculate the acceleration of the particle
at the next time-step (¢+4dt) given by Equation 3.3. Next, we update the position of
the particle using the previous velocity and acceleration, shown in Equation 3.7. Fi-

nally, we calculate the velocity of the particle at t 4 0t using the average acceleration
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from the current and previous time-steps and the previous velocity, shown in Equa-
tion 3.8. Therefore, the velocity Verlet generates a list of positions, velocities and
accelerations in one pass. Since the algorithm requires only one evaluation of any
external force at each time-step, it is generally more efficient than other methods.
The overall errors in velocity for this algorithm are proportional to 62, which makes
the velocity Verlet integrator a second order integrator [7]. The result of a single
simulation run is a list the particle’s position, velocity and acceleration vectors at

each time step.

3.3 GPU Architecture and Implementation of the Particle Diffusion

Simulation

The GPU is used to transform a set of geometric objects, referred to as the
graphics scene, into a two-dimensional bitmap that is output to a display device.
The process, which transforms the input geometry into the final bitmap consists of
several steps, performed sequentially by the graphics pipeline. An outline of the
steps in the rendering process is first presented conceptually, followed by a detailed
look at the physical embodiment of the rendering pipeline commonly found in most
modern GPUs. We then describe how we leverage stages of the graphics pipeline in
the GPU to speedup our Brownian dynamics simulation.

Objects in a graphics scene, defined using arbitrary world coordinates, require
several pieces of data — geometric information that defines the shape of the object,

lighting, point of view and other state information. The geometry of each object is
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Figure 3.2: Conceptual map of the GPU rendering pipeline. The three main stages
are physically represented in the center of the figure while examples of their memory
models (scatter and gather) are shown at the bottom.

described using a set of vertices, together with connection information. However, in
order to properly display object properties like lighting and color, we also require
additional information associated with the surfaces that form the geometry, such
as normal vectors, which in turn add additional storage and processing overhead
to the GPU. This problem is overcome in the GPU by associating additional data
attributes to each vertex that defines the geometric object, such as a Red, Green,
Blue (RGB) color, normal vector and other user-defined information. This informa-
tion is interpolated to generate the correct display attributes for the geometry by
the appropriate stages of the pipeline. Therefore a list of vertices, grouped by ge-
ometry forms the input to the graphics pipeline. Connectivity information between

the vertices of a geometry object, e.g. which vertices are connected by edges, is also
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stored implicitly within this list.

The rendering process then consists of three stages: geometric transforma-
tion, rasterization and post-processing. The first stage of the rendering process
manipulates incoming vertices by ignoring the embedded connectivity information
and treating each vertex independently. Operations such as translation, rotation,
scaling and lighting are applied to every vertex and the net result of these transfor-
mations is to align the user defined coordinate system with the coordinates of the
viewing plane. This stage of the graphics pipeline is fully programmable and allows
user-defined manipulation of individual vertices, as well as any attributes associated
with them. The output of this stage is the transformed vertex list which is sent to
the next stage in the pipeline.

In the rasterization stage, the three-dimensional vertices are first mapped onto
the final screen coordinate system and connection information which was implicitly
stored in the vertex list is used to render the scene, starting with polygons that are
farthest from the viewpoint. Pixels between connected vertices are then filled-in
by interpolating the color values between them. Next, pixels that are obscured by
polygons lying on top of them and pixels that fall outside the screen viewing area are
discarded. The final two-dimensional array is called a fragment stream and contains
a RGB color and transparency value for each pixel as well as additional information
which encodes knowledge of the geometry each fragment represents. This allows a
bitmap to be applied to the fragments in the next stage for photorealistic rendering.
Operations in this stage are not user programmable, however specific operations in
this pipeline stage, such as the order of the interpolation to fill-in connected vertices,
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or information that defines the perspective view can be specified beforehand.

The post-processing stage is the last step in the rendering process where the
incoming fragment stream is transformed into the final bitmap before being sent
to the display device. Optionally user-supplied bitmaps are loaded, transformed
and applied to individual fragments in this stage. Special operations to control the
appearance of individual pixels on the screen can also be applied before the final
bitmap is rendered. Bitmaps are sometimes called a pixel stream when referring to
the output of the post-processing stage.

The geometric transformation and post-processing stage are user programmable.
Data passing through either of these stages can therefore be manipulated by default
system instructions (fixed function mode) or by loading a custom program. More
than one program can also be chained together sequentially to perform a series of
operations on the data list. Both programmable stages are capable of looping as
well as writing their output to graphics memory to be re-used in a subsequent pass.

Recent GPU hardware, such as the nVIDIA 8800 use a unified architecture,
where rather than having separate physical stages in the pipeline, operations such
as geometric transformation, rasterization and post-processing are executed on pro-
cessor cores that can be dynamically configured at runtime to handle any of these
operations [1]. At the end of each operation, the output is written to a regis-
ter and looped back as input to the processor core for the next operation. This
architecture results in a far more flexible system, especially for general purpose cal-
culations, which for example, often do not use the geometric transformation stages.

GPU hardware is fast evolving, causing the specific details of the pipeline stages to
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change rapidly, even if the functions of the graphics pipeline remain constant. Fur-
thermore, high level APIs such as nVIDIA’s CUDA or the more recently released
OpenCL have reduced the necessity to understand the intricate details of GPU ar-
chitecture. However carefully studying the GPUs pipeline functions and memory
model are invaluable to extract the most performance from these devices. Therefore,
the memory architecture and individual processing stages of the GPU are described
next.

The memory model of the GPU differs considerably from that of the CPU.
Important memory access restrictions within the individual stages of the pipeline,
which are designed to improve the performance of graphics applications, can impact
the utility of the GPU in general purpose applications. When sequentially processing
the elements of a list, the GPU employs two memory models called scatter and
gather. Given an input and output list, a scatter operation allows the result of a
calculation on an input element to be mapped to an arbitrary location in the output
list. A gather operation on the other hand, allows the results of a calculation on
an input element to be mapped only to its corresponding location in the output
list. Both the scatter and gather operations can read an arbitrary memory location
in the input data for use in a calculation. The geometric transformation stage
allows both scatter and gather operations, while the post-processing stage allows
only gather operations. These memory restrictions are consistent with the use of
the GPU in graphics applications but may pose a challenge when porting general

purpose calculations to graphics hardware.
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3.3.1 Implementing Stochastic Simulations on the GPU Stages

The power of the GPU can be harnessed to run simulations of particle diffu-
sion, due to the GPUs ability to advance the simulation simultaneously for several
particles. The GPU architecture contains several computational blocks or stages
that embody the conceptual rendering pipeline (see Figure 3.2) described previ-
ously onto which the simulation algorithm can be mapped. There are however three
main stages that are used the most, i) programmable vertex processors, ii) fixed
function rasterization and iii) programmable fragment processors.

The particle diffusion simulations are performed entirely using the last stage of
the pipeline, called the fragment processors. However, initial stages of the pipeline
must first be configured properly to obtain the desired results. The fragment proces-
sors simultaneously process a bitmap with dimensions M x N, where, each element
of the bitmap can hold a vector, such as the position of a particle. However in order
to correctly setup this bitmap in the last stage of the GPU pipeline, we first define
a simple rectangular geometry, together with options to configure the environment,
so that the first two stages of the GPU — the vertex processors and the rasterization
stage — correctly transform this arbitrary geometry into a two-dimensional bitmap
with M x N elements. The fragment processors then run multiple algorithms to
execute the simulation, before returning the results to the CPU. Next, we describe
each stage of the pipeline, highlighting how we the GPU is used in stochastic particle

simulations.
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Geometric Transformation (Vertex Processors)

The geometry on which the GPU operates is defined by a list of vertices, as
was described earlier. The vertex processors transform the vertices in this incoming
vertex list appropriately to align them with the coordinates of the viewing plane.
The processors in this stage support the Single Instruction Multiple Data (SIMD)
and the Multiple Instruction Multiple Data (MIMD) computational models and are
therefore capable of handling branching and looping. In current GPU architectures,
any available processing element can be dynamically configured to perform the task
of the vertex processors. However, most high-level general purpose GPU APIs, such
as nVIDIA’s CUDA do not directly provide access to this stage and consequently,
this stage is not heavily used in general purpose computing. In some applications,
the geometry that is defined in this stage can be designed cleverly so as to leverage
the capabilities of the rasterization stage, described next.

Simulations of free particles for optical trapping are designed to simultane-
ously perform operations on M x N particles arranged in a rectangular array, each
clock cycle. All of the processing however is performed using the fragment proces-
sors, described later in this section. Therefore, in order to correctly configure the
simulation, we simply setup a rectangular geometry in this stage using arbitrary
coordinates and some information about the environment, which when processed
through this stage and the rasterization stage, results in a M x N rectangular array
for use in the fragment processors. Each element in this array represents one freely

diffusing particle in three-dimensions.
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Rasterization

The transformed vertex list is first mapped onto a surface in screen coordinates
and the regions between connected vertices are filled-in starting with polygons that
are farthest from the viewpoint. As described previously, attributes associated with
each vertex are interpolated and polygons and pixels that lie outside the viewing
volume are discarded before the results are output as a fragment stream. Since the
rasterization step can be used to interpolate any user-defined attribute efficiently,
we can use this capability in a calculation by defining an appropriate geometry and
attributes in the previous step. The resulting fragment stream will then contain
interpolated values of all the defined attributes. Sumanaweera and Liu [146] exploit
this functionality to perform Fast Fourier Transforms on large image data sets.
Interpolations can also be performed in the post processing stage, but since the
rasterizer is designed specifically to perform this operation, utilizing this feature
can result in significant performance benefits.

In our simulations the rasterization stage converts the square polygon we de-
fined previously into a 2-D fragment stream with dimensions M x N for use in the

next stage of the pipeline.

Post-Processing (Fragment Processors)

The post-processing stage transforms an incoming fragment stream to the
final bitmap that is output to the display device and is the most useful stage in

the pipeline for general purpose simulations. The program (user-defined or default
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Figure 3.3: Calculate z = i—f + 9 using the post-processing stage. The green squares
in the figure are inputs to the program and the orange squares are the outputs.

system instructions) that manipulates the data can access any attributes that are
embedded in the fragment stream as well as additional user-defined bitmaps (2-D
data arrays) to calculate the final output. Each location of the user-defined bitmap
contains a vector with RGB or RGBA values where each color component can be
configured to occupy 16, 24 or 32-bits. The PEs in this stage have the ability to
gather information from several sources such as user-defined bitmaps or interpolated
attributes embedded within the fragment stream, but they cannot scatter the output
of any calculation. Therefore in the post-processing stage, each processed fragment
corresponds to a pixel in the output bitmap.

A very useful extension to the graphics instruction set allows the output of the
fragment processors to be retained on the graphics card instead of being written to
the display device. This provides two important advantages a) it allows the result of

a calculation to be returned to the calling program and b) it allows multiple passes
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or iterations over a data stream using the output of one pass as input to the next.
As with any parallel processing hardware, it is advantageous to have an application
that iterates multiple times over a data set before it needs to be refreshed or return
results. Figure 3.3 shows an example operation in the post-processing stage on a
square array. In this example, the gradient calculated using adjacent cells in bitmap
X is offset by a constant from bitmap Y to generate the final output. The output
can be written to a third bitmap - Z as in this example or can be output to the
display device. Bitmap Z is then either stored and used as input in future iterations
or returned to the calling CPU program.

The parallel architecture of this GPU stage allows us to simultaneously ad-
vance several particles through one simulation time-step dt. The majority of the
free particle simulation runs in this stage of the pipeline. Several bitmaps are cre-
ated to hold the random deviates, position, velocity and acceleration information
for M x N particles. The incoming fragment stream and bitmaps are combined
using three distinct steps that implement Equation 3.3, Equation 3.8 and Equa-
tion 3.7. This program, shown in Figure 3.4 give the layout of the program in the
fragment processors that produces the final acceleration, velocity and position for
each 0t. The boxes on the left of the figure represent the input textures which hold
the initial position, velocity and accelerations. The small boxes on the bottom of
the figure are the input constants used in the calculations. The three processing
stages combine the inputs to produce the final results shown on the right of the
figure. Step 1 calculates the final acceleration at the end of the time-step using the

input acceleration, pre-computed random deviates and the scalars for particle mass
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Figure 3.4: Three user-defined programs chained together to implement the velocity
Verlet integrator in the post-processing stage of the GPU.

m, viscous drag, v and time-step, 6t. Similarly steps 2 and 3 use the appropriate
input bitmaps and scalars shown in Figure 3.4 to calculate the final positions and
velocities for each of the M x N particles.

A 128-bit representation is used to store the X, Y and Z components of a
particle’s velocity, position or acceleration within the RGB components of a single
pixel of the bitmap, while the alpha component is left empty. The PEs in this stage
simultaneously process the four color elements and depending on the specification
of the graphics card, four to sixteen pixels (and therefore 3-D particles), in one clock
cycle. At the end of each simulation pass, the M x N particle simulation is advanced
by one time-step and the output is written to a bitmap, held in the graphics memory.
The simulation is allowed to run recursively for several passes before the results are

read back to the CPU for storage. This strategy allows us to run a tight simulation
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loop, with a physically relevant time-step, while sampling the simulation output
at longer intervals that are consistent with laboratory experiments. In the case of
the GPU simulation, we also get the additional benefit of reducing the overall data
communication time, thereby improving performance. At the end of the simulation,
a time-series of position, velocity and acceleration for each of the M x N particles

is obtained for analysis.

3.4 Simulation Results and Discussion

The simulation returns the position, velocity and acceleration for each parti-
cle at regular time intervals, similar to the data obtained from a laboratory exper-
iment when tracking an ensemble of freely diffusing particles. Several simulation
experiments were setup to test the physical accuracy of the CPU and GPU imple-
mentations and also to measure the speedup achieved when using the parallel GPU
architecture. In each experiment the particles were assumed to be spherical, made
of glass and suspended in a water bath at room temperature (293 K) in the absence
of any external potential field, such as gravity. The simulation was then run using
three representative particle radii of 50 nm, 500 nm and 5 pm. In this section, first
we outline the methods used to pick the parameters of the simulations, including
the time-step. Next, we discuss the physical results output by the simulation using
the CPU and the GPU, followed by an analysis of the rounding error in the GPU

results. Finally, we discuss the performance of the GPU.
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Figure 3.5: Log linear plot of normalized energy (59””%) and normalized diffusion

Theoretical

constant (DSmulsted ) against time-step (0t) for an ensemble of 30 glass particles with

Theoreitcal

radius 500 nm suspended in a water bath at 293 K. This data in this plot is used
to pick the parameters for the full simulation wiht 900 particles.

3.4.1 Selection of an Appropriate Simulation Time-step

The characteristic time-scale of models that describe free particle diffusion
in a fluid medium is given by the velocity relaxation time %, which is a function
of the particle radius, a and the friction coefficient, v from Stokes law. Choosing
a time-step that is much smaller than the characteristic time-scale allows us to
capture interesting non-equilibrium behavior that occurs at time-scales shorter than
the relaxation time, but is also important to maintain energy conservation in the
simulation. For the sake of convenience in determining the time-step, we pick a
number 7, which is the closest multiple of 10 smaller than % We then pick the
simulation time-step to be some fraction of 7.

Figure 3.5 shows a plot of the mean kinetic energy of an ensemble of 30 particles

with radius 500 nm, normalized by the thermal energy (%kBT ), as a function of
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time-step (6t). The figure also shows, in gray, the calculated value of the diffusion
constant for the 500 nm diameter particle, as a function of time-step. The selection
of parameters to test the physical validity of the simulation, such as the mean energy
and the diffusion constant, are discussed in detail in Section 3.4.2.

This small ensemble is only used to determine suitable parameters for the full
simulation with 2700 particles and 10° time-steps, discussed later in this section.
We find that the relative error in the normalized energy increases for longer time-
steps — approaching 60 % for a time-step of one 7. For 30 particles and time-steps
shorter than 0.1 7, the relative error in the normalized energy is better than 5 %.
As we shall see later in this section, this error reduces to below 1% for the larger
ensemble. We also find that the relative error does not decrease significantly when
0t is reduced further.

From the figure, we see that in order accurately estimate the equilibrium en-
semble energy of the system, the time-step selected for the simulations must be much
smaller than the relaxation time. Therefore, we test the simulations for time-steps
ranging from 0.0057 to 0.057. As the size of the time-step is reduced even further,
the Brownian motion model has been observed to fail [95]. At very short observation
times, the effects of fluid inertia become significant and the model for free particle
diffusion must therefore account for these corrections. However, this does not affect
our measurements. We pick dt close to the largest allowable value where the error in
the equilibrium averages is small. The simulation is then repeated for each particle

radius with three representative time-step values 0.0057, 0.01 7 and 0.057. Table
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Table 3.1: Simulation Parameters (SI Units)

Sphere Material: Glass
Fluid Medium: Water Fluid Temperature (T): 293 K
Number of Trajectories (N): 2700 Data-points per trajectory (n): 10,000

a m o ot (Simulation Time = 6t x n x 100%)
0.0057 0.017 0.057
50 nm 1.3614 ag 1.442 ns 5ps (5 us) 10 ps (10 us) 50 ps (50 us)
500 nm  1.3614 fg 1442 ns 500 ps (500 us) Ins (1 ms) 5ns (5 ms)

5 pum 1.3614 pg 1442 us 50ns (50 ms) 100 ns (100 ms) 500 ns (500 ms)

* Since only every 100" point is recorded, the total simulation time is 100 times longer

3.1 gives the simulation parameters for the nine distinct simulation cases.

Each of the nine simulation experiments was carried out with 900 independent
particles using a three-dimensional Cartesian coordinate system. The simulation al-
gorithm was run for a total of 1000000 time-steps, but only every 100" data point
was recorded resulting in a total of 10000 data points per particle trajectory. Al-
though the simulation experiments were run for a fixed number of iterations, the
choice of time-step ensures that each simulation run is longer than several hundred
relaxation times thereby giving the system sufficient time to equilibrate. All particles
in the simulation were started with initial positions at the origin of the coordinate
system and with velocities sampled from an appropriate thermal distribution. Each
experiment was run on the CPU (using single, CPU32 and double, CPU64 precision
floating point representation) and on the GPU (using single precision, GPU32 float-
ing point representation). The simulations are run for 2700 non-interacting particles
to generate trajectories with 10000 time-steps per particle.

The physical accuracy of the recorded data was verified against quantities

such as the thermal energy and the diffusion constant obtained from the theory
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of Brownian motion. The effects of time-step, particle radius, round-off error and
statistical error on the accuracy of the simulation results are then discussed. The
time required for the simulation to complete was also recorded for the CPU32,
CPU64 and GPU32 implementations. This information was subsequently used to
calculate the speedup obtained by running the simulation on the GPU. Finally, the

scaling of speedup as a function of the number of particles is discussed.

3.4.2 Physical Validation

A complete description of the physical parameters of a collection of non-
interacting freely diffusing particles can be obtained from the joint probability dis-
tribution of their positions and velocities, also called the phase space distribution.
At times longer than the characteristic time, when the system is in thermal equilib-
rium with the surrounding fluid, the velocity distribution becomes the time-invariant
Boltzmann distribution. Therefore, the position and velocity distributions can be
studied independently and the position and velocity outputs of the simulation are
both tested against the theory of diffusion.

The velocity output by the simulation, can be used to calculate the energy
distribution of the particles, given by the time-invariant Boltzmann distribution.
Therefore, in order to fully test the simulation, we test energy conservation by calcu-
lating the mean energy, which must equal the thermal energy from the equipartition
theorem, as well as the energy distribution of the particles, which must be consistent

with the Boltzmann distribution. The position distribution constructed from the
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simulation output, however is not time-invariant. Instead, the size of the position
distribution increases proportional to the square-root of time. The proportionality
constant, which must equal twice the diffusion constant, can then be recovered and
compared with the theoretically predicted value to test the output of the simulation.

The techniques developed to analyze the simulation data are described next.

3.4.2.1 Energy Conservation

In order to verify energy conservation, we i) calculate the mean kinetic energy
and the energy distribution and then compare them with theoretical values and ii)
verify that on average the ensemble of particles does not gain or lose energy over
time. The energy distribution for an ensemble of freely diffusing non-interacting par-
ticles is given by the Boltzmann distribution, which takes the form A exp (—E/kgT),
where A is a normalization constant obtained by setting the area under the distri-
bution to unity, F is the energy of the particle, kg is Botzmann’s constant and T’
is the temperature. For freely diffusing particles, the energy is simply the kinetic
energy, %sz and the Boltzmann’s distribution can be written in the normalized

form shown in Equation 3.9.

m mV?
P\ 2mkpT P <_ 2I<;BT> (3.9)

Comparing Equation 3.9 to a normal distribution, we obtain the variance of

the velocity to be (V?) = ]%WT and the mean is zero. From the expression for the
variance of the distribution, we directly obtain the relationship given by Equation

3.10, which relates the thermal energy of the particle to it’s kinetic energy. Moreover,
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Equation 3.10 is a statement of the equipartition theorem.

L (v?) = L % Lvz = Lppr (3.10)
2 N&2 7t m 2P '

Using the velocity data output by the simulation we calculate the energy of all
the particles at each time-step and then verify that the mean of the calculated kinetic
energies, (E), satisfies Equation 3.10. The standard deviation of the particle’s energy
is then calculated by first calculating the energy of all N particles at every time-
step (E;) using the left side of Equation 3.10. The standard deviation (o) and the
standard error (SE) are then calculated using Equation 3.11.

| N 1/2
o = (- )

i=1

SE = 7% (3.11)

The mean energy, normalized by the theoretical value of the thermal energy
for each simulation case are shown in Table 3.2. The data is then compared between
CPU and GPU implementations. Finally, in order to satisfy energy conservation,
the net change in the mean energy of the simulation must be statistically consistent
with zero.

Table 3.2 gives the average energy ((E)), standard deviation (¢), standard

(E)

error (SE) and normalized energy, Enomm = B —

calculated for varying particle
size, time-step and for when the simulation is run on the CPU32, CPU64 and
GPU32 platforms. The relative error in the mean energy, calculated as the difference

between the values calculated from the simulation data and the theoretical values,

is better than 0.5 % when 0t = 0.0057 and 6t = 0.017 and reaches a maximum
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of 1.77 % for 6t = 0.057 on the GPU. The error in the calculated mean energy of
the simulation is always better than the 2.5 % reported in the literature [28, 7] for
the velocity Verlet integration algorithm. From Table 3.2, we see that variations
in the magnitude of the mean energy ((F)) across simulation cases is consistent
with the reproducibility (SE). The magnitude of the calculated error also increases
with the size of the time-step as expected and it is observed that particle size has
no systematic effect on the equilibrium average energy. The difference between
the normalized energy calculated using the CPU32/CPU64 generated data and the
GPU32 generated data is also small for each simulated case.

The Boltzmann energy distribution, which has the form of an exponential
energy distribution, has the same mean and standard deviation. Therefore from
the results in Table 3.2, we expect the columns for the mean energy ((F)) and
the standard deviation (o) to be the same. However, this is not the case and
the standard deviation is larger than the mean energy. The error is most likely
introduced from the velocity Verlet algorithm, which is known for excellent long
term energy conservation, but only moderate energy conservation at shorter times
[56]. This necessarily implies that the fluctuations in the energies for this numerical
integration method will be larger than expected. The larger fluctuations however
are only expected to contribute very small errors to the particle position in optical
tweezers applications and therefore do not pose a significant problem. Finally, energy
drift for the CPU and GPU implementations is found to be excellent and the energy

in each case shows no appreciable gain or loss over time.
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3.4.2.2 Diffusion Constant

The mean squared displacement of a freely diffusing particle in one-dimension
is given by the diffusion relation in Equation 3.12, where % is the diffusion con-
stant, D [62].

kgT

(R?) = QTt (3.12)

The procedure for obtaining the diffusion constant from the simulation data
is shown in Listing 3.1 below. The simulation outputs the particle positions as
a time-series for each particle. All of the simulation output can be represented
as a two-dimensional matrix, Ry« with rows representing N particles and the
columns representing M time-steps per particle. First we transpose this matrix, by
interchanging the rows and columns. The new matrix obtained, R/« n, has columns
that represent the position of all the particles in the simulation at a single time-step
and the rows represent the time-step. Next, we calculate the variance of the particle
positions in each column to obtain the variance of the particle positions as a function
of time. Finally, we fit the variance to a straight line of the form at + b, where
the constant a must equal twice the diffusion constant (D) and b must be consistent

with zero.

// Transpose the position matrix to group the particle
// positions by time—step
Ryrxn = TRANSPOSE( Rywxar )

// Calculate the variance of each column in the
// new matrix Ryr«n
012\4 = VARIANCE of each column in Rpxn

// Fit 0%, to a line of the form (at + b)
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{a,b} = LEAST_SQUARES FIT 0%, to function (at + b)

Listing 3.1: Pseudo-code to calculate the diffusion constant

Table 3.3 shows the average diffusion constant ({D)), the standard deviation

(D)

(o), standard error (SE) and the normalized diffusion constant, Dyorm = 5———

for each simulation case. The columns show the data for each implementation and
the three representative particle sizes and the rows show the results for different
time-steps. The effect of particle size and time-step on the error in the calculated
value of the diffusion constant, Dygqn is small. The calculated diffusion constant
is found to be on average within 1.4 % of the the theoretical value for the CPU32
and CPU64 implementations, with maximum errors within 4.2 % and 2.4 % respec-
tively. However, the average error in the diffusion constant for the GPU32 runs
was found to be within 4.3 %, with the maximum error within 8 % of the theoreti-
cally expected values. From the table, we can observe that the normalized diffusion
constant (Dyorm) for the CPU simulations is consistent with reproducibility, shown
by the standard error in the table. However, on the GPU the errors in the nor-
malized diffusion constant are slightly larger. This small increase for the GPU32

implementation is caused by rounding errors.

3.4.2.3 Analysis of GPU Rounding Error

The accuracy of results from the particle simulation depend mainly on errors
introduced by the simulation algorithm, random number generator and roundoff

error. In our simulations, algorithmic and random number errors exhibit similar
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behavior since the same algorithm is used across the CPU and GPU implementations
and the random numbers are always generated on the CPU in double precision.
Therefore the difference in simulation results on the GPU and CPU, arises primarily
from varying rounding errors on each architecture. In order to investigate the GPU
rounding error, relative to the CPU, we generate a position trajectory for a single
500 nm particle on the CPU (32 and 64-bit) and on the GPU using the same list of
random deviates and simulation conditions. Therefore, we expect the trajectories
generated on the CPU and the GPU to be identical, however this is not the case.
Using the CPUG64 trajectory as a reference, we plot the relative error in the CPU32
and GPU32 trajectories (by subtracting them from the CPU64 reference) for the
three separate time-steps in Figure 3.6. The figure shows two cases, one where the
particle is initially located at the origin (top row of the figure) and the second,
where the particle starts at 100 nm from the origin, where we expect the resolution
of the single precision floating point representation in adding numbers of different
magnitudes in Equation 3.7 to be poor (bottom row of figure).

The case where the particle starts at the origin, shown in Figure 3.6(a) and
Figure 3.6(b), exactly duplicate the conditions for the simulations tested in Table
3.2 and Table 3.3. From these figures, we see that the plots look qualitatively
different. In fact, the error for the GPU in Figure 3.6(a) diverges very rapidly from
the CPU64 reference trajectory to result in large relative errors. On the other hand,
from Figure 3.6(b), we see that the relative errors in the CPU32 plot are negligible.

The differences in the two plots can be explained due to differences in the method
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Figure 3.6: Relative error observed by subtracting a reference CPU64 position tra-
jectory for a single 500 nm particle from those of the CPU32 and GPU32 imple-
mentations. All trajectories are generated using the same list of random deviates.
In figures (a) and (b), the particles is initially located at zero, whereas in figures (c)
and (d), the particle is initially located 100 nm from the origin.
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in which the CPU and GPU store the result of floating point operations. The
CPU, which follows the IEEE-754 floating point convention always performs exact
rounding in all its operations, similar to double-precision CPU operation. Therefore,
the relative errors in the generated trajectories are very small in comparison to the
CPU64 reference trajectory. The GPU, on the other hand, depending on the vendor,
performs exact rounding in some operations and chops the result of other operations,
which can lead to errors that vary as much as a factor of 2 per time-step [64, 76].
However, since individual trajectories matter less, in optical trapping simulations,
than statistical averages, the use of the GPU does not adversely impact the results.

On the other, when the particle is initially located 100 nm from the origin,
shown in Figure 3.6(c) and Figure 3.6(d), the relative errors obtained from the GPU
appear qualitatively comparable to those on the CPU for single-precision operations.
The relative errors on the CPU and GPU are of the same magnitude, but increase
as expected when larger time-steps are used to generate the trajectories. By moving
the particle away from the origin, both the single-precision CPU and the GPU
simulation experience larger relative errors in comparison with the double precision
CPU reference, due to a loss in precision, which arises from adding numbers of
significantly different magnitudes in Equation 3.7. This is not problematic since
the simulation is never run long enough, on the GPU or in single precision CPU
simulations, to trigger this condition. Also, this situation is easily avoided in longer
simulations by shifting the particle back and recording the offset when it diffuses a
certain distance away from the center.

Errors on the GPU, in stochastic simulations that are run for millions of time-
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steps, can arise from rounding errors or a loss of precision, when the particle diffuses
far away from the origin. However, the errors in individual trajectories are less im-
portant in optical trapping simulations than statistical errors, calculated by aggre-
gating a large number of trajectories. Moreover, the statistical averages calculated
using GPU data, yield only slightly larger errors than their CPU counterparts, as

seen in results earlier in this section.

3.4.3 Speedup

The total simulation time is divided into the computation time, the commu-
nication time (the time spent for moving data to and from memory to the on-chip
cache) and the file I/O time (the time spent when writing the results to disk for
analysis). The speedup of the GPU over the CPU is then calculated as the ratio
of the sum of the computation and communication time for the entire simulation
run. For both the CPU and GPU implementations, the random deviates are pre-
calculated for use in the simulation as the algorithms to generate random numbers
works best on the CPU. However, we have also implemented other random number
generators, such as the Mersenne-Twister, to run entirely on the GPU. Moreover,
using the same random number generator on the CPU and the GPU allows us to
directly compare trajectories on both platforms, as seen in the previous section, in
order to characterize the performance and accuracy of running the simulations on
the GPU. Speedup was calculated for an ensemble of particles radius of 500 nm and

a time-step, 6t = 0.057. The experiments were repeated for ensemble sizes of 100,
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Speedup over CPU32

100 256 400 625 900 1024 1600
Number of Particles

Figure 3.7: Speedup (calculated as the ratio of the GPU simulation time over single
precision CPU simulation time) as a function of the ensemble size. The three curves
show the results when the output was sampled after every 10, 100 and 500 simulation
time-steps (0t).

256, 400, 625, 900, 1024 and 1600 particles. For each particle size, the simulation
was run for a constant time and the output sampled every 10, 100 and 500 steps.
All experiments were run on a Dell desktop with a dual core Intel Pentium, D pro-
cessor with a clock speed of 2.8 GHz, 1 GB DDR2 RAM and a NVIDIA GeForce
7950GT PCI Express graphics card with 512 MB GDDR3 Video RAM running the
OpenSuSe 10.2 Linux operating system.

Figure 3.7 shows the speedup obtained by the GPU over a single-precision CPU
implementation. The three curves in the figure show the speedup when the output
is sampled every 10, 100 and 500 time-steps. For ensembles with fewer than 256
particles, the CPU is faster because the time required to transfer data to the GPU

memory is large compared to the computation time. As the ensemble size grows, the

computation and communication times required by the GPU to run one simulation
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experiment remains constant while the computation time required by the CPU to
run the same experiment grows steadily. This results in large performance gains by
the GPU. We also see some performance benefits when the simulation is allowed to
loop on the GPU for several cycles before the data is recorded. Figure 3.7 plots the
speedup against the ensemble size in three cases where the output is sampled every
106t, 1000t and 5006t. We observe that sampling the output every 100 time-steps
yields better performance over the 100t case but increasing the sampling interval to
5000t does not significantly change the observed speedup. The GPU hardware used
supports simulations with more than one million particles, which would significantly
increase the speedup. However, while the computational time on the CPU scales
linearly, the computational time on the GPU is not expected to be linear due to the
time required to transfer data to and back form the GPU. Therefore, the speedup
as a function of particle size is not expected to increase linearly for simulations that

have thousands of particles.

3.4.4 The GPU as a Coprocessor in Stochastic Simulations

The GPU, when used to run a free particle simulation yields significant speedup,
especially with large particle ensembles. However the benefits of using the GPU can
be leveraged for more general simulations of the optical tweezers system as well as
other stochastic systems. Most simulations of micro and nanoscale assembly tasks
include an external force, which is calculated periodically. These forces are often

pre-computed and stored in a parametric form on the CPU. When running the
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stochastic simulation on the GPU, the number of times the simulation loops on
the GPU is tuned to closely match the timescale of the problem. For example in
the case of the optical tweezers simulation, we allow the simulation to loop for 100
time-steps on the GPU before we read data back to the CPU. This corresponds to
a time in which the particle undergoes very little movement within the trap and
therefore the optical trapping force on the particle can then assumed to be constant

and still yield physically accurate results.

3.5  Summary

A Brownian dynamics simulation to model the diffusive motion of nanoparticles
in a fluid has been developed and tested. The simulation algorithms were imple-
mented on the CPU with 32-bit and 64-bit floating-point precision and on the GPU
with 32-bit precision. Equilibrium averages for energy conservation and the diffusion
constant were calculated from the simulation results, for an ensemble of 2700 par-
ticles with diameters of 50 nm, 500 nm and 50 um. For the benchmark 64-bit CPU
case, the maximum relative errors in the equilibrium averages, compared with the
well-established theory of diffusion, were found to be approximately 1% for energy
conservation and approximately 2% for the diffusion constant.

The simulation for particle diffusion was also implemented on the GPU and
the results were compared with the reference double precision CPU case. The max-
imum error in energy conservation was found to be approximately 2%, however the

maximum relative error in the diffusion constant was 8%, which is slightly higher
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than that calculated on the CPU. The larger error is attributed to lower precision
on the GPU (since the GPU uses single precision floating-point numbers), as well
as higher rounding errors, which affect the particle trajectories used in calculating
the diffusion constant. The slightly larger errors on the GPU, however account for
a uncertainty in the particle’s position that is only a small fraction of it’s diameter
over the course of the simulation. Moreover the accuracy of individual trajectories
for a freely diffusing particle does not adversely affect a nanomanipulation operation
with optical tweezers.

Finally, the computation time for the CPU and GPU simulations, recorded as
a function of the ensemble size is used to calculate the speedup obtained by using
the GPU. For ensembles that contain fewer than 256 particles, the GPU performs
worse than the CPU, as expected since the time to transfer data between the CPU
and GPU memory is much greater than the computation time. However for an
ensemble of 1600 particles, which is comparable to the ensemble size we would need
to test optical tweezers operations, we obtain a speedup of 8.

The simulation algorithms allow the inclusion of force models to include the
binding force from an optical trap. Moreover the algorithms transparently support
trapping forces calculated from approximate models, physics based force models or
even from laboratory data. This is demonstrated in Chapter 4, where two new force
measurement methods are developed and tested using the simulation. Data collected
after implementing these methods in the laboratory can then be input back into the

simulations to further improve their fidelity in replicating laboratory conditions.
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Chapter 4
Novel Measurement Techniques to Characterize the Optical

Trapping Force Experienced by Nanoparticles in an Optical Trap
Two new force measurement techniques are developed in this chapter! for use
in the laboratory. Accurate models of the optical binding force experienced by a
nanoparticle in an optical trap form an important component of physically accu-
rate simulations of optical trapping. When combined with an accurate trapping
force model, the simulations developed previously in Chapter 3, play a vital role in
the discovery of new techniques to enhance optical trapping at the nanoscale. In
particular, we have used simulations to drive the development of novel control algo-
rithms, such as those demonstrated in Chapter 5 that have significantly improved
the performance of the optical tweezers instrument when interacting nanoparticles.
One route to developing an accurate trapping force model, is through a cal-
culation of the optical trapping forces experienced by the nanoparticle from first
principles. An optical trap is created in the laboratory by using a high numerical
aperture objective, which strongly focusses the incident light in order to maximize
the binding force acting on the particle. However, optical traps formed by tightly
focussing the incident light can in some configurations suffer from spherical aber-

rations, where light passing through the edges of the lens comes to a focus at a

!The work in this chapter is derived from the published work in [17, 20, 18].
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different axial location than light passing through the center. When combined with
diffraction from finite sized apertures in the optics and other optical misalignments,
this can lead to a deviation from an ideal optical trap, which must then be accounted
for in the model. Currently, no single theoretical force model exists for tightly fo-
cussed beams or which works for a range of particle sizes and materials and can
simultaneously account for all of the phenomenon that cause an optical trap to de-
viate from ideal behavior. Moreover, the development of such a force calculation
is very challenging, as demonstrated by the lack of agreement between theory and
experiment.

A more direct approach to developing a force model, for inclusion in numerical
simulations, is to experimentally measure the optical binding force, experienced by
a nanoparticle in an optical trap. This laboratory based technique has the added
advantage that it will include all the phenomenon that cause a deviation from the
ideal behavior of an optical trap. However, existing force measurement techniques
are not well equipped to accurately measure the force experienced by a weakly bound
nanoparticle in an optical trap, for reasons outlined in more detail in Section 4.1.

Therefore, two new force measurement techniques are developed in this chapter
in order to measure the binding forces acting on nanoparticles in an optical trap. A
significant advantage, over existing methods, offered by the new force measurement
techniques developed here is that we are able to measure the complete force pro-
file of an optical trap, making no assumptions about the nature of the underlying
force. These new techniques are validated using the numerical simulations algo-

rithms developed previously. Finally we present results obtained by implementing
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these techniques in the laboratory and in Chapter 5 show how these force measure-

ment techniques are used to estimate the parameters of a controller.

4.1 Motivation

Particles larger than a few hundred nanometers experience a sufficiently strong
binding force within an optical trap to keep them confined to a spatial region very
close to the center of the trap. This is illustrated in Figure 4.1, which shows the
effect of particle size on the depth of the optical trapping potential for a constant
beam power. The figure shows the optical trapping potentials for two representative
nanoparticles on the left and the corresponding trapping forces on the right. The
trapping force acting on the larger particle, shown by the blue curve in the right side
of the figure, is much stronger than the force from the thermal energy of the particle.
Therefore, the particle is confined to a very small region, close to the center of the
trap, shown by the shaded region on the left side of the plot. In this region, the
optical trapping force can be assumed to vary linearly with the displacement of the
particle and the trap can be approximated by a linear spring. Consequently, existing
force measurement techniques, such as those discussed in Section 2.4, approximate
the optical trap as a harmonic oscillator. Under the harmonic approximation, the
optical trap can be parameterized using only a linear stiffness and any higher order
corrections to the optical force are ignored.

As the size of the particle decreases, the optical binding force confining the

nanoparticle within an optical trap decreases significantly, for constant beam power,
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as seen from the purple curve in Figure 4.1. Consequently, the thermal energy of
the particle can equal or even exceed the potential energy of the trap, allowing it to
make larger excursions away from the trap center and even quickly escape the trap,
shown by the shaded region for the purple curve of the figure. Therefore, under
conditions where the nanoparticle is no longer localized close to the trap center,
the assumption that the optical trap can be approximated by a harmonic oscillator
fails. Existing force measurement techniques can then no longer provide an accurate

measure of the trapping force.
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Figure 4.1: Relative scaling of the depth of the optical trapping potential and force
with particle size for a constant beam power. The weaker optical trap for smaller
particles, results in larger excursions of the particle away from the trap center, in
comparison with the larger particles, shown by the shaded regions in the plots.

Therefore, we develop new measurement techniques, which do not make any
prior assumptions about the nature of the trapping force. Two new methods are
developed, i) the step input, which estimates the trapping force by measuring the
change in position of a nanoparticle, in response to a rapid movement of the optical
trap and ii) the stochastic noise method, which recovers the optical trapping force
from a measurement of the random thermal motion experienced by a nanoparticle
in a stationary optical trap. Numerical simulations play a crucial role in developing
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and validating the new force measurement techniques. The simulation algorithms
closely mimic the measurements of the optical force made in the laboratory and
yield a time-series of the particle’s position as output. The analysis techniques used
to recover the profile of the optical trapping force are then exactly the same for
both simulation and laboratory data. Therefore, in order to test the effectiveness of
the force measurement methods, we first input an idealized approximate trapping
force model to the numerical simulations. We then run simulations repeatedly to
obtain several trajectories of the nanoparticle over the course of the measurement,
as we would in the laboratory. The analysis of this data is then used to recover the
trapping force. Based on the results of the simulations, we then implement the new
force measurement techniques in the laboratory.

The two new methods, developed to measure the optical trapping potential
are described next. The step input method, which relies on the response of a nano-
particle to a step input provided to the optical trap is described first in Section 4.2,
followed by results from numerical simulations, as well as laboratory experiments in
Section 4.3. The stochastic noise method, which relies on the thermal fluctuations
of a nanoparticle in an optical trap is described in Section 4.4, followed by results

for this technique in Section 4.5. Finally, a summary is presented in Section 4.6.

4.2  Step Input Method

In the step input method, the optical trapping force is estimated by measuring

the trajectory of a nanoparticle in response to being rapidly displaced from the
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center of the trap. The process is illustrated more clearly for the one-dimensional
case in Figure 4.2. In the figure, a nanoparticle, initially trapped close to the center
of an optical trap, shown in Figure 4.2(a), is subjected to a step input by rapidly
moving the trap relative to the particle. At the end of the step, the nanoparticle
is displaced from the center of the trap by the step-size and the optical trap then
exerts a restoring force, which drives the particle back to the center (see Figure
4.2(b)). The particle returns to the center of the trap, some time after the initial
step input, depending on the size of the particle, the size of the step and magnitude
of the force exerted by the trap. The process is repeated by moving the trap in the
opposite direction, in order to measure the optical trapping force on either side of
the center (shown in Figure 4.2(d)).

In the step input method, we measure the trajectory of the nanoparticle, as a
function of time, as it responds to the step input and then use it to calculate the op-
tical trapping force. Ignoring random thermal noise, the motion of the nanoparticle
as it returns to equilibrium is governed by Newton’s equation of motion, given in
Equation 4.1, where 7(t) is the position of the particle in Cartesian coordinates,
m is the mass and ~ is the Stokes coefficient for a spherical particle. For larger
micrometer sized particles in a strong optical trap, the thermal force acting on the
particles is overwhelmed by the force from the optical trap and has a negligible effect
on the trapping force measurement. Smaller particles, which experience a weaker
optical binding force, take longer to return to equilibrium and also experience a

higher thermal force, which increases the noise in the position trajectory. However,
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Figure 4.2: A conceptual overview of the step input method in one-dimension, where
the particle is initially located at the center of the trap (subfigure (a)). The trap is
then rapidly moved away from the center, causing the particle to be suddenly shifted
from the trap center (subfigure (b)). The particle then feels a strong restoring force,
which drives it back to the center of the trap, shown in subfigure (c¢). Finally
the method is repeated by moving the trap in the opposite direction as shown in
subfigure (d).

since we always repeat the experiment several times and average the trajectories,
the random thermal motion of the particle cancels out and does not significantly
affect the force measurement. Therefore, we can ignore the effect of thermal noise
on this measurement and directly use Newton’s equation of motion to calculate the

optical trapping force.

(4.1)

The outline of the analysis is then given by an example in Figure 4.3. The
particle is initially subjected to a step input by moving the center of the trap (this
occurs in the left half of Figure 4.3(a), 5ms after the start of the experiment). The

second step (shown in the figure, 10 ms after the start of the experiment) represents
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a symmetric movement of the trap in the opposite direction in order to measure
both halves of the trap and is not discussed here. Next, we measure the trajectory
of the nanoparticle as it responds to this step input, shown in Figure 4.3(b). As we
see from this figure, the particle moves quickly at first, where it feels the strongest
restoring force from the trap, but then slows down as it approaches the center of
the trap at it’s new position, where the trapping force becomes zero. Using the first
time derivative of the position of the particle (7(¢)), we calculate the damping force
(see Figure 4.3(c)), given by the second term on the right hand side of Equation
4.1. Similarly, using the second time derivative of the position, we calculate the
resultant force (see Figure 4.3(d)), given by the left hand side of Equation 4.1.
We then substitute these values into Equation 4.1 to obtain the optical trapping
force, f}(t) as a function of time. The optical trapping force obtained is a vector
quantity, which includes force components along each axis. We can then calculate
the trapping force as a function of displacement, by first inverting 7(¢) and then
using it to map the time dependent trapping force into a position dependent force.
From Figure 4.3, we observe that the resultant force is several orders of magnitude
smaller than the damping force and does not contribute significantly in the force
measurement. Therefore, we can assume that as the particle returns to the center
of the trap, the restoring force from the optical trap is always opposed only by the
damping force, which arises as the particle moves through the liquid. The force
measurement described above is valid for continuous functions of time. However,

in practice since we always obtain discrete position measurements, we perform the
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Figure 4.3: Conceptual outline of the step input analysis technique. The position
of the particle in response to a rapid step of the optical trap is used to calculate
the damping force and the resultant force and eventually used to recover the optical
trapping force acting on the particle.

analysis numerically.

The optical trap is inherently three dimensional, however in this chapter we
develop the step input method for a two-dimensional system. The measurement
is performed in the two-dimensional equatorial plane about the center of the trap,
which is also the origin of the coordinate system used in the measurements. The
particle’s response is measured by stepping the trap back and forth (in order to
measure both sides of the trapping potential) along a line, with step size s. The
line that describes the movement of the trap is then rotated from 0 to 7 in discrete
steps, described by the azimuthal angle . At each angle, we record the trajectory of
the particle, in response to a step input and use it to calculate the optical trapping

force using the technique described above. However, data obtained either from
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numerical simulations or digitally measured in the laboratory is discretized and we
must therefore calculate the optical trapping force numerically.

The position of the particle, in Cartesian coordinates for two dimensions is
given by the vector, 7(t) = {x(t),y(t)}, as a function of time. the particle position
is recorded at each angle (f) as it responds to the rapid trap movement of the
trap. In order to simplify the notation, it is assumed that the particle position
7(t) is always relative to the trap center. Symmetric steps of size s in the positive
and negative directions are used in order to allow the optical trapping potential
to be measured on both sides of the trap center. The restoring force from the
optical trap, which drives a particle to an equilibrium position, is calculated by
rearranging Newton’s equations, given in Equation 4.1, as described previously. We
first numerically calculate the trapping force, as a function of time by calculating
the velocity and acceleration of the particle at each time-step using Equation 4.2
and then substitute the results from these expressions into Equation 4.1. We must
ensure that the position, velocity and acceleration properly align when calculating

the trapping force, f;‘(t) for a given time-step.

7(t + ot) — 7(t — ot)
20t
7(t + ot) — 27(t) + 7(t — dt)
5t?

=3y

(4.2)

=
L

We are interested in calculating the force as a function of displacement from the
trap center. This transformation can be performed by first calculating the inverse
of the position function, 7(¢) and using it to map the time-dependent trapping force

to a position dependent force. However, the measured particle position obtained
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either from simulations or from laboratory experiments is numerical data, uniformly
sampled in time with intervals of §t. The trapping force as a function of position,
I*:T(F) is then constructed by pairing 7(¢) at each time-step with its corresponding
trapping force, f;(t) as shown in Equation 4.3. It is important to note that while
the trapping force as a function of time, f;(t) is uniformly sampled in time, the
force as a function of distance from the trap center, Fr(r) is not uniformly sampled

in 7.

Fr(f) = {(F(2t), fr(261)), (F(361), fr(30t)),

...... . (F((n —2)dt), fr((n—2)6t))} (4.3)

Finally, the optical trapping potential is constructed by numerically integrating
the trapping force Z;T(F), using Equation 4.4. The constant U, in the equation is

used to set the potential energy to zero at infinity.
U@z—/@@ﬁ#% (4.4)

The force measurement technique described above is tested using the Brown-
ian dynamics simulations, as well as through laboratory experiments. The method
is presented for a two-dimensional system, a constraint easily imposed in simula-
tions. However, the optical trap used in laboratory experiments is inherently three-
dimensional. Therefore, after a step input, a particle in the trap will invariably
wander out of plane due to Brownian motion. The effects of this particle motion
are investigated using simulations in Section 4.3.1 and shown to induce negligible

errors to the two-dimensional force measurement and can therefore be ignored. The
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results from numerical simulations and laboratory experiments for this technique

are discussed in Section 4.3.

4.3 Step Input Method: Results

The force measurement technique described in Section 4.2 is validated using
data generated from numerical simulations, as well as through laboratory experi-

ments. The results of these measurements are described next.

4.3.1 Simulation Results

A numerical simulation, based on algorithms developed in Chapter 3 is used
to test the step input method. A three-dimensional model, which approximates
the optical trapping force is included in the numerical simulations. However, the
force measurements are performed in the xy-plane, while the trap is kept stationary
along the z-axis. Therefore, the particle is free to diffuse outside the plane of the
measurement. However, as seen later in this section, the out-of-plane motion of the
particle has a minimal impact on the force measurement since the particle remains
confined close to the plane of the force measurement. Similar to a measurement
made in the laboratory, the output of the simulation is a time-series of the particle’s
position as it responds to the movement of the trap. Therefore, the optical trapping
force is recovered by applying the analysis technique to the position time-series of
the particle, as described in the previous section.

The simulations are tested for two distinct particles — 100 nm diameter gold
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nanoparticles and 640 nm glass microspheres. The nanoparticles are suspended in
water at room temperature (7" = 293 K), ignoring gravity and buoyancy, which have
a negligible effect on the particle. In this section, we first describe the parameters of
the optical trapping force model used in the simulations. Next, we present results
for the 100 nm diameter gold particles, followed finally by results from the 640 nm
glass microspheres.

The optical trapping force (Fr(7)) included in the numerical simulations in
order to test the step input methods is shown in Equation 4.5. The trapping force
when measured in the laboratory includes a gradient component, which is conser-
vative and a scattering component, which directs the particle along the direction
of propagation of light. However, in the simulations performed to test the force
measurement methods, the scattering components is small and therefore neglected.
We can then use a trapping potential, such as a Gaussian potential to derive the
trapping force F}(F), given for a three dimensional system in Equation 4.5. In
this equation, the position of the particle within the optical trap is given by the
vector 7 = {z,y,2} and the trapping force is parameterized by the scalar quan-
tity «, which characterizes the depth of the trapping potential and the trap width
& = {04,0y,0.}. The position of the trap in three-dimensions can be controlled by

changing the vector i = { s, fiy, 112 }-

_%(m — M)

= (= (:C — ,U:E)Q (y - Hy)2 (Z — ,uz)Q

Fr(r) = _%(y — 1) (X €xp (— 20 202 T o (4.5)
_g%(z — 1)

The parameters selected for each simulation case are summarized in Table
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4.1, for particles with diameter, d. In the table, p is the density of the particle’s
material, m is it’s mass and -y is the Stoke’s constant for spherical particles. The trap
parameters, @ and &, for the 100 nm gold nanoparticles are calculated using the force
model outlined in Appendix D, whereas the trap parameters for the 640 nm glass
microsphere are selected from published literature. The results of the simulation

experiments for these two cases are discussed next.

Table 4.1: Simulation Parameters for 2D Step Input Method

d =100nm d = 640nm
Particle Parameters
Material Gold Glass
p (kg/m?) 19300 2600
m (ag) 10.1 356.9
v (1g/s) 0.94 6.04
Trap Parameters
a (kpT) 113.6 500
oz (nm) 500 462.6
oy (nm) 500 400.7
o, (nm) 1000 1131.4
Simulation Parameters
At (ns) 0.5 1
5t (us) 10 10

T = 293 K for all simulation cases.
Number of particles in the ensemble = 100

Case 1: 100mm gold nanoparticles

The parameters of simulations for the step input force measurement method for
100 nm diameter gold nanoparticles are summarized in Table 4.1. The parameters

for the optical trapping force are selected using the force calculation, under a dipole
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approximation, described in Appendix D. The dipole approximation, which treats
the nanoparticle as a simple dipole oscillator, is only strictly valid for particles that
are much smaller than the wavelength of the incident light. However, this force
calculation is used only to provide physically valid parameters for the numerical
simulations to validate the force measurements. The trapping potential, ignoring
polarization effects, is symmetric in the xy-plane and is given in one-dimension by
Equation D.8 (shown again in Equation 4.6 below), where «, is the polarizability of
the nanoparticle, P is the incident beam power, wq is the half-width of the incident
beam waist, 7 is the radial coordinate, n,, is the refractive index of the surrounding
medium and c is the speed of light in vacuum. The polarizability, o, depends on
the effective volume, V', which in turn depends on the skin depth of the particle,
0. The derivation of the force model to arrive at Equation D.8 is described in more

detail in Appendix D.

P m 2
y— _Ploglnm <_T> (4.6)
w,

2
2mewg

In order to calculate the parameters of the trapping force used in the simulations,
we first select a beam with a Gaussian intensity distribution, a wavelength A =
1050 nm and beam power, P = 150mWW. We then select the half-width of the
beam waist, which in this case also defines the size of the trap, using a conservative
estimate of the optical trapping beam sizes used in the laboratory to be wy = ¢ =
{500,500, 1000} nm along the x, y and z-axes. The polarizability of the particle,
o, given by Equation D.3, depends on the effective volume of the particle V', the

dielectric constant of the particle, ¢, = —54 +1¢5.9 at a wavelength of 1050 nm and
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the dielectric constant of the surrounding fluid, €, = n?, where n,, = 1.333 is the
refractive index of water. The skin depth of the gold nanoparticle is calculated to
be 22.7nm (Equation D.5) and the effective volume, V' is then calculated to be
3.3 x 10° nm?® (Equation D.4). The trap force parameter «, which is simply the
depth of the trapping potential, is then calculated by evaluating Equation 4.6 at
r = 0 and found to be 113.6 kgT'. Since « is scalar quantity, which sets the potential
depth in three-dimensions for the optical trap, we use a = 113.6 kg1 along all three
axes. Based on results from Chapter 3, the simulation time-step, At is chosen to be
0.047 x % or 0.5ns for the 100 nm diameter nanoparticle in order to optimize the
simulation performance. Finally, the output of the simulation is sampled uniformly
(i) at 100 kH z.

The simulation starts with the particle confined close to the center of the
optical trap. The trap is then moved a finite distance s = 700 nm along the positive
x-axis, with # = 0 and the trajectory of the particle as it returns to the trap
center is recorded. A second step of equal size but in the opposite direction along
the x-axis allows both sides of the trapping potential to be measured and brings
the trap back to the starting point. The measurement is repeated by rotating the
direction of trap motion by a finite angular step dfl and a total of nine separate
force measurements are made over the range 0 to 7 (see Table 4.2 below) in order
to sample the optical trapping force in the xy-plane about the center of the optical
trap. Two representative particle trajectories for trap steps at # = 30deg and
6 = 150deg are shown in Figure 4.4. 100 trajectories of the particle’s response to

the step input are recorded, separated into groups of 10 and averaged, before being

114



shown in Figure 4.4. The error bars in the plots show the standard deviation of the

particle’s position.

0=30 deg 6=150 deg
2 600 2 600 X-axis
Y—axis
& 500 £ 400 |-
§ 400 & 200
E 300 E 0
Q Q
= 100 =
£ £ -400
S 5
A~ —600
0 5 10 15 0 5 10 15
Measurement Time (ms) Measurement Time (ms)

Figure 4.4: Simulation data of a 100 nm diameter gold nanoparticle’s position in
the xy-plane as it responds to a step input along a line that makes an angle 6 with
the positive x-axis. The figure shows two representative cases for § = 30deg and

6 = 150 deg.

For 6 = 30deg, the size of the 700 nm trap step projected onto the x and y-
axes is 606 nm and 350 nm. In the plot on the left side of Figure 4.4, for the 30 deg
case, the trap first moves at t = 6 ms. However, while the trap moves instantly to
its final location, the particle takes a finite time to respond to the motion of the trap
and therefore, the plot shows a sharp change in the particle position at ¢ = 6 ms.
The position curve, along both axes, then appears slightly concave as the particle
accelerates with increasing restoring force from the trap and then assumes a much
more gradual increase as it approaches the trap center at approximately ¢ = 9ms,
where the restoring force from the trap approaches zero. From the left half of Figure
4.4, we see that the particle takes approximately 3 ms to respond to the projection
of the step input to the trap along the x-axis and approximately 4 ms along the

y-axis. The right half of Figure 4.4 shows the particle trajectory in two-dimensions
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for the 150 deg case. However, in this case, the direction of the motion of the trap
along the x-axis proceeds in the opposite direction as the previous case.

The trapping force is then recovered by first calculating the first and second
time derivatives of each trajectory numerically using Equation 4.2 to obtain the
particle’s velocity and acceleration as a function of time. By substituting the values
obtained into Equation 4.1, we then obtain the trapping force ft_p(t) and finally the
trapping force as a function of the particle displacement (fT(F)) using the procedure
shown in Equation 4.3. The resulting optical trapping force in two-dimensions is a
vector and therefore calculating the optical trapping force for each angle 6 results
in a vector field, which is shown on the left hand side of Figure 4.5. In the figure,
trapping force vectors calculated for trap motion along lines for discrete angles are
shown in the foreground, color coded by magnitude and the light gray field in the
background is obtained by interpolating the calculated force vectors to obtain the
trapping force at discrete locations on a two-dimensional grid. Finally, the optical
trapping potential is calculated by numerically integrating the trapping force in the
two-dimensional space and is shown in the right half of Figure 4.5.

The trapping potential used in the simulations is purely conservative, however
optical trapping forces in the laboratory include non conservative scattering forces,
which are not accounted for in this analysis or in the experimental results in the
next section. We see from the left side of Figure 4.5 that the optical trapping force
is very small close to the center of the force field and increases radially away from

the center, before decreasing near the edges. Since the input trap model in this case
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Figure 4.5: The optical trapping force, calculated for a 100 nm gold nanoparticle,
is shown in two-dimensions on the left side for each #. The solid line represents

the width of the trap. The right side of the figure shows two representations of the
trapping potential obtained by integrating the force field.

is circularly symmetric, the trapping force vectors are oriented roughly along the
direction of the trap step. The noise in the magnitude and direction of the trapping
force is due to the thermal noise experienced by the particle as it returns to it’s
equilibrium location in the trap. However, despite the noise in the force field, we
are able to recover the parameters of the optical trap with good accuracy as seen
below in Table 4.2.

Table 4.2 quantifies the results of the step input force measurement results for
the 100 nm gold particles. The table shows the results from a least squares fit of
the data to a function of the form shown in Equation 4.5, with the axial position
of the particle, z = 0. This essentially results in a two-component force vector,

parameterized by the potential depth o and the width of the trap along the x and

117



y-axes, 0, and o,. The table shows the recovered fit parameter together with the
repeatability (standard error) of these parameters and the percent error, relative to
the nominal values input to the simulation, for each azimuthal angle 6. As described
earlier, the analysis is performed by first dividing the simulations into 10 groups of 10
particles each and then calculating the trap parameters by performing the trapping
force analysis separately for each group. The columns in Table 4.2 therefore display
the mean value of each parameter, along with the standard error. The analysis must
however also consider three special cases when 6 is either 0, 7/2 or 7. In each case,
the particle returns to the center of the trap along either the x or the y-axis and
undergoes very little motion in the axis orthogonal to it’s direction of motion. For
example, in the case when 6 = 0, the particle travels along the x-axis and undergoes
very little motion along the y-axis. Consequently, it experiences very little restoring
force from the trap along the y-axis. Therefore, for § = 0, we are unable to obtain a
good estimate of the the trap parameter o,. Similarly, for § = 7/2 we only calculate
the trap width along the y-axis and for § = 7, along the x-axis. We observe that fit
parameter, «,, which quantifies the potential depth shows agreement to within 11 %
of the value input to the simulation, while the parameters for the trap width are

within approximately 10 % of the input value.

Effect of the Out of Plane Motion of a Trapped Particle on the 2D
Force Measurement The numerical simulations employed in verifying the step
input method calculates and records the particle’s trajectory along all three axes.

Therefore when the trapping force is measured in the equatorial xy-plane of the
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Table 4.2: Simulation Results for 100nm gold nanoparticles: 2D Force Measurements
with a 3D Gaussian Trapping Potential

Angle | a = SE (Pct.Err) | 0, £ SE (Pct.Err) | oy £ SE(Pct.Err)
rad kT (%) nm (%) nm (%)
0 116 + 4 (1.7) 524 + 12 (4.8) -
/6 102 + 6 (—9.9) 518 + 12 (3.5) 538 + 24 (7.5)
74| 10144 (~10.7) 523 + 14 (4.6) 530 £ 14 (6.0)
/3 103 £ 3 (~9.4) 505 £ 20 (1.0) 541 + 11 (8.2)
/2 108 + 4 (—5.0) - 498 £ 15 (—0.5)
21/3 109 + 3 (—3.6) 549 + 18 (9.8) 526 + 14 (5.3)
3/4 110+ 6 (—3.6) 518 + 15 (3.6) 508 + 16 (1.6)
5r/6 | 10244 (—10.4) 50711 (1.5) | 550+ 15 (10.1)
7r 109 + 2 (—4.4) 500 = 7 (0.0) -

o = 113.64 kT for all cases.
oz = oy = 500nm for all cases.

optical trap, the particle is free to diffuse axially (z-axis), out of the measurement
plane due to Brownian motion. As the particle diffuses farther away from the center
of the trap, it starts to feel an axial restoring force, which forces it back towards
the center, however when the mean axial displacement is sufficiently large, ignoring
it in the analysis of the trapping force may sometimes lead to errors. We show
that for the nanoparticle considered in this experiment, the axial motion outside
the xy-plane in fact does not add significant errors to the force measurement.

The distribution of the particle’s position along the z-axis, calculated from the
output of the simulation, has a mean at 0 = 4nm and a standard deviation of 95 +
4nm. The diffusion length of a freely diffusing 100 nm diameter gold nanoparticle
over 3ms, the average response time of the microsphere to a 700 nm, is calculated
using the relation (dfme>2 = 2@15 and found to be 160 nm. Therefore since the
particle is confined close to the equatorial plane, it may experience little restoring

force from the trap.
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However, movement of the particle outside the plane of measurement may in
some cases significantly impact the parameters of the optical trap recovered from the
analysis of the measured data. In the analysis, the parameters of the trapping force
are recovered by fitting the calculated optical trapping force to the model shown in
Equation 4.5, in the equatorial plane with z = 0. However, as the particle drifts
outside the measurement plane, the z-component of the trapping force may no longer
be neglected and may impact the accuracy of the force measurement. In order to
test the effect of the out-of-plane motion of the particle, we fit the calculated force
vectors to the model in Equation 4.5 for different values of z above the equatorial
plane. The effect of the particle’s motion, outside the measurement plane, on the
trap depth parameter «, in one case (6 = 0) is shown in Figure 4.6, which shows the
relative error in « as a function of z. We see from the figure that the change in the
relative error in « is small — only 0.5% for a z-displacement of 95 nm (the measured
standard deviation of the microsphere’s out of plane motion). Therefore this result
indicates that ignoring the out of plane movement of the particle when performing
the step input force method in the equatorial plane has a minimal impact on the

results.

Case 2: 640nm glass microspheres

The step input method was also tested for glass microspheres, 640 nm in diam-
eter, using the system parameters that are summarized in Table 4.1. The parameters

of the trapping force ﬁT(F) for this case were obtained using experimental stiffness
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Figure 4.6: Change in relative error of the measured trap depth parameter a as a
function of the particle’s displacement along the z-axis.

measurements, K = {9.45, 12.6, 1.58} pN/um, published in the literature, for an
optical trap with incident light polarized in the x-direction [132]. The shape of
the three-dimensional force, derived from a Gaussian potential is determined by
the well-depth parameter of the potential, o and the trap width ¢ = {o,,0,,0.}.
One of these parameters must be selected beforehand in order to maintain a stiff-
ness value of K close to the center of the trap. Therefore, we assume a well-depth,
a = 500 KgT and then calculate the width of the trap along the three-axes us-
ing Equation 4.7. This equation is obtained by re-arranging the first order term
from the power series expansion of the trapping force from Equation 4.5 about the
origin. For the stiffness £ and trap depth «a, the trap width is then found to be

& = {462.64,400.66,1131.44} nm.

7= \E (4.7)

The trap half-width (&) in the simulations is defined as the distance of one

121



standard deviation of the Gaussian potential. However, the trap width in an optical
trapping instrument is less clearly defined and is found to change as a function of
the particle and beam size. Furthermore, the width of the beam is not necessarily
the same along the x and y-axis due to the polarization of the incident light, which
causes the trap to be stronger along the axis orthogonal to the polarization. The
trap position, controlled by the parameter p is assumed to be 0 at the end of the
trap motion. The simulation time-step, At is chosen to be 0.017 x % or 1ns for
the 640 nm diameter microsphere in order to optimize the simulation performance.
Finally, the output of the simulation is sampled uniformly ( é) at 100k H z.

The simulations proceed exactly as described previously for the 100 nm gold
nanoparticles. Two representative particle trajectories for trap steps at # = 30deg
and @ = 150 deg are shown in Figure 4.7. 100 trajectories of the particle’s response to
the step input are recorded, separated into groups of 10 and averaged, before being
shown in Figure 4.7 and the error bars in the plots show the standard deviation
of the particle’s position. As expected, for § = 150deg (shown on the right side
of the figure), the particle moves in the opposite direction along the x-axis, when
compared with the § = 30 deg plot. As seen from the figure, the trap is first moved
at t = 6 ms and the particle takes approximately 4 ms to return to the center of the
trap. A second step at t = 10ms is performed to sample both sides of the optical
trap.

The trapping force is then recovered exactly as before using Equation 4.1,

Equation 4.2 and Equation 4.3. The resulting vector field is shown in the left hand
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Figure 4.7: Simulation data of a 640 nm diameter glass microsphere’s position in
the xy-plane as it responds to a step input along a line that makes an angle 6 with
the positive x-axis. The figure shows two representative cases for § = 30deg and
6 = 150 deg.
side of Figure 4.8, for each measurement angle # in the xy-plane. The color coded
force vectors in the foreground are calculated for each simulated cases, while the
light gray field in the background is obtained by interpolating the calculated force
vectors to obtain a new field that uniformly samples the two-dimensional grid. The
asymmetries in the trapping force due to polarization effects can also be seen in this
figure. Unlike, Figure 4.5 where the vectors are oriented approximately along the
line which represents the movement of the trap, in this case the force vectors appear
slightly curved towards the y-axis, which is orthogonal to the axis of polarization.
This effect can also be seen when the force field is integrated to obtain the potential
energy as a function of the displacement of the particle from the center of the trap,
shown in the right side of Figure 4.8.

Asymmetries in the optical trap, discussed above can be seen very clearly by

plotting the trace of the particle’s trajectory in response to a step input along a

straight line (on either side of the origin). One such example is shown in Figure
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Figure 4.8: The optical trapping force and the trapping potential as a function of
distance from the trap center are shown for a step size of 700 nm, while the inset in

the bottom half of the figure shows a 3D-representation of the trapping potential.
The solid line represents the width of the trap.

4.9 for the § = 7/4 direction, where the red lines indicate the path followed by the
particle in 100 independent experiments and the black line is the mean trajectory
of the particle. The projection of the particle’s motion in the xz-plane is found to
be a straight line along the x-axis as expected, while the projection of the particle’s
trajectory in the yz-plane mirrors that in the xz-plane and is not shown in the
figure. In the xy-plane, the particle follows a slightly curved path as it returns to
it’s equilibrium position close to the center of the trap due to the asymmetry in
the trap geometry arising from polarization effects, which causes the particle to be
attracted more strongly in the x-direction. The curvature of the trajectory is a
function of the asymmetry in the trap, with a straight line expected for a circularly

symmetric trap, as seen for the 100 nm diameter gold nanoparticle.
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Figure 4.9: Trace of a particle’s trajectory in response to a step input along a line
at #=45deg. The red lines show the individual particle trajectories, while the black
line is the mean path followed by the particle. The trap is shown in the background
of the figure, while the gray circle represents the particle.

Table 4.3 summarizes the simulation results and estimates the trap parameters
a, 0, and oy, by fitting the trapping force field to the model shown in Equation
4.5 using a least squares estimator. As in the previous simulation results, the fit is
performed at the equatorial plane by setting z = 0 in Equation 4.5. The maximum
error for the well depth o was found to be 5.5%, while the maximum error for
the trap widths & was {6.8%,1.8%}. Like in the previous results, only one trap
width parameter, either o, or o, is calculated in three cases, § = 0, § = 7/2 and
0 = m, in Table 4.3. As expected, the effect of the particle’s out of plane motion
during the measurement is even less pronounced for the 640 nm glass particle. The
distribution of the particle’s position along the z-axis has a mean of 0 + 3nm and
has a standard deviation of 49 & 1 nm. The effect of the out of plane motion on the
trapping parameters, calculated exactly as before for Figure 4.6, is found to induce

an error of only 0.1%.
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Table 4.3: Simulation Results for 2D Force Measurements with a 3D Gaussian

Trapping Potential, 640nm glass microspheres

Angle | a &= SE (Pct.Rel.Err) | 0, = SE (Pct.Rel.Err) | o, £ SE(Pct.Rel.Err)
rad kT (%) nm (%) nm (%)
0 494+ 4 (—1.3) 458 £ 4 (—1.0) -
/6 47249 (=5.5) 472 + 4 (2.0) 308 + 8 (—0.6)
/4 511+ 16 (2.2) 494+ 8 (6.8) 395 + 6 (—1.3)
/3 479 + 16 (—4.1) 486 + 10 (5.1) 395+ 4 (—1.3)
/2 493 +2 (—1.4) - 406 + 2 (1.3)
21/3 479 +£12 (—4.2) 488 + 9 (5.5) 405 + 4 (1.2)
3/4 4TS +£12 (—4.3) 470+ 8 (1.7) 404+ 5 (0.9)
5m/6 479+ 10 (—4.3) 465+ 5 (0.5) 393+ 7 (—1.8)
5 499 + 4 (—0.1) 464 + 3 (0.2) -

a = 500 kpT for all cases.
oy = 462.64nm and o, = 400.66 nm for all cases.

4.3.2 Laboratory Results

4.3.2.1 1 pm Glass Microspheres
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Figure 4.10: (a) Calibrated response of a particle to a step input of 980 nm. The plot
is the result of averaging over 100 data samples and the error bars show one standard
deviation in the particle’s position at a given time. (b) The optical trapping force
and the trapping potential are shown as a function of the particles distance from
trap center. The thick black line shows a fit to the data assuming a Gaussian trap.

The step response method was experimentally verified in the laboratory using
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the optical tweezers instrument, described in Appendix A, in one-dimension using
a dilute suspension of 1 um glass beads (Duke Scientific, P/N: 8100), in de-ionized
water. A sample cell, approximately 30 um thick, was prepared using a microscope
slide and cover glass and sealed on all sides using vacuum grease. The glass bead was
always trapped and lifted approximately 15 um above the bottom surface (Z-axis) to
reduce surface effects in the viscous drag, as discussed in Chapter 2. Furthermore,
between each calibration step and also between individual force measurements, the
particle is relocated by several micrometers (in the xy-plane by moving the sam-
ple stage) to reduce the effect of local heating due to the illumination source and
minimize changes in the fluid viscosity within the cell.

Once the calibration steps outlined in Appendix B are completed, the trapped
glass bead is scanned using a 10 Hz square wave input, with a peak-to-peak am-
plitude of 2.5V or 980 nm, which represents the distance of the particle from the
center of the trap. The position response of the particle to the square wave input is
recorded using the QPD with a sampling frequency of 50 kH z. The measurement is
repeated 100 times and then averaged. The resulting position data is smoothed us-
ing a 11 point moving average to further reduce high frequency measurement noise
and the QPD calibration curve from Figure B.2(b) is then used to calculate the
position of the particle as a function of time as shown in Figure 4.10(a). We observe
from Figure 4.10(a) that the onset of the particle’s response to the step input near
t = 10ms is more gradual than in the simulation results. This is expected since
the optical trap used in the experiments is much weaker than previous examples.
Next, the same analysis technique applied to the simulation data is used to recover
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the optical trapping force shown in the top half of Figure 4.10(b). From this plot,
we see that the maximum trapping force is approximately 0.6 pN and occurs at a
distance of 500 nm from the trap center. The light gray plot in the top half of the
figure are the force data calculated using a numerical simulation, using the trap pa-
rameters measured in the laboratory. The trapping force is then integrated to give
the trapping potential, seen in the bottom half of Figure 4.10(b) and the solid line
in the plot is from a least squares fit to the potential energy data. Figure 4.10(b)
shows that this method yields the trapping force well beyond the region close to the
trap center. Asymmetry in the optical trap arising probably due to misalignments
in the optics train can also be seen in Figure 4.10(b). It is also observed that the
minimum of the trapping potential does not coincide exactly with the origin of the
coordinate system suggesting that the trapping and detection beams are not per-
fectly coincident. This is caused most likely due to drift in the detection system over
the course of the experiment. Furthermore, as discussed previously, we perform a
one-dimensional measurement using an inherently three-dimensional optical tweez-
ers instrument, which may give rise to small measurement errors due to off-axis
particle motion from Brownian motion. However, this error is expected to be small,

based on earlier simulation results.

4.3.2.2 350nm Glass Nanoparticles

We have also used the step input method to estimate the maximum force point

of the optical trap when designing the closed loop controller described in Section
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5.4. We use the step input method to measure the trapping force on a 350 nm glass
nanoparticle. For this measurement, the trapped nanoparticle is scanned using a
1 Hz square wave input, with a peak-to-peak amplitude of 350 nm, which represents
the distance of the particle from the center of the trap. The position response of
the particle to the square wave input is recorded using the QPD with a sampling
frequency of 40 kHz. The measurement is repeated 150 times and then averaged.

Finally, we estimate the location of the maximum force point to be 236 + 18 nm.

4.4 Stochastic Noise Method

A nanoparticle undergoes a constant diffusive motion, away from the center
of the trap. This diffusive motion is opposed by the restoring force generated by
the optical trap, which acts towards the center, in order to keep the particle local-
ized. For small particles, that are weakly bound to the optical trap, the restoring
force provided by the trap is insufficient and the particle eventually escapes. In
the stochastic noise force measurement method, the particle acts like a probe and
samples the optical trap, effectively encoding information about the trap within it’s
position trajectories. The trapping force can then be recovered from the position
trajectories of the particle inside an optical trap. Since the nanoparticle acts as
the probe which samples the optical trap, the estimate of the optical trapping force
improves with the time the particle spends inside the trap. However, we can also
improve the force measurement technique by recording the position of an ensemble

of particles in the optical trap and then combining this data to estimate the trapping
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force.

Position trajectories from an ensemble of particles can be naturally represented
using a probability density function (PDF), W (x;t), which in one-dimension, is a
function of the position z, but also parameterized with time (¢). The technique to
construct the PDF from position trajectories, measured either in the laboratory or
calculated using simulations, is shown in Figure 4.11. The position trajectories of
individual particles (shown in the left half of the figure), as a function of time, are
first re-arranged to group the particles by the measurement time. The PDF is then
constructed by calculating the histogram of the particle positions, normalized by
the bin size, at each measurement time. The resulting PDF is shown in the right
half of the figure. As seen from the figure, the nanoparticles are initially located
very close to the center of the trap, represented by the sharp peak in the PDF and

then eventually escape the trap over time.

Individual Particle Trajectories Probability Density Function (pdf): function
as a Function of Time of position and parameterized by time

Figure 4.11: The probability density function (PDF) can be constructed from the
trajectories, as a function of time, of several non-interacting nanoparticles in an
optical trap. The trajectories are first transposed and then the PDF is constructed
by calculating the histogram, normalized by the bin width, at each time-step.

The evolution of the measured PDF in time, ¢ can then be calculated using

a Fokker-Planck equation, which is a form of the diffusion equation. A Fokker-
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Planck equation for systems with large coefficients of friction is shown in Equation
4.8 [131]. The right hand side of the Fokker-Planck equation is expressed in terms of
the probability current, J = D (,@%W{x,t) F(z) — %W(;E; t)) In this equation,
D = ’“BTT is the diffusion constant, v = 6mna is the Stokes drag coefficient for
a spherical particle with radius a in a fluid with viscosity 7, kg is Bolztmann’s
constant and T is the temperature of the fluid. The force from the optical trap
can be given by F(z) = —2U(z), where U(z) is an optical trapping potential
and therefore F'(z) would be a conservative force. Non-conservative components of

the trapping force, such as the force from scattering are ignored when calculating

trapping potentials.

0 0 0 1 0
&W(x;t) = " J = —%D (M (W (z;t) F(x)] — 8ngV(x;t)) (4.8)

As discussed previously, the probability density function (W (z;t)) can be con-
structed by combining serveral particle trajectories, either generated from numerical
simulations or measured in the laboratory. Once W(x;t) is known, Equation 4.8
can be rearranged to obtain a first order differential equation for the trapping force,
F(z). We can then derive the expression for the optical trapping force F'(x), shown
in Equation 4.9, by integrating both sides over position and rearranging the terms.
The constant of integration is set to zero by defining x = 0 to be the minimum of

the trapping potential.

B k;BT%W(x;t) - I‘”’%f%W(x;t)d:p
B W (z;t)

F(z) (4.9)

We are interested in calculating the trapping force at long times, where the
nanoparticle has sufficiently explored the optical trap and therefore improving the
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measurement of the trapping force. At sufficiently long times, the PDF does not
change appreciably with time and therefore the second term in the numerator of
Equation 4.9 can be ignored, resulting in the simplified expression for the trapping
force shown in Equation 4.10. Moreover, this expression is consistent with the

Einstein-Smoluchowski relationship.

DWW (e
F(z) = kgT W (4.10)

Since the PDF is calculated from discrete measurements of the particle posi-
tion, either from simulation data or from laboratory experiments, the derivative of
the PDF with respect to position in Equation 4.10 is calculated numerically. This is
performed using the expression in Equation 4.11, for a probability density function
with a bin size, dx. The expression for the numerical derivative is obtained exactly
as shown earlier in Equation 3.4. The resulting function is then substituted back
into Equation 4.10 to obtain the optical trapping force as a function of the position,
z. Based on the form of the numerical derivative used in Equation 4.11, we observe
that the resulting derivative will have two points less than the number of points
used to tabulate the function W (z;t). Therefore it is important to keep the results

of the numerical derivative aligned with W (x;t).

W(x +ox;t) — W(x —dz;t)
20z

2VV(a:; t) ~

- (4.11)

4.5 Stochastic Noise Method: Results

Results of the stochastic noise force measurement technique, outlined in Sec-
tion 4.4, are described next. Section 4.5.1 describes the results of numerical sim-
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ulation used to validate the stochastic noise method. Preliminary experiments are
also performed to demonstrate this technique in the laboratory and are discussed in

Section 4.5.2.

4.5.1 Simulation Results

We demonstrate the stochastic noise force measurement method using data cal-
culated from a one-dimensional Brownian dynamics simulation (described in Chap-
ter 3), for an ensemble of independent non-interacting particles initially located at
the center of an optical trap. Simulations are performed for gold and glass nano-
particles with diameters of 100 nm, 150 nm, 200 nm and 300 nm using the trapping
force (F(z) = —2U(x) = —%6_2%) derived from a Gaussian potential with depth
() and potential half-width, o. The parameters for each numerical simulation are
shown in Table 4.4. The trapping force parameters for the 100 nm gold nanoparticle
are chosen using the physical force calculation outlined in Appendix D for an inci-
dent beam power of 1 mW. The half width of the incident beam () is set to 500 nm,
which represents a typical optical trapping beam and the measurement is performed
for a total of 7 seconds to allow the particle sufficient time to sample the optical
trap. The trapping parameters for the glass nanoparticles are set empirically, by
first choosing the potential depth of the 200 nm particle to be %k:BT and then scaling
the trap depths for the 150 nm and 300 nm particles proportional to their volumes
[44]. While this approximation is only rigorously valid for very small particles, it

provides sufficient accuracy for our current measurements. The simulation runs at a
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time-step of 50 ps or 100 ps, depending on particle size and material, and the output
is sampled uniformly at 1 us to collect a time-series of position for each particle. The
simulation is repeated for 600 000 particles and we perform the analysis by grouping
the data into groups of 50 000, resulting in 12 independent force measurements for

each case.

Table 4.4: Stochastic Noise Method: Simulation Parameters

Dia. (d) | Mat. | Pot. Depth () | Pot. Width (o) | Sim. Time-step | Meas. Time
nm (kpT) (nm) (ps) (s)

100 Gold 0.758 500 100 7.0

150 Glass 0.211 400 50 2.0

200 Glass 0.500 400 50 2.0

200 Glass 0.500 400 50 7.0

300 Glass 1.687 400 100 2.0

Fluid medium: water at T'= 293 K

In order to test the stochastic noise technique, the simulation must be ini-
tialized with a distribution of particle positions and then run up to a time when
the particles in the ensemble completely fill the trap and have substantially leaked
out. The system then approaches a quasi-steady state, which for a weak optical
trap can be several seconds after the start of the experiment. However, running
the simulation with a large ensemble of non-interacting nanoparticles (required to
obtain an accurate force measurement) for long times can be very computationally
intensive. Therefore, in order to reduce the amount of computation time required
to complete the simulation, we first calculate the quasi-steady state PDF by nu-
merically solving the Fokker-Planck equation, given in Equation 4.8 and use this

distribution to initialize the simulation. Using the Fokker-Planck equation, to ini-
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tialize the simulation, in this manner does not affect the outcome of the calculation.
The simulations allow us to quantify the effect of stochastic noise from individual
particle trajectories, on the measurement — an important effect that must be taken
into account to extend this technique to the laboratory.

The output of the simulation trajectories are then used to construct the PDF
of the particle ensemble, as discussed earlier. At the start of each simulation, the
particles in the ensemble are located at the center of the optical trap and the PDF
is a sharp peak. As the simulation progresses, we find that the ensemble of particles
fill the trap in a very short time, typically a few milliseconds, and then slowly leaks
outside the trap over a longer time-scale. A snapshot of the PDF, at t = 7.0s, is
shown in Figure 4.12 for a 100 nm diameter gold particle, calculated over a spatial
range of 100 using a bin width of 125nm. From the plot, we see a central peak
close to zero, which represents the particle distribution inside the optical trap (shown
in the bottom half of the figure), with a standard deviation of approximately 500 nm
and long tails in the region where the particles have left the trap and undergo nearly
free diffusive motion.

The PDF' calculated using the trajectories output by the simulation are then
used to recover the optical trapping force, as a function of the particle’s displace-
ment, using Equation 4.10. The trapping force and standard error for the two glass
and one gold nanoparticle are shown in Figure 4.13. The solid lines in the figure
are the input trapping force model for each case. We see from the figure, that we

are able to obtain the trapping force beyond the inflection point of the trapping
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Figure 4.12: The probability density function of a 100 nm gold nanoparticle in a
Gaussian optical trap, 7 s after the start of the measurement.

potential for all three particles.

The trapping force, as a function of particle displacement, is calculated for
all the simulation cases shown in Table 4.4. The optical trapping force profile
obtained from the simulations is then evaluated in terms of two trap parameters —
the well depth (a)) and the beam size (o). For each simulation case, the numerical

force profiles, calculated from the simulations are fit to a force function of the form

x2
ax

—2Fe 202 to recover the trap parameters a and o, where z is the displacement of
the particle. The trapping force is calculated in each case to a distance 700 nm
from the trap center and the results are then shown in Table 4.5, which summarizes
the relative errors and reproducibility of the method, obtained by calculating the
standard deviation of each fit parameter and normalizing that value by the square
root of the number of observations, for each simulation case.

From Table 4.5, we see that for glass particles and a measurement time of 2 s,
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Figure 4.13: The trapping force as a function of displacement from the trap center,
calculated using numerical simulations of gold and glass nanoparticles in an optical
trap. The solid lines are the input force to the simulation and data points indicate
the trapping force calculated from the simulation output.

the error in the trap parameters o and o is larger for the 150 nm particle while
the errors between the 200 nm and 300 nm diameter particles are comparable. The
results highlight the importance of the total measurement time on the fit parameters,
especially the errors in . The first three entries in the table present results for
simulations performed with glass nanoparticles, for a total measurement time of 2 s.
The error in the trap parameter « is approximately 7% for the 200 nm diameter
glass particle. However, when the simulations are repeated for a total measurement
time of 7 s, the error in o does not change systematically, however, the error in the
parameter « reduces significantly to 1% and is discussed next.

The dependence of errors in estimating the parameters of the trapping force on
measurement time is due to the fact that at short times, the particles remain close

to the center of the trap and therefore do not sufficiently sample the optical trapping
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Table 4.5: Stochastic Noise Method: Simulation Results

d | Mat. | Meas. a o

Time | Actual | Sim+SE (Pct. Err.) | Actual | Sim+SE (Pct. Err.)
nm s kT kT (%) nm nm (%)
150 | Glass 2.0 0.21 0.24 £ 0.01 (16.2) 400 455 + 28 (13.8)
200 | Glass | 20| 050|  0.54+£0.01(7.2) | 400 421413 (5.3)
300 | Glass | 20| 1.69|  1.81+0.01(7.2)| 400 434 + 3 (8.5)
200 | Glass | 7.0| 050|  0.50+£0.02 (L.1)| 400 416 + 16 (4.1)
100 | Gold 7.0 0.76 0.73 +£0.03 (—3.6) 500 500 £+ 21(0.0)

Fluid medium: water at T'= 293 K

potential. Since the particles themselves act as probes in this process, at very short
measurement times we can recover the trapping force only very close to the center
of the traps. The estimate of the trapping force improves as the particles explore
regions of the trap that are away from the center. This phenomenon can also be
seen in the structure of Equation 4.10, used to calculate the optical trapping force
profile from a PDF. The force calculation involves a division by W (zx,t), therefore
at short times, when the probability of finding the particle far away from the center
of the trap is small, the force calculation is only numerically stable close to the trap
center and can estimate the trapping force close to the center of the trap. On the
other hand, as the measurement time increases, more particles exit the trap and the
estimate of the trapping force away from the center of the trap improves. Therefore
at very short times, we expect to estimate only the trap stiffness (the first term in a
power series expansion of the force about the trap center) and progressively estimate
higher order terms at longer times. Eventually, at very long measurement times we

can expect to recover the trapping force profile beyond the inflection points of the
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potential. Therefore, at ¢t = 2.0 s, we are able to recover the trapping force beyond
the inflection points of the potential, but we see relatively large errors in the fit
parameter o, which reduce even further by extending the measurement time to 7 s.

The bottom of Table 4.5 shows the results of the force measurement for the
100 nm gold nanoparticle for a measurement time of 7s to demonstrate that this
technique works for nanoparticles of different size and materials. We see that the
value of the trap parameter «, recovered from the simulation data has a lower error
than the 150 nm glass nanoparticle. This can be explained due to the stronger
optical forces that act on the gold particle in comparison with a glass nanoparticle
of similar size. The stronger interactions confine the particle to the trap for longer

times and therefore improve the sampling of the trap.

4.5.2 Laboratory Results

We report results obtained by implementing the stochastic noise force measure-
ment technique in the laboratory using 100 nm gold nanoparticles. The procedure
used to obtain these results is similar to the simulation results discussed previously.
We begin the experiments with a nanoparticle stably confined in a strong optical
trap. Next, we reduce the power of the trap sufficiently so that the particles escapes
the trap in a short time and record the trajectories of nanoparticles as they exit the
trap. We then construct probability density function from the recorded trajectories
and are able to recover the trapping force, as discussed in Section 4.4. Moreover, as

we will discuss in Section 5.2.1, nanoparticles preferentially exit the trap in the lon-
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gitudinal direction due to the effect of the scattering force. Hence we perform this
force measurement along the Z-axis. Consequently, we observe that this technique
allows us to recover the axial force profile of the optical trap and even gives us good
agreement with existing theory.

We first prepare a sample cell, approximately 100 pum thick using a glass slide
and cover slip and sealed on all sides using double sided adhesive tape. We then fill
this sample cell with a dilute suspension of 100 nm gold nanoparticles (Ted Pella,
P/N:15711-20). Similar to the step input method, we calibrate the detection system,
used to measure the XYZ-position of the particle in the trap using the procedure
described in Section B.2. Next, we create a stationary trap by moving the AOD
to the center of its range and ensure that it is properly aligned with the detection
beam.

We first adjust the voltage bias of an electro-optic modulator (EOM) (Model
350-80/Power Supply: M302RM, ConOptics Inc.), which controls the trap intensity,
to set the trap power to approximately 150 mW, measured using the online power
measurement system described in Appendix A. Next, we locate and then trap a
nanoparticle in the strong static trap. The measurement is then performed using
a LabView script, which changes the EOM bias voltage to reduce the power of the
trap to approximately 60 mW and then records the X, Y and Z position of the
particle for 5 s, as it exits the trap. The particle trajectories were recorded with a
bandwidth of 40 kH z and repeated with 65 independent particles.

The trajectories of the particles are then used to recover the trapping force

using the analysis technique outlined in Section 4.4 and demonstrated previously
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for simulation results. However, as we will show in Section 5.2.1, nanoparticles

in a weak optical trap escape preferentially along the Z-axis due to the presence
of a non-conservative scattering component in the total optical force. Therefore,
this technique naturally provides a good estimate of the longitudinal trapping force,

using the Z-component of the measured position, as seen below.
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Figure 4.14: Probability density function of the particle’s position in the trap.

The quasi-steady state probability density function (PDF) constructed, us-
ing techniques described in Section 4.4, from measured trajectories of 100 nm gold
nanoparticles in a weak optical trap is shown in Figure 4.14. The trap power in
the measurements is low enough so that the particles first diffuse to fill the trap
volume before proceeding to exit the trap, well before the measurement period of
5 s and typically between 1 — 2's. Therefore to calculate the quasi-steady state PDF,

we discard the first 25 ms of data from each trajectory, which is much larger than
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the time required by a 100 nm gold nanoparticle to fill the trap volume, before we
calculate the PDF.

As we see from the figure, the quasi-steady state probability density plot ex-
hibits qualitatively different behavior on either side of the origin. As we describe in
more detail in Section 5.2.1, nanoparticles escape the trap preferentially along the
positive Z-axis. The PDF in Figure 4.14 supports this phenomenon and we observe
that the density of particles falls quickly as we move along the positive Z-axis, but
remains non-zero right up to the point where the plot is truncated at 2000 nm. On
the other hand, particles do not escape the trap along the negative Z-axis. The
PDF appears wider on the negative side of the origin and becoming negligibly small
before —1000 nm. Next, we use the measured PDF to estimate the trapping force
exerted on the particle using the analysis techniques described previously.

Figure 4.15 shows the trapping force measured for 100 nm gold nanoparticles
in the laboratory using the stochastic noise method. In the figure, the blue plot
markers show the trapping force measured in the laboratory and the error bars
represent the standard error of the measurement. Furthermore, the black plot in
the figure shows the trapping force calculated using the generalized Lorentz Mie
theory (GLMT) model, for a comparable beam power as the measured data [104].
The GLMT force field provides a realistic estimate of the optical trapping force and
includes the gradient and scattering components of the total force. The details of
the calculation can be found in Ref. [67]. The black curve in Figure 4.15 shows the

axial trapping force obtained from the GLMT model, for a 100 nm gold nanoparticle
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Figure 4.15: Axial trapping force calculated for a trapped 100 nm gold nanoparticle
in a weak optical trap. The plot markers in the figure represent the measured force
and the error bars show the standard error of the measurement. The black solid

line shows the theoretical GLMT force model for a comparable beam power. We
observe that there is very good agreement between theory and the measured force.

in an optical trap with the wavelength of the incident light, A = 1064 nm. We set
the size of the focal spot of the beam to 550 nm and assume the surrounding medium
is water, with a refractive index of 1.33.

From the figure, we observe that we are able to measure the trapping force well
beyond the maximum force point along the positive Z-axis. Moreover, the trapping
force is stronger on the negative side of the origin, consistent with the results of
the GLMT calculation. Overall, we see good agreement between the GLMT force
model and the measured force data, both with the magnitude of the trapping force,
as well as the overall shape of the curve. However, unlike the GLMT plot, the

measured force data is sensitive to optical misalignments and other deviations of
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the trap from ideal behavior. One example of such a deviation from ideal trapping
behavior is seen from the kink the trapping force at approximately —250 nm, which
could arise from a combination of factors, such as distortions of the trapping beam
wavefront from the AOD or other misalignments in the optical system. Nonetheless,
the reasonable good agreement between experiment and theory, so far a relatively
rare occurrence in the field of optical trapping, serves to improve our confidence in

this force measurement technique.

4.6 Summary

We have developed two new force measurement methods to measure the optical
trapping potential, without making any prior assumptions about it’s shape. The
techniques developed are validated using simulations and also implemented in the
laboratory. Laboratory measurements of these techniques can allow us to improve
force models that are incorporated into the simulations, thereby improving their
utility in extending optical trapping to nanomanufacturing.

The first force measurement technique developed is the step input method,
where an optical trap is subjected to a step input and the response of the particle is
measured and used to recover the optical trapping force. This method is validated,
in two-dimensions, using numerical simulations of 100 nm gold nanoparticles and
640 nm glass microspheres. The relative error in the recovered trapping parameters
was found to be small and the error due motion of the particle outside the mea-

surement plane was found to have a negligible impact on the recovered trapping
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force. The step input method has also been demonstrated in the laboratory, in
one-dimension for a 1 um glass microsphere and for a 350 nm glass nanoparticles as
described in Chapter 5.

The optical trapping force has also been measured using the thermal motion
of a nanoparticle in an optical trap. This method has been tested using numeri-
cal simulations, with gold and glass nanoparticles, ranging in size from 100 nm to
200 nm, with good results. Furthermore, we have implemented this technique in the
laboratory using 100 nm gold nanoparticles to measure the axial trapping force and
found reasonably good agreement between the measured data and the theoretical
GLMT force field.

The optical trapping force techniques we have developed will benefit the ex-
tension of optical trapping to the nanoscale. As we have shown, theoretical models
of the optical trapping force do not always account for all optical effects, such as
tightly focussed beams or spherical aberrations. Therefore, data collected by imple-
menting these methods in the laboratory is valuable, when used in conjunction with
numerical simulations, to develop new control methods like those demonstrated in

Chapter 5.
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Chapter 5

Enhanced Nanomanipulation Through Controlled Optical Trapping

In this chapter, we demonstrate enhanced trapping methods using control
systems, which are able to confine nanoparticles to an optical trap, when a corre-
sponding static trap at the same power is unable to localize a same-sized particle.
Furthermore, these techniques significantly reduce the average power required by a
static trap to confine a particle. Therefore, we believe we can mitigate damage to
particles in the trap and this technique can be particularly beneficial when trapping
nanoscale biological particles. Moreover, the development of enhanced trapping of
nanoparticles may lead to better nanomanipulation using optical tweezers and also
lead to the development of this instrument as a flexible tool for prototyping novel
three-dimensional nanodevices.

Numerical simulations, developed in Chapter 3, have played an important role
in developing the new control algorithms used in this work. We have implemented a
realistic model of the optical trapping force, which includes both conserved and non-
conserved components of the trapping force, based on the generalized Lorentz Mie
theory (GLMT) [104, 67]. Simulations of nanoparticles in an optical trap modeled
by the GLMT force field have resulted in a better understanding of the escape
mechanism of nanoparticles in weak traps, which we discuss in more detail in Section

5.2.1. This in turn has significantly impacted the design of the controller. For
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example, we have determined that modifying the intensity of the trap has a far
greater impact on lifetime than scanning the position of the trap in response to
particle movement. We discuss the design of our intensity controller in Section
5.2.3, followed by simulation results that describe the performance of the control
algorithms.

We have implemented our representative controller design in the laboratory
and tested it using 350 nm glass nanoparticles and 100 nm gold nanoparticles. In-
stead of designing analog electronics to implement the controller, we use low-cost
field programmable gate arrays (FPGA), which provide excellent performance and
flexibility. The implementation details of the controller on the FPGA are discussed
in Section 5.3.1. Finally, we discuss laboratory results for the two particle sizes

using the FPGA-based control in Section 5.4.

5.1 Motivation

Manipulation and assembly of microscale particles in fluids using optical tweez-
ers is widely used in many areas of research. However, the extension of optical trap-
ping to nanoscale assembly is less developed. One challenge is that for a constant
beam power, the optical binding forces acting on a nanoparticle decrease signifi-
cantly in comparison with larger particles. Consequently, it is more challenging to
keep a particle confined to the trap without significantly increasing the laser power.
Recent work has demonstrated that even when using laser powers as high as 855 mW

(which results in power densities of thousands of megawatts per square centimeter
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for diffraction limited traps), gold nanoparticles with a diameter of 18 nm, dispersed
in water, can only be confined to an optical trap for a few seconds at a time, which
limits their utility in nanoassembly applications [72]. Furthermore, particles smaller
than 18 nm could not be localized when using even higher laser powers. Moreover
using high laser powers to trap nanoparticles may not be practical since increasing
the intensity of the trap may cause significant heating and damage to the parti-
cles. In fact, Seol et al. have studied the effect of particle mediated heating for
100 nm gold nanoparticles due to absorption and found significant heating of up to
266°C/W [141].

We have successfully developed a new approach that uses closed loop control
systems to improve the lifetime of nanoparticles in an optical trap, in comparison
with a static trap. Moreover this technique does not increase the average power
input to the system. The lifetime of the optical trap is defined in our work as the
inverse of the rate at which nanoparticles first cross the boundary of the optical
trap, as described in more detail in Section 5.2.2. Since the edge of an optical trap
is not clearly defined and changes with the parameters of the system, we fix the trap
boundary, for each case in the analysis. As part of this work, we have developed
prototypical controller designs to accomplish these goals. The controller design has
been developed using numerical simulations developed previously, which actuate the
trap in response to a change in the particle position within the trap. This controller
design has finally been successfully demonstrated in the laboratory using 350 nm
glass and 100 nm gold nanoparticles. Next, we discuss the design of the prototype

control that is used in this work.
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5.2 Controller Design

A closed-loop controller changes the parameters of the optical trap in response
to the position of a nanoparticle confined within the trap. The controller can directly
control only two trap parameters, (i) trap position, where the controller can move
the optical trap in response to the motion of the particle and (ii) trap intensity,
where the controller can adjust the incident power in response to the nanoparticle’s
movement. Sophisticated control algorithms can then be constructed by combining
the control of these two trap parameters.
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Figure 5.1: Controller Block Diagram. In the figure, 75 is the controller set-point,
7(t) is the ideal particle position and 7/(t) is the measured position of the particle.

The block diagram for a control system for use with optical trapping is shown
in Figure 5.1. In the figure, the controller set-point is given by the vector r; and the
ideal position of the particle in the trap is given by 7 (t). Furthermore, the error
signal input to the controller is obtained by subtracting the measured position of
the particle in the trap (7(¢)) from the set-point. Since only the position of the trap
and it’s intensity can be actively controlled, the controller transfer function must
generate two output functions, (i) a vector function describing the target position

of the optical trap (ur(rs — 7(t))) and (ii) a scalar function that sets the target
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intensity of the trap (Ir(rs; — 7(t)). Moreover the two output control signals are
independent of each other and the controller can be fully described by two arbitrary
functions which operate on the error signal as a function of time.

Controller functions can be parameterized in several ways depending on the
performance objectives and constraints on the system. In the simplest case, they can
be Proportional Integral Derivative (PID) controllers for both position and intensity.
Moreover, the limitations imposed by analog electronics, often define the type of
controllers that are used in many optical trapping experiments. We have developed
new methods to use a Field Programmable Gate Array (FPGA) to implement our
controllers in the laboratory, which gives us the flexibility to implement arbitrary
controller functions (see Section 5.3.1 for implementation details).

The primary objective of our control algorithms is to increase the lifetime of
nanoparticles in the trap without significantly increasing the average trap power.
Therefore, we choose to parameterize our controller using two features, (i) tracking,
which can improve the lifetime by maintaining a constant force on the particle over
a longer spatial range than a static trap and (ii) blanking, which can reduce the
average power by reducing the beam power when the particle is close to the center

of the trap. These two key controller parameters are described next.

Tracking: The primary objective of tracking control is to maintain a constant
force on the particle in order to restore it to the center of the trap. In tracking
control, we keep the trap stationary until the particle reaches a pre-determined

point away from the center, such as the maximum force point of the optical trap
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(see Section 4.3). When the particle moves past this point, the controller moves the
center of the trap to follow the particle in order to maintain a maximum force on it.
The controller stops tracking the particle when either a) the particle goes past the
detection limit of the laser based tracking system or b) the particle returns close to
the trap center. By tracking the particle position, the tracking controller effectively
confines the particle to the trap for an extended period of time and thereby increases

the lifetime of the nanoparticle.
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Figure 5.2: (a) An example tracking control signal and (b) and example blanking
control signal designed for a 350 nmSiO, nanopoarticle.

A typical control signal for tracking control for a one-dimensional system with
a 350 nm glass nanoparticle is shown in Figure 5.2(a). In the figure, the particle
position is shown along the horizontal axis and the control signal that sets the trap
position is shown along the vertical axis. As seen from the figure, when the par-
ticle is within +250nm of the center, the trap remains stationary. As the particle
crosses this pre-determined hold point, the trap follows the particle until it reaches
the detector limit, set at =1000nm. Moreover this method is easily extended to

two or more dimensions. However due to the hardware configuration of our exper-
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iment, we can only fast scan the trap along the X and Y axes, transverse to the
direction of propagation of light. Therefore, tracking control is currently limited to

two dimensions in our experiments.

Blanking: The second controller parameterization we use is blanking control,
which is designed to reduce the power of the trapping beam when the particle is
close to the trap center. An optical trap, such as the one used in our experiment
has a beam intensity profile that is maximum at the center and decreases away from
the origin. However the optical trapping force is zero at the center of the trap and
increases until it reaches the maximum force point. Therefore by blanking the beam
close to the center of the trap, we are able to reduce the average power incident on
the particle and the surrounding fluid.

A typical blanking control signal is shown in Figure 5.2(b), for a 350 nm glass
nanoparticle in one dimension. As we see from the figure, the control signal is
symmetric about the origin. The controller is designed to turn off the trap when
the particle is within +£250nm of the center and then quickly increases the beam
intensity to a maximum value of 50 mW outside of this region.

For the one-dimensional case shown in Figure 5.2, tracking control can be
combined with blanking control to apply a constant force on the particle over a
wide spatial range and reduce the average incident power by blanking the beam
near the center. However, as we show in subsequent sections, 3D traps that include
the scattering force, moving the trap position in response to the particle movement

plays a much more limited role and intensity control provides the most benefit.
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5.2.1 Escape Mechanism of Nanoparticles From Weak Optical Traps

Single beam gradient optical traps use a tightly focussed optical beam to
grip a nanoparticle and hold it close to the focus of the beam. As discussed in
Chapter 2, the optical trapping force has two components, a conservative gradient
force component that pushes the particle towards the focus of the beam and a
non-conservative scattering component, arising from the radiation pressure of light,
which directs the particle along the direction of propagation of light. Therefore, a
stable three-dimensional optical trap is formed when the gradient forces overcome
the scattering forces. The scattering force, which is proportional to the intensity of
the trapping beam, is highest at the center of the beam and decreases away from the
axis that defines the direction of propagation of light. Moreover, while the gradient
force is strong along the transverse directions and weaker along the longitudinal
directions, the scattering force by contrast acts principally along the longitudinal
axis and is very small in the transverse directions. Furthermore, due to the forward
radiation pressure, a microscale particle is believed to undergo a toroidal circulation
within the trap rather than reach an equilibrium position [137].

Nanoparticles generally experience weak optical binding forces, in comparison
with micrometer sized particles and are thereby not very strongly trapped. In order
to better understand the interactions of nanoparticles with optical traps, particularly
the mechanism of escape in weak traps, we have implemented the GLMT force field
in our simulations [104, 67]. This force model provides a realistic description of the

total optical trapping force acting on the particle and includes both the gradient

153



and scattering force components.

Equation 5.1 shows the total trapping force calculated using the GLMT model
in three-dimensional Cartesian coordinates, where n,, is the refractive index of the
fluid, ¢ is the speed of light, P is the power of the incident beam, wy is the size of
the beam focus and Q(f’) is the trapping efficiency [104]. The trapping efficiency
@(f), is independent of power and is calculated by first evaluating the scattering
cross-sections (Cpy, Cpry, Cpr») along the three axes using the methods detailed
in Ref. [67]. The GLMT force model is developed under a paraxial approximation,
assuming an objective with a low numerical aperture, which does not tightly focus
the beam. However, we use high numerical aperture objectives in our experiments,
capable of focusing the beam to a spot approximately the size of the half the incident
wavelength. Therefore, even though the GLMT is not an ideal model to approximate
our experiment, it provides a realistic estimate of the trapping force and is an

invaluable component in controller design, as we will see in later sections.

) = (") x Q)
G = %{@Cmm,@cpr,ywxwm,z(f)} (5.1)

The GLMT force field has been implemented in our simulations using the fast lookup
method described in Appendix C. Therefore, we generate a table of trapping effi-
ciencies (@ (7)) for 350 nm silica nanoparticles irradiated using a laser beam with a
wavelength, A = 1064 nm, over a closed interval of 3 um along the x and y axes and
[—2,46] pm along the z-axis, with a uniform grid spacing along all axes of 75 nm.

The trapping force is then calculated within the simulation using Equation 5.1 for
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the grid point closest to the particle position. Since the trapping efficiency tables
are independent of power, the same GLMT tables are used throughout the rest of
this chapter to test the performance of static traps and controller algorithms that
run at different beam powers.
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Figure 5.3: 100 simulated the trajectories of 350 nm glass nanoparticles in a weak
GLMT force field. The trapping force along the direction of propagation of light
is shown by the thick black plot. From the figure, we see that the particles escape
preferentially along the positive z-axis.
Figure 5.3 shows 100 simulated trajectories of 350 nm glass nanoparticles un-
der the influence of a static GLMT force field with a beam power of 5mW. The

total trapping force along the Z-axis generated by the GLMT model is overlaid
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on top of the nanoparticle trajectories in Figure 5.3. The thick black line in the
figure represents the total axial trapping force, including gradient and scattering
components (directed along the positive z-axis). From the figure, we see that the
trapping force is attractive on either side of z = 0 and the magnitude of the attrac-
tive force is much larger on the negative side of the origin. On the other hand, when
z > 0, the trapping force reaches a maximum at approximately 500 nm and then
decreases, eventually becoming repulsive at approximately 3000 nm. The combina-
tion of weak gradient forces and axially directed scattering forces result in particles
escaping preferentially along the positive z-axis as seen in the figure. Furthermore,
the particles are well confined within the trap in the transverse direction, due to

relatively stronger gradient forces and a negligible transverse scattering force.

OW (7,1 1= . ksl -
g = Vs <7F () — 7%) W (7, t) (5.2)

The escape of nanoparticles from the trap can be understood using the Fokker-
Planck equation, which is shown in Equation 5.2 [131]. In this equation, the particle
probability density as a function of position and time is given by W(7,t), defined
using Equation 5.5 in our experiments. Furthermore, F (7) represents the trapping
force field, ~v is the Stoke’s constant as defined previously, kg is Boltzmann’s constant

and 7' is the temperature of the fluid.

oW (7 1) B

T +VzS=0

S =V; <1F (7) — kBT%) W (F,t) (5.3)
Y i

The Fokker-Planck equation can be re-written as a continuity equation, shown in
Equation 5.3, where S is the probability current. The probability current can be
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described by two terms: (i) a drift term that is proportional to the product of the
optical trapping force and the PDF, and (ii) a diffusion term that is proportional to
the negative gradient of the PDF and driven by the thermal motion of the molecules
in the fluid. For a well confined particle in a conservative force field, such as a
microscale particle in a strong Gaussian trap (where the drift current can be much
stronger than the diffusion current), we observe that in a quasi-steady state, the net
particle flux leaving the trap is negligibly small. Therefore, the drift and the diffusion
terms in Equation 5.3 balance each other and the net probability current is negligible
(S = 0). However, in practice the particle is found not to reach an equilibrium
position in the trap due to the presence of the non-conservative scattering force
component. Instead microscale particles have been found to undergo a continuous
toroidal circulation within the trap [137]. For smaller particles, diffusion plays a
more dominant role and the magnitude of the drift current is no longer sufficient
to keep the particles confined to the trap. Furthermore, the weaker restoring force
along the longitudinal axis, coupled with the scattering force appears to provide an
easier escape route, leading to the preferential escape of particles along the positive
Z-axis that we observe in Figure 5.3.

We find that the mechanism of escape of nanoparticles from an optical trap
has strong implications for controller design. As we see from Figure 5.3, particles
predominantly escape the trap in the longitudinal direction. Therefore scan control
in the transverse XY plane has limited impact in improving the lifetime of nano-
particles. In fact, results from simulations and in the laboratory presented in later

sections show that significant improvements of lifetime are achieved without resort-
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ing to XY scan control. In the next section, we define the metrics we use to evaluate
the performance of our representative controller design followed by simulation re-

sults.

5.2.2 Controller Performance Metrics

The performance of individual control algorithms is benchmarked against the
performance of the static optical trap discussed in the previous section. We define
two metrics to evaluate controller performance, i) the lifetime of the nanoparticle and
ii) the average incident trap power, which are discussed in more detail below. Data
obtained from numerical simulations, as well as data collected in the laboratory are
then expressed in terms of these quantities, which allow easier relative comparisons

of performance.

5.2.2.1 Trap Lifetime

We define the lifetime of the optical trap as the inverse of the rate at which
nanoparticles first cross the boundary of the optical trap. Since the edge of an
optical trap is not clearly defined and changes with the parameters of the system,
we fix the trap boundary, for each case in the analysis. An ensemble of nanoparticles,
initially located at the center of a weak optical trap, diffuses quickly to approach
the boundary of the trap in a very short time, in comparison with the particle’s
lifetime, before proceeding to escape from the trap. Once the particles have diffused

to fill the trap, the number of particles remaining in the trap as a function of time
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(1), given an initial population N, is described by the expression for an exponential
decay in Equation 5.4. Therefore, for time-scales larger than the time the particle
takes to completely fill the trap, the exponent (A,) in this equation sets the rate at
which nanoparticles cross the boundary of the trap and therefore the mean lifetime
is given by %

n= Nexp(—A1) (5.4)
An optical trap does not have a well defined boundary. The size of the trap depends
on parameters of the system such as the beam size and the diameter of the particle.
Therefore, when calculating the lifetime of a nanoparticle, we explicitly fix a three-
dimensional bounding box for the trap as shown in Figure 5.4 and then discard
points in the trajectory after the particle first crosses this boundary. Figure 5.4
shows the point cloud for 50 simulations of 350 nm glass particles in a weak GLMT
force field, with a beam power of 5mWW. We have seen in Section 5.2.1 that particles
in a weak optical trap escape preferentially along the Z-axis. Therefore the size of
the bounding box along the X and Y axis is less critical than the size in Z. Along the
Z-axis, we define the top of the boundary box at a point that a majority particles
pass through. Therefore, in Figure 5.4, we set the bounding box to +1.5 um along
the X and Y axes and —1 um to +2 um along the Z-axis. In the figure, the positions
of the particles are drawn past the bounding box along the Z-axis to highlight the
predominant escape route of the particles. We calculate the lifetimes of nanoparticles
in the trap in order to make relative comparisons between the controller on and

controller off cases. This allows us to effectively evaluate the performance of the
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controller in relation to a static trap with the same average power. Therefore, the
size of the bounding boxes must be identical when comparing data sets against each

other.

Z (um)

0
X (um) 1

Figure 5.4: First crossing of 350 nm glass nanoparticles in a weak GLMT force field.
The point cloud is drawn past the positive Z boundary to highlight the predominant
escape along the Z-axis.

h(z,y, z,t;0,0t)

(5.5)

We use the trajectories of particles inside the bounding box to construct the prob-
ability density function of particle positions as shown in Equation 5.5, where the
histogram of particle positions in X, Y, Z and time (t) is given by h(x,y, z, t; 0, §t).
The spatial bin size, which is uniform along all three axes is defined by 0 and 6t
defines the bin size in time. Figure 5.5 shows the conceptual overview of the pro-
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cess used to calculate the PDF in position and time for one spatial dimension. The
sub-figure on the top left of Figure 5.5 shows the raw trajectories output by the sim-
ulation as a function of time for each particle in the ensemble. These trajectories
are then truncated, shown in the sub-figure on the top right, to obtain the positions
of the particle inside the optical trap (the trap boundary is shown by the two thick
lines in the figure). Next, we calculate the histogram of the particle’s position and
time for the selected spatial and temporal bins. The PDF for the one-dimensional
case is obtained by normalizing this histogram by the § x dt. For our simulations,
we simply extend this process to three-spatial dimensions and time and calculate

the PDF using Equation 5.5.
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Figure 5.5: Summary of the process used to calculate a PDF from simulation tra-
jectories in one-dimension.
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Figure 5.6: Lifetime estimate for 350 nm glass nanoparticles in a weak GLMT force

field from simulations. We trace the peak of the PDF as a function of time and use
Equation 5.4 to estimate the lifetime.

Once we obtain the PDF of particles within the optical trap for times longer
than those required to fill the trap, we calculate the lifetime by locating the bin
that contains the peak of the PDF in X, Y and Z at times longer than that required
to fill the trap. Next, we trace the probability density in this bin as a function of
time as shown in Figure 5.6 and estimate the lifetime of the particle by performing
a least squares fit using the model in Equation 5.4. The lifetime calculated using

this method for three simulation cases are shown in Table 5.2.

Lower Bounds on Lifetime for the Controller On Case: In experiments
where the particle exits the trap a very small number of times over the period
of observation, for example when the controller is on, the techniques described
previously do not provide a reasonable estimate of the lifetime. In such situations,

we can however estimate a lower bound for the lifetime of the particle for a pre-
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determined confidence level as discussed below [109].

When we observe only a small number of escape events from the trap, the
expression for the exponential decay shown in Equation 5.4 can be simplified using
a series expansion to obtain the decay rate (\,) as given in Equation 5.6 [156]. In
this equation, NV is the number of trials performed in an experiment, k& is the number
of observed escape events and t is the total observation period for each trial. The

mean lifetime of the particle is then approximated by 7 = 1/A,..

A & — (5.6)

In some experiments, the particle never escapes the trap (k = 0), in which case A,
in Equation 5.6, equals zero. In such situations, the corresponding lifetime of the
trap, estimated from the inverse of the rate in Equation 5.6 would be calculated
to be infinitely large. However, such an estimate would be unphysical since optical
traps have a finite lifetime, which can be observed with sufficient trials or a longer
observation period. Furthermore, even when we have no observed events where the
particle escapes the trap, we can estimate a lower bound on the lifetime with a
confidence level a.

In order to place a lower bound on the lifetime, we must first calculate an upper
bound on the decay rate (), since the lifetime is the inverse of the rate of decay.
The probability of observing the number of discrete events occurring over a fixed
period of time can be expressed using a Poisson distribution, if the mean number of
particles escaping the trap (i, known as the parameter of the distribution) is known.

However, in our experiments the parameter of the Poisson distribution is not known
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beforehand. Therefore, in order to calculate the upper bound on \,, we must first
estimate an upper bound (g,) on the Poisson parameter. We estimate 4, such
that for k observed escape events, we find a Poisson distribution with parameter 14,
which exceeds the true Poisson parameter (1) of the distribution with probability
1 — a, for example 95%. This is shown formally in Equation 5.7, where we solve
the cumulative distribution function (CDF) for the Poisson distribution at a given
« to obtain the upper bound of the Poisson parameter, j;, [22]. Once we obtain
an estimate of 1, we can substitute k = p;,, in Equation 5.6 to obtain an upper
bound on \,.. Consequently, the lower limit for the mean lifetime of the particle is

the inverse of the estimated upper bound on A,.

Solve for Kiim - CDFPoisson(n; ,Ulzm) = (57)

As an example, if 5 particles exit the trap (k = 5) over the observed time period
(t = 10s), we can solve Equation 5.7 to estimate the upper limit on the parameter
tim With 95% confidence (a = 0.05), to be 10.5. Therefore, if we have N = 100 total
observations, we can substitute £ = 10.5 in Equation 5.6 to estimate the upper limit
of the decay rate (\,). The lower limit on the lifetime is then the inverse of this rate
and is found to be approximately 95 s. This technique to estimate the lower bounds
on the lifetime is used throughout this chapter in simulation and experimental cases

when the controller results in very few or no escape of particles from the trap.
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5.2.2.2 Average Power

The lifetime of a particle in an optical trap can be increased, with some lim-
itations, without resorting to closed-loop control, simply by increasing the power
of the incident beam. However, this can cause heating and significant temperature
increase due to absorption of the incident light by both the particle, as well as the
surrounding fluid. Severe heating can destroy the nanoparticle in the trap or result
in the trap becoming destabilized due to strong convective forces from the heating
of the fluid. Furthermore, even moderate changes in the temperature of the fluid
can result in large changes to the local viscosity, thereby making it harder for a
controller to keep the nanoparticle confined to the optical trap. However, in our ex-
periments, we are only interested in comparing controller performance, relative to a
static trap. Therefore, we only compare the average power input to the trap in each
case. In our experiments a successful controller will allow us to trap a particle for a
significant period of time at some measured average input power, when a static trap
at the same power is unable to do so. In subsequent sections, we show data from
simulations and laboratory experiments that clearly demonstrate this behavior.

We report the average incident power recorded in our experiments for both lab-
oratory and simulation results, over the course of the experiment. In the laboratory,
we have a continuous online measurement of the laser power on the optical table
(see Appendix A for a hardware description). We record the measured power at the
same rate as other signals in the experiment and are therefore able to calculate the

average power over the course of the experiment. Moreover, since our simulations
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also record the power of the optical trap at each time-step, we are able to apply the
same methods to calculate the average power to simulation and laboratory data.

The average power for three simulation cases is shown in Table 5.2.

5.2.3 Intensity Control Design

We observe, from laboratory experiments and simulation results from the pre-
vious section, that nanoparticles escape the optical trap preferentially along the
direction of propagation of light (positive Z-axis). Therefore scan control, in the
XY-plane has a minimal impact on improving the lifetime of nanoparticles. On
the other hand, intensity controllers, which change the trap power in response to
particle movement, are simultaneously effective along all three axes. Therefore, in
this section we discuss the design of intensity controllers, which change the power
of the trapping beam as a function of the particle position.

We begin with the simplest case — an intensity controller that uses the X
and Y position of the particle to determine the intensity of the trap. This type
of controller is consistent with the hardware commonly found in optical trapping
instruments, which include position detection in the transverse plane, but not along
the longitudinal axis. In this controller, we setup a blanking region close to the trap

center and increase the power to it’s maximum value outside this area.

XY Blanking Control: The XY blanking controller used in the simulation
results presented below is defined using the piecewise function given in Equation 5.8.

In the equation, r = y/x? + y? is the radial coordinate of the particle position in two-
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dimensional Cartesian coordinates and r, defines the radial extent of the blanking
region, within which the trap power is at it’s minimum value P,,;,. Furthermore, the
controller increases the trap power linearly to P, over the transition region that

extends between 7, and 7, and maintains a maximum power of P,,,, when r > r}.

Prin rnmy
Ly(r) =13 Puin+ (ijZjimi"> X (r—mry) <1<y (5.8)
Prge r>,

Table 5.1: Intensity Control Parameters

Static Trap | XY Blanking | XY Blanking + Z Intensity
Diameter (nm) 350
Material Si0s (glass)
A (nm) 1064
wo (nm) 550
Nom, 1.33
ng 1.57
rp (nm) N/A 275 275
7y, (nm) N/A 275 275
Detector Range (um) N/A +{1.4,1.4} +{1.4,1.4,6.0}
Prin (mW) N/A 0 0
Prge (mW) 5 25 200
kp (MW /pm) N/A N/A {0,0, 100}

The parameters we have selected for the XY blanking controller are shown in
the second column of Table 5.1. We use a GLMT force field, generated for 350 nm
glass nanoparticles under a trapping beam with a wavelength of A, with a spot size,
wp. The refractive indices of the particle (n,) and the surrounding water (n,,) are
also shown in the table, as is the gain for a proportional controller along the Z-axis
(kp), which is used in the next section.

We set the blanking region, r, = 275 nm to coincide with the maximum force
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point predicted by the GLMT model in the transverse XY-plane. Furthermore, we
set the transition region to 0 (1, = rj ), so that the controller increases the power
instantly to P,,., and exerts a maximum force on the particle when it leaves the
blanking region. Finally, we set the power inside the blanking region to P,,;, = 0, so
that the trap is completely off. We also limit the maximum power available to the
controller to 25 mW , which is five times the static trap power (see column 1 in Table
5.1) for the static trap simulations described in Section 5.2.1. Furthermore, this
static trap simulation forms our baseline measurement, against which we benchmark

controller performance.
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Figure 5.7: Intensity control results from numerical simulations of 350nm SiOs
nanoparticles. Figure (a) shows 100 simulated trajectories using the XY blanking
controller in the XZ-plane, where most particles escape the trap in a relatively short
period of time. Figure (b) shows that adding proportional intensity control in Z
together with XY blanking is more effective in confining the particles to the trap.

Figure 5.7(a) shows the trajectories in the XZ-plane from 100 simulation runs,
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each 5 s long, using the XY blanking controller parameters specified in Table 5.1.
Since the trap is circularly symmetric in the transverse plane about the origin, we
do not show the YZ-plane in the figure. The two solid lines in the plot represent
the blanking region. When the particle is within this region, the trap is turned off
and the particle undergoes free diffusion. When the particle crosses the boundary of
the blanking region, the controller increases the trap power to P,,,, and the particle
experiences a restoring force towards the center of the trap. As seen from the plot,
the particle diffuses freely to fill up the volume of the blanking region. Since the
controller does not react to the Z-position of the particle, it can freely diffuse in the
Z direction, as long as it is within the blanking zone in X and Y. This results in a
preferential escape route for the particle along the positive Z-axis, which causes the

particle to quickly exit the trap as seen in Figure 5.3.

Table 5.2: Trapping lifetime and power comparison

Trap Life- Avg. Incident
time£SE (s) | Power£SE (mW)
Static Trap 1.84+0.3 5.0+ 0.0
XY Blanking 1.7+04 5.44+0.5
XY Blanking + Z Intensity | > 80 (o = 0.05) 5.8 4+ 0.6

We calculate the lifetime for nanoparticles in the trap when using this con-
troller algorithm using the technique outlined in Section 5.2.2. Table 5.2 summarizes
the results of both the average power the controller uses and the calculated lifetime.
From the table, for 100 simulated trajectories that are each 5 s long, we see no ap-
preciable gain in lifetime when using this algorithm. However, the controller limits
the average power to approximately 5 mW, which equals the static trap value. The
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blanking region near the trap center plays an important role in reducing the aver-
age power used by the controller. However limiting the controller to only the XY
particle positions leaves an escape route along the Z-axis. This preferential escape
route can be eliminated by including controller action along the Z-axis, in addition

to the transverse plane and is discussed next.

XY Blanking Plus Z Intensity Control: In order to eliminate the escape
route for particles leaving the trap along the longitudinal axis, we have implemented
a control algorithm that retains the blanking region in the XY-plane, but adds a
proportional intensity controller that responds to a change in the particle position
along the Z-axis.

I(2) = kp X |2] (5.9)
Ip(r,z) = max ( Ly (r), 1(2) ) (5.10)

As in the previous example, the XY blanking controller is defined using Equation
5.8, with parameters summarized in column 3 of Table 5.1. In addition, we define
a proportional controller along the Z-axis using Equation 5.9, where &, is the pro-
portional gain of the controller and |z| is the absolute Z-position of the nanoparticle
in the trap. The final control signal is then calculated using Equation 5.10, which
selects the largest intensity between the XY and Z controllers.

The controller gain, s, is selected to be 100 mW/um (see Table 5.1), so that
the Z-controller saturates at z = +2 pum with a maximum power (P,,4,) of 200 mW .
The trajectories for 100 simulated particles in the XZ plane is shown in Figure
5.7(b). The trajectories of particles appear qualitatively different in this figure.
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Only two particles from the ensemble escape the trap, while most particles are
contained within +£275nm along the X and Y axes and within £2 ym along the
7 axis. Moreover only two particles escape the trap, we are unable to calculate
the lifetime of the particle using the same parameters and methods used in the
previous case. However, we can estimate a lower limit on the lifetime on the particle,
as described in Section 5.2.2.1. For this particular controller, for 100 simulated
trajectories that are each 5s long, we estimate the lower limit of the lifetime for
two particles escape events with 95% confidence to be approximately 80 s (see Table
5.2), which is significantly greater than the static trap value. Furthermore, as seen
from Table 5.1, while the controller has an upper power limit of 200 mW (40 times
the static trap power), the average power varies between only 4% and 24% higher
than the static trap value. The improved lifetime obtained using this intensity
controller depends heavily on the addition of Z-axis control. We have successfully
implemented this controller in the laboratory and tested it with different particle
sizes and materials. In the next section, we present results from the implementation

of this controller in the laboratory.

5.3 Laboratory Implementation: Experimental Design and Setup

In this section, we report results obtained by implementing the intensity con-
troller, developed in the previous sections using numerical simulations, in the labora-
tory. We have tested the controller using two different types of particles, a) 350 nm

diameter glass nanoparticles and b) 100 nm gold nanoparticles. We implement the
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controller algorithms digitally using an FPGA instead of relying on analog electron-
ics that are commonly used in optical trapping experiments. In the next section, we
describe our FPGA implementation, followed by controller performance results for

each of the nanoparticle cases.

5.3.1 Intensity Control on Field Programmable Gate Arrays

Control systems are used extensively in optical trapping experiments, as we
have already discussed in Section 2.5. However most experiments use analog PID
controllers to enhance the stiffness of the optical trap, when trapping particles that
are much larger than one micrometer. While analog controllers are adequate for PID
control, their utility in implementing a generalized control function is more limited.
Moreover, microprocessor based digital signal processors (DSP), which have long
served as an alternative to analog control often require significant setup costs.

More recently, open source projects that rely on low cost FPGAs have started
to gain popularity. One example is the GNU Radio project, which is a software
defined radio that can be run on low cost FPGAs such as the Ettus Research Uni-
versal Software Radio Peripheral (USRP) [126, 94]. FPGAs are essentially user
programmable integrated circuits that consist of several logic blocks that can be
wired together using programmable interconnects to create complex functionality
and in some cases even emulate microprocessors. Furthermore, most modern FPGAs
include memory elements within individual logic blocks which provide increased

flexibility when designing algorithms that run on these architectures. FPGAs are
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inherently parallel architectures where individual logic blocks are executed simulta-
neously and therefore have higher throughputs than comparable DSP solutions [78].
Furthermore since inputs and outputs are directly connected to the FPGA rather
than sharing a common bus with other I/O devices, FPGAs typically have very low
latencies. FPGAs have seen extensive use in telecommunications, integrated circuit
design and software design radio. Recently the USRP, which is designed for software
defined radio applications has been adapted to control a magnetic resonance force
microscope [78]. The controller was implemented as a two stage cascaded filter that
operates at 500 kHz and used to control a cantilever with a resonant frequency of
8kHz.

We have implemented a XYZ intensity controller, discussed previously in Sec-
tion 5.2.3, in the laboratory using a USRP. The USRP contains an Altera Cyclone
EP1C FPGA [41], the requisite I/O cards (LFRX/LFTX) that allow two analog
channels per card in a frequency range of DC' — 30 M Hz [126, 94]. The input of
each I/O card is then digitized by an Analog Devices AD9862 codec that contains
two analog to digital converters (ADC). The Analog Devices AD9862 codec also
contains two digital to analog converters (DAC) to convert the output of the FPGA
to an analog signal [77]. The EP1C FPGA contains 12060 logic blocks and 239 616
bits of memory. The main board of the USRP supports two receive (LFRX) and
two transmit (LFTX) daughter boards, each with two channels, thereby supporting
a total of four inputs and four outputs. The ADCs on the receive side sample the
input signals at 64 M Hz with a 12-bit resolution. Furthermore, the output wires of
the four ADCs in the two AD9862 codecs are connected directly to the input pins of
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the FPGA. On the other hand the four DACs, which run at 128 M Hz with 14-bit
resolution are connected to the FPGA using two sets of 14 wires. Therefore in order
to use all four DACs simultaneously, the output signals must first be multiplexed
(MUX) on the FPGA. Since we only have one output signal for intensity control, we

are able to directly interface with the DAC without first resorting to multiplexing.

gain
¥ Buf R
QPD X
XY
(I S USRP > EOM
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A .
: - USB
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Figure 5.8: Schematic layout of the instrumentation used in implementing the FPGA
based intensity controller.

Figure 5.8 shows the schematic layout of the instrumentation used to im-
plement the intensity controller in the laboratory. The solid arrows in the figure
represent analog signals between the individual components with the arrow head
indicating the direction of flow, while the dashed lines represent instrumentation
parameters that are user selectable. The USRP is setup and run using a computer
over a universal serial bus (USB) connection shown by the dotted line in the figure.
The software required to run the USRP consists of Verilog hardware description

language (HDL) code that is downloaded to the USRP at startup and contains the
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actual control algorithms, and python code that is used to setup a range of system
parameters including FPGA registers and registers that control the AD9862 codec.

The position of the nanoparticle within the optical trap is measured using back
focal plane detection as described in Appendix A. The position along the X and Y
axes is measured using a QPD (2901, New Focus) with a maximum bandwidth of
100 kH z, while the position along the Z axis is measured using a photo-diode (2032,
New Focus) with a bandwidth of 150 kH z. The inputs to the USRP daughterboards
have a unity gain and an input impedance of 50 {2 whereas, the output impedance
of the detectors is 1 k). Therefore the output of the QPD and PD are connected to
the USRP through voltage buffers to minimize loading the outputs of the detectors.
The voltage buffers (SIM910, Stanford Research Systems) have user selectable gains
that range from unity to 100 that are not shown in the figure. The output of the
voltage buffers are then connected to the USRP, which uses the input positions to
calculate an appropriate intensity control signal. This control signal is then used to
drive the electro-optic modulator, which changes the intensity of the trapping beam
and has a maximum bandwidth of 200 kH z.

The control algorithms implemented on the USRP calculate a control signal
using the XY and Z position of the particle. Figure 5.9 shows the layout of this
algorithm, which is based on blanking control in X and Y and proportional control
in Z. The receive and transmit daughter cards, which are not programmable are not
shown in the figure. In the figure, the thick solid lines represent analog data, while

digital data that flows between the different algorithmic blocks is shown by thinner

175



AD9862 RX FPGA AD9862 TX
X - DC
P PGA ADC offset |
: Quad. | | LUT >
: Sum Ir
Y | DC DAC —>
P PGA ADC Offset || Max. . A
P x ; i
YA >IPGA ADC DC sl Abs. —>| Prop. N
s Offset . Control
gains LUT Data interpolation gains

Figure 5.9: Control signal paths in the FPGA are shown. The solid lines show data
flow between the controller logic blocks implemented on the FPGA, while the thick

lines represent analog inputs and outputs. The dashed lines represent parameters
that are provided either at runtime or during synthesis of the Verilog code.

solid lines. Parameters required at startup or during the synthesis of the Verilog
HDL code are shown by dashed lines. The AD9862 codec allows input and output
signals with an amplitude of 2V,,. For weak input signals, there is a programmable
gain amplifier (PGA) in each channel that can be configured to amplify the input
signal to use the full dynamic range supported by the ADC. In our experiment, we
set the PGA gains for each input channel to unity. The X, Y and Z position signals
are then digitized simultaneously by three ADCs at 64 M Hz using a signed 12-bit
integer representation.

As seen in Figure 5.9, the digitized signals from the ADC first undergo an offset
removal step in the FPGA to remove a small voltage offset introduced by the LFRX
daughter boards. The offset removal is implemented in two stages. First, the input
signal is decimated in time slices of 262 ms, which corresponds to approximately
224 samples for the 64 M Hz FPGA clock. The offset is then calculated by further

smoothing the data by calculating a moving average of the last eight decimated
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data points and subtracting this value from the input signal. Therefore, the offset
correction routine effectively updates the offset approximately every 2 s.

After the offset removal step, the X and Y positions of the nanoparticle are
summed in quadrature to obtain the radial coordinate, r. The control signal for
the X and Y positions is then calculated using a lookup table (LUT) that returns
the trap intensity as a function of r. Utilizing a LUT where the control signal is
calculated ahead of time significantly speeds up the implementation of the controller
in the laboratory since we are able to rapidly test new controller designs in a very
short period of time. In our experiment, the LUT simply holds the tabulated control
function given by Equation 5.8 for our XY blanking controller. This control function
is pre-calculated and incorporated into the controller code during the synthesis of
the Verilog program. The table is implemented as a read only memory (ROM)
function, with a 12-bit address field and contains 4096 points to correspond with
the resolution of the input signals. The DACs in the AD9862 codec support a 14-bit
signal on the transmit side. In order to used the full range of the output signal, we
set the data field in the LUT to 14-bits. The LUT is implemented using an Altera
ROM mega-function [41], which combines memory elements from several logic blocks
to create a single large memory space. The LUT for our application uses 57 344 bits
of data or approximately 24% of the total memory on the FPGA.

The Z-position of the particle is processed by a different set of blocks which im-
plement a simple proportional controller using Equation 5.9. The output of the DC
offset step, for the particle’s Z-position, is first input to the Abs. block which returns
the absolute value of the Z-coordinate (|z|). The control signal for the Z-intensity is
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calculated by simply multiplying the absolute Z-coordinate with the controller pro-
portional gain (k,) within the Prop. Control block. The final control signal is then
calculated by taking the maximum intensity value between the output of the XY
blanking controller and the Z proportional controller as seen from Equation 5.10.
A principal advantage of using the FPGA for control systems is that all of the
blocks in Figure 5.9 are executed in parallel, which results in a large throughput.
Moreover the latency across the system is very low. We have measured a latency as
low as 400 ns in some of our tests, which corresponds to a bandwidth of 2 M Hz, an
order of magnitude larger than our instrumentation bandwidth. In the next section,

we present laboratory results from FPGA-based intensity control.

5.4 Laboratory Results

In Section 5.2.3, we described a design for an intensity control algorithm that
was tested using numerical simulations. Here, we report the successful implemen-
tation of this control design in the laboratory using FPGAs. We have tested our
algorithms using two different model systems: i) 350 nm diameter glass nanoparticles
and ii) 100 nm diameter gold nanoparticles. In both cases, we show that under con-
trolled trapping the lifetime of the nanoparticles are significantly enhanced, high-
lighting that this technique is applicable to particles made from dielectrics as well
as metals. Moreover, for average powers that are comparable to those required by
the controller to keep a particle trapped, a corresponding static trap was unable to

localize nanoparticles.
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The controller performance was experimentally verified in the laboratory using
the optical tweezers instrument, described in Appendix A. For each particle size,
we prepared a dilute suspension of nanoparticles in de-ionized water. A sample
cell, approximately 100 um thick, was prepared using a microscope slide and cover
glass and sealed on all sides using double sided adhesive tape. Furthermore, the
nanoparticle was always trapped and lifted several micrometers above (along the
positive Z-axis) the bottom surface of the sample cell to reduce surface effects in the
viscous drag, as discussed in Chapter 2. Next, we describe the controller results for
each particle size, starting with the 350 nm glass nanoparticles. For each case we

first describe the controller parameters chosen, followed by performance results.

5.4.1 350nm Silica Nanoparticles

In this section, we report significantly enhanced trapping lifetime, in compar-
ison with a static trap, when using intensity control on 350 nm glass nanoparticles
(Bangs Laboratories, P/N: SS02N). The parameters for the intensity controller used
in this experiment are described in Table 5.3. The notation of the parameters in
the table is identical to that used in Section 5.2.3 and A is the wavelength of the
trapping laser.

The intensity control algorithms implemented in the laboratory consist of two
parts, a XY blanking controller and a proportional controller that depends only
on the Z-position of the nanoparticle in the trap. In Table 5.3, the parameters 7,

and 7, define the blanking region and the transition region, where the controller
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Table 5.3: 350 nm Glass Spheres: Control Parameters

Control Paramters | Parameter Values
Diameter (nm) 350
Material Si07 (glass)
A (nm) 1064
rp (nm) 250
rp (nm) 260
Prin (W) 0
Pras (mW) 100
kp (MW /pm) 70

increases the trap power from a minimum (P,,;,) to a maximum value (P,,,,). For
maximum impact, we select 7, to be close to the maximum force point of the optical
trap. Therefore, we first determine the maximum force points in the transverse
XY-plane using the step input method described previously in Section 4.2. The
optical trapping force is not perfectly symmetric along the X and Y axes due to the
polarization of the incident light, as well as misalignments in the optics. However,
in our experiments, we ignore these differences and simplify the controller design
by selecting the location of the maximum force point along the Y-axis to define the

blanking region.

() = {100, §10v,, 2(27.9v, + 47.702)} (5.11)

In order to estimate the trapping force acting on the nanoparticle, we first calibrate
the detectors that measure the nanoparticle position using 350 nm glass spheres
immobilized in gelatin as outlined in Section B.2. Furthermore, we perform the
calibration independently, assuming no coupling between the axes. The resulting
calibration function, which accepts the detector output in volts and returns the

particle position in um, is given in Equation 5.11. However, this calibration function
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is only valid over a range of +1 um along the X and Y axes and —1 um to +2 um

along the Z-axis.

4

400 2200 0 200 400
Displacement (nm)

Figure 5.10: Laboratory measurement of the trapping force using the step input
method for 350nm Si0, nanoparticles. The distance of the maximum force point
was measured to be 236 4+ 18 nm from the center and used in setting the controller
parameters.

Once the calibration is complete, the trapped nanoparticle is scanned using a
1 Hz square wave input, with a peak-to-peak amplitude of 350 nm, which represents
the distance of the particle from the center of the trap. The position response of
the particle to the square wave input is recorded using the QPD with a sampling
frequency of 40 kHz. The measurement is repeated 150 times and then averaged.
We then use the analysis techniques detailed in Section 4.2 to calculate the resul-
tant trapping force profile. Furthermore, in order to eliminate variations in the trap

power between measurements, we normalize the force curves for each measurement

by the power recorded during the measurement. The resulting plot, which is inde-
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pendent of trap power is shown in Figure 5.10. The error bars in the plot are the
standard error of the measurement. As we can see from the figure, we are able to
recover the trapping force well beyond the maximum force point of the trap. As
before (see Section 4.2), we estimate the location of the maximum force points by
fitting the force data to the derivative of a Gaussian function using a least squares
estimator, which gives the location of the maximum force point at 236 =18 nm. The
size of the blanking region impacts the average power used by the controller. There-
fore, we tune the size of the blanking region and obtained better performance by
slightly increasing the size of the blanking region (r;) to 250 nm with an additional
transition region of 10 nm so that r; = 260 nm. Moreover, we setup the trap power
to have a minimum value of P,,;,, = 0mW inside the blanking region and a linear
transition to P, = 100 mW when the particle is outside the transition region. Fur-
thermore, we have tuned the gain for the Z-intensity controller, x, = 70 mW/um to
maximize the lifetime of the nanoparticle in the trap. With this gain, the controller
attains it’s maximum power when Z = £1.4 um from the center of the trap.

With the parameters listed in Table 5.3, the intensity controller significantly
improves the lifetime of a nanoparticle in the trap. This is seen clearly in Figure
5.11, which shows a contour plot of the particle positions in the trap in the XZ-
plane for the two cases when the controller is on and when the controller is off. The
left side of the figure, which shows the controller on case, is calculated using the
position trajectories of 10 particles. Each trajectory contains 10 s of data recorded

at 20 kHz. The contours are generated by aggregating all the trajectories and then
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Figure 5.11: Contour plots of controlled trapping vs. a static optical trap for
350nm Si0, nanoparticles in the XZ-plane. The results in the YZ-plane are sim-

ilar and are not shown here. The particle remains confined to the trap when the
controller is on, but escapes for a static trap.

calculating a histogram along the X and Z axes, with a uniform bin size of 25 nm.
The contour lines in the plot therefore trace regions with the same particle counts in
individual bins. Due to the symmetry of the system, the corresponding plot in the
YZ-plane is not shown. The contours lines represent particle counts that range from
10 counts to 1200 counts in five steps. Bins with more than 1200 particle counts
are shown in white. The left side of Figure 5.11 also shows labels for the counts
represented by each contour line and these values are common to both plots.

As we see from the left side of Figure 5.11, when the controller is on the
particles stay localized close to the center of the trap. We estimate the 20 value
of the particle distribution along the X-axis to be 235 nm, where o is the standard
deviation. Therefore 95% of all particles lie inside the blanking region (73), which was

set to 250 nm. Moreover we see no particle counts outside of Z = £1000nm along
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the longitudinal axis. Finally, the controller is able to keep the particle localized to
the trap by using an average power of 45 mW.

The contour plot for a static trap is shown on the right hand side of Figure 5.11.
We see that for a static trap with average power of 71 mW , the contour plot looks
qualitatively different than the static trap case. The particle density is broader along
both the transverse and longitudinal axes. Moreover, as with simulation results, we
see particles escaping along the positive Z-axis, as seen from the right side of Figure
5.11. When particles escape the trap, they very quickly leave the volume that
defines the detectors operating range. This accounts for the relatively low density
of particles above Z = 41000 nm. In contrast, since particles spend more time close
to the center of the trap, we see a much higher density around the origin of the plot.
Furthermore, in laboratory experiments, we were unable to confine a particle to the

trap with a static trap at 71 mW.
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Figure 5.12: Laboratory measurement of lifetime for a 350nm SiO, nanoparticle in
a static trap.
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We quantify the performance of the static trap by calculating the lifetime of
a 350 nm glass nanoparticle using the method described in Section 5.2.2. We have
found that most particles for the static trap pass through Z = 1000 nm before they
exit the trap. Therefore we calculate the first crossing times for each trajectory
using a bounding box that has an edge of 1000 nm on all sides. As seen in Section
5.2.2 before, the peak of the probability density function of particles in the trap, in
a quasi-steady state for times longer than the time required to fill the trap volume,
is then plotted as a function of time in Figure 5.12. Finally, we estimate the lifetime
of the nanoparticle to be approximately 1.5s by fitting the data in the figure to
Equation 5.4. Furthermore, this value of the calculated lifetime is consistent with
our observations, where the particle would exit the trap within 1 — 2 s.

When using the same bounding box values as the static trap, the above tech-
nique to calculate lifetime does not work very well when applied to data recorded
when the controller is on. As we clearly see from the left hand side of Figure 5.11, all
of the particle counts are well within the region enclosed by a bounding box that is
1000 nm on all sides. However, as discussed in Section 5.2.2.1, we can place a lower
bound on the lifetime. We estimate the lower bound on lifetime for 10 measured
trajectories, each 10 s long where we observe zero escape events to be approximately
33 s with 95% confidence. Moreover this represents at least a 22 times increase over
the static trap lifetime and is sufficient time to allow this technique to be useful in
nanoassembly applications. Moreover, the controller is able to achieve this lifetime

improvement over the static trap when using only 63% of the power. The results
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Table 5.4: Lifetime and power comparison: laboratory measurements, 350 nm glass
nanoparticles

Controlled Trap | Static Trap

Number of observations 10
Observation Period (s) 10
Lifetime (s) > 33 (a = 0.05) 1.5
Lifetime Improvement > 22 —
Avg. Power (mW) 45 71
Power Improvement 0.63 N/A

for the controlled and static trap results are summarized in Table 5.4.

5.4.2 100nm Gold Nanoparticles

Table 5.5: 100 nm Gold Spheres: Control Parameters

Control Paramters | Parameter Values
Diameter (nm) 100
Material Au
A (nm) 1064
rp (nm) 100
r, (nm) 100
Ppaz (mW) 250
kp (MW /pm) 550

We have also tested the intensity controller described in Section 5.2.3 on gold
particles with a diameter of 100nm (Ted Pella, P/N: 15711-20). The controller
parameters, which have the same notation as before are described in Table 5.5. For
the gold nanoparticles, we set the blanking region to 100 nm and set no transition
region. The controller then increases the power from 0 mW (P,,;,) inside the blank-
ing region to 250 mW (P,..:) when the particle is at 7,. Furthermore, we set the
gain for the Z-intensity controller to 550 mW/um so that the Z-intensity controller

186



saturates approximately 450 nm from the center of the trap. The average power
required to confine a particle increases with particle size. Therefore the values of
the maximum power and the gain of the Z proportional controller are accordingly
increased from the values used for the 350 nm glass nanoparticles. However, as we
see in this section, the controller is able to successfully confine a nanoparticle to the

trap, when a static trap at the same power is unable to do so.
O(0) = {2 (2.8v, — 0.8v2), §(2.8v, — 0.802), £ (4.72v, — 2.720%)}  (5.12)

We first calibrate the detectors using 100 nm gold nanoparticles immobilized in
gelatin using the techniques described in Section B.2. The resulting calibration
function, which accepts the detector output in volts and returns the particle position
in micrometers, is given by Equation 5.12. Moreover the calibration function shown
in the equation is only valid over a range of £750 nm along the X and Y axes and
—1 pum to +2 um along the Z-axis.

With the parameters listed in Table 5.5, the intensity controller significantly
improves the lifetime of a 100 nm gold nanoparticle in the trap. This is clearly seen
in Figure 5.13, which shows a contour plot of the particle positions in the trap in the
XZ-plane when the two cases when the controller is on and when the controller is
off. The contours in this plot are generated exactly as before with the 350 nm glass
nanoparticles. The contours in each plot are generated with the position trajectories
of 25 particles, each containing 5s of data recorded at 20 kHz. The contours are
generated using a histogram of the aggregated trajectories with a uniform bin size
of 25 nm along each axis. The contour lines in the plots therefore trace regions with
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Figure 5.13: Contour plots of controlled trapping vs. a static optical trap for 100nm
gold nanoparticles in the XZ-plane. The results in the YZ-plane are similar and are
not shown here. The particle remains confined to the trap when the controller is
on, but escapes for a static trap.

the same particle counts in individual bins. Six contours are shown in each plot
that range in particle counts from 10 to over 5000. The right side of Figure 5.13
also shows labels for the counts represented by each contour line that are common
to both plots.

As we see from the left side of Figure 5.13, when the controller is on the
particles stay localized close to the center of the trap. We estimate the 20 value of the
particle distribution along the X-axis to be 90 nm, where o is the standard deviation.
Therefore 95% of all particles lie inside the blanking region (r,), which was set to
100 nm. Moreover we see almost no particle counts outside of Z = +600nm along
the longitudinal axis. Finally, the controller is able to keep the particle localized to

the trap by using an average power of 60 mW.

188



The contour plot for a static trap is shown on the right hand side of Figure
5.13. We see that for a static trap with average power of 60 mW, the particle
density is broader along both the transverse and longitudinal axes. Moreover, as
with simulation results and laboratory results with 350 nm glass nanoparticles, we

see particles escaping along the positive Z-axis.
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Figure 5.14: Laboratory measurement of lifetime for a 100nm Awu nanoparticle in a
static trap.

We have quantified the performance of the static trap by calculating the par-
ticle’s lifetime, as we did before with the larger glass nanoparticles. The peak of the
PDF as a function of time, for times longer than the time required by the particles to
fill the trap, is shown in Figure 5.14. The particle’s lifetime is then estimated to be
approximately 1.6 s by fitting the data in the plot to Equation 5.4. Furthermore, we
are unable to effectively quantify the lifetime of the 100 nm particle under controlled

trapping, for reasons discussed previously. However, using techniques outlined in
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Section 5.2.2.1, we estimate the lower bound on lifetime for 25 measured trajec-
tories, each 5s long where we observe zero escape events, with 95% confidence to
be approximately 42 s. Moreover, this represents a 26 times improvement over the
static trap value for the same average power. The performance results for 100 nm

gold nanoparticles are summarized in Table 5.6.

Table 5.6: Lifetime and power comparison: laboratory measurements, 100 nm gold
nanoparticles

Controlled Trap | Static Trap
Number of observations 25
Observation Period (s) 5
Lifetime (s) > 42 (a = 0.05) 1.6
Lifetime Improvement > 26 -
Avg. Power (mW) 60 60

5.5 Summary

We have successfully demonstrated a framework for controlled optical trapping
in the laboratory using 350 nm glass nanoparticles and 100 nm gold nanoparticles.
We have used numerical simulations to develop a representative control algorithm
that significantly improves the lifetime of the nanoparticle without a corresponding
increase in the average incident power. By implementing the physically realistic
GLMT force model in our simulations, we show that the scattering component of the
total trapping force plays a significant role in the escape mechanism of nanoparticles.
The preferential longitudinal escape of particles, in the direction of propagation of

the incident light greatly impacts controller design. As a result, we show that
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scan control, which only acts in the transverse XY-plane has minimum impact in
improving the particle’s lifetime.

Using numerical simulations, we developed an intensity controller that blanks
the beam, as a function of the particle’s X and Y position, near the center of the
trap. Moreover as the particle leaves a pre-defined blanking region, the controller
quickly increases the power to it’s maximum value. However, this controller was
found to be ineffectual without the inclusion of the particle’s Z-position. Therefore,
we developed our prototype controller design, which includes blanking control along
the X and Y axes and a proportional intensity controller along the 7Z axis. This
controller was then able to significantly improve lifetime with trap power comparable
to a weak static trap with a very low lifetime.

We have successfully implemented this intensity controller in the laboratory us-
ing 350 nm glass nanoparticles and 100 nm gold nanoparticles. Instead of designing
an analog controller, we implemented the controller algorithms using an open-source
and low cost FPGA. Parts of the controller are implemented using lookup tables to
allow the controller to be easily modified. For the 350 nm glass nanoparticles, this
FPGA-based controller implementation has led to at least a 22 times improvement
in lifetime (with 95% confidence) over a static trap and using approximately 40%
less power. Likewise, for 100 nm gold nanoparticles, we have demonstrated at least
a 26 times increase in the lifetime (with 95% confidence) without a corresponding
increase in power.

The successful implementation of controlled trapping in the laboratory should

greatly help in advancing the use of optical tweezers in nanomanipulation and even-
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tually nanoassembly applications. Moreover, since manipulating nanoscale objects
using this technique does not result in a significant increase in the average incident
power, this method is also beneficial for biophysical applications. Furthermore, we
believe that including control systems in optical tweezers can result in a directed
assembly tool capable of realizing fully three-dimensional nanoscale prototypes of

functional devices.
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Chapter 6

Conclusions

Our ability to confine nanoparticles to an optical trap for sufficient time for
use in assembling practical devices is currently severely limited. One problem that
prevents optical trapping from being an effective nanomanipulation tool is the weak
interactions between nanoparticles and an optical trap. While the trapping time
of nanoparticles can be increased simply by increasing the power of the optical
trap, doing so often results in significant heating of the surrounding fluid or the
particle, which can either destabilize the trap or destroy the particle. Therefore,
we have developed and implemented new methods that form a basic tool set that
can be used to extend optical trapping to the nanoscale. One component of this
tool set is new control algorithms that significantly extend the trapping time of
nanoparticles using sufficiently low average power, so that they can be effectively
used in nanoassembly operations. Moreover, a static trap set the same power as the
controller is unable to confine a same-sized particle.

Controlled optical trapping is an important component of the tool set, which
can overcome some of the challenges facing optical trapping. The controller is able to
alter two trap parameters, it’s position and power of the incident beam, and control
algorithms are realized by combining these parameters. We have demonstrated that

controllers that modify only the intensity of the trap are effective in improving the
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confinement of nanoparticles. Furthermore, we have implemented controllers in the
laboratory and successfully confined particles made from multiple materials, such
as 100mm gold and 350 nm glass nanoparticles, as discussed in Chapter 5.

Developing new control algorithms directly in the laboratory is challenging
and often very time consuming. Therefore, physically accurate simulations, devel-
oped in Chapter 3, play a key role in the discovery of control algorithms. The
simulation algorithms developed here are not limited only to the development of
control algorithms, but are a more general tool for use in numerous applications of
optical trapping such as developing novel assembly techniques for practical devices
or operator training, that are not developed as part of this work.

The final component in the toolbox is an accurate model of the trapping force
exerted by an optical trap on a nanoparticle. While a few theoretical trapping force
models exist, none of them accurately model tightly focussed beams commonly used
in trapping experiments or work for a range of materials. Consequently, there is very
poor agreement between existing theoretical models and experimental measurements
of the trapping force, even for larger particles. Another approach is to directly
measure the optical trapping force in the laboratory and include this force data as
input to the simulation model. However, existing force measurement techniques,
developed for large particles, do not work well for weakly bound nanoparticles.
Therefore, we have developed two new force measurement techniques in Chapter 4
to characterize the optical trapping force acting on nanoparticles within an optical
trap. These methods are then tested using numerical simulations prior to being

implemented in the laboratory.
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6.1

Intellectual Contributions

Important contributions that will eventually improve the field of optical trap-

ping as a result of the methods and algorithms developed are described below.

(i)

(i)

New techniques for nanomanipulation with optical tweezers: The ability to con-
fine nanoparticles to an optical trap for sufficient time for use in assembling
practical nanodevices is greatly limited and is currently a central challenge
in extending optical trapping to nanoscale assembly. We have developed and
implemented new control systems in the laboratory that significantly improve
the trapping time of nanoparticles in a trap without a corresponding increase
in the average power, as described in Chapter 5. These new techniques form
an important first step in achieving routine manipulation of nanoscale parti-
cles. We have developed and carefully tested a Brownian dynamics simulation
framework that we have used in the discovery of new algorithms and tools. Fur-
thermore, these new techniques will allow us to extend the flexibility of pick
and place assembly using optical tweezers, already demonstrated for microscale

particles, to the nanoscale.

New characterization and manipulation tools through accurate simulations:
Accurate numerical simulations, like those discussed in Chapter 3, have played
a crucial role in extending optical trapping to nanoscale manipulation. For
example, in algorithms developed in Chapter 5, laboratory experiments to
quantify system parameters can be difficult and time consuming. We have
successfully used numerical simulations to overcome this challenge and provide
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(iii)

6.2

an efficient route to the discovery of novel control algorithms. Furthermore,
the flexibility and modular nature of our simulation framework can be widely
useful to the field of optical trapping and assist in several applications, such as

developing novel assembly techniques for practical devices or operator training.

New force measurements for nanoparticles in an optical trap: Current char-
acterization tools for optical traps, which are developed for large microscale
particles are often glaringly inadequate at the nanoscale due to the weak in-
teractions of nanoscale particles with the trap. Force measurements are an
important when quantifying the performance of optical traps. Therefore the
new force measurement techniques, developed as part of this work, fill an im-
portant gap in our current understanding of the interactions of nanoparticles
with an optical trap and provide a foundation for nanomanipulation. We have
developed two new force measurements for weakly bound particles in Chapter

4 and tested them in the laboratory.

Benefits

The tools developed as part of this work have been used in concert to develop

new methods that significantly improve the lifetime of nanoparticles in an optical

trap. Moreover each of the tools developed as part of this work have several benefits,

even outside the scope of the current research, as described below.
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6.2.1 Physically Accurate Simulations

Physically accurate simulations provide a versatile platform for the discovery of
new algorithms to extend optical trapping to the nanoscale. As part of this work, we
have successfully used numerical simulations to develop new characterization tools
such as force measurements that work for a wide range of particle sizes down to
nanoscale particles. Furthermore, we have also used physically accurate simulations
in conjunction with realistic trapping force fields to develop control algorithms that
are able to significantly improve the lifetime of nanoparticles without also increasing
the average input power. Since simulations allow us to quickly change the system
parameters to test new designs, they have proven invaluable when developing new
control algorithms as part of this work.

Numerical simulations also have other important uses, outside the scope of this
work, which make them an important tool for optical trapping. Simulations can be
run in a batch mode to test new assembly algorithms. Often, assembly operations
must be repeated several times to collect statistical information about the process.
This may not always be practical or feasible to perform in the laboratory. However,
such tasks can be easily performed using simulations to obtain statistical informa-
tion about the repeatability and reliability of the process. In some cases simulations
may be able to quantify trapping parameters that cannot be easily measured in the
laboratory, for example models for corrections to the bulk viscosity of the fluid due
to local temperature gradients near the particle in the trap, which can significantly

change trapping behavior. In these situations, numerical simulations combined with
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limited experimental data can be used to provide quantitive information that im-
proves the performance of an optical trap. Numerical simulation algorithms, de-
signed to run in real-time can also be included within a closed-loop controller for
feed forward or model in the loop operation. Similarly, real-time numerical simu-
lations can be used for operator training, where the simulation completely replaces

the physical optical tweezers instrument.

6.2.2 Novel Force Measurement Techniques

Accurate measurements of the trapping force exerted by an optical trap are an
important component of the characterization tools necessary to quantify trapping
behavior and also for use in controlled trapping algorithms developed as part of this
work. Existing theoretical models fall short of adequately capturing the behavior
of traps created from tightly focussed beams that are commonly used in optical
trapping experiments. Moreover, microscope objectives used to form optical traps
can suffer from spherical aberrations, as well as diffraction effects due to the finite
size of their back apertures, effects that are not addressed by existing theoretical
models.

We have developed two new force measurement techniques that make no as-
sumptions about the strength of the traps. Moreover since these are laboratory-
based methods, they naturally include deviations from non-ideal behavior of the
optics into the measured force data. Therefore these methods have significant value

as a characterization tool for optical trapping. The measured trapping force yields
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insight into the performance of the optical trap. For example, the magnitude of
the measured force, for a given particle size and trap power, provides information
about the efficiency of the trap. Furthermore, the symmetry of the force data yields
information about the alignment of the optics. Trapping force data measured in the
laboratory can also be included in the simulations (described in Appendix C) and
is useful in numerous applications where simulations are used to enhance optical

trapping, such as the new control algorithms described next.

6.2.3 Enhanced Optical Trapping Using Control Systems

We have developed new methods that allow us to confine nanoparticles to
a trap for sufficiently long periods of time, so they can be used in nanoassembly
applications, when a static trap at the same power is not able to do so. Nanoparticles
approximately 20 nm in diameter have been confined to the trap for very short
periods of time and using up to 1W of power (which corresponds to thousands
of mega watts per square centimeter for diffraction limited trap), while particles
below 20nm have not been trapped successfully when using even higher powers
[72]. However, we believe that controlled trapping will allow us to trap the smallest
nanoparticles, well below the 100 nm particles demonstrated here, using significantly
lower power than is currently possible. The methods developed as part of this work
are therefore a first step towards achieving this goal.

As part of this work, we have also shown that the controller is able to dra-

matically reduce the power required to trap a nanoparticle, by as much as 40%
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in some of our experiments. This power reduction has direct consequences for the
power absorbed by the particle, as well as the power absorbed by the surrounding
fluid. High incident powers can cause significant heating of a nanoparticle, which
can result in thermal damage. Moreover the power absorbed by the fluid can sig-
nificantly increase its temperature, causing destabilizing convective forces and also
local viscosity changes which ultimately reduce the performance of the trap. Bio-
physical experiments are particularly sensitive to large temperature gradients, which
can permanently damage the specimen in the trap rendering it unusable. There-
fore, we believe that controlled trapping will particularly be useful to facilitate the

manipulation of small biological nanoparticles using low trap powers.

6.3 Limitations and Future Work

The methods and techniques described in this research are key components in
the tool set required to eventually realize nanomanipulation with optical tweezers.
However, much work is required to eventually realize a flexible nanomanufacturing

system that can quickly prototype nanoscale devices.

(i) Physically accurate simulations: Physically accurate simulations developed as
part of this work have core modules required to develop and test nanomanip-
ulation methods. However in order to continue to be useful for nanoassembly
tasks, simulations must include new models that are not currently implemented
as part of the framework. For example, the simulation framework must include

models of electrostatic interactions between two or more individual components
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or between components and a substrate on to which they are assembled. The
modular framework of the simulation allows for multiple models to be included
and therefore the models for electrostatic interactions may be simple approxi-
mate models that define a sticking probability between components or be more
complete models of the zeta-potential, depending on the specific application.
Hydrodynamic interactions between components can also be developed, how-
ever these models may be less important when working in liquids with high
viscosity, where the effects from fluid inertia is sufficiently small. Lastly, a
scalable nanomanufacturing system must be sufficiently automated so that we
can quickly prototype new devices. Simulations can play an important role
in developing new automation tools. Automation algorithms can be easily ac-
commodated in the outer loop of our simulation framework as described in

Appendix C.

Improved nanoscale characterization tools: New force measurements developed
as part of this work are an important first step towards developing a full suite of
characterization tools for nanoparticles in an optical trap. The force measure-
ments can be improved by developing algorithms that use image processing to
automatically trap a nanoparticle, run a force calibration and return param-
eters of the trap that can be use to assess performance or obtain information
about the alignment. However, the set of characterization tools is not limited
to force measurement techniques, but must include routines that estimate par-

ticle size and shape to allow automation algorithms to quickly select suitable
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(iii)

particles for assembly. Methods to estimate physical quantities such as the
diffusion constant must also be developed, which can assist in particle sizing
or be used to estimate the local viscosity of the fluid, if the particle size and

shape are well known.

Enhanced trapping algorithms for nanomanipulation: Techniques to improve
the lifetime of nanoparticles using control system show tremendous promise
for use in a optical tweezers-based prototyping system. Prototypical control
algorithms developed as part of this work have successfully demonstrated the
feasibility of improving the lifetime of nanoparticles in the laboratory. How-
ever, these methods must be extended and optimized to provide the best per-
formance in the laboratory. This will allow controlled trapping techniques
to be successfully extended to particles smaller than 20nm. Furthermore,
controlled trapping must also be extended to work with multiple particles si-
multaneously and also to non-spherical particles such as spheroidal particles
and even nanowires, which are essential building blocks for nanoscale devices.
Another crucial area that must be developed for effective prototyping with
optical tweezers is new automation algorithms. A flexible system must include
automation to reduce operator load and improve the throughput of the system.
Moreover, the enhanced methods required to create a flexible nanomanufac-
turing system will require the use of all the building blocks developed as part

of this work to be tightly coupled and work together cohesively.
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Appendix A

Hardware Instrumentation
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Figure A.1: Layout of an optical trapping instrument with trapping and detection
beams for controlled optical trapping.

Figure A.1 shows a schematic representation of the optical trapping configura-
tion used in our experiments, built on top of a vibration isolation table (784-33637-
01, TMC). The experiment is built around a conventional inverted light microscope
(TE-2000E, Nikon) in order to simplify attaching detectors such as a charge-coupled
device (CCD) camera for data collection and also to allow capabilities such as con-
focal imaging and fluorescent microscopy to be easily added to the experiment.
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Two lasers are used in the experiment, a diode pumped Nd:YAG laser with a
wavelength of 1064 nm (J201-85-12K /BL-106C, Spectra Physics) is used for trapping
and manipulating nanoparticles, while a diode laser with a lasing wavelength of 640
nm (iFLEX-2000, Point Source) is used for fast back focal plane detection [86] of the
particle position. The trapping laser is fiber launched from a polarizing maintaining
fiber and collimated using a single aspheric lens (Model 5726-C-H, New Focus).
The beam then passes through an acousto-optic modulator (LS-110XYNIR, Isomet),
which can each scan the beam independently along the X and Y axes. Two telescopes
are used to bring the trapping beam to the entrance of the microscope. The first
telescope is used to expand the beam to fill the back aperture of the microscope
objective (Plan Apo 60X/1.40NA oil immersion, Nikon/ CFI Plan Apochromat VC
Series 60X /1.20NA water immersion, Nikon), while the second telescope, which is
also common to the detection beam (described below), is used to adjust the location
of the trap within the sample cell. Both telescopes and the AOD are fixed so that
the back entrance aperture of the microscope objective forms a conjugate plane with
the AOD exit aperture. This ensures that the rotation of the beam at the AOD
exit aperture results in a rotation about the entrance aperture of the microscope
objective and thereby a translation in the specimen plane [52]. The AOD splits the
incoming light into multiple beams. The zero order beam passes straight through the
crystals of the AOD along the angle of incidence and is discarded. The AOD has two
crystals to allow the beam to scan along the X and Y axis. Beam scanning along the
X and Y axes is accomplished by using the first order beam that emerges from the

second crystal. Furthermore, first order beam from the first crystal is deflected only
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along the X-axis. Therefore, we utilize this beam to continuously measure the power
of the trapping laser. We reflect this beam using a plate beam-splitter and image
it on to a photo-diode (PD-2032, New Focus). This online measurement provides a
relative measure of the power input to the experiment and is used to evaluate the
performance of controlled trapping methods outlined in Chapter 5. Furthermore,
we can calibrate the detector using a power meter to obtain an absolute measure of
the trapping beam power.

The detection laser is also launched from a polarizing maintaining fiber and
is collimated using a single aspheric lens (Model 5724-H-B, New Focus). It is com-
bined with the trapping beam using a dichroic mirror (Model Z640BCM, Chroma
Technology Corp.) just before it enters the microscope objective. The trapping and
detection beams then pass through the sample cell. When the detection laser exits
the sample cell, it is collected by an aspheric lens. It then reflected by a dichroic
mirror and is split into two beams by passing it through a 50/50 non-polarizing
cube beam splitter. One of the split beam passes through a lens before being im-
aged onto a quadrant photo-diode (QPD), which senses the XY deflection of the
detection beam due to the motion of the trapped nanoparticle (QPD-2901, New
Focus) in the specimen plane. The second beam exiting the beam splitter is imaged
by a lens onto a photo-diode and is used to measure the axial displacements of a

nanoparticle at the specimen plane.
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Appendix B
Detector Calibration

B.1 Method 1: Camera-based Calibration

A three step calibration procedure has been developed (Figure B.1), which
maps the position of a trapped particle measured by the QPD (volts) into physical
units (um). First, the average size of the pixels in the CCD camera are measured
using a ronchi ruling of known size. Next, a mapping is constructed to transform
the input signal to the AOD into the position of a trapped particle (in pixels) on
a camera image. A similar mapping is then constructed for the input signal to the
AOD and the position of a trapped particle (in volts) on the QPD. Finally, the data
from the calibration is processed to map the QPD output in volts to a distance in

micrometers. The calibration procedure is described in detail below.

CCD Camera Calibration: An image of a Ronchi ruling with 100 line pairs
per millimeter (Model: 38562, Edmunds) is captured using the 60X/1.40NA oil
immersion objective and a CCD camera (Retiga Exi, QIlmaging), attached to the
microscope. Using edge detection techniques, implemented in Mathematica, the
width of each line pair is calculated in pixels. Since the width of each line pair
in millimeters is known, the average size of each camera pixel and the standard

deviation are then calculated. For the CCD camera used in these experiments, the
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Figure B.1: Calibration procedure.
average size of the pixels was found to be 101 £ 1 nm.

AOD Calibration: The AOD is calibrated next in order to construct a map-
ping between a command signal input to the AOD (in volts) and the deflection in
position of a trapped particle measured in micrometers from a camera image. A
trapped particle, held in an optical trap is moved over a finite distance by changing
the input command to the AOD, V,,4 in small increments. At each step, 100 images
of the trapped particle are recorded with the CCD camera. The location of the
trapped particle in the camera frame (in pixels) is then calculated for each step,
using image thresholding and center of gravity algorithms. The position of the par-
ticle is then converted into micrometers using the results from the CCD calibration
described previously to yield the final calibration, which is a pairing of the AOD

input and particle position at each step. This calibration routine is implemented
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Figure B.2: (a) Calibration curve that maps the input to the acousto-optic deflectors
to the trapped particle position. The curve shows a linear relationship between the
input voltage and trap position. A £2.5V input voltage range approximately yields
a 2pum scan. (b) QPD calibration obtained by deflecting the trapping beam and
measuring the response of the detector. The data shown is the average of 5000
samples collected at each point.

using a Python script, to move the scanner and record images at each location, and
Mathematica, for image processing functions. The AOD calibration is performed by
moving the scanner over a range of £2.5V in 0.5V increments. Figure B.2(a) shows
the experimental data and the curve fit for the relationship between the input signal
to the AOD and the trap location. A linear function of the form y = az + b is fit to
the AOD calibration data, where the fit parameters, with an uncertainty of one stan-
dard deviation are determined using a least squares estimator to be a = 5.93 £0.02

and b = 0.37 £ 0.01 for the data in the figure.

QPD Calibration: The QPD calibration procedure follows the AOD procedure
closely. A trapped particle is moved across the detector by stepping the AOD in
small increments over a desired range. At each location, 5000 samples, corresponding

to the AOD input, are recorded by the quadrant photo-diode with a sampling rate of
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10 kHz and then averaged. This results in a calibration function between the AOD
input (volts) and the QPD response (volts). The QPD calibration is implemented in
LabView and performed before the start of data acquisition. For the experimental
data reported here, the QPD calibration is performed by stepping a trapped particle
across the detector in increments of 0.05V over a range of 1.5V AOD input and

measuring the particle position on the detector.

Calibration Data Processing: Data from the two preceding calibration steps
is reduced to provide the final calibration function, which relates the QPD output in
volts to the particle position in micrometers. This is done in two steps: i) reverse the
QPD calibration map to give the input signal of the AOD (in volts) as a function
of the output of the QPD (also in volts) and ii) convert the input signal to the
AOD into the position of the particle in a trap (in micrometers) using the output
of the AOD calibration step. The resulting calibration response curve used in the
experimental results, which gives the mapping between the position of a trapped
particle measured using the QPD (in volts) to its position in micrometers is shown

in Figure B.2(b).

B.2 Method 2: Nanopositioner-based Calibration

We can also calibrate the three-dimensional position of a nanoparticle using a
piezo nano-positioning (NP) stage. We first make a calibration sample containing
a low concentration of nanoparticles immobilized in gelatin, which has a refractive

index that is very close to water. We then locate a single isolated nanoparticle using
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the CCD camera (Retiga Exi, QImaging), attached to the microscope and perform

a calibration for the XY and Z position separately as described below.

XY Calibration: First, we calibrate the XY position of the nanoparticle using
XY nano-positioning stage (PI-xxx, Physik Instrumente) and the quadrant photo-
diode (QPD-2901, New Focus) as described in Appendix A. We start by moving
the XY nano-positioning stage so that the nanoparticle is roughly centered in the
detection beam. We then fine adjust the XY NP stage until the output of the QPD,
which provides a XY position signal, is zero and the particle is well centered in the

detection beam.

300 P aaiin
0 /

100 /

Photo—diode voltage (mV)

//

—-200 \_/

—-300%

-0.5 0.0 0.5
Y —Particle Position (um)

Figure B.3: Transverse detector calibration for 100 nm gold nanoparticles

To perform the calibration, we scan the NP stage using a triangle wave and
record the QPD signal. Figure B.3 shows the average QPD response for a 100 nm
gold nanoparticle from 100 periods of a triangle wave and the error bars in the figure

are the standard error. The X-axis in the plot shows the distance traveled by the NP
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stage in micrometers and the Y-axis gives us the voltage recorded by the QPD in
milli-volts. We are interested in a calibration function that gives us the position of
the particle in micrometers, given the detector output in volts. Therefore, we must
first reverse the data in Figure B.3 so that the detector output voltage is on the
X-axis and the position of the particle in micrometers is on the Y-axis. Furthermore,
this calibration function can be parameterized as seen in Section 5.4. As we can
see from the figure, for 100 nm gold nanoparticles, the usable range of the QPD is
approximately £750 nm. Moreover, the calibration along the X-axis is identical to

the methods described above and is therefore not discussed here.

Z Calibration: Calibration of the photo-diode sensor that measures the axial
displacement of the particle is similar to the transverse calibration of the QPD. As
before, we first center the particle with the detection beam using the XY nano-
positioning stage. When the particle is centered in the detection beam, we scan
the Z-axis piezo objective stage (PI-xxx, Physik Instrumente), described Appendix
A, using a triangle wave and record the output of the photo-diode (PD-2032, New
Focus).

Figure B.4 shows the average photo-diode response for a 100 nm gold nano-
particle from 100 periods of a triangle wave and the error bars in the figure are the
standard error. As in the transverse, we must first reverse the data in this plot
so that the detector voltage is along the X-axis and the position of the particle is
on the Y-axis. As we see from the figure, the response of the detector along the

Z-axis is linear over most of its range, but asymmetric about the origin. Moreover,
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Figure B.4: Longitudinal detector calibration for 100 nm gold nanoparticles

we observe that we have a usable signal over the range of —1 um to +2pum. Fi-
nally, the calibration function, obtained after inverting the plot in Figure B.3 can

be parameterized as shown in Section 5.4.
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Appendix C

Simulation Architecture

----- >| Simulation Setup |- ===
v 4 A
| XML Configuration File Parsing
L 4
Simulation Control: Outer Loop €
Controller
Interface | Boundary [Termination Sampling| Timing and .
Conditions| Conditions plasSiReks Clock | Profiling AN
C|C|CN
Core Algorithms: Inner Loop <
Blocks with a A
thick border can Velocity Verlet Integrator
be run either on Langevin Dynamics
the CPU or the -
GPU Random Number Generators Trapping Force Model Interface
Mersenne-Twister LBD Shuffle | Gaussian Force Models Mfglfggsed | GLMT

Figure C.1: Control flow of the simulation architecture, implemented in C++ for
optical trapping. The program entry and exit points are at the top row, shown by
dashed arrows and control flow between blocks is shown by the solid arrows. The
simulation algorithms run at two time-scales: a physical time-step (At) for modules
on the bottom row of the figure and an arbitrary sampling time-step (dt) for the
outer loop modules in the middle row.

We have developed a flexible and extensible simulation framework for use in
optical tweezers applications. This modular simulation framework, which is shown in
Figure C.1 has been implemented in C++4 and allows us to easily replace individual
components, such as numerical integration modules or force field models. In the
figure the control flow is from top to bottom and the simulation framework consists

of three levels, a) simulation setup routines that configure the simulation parameters,

b) a simulation outer loop that runs at an arbitrary sampling time-step (dt) and
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encapsulates functionality such as boundary conditions or feedback controllers and c)
an inner loop that runs at a physical time-step (At) and implements core simulation
functionality including Langevin dynamics and random number generation.

The Simulation Setup block at top of Figure C.1 is the program entry point and
controls the setup and execution of a simulation instance. Parameters for individual
functions in the simulation framework are fully configurable using an Extensible
Markup Language (XML) configuration file. At startup, the top-level Simulation
Setup block calls routines within the XML Configuration File Parsing block to read
and parse the XML configuration file into a data structure. The Simulation Setup
block then passes this data structure to the simulation outer loop modules (Simu-
lation Control block). The outer simulation loop runs at a user-defined sampling
frequency (1/0t) and executes functions that enforce boundary conditions, instru-
mentation bandwidth, as well as algorithms for controlled optical trapping. For each
execution of the outer loop, the simulation inner loop is executed % times. More-
over the value of the sampling time-step, dt is selected so that is perfectly divisible
by the physical time-step, At. The bottom row of Figure C.1 shows the blocks that
form the core algorithms of the simulation inner loop. The simulation architecture
is designed to be flexible and fully configurable at runtime. Moreover some parts
of the simulation, enclosed by thick lines in Figure C.1 are designed to run on the
GPU for significantly improved performance. As seen in the figure, the GPU blocks
depend on CPU blocks that generate random numbers or provide the optical trap-
ping force. This however does not reduce the performance of the simulation, since
the data required by the GPU blocks can be pre-calculated ahead of time.
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First, we describe the simulation setup and configuration block, which can
be used to dynamically adapt the simulation architecture for multiple applications.
Next, we outline the inner loop modules that form the core simulation algorithms

followed by key modules that form the simulation outer loop.

C.1 Simulation Configuration

<?xml version="1.0" 7>
<ConfigRoot type=’parent_node >
<NParticles type=’'real '>15</NParticles>

<!—8im Time = NSamplesx SampleTimestep=1s—>
<NSamples type='real ’>100000</NSamples>

<!—7r=200nm, SiO2 microsphere—>
<M type='real >8.7e—17</M>

<T type=’'real >293</T>

<Gamma type=’real ">3.8e—09</Gamma>

<SimTimestep type=’real >1e—09</SimTimestep>
<!—100 kHz sampling—>

<SampleTimestep type='real '>1le—05</SampleTimestep>
<RNG type="text '>MT19937</RNG>

<Trap type=’parent_node >
<FrcModel type=’text '>Gauss3D</FrcModel>
<!— depth = 1kT, width (sigma)= 500 nm along each azxis—>
<TrapParams type='real_array >
4.04e—-21, 5e—7, 5e—T7, le—6
</TrapParams>
<TrapTraj type='text ’>traj.csv</TrapTraj>
<TrapTrajTimestep type=’real ’>10.0</TrapTrajTimestep>
</Trap>
</ConfigRoot>

Listing C.1: This listing shows an example simulation XML configuration file for a
200 nm diameter glass nanoparticle in a weak Gaussian potential. The simulation is
setup for 15 nanoparticles to generate 100 000 data points per particle at a sampling
frequency of 100 kH z (or 1s of data).

The simulation is configured at runtime using one or more configuration files.
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Most simulation parameters can be configured with an XML input file such as the
one shown in Listing C.1. The input configuration file uses the standard XML
format of <key type=’<param>’>data</key>, where key is the XML key name,
type is an attribute name, param is the attribute value and data is the XML data.
The parameter type can be one of parent_node for sub-sections, real for numbers,
real_array for an array of numbers or text for text input. The XML configuration file
requires the root node to be named ConfigRoot with an attribute type="parent_node’.
XML parameters that affect individual program blocks are described in detail below,
along with the formats for any auxiliary input files, such as comma separated value
(CSV) files for initial conditions.

The configuration file, shown in Listing C.1, is used to run a three-dimensional
simulation using a Gaussian force model. As seen in Listing C.1 many simulation
parameters are setup directly under the top level ConfigRoot node, including physi-
cal parameters such as particle mass (M), temperature (T) and the Stokes constant
(Gamma), as well as simulation parameters such as the physical time-step (Sim-
Timestep), sampling time-step (SampleTimestep), the number of particles (NParti-
cles) and type of random number generator (RNG) for use in the simulation. More-
over all physical quantities must be defined using SI units. For a simulation that
includes a static optical trap, we must also include the trap parameters, which are
setup using the Trap sub-section. The FrcModel tag sets up the type of force field to
use in the simulation. In this example, we choose Gauss3D which implements the
force model replicated from Section 4.3 and shown in Equation C.5. The parameters

for the force field are set using the TrapParams tag, which accepts a list of numbers
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that are passed to the force calculation. For the Gauss3D, we pass four parameters
which set the depth of the trap and the width along the x, y and z axes. In some
situations, such as the force measurement described in Section 4.3, the trap must
be moved according to a pre-determined trajectory. This is accomplished using an
auxiliary CSV input file that contains a list of the three-dimensional coordinates
of trap positions. This filename for this trajectory file is set using the TrapTraj
tag. If the trap trajectory file is specified, the simulation outer loop updates the
trap positions sequentially using the coordinates in this file. The update rate of the
trap position is then controlled using the TrapTrajTimestep tag. Once the setup is

complete, this data is passed to the simulation outer loop modules.

C.2 Simulation Inner Loop Modules

The inner loop consists of the four blocks shown in Figure C.1 that form the
core of the simulation. Control flow is from top to bottom and the entry point for
these functions is at the Velocity Verlet Integrator block. Each iteration of the inner
loop blocks results in the position, velocity and acceleration of the particle for a
given physical time-step (At). The Langevin Dynamics block, which is described
first implements the dynamics of the simulation and generates the acceleration of
the particle for each physical time-step. The Velocity Verlet Integrator block then
performs a numerical integration to obtain the position and velocity of the particle
from it’s acceleration. At each step, the Langevin Dynamics block executes the
random number generator (or reads from a list of random numbers) and requests

one evaluation of the optical trapping force block (discussed in more detail at the
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end of this section). Some components of the simulation (shown with thick lines
in Figure C.1) can be offloaded to the Graphics Processing Unit (GPU) present
in most computers to gain a significant performance enhancement over the CPU

implementation without a large loss in accuracy.

Langevin Dynamics Block: This block implements the dynamics of the mo-
tion of a spherical particle in a fluid as described in detail in Section 3.2. The
particle dynamics are formally expressed by Langevin’s equation, which is simply
Newton’s equation of motion coupled with a properly scaled randomly fluctuating
force. Langvein’s equation is shown in Equation C.1 for a particle with mass, m,
radius a and velocity V(¢) at time ¢ in a fluid with viscosity 7, which is a function of
temperature T'. The characteristic time-scale of this model is given by the relaxation
time, %, where v = 67na is the drag coefficient (from Stoke’s law for a spherical
particle), and is the time taken by the particle to reach thermal equilibrium with
the fluid, by gaining or losing velocity.

avit) v ¢
- W

T(t) (C.1)

As described previously in Section 3.2, the scaling constant, ( = v/2vkgT’, in
Equation C.1 is obtained by imposing the requirements of the fluctuation-dissipation

theorem, where kp is Boltzmann’s constant. The presence of the stochastic force

term, %(t) prevents the direct analytical solution of this equation. Therefore, in
order to calculate a single random trajectory, we express Langevin’s equation in
finite difference form as shown in Equation C.2, where y = 4/ % is the appropriate
scaling factor for the normal distribution N (0, 1) and At is a uniform physical time-
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step. The external force force term (F,,;) in this equation allows us to include the

forces from an optical trap.
A) = ~ V() + XN, 1) + Lot (C.2)
m m m

The physical parameters required by the Langevin dynamics block are input
using the XML configuration file as seen in Listing C.1. The specific tags that are
required to properly configure this module include M for the particle mass, T for
the temperature of the fluid, Gamma for the Stoke’s constant, SimTimestep for the
physical time-step At and RNG to select the random number generator. Currently,
we have implemented two random number generators that are described in more

detail later in this section.

Velocity Verlet Integration Block: As described in Section 3.2, we use a sec-
ond order velocity Verlet integration algorithm in our simulations. However the mod-
ular nature of the simulation framework allows us to easily replace this method with
a different numerical integration algorithm. Several numerical integration schemes,
such as the Gear predictor-corrector or the Runge-Kutta algorithms, are suitable
for use in Langevin dynamics simulations. However, an integration method must
be selected that a) satisfies conservation laws with acceptable accuracy, b) is com-
putationally cost effective and c¢) permits the use of the largest possible physical

time-step [19].

A(t) + At + At)

V(t+At) = V(t) +
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R(t+ A) = R(t) + V(DAL + ;A(t)AtQ (C.4)

Starting with the acceleration of the particle at the end of a physical time-step
(t+At), given by Equation C.2, the velocity Verlet algorithm gives us the velocity of
the particle at t+At using Equation C.3. Next, the position of the particle is updated
using the previous velocity and acceleration as shown in Equation C.4. Therefore,
the velocity Verlet algorithm requires only one evaluation of the optical trapping
force. The results of one pass of the integrator block are vectors of the particle’s
position, velocity and acceleration the end of that physical time-step, which is then

returned to the inner loop function.

RNG TrapPotential {abstract}
- Force(3DPoint, 3DPoint) : 3DPoint = 0
o SetPower( Double ) = 0
mMean : Double GetPower() : Double = 0
mSD : Double

Seed() : Integer
normal() : Double
uniform() : Double = 0
Gaussian3D ForceLookup3D
trapParams : Double List EfficiencyTabPath : String
TrapPower : Double

LBDShuff MT19937 Force(3DPoint, 3DPoint) :

3DPoint Force(3DPoint, 3DPoint) :
uniform() : Double uniform() : Double TR el SDPoint

GetPower() : Double SetPower( Double )

GetPower() : Double

Figure C.2: Class diagram for the random number generator and optical trapping
force interface

Random Number Generation: The Langevin Dynamics blocks call the ran-
dom number generator (RNG) functions at each iteration when evaluating Equation
C.2. The accuracy of the simulation results depend in part on the quality of the
standard normal random variate used within the Langvin Dynamics block. In order
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to generate normal random numbers, we first generate uniform random variates and
then convert them to a normal random variable using the Box-Muller transform
[124]. Since the Box-Muller transform is used across all RNGs, we have imple-
mented it in the top level RNG class. New RNG implementations are therefore
only required to implement uniform random number generators. We have imple-
mented two uniform random number generators: i) the L’Ecuyer generator with
Bays-Durham shuffle (LBD) [124] and ii) the Mersenne Twister (MT) [101]. Both
algorithms have very long periods (> 2'® for the LBD method and 2'997 — 1 for
the MT algorithm) and are able to generate long uncorrelated sequences of random
numbers. The random number generator for a particular simulation is selected using
the RNG tag in the XML simulation configuration file. Currently, this tag accepts
a value of either ‘LBDShuff’ for the LBD generator or ‘MT19937 for the Mersenne
Twister algorithm. Moreover, the common interface definition for the random num-
ber generator functions, shown on the left hand side of Figure C.2 allows us to add
other uniform random number generators transparently.

Each implementation of a random number generator must inherit the top-
level RNG class shown Figure C.2 and implement the uniform method to generate
a uniform random number generator. When running the simulation on the GPU,
the random numbers are pre-calculated and downloaded to the graphics card. This
method takes no arguments but must return a single uniformly distributed random
number in double precision format in the interval (0, 1]. The top level interface
class, RNG, provides functions that generate seed values for the random number

generators and also implements the Box-Muller transform to convert a uniform
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random number to a normal random number. However, these methods can be

overridden to implement a different custom implementation for these functions.

Optical Trapping Forces: At each physical time-step the Langevin Dynamics
block also evaluates the optical trapping force for use in Equation C.2. This is
done using the abstract interface class TrapPotential shown on the right side of
Figure C.2. Similar to the RNG class, having a common interface to trapping force
calculations allows us to easily implement and use several trapping force models
interchangeably with the simulations. Each force field model must therefore inherit
the TrapPotential base class and implement the force function (F'), which takes two
3-element vectors with the particle position () and trap location (f) and returns a
3-element vector containing the optical trapping force. The parameters for the force
calculation are set using the TrapParams tag in the XML configuration as seen in
Listing C.1. The force calculation must also implement two functions that can set
the trapping power (SetPower) and read it’s current value (GetPower) as seen in
Figure C.2. These implementation of these functions can vary depending on the
particular force model being used. For example, for the Gauss3D model described
below, these power functions are used to vary the depth of the trapping potential
in units of kg7, where kp is the Boltzmann’s constant and T is the temperature
of the fluid. In other implementations, such as the generalized Lorentz Mie theory
(GLMT) discussed later in this section and also in Chapter 5, this parameter is
the power of the trapping beam in Watts. The methods that manipulate the beam

intensity are used heavily when implementing intensity control (see Chapter 5 for
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an example), where the power of the optical trap is changed as a function of the
position of the nanoparticle within the trap.

The right hand side of Figure C.2 also outlines the class diagrams for two
example force field implementations that are used in this work and inherit the Trap-
Potential class. The first method is a Gaussian force calculation (Gaussian3D,
replicated from Section 4.5), which implements Equation C.5 within the function
F' to calculate the optical trapping force. In this equation, the position of the par-
ticle within the optical trap is given by the vector 7 = {z,y, 2z} and the trapping
force is parameterized by the scalar quantity «, which characterizes the depth of
the trapping potential and the trap width is given by & = {0,,0,,0.}. The posi-
tion of the trap center in three-dimensions is then controlled by changing the vector
@ = {fs, fy, pb}. The configuration parameters for this Gaussian force field are
listed in the Trap sub-section of the XML configuration file shown in Listing C.1.
The mandatory FrcModel tag sets the type of force field to use and the parameters
of the force field are set using the TrapParams tag. In Listing C.1, the trap param-
eters set the depth of the potential to 1kgT and the width along the X, Y and Z
axes to 500 nm, 500 nm and 1000 nm respectively. Other tags in this example are

as described earlier.

_%(l’ - /vLa:)

= _ (I - ,ur)2 (y - :U’y)2 (Z - ,uz)Q

Fr(r) = —(,%(y - :uy) X exp <_ 202 N 205 B 202 (C.5)
_0—%(2 - NZ)

The second force calculation is a fast lookup method (ForceLookup3D) to
quickly find the trapping force from a pre-calculated table, which is stored in a
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format that is independent of trap power. The advantage of such a force field model
is that it allows us to include tabulated force data from a variety of theoretical
and experimental sources. The table must provide a XYZ force vector at each point
along a uniform three-dimensional grid. As with the Gaussian force model discussed
previously, this technique inherits the base class TrapPotential and implements the
force function (F'). The force function in this implementation, takes the particle
position and simply returns the trapping force for the closest grid point without
any interpolation. Therefore the accuracy of the forces returned by this technique
depend directly on the spacing of the grid. Moreover the force field is truncated when
the particle positions fall outside the range of the force table. We have used this
force modeling method in Section ?? to implement a GLMT force calculation in our
simulations to demonstrate controlled optical trapping [67, 104]. The parameters for
this force field are setup under the Trap sub-section in the simulation configuration
file and include the power of the trap and the spatial range of the forces in the table.
The force table file is specified using the TrapForceFile tag in addition to the other

trapping force parameters, described previously in Section C.1.

Physical Validation and Performance: We have performed a detailed val-
idation of the inner loop modules of the simulation [19]. We tested the energy
conservation and the diffusion constant for free spherical particles suspended in wa-
ter and with a radius of 50 nm, 500 nm and 5 um. We found the relative error in
energy was on average within 0.5 % of the theoretical value, with a maximum error

of 1.7 %. On the other hand, the relative errors in the diffusion constant were found
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to be within 1.4 % of the theoretical value on average, with a maximum error of
4.2 %. We also tested the accuracy of the simulations when run on the GPU, where
the maximum relative error of the diffusion constant calculated using the GPU data
was 8%, an error that is acceptable for optical trapping applications. However,
simulations run on the GPU provided an approximately 10 fold speedup (for only
1600 particles) in comparison with both single-precision and double-precision float-
ing point calculations on the CPU. The simulation algorithms, analysis techniques
and the results for both physical validation and performance are discussed in detail

in Section 3.4.

C.3 Simulation Outer Loop Modules

The blocks that form the outer loop of the simulation framework are shown
in the middle row of Figure C.1. The top level block in this row contains the
main simulation control logic that executes once for every sampling time-step (dt).
During execution, the top level block calls each of the modules below it as required
to calculate a new control signal, check boundary conditions, perform data I1/O
or measure timing and profiling of the simulation components. We discuss two
outer loop modules in detail below: methods to implement a feedback controller
for enhanced trapping of nanoparticles and a module that allows us to include the

phase delays from the limited bandwidth of laboratory instrumentation.

Feedback Controller Interface: The outer loop of the simulation includes an

interface to incorporate a feedback controller to improve the performance of optical
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traps. Controller modules can alter only two trap parameters, as a function of the
particles position: the trap location and the trap intensity. Therefore a generalized
controller can be fully defined by the vector function S (7), which returns the location
of the trap as a function of particle’s position 7 and the scalar function I(7), which
returns the intensity or power of the trap as a function of the particle’s position
7. Specific implementations of feedback controllers generally include either scan

control, intensity control or both.

FeedbackController {abstract}

ControlSignal(3DPoint, controllerState) = 0 controllerState

TrapPosition : 3DPoint
Traplntensity : Double
PositionControlGain : Double

IntensityControlGain: Double

IntControl IntPlusTrack DetectionLimit : 3DPoint
ControlSignal(3DPoint, ControlSignal(3DPoint,
controllerState) controllerState)

Figure C.3: Class diagram for the feedback controller interface

The class diagram for the controller interface is shown in Figure C.3. All
implementations of the abstract class FeedbackController are required to include
the function ControlSignal, which takes a 3-tuple containing the position of the
particle and a data structure that holds the current state of the controller. The
new trap position and trap power calculated by ControlSignal are stored within
the controller state data structure. A simulation of a controller that increases the
lifetime of a nanoparticle in an optical trap is described in detail in Section 5.2.3.

The right side of Figure C.3 shows the UML diagram for the controllerState
data structure, which must be passed to the ControlSignal function when imple-
menting a feedback controllers. The list of parameters shown in Figure C.3 is not
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comprehensive, but the data structure must include the last position of the trap,
it’s intensity and other parameters such as controller gains and the spatial limits

over which a controller can operate.

<FeedbackController type=’parent_node >
<ControllerType type=’text ’>CombinedController3D</ControllerType>
<MaxTrapDepth type=’real ’>0.05</MaxTrapDepth>
<MinTrapDepth type=’real ’>0</MinTrapDepth>
<KpScan type=’real_array ’>0,0,0</KpScan>
<Kplntensity type=’real_array '>25000</Kplntensity>
<TrapPositionSetPoint type='real_array '>0,0,0</TrapPositionSetPoint>
<ParticleDetectionRange type=’real_array >
1.4e—6,1.4e—6,3e—6
</ParticleDetectionRange>
<ControlLoopBandwidth type='real >5e3</ControlLoopBandwidth>
</FeedbackController>

Listing C.2: Sub-section of the XML configuration input file that defines the param-
eters for a feedback controller for use in the simulation. The controller defined in
this listing is a pure proportional intensity controller that changes the trap intensity
in response to the nanoparticle’s motion along the z-axis.

Listing C.2 shows one example of the FeedbackController sub-section within
the simulation XML configuration file. When this sub-section is present in the
configuration file, the controller module in the outer loop is enabled. Listing C.2
describes the parameters that define a proportional intensity controller that modifies
the power of the trap in response to the particles motion. The control equations
for this example are given by Equations C.6—C.7, where 7 is the vector describing
the particle position in Cartesian coordinates and x,, ys, 2, are the set points for the
controller, defined by the TrapPositionSetPoint tag. In this example, scan control is
effectively disabled by setting the parameter KpScan to 0. Furthermore, since this
controller only implements intensity control along the Z-axis, the parameter Kpln-

tensity only takes one input. As seen from Listing C.2, the gain for this controller
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is set to 25000, which implies that the controller reaches it’s saturation power of

50mW | 2 um from the center.

KpScan[0] x (zs — xz(t))
S(Ft) =< KpScan[l] x (ys — y(t)) (C.6)

KpScan[2] x (zs — =z(t))

I(z,t) = KpIntensity X |zs — z(t)] (C.7)

In Listing C.2, the mandatory ControllerType tag is used to determine the
controller algorithm to use. Each controller algorithm must register a unique text
identifier that allows the user to select the controller type at run-time. In this case
we set this parameter to a controller that proportionally changes the position and
intensity of the trap in response to it’s motion away from the trap center. The
MazTrapDepth tag is used by the intensity controller to define the upper limit of
trap power available to the controller and conversely the MinTrapDepth tag sets the
minimum power. In this example, we limit the maximum power available to the
controller to 50 mW and the minimum is set to 0 so that the trap is off when the
particle is at the center of the trap. The spatial range over which the controller
can operate in the laboratory is often limited by the range of the detectors used
to measure the particle position in the trap. Enforcing this detection limit in the
simulation is crucial to obtain realistic behavior. For example, without a detection
limit a controller can be designed to track the particle position in order to always
keep it within the trap. This would lead to a controller that would have give

the optical trap an infinite lifetime, but would be very impractical to implement
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in the laboratory. Therefore for both scan and intensity control, we define the
practical spatial limits over which the controller can operate and set these values
using measurements in the laboratory. Finally, we can include the effect of practical
limitations such as instrumentation with a finite bandwidth, which can give rise to
a phase lag in the control signal. The effective bandwidth of the controller can be
set using the ControlLoopBandwidth tag, which is set in this case to 50 kHz. The

methods used to model these phase delays in the simulation are described next.

Phase Delays: The simulation allows us to include practical effects arising from
laboratory instrumentation such as phase delays, which can change the controller

response and have a detrimental effect on performance.

0of ‘ : : : :
90f - \ 77777 e — T ]
Desired Controller ! i i
Step j
z | ‘ ! ‘
E 8or--—----- R e T R RREEEE
= 1 1 1 1
E ‘
.20 :
v |
s ! | |
g0 | S T
3 | | 3 _ 20kHz
| ! ! — 30kHz
60r---A S S~ [ it
! — 40kHz
50 v Pt e - 50kHz
0 2 4 6 8 10

Time—step Jt (ms)

Figure C.4: A phase lag model has been implemented in the simulation outer loop to
model the effects of instrumentation bandwidth. The figure shows an ideal controller
step (in black) and the response of controllers with bandwidth ranging from 20 kH z
to 50 kHz across a 10 us time-step.
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z(t) =a + e (19— a) (C.8)

We model phase delays in the controller as the first order response to a step
input (a), starting at an initial controller location, zy. The solution for such a first
order system is shown in Equation C.8, where = is the position of the controller
and w = 2% parameterizes the response time 71" of the system. In the Phase Delays
block shown in Figure C.1, Equation C.8 is implemented by setting x, to the last

controller position and setting a to the new desired controller position. The response

1
T

of the controller for a system with bandwidth f = # at the end of the sampling
time-step 0t is then x(dt). Figure C.4 show the response of a controller to a 50 nm
step input across one 10 us sampling time-step, for bandwidths ranging from 20 kH z
to b0 kHz. As expected for a system with a phase lag, the controller falls short of
the desired controller position at the end of a time-step and the difference between
their positions is larger for systems with lower bandwidths. In order to turn on
phase delays in the simulations, we set the instrumentation bandwidth in Hz using

the ControllerBandwidth tag within the FeedbackController section of the XML

configuration file shown in Listing C.2.
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Appendix D

Optical Trapping Force Calculated Using a Dipole Approximation

The optical trapping forces acting on nanoparticles, that are significantly
smaller than the wavelength of the incident light (\) are calculated by approximating
the particles as simple dipole oscillators. In this, so called Rayleigh approximation,
the incident light is assumed to have a uniform amplitude across the particle and
the magnitude of the force is proportional to the polarizability of the material (ay,).
The gradient force acting on such a particles is then given by Equation D.1, where
I is the intensity of the light, incident on particle and n,, is the refractive index of
the surrounding medium [44, 148].

F, = ’%2‘6”7"

VI (D.1)

Equation D.2 describes a beam, incident on the small particle with a Gaussian
intensity distribution, which depends on the power, P, the half-width of the beam

waist, wy and the radial coordinate, r.

I= £ exrp (—7’22> (D.2)

TW 2wg

The polarizability of the particle under the influence of the trapping beam is then
given by Equation D.3, where V' is the effective volume of the particle, € is the
dielectric constant of the particle and ¢, = n? is the dielectric constant of the

surrounding fluid medium.

(D.3)



The effective volume, V' for dielectric materials such as glass is the same as the
volume of the particle. However, for conducting materials such as gold, the incident
electromagnetic field generates an electric current in the particle, which decays ex-
ponentially as a function of depth, away from the particle’s surface. The size of the
effective conductive region, close to the surface of the material, is called the skin
depth of the material and in the case of optical trapping it affects the calculation of
the trapping force. In order to account for the skin depth, the effective volume of
the particle must be calculated using the relationship given in Equation D.4, where

a is the radius of the particle and ¢ is the skin depth.

%8 :47T/Oa (7“2 exp (Tga>)dr (D.4)

The skin depth, 9, shown in Equation D.5, is a function of the wavelength of the

incident field (A) and a function of the particle’s dielectric constant k, given in

Equation D.6.

A

5=~
27k

(D.5)

1/2

. (_Re[e] L VR~ fm[eP) D)

2 2

We can then substitute Equation D.2 and Equation D.3 into Equation D.1 to obtain
the explicit expression for the gradient force shown in Equation D.7. We see that
the gradient force depends linearly on the power of the incident beam. We then
integrate Equation D.7 to obtain an expression for the optical trapping potential

(Equation D.8), where Uy is the constant of integration, which can be set arbitrarily.

Play|nm, 2
i 1 L. <_27“> (D.7)

1 2
2mcwy w§
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P m 2
U= —/Fg dr = _ Play|nm exp <_7ﬂ2) + U, (D.8)

2mew?

The scattering force acting on the particle is given by Equation D.9, where < §' > is
the time-averaged Poynting vector, C; is the scattering cross-section of the particle,

given by Equation D.10 and k,, = 27n,,/\ is the wave number in the medium.

P Ny, < S > C (D.9)
&
Ky ’apP
= _m Pl D.1
Cs 47 (D-10)

Similarly, the force due to absorption is given by Equation D.11, where C, is the

absorption cross-section, given in Equation D.12.

E, = M (D.11)
c
Co =k Im(a) (D.12)
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