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This work investigates features of critical phenomena in fluids. The canonical

description of critical phenomena, inspired by the Ising model, fails to capture all

features observed in fluid systems, specifically those associated with the density or

compositional asymmetry of phase coexistence. A new theory of fluid criticality,

known as “complete scaling”, was recently introduced. Given its success in describ-

ing experimental results, complete scaling appears to supersede the previous theory

of fluid criticality that was consistent with a renormalization group (RG) analysis

of an asymmetric Landau-Ginzburg-Wilson (LGW) Hamiltonian. In this work, the

complete scaling approach and the equation of state resulting from the RG analysis

are shown to be consistent to order ε, where ε = 4 − d with d being the spatial

dimensionality. This is accomplished by developing a complete scaling equation of

state, and then defining a mapping between the complete scaling mixing-parameters

and the coefficients of the asymmetric LGW Hamiltonian, thereby generalizing pre-

vious work [Phys. Rev. Lett. 97, 025703 (2006)] on mean-field equations of state.



The seemingly different predictions of these approaches are shown to stem from

an intrinsic ambiguity in the interpretation of the ε-expansion at fixed order. To

first order in ε it is found that the asymmetric correction-to-scaling exponent θ5

predicted by the RG calculations can be fully absorbed into the 2β exponent of

complete scaling.

Complete scaling is then extended to spatially inhomogeneous fluids in the

approximation η = 0, where η is the anomalous dimension. This extension enables

one to obtain a fluctuation-modified asymmetric interfacial density profile, which

incorporates effects from both the asymmetry of fluid phase coexistence and the

associated asymmetry of the correlation length. The derived asymmetric interfacial

profile is used to calculate Tolman’s length, the coefficient of the first curvature

correction to the surface tension. The previously predicted divergence of Tolman’s

length at the critical point is confirmed and the amplitude of this divergence is found

to depend nonuniversally on the asymmetry of the correlation length.
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Chapter 1

Introduction

1.1 Overview

Critical phenomena are observed in a variety of diverse systems such as fer-

romagnets, liquid crystals, liquid-vapor systems and liquid mixtures [1]. The basic

features of critical phenomena, the most striking of which are singularities in various

equilibrium and transport properties, have been known for some time [2, 3, 4], and

the highly successful modern theory of critical phenomena [5], based on the renor-

malization group (RG) [6, 7], is by this point also quite mature. However, some

fundamental issues concerning critical phenomena in fluids have yet to be resolved.

Critical phenomena in liquid-vapor systems and liquid mixtures require special

consideration [8, 9]. Throughout this work, we will focus on liquid-vapor systems for

concreteness. This does not limit the broader implications of our discussion, since

liquid mixtures are connected to liquid-vapor systems via the isomorphism principle

[10, 11, 12], so that one may still generally speak of fluid criticality. The leading

asymptotic behavior of fluids is known to be well-described by the Ising model [13].

However, the sub-leading terms exhibit asymmetries not present in the Ising model.

Prior to the advent of RG techniques, the asymmetric features of fluid criticality were

described by a phenomenological theory known as revised scaling [14, 15], which was

based on the behavior of exactly soluble models [16, 17, 18, 19]. The subsequent
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RG based theory of asymmetric fluid criticality confirmed the validity of revised

scaling and introduced a new higher-order asymmetric correction characterized by

an exponent θ5 [20, 21, 22, 23, 24]. Relatively recently, it has been argued that a

generalization of revised scaling [14], known as “complete scaling”, is necessary for

the accurate description of asymmetric fluid criticality [25, 26]. Complete scaling

predicts a new leading-order asymmetric correction term and has been successfully

used to describe experimental results [27, 28, 29].

This work investigates the foundations of complete scaling, and a particular

extension of complete scaling. In this chapter, an introduction to critical phenomena

in fluids is presented. Section 1.2 starts with general concepts, which are then

applied to the mean-field equation of state in Sec. 1.3. The material in this chapter

provides sufficient background for understanding the results presented in Chapters

2 and 3. In Chapter 2, the predictions of complete scaling and the RG treatment of

asymmetry are compared, and the two approaches are shown to be equivalent at O(ε)

in the ε-expansion, ε = 4 − d, where d is the spatial dimensionality. An extension

of complete scaling to inhomogeneous systems, which allows for the calculation of

Tolman’s length, is presented in Chapter 3. The implications of the these results

and future research directions are discussed in Chapter 4

1.2 Fluid Criticality

Figure 1.1 shows the phase diagram of sulfur hexafluoride (SF6) in the P -T

plane, where P is pressure, and T is temperature. The coexistence curve which
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Figure 1.1: Schematic coexistence curve of SF6 in the P -T plane.

separates the liquid and gas phases is terminated by a critical point located at the

critical pressure and temperature, Pc = 3.76 MPa and Tc = 318.7 K. Above the

critical point, there is only a single supercritical fluid phase. Along the coexistence

curve, distinct liquid and vapor phases coexist in equilibrium. To better illustrate

the nature of the liquid-vapor equilibrium, the coexistence curve is presented in Fig.

1.2 in the ρ-T plane, where ρ is density. For densities and temperatures inside the

coexistence curve, the system separates into a liquid phase and a vapor phase. The

densities of these phases, which define the two branches of the coexistence curve,

are given by ρliq(T ) and ρvap(T ). As the critical point is approached, the density

difference ρliq−ρvap vanishes and certain thermodynamic properties exhibit singular

behavior.
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Figure 1.2: ρ-T diagram of the SF6 coexistence curve. Open circles
correspond to experimental data [30, 31]. The dashed line is the critical
isochore

1.2.1 Asymptotic critical phenomena

For the description of phenomena in the vicinity of the critical point, it is

convenient to utilize dimensionless variables defined by

T̂ =
T

Tc

, ρ̂ =
ρ

ρc

, P̂ =
P

ρckBTc

, (1.1)

and, for future reference,

µ̂ =
µ

kBTc

, ŝ =
s

ρckB

, f̂ =
f

ρckBTc

, (1.2)

where we have introduced the chemical potential µ, the entropy density s, and

the Helmholtz free energy density f , or the Helmholtz energy for short. Here, kB is

Boltzmann’s constant. The reference point of the thermodynamic coordinate system

can be shifted to the critical point by defining reduced variables as

∆T =
T − Tc

Tc

, ∆ρ =
ρ− ρc

ρc

, ∆P =
P − Pc

ρckBTc

,

∆µ =
µ− µc

kBTc

, ∆s =
s− sc

ρckB

, ∆f =
f − fc

ρckBTc

. (1.3)
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The reduced liquid density is denoted by ∆ρ+ = (ρliq−ρc)/ρc and the reduced vapor

density by ∆ρ− = (ρvap − ρc)/ρc.

Near the critical point, the behavior of the system is found to be described

by power laws. Along the critical isochore (ρ = ρc), the density and the entropy

density behave as

∆ρ± ≈


0 ∆T > 0

±B0|∆T |β ∆T < 0

(1.4)

where ± corresponds to the liquid and vapor branches of the coexistence curve, and

∆s ≈ A±0
1− α∆T |∆T |−α −Bcr∆T, (1.5)

where A+
0 and A−0 are the heat-capacity amplitudes above and below the critical

point respectively, and Bcr∆T is the fluctuation-induced background entropy. Here,

and throughout, “≈” means “asymptotically equal to”. The derivatives of the den-

sities are given by

ρ̂
Ĉρ

T̂
=

(
∂ŝ

∂T̂

)
ρ

≈ A±0 |∆T |−α −Bcr, (1.6)

and

χT =

(
∂ρ̂

∂µ̂

)
T

≈ Γ±0 |∆T |−γ, (1.7)

where Ĉρ = Cρ/kB and Cρ is the isochoric heat capacity per molecule and the isother-

mal susceptibility χT is related to the more common isothermal compressibility κT

by χT = ρ̂2κ̂T . The isochoric heat capacity diverges weakly at the critical point and

the isothermal susceptibility diverges strongly. Isochoric heat-capacity data for SF6

are plotted in Fig. 1.3. The amplitude of the heat capacity is clearly different

above and below the critical point. Long range fluctuations are responsible for the

5
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Figure 1.3: Cρ data for SF6 taken in microgravity on the German space-
lab mission [32]. This particular data set contains roughly 2500 data
points.

singular nature of the isochoric heat capacity in the critical region. The range of

these fluctuations is characterized by the density-density correlation function,

〈∆ρ(x)∆ρ(0)〉 ∼ exp
−x
ξ
, x→∞, (1.8)

where ξ is the correlation length, which diverges at the critical point, and is asymp-

totically described by,

ξ ≈ ξ±0 |∆T |−ν . (1.9)

As the critical point is approached, the wavenumber dependence of the Fourier

transform of the correlation function is also described by a power law,

∫
dx eı̇qx 〈∆ρ(x)∆ρ(0)〉 ∼ 1

q2−η , ∆T → 0. (1.10)

The exponent η is referred to as the anomalous dimension. Lastly, along the critical

isotherm (T = Tc), the chemical potential varies with density as

∆µ ∼ ∆ρ|ρ|δ−1. (1.11)

6



In the above equations, the powers α, β, γ, ν, η, and δ are called critical exponents

and the coefficients A±0 , B0, Γ±0 , and ξ±0 are called critical amplitudes. As defined,

the exponents and amplitudes are all positive in accordance with experimentally

verified theory. The critical exponents are linked by the so-called scaling relations

α + 2β + γ = 2, β(δ − 1) = γ, (1.12)

γ = ν(2− η), α = 2− νd, (1.13)

where d is the dimensionality of the system, and where the final “hyperscaling”

relationship is only valid for d ≤ 4. Thus, knowledge of any two exponents is

sufficient to determine the others.

The connection between the various thermodynamic variables is given by the

Gibbs-Duhem relation,

dP̂ = ρ̂dµ̂+ ŝdT̂ . (1.14)

The densities are

ρ̂ =

(
∂P̂

∂µ̂

)
T

, ŝ =

(
∂P̂

∂T̂

)
µ

, (1.15)

and the susceptibilities are(
∂ρ̂

∂µ̂

)
T

=

(
∂2P̂

∂µ2

)
T

,

(
∂ŝ

∂T̂

)
µ

=

(
∂2P̂

∂T̂ 2

)
µ

. (1.16)

All of these properties are related to derivatives of the pressure. The asymptotic

critical behavior can therefore be derived from a single equation of state (EOS)

[33, 34, 35]. To leading order, the EOS based on scaling theory may be expressed

as,

∆P ≈ |∆T |2−αX±
(

∆µ

|∆T |β+γ

)
+ P̂r(µ, T ), (1.17)

7



where the function X± is different above and below the critical point, and where

P̂r(µ, T ) is the regular, i.e. analytic, part of the pressure. In this form, Eq. 1.17, is

known as the scaling EOS, and ∆µ and ∆T are known as scaling fields. The term

field arises from the convention that P , µ, and T are called thermodynamic fields

since their conjugate variables are called densities [10].

The pressure may be regarded as a function of chemical potential and tem-

perature. However, it is often easier to consider the density and the temperature as

the independent variables. The Helmholtz energy is naturally considered a function

of these two variables, and is related to the pressure by a Legendre transformation,

f̂ = P̂ − µ̂ρ̂. (1.18)

The differential of f̂ is

df̂ = µ̂dρ̂− ŝdT̂ , (1.19)

from which we find

µ̂ =

(
∂f̂

∂ρ̂

)
T

, ŝ = −
(
∂f̂

∂T̂

)
ρ

, (1.20)

and

χ−1
T =

(
∂µ̂

∂ρ̂

)
T

, ρ̂
Ĉρ

T̂
=

(
∂ŝ

∂T̂

)
ρ

. (1.21)

Again, all asymptotic critical behavior can be derived from a scaling EOS for the

Helmholtz energy,

∆f̂ ≈ |∆T |2−αY ±
(

∆ρ

|∆T |β
)

+ f̂r(ρ, T ), (1.22)

where f̂r(ρ, T ) is regular part of the Helmholtz density.

8



1.2.2 Universality and corrections to scaling

Critical phenomena exhibit a striking degree of universality. All critical be-

havior can be grouped into universality classes [1]. The members of a particular

class are described by the same critical exponents. The critical behavior of uniax-

ial magnets, liquid-vapor systems, and liquid mixtures belong to the universality

class of the Ising model. The Ising model was introduced to describe uniaxial mag-

nets, which develop a spontaneous magnetization m below the critical point (Curie

point). When reformulated for the liquid-vapor transition, the Ising model is known

as the lattice-gas model [36]. In order to make the connection between these models

explicit, it is convienient to introduce an additional set of variables for the Ising

model by defining h, t, and −Φ as the applied magnetic field, reduced temperature,

and density of the “Ising” grand potential, respectively. The later is assumed to

be a known function of h and t. The mapping between the Ising model and the

lattice-gas can now be expressed as

h = ∆µ,

t = ∆T, (1.23)

Φ = ∆P̃ ,

where the critical part of the pressure is defined by

∆P̃ = ∆P − P̂r(µ, T ). (1.24)

The regular part of the pressure can be expanded as P̂r(µ, T ) ' ∆µ + ŝc∆T +

P̂
(2)
r (∆T )2 + · · · . Given the Gibbs-Duhem relation dΦ = mdh+ sdt it can be shown

9



Exponent: β α γ ν η δ

Value: 0.326 0.110 1.24 0.630 0.033 4.80

Table 1.1: Critical exponents for 3D Ising model

that m = ∆ρ. The Ising Helmholtz energy Ψ is related to the grand potential by

Φ = hm−Ψ. The relationship between the Helmholtz energy in the Ising model and

the lattice-gas is similarly found to be Ψ(m, t) = ∆f̃(∆ρ,∆T ), where the critical

part of the Helmholtz energy is defined by

∆f̃ = ∆f − f̂r(ρ, T ) (1.25)

and where the regular part of f can be expanded as f̂r(ρ, T ) ' µ̂c∆ρ − ŝc∆T −

f̂
(2)
r (∆T )2 + · · · . Throughout the text we will make reference to the Ising magnetic

variables when describing liquid-vapor systems, with the understanding that they

are fully isomorphic to the lattice-gas variables. In particular, for the remainder

of the text, the term “magnetization” can be taken to mean “reduced lattice-gas

density”.

The critical behavior of the Ising model has been the subject of extensive

theoretical investigation [37], and the critical exponents have been calculated using

a variety of techniques including series expansions, renormalization group (RG)

approaches and Monte Carlo simulations [38]. The results are presented in Table 1.1

. Even though the critical amplitudes are system dependent i.e. non-universal, their

ratios form universal quantities, which have also been calculated, with A+
0 /A

−
0 '

0.523, Γ+
0 /Γ

−
0 ' 4.8, and αΓ+

0 A
+
0 /(B0)2 ' 0.0581 [39]. These predicted values have

10



been confirmed for fluid systems [9].

Yet, even though the liquid-vapor system and uniaxial magnets belong to the

same universality class, the coexistence curve of the Ising model, as presented in

Fig. 1.4, differs from that of SF6 in Fig. 1.2. In the latter, the distance between

the isochore and liquid branch of the coexistence curve is slightly greater than that

between isochore and the vapor branch. This difference is manifested in the

corrections to leading asymptotic behavior. In practice, the asymptotic powers laws

are found to be valid for ∆T . 10−3. To describe critical phenomena over a larger

temperature range, correction terms are needed. For the Ising model, the nature of

these corrections is restricted by symmetry considerations. The energy of the Ising

model is independent of the direction of the magnetization m which plays the same

role as ∆ρ in fluids. Therefore, the phase diagram in Fig. 1.4 is invariant under the

transformation m → −m (or ∆ρ → −∆ρ). Systems with this property are said to

be symmetric. The leading symmetric correction terms for the magnetization are

0

0

x 10!3

t/∆T

m/∆ρ

Figure 1.4: Schematic of the Ising/lattice-gas coexistence curve
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given by the Wegner expansion [40], for example,

m± ≈ ±B0|∆T |β
[
1 +B1|∆T |∆

]
, (1.26)

where the leading correction-to-scaling exponent ∆ ' 0.5 and the correction-to-

scaling amplitude B1 have been introduced. Similar expressions exist for other

thermodynamic properties, like the susceptibilities. Real fluid systems, as opposed

to the lattice-gas, are not subject to the Ising symmetry restriction, and are con-

sequently expected and observed to be asymmetric. Below the critical point, any

fluid property can be divided into symmetric and asymmetric parts. For instance,

the symmetric portion of the fluid density, which is equivalent to the magnitude of

the “magnetization”, is given by the reduced density difference

∆ρ0 = (∆ρ+ −∆ρ−)/2 (1.27)

and the asymmetric portion is given by

∆ρ = (∆ρ+ + ∆ρ−)/2. (1.28)

For the lattice gas, ∆ρ = 0. Consequently, we will refer to ∆ρ, when not vanishing,

as the “excess density”. Unlike the lattice gas, real fluids have both symmetric and

asymmetric corrections to scaling.

1.2.3 Fluid asymmetry

The behavior of the excess density is of principal interest in fluid critical phe-

nomena. The classical theory of fluid criticality predicts that ∆ρ = D|∆T |. This is

known as the law of rectilinear diameter [41, 42], and the constant of proportionality
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Figure 1.5: Excess density of SF6 near the critical point [30, 31]. The
data clearly show deviations from the law of rectilinear diameter near
the critical point.

D is the slope of the diameter. However, as seen from the excess density data in

Fig. 1.5, some fluids exhibit deviations from the predicted linearity near the critical

point. Several theoretical approaches have been adopted to explain the curvature

of the diameter near the critical point.

Prior to the advent of RG techniques, the dominant theory of asymmetric

criticality came from a phenomenological field-mixing approach known as revised

scaling [17, 18, 19, 16]. Revised scaling, which was initially based on the behavior of

exactly soluble models, postulates that the physical scaling fields are linear combi-

nations of the theoretical Ising scaling fields i.e µ(h, t) and T (h, t). After expanding

the physical fields to leading order in the symmetric fields, we can compactly express

revised scaling through the following set of transformations,

h = ∆µ,

t = ∆T + b∆µ, (1.29)

Φ = ∆P̃ ,
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where b is phenomenological constant referred to as a mixing parameter. When

combined with the Gibbs-Duhem relation for the symmetric system, dΦ = mdh+sdt,

this equation predicts a contribution to the excess density which varies like

∆ρ ∼ b|∆T |1−α, (1.30)

where 1 − α ' 0.89. The slope of the diameter can be defined by the derivative

D = ∂∆ρ/∂|∆T |. For this reason, the “1− α” contribution to the excess density is

said to produce a “singular diameter”, D ∼ |∆T |−α.

Asymmetric fluid criticality has also been investigated using RG techniques,

with two principle findings [20, 21, 22, 23, 24]. First, the validity of revised scaling

was confirmed by Nicoll [24]. Second, there is an additional asymmetric correction-

to-scaling exponent, θ5 (also referred to as ∆5 or ω5ν) which creates another non-

analytic contribution to the excess density

∆ρ ∼ D1−α|∆T |1−α +D1|∆T |+Dθ5|∆T |β+θ5 , (1.31)

where the amplitudes Di are constant. The value of this new exponent was calcu-

lated to be θ5 = 1.5 in the first order ε-expansion, ε = 4 − d [20, 21, 22], but this

expansion does not converge well as higher orders in ε are included [23, 43]. All

estimates of θ5 are consistent with β + θ5 & 1.3 [43]. Therefore, the β + θ5 term

appears to be of significantly higher order than the linear contribution to ∆ρ and

is thus not expected to contribute to the leading deviations from linearity near the

critical point. The combination of the θ5 term and the 1 − α term fail to accu-

rately describe highly asymmetric fluids and imply a non-monotonic “wiggle” in the

diameter which cannot be detected in real experiments [28, 29].
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Recently, Fisher and co-workers have argued that a generalization of revised

scaling [14], known as “complete scaling” [25, 26], is appropriate for the description

of liquid-vapor criticality. Complete scaling postulates that the theoretical fields, h,

t, and Φ, are analytic functions of all the physical fields, ∆µ, ∆T , and ∆P . The

Ising fields can then be expanded in the physical fields to yield,

h = ∆µ+ a2∆T + a3∆P + a4(∆T )2 + a5∆µ∆T + a6(∆µ)2 + · · · ,

t = ∆T + b2∆µ+ b3∆P + b4(∆T )2 + b5∆µ∆T + b6(∆µ)2 + · · · , (1.32)

Φ = ∆P + c2∆µ+ c3∆T + c4(∆T )2 + c5∆µ∆T + c6(∆µ)2 + · · · ,

where the “· · · ” indicate higher order non-linear terms in the expansions. In addition

to the revised scaling contribution, which is still controlled by b2, there is a new

leading contribution to the excess density,

∆ρ ∼ a3|∆T |2β, (1.33)

where 2β ' 0.65. As shown by Anisimov and Wang, and coworkers [27, 28], the

combination of the 2β and 1 − α terms indeed accounts for the excess density

data in asymmetric liquid-vapor systems and in liquid-liquid mixtures, even for

strong asymmetry. By applying the isomorphism principle of critical phenomena

[10, 11, 44], which states that liquid-vapor criticality can be consistently mapped

onto criticality in liquid mixtures, to complete scaling, Wang et al. [29] have also

shown that complete scaling describes asymmetry in liquid mixtures.

The complete scaling transformations, Eq. 1.32, also predict a Yang-Yang

anomaly [25], i. e., a divergence in the second temperature derivative of the chemical
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potential at coexistence, (
d2µ̂

dT̂ 2

)
cxc

∼ −a3|∆T |−α, (1.34)

where the subscript “cxc”, indicates that the derivative should be taken along the

coexistence curve. This “anomaly” derives its name from the Yang-Yang relation

[45],

ρ̂
Ĉρ

T̂
=

(
d2P̂

dT̂ 2

)
cxc

− ρ̂
(
d2µ̂

dT̂ 2

)
cxc

. (1.35)

Thus, complete scaling predicts that the divergence of the isochoric heat-capacity is

shared by both
(
d2P̂ /dT̂ 2

)
cxc

and
(
d2µ̂/dT̂ 2

)
cxc

. Not surprisingly, complete scaling

also predicts a new leading asymmetric correction to the isothermal susceptibility

in the two phase region, namely,

χT ≈ Γ−0 |∆T |−γ
(
1± 3a3B0|∆T |β

)
. (1.36)

This summarizes the major asymmetry effects predicted by complete scaling for

bulk systems. Tolman’s length, an additional asymmetry effect associated with

interfaces, will be discussed in Chap. 3.

1.3 Mean-field equations of state

To illustrate the concepts presented in the previous section, we will apply them

to a particular EOS, the Landau expansion [46]. Mean-field equations of state, like

the Landau expansion, do not properly treat fluctuations, and the critical behav-

ior, while qualitatively correct, does not match the quantitative behavior of real

systems. However, since the Landau expansion serves as the jumping off point for
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more sophisticated theories and serves as an important limiting case, it is essential

background material.

1.3.1 Ising model/Lattice Gas

A mean-field treatment of the Ising model near critical point, in which the

spin at each lattice site feels only the average magnetization generated by the other

spins, is equivalent to the Landau expansion of the Helmholtz energy. The Landau

expansion is made by expanding Ψ(m, t) in a Taylor series around the critical point,

i.e for t � 1 and m � 1. To ensure that Ψ(m) = Ψ(−m), only even powers

of m appear in the expansion . We will also be interested in the mean-field role of

fluctuations, and can approximate the energetic effects of spatial inhomogeneities by

expanding in the magnetization gradient as well. Ψ is generally invariant under the

spatial inversion x → −x, so the square of the gradient is the first inhomogeneous

contribution. The leading terms found by combining these elements are given by

Ψ ≈ Ψ0(t) +
1

2
|∇m|2 +

1

2
tm2 +

g

4!
m4, (1.37)

where Ψ0(t) is a function of temperature only. The constants in front of the |∇m|2

and m2 terms have been absorbed into definitions of the length scale and tempera-

ture scale respectively. The form of Ψ0(t) affects the entropy and the heat capacity,

but not the magnetization or magnetic field. Many authors take Ψ0(t) = 0. For this

choice, the calculated heat capacity contains the background contribution Bcr intro-

duced in Sec. 1.2.1. In order to focus on singular behavior in the critical region, we

will take Ψ0(t) = −t2/2g, which eliminates Bcr in calculations. This is the standard
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choice for field-theoretic calculations of critical phenomena [37].

The bulk thermodynamic equilibrium corresponds to ∇m = 0. The magnetic

field is given by

h =

(
∂Ψ

∂m

)
t

= tm+
g

6
m3. (1.38)

The magnetization at coexistence is found by solving the equation h = 0, with the

result

m± = ±m0 = ±
(

6|t|
g

)1/2

. (1.39)

The entropy is

∆s = −
(
∂Ψ

∂t

)
m

=
t

g
− 1

2
m2. (1.40)

At coexistence, this becomes ∆s = −(4/g)|t|. From this we see that the heat-

capacity exhibits a jump discontinuity across the critical point, but does not diverge.

The magnetic susceptibility, analogous to the isothermal susceptibility χT is defined

by χ = (∂m/∂h)t, which yields

χ−1 = t+
g

2
m2. (1.41)

In order to calculate the m-m correlation function from Eq. 1.37, we take ∇m 6= 0.

The fluctuation-disappation theorem [46] relates this correlation function to the

Helmholtz energy Ψ by

〈m(x)m(0)〉 =

(
δ2Ψ

δm2

)−1

, (1.42)

where δ denotes a functional derivative. The Fourier transform of the correlation

function defines a wavenumber dependent susceptibility

χ(q) =

∫
dxeı̇qx 〈m(x)m(0)〉 =

χ

1 + ξ2q2
, (1.43)
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Exponent: β α γ ν η δ

Value: 1/2 0 1 1/2 0 3

Table 1.2: Mean-field critical exponents

Amplitude: B0 A+
0 A−0 Γ+

0 Γ−0 ξ+
0 ξ−0

Value:
√

6/g 1/g 4/g 1 1/2 1 1/
√

2

Table 1.3: Mean-field critical amplitudes

where, in the mean-field approximation, ξ2 = χ. The values of the critical exponents

and amplitudes associated with the results of this section are listed in tables 1.2 and

1.3 respectively.

1.3.2 Asymmetric Landau expansion

For a liquid-vapor system, odd powers of the density are included in the Landau

expansion. The asymmetric Landau expansion is given by

f̂ ≈ f0(T ) +
1

2
|∇ρ̂|2 +

1

2
∆T (∆ρ)2 +

g

4!
(∆ρ)4 (1.44)

+µ1(T )∆ρ+
u3

3!
∆T (∆ρ)3 +

gu5

5!
(∆ρ)5 (1.45)

where f0(T ) ≈ f̂c− ŝc∆T − (∆T )2/2g and µ1(T ) ≈ µ̂c + (u1/g) (∆T )2. The leading

behavior of the density is ∆ρ ∼ |∆T |1/2, so that the new asymmetric terms are

O
(|∆T |5/2), where as the Ising terms are O (|∆T |2). Here, and throughout, the

notation “O(x)” means “order x”. At this order, an asymmetric gradient term
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−(uλ/3!)(∆ρ)2∇2ρ̂ should also be included, but we reserve discussion of its effects for

Chap. 3. Since the asymmetric terms produce corrections to the leading symmetric

behavior, all results can be consistently linearized in u1, u3, and u5.

The van der Waals equation is a famous mean-field EOS that describes the

liquid-vapor transition. When this EOS is expanded around the critical point, ex-

plicit values for the coefficients of the asymmetric Landau expansion can be found.

Due to a special symmetry u3 = 0. The remaining coefficients are g = 3/2 and

gu5 = −3/2. The relative minus sign between these terms is a general feature of the

asymmetric Helmholtz energy, and is not unique to the van der Waals EOS. The

chemical potential coefficient u1 cannot be determined from the EOS, but will not

enter into any of the quantities we calculate.

Below the critical temperature, the equilibrium density along the critical iso-

chore does not correspond to ∆µ = 0, as in the Ising case. Instead diffusive equi-

librium requires µ(ρ = ρ±) = µcxc(T ) and material equilibrium requires f(ρ+, T )−

µcxc(T )ρ+ = f(ρ−, T ) − µcxc(T )ρ−. Solving these two equations simultaneously to

first order in the asymmetry yields

∆ρ± = ±∆ρ0 + (∆ρ0)2
[u3

6
− u5

10

]
, ∆T < 0, (1.46)

where ∆ρ0 = (6|∆T |/g)1/2 is the symmetric result, and

µcxc =

[
3

10
u5 − u3 + u1

] |∆T |2
g

, ∆T < 0. (1.47)

The excess density therefore follows the law of rectilinear diameter. The asymmetric

mean-field coexistence curve is plotted in Fig. 1.6. Above the critical point, ∆ρ = 0
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Figure 1.6: Schematic asymmetric mean-field coexistence curve

and µ(T ) = (u1/g)|∆T |2. Rather than diverging at the critical point, the second

derivative of µcxc, like Cρ, exhibits a jump discontinuity given by

(
d2µ−

dT 2

)
−
(
d2µ+

dT 2

)
= −1

g

[
2u3 − 3

5
u5

]
, (1.48)

where the + and − denote the values above and below the critical point. The

isothermal susceptibility matches the symmetric result above the critical point, but

below one finds

χT =
1

2|∆T |
(

1∓ 1

5
u5∆ρ0

)
, ∆T < 0. (1.49)

The chemical potential along the critical isotherm (T = Tc) contains a similar asym-

metric correction, so that

µ =
g

6
∆ρ|∆ρ|2

(
1 +

1

4
u5∆ρ

)
. (1.50)

1.3.3 Complete scaling in mean-field approximation

Anisimov and Wang have shown the validity of complete scaling for the mean-

field EOS, by demonstrating a mapping of the mean-field Ising EOS, Eq. 1.37, onto

the asymmetric EOS, Eq. 1.45 via the complete scaling transformations [27, 28].
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To this end, they worked with a simplified set of transformations, given by

h = ∆µ+ a [∆P − ŝc∆T ]

t = ∆T + b∆µ (1.51)

Φ = ∆P − ŝc∆T −∆µ,

where the asymmetry is fully characterized by the constants a and b. The relation-

ship between the magnetization and the fluid density is found to be

ρ̂ =
1 +m+ b∆s

1− am . (1.52)

Wang and Anisimov chose Ψ0 = 0 in Eq. 1.37, so that ∆s = −(1/2)m2. When ∆ρ

is expanded to linear order in a and b, it simplifies to

∆ρ ' (1 + a)m+

(
a− 1

2
b

)
m2. (1.53)

In the mean-field approximation, 2β and 1 − α are both 1. The temperature can

also be written in terms of the symmetric variables as

∆T = t− b
(
tm+

g

6
m3
)
. (1.54)

When these expressions for the density and temperature are substituted in Eq.

(1.45) for ∆f , with u1 = 0, the symmetric Ψ, Eq. (1.37), is reproduced if

a =
2

3
u3 − 1

5
u5, b = u3 − 1

5
u5, (1.55)

and if the temperature scale and the coupling constant are rescaled as

∆T → (1− 2a)∆T, g → (1− 4a)g. (1.56)

At the level of mean-field theory, this shows that complete scaling accurately maps

the symmetric Ising model onto an asymmetric liquid-vapor system.
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Chapter 2

Complete scaling and the renormalization group

2.1 Introduction

As discussed in Sec. 1.2.3, at least two different theoretical approaches have

been used to investigate asymmetric fluid criticality. The RG approach to asymmet-

ric fluid criticality combines the results of revised scaling with a new asymmetric

correction to scaling exponent, which leads the excess density

∆ρ ∼ D1−α|∆T |1−α +D1|∆T |+Dθ5|∆T |β+θ5 + · · · , (2.1)

where ∆ρ was defined in Eq. 1.28. RG techniques have the advantage of a solid

theoretical underpinning. For the symmetric case, RG based predictions of criti-

cal phenomena, including the symmetric corrections to scaling, have been exremely

successful. It is hard to believe that asymmetric corrections are so fundamentally

different that they break from this mold. Furthermore, the validity of revised scal-

ing, which produces the 1 − α term, has been demonstrated by Nicoll [24]. The

shortcomings of his treatment appear to be the uncertainty in the value of θ5, and

the failure to fully explain experiments as discussed by Anisimov and Wang [28, 29].

The complete scaling approach builds on the field-mixing of revised scaling,

by adding pressure mixing. Complete scaling predicts that the excess density varies
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as

∆ρ ∼ D2β|∆T |2β +D1−α|∆T |1−α +D1|∆T |+ · · · . (2.2)

The new leading 2β term agrees with the available liquid-vapor and liquid-liquid

coexistence data [28, 29], but the mechanism of pressure mixing does not have

a rigorous theoretical basis, except for the mean-field EOS, cf. Sec. 1.3.3, and for

some exactly soluble models [47, 48]. However, the RG treatment also reproduces the

mean-field EOS in the appropriate limit, so this can hardly be viewed as an acid test.

In addition to the prediction of the 2β term in diameter, complete scaling predicts

a Yang-Yang anomaly, whereas the RG approach developed by Nicoll, does not.

These contradictions have not been adequately addressed in the literature. Authors

either treat the RG as inadequate to the problem and ignore the θ5 contribution

[28], or take complete scaling to represent physics beyond the RG treatment of

the asymmetric LGW Hamiltonian and include θ5 as an additional higher order

correction [26]. If both theories reproduce the same mean-field EOS, one would

intuitively expect that they might not be so dissimilar. Clearly, either the RG

treatment or complete scaling produce an incomplete description of fluid criticality.

It is therefore desirable to reconcile, or at least understand, the differences between

them.

One of the reasons that a direct comparison between the two theories has not

been previously made is that they are presented in different languages. Complete

scaling primarily deals with macroscopic thermodynamic properties without neces-

sarily making reference to a particular equation of state. Whereas the RG approach
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seeks to calculate macroscopic properties from approximate mesoscopic interactions,

i.e. the LGW Hamiltonian. A first step in making a comparison of the two is to

imbed both in similar language.

In this chapter we investigate the connection between complete scaling and

the RG approach to fluid asymmetry. In Sec. 2.2, complete scaling is expressed in

a compact form and the EOS implied by complete scaling is derived. This EOS is

then calculated to O(ε). Next, in Sec. 2.3, a derivation of an asymmetric EOS based

on an RG analysis of an asymmetric LGW Hamiltonian is presented in the one-loop

approximation. For brevity we will refer to this as the “asymmetric RG EOS” when

comparing it to the complete scaling EOS. The derivation of the asymmetric RG

EOS closely follows the derivation of the Ising-type EOS presented in Appendix A.

The calculated complete scaling EOS and asymmetric RG EOS are then compared

in Sec. 2.4, and are shown to be identical. This demonstrates the consistency of

complete scaling at O(ε). The complete scaling prediction for the excess density is

then fit to liquid-vapor data in Sec. 2.5, and the results are interpreted in light of the

connection to the asymmetric RG EOS. The results of this chapter are summarized

in Sec 2.6.

2.2 Complete scaling equation of state

In Eq. 1.32, complete scaling is presented as a set of transformations between

physical and theoretical thermodynamic fields, in which all fields stand on equal

footing. In this way, a distinction is made between linear and non-linear contribu-
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tions to the complete scaling equations. Treating all fields as equal in this sense can

be misleading. The temperature dependences of fields unambiguously distinguish

them, since we have ∆T ∼ O(∆T ), ∆µ ∼ O(∆T 2−α−β), and ∆P ∼ O(∆T 2−α). The

reduced temperature is an important expansion parameter in critical phenomena,

and thus, powers of the reduced temperature, in addition to the fields themselves,

can be taken into consideration when formulating complete scaling. This viewpoint

suggests two non-linear modifications of the simplified transformations, Eq. 1.51.

First, a non-linear ∆T 2 should be included where ∆P is included. This term can

be taken as part of P̂r, the regular part of the pressure. If symmetric fields, h, t,

and Φ, are expanded in the critical portion of the pressure ∆P̃ , as defined by Eq.

1.24, instead of ∆P as was done in Eq. 1.32, then the simplified transformations,

Eq. 1.51, may be rewritten as

h = ∆µ+ a∆P̃

t = ∆T + b∆µ (2.3)

Φ = ∆P̃ ,

where a and b are constant mixing-parameters. As we will see shortly, expanding in

∆P̃ , instead of ∆P , removes the awkward pre-factor of (1 + a) from Eq. 1.53.

The leading asymmetric corrections to ∆ρ, χT , and µcxc are smaller than the

leading symmetric terms by a factor of O(∆T β). This type of hierarchy may also be

mirrored in the field-mixing. For this reason, we will consider an additional contribu-

tion ∆T∆µ ∼ O(∆T 3−α−β) to Φ, so that the full complete scaling transformations
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can now be written

h = ∆µ+ a∆P̃

t = ∆T + b∆µ (2.4)

Φ = ∆P̃ + c∆T∆µ,

where c is a “new” mixing parameter. The cross-term ∆T∆µ was included in the

full transformations (Eq. 1.32) found by expanding Φ, but its role as a leading

correction was not highlighted. In particular it was omitted from the simplified

complete scaling transformations of Anisimov and Wang given by Eq. 1.51. The

density is now,

∆ρ ' m+ am2 + b∆s− ct. (2.5)

As previously mentioned, the switch from ∆P to ∆ρ̃ removes the (1 + a) prefactor

found in Eq. 1.53, and therefore eliminates the need to rescale ∆T and g, cf.

Eq. 1.56. The new term, which is proportional to |∆T |, does not produce any

qualitatively different effects. However, it is essential for the consistency of the

theory and for adequate fitting to experimental data. Terms added at the next

order of the hierarchy generate symmetric corrections to ∆ρ. These include, ∆T∆µ

in h, and ∆T∆P̃ and ∆P̃ in t.

Complete scaling provides a total thermodynamic description, and therefore

generates an equation of state. The EOS implied by the complete scaling transfor-

mations can be derived from a known expression for Φ(h, t). The exact expression

for the complete scaling EOS will differ depending on the representation of Φ(h, t).

There are a few natural representations, developed for the critical region of fluids,
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such as the parametric models [8] and the more explicit ε-expansion. Expressing

complete scaling as an EOS has two distinct advantages. All thermodynamic prop-

erties can be calculated systematically from an EOS, and an EOS can be compared

with other equations of state, namely the asymmetric RG EOS found by Nicoll.

The transformations, Eq. 2.4, are expressed in terms of the pressure, chemical

potential, and temperature. For this choice of variables, it is natural to develop an

EOS for ∆P (∆µ,∆T ) rather than ∆µ(∆P,∆T ) or ∆T (∆µ,∆P ). The third relation

in Eq. 2.4, rearranged as,

∆P̃ = Φ− c∆T∆µ, (2.6)

is essentially already in the desired form, except for the symmetric potential Φ,

which is assumed to be a known function of h and t. The goal then is to re-express

Φ as a function of ∆µ and ∆T . To this end, the potential Φ can be expanded to

linear order in asymmetric terms as

Φ (h, t) ' Φ|0 +
∂Φ

∂h

∣∣∣∣
0

(h−∆µ) +
∂Φ

∂t

∣∣∣∣
0

(t−∆T ) , (2.7)

where the expansion is made around the point h = ∆µ and t = ∆T , i.e.

Φ|0 = Φ (h = ∆µ, t = ∆T ) . (2.8)

By definition, m|0 = ∂Φ/∂h|0 and ∆s|0 = ∂Φ/∂t|0, so that Eq. (2.6) can now be

written as

∆P̃ = (1 + am|0) Φ|0 + (b∆s|0 − c∆T ) ∆µ. (2.9)

In the above expression m|0, ∆s|0, and Φ|0 are to be considered functions of ∆µ

and ∆T . The pressure, ∆P , has now been fully expressed as a function of ∆µ and
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∆T . For instance, if the potential Φ is presented in the form of the scaling EOS,

Eq. 1.17, namely,

Φ|0 = |∆T |2−αX± (x) , (2.10)

where x = ∆µ/|∆T |β+γ, the densities are then

m|0 = |∆T |βX ′ (x) (2.11)

∆s|0 = |∆T |1−α
[
(2− α)X± (x)− (β + γ)

∆µ

|∆T |β+γ
X ′ (x)

]
, (2.12)

where X ′ is the derivate of X± with respect to its argument. Putting these pieces

together yields

∆P̃ = |∆T |2−αX± + a|∆T |2−α+β
[
X± + xX ′

]
X ′

+ b|∆T |1−α+β+γ
[
(2− α)xX± − (β + γ)x2X ′

]
(2.13)

+ c|∆T |1+β+γx.

This expression is cumbersome and does not easily yield explicit results for the

quantities of interest. The same is not true of the Helmholtz energy. RG calculations

are conveniently expressed in terms of the density ∆ρ and temperature ∆T and lend

themselves to the calculation of Helmholtz energy. It is more illuminating to work

with the complete scaling EOS for the Helmholtz energy, f(∆ρ,∆T ).

2.2.1 Equation of state for the Helmholtz energy

The derivation of the complete scaling Helmholtz energy closely follows the

derivation of the pressure with a few modifications. When inverted, the complete
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scaling transformations become

∆µ = h− aΦ,

∆T = t− bh, (2.14)

∆P̃ = Φ− cth.

The definition of the free energy, f = µρ−P , and these inverse transformations can

be combined with Eq. 2.5 to yield

∆T = t− bh,

∆ρ = m+ am2 + b∆s− ct, (2.15)

∆f̃ = (1 + am) Ψ + b(∆s)h,

where the critical portion of the Helmholtz energy ∆f̃ is defined in Eq. 1.25. These

are the complete scaling relations for the Helmholtz energy and its natural variables.

We want an EOS for f(∆ρ,∆T ) and therefore expand the quantities on the right

hand side of the third equation around the symmetric solution defined by m = ∆ρ

and t = ∆T . The expansion of Ψ is

Ψ (m, t) ' Ψ|0 +
∂Ψ

∂m

∣∣∣∣
0

(m−∆ρ) +
∂Ψ

∂t

∣∣∣∣
0

(t−∆T ) . (2.16)

The complete scaling Helmholtz energy is therefore given by

∆f̃ = (1 + a∆ρ) Ψ|0 −
(
a∆ρ2 + b∆s|0 − c∆T

)
h|0 (2.17)

where h|0, ∆s|0, and Ψ|0 are assumed to be known functions of ∆ρ and ∆T . Given

an EOS for the symmetric system, Ψ|0, the expressions for s|0 and h|0 can be

calculated and then substituted into Eq. 2.17 to generate an explicit complete

scaling EOS in terms of the three asymmetry parameters, a, b, and c.
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2.2.2 Linear model

A popular equation of state used for the description of critical phenomena is

the linear parametric model [49]. This model has been shown to match the Ising-

type EOS to O(ε2) [50]. The linear model expresses the distance to the critical point

in terms of the variables r and θ, which are defined by the relations

∆ρ = kθrβ (2.18)

∆T = r
(
1− b2

L
θ2
)

(2.19)

where b
L

and k are constants. The linear model EOS is given by

Ψ = a
L
kr2−αψ(θ) +

1

2
Bcrr

2
(
1− b2

L
θ2
)

(2.20)

where ψ(θ) is known function of θ, a
L

is constant, and Bcr is the critical heat capacity

background [51]. The expression for the field and entropy are easily derived from

this,

h = a
L
r2−α−βθ

(
1− θ2

)
(2.21)

∆s = a
L
kr1−αs(θ)− a

L
kr
(
1− b2

L
θ2
)
/3, (2.22)

where s(θ) is related to f(θ) and the critical exponents. The complete scaling EOS

based on the linear model can then be found by substituting these expressions into

Eq. 2.17.

2.2.3 ε-expansion

The complete scaling EOS can be developed in an explicit ε-expansion by

using the Ising-type EOS derived in the one loop-approximation. A brief derivation
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of this EOS is presented in Appendix A. The universal asymptotic critical behavior

of the Ising model can be found from an EOS resulting from the RG analysis of

a symmetric one-component LGW Hamiltonian. For the remainder of this work,

“Ising-type” or ”Ising” should be understood to refer to this particular EOS, and

not the actual 3D Ising-model. The Ising-type Helmholtz energy, magnetic field,

and entropy are

Ψ|0 = −1

2

(∆T )2

g
+

1

2
∆T (∆ρ)2 +

g

4!
(∆ρ)4 +

ε

24

(
κ4

g

)
(2L+ 1) , (2.23)

h|0 = ∆T∆ρ+
g

6
(∆ρ)3 +

ε

6
(∆ρ)κ2 (L+ 1) , (2.24)

∆s|0 =
∆T

g
− 1

2
(∆ρ)2 − ε

6

(
κ2

g

)
(L+ 1) , (2.25)

where

κ2 = ∆T +
g

2
(∆ρ)2 (2.26)

and

L = lnκ2. (2.27)

The mean-field expressions can be recovered by neglecting the fluctuation correc-

tions, i.e, taking ε → 0. The expressions for the fluctuation corrections can be

divided into universal and non-universal contributions. At this order, the univer-

sal portions determine the critical exponents and are proportional to L, whereas

the non-universal portions are not proportional to L, and contribute to the critical

amplitudes. The entropy in Eq. 2.25 corresponds to

∆s|0 ≈ A−0
1− α∆T |∆T |−α, (2.28)
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without the critical background Bcr|∆T |. Previous work on complete scaling has

included the background term in the entropy, cf. Sec. 1.3.3. The corresponding

results will be compared with those based on Eqs. 2.23-2.25 at the end of the

chapter.

The asymmetric Helmholtz energy resulting from the combination of Eq. 2.17

and the Eqs. 2.23-2.25 can be cast into the form of a Landau expansion in ∆ρ as

∆f̃ = f0
(∆T )2

g
+

1

2
f2∆T (∆ρ)2 +

1

4!
f4 (∆ρ)4

+ f1
(∆T )2

g
∆ρ+

1

3!
f3∆T (∆ρ)3 +

1

5!
f5 (∆ρ)5 (2.29)

The coefficients for even powers of ∆ρ match those of the Ising-type EOS presented

in Appendix A, and are

f0 = −1

2

[
1− ε

6
(L+ 1)

]
,

f2 = 1 +
ε

6
(L+ 1), (2.30)

f4 = g
[
1 +

ε

2
(L+ 1)

]
.

If

â = a(1 + ε/12), (2.31)

and

ĉ = gc, (2.32)

the asymmetric coefficients can be written,

f1 = (ĉ− b− 1

2
â) +

ε

12
(a+ 2ĉ) (L+ 1),

f3 = (2b− 3â+ ĉ) +
ε

6

(
2

3
b− 3a+ 3ĉ

)
(L+ 1), (2.33)

f5 = g
[
(10b− 15â) +

ε

6
(40b− 45a) (L+ 1)

]
.
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We will now illustrate the way in which Eq. 2.29 reproduces the expected

complete scaling results. To simplify the presentation, we will only consider the

universal portions of the EOS. The non-universal complete scaling results are also

correctly reproduced, however, their presence leads to undue clutter. Along the

critical isochore, κ2 ∼ |∆T |. Therefore, the universal portions of the coefficients in

Eq. 2.29 can be isolated by taking (L + 1) → ln |∆T |. The complete scaling EOS

then looks like the asymmetric mean-field EOS, Eq. 1.45, but with temperature

dependent coefficients. The chief asymmetric properties of interest, namely, ∆ρ,

µcxc, χT , are calculated by taking density derivatives of the Helmholtz energy along

the critical isochore. Thus, the universal parts of these properties can be found

using the mean-field expressions. The results will reproduce the critical exponents

to O (ε), and the mean-field amplitudes. The mean-field formula for the excess

density is

∆ρ =

(
6f2|∆T |

f4

)[
1

6

f3

f2

− 1

10

f5

f4

]
. (2.34)

The expansion coefficient ratios appearing in this formula are given to linear order

in ε by,

f2

f4

=
1 + ε

6
ln |∆T |

g(1 + ε
2

ln |∆T |) '
1

g
(1− ε

3
ln |∆T |) (2.35)

f3

f2

=
2b− 3a− c

1 + ε
6

ln |∆T | +
ε

6
(4b− 3a− 3c) ln |∆T |

' (2b− 3a− c) +
ε

6
(2b− 2c) ln |∆T | (2.36)

f5

f4

=
10b− 15a

1 + ε
2

ln |∆T | +
ε

6
(40b− 45a) ln |∆T |

' (10b− 15a) +
ε

6
(10b) ln |∆T |. (2.37)
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When these ratios are substituted into Eq. 2.34, we find

∆ρ =
6|∆T |
g

(
1− ε

3
ln |∆T |

)[
a− 2

3
b
(

1 +
ε

6
ln |∆T |

)]
+ c|∆T | (2.38)

The ε-expansion is interpreted through the relation

|∆T |ε ' 1 + ε ln |∆T |. (2.39)

This interpretation of Eq. 2.38 leads naturally to the expected complete scaling

result,

∆ρ = a (B0)2 |∆T |2β − b A−0
1− α |∆T |

1−α + c|∆T |, (2.40)

where we have made use of the mean-field critical amplitudes, and the values of the

critical exponents at O(ε) listed in Appendix A.

The general mean-field expression for the chemical potential at coexistence is

µcxc =

[
3

10

f5

f4

− f3

f2

]
(f2|∆T |)2

f4

+ f1
(|∆T |)2

g
(2.41)

When the coefficients are substituted into this equation the result simplifies to

µcxc = −2a
(|∆T |)2

g

(
1− ε

6
ln |∆T |

)
, (2.42)

which can be rewritten to O(ε) as

µcxc = − a

(2− α)

(
A−0

1− α
)
|∆T |2−α. (2.43)

The mean-field isothermal susceptibility is

χT =
1

2f2|∆T |

(
1∓ 1

5

f5

f4

(
6f2|∆T |

f4

)1/2
)
., (2.44)

which interpreteted as

χT = Γ−0 |∆T |−γ
(

1±
[
3a|∆T |β − 2b

β

Γ−0
|∆T |1−α−β

]
B0

)
, (2.45)
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where the mean-field relation β/Γ−0 = 1 has been used to match the previous com-

plete scaling resutls.

The Landau-type expansion of the complete scaling EOS, Eq. 2.29, can also be

used to find the behavior of the chemical potential along the critical isotherm. Along

the critical isotherm, κ2 = g
2
(∆ρ)2, therefore we can write, L = ln |g

2
| + ln |(∆ρ)2|.

The first term can be neglected in the present analysis because it only makes a non-

universal contribution. Now, to isolate the universal component, we take (L+ 1)→

ln |(∆ρ)2|. The mean-field expression is given by

µ =

(
f4

6

)
∆ρ|∆ρ|2

(
1± 1

4

f5

f4

∆ρ

)
. (2.46)

When the coefficients are substituted into this expression we obtain

µ ∼ ∆ρ|∆ρ|δ−1

(
1− 15

4
a∆ρ− 5

2
b∆ρ|∆ρ|(γ−1)/β

)
. (2.47)

This result is not typically calculated in presentations of complete scaling. All of

these results demonstrate the consistency of the complete scaling EOS at least in

the one-loop approximation.

2.3 RG treatment of fluid asymmetry

In this section an asymmetric EOS is calculated from a RG analysis of an

asymmetric LGW Hamiltonian in the one-loop approximation. Several other authors

have also treated this issue. Wegner [20] and Ley-Koo and Green [22] made their

analyses based on the Wegner expansion. Vause and Sak [21] derived an asymmetric

EOS, but for a limited form of the Hamiltonian. The most comprehensive treatment
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has been provided by Nicoll and Zia [23] and Nicoll [24], who made an RG treatment

and considered the most general form of the Hamiltonian. Our calculation differs

slightly in approach from Nicoll’s, but arrives at the same EOS.

The terms appearing in the Ising-type LGW Hamiltonian, presented in Ap-

pendix A, are restricted by the symmetry requirement HI [φ] = HI [−φ], where φ

is the field-variable. This ensures that only even powers of φ appear in the Hamil-

tonian. Fluids are not bound by this requirement, and additional operators need

to be added to construct a general asymmetric Hamiltonian. The full asymmetric

LGW Hamiltonian has the form H = HI + HA, where HI is the Ising-type LGW

Hamiltonian, and

HA = u0
1O1 + u0

3O3 + u0
5O5 + u0

λOλ, (2.48)

where the operators, Oi, are given by

O1 =
(∆T0)2

g0

φ, O3 =
1

3!
∆T0φ

3, (2.49)

O5 =
g0

5!
φ5, Oλ = − 1

3!
φ2∇2φ. (2.50)

The necessity of the asymmetric gradient operator, Oλ, was one of the key insights

of Nicoll and Zia’s work. In the Ising-type LGW Hamiltonian, the gradient can be

written either as (1/2)|∇φ|2 or −(1/2)φ∇2φ. There is a similar flexibility in how the

asymmetric gradient is written. Integrating −(1/3!)φ2∇2φ by parts, we find that it

is equivalent to (1/3)φ|∇φ|2 up to a total divergence, which will not affect any of

the results.

The reduced density is related to φ by, ∆ρ = 〈φ〉, where the bracket denotes an

average. Hence, we see that H[〈φ〉] = ∆f̄ , where ∆f̄ is the asymmetric mean-field
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+Γ(1) =

Γ(3) = + +

Γ(5) = +

+

+

+

Figure 2.1: Asymmetric vertex-function diagrams up to one loop

EOS, Eq 1.37, if ui = u0
i . In the mean-field EOS, the terms in HA are all of order

|∆T |5/2, and are therefore higher order than the Ising terms, which are of order

|∆T |2. In this sense, HA is a perturbation to HI , and the leading asymmetry effects

are captured by working to linear order in the coupling constants ui.

Nicoll and Zia have previously shown that the addition of asymmetric terms to

the Hamiltonian does not destabilize the Ising fixed-point [23]. Hence, the derivation

of the asymmetric EOS follows the derivation of the Ising-type EOS from a LGW

Hamiltonian. In addition to the Ising normalization conditions, there are three

additional conditions that serve to renormalize the asymmetric coupling constants

Γ(1)
(
p1; {ν0

i }
)∣∣
p1=0

= u1(∆T )2/g,

Γ(3)
(
p1, p2, p3; {ν0

i }
)∣∣
pi=0

= u3∆T, (2.51)

Γ(5)
(
p1, . . . , p5; {ν0

i }
)∣∣
pi=0

= gu5.

The diagramatic expansions of the vertex functions are given in Fig. 2.1. Reading

38



off the terms in Fig. 2.1, we find

u1 = u0
1 − u0

3

(go
2
J
)

+ u0
λ

(go
3
J
)
,

u3 = u0
3

(
1− 3

2
g0J

)
− u0

5

(g0

2
J
)

+ u0
λ(2g0J), (2.52)

u5 = u0
5 (1− 5g0J) + u0

λ(10g0J),

where the so-called “mass shift”, has been omitted, and where we take

J ≈ 1

ε

(
1 +

ε

2

)
. (2.53)

The explanation and justification of this choice of J are identical to those given in

Appendix A for the Ising-type EOS. The bare coefficients u0
1, u0

3, and u0
5 are found

by inverting Eq. 2.52 for the renormalized coefficients to linear order in g as

u0
1 = u1 + u3

(g
2
J
)
− uλ

(g
3
J
)
,

u0
3 = u3

(
1 +

3

2
gJ

)
+ u5

(g
2
J
)
− uλ(2gJ), (2.54)

u0
5 = u5 (1 + 5gJ)− uλ(10gJ).

The EOS in the one-loop approximation is

∆f̃ = H|φ=∆ρ +
1

2
Tr
{

lnH(2)
}
. (2.55)

The fluctuation operator, H(2) = δ2H/δφ2|φ=∆ρ, takes the form

H(2) =
[−ψ∇2 + f̄ ′′

]
δ(x1 − x2). (2.56)

where

ψ =

(
1 +

2

3
uλ∆ρ

)
, (2.57)
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and

f̄ ′′ =

(
∂2f̄

∂ρ2

)
T

= ∆T +
g

2
∆ρ2 + u3∆T∆ρ+

gu5

6
∆ρ3 (2.58)

where f̄ is the mean-field Helmholtz energy, given in Eq. 1.45. Note that u1 does

not enter into the fluctuation operator. The fluctuation correction is given by

1

2
Tr lnH(2) =

1

2

∫
p

ln
[
ψp2 + f̄ ′′

]
= − 1

4ε

(
1− ε

4

)−1
(
f̄ ′′

ψ

)2−ε/2

, (2.59)

where the integration has been performed in d = 4− ε dimensions. To linear order

in the asymmetry,

1

g

(
f̄ ′′

ψ

)2

'
(

∆T +
g

2
∆ρ2

)2

+

(
2u3 − 4

3
uλ

)
(∆T )2

g
∆ρ

+

(
u3 +

1

3
u5 − 4

3
uλ

)
∆T (∆ρ)3 + g

(
1

6
u5 − 1

3
uλ

)
(∆ρ)5. (2.60)

The Hamiltonian, expressed in terms of the renormalized coefficients, is therefore

H|φ=∆ρ =
1

4

(
f̄ ′′

ψ

)2

J. (2.61)

By expanding to first order in ε, we can write the total Helmholtz energy as

∆f̃ = f̄ +
ε

24g

(
f̄ ′′

ψ

)2{
2 ln

(
f̄ ′′

ψ

)
+ 1

}
(2.62)

This is identical to the Ising-type EOS presented in Appendix A, but with the Ising

Ψ̄′′ (of κ2) replaced by f̄ ′′/ψ, cf. Eq. A.24. This result can be further simplified by

expanding to linear order in the asymmetry to obtain

∆f̃ = f̄ +
ε

24

(
κ4

g

)
(2L+ 1)

+
ε

6

(
κ2

g

)
∆ρ

[
u3∆T +

gu5

6
∆ρ2 − 2

3
uλκ

2

]
(L+ 1) , (2.63)
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where κ2 = ∆T + g
2
(∆ρ)2 and L = lnκ2 were previously defined in Eqs. 2.26

and 2.27. This matches Nicoll’s result at O(ε) exactly. In the symmetric limit,

u1 = u3 = u5 = uλ = 0, the Ising-type EOS (Eq. 2.23) is reproduced.

This result can also be cast into the form of a Landau expansion by gathering

together like powers of ∆ρ. The results from the Ising-type EOS, Eq. 2.30, are

recovered for f0, f2, and f4, and the asymmetric coefficients are found to be

f1 = u1 +
ε

6

(
u3 − 2

3
uλ

)
(L+ 1),

f3 = u3 +
ε

2

(
u3 +

1

3
u5 − 4

3
uλ

)
(L+ 1), (2.64)

f5 = u5 +
5ε

3
(u5 − 2uλ) (L+ 1).

In this form the complete scaling EOS and the above asymmetric RG EOS can be

compared term by term.

2.4 Consistency of complete scaling at O(ε)

Nicoll has shown that the existence of the 1− α term associated with revised

scaling in ∆ρ follows from a RG treatment of fluid asymmetry, i.e. from Eq. 2.63.

We will now illustrate his proof to O(ε). The concept is to find a linear combina-

tion of the asymmetric operators that reproduces the effect of revised scaling. The

portion of the EOS due to revised scaling is found by setting a = c = 0 in Eq. 2.33,

which yields

∆f̃ = Ψ|0 + b

{
−(∆T )2

g
∆ρ+

1

3!

(
2 +

1

9
ε (L+ 1)

)
∆T (∆ρ)3

+
g

5!

(
10 +

20

3
ε (L+ 1)

)
(∆ρ)5

}
, (2.65)
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where Ψ|0 is the Ising-type Helmholtz energy introduced in Eq. 2.23. Consistency

with the mean-field EOS, Eq. 1.45, which is found by taking ε → 0, requires

u1 = −b, u3 = 2b and u5 = 10b. The terms of O(ε) are also matched to those in Eq.

2.64 if uλ = 3b. We can now define a revised scaling operator,

Ob = −O1 + 2O3 + 10O5 + 3Oλ. (2.66)

The effects of revised scaling can be reproduced by adding bOb to the Ising Hamilto-

nian. However, the linear combination Ob does not span the the entire asymmetric

LGW Hamiltonian, Eq. 2.48. Three additional linearly-independent operators are

required. For these we choose O1, O3 and O5. The asymmetric portion of the

Hamiltonian can now be written

HA = ueff1 O1 + ueff3 O3 + ueff5 O5 + bOb (2.67)

The effective coefficients are selected to reproduce the original asymmetric Hamil-

tonian. To this end,

ueff1 = u1 +
1

3
uλ (2.68)

ueff3 = u3 − uλ (2.69)

ueff5 = u5 − 10

3
uλ (2.70)

b =
1

3
uλ, (2.71)

where we have omitted the superscript “0” to simplify the presentation. The total

effect of the asymmetric Hamiltonian on the excess density will be the sum of the

effects of the constituent operators. Therefore, we also need to know the individual

effects of O1, O3 and O5.
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The coefficient u1 does not enter the fluctuation operator, Eq. 2.56. Therefore,

O1 only makes a mean-field contribution to the Helmholtz energy and does not effect

the excess density. For this reason, this operator can typically be ignored. Here we

keep it for consistency.

The operator O3 can be removed from the Hamiltonian without altering the

other terms at leading order, by making the transformation φ → φ − (u0
3/g0)∆T0.

Below the critical point, the effects of this term on the density can be restored by

applying the reverse transformation, i.e., ∆ρ → ∆ρ − (ν3/g)∆T . This result can

also be found by applying, the mean-field formula for the excess density, Eq 2.34,

to the O3 portion of the Helmholtz energy,

∆f̃ ∼ u3
1

3!

(
1 +

ε

2
(L+ 1)

)
∆T (∆ρ)3. (2.72)

The implications of adding O5 do not have a unique interpretation in the

ε-expansion. The equation of state generated solely from the insertion of O5 is,

∆f̃ = Ψ|0 + u5

{
1

3!

( ε
6

(L+ 1)
)

∆T (∆ρ)3

+
g

5!

(
1 +

5

3
ε (L+ 1)

)
(∆ρ)5

}
. (2.73)

The quintic term in Eq. 2.73 is responsible for the exponent θ5. The cubic term

requires some interpretation. Without a leading mean-field contribution, the cubic

term is classified by Nicoll as a “non-scaling” term. When, as here, the ε-expansion

is performed only to a limited, fixed order, a so-called non-scaling contribution

does not have a unique interpretation as a power law. More generally, as is well

known, it is necessary to carry the expansion to higher orders in ε to resolve such
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ambiguities. This same issue is encountered when interpreting the entropy. Nicoll

chose to interpret the cubic term as producing the same temperature dependence

as the scaling contribution from the quintic term by letting,

u5
ε

6
(L+ 1) =

1

5
u5

(
1 +

5ε

6
(L+ 1)

)
− 1

5
u5. (2.74)

This interpretation yields an excess density that varies as

∆ρ ∼ −3

5
u5|∆T |β+θ5 +

1

5
u5

(|∆T |β+θ5 − |∆T |) . (2.75)

The final term was described as a “shifting diameter-background” that crosses over

from ∆ρ ∼ −3
5
ν5|∆T | in mean-field to ∆ρ ∼ −1

5
ν5|∆T | in the critical region [24].

The total excess density produced by Eq. 2.67 is

∆ρ = b∆s+
ueff3

g
|∆T | − 3

5
ueff5 |∆T |β+θ5 +

1

5
ueff5

(|∆T |β+θ5 − |∆T |) . (2.76)

In the mean-field EOS (ε→ 0) all dependence on uλ cancels, and the expected result

is recovered. Thus Nicoll’s treatment of the asymmetric Hamiltonian produces an

excess density with a leading 1− α term, which disappears if uλ = 0, and a higher

order β + θ5, in addition to the linear term.

The non-scaling term in Eq. 2.73 can also be interpreted as producing singular

contributions to the diameter. Instead of forcing this term to match the behavior

of the quintic term, it can be treated independently. For instance, by letting

u5

( ε
6
L
)

= u5

(
1 +

ε

6
L
)
− u5, (2.77)

we find

∆ρ ∼ −3

5
u5|∆T |β+θ5 + u5

(|∆T |1−α − |∆T |2β) . (2.78)
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Both a 2β and a 1 − α exponent appear in the excess density as a result of this

interpretation. Even though the physical implications are markedly different, this

result, when expanded to first order in ε, is identical to Eq. 2.75. Without a guiding

principle there is no way, within the current approach, to know which, if either, is

the more physically meaningful interpretation. As noted above, it will be necessary

to proceed to higher order in the ε-expansion to clarify this issue more fully.

The methodology of the preceding paragraphs can also be applied to complete

scaling. The key is to search for linear combinations of the asymmetric operators

that will reproduce the entire complete scaling EOS. When b = c = 0, the complete

scaling EOS, Eq. 2.33, can be reproduced for u1 = −(1/2)â, u3 = −3â, u5 = −15â,

and uλ = −(21/4)â, so that adding the operator Oa, defined by

Oa =
1

2
O1 − 3O3 − 15O5 − 21

4
Oλ, (2.79)

to HI has the same effect as the pressure mixing in Eq. 2.4. Similarly, for a = b = 0,

we find

Oc = O1 −O3. (2.80)

Therefore the entire asymmetric hamiltonian can represented as

HA = ueff1 O1 + aOa + bOb + cOc. (2.81)

The operator O1 creates an addition to the background chemical potential that

does not enter into physically interesting quantities. In order to make the mapping

between the complete scaling EOS and the RG EOS exact, we will treat u1 as a free

parameter and use it to set ueff1 = 0. Alternatively, O1 can be matched by adding
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an additional term ∼ (∆T )2 to h in the complete scaling transforms, Eq. 2.4.

However, in the present O(ε) approach, this creates an unnecessary complication.

The connection to the original form of the Hamiltonian is given by

u3 = 3b− 3â− ĉ,

u5 = 10b− 15â, (2.82)

uλ = 3b− 21

4
â,

where â = a(1 + ε/12) and ĉ = gc were introduced in Eqs. 2.31 and 2.32. The

inverse relations are

â =
2

5
u5 − 4

3
uλ,

b =
7

10
u5 − 2uλ, (2.83)

ĉ = u3 − 1

5
u5.

These results are different from the relationships found by Wang and Anisimov, Eq.

1.55, which do not include uλ. Their results correspond to the special case ĉ−b = 0.

This condition can be used to eliminate uλ from the expressions for a and b, thereby

reproducing the Eq. 1.55. The definition of c = ĉ/g carries an awkward factor of 1/g,

which corresponds to the background heat capacity Bcr, so we can write c = ĉBcr,

which is more physically meaningful. The definition of â = a(1 + ε/12) carries a

non-universal factor, which makes the relationship between a and the coefficients u5

and uλ system dependent. In what follows, we will neglect this non-universal factor

by assuming that â ' a.

In deriving the complete scaling EOS, we chose Ψ0(∆T ) = −(∆T )2/2g in Eq.
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2.23. Other authors have taken Ψ0 = 0, so that the fluctuation-induced background

contribution to the entropy Bcr∆T , which was introduced in Eq. 1.5 and disucssed

below Eq. 1.37, is retained. This second choice leads the excess density,

∆ρ = a∗(B0)2|∆T |2β − b∗ A−0
1− α |∆T |

1−α + (b∗Bcr + c∗) |∆T |. (2.84)

This expression appears to contradict Eq. 2.40, which predicts a slightly different

amplitude for the linear term. The apparent contradiction is resolved by changing

the mapping between the parameters in the complete scaling EOS and the coeffi-

cients in the asymmetric RG EOS. For a Helmholtz energy with Ψ0 = 0, the choice

of parameters that maps complete scaling onto the asymmetric RG EOS is

a∗ = a

b∗ = b (2.85)

c∗ =
1

g
(u3 − 9

10
u5 + 2uλ).

where a superscript has been added to distinguish these parameters from those in

Eq. 2.83. Only the value of c∗ differs from the ones presented in Eq. 2.83. The

critical background at this order is Bcr = 1/g, hence,

c = b∗Bcr + c∗ =
1

g
(u3 − 1

5
u5). (2.86)

Both approaches predict the same form for the excess density, in terms of the physi-

cally meaningful coefficients, ui. The Wang and Anisimov relations for the complete

scaling parameters, Eq. 1.55, correspond to the special case c∗ = 0.
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2.5 Comparison with experiment

Values for the complete scaling parameters a, b and ĉ, can be found by fitting

experimental excess density data with Eq. 2.40. The parameters can then be used

to determine the coefficients of the asymmetric Hamiltonian, u5, uλ, and u3, through

Eq. 2.83. Wang and Anisimov have previously done this for a number of substances

by assuming c − b = 0 or equivalently, c∗ = 0 [28]. We have fit coexistence curve

data from eight substances: hydrogen deuteride (HD) [31], neon (Ne) [31], nitrogen

(N2) [31], ethene (C2H4) [31], ethane (C2H6) [31], sulfur hexafluoride (SF6) [30],

freon-113 (C2Cl3F3) [52], and heptane (C7H16) [53]. In order to determine B0, the

density difference was fit to

∆ρ0 = B0|∆T |β
(
1 +B1|∆T |∆

)
, (2.87)

over the reduced temperature range 10−4 < ∆T < 10−2. This range was chosen

because data points closer to the critical point are susceptible to systematic error,

and points further from the critical point could be affected by higher-order terms.

The values of the exponents were set at β = 0.326 and ∆ = 0.5, and B0 and B1

were treated as free parameters. The values obtained for B0 are listed in Table 2.1.

The form of excess density that was fit to is given by

∆ρ = D2β|∆T |2β +D1−α|∆T |1−α +D1|∆T |. (2.88)

It is difficult to get a meaningful fit from this equation if all three amplitudes are left

free. This is because the |∆T |1−α = |∆T |0.89 and |∆T | terms are highly correlated.

If the value of D1 is held fixed, the fit value for D1−α is of the same order but
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Figure 2.2: Liquid-vapor excess densities near the critical point. Exper-
imental data are shown by symbols. For (a) [31]: �-HD, ©-Ne, 4-N2,
and ∗-C2H4. For (b): �-C2H6 [31], ©-SF6 [30], 4-C2Cl3F3 [52], and
∗-C7H16 [53]. Curves correspond to fits to Eq. 2.88

of opposite sign. If D1 is varied over a range of positive and negative values, the

standard deviations of the fits only exhibit a very shallow minima that cannot be

used to determine the optimal value. In order to obtain a stable fit, one may make

a physically reasonable approximation for the value of D1 and then fit for D2β and

D1−α.

Wang and Anisimov have introduced the normalized interaction volume vint =

vc/(2ξ
+
0 )3, where vc = 1/ρc, to characterize the asymmetry of a system [28]. Values

of vint, taken from their paper, are listed in Table 2.1. Helium-3 has a nearly

symmetric coexistence curve, and the interaction volume is vint ' 2.5 [54]. We can

take the Helium-3 values as the zero-point for the rectilinear portion of the diameter,

and then allow D1 to increase as a function of vint. Specifically, we will take

D1 = 0.5(vint − 2.5). (2.89)

The prefactor 0.5 was chosen so that the resulting mixing parameters will be of
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Figure 2.3: Complete scaling mixing-parameters (a) and asymmetry co-
efficients (b) plotted versus the interaction volume vint. Dashed lines
have been added to guide the eye. For (a): a-©, b-�, ĉ-4. For (b):
u5-©, uλ-�, u3-4

the same order of magnitude in highly asymmetric systems. We could also impose

an additional condition that the excess density not exhibit a “wiggle”, specifically

that the diameter be convex down, i.e. d2∆ρ/d|∆T |2 < 0. This condition can be

reexpressed as

D2β

D1−α
>

α(1− α)

2β(1− 2β)
|∆T |1−α−2β ' 0.14. (2.90)

The final value in this equation in based on ∆T = 0.01. This will be satisfied if the

mixing parameters are positive.

The excess density data was fit to Eq. 2.88 over the reduced temperature

range 10−4 < ∆T < 10−2, with D1 held fixed by Eq. 2.89 . The results of these

fits are presented in Fig. 2.2. The conversions from the fit amplitudes to the actual

mixing-parameters are made via

D2β = a(B0)2, D1−α = −bA−0 /(1− α), and D1 = ĉBcr. (2.91)

The measured, or interpolated, values of A−0 , taken from [28], are included in Table
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2.1. The background heat capacity can be roughly estimated as Bcr ' A+
0 = 0.55A−0 .

The values of a, b, and ĉ and u5, uλ, and u3 obtained from the fits are listed in Table

2.2 and plotted versus vI in Fig. 2.3. The values for a and b determined for the

three most symmetric substances, HD, Ne, and N2, are scattered around zero. Given

the quality of data, we do not read any special significance into the negative values

for b, which might correspond to an over-estimation of ĉ. Therefore we conclude

that the mixing parameters a, b, and ĉ should generally be taken to be positive.

The Hamiltonian coefficients are negative except for some minor scattering for low

asymmetry systems that again should not be considered as physically meaningful.

Additionally they generally follow the ordering |u5| > |uλ| > |u3|. The relative size

of the asymmetry coefficients can be bounded from the positivity of the mixing-

parameters. a > 0 implies, for negative u5 and uλ, that |u5| < (10/3)|uλ|, and

ĉ > 0 implies that |u5| > 5|u3|. The signs of the mixing-parameters and asymmetry

coefficients, and their relative orderings are robust against variations of the fixed

form of D1.

2.6 Summary and Conclusions

In Sec. 2.2, we argued that the simplified complete scaling transformations,

Eq. 1.51, need to be modified by two additional non-linear terms. The resulting

transformations, presented in Eq. 2.4, compactly account for all leading sources of

asymmetry. The form of the density predicted by the modified transformations is

given in Eq. 2.5. The equation of state implied by the complete scaling transforma-
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Tc (K) ρc (g/cm3) A−0 (J/mol K) B0 vint

HD 35.957 0.0481 (65) 1.30 2.88

Ne 44.479 0.484 (70) 1.44 3.10

N2 126.214 0.314 78 1.52 3.47

C2H4 282.377 0.215 (90) 1.60 3.99

C2H6 305.363 0.206 98 1.6 4.36

SF6 318.707 0.733 143 1.71 6.35

C2Cl3F3 486.968 0.567 (165) 1.80 7.32

C7H16 539.860 0.234 188 1.78 8.33

Table 2.1: Critical parameters and amplitudes. The values of Tc and ρc are from

[31] for HD, Ne, N2, C2H4, and C2H6, from [30] for SF6, from [52] for C2Cl3F3, and

[53] for C7H16. The values of A−0 and vint are taken from [28]. The amplitudes B0

were found from fits to Eq. 2.87
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a b ĉ u5 uλ u3

HD 0.025 -0.011 0.050 -0.480 -0.162 -0.046

Ne 0.006 -0.022 0.074 -0.305 -0.096 0.013

N2 0.015 -0.010 0.106 -0.314 -0.105 0.043

C2H4 0.034 0.014 0.141 -0.378 -0.139 0.065

C2H6 0.039 0.027 0.162 -0.307 -0.121 0.100

SF6 0.192 0.134 0.228 -1.532 -0.603 -0.078

C2Cl3F3 0.249 0.169 0.247 -2.04 -0.799 -0.162

C7H16 0.351 0.186 0.262 -3.411 -1.287 -0.420

Table 2.2: Mixing parameters and asymmetry coefficients based on fits to Eq. 2.88.

The mixing parameters a, b, and ĉ were found from Eq. 2.91. The asymmetry

coefficients were found from Eq. 2.83.
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tions was then derived for both the pressure, Eq. 2.9 , and the Helmholtz energy, Eq.

2.17. The complete scaling Helmholtz energy was explicitly calculated to O(ε) in Eq.

2.29, and it was shown that all predictions of complete scaling can be consistently

derived to O(ε) from this EOS. Next, in Sec. 2.3, the asymmetric “RG EOS”, Eq.

2.63, based on a RG analysis of a general asymmetric LGW Hamiltonian, Eq. 2.48,

was calculated in the one-loop approximation. This result matches Nicoll’s previ-

ous work [24]. A careful analysis of the terms in the asymmetric RG EOS showed

that the interpretation of the EOS leading to the asymmetric correction to scaling

exponent θ5 is not unique, and that the EOS can be interpreted as producing 2β

and 1−α contributions to the excess density. The principle result of this chapter, a

demonstration of the consistency of complete scaling to O(ε), was presented in Sec.

2.4. In this section, the results of the two preceding sections were combined to show

that the complete scaling EOS and the asymmetric RG EOS are identical at O(ε)

for an appropriate choice of the field-mixing parameters. This result was shown

to be robust when the fluctuation-induced background contribution to the entropy

density is included in the scheme, cf. Eq. 2.84 and the surrounding material. We

have fit experimental excess density data to Eq. 2.88 in order to determine the com-

plete scaling mixing parameters a, b, and c and the asymmetry coefficients u5, uλ,

and u3. The mixing parameters are found to be positive for the highly asymmetric

systems, and the asymmetry coefficients are found to be negative, or close to zero

for systems with low asymmetry, and to obey the ordering |u5| > |uλ| > |u3| as seen

in Fig. 2.3.
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Chapter 3

Complete scaling for inhomogeneous fluids

3.1 Introduction

When liquid and vapor coexist in equilibrium, the interface between them

plays a role in the thermodynamics. The interfacial Helmholtz energy per unit

area of interface is known as the interfacial, or surface, tension, and is denoted by

σ. Like many thermodynamic properties, the interfacial tension exhibits universal,

non-analytic behavior in the vicinity of a critical point [55]. In this chapter we

investigate interfacial critical phenomena in asymmetric fluid systems.

As the liquid-vapor critical point is approached from below the critical point

along the critical isochore, the interface separating the two phases becomes more

diffuse and the density difference ∆ρ0 goes to zero. In the critical region, the smooth

variation of the density across the interfacial region can be described by a continuous

interfacial profile. This profile is an object of principal interest because it can be

used to derive the surface tension. The interfacial profile is determined by finding

the density configuration that minimizes the Helmholtz energy of the system for

t < 0. The same is true for the magnetization in an Ising-type system. For the

mean-field Ising EOS (Eq. 1.37) this implies

(
δΨ(m, t,∇m)

δm

)
t

= −∇2m+ tm+
g

6
m3 = 0, (3.1)
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where we have defined the functional derivative by

δ

δm
=

∂

∂m
−∇ · ∂

∂(∇m)
. (3.2)

Here and throughout, we will take the interface to lie in the x-y plane, so that the

magnetization (or density) varies along the z-direction. If the mean-field magneti-

zation, given by Eq. 1.39, is denoted by m0, then the solution of the differential

equation can be written as,

m(z) = m0 tanh(ẑ). (3.3)

where we have defined

ẑ =
z

2ξ
, (3.4)

where ξ, in this context, is the mean-field correlation length, given by Eq. 1.43.

This result is originally due to van der Waals [56, 57]. The constant of integration

has been set to zero to locate the center of the interface at z = 0, i.e. m(z = 0) = 0.

Equation 3.3 shows that the interfacial thickness is controlled by the only relevant

length scale in the critical region, the correlation length. For symmetric coexistence,

the surface tension is given by,

σ =

∫
dz (Ψ[m(z)]−Ψ[m0]) . (3.5)

For the mean-field EOS, an equivalent expression is

σ =

∫
dz|∇m|2, (3.6)

which, when combined with Eq 3.3, yields

σ =
2(m0)2

3ξ
=

4
√

2

g
|t|3/2. (3.7)
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Figure 3.1: Symmetric interfacial profile functions found in Eqs. 3.3 and 3.9.

Ohta and Kawasaki [58], and Rudnick and Jasnow [59], have extended this ap-

proach by calculating the interfacial profile to O(ε) for the Ising-type EOS derived

in Appendix A. They found

m(z) = B0|t|βM(z), (3.8)

where the profile function is

M(z) = tanh(z/2ξ)

[
1− πε

6
√

3
sech2(z/2ξ)

]
. (3.9)

The correlation length ξ appearing in this expression is the O(ε) correlation length.

The profile for the functionM(z) and the mean-field profile are plotted in Fig. 3.1 for

comparison. The critical fluctuations tend to smooth out the shape of the profile.

The value of the interfacial tension for Eq. 3.8 is σ = C0(B0|t|β)2/ξ ∼ |t|2β+ν . This

matches the predictions, based on scaling arguments, of Fisk and Widom [60]. The

value of the universal constant C0 differs slightly depending on whether Eq. 3.5

or the approximation Eq. 3.6 is used as a result of non-local contributions to the

Helmholtz energy.
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The interfacial profile presented in Eq. 3.8 was derived in an expansion around

d = 4. By taking ε→ 1, one can extrapolate the result to d = 3. Although this is the

typical approach for interpreting the ε-expansion, it skirts the issue of capillary waves

[61], which are known to be relevant for d = 3. Calculating the magnetization profile

in an epsilon expansion around d = 3, Jasnow and Rudnick found that capillary-

wave like fluctuations destroy the profile in the absence of an external “pinning”

field, such as gravity for a fluid [62, 63]. In their treatment, the gravitational field

makes a small non-universal contribution to the profile. In spite of its defficiencies,

the value of the surface tension calculated from Eq. 3.8 is in good agreement with

experimental measurements [58].

When the interface between coexisting fluids is curved, and not planar, the

value of the interfacial tension is modified. This effect was first investigated by

Tolman [64], who considered a spherical droplet of liquid, of radius R, surrounded

by vapor. If the reduced pressures of the liquid (+) and vapor (−) phases are

denoted by ∆P±, then the Laplace equation can be written,

∆P+ −∆P− =
2σ

R
. (3.10)

Based on this equation, Tolman found the surface tension of the curved interface,

for large R, to be

σ (R) = σ∞

(
1− 2δT

R
+ · · ·

)
, (3.11)

where σ∞ is the planar surface tension while δT, the coefficient of the first curvature

correction, is known as Tolman’s length. The sign of δT changes for a bubble of

vapor, but the magnitude remains the same. Most significantly, Tolman’s length is
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zero for symmetric systems [65].

In order to investigate the near-critical properties of Tolman’s length, Fisher

(M. P. A.) and Wortis calculated the interfacial profile for an asymmetric EOS in the

mean-field approximation [65]. The asymmetric mean-field EOS they used is very

similar to that introduced in Eq. 1.45. To incorporate the energetic contributions of

the inhomogeneities they included the square gradient term, but explicitly assumed

there is not an asymmetric gradient term, i.e., uλ = 0. For a fluid system, the

equilibrium density profile minimizes the excess pressure [61]. For a planar profile,

this implies

δ

δρ̂
(∆f − µ̂cxc∆ρ) = −∇2ρ̂+

∂f̂

∂ρ̂
− µ̂cxc = 0, (3.12)

where ∆f is given by Eq. 1.45 and µcxc is given by Eq. 1.47. By solving this

differential equation, one finds

∆ρ = ∆ρ0 tanh(ẑ) +
u3

6
(∆ρ0)2 − u5

10
(∆ρ0)2

[
tanh2(ẑ)− ln (cosh( ẑ))

cosh2(ẑ)

]
. (3.13)

where ẑ is given by Eq. 3.4. This result reproduces Eq. 1.46 for ẑ → ±∞.

By expanding the surface tension in inverse powers of the curvature, Fisher

and Wortis have also found an expression relating Tolman’s length to the planar

interfacial profile, namely,

δT =

∫∞
−∞ dz z (∂zρ)2∫∞
−∞ dz (∂zρ)2 −

∫∞
−∞ dz z∂zρ∫∞
−∞ dz ∂zρ

. (3.14)

When combined with the profile, Eq. 3.13, this expression produces

δT =
1

12
u5∆ρ0ξ =

1

4

u5√
3g
. (3.15)
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The mean-field Tolman’s length is proportional to the asymmetry and independent

of temperature. The coefficient u5 is expected to be negative, as is the case for

the van der Waal’s EOS [65] so that the mean-field Tolman’s length is negative for

a liquid droplet, and the surface tension is slightly greater than expected from a

planar interface. A negative Tolman’s length has been confirmed by other mean-

field calculations [66], and agrees with the thermodynamic expression derived by

Blokhuis and Kuipers [67]. When fluctuations are included, β 6= ν, and Tolman’s

length is expected to depend on temperature, and in fact diverge at the critical point

[68]. Anisimov [69] has, via scaling arguments, predicted the near-critical Tolman’s

length of a droplet to vary as

δT

2ξ
∼ − ∆ρ

∆ρ0

, (3.16)

where ∆ρ0 and ∆ρ were defined in Eqs. 1.27 and 1.28. Equivalently, this can be

written

δT ∼ −
[

3

2
a|∆T |β−ν − 2b

β

Γ−0
|∆T |1−α−β−ν

]
B0ξ

−
0 . (3.17)

Both terms diverge at the critical point, but the leading term diverges much more

strongly since β − ν ' −0.304, where as 1 − α − β − ν ' −0.065. Some older

molecular dynamic simulations found Tolman’s length to be positive [70, 71, 72].

However, more recent simulations have tried to correct for some of the deficiencies

of previous simulations and have found a negative Tolman’s legnth in agreement

with theoretical predictions [73, 74, 75].

In this chapter, we investigate the behavior of the interfacial profile and Tol-

man’s length near the critical point for asymmetric fluids. Complete scaling is the
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theory of asymmetric fluid criticality, but we have so far only applied it to bulk

systems. After briefly reviewing the thermodynamics of non-uniform systems in

Sec. 3.2 , we extend complete scaling to inhomogeneous systems in Sec. 3.3. This

theory is then applied to calculate the full asymmetric interfacial profile based on

the symmetric O(ε) profile, Eq. 3.8. In complete scaling, the density depends on

both the magnetization and the entropy. Hence the density profile will also depend

on the entropy profile. In Sec. 3.5 we take a brief detour to derive the O(ε) entropy

profile and discuss some of it implications. Finally, on the basis of the density pro-

file, Tolman’s length is calculated in Sec. 3.6 and a brief summary of this chapter’s

findings is given in Sec. 3.7.

3.2 Thermodynamics of non-uniform systems

As shown by Hart [76], and elaborated by Cahn [77], the effects of mesocopic

inhomogeneities can be consistently incorporated into a thermodynamic description

of fluids by treating the local density gradient ∇ρ and the thermodynamic field

w, which is conjugate to the density gradient, as additional variables. This treat-

ment assumes that all thermodynamic functions depend smoothly on the spatial

coordinates. The field w is, by definition, related to the Helmholtz energy through

w =

(
∂f

∂∇ρ
)
ρ,T

. (3.18)

The Helmholtz energy can be divided into two parts by isolating the∇ρ dependence,

f(ρ, T,∇ρ) = f0(ρ, T ) +
1

2
f1(ρ, T,∇ρ)|∇ρ|2. (3.19)
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Here, and in what follows, the gradient-independent portion of a thermodynamic

function is denoted by a subscript 0. The division in Eq. 3.19 assumes that the

Helmholtz energy is analytic in the density gradient. Near the critical point this

is not the case. The deviations from analyticity are characterized by the exponent

η. In the first ε-expansion, on which much of the following work is based, η = 0

exactly. At higher orders in ε, η is non-zero but sufficiently small - for d = 3 spatial

dimensions η ' ε2/54 - that neglecting it may constitute a reasonable approximation.

The asymmetric gradient contribution will inherit this assumed analyticity. For the

remainder of this work, we assume that f1 in Eq. 3.19 depends only on ρ. The

gradient ordering field w is then related to the density gradient by

w = f1∇ρ. (3.20)

In the vicinity of the critical point, f1 can be expanded as

f1 ' (ξ+
0 )2[1 + (2/3)uλ∆ρ], (3.21)

where the omitted higher order terms will not enter into our discussion. The factor

of 2/3 has been included to match the definition of uλ as discussed below Eq. 2.48.

Convenient dimensionless quantities are defined by

∇ρ̂ = (ξ+
0 ∇ρ)/ρc and ŵ = w/(ξ+

0 Tc). (3.22)

The mean-field Helmholtz energy near the critical point can therefore be written as

∆f = ∆f0 +
1

2
(1 +

2

3
uλ∆ρ)|∇ρ̂|2. (3.23)

The effect of the asymmetric gradient term can be understood as making an

asymmetric contribution to the correlation length. In analogy with the symmetric

62



result found in the η = 0 approximation, cf. Eq. 1.43, Eq. 3.23 suggests that the

asymmetric correlation length behaves roughly as

ξ2
a ∼ f1χT ∼ (1± 2

3
uλB0|∆T |β)χT , (3.24)

where χT is the bulk asymmetric susceptibility. The bulk isothermal susceptibility

also contains an asymmetric correction, which could make it difficult to distinguish

the two sources of correlation length asymmetry. However, if both the isothermal

susceptibility and correlation length were measured in the bulk portions of the coex-

isting phases, the coefficient in front of the asymmetric gradient might be estimated

independently.

In addition to the definition of the field w presented in Eq. 3.18, Hart also

defines the entropy and a chemical potential by

s = −
(
∂f

∂T

)
ρ,∇ρ

, µ =

(
∂f

∂ρ

)
T,∇ρ

, (3.25)

which imply that

df = −sdT + µdρ+ w · d(∇ρ). (3.26)

This definition of µ differs from the “standard” definition of the chemical potential.

Specifically, in equilibrium, µ may not be uniform for an inhomogeneous system. Al-

ternatively, a total chemical potential, which also differs from the standard defintion,

can be defined via a functional derivative, namely,

µtot =
δf

δρ
=
∂f

∂ρ
−∇ · ∂f

∂∇ρ, (3.27)

so that df = −sdT +µtotδρ. Hence, w can be understood as the portion of the total

chemical potential associated with spatial variations of the density.
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Hart also defines a pressure P via the Legendre transformation

P = (µρ+ w · ∇ρ)− f. (3.28)

Like the definition of the chemical potential µ in Eq. 3.25, this definition of P differs

from the “standard” definition of the pressure, in that P may not be uniform in an

inhomogeneous system. The above Legendre tranformation leads to the relation

dP = ρdµ+ sdT +∇ρ · dw. (3.29)

This provides an extension of the Gibbs-Duhem relation to inhomogeneous systems.

The form of Eq. 3.29 indeed prompts us to treat ∇ρ as a density variable and w

as a field variable, in the nomenclature of Griffiths and Wheeler [10], in spite of

the fact that both ∇ρ and w vanish in bulk homogeneous phases. The density-like

properties are found from the following thermodynamic relations,

ρ =

(
∂P

∂µ

)
T,w

, s =

(
∂P

∂T

)
µ,w

,∇ρ =

(
∂P

∂w

)
µ,T

. (3.30)

Finally we note that for a homogeneous system (∇ρ = 0) the thermodynamic vari-

ables defined in this chapter reduce to their standard definitions.

3.3 Complete scaling for inhomogeneous fluids

In the context of complete scaling we need to discuss symmetric and asymmet-

ric systems simultaneously. For the symmetric Ising-type system, we will use the

same “magnetic” notation from the previous chapters. For the symmetric system,

we can introduce the magnetization gradient ∇m, which is analogous to ∇ρ̂, as a
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new thermodynamic variable. If the Helmholtz energy is assumed to be analytic in

∇m, then it can be expanded as

Ψ(m, t,∇m) ' Ψ0(m, t) +
1

2
|∇m|2. (3.31)

This equation is the symmetric analog of Eq. 3.19. The assumption of analyticity

is equivalent to setting η = 0. Strictly speaking this is only valid to order O(ε).

However, as mentioned in the previous section, η is generally small for d = 3 and

in first analysis it is reasonable to hope that η does not alter the thermodynamic

behavior significantly. This approximation also implies that ∇m may be regarded

as thermodynamically conjugate to itself,

∇m =

(
∂Ψ

∂∇m
)
t,m

. (3.32)

If the entropy and the applied field are now defined by

s = −
(
∂Ψ

∂t

)
m,∇m

, h =

(
∂Ψ

∂m

)
t,∇m

, (3.33)

then the differential of the Helmholtz energy can be written

dΨ = −sdt+ hdm+∇m · d(∇m). (3.34)

In analogy with Eq. 3.28, and with the same caveats, we can define a density of the

“Ising” grand potential −Φ through the Legendre transformation

Φ = (mh+∇m · ∇m)−Ψ, (3.35)

which leads to the relation

dΦ = sdt+mdh+∇m · d(∇m). (3.36)
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As in the previous section, the above relations for inhomogeneous systems reduce

to the standard definitions in the “homogeneous limit” ∇m = 0.

The complete scaling transformations can be extended to inhomogenous sys-

tems if the vector ordering fields ∇m and w are included in the field mixing. The

transformations should remain invariant under spatial inversion. Consequently, the

leading contributions from ŵ to the scaling fields t, h, and Φ should be propor-

tional to |ŵ|2, and the leading contribution to ∇m must be proportional to ŵ. The

extended complete scaling transformations are,

h = a1∆µ+ a2∆T + a3∆P +
1

2
a4|ŵ|2 · · · , (3.37)

t = b1∆T + b2∆µ+ b3∆P +
1

2
b4|ŵ|2 · · · , (3.38)

Φ = c1∆P + c2∆µ+ c3∆T +
1

2
c4|ŵ|2 · · · , (3.39)

∇m = d1ŵ + d2∆T ŵ + d3∆P ŵ + d4∆µŵ · · · . (3.40)

We will now simplify these transformations by retaining only those terms that make

a leading asymmetric contribution to the thermodynamics. The explanations of why

particular terms can be omitted are similar to those used to justify the “homoge-

neous” complete scaling transformations in Sec. 2.2. At lowest order, we find that

|ŵ|2 ∼ O(∆T 2−α), just like ∆P . Therefore, |ŵ|2 makes an asymmetric contribution

to h, but not to t or Φ. The non-linear terms in the relation for ∇m, the smallest

of which is ŵ∆T , all lead to higher order contributions and can be omitted. The
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simplified transformations are

h = ∆µ+ a∆P̃ +
1

2
aλ|ŵ|2, (3.41)

t = ∆T + b∆µ, (3.42)

Φ = ∆P̃ + c∆T∆µ, (3.43)

∇m = ŵ, (3.44)

where a new asymmetry parameter aλ has been introduced, and where the critical

portion of the pressure ∆P̃ was defined in Eq. 1.24. Applying Eq. 3.30 to Eqs.

3.41-3.44, one obtains

ρ̂ =
1 + (1− a)m+ b∆s− ct

1− am , (3.45)

∇ρ̂ =

(
1 + aλm

1− am
)
∇m. (3.46)

When expanded to linear order in the asymmetry, these become

∆ρ̂ ' m+ am2 + b∆s− ct, (3.47)

∇ρ̂ ' [1 + (a+ aλ)m]∇m. (3.48)

Comparing Eq. 3.48 with ŵ = [1 + (2uλ/3)∆ρ]∇ρ̂ (Eq. 3.21), we conclude that

aλ = −a− 2

3
uλ =

2

3
uλ − 2

5
u5, (3.49)

where use has been made of Eq. 2.83 for a. Even for uλ = 0, gradient mixing is

necessary, due to the non-linear dependence of density on magnetization. Eqs. 3.47

and 3.48 do not lead to a unique expression for ∆ρ. This can be seen by taking the

gradient of Eq. 3.47, which yields

∇ρ̂ ' [1 + 2am]∇m+ b∇s. (3.50)
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This equation is incompatible with Eq. 3.48. Equations 3.47 and 3.48 can be made

compatible if Eq. 3.48 is interpreted as describing a coordinate transformation. The

coordinate transformation can be consistently formulated if two different gradients

are defined as follows:

∇ρ̂ =
∂ρ̂(ra)

∂ra
, and ∇m =

∂m(rs)

∂rs
. (3.51)

where rs and ra are position vectors which belong to two distinct coordinate systems

for the Ising-type system (rs) and asymmetric system (ra). When Eq. 3.47 is solved

for m, and the resulting expression is substituted into Eq. 3.48, one finds

∂ρ̂(ra)

∂ra
'
[
1 + (aλ − a)m− b

(
∂ŝ

∂m

)
t

]
∂ρ̂(ra)

∂rs
. (3.52)

The density can be eliminated from both sides of this equation by dividing through

by ∂ρ̂(ra)/∂rs. The resulting differential relation can be integrated to produce the

full coordinate transformation

rs ' ra + (aλ − a)

∫
mdra − b

∫ (
∂ŝ

∂m

)
t

dra. (3.53)

As seen from Eq. 1.40, ∆s = t/g − (1/2)m2 for the mean-field EOS, so that the

mean-field coordinate transformation reduces to

r̂s ' r̂a + (aλ + b− a)

∫
mdr̂a. (3.54)

The mean-field coordinate transformation is determined solely by integrating the

magnetization.

The derivation of the complete scaling EOS is easily extended to include the

new gradient terms. The transformations for the critical portion of the Helmholtz
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energy ∆f̃ , which was defined in Eq. 1.25, and its natural variables are found to be

∆T = t− bh, (3.55)

∆ρ = m+ am2 + b∆s− ct, (3.56)

∇ρ̂ = [1 + (a+ aλ)m]∇m, (3.57)

∆f̃ = (1 + am)Ψ + b(∆s)h+
1

2
aλm|∇m|2. (3.58)

The gradient dependence of the symmetric Helmholtz energy given by Eq. 3.31 is

Ψ = Ψ0 + (1/2)|∇m|2. Therefore, when the Helmholtz energy is separated into

gradient dependent and independent portions, it takes on the expected form

∆f̃ = ∆f̃0 +
1

2
ŵ · ∇ρ. (3.59)

This result justisfies our use of the simplified complete scaling transformations (Eqs.

3.41-3.44), and our assertion that these transformations capture all leading sources

of asymmetry.

3.3.1 Equilibrium conditions

In this section we will derive an equilibrium condition, in the form of a differ-

ential equation, which can be used determine the spatial variations of the density

in a system with coexisting, bulk liquid and vapor phases that are separated by an

interfacial region. As in the previous sections, we assume that all thermodynamic

quantities are smooth functions of the spatial coordinates. For an inhomogeneous

system, thermodynamic equilibrium is specified by

δ

δρ̂

(
∆f̃ − µ̂cxc∆ρ

)
= 0, (3.60)
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where µ̂cxc is the chemical potential found at coexistence in the bulk phases (∇ρ =

0), which depends only on T . Our µ̂cxc is equivalent to the standard definition of

a chemical potential, which is uniform throughout an equilibrium system. The first

integral of this equation is

f̂0 − µ̂cxcρ̂ =
1

2
ŵ · ∇ρ̂, (3.61)

where we maintain the convention that a subscript 0 denotes the gradient-free por-

tion of a function. The derivative in Eq. 3.60 removes spatially uniform contri-

butions to this equation such as pure functions of ∆T . To linear order in the

asymmetry, the chemical potential at coexistence, as seen from Eqs. 3.41-3.44 is

∆µcxc = −aΦcxc. In terms of symmetric variables, the left and right hand sides of

Eq. 3.61 are

f̂0 − µ̂cxcρ̂ = (1 + am) [Ψ0 −Ψcxc] + Ψcxc + b(∆s)h0, (3.62)

and

1

2
ŵ · ∇ρ̂ =

1

2
[1 + (a+ aλ)m] |∇m|2. (3.63)

In the symmetric limit, a = b = aλ = 0, Eq. 3.61 reduces to

Ψ0 −Ψcxc =
1

2
|∇m|2. (3.64)

The solution of this equation is given by the symmetric interfacial profile. In the

mean-field limit, this is given by Eq. 3.3, and at O(ε) by Eq. 3.8. The asymmetric

interfacial profile cannot be found by applying the complete scaling transformations

to the symmetric interfacial profile. The result would not satisfy Eq. 3.61. An
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equilibrium profile in the symmetric system does not transform into an equilibrium

profile in the asymmetric system and vice versa. Equation 3.61 must be solved

independently, and then the complete scaling transformations can be applied.

The extra Ψcxc in Eq. 3.64 is purely a function of t. However, the “symmetric”

temperature t carries spatial dependence via µ. Therefore Ψcxc cannot be omitted

from Eq. 3.64. The spatial dependence of t is isolated by expanding Ψ in the

asymmetry coefficient b as,

Ψ(t) ' Ψ|t=∆T − b(∆s)h. (3.65)

This leads to a mixed representation that uses T , m, and ∇m as primary variables.

This conceptually awkward choice is justified by the simplicity of the resulting equi-

librium condition, specifically, Eq. 3.61 becomes,

(1− aλm) [Ψ0(m, t)−Ψcxc(t)]|t=∆T =
1

2
|∇m|2. (3.66)

This differential equation can be solved to determine the magnetization profile.

The complete scaling density depends on both the magnetization and the

entropy. The magnetization profile is found by solving Eq. 3.66 perturbatively.

Since the entropy enters the profile as an asymmetric correction, only the symmetric

entropy profile is needed, but this still must be calculated directly from the Ising-

type EOS. First, we will treat the case b = 0, i.e., no entropy term, in Sec. 3.4 and

then we will derive and incorporate the entropy profile in Sec. 3.5.
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3.4 Asymmetric profile (b = 0)

In this section, we will derive the magnetization profile, at O(ε), that solves

Eq. 3.66. This can be done perturbatively by searching for a solution of the form

m(zs) = m(0)(zs) + aλm
(1)(zs), where m(0) is given by Eq. 3.8. We will again take

the variation of the profile to be along the z-direction. The Helmholtz energy is

expanded around the symmetric solution as

Ψ = Ψ|m=m(0) + aλm
(1) ∂Ψ

∂m

∣∣∣∣
m=m(0)

. (3.67)

The zeroth and first order equations are found to be,

1

2

(
∂m(0)

∂zs

)2

= ∆Ψ|0 , (3.68)

and

∂m(1)

∂zs
=

(
∂m(0)

∂zs

)−1
∂∆Ψ

∂m

∣∣∣∣
0

m(1) +
1

2
m(0)

(
∂m(0)

∂zs

)
, (3.69)

where ∆Ψ|0 = [Ψ0 −Ψcxc]|t=∆T,m=m(0) . The zeroth order equation reproduces Eq.

3.8. The first order equation for m(1) can be cast in the form

∂m(1)

∂zs
= −p ·m(1) + q, (3.70)

where

p =

(
∂m(0)

∂zs

)−1
∂∆Ψ

∂m

∣∣∣∣
0

= − ∂

∂zs
log

(
∂m(0)

∂zs

)
, (3.71)

and

q =
1

2
m(0)

(
∂m(0)

∂zs

)
, (3.72)

and where the zeroth order equation, rewritten as ∂2
zm

(0) = ∂∆Ψ/∂m|0, has been

used to express the second equality for p. This differential equation has the general
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Figure 3.2: The interfacial profile function I(z) and the bulk contribu-
tion M(z)2 given by Eqs. 3.75 and 3.9. The corresponding mean-field
functions are shown as dashed curves.

solution

m(1)(zs) =

∫ zs

0
dz′ exp

[∫ z′
0
dz′′ p(z′′)

]
q(z′)

exp
[∫ zs

0
dz′ p(z′)

] , (3.73)

from which it follows that,

m(1)(zs) = −1

2
∂zsm

(0)(zs)

∫ zs

0

m(0)(z′)dz′. (3.74)

This type of functional dependence reappears frequently, so we define

I(z) = ∂zM(z)

∫ z

0

M(z′)dz′, (3.75)

with M(z) given by Eq. 3.9. The full solution of Eq. 3.66 is,

m(zs) ' m(0)(zs)− 1

2
aλ(m0)2I(zs), (3.76)

where m0 = B0|∆T |β is the amplitude of the magnetization. The function I is

plotted in Fig. 3.2 for M given by Eq. 3.9. It only contributes to the interfacial

region and does not affect the bulk properties.

For b = 0, the transformation, Eq. 3.53, between the asymmetric coordinate

73



and the symmetric coordinate is

zs ' za + (aλ − a)

∫ za

0

m(0)(z′)dz′. (3.77)

The zeroth order solution can therefore be expanded in the asymmetry as

m(0)(zs) ' m(0)(za) + ∂zam
(0)(za)

{
(aλ − a)

∫ za

0

m(0)(z′)dz′
}

' m(0)(za) + (aλ − a)(m0)2I(za) (3.78)

The full magnetization profile, expressed in terms of the asymmetric coordinate is

found by combining Eqs. 3.76 and 3.78 to yield,

m(zs) ' m(0)(za) +
(aλ

2
− a
)

(m0)2I(za). (3.79)

When this profile is combined with Eq. 3.47, the density profile, for b = 0, is found

to be

∆ρ(za) ' B0|∆T |βM(za) + c|∆T |

+ (B0)2|∆T |2β
[
aM(za)

2 +
(aλ

2
− a
)
I(za)

]
. (3.80)

The profile function M2, which contributes to the bulk properties and disappears

at the interface, is also plotted in Fig. 3.2 along with its mean-field counterpart.

The entropy follows the magnetization for the mean-field EOS, so that

∆ρ = m(zs) +

(
a− 1

2
b

)
m(zs)

2 +

(
c− b

g

)
|∆T |. (3.81)

The full mean-field profile, b 6= 0, can therefore be found using the b = 0 result

found in this section. The mean-field zeroth order profile is given by Eq. 3.3, and

the coordinate transformation Eq. 3.54 becomes,

zs ' za + (aλ + b− a)

{
ln

[
cosh

(
za
2ξ

)]
+ k0

}
2ξ, (3.82)
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where k0 is the constant of integration. In mean-field,

I(z) =
ln[cosh(z/2ξ)]

cosh2(z/2ξ)
, (3.83)

which is also plotted in Fig. 3.2. The full mean-field excess density is,

∆ρ = (∆ρ0)2

[(
a− 1

2
b

)
tanh2(ẑa) +

(
1

2
aλ + b− a

)
ln[cosh(ẑa)] + k0

cosh2(ẑa)

]
+ (c− b/g)|∆T |, (3.84)

where ẑa = za/2ξ. This can also be written in terms of the mean-field Landau

coefficients as,

∆ρ = (∆ρ0)2

{(u5

20
− uλ

3

)
tanh2(ẑa) +

(u5

10
− uλ

3

) ln[cosh(ẑa)] + k0

cosh2(ẑa)

+

(
u3

6
− 3

20
u5 +

uλ
3

)}
. (3.85)

The Fisher and Wortis result is reproduced in the limit uλ = 0 if the integration

constant is selected as k0 = 3/2. The asymmetric gradient modifies the amplitude

of each term in the excess density, but does not create any new types of spatial

dependence.

Equation 3.14, which was derived in the approximation uλ = 0, cannot be

used to calculate the Tolman’s length from the full mean-field profile presented in

Eq. 3.85. Barrett [78, 79] has derived a generalization of Eq. 3.14 that includes the

effects of uλ. Barrett’s expression for Tolman’s length can be written as

δT =

∫∞
−∞ dz z(1 + 2

3
uλ∆ρ)(∂zρ)2∫∞

−∞ dz (1 + 2
3
uλ∆ρ)(∂zρ)2

−
∫∞
−∞ dz z∂zρ∫∞
−∞ dz ∂zρ

. (3.86)

For the special case uλ = 0 this reproduces Eq. 3.14. When Eq. 3.85 is combined

with Eq. 3.86, the resulting Tolman’s length is found to be

δT =
1

12

(
u5 +

2

3
uλ

)
∆ρ0ξ. (3.87)
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All bulk terms make zero contribution to Tolman’s length. Only the interfacial

term I contributes. This reflects the fact that Tolman’s length is proportional to

the interfacial adsorption [64]. The asymmetric gradient modifies the amplitude of

Tolman’s length. This result implies that Tolman’s length cannot be derived from

exclusively bulk thermodynamic considerations. Both u5 and uλ are expected to

be negative, so the mean-field Tolman’s length of a droplet is still expected to be

negative for uλ 6= 0.

3.5 Interfacial entropy profile

As follows from Eqs. 1.40 and 3.3, the mean-field entropy profile is simply

related to the magnetization profile,

∆s(z) =
t

g
− 1

2
m(z)2 =

t

g
− 1

2
(m0)2 tanh2 (z/2ξ) . (3.88)

The entropy density takes on its maximum value at z = 0, where the bulk phases

coexist in equal proportion. When fluctuations are included, this picture becomes

more complicated. In this section, we calculate the entropy profile to O(ε) following

Ohta and Kawasaki’s work on the magnetization profile [58].

As shown in Appendix A, the Ising Helmholtz energy, in the one-loop approx-

imation, is given by

Ψ = H|φ=m +
1

2
Tr
{

lnH(2)
}
, (3.89)

where H is the renormalized Ising Hamiltonian and the fluctuation operator H(2) is

H(2) =
[
−∇2 + t+

g

2
m2
]
δ(x1 − x2). (3.90)

76



The entropy density is therefore

∆s = − ∂H
∂t

∣∣∣∣
φ=m

− 1

2
Tr
{(H(2)

)−1
}
. (3.91)

For a uniform system, the magnetization in H(2) does not vary in space, and the

trace is easily performed. For a system with an interface, m may be taken to be

the mean-field profile in Eq. 3.3, and the eigenfunctions and eigenvalues of H(2) are

significantly more complicated. Fortunately, the trace has already been performed

by Ohta and Kawasaki in Ref. [58] in the context of calculating the magnetization

profile, with the result,

g

2
Tr
{(H(2)

)−1
}

= (2|t|)−ε/2
[

1

2

(
1 +

ε

2

)
sech2(ẑ)− 1

3

]
− επ

2
√

3
sech2(ẑ) tanh2(ẑ), (3.92)

where ẑ = z/2ξ. The total expression for ∆s, when expanded to first order in ε, is

∆s =
t

g
− 1

2
m2 − ε

6

(
t

g
+

1

2
m2

)
[1 + ln (2|t|)]

− ε

6

{
3− (3 +

√
3π)

gm2

6|t| +
√

3π

(
gm2

6|t|
)2
}
|t|
g
, (3.93)

where the mean-field magnetization profile has been used to eliminate the hyperbolic

functions at O(ε). The term in the braces is zero for m = (6|t|/g)1/2. Using the

definitions of the amplitudes and exponents found in Appendix A, we can write this

as

∆s(z) =
A−0

1− αt|t|
−α +

(
A−0 − A+

0 /2
α
)
t|t|−αS (z) , (3.94)

where

S(z) + 1 = M(z)2

[
1− επ

6
√

3
sech2(ẑ)

]
, (3.95)
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and M is given by Eq. 3.9. The function S(z) is negative and vanishes in the bulk

phases at z = ±∞. At the center of the interface, one has

∆s(z = 0) =
A+

0 /2
α

1− α
(

1 +
ε

2

)
t|t|−α. (3.96)

Interestingly, this does not quite match the entropy above, even though the magne-

tization is zero at z = 0, because ∇m 6= 0 at z = 0. As a practical matter, it would

be desirable to have an entropy profile that “follows” the magnetization profile, as

in the mean-field case. To this end, we will replace Eq. 3.95 by the approximation

S(z) + 1 'M(z)2. (3.97)

This approximation does not alter the underlying physical picture, but will affect

some numerical factors, which, at the one-loop level were not precise to begin with.

It will great simplify the remaining calculations and applications.

The coordinate transformation, Eq. 3.53, depends on the derivative of the

entropy with respect to the magnetization, which is calculated from Eq. 3.93 as,(
∂s

∂m

)
t

= 2

(
A−0 − A+

0 /2
α

B0

)
|t|1−α−βM

{
1− επ

6
√

3

[
1− 2 tanh2

]}
' 2

(
A−0 − A+

0 /2
α

B0

)
|t|1−α−βM, (3.98)

where in the second equality, we have employed Eq. 3.97. This expression will be

used in the following section.

3.5.1 Full interfacial density profile

The full density profile is found by combining the magnetization profile, Eq.

3.79, the entropy profile, Eq. 3.94 , and the coordinate transformation, Eq. 3.53.
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The result can be divided into two parts. One part, ∆ρB, only contributes to the

bulk properties found at z → ±∞, the other, ∆ρI, only contributes to the interfacial

region. For these we find

∆ρ(z) = ∆ρB + ∆ρI, (3.99)

with,

∆ρB(z) = B0|∆T |βM(z) + a (B0)2 |∆T |2βM(z)2

− b
A−0

1− α |∆T |
1−α + c|∆T |, (3.100)

and

∆ρI(z) =

(
1

2
e− a

)
(B0)2 |∆T |2βI(z)

+ b

(
A−0 −

A+
0

2α

)
|∆T |1−α[2I(z) + S(z)]. (3.101)

The bulk portion is similar to what one would expect from a naive interpretation of

the complete scaling density.

As was the case for Eq. 3.8, the interfacial profile in Eq. 3.99 is derived in the

first order ε-expansion. As discussed previously, this approach ignores capillary-wave

like fluctuations which destroy the interface in the absence of gravity. The results

derived in this section could be modified to account for issues like gravity by using a

different expression for the symmetric magnetization profile. The extended complete

scaling transformations are intended as a method for generating an asymmetric

profile from a symmetric profile and the exact nature of the profile does not matter.
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3.5.2 Interfacial heat capacity

The entropy profile in Eq. 3.94 shows that the entropy deviates from its bulk

value in the interfacial region. This implies that the heat capacity also deviates

from its bulk value. The total heat capacity can be interpreted as consisting of two

parts, the bulk heat capacity and the interfacial heat capacity. In this section we

use the entropy profile, Eq. 3.94, to analyze interfacial heat capacity. We consider a

system, below its critical point, confined to a cylindrical geometry of cross-sectional

area Σ, and length L, oriented so that interface lies in the x-y plane, perpendicular

to axis of the cylinder

The interfacial entropy density ∆sΣ can be approximated, assuming L � ξ,

as

∆sΣ =
1

L

∫ ∞
−∞

[∆s(z)−∆s(z =∞)] dz = −k
(
ξ

L

)
A−0

1− αt|t|
−α, (3.102)

with

k = 3

(
1 +

ε

6

[
π√
3
− ln 2

3
− 1

])
. (3.103)

The interfacial entropy is positive and results from the “mixing” of the two coexisting

phases. The interfacial heat capacity is related to the interfacial entropy by CΣ/T̂ =

(∂sΣ/∂t), and is therefore,

CΣ

T̂
= −k

(
1− ν

1− α
)(

ξ

L

)
A−0 |t|−α. (3.104)

The interfacial heat capacity diverges as CΣ ∼ −|t|−(α+ν). The value of the critical

exponent is α+ν ' 0.74, which leads to a stronger divergence than the corresponding

mean-field prediction CΣ ∼ |t|−1/2. If we extrapolate to d = 3 by taking ε → 1, we
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find k ' 3.3. The interfacial entropy makes two contributions to the interfacial heat

capacity: the first is due to the variation of the interfacial width and the second is

due to the variation of the bulk entropy. The net result is a reduction of the heat

capacity relative to the bulk value. Similar behavior has been found for the surface

heat capacity [80].

The form of the interfacial heat-capacity suggests that total heat capacity of

the system takes the form,

Cρ

T̂
' CL

T̂

[
1− k

(
1− ν

1− α
)
ξ

L

]
, (3.105)

where CL is the bulk heat-capacity of the system, which approaches the total heat

capacity as L → ∞. In this form, the divergence of the interfacial heat capacity

can be understood as an additional finite-size effect, produced when the correlation

length, i.e., the interfacial width, approaches the system size L. In a finite system,

the extent of the fluctuations are constrained by the size of the system, and CL will

also be modified by terms of order ∼ ξ/L [81], such that

CL − CL=∞ ∼ − ξ
L
. (3.106)

The interfacial reduction of the heat capacity occurs only below Tc, where as the

finite-size modifications of the heat capacity are present above and below the critical

point. This difference might allow the interfacial heat capacity reduction to be

observed in simulations or experiments in which other finite-size effects are present.

However, the interfacial reduction will only be noticeable very close to Tc. Typically,

for t ' 10−4, ξ ' 0.5 µm. To make the effect detectable one should have L<
∼10 µm.

More details on finite-size scaling can be found in the review by Barber [82].
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3.6 Tolman’s length

We are now in a position to investigate the behavior of Tolman’s length near

the critical point. The mean-field expression for Tolman’s length found by Fisher

and Wortis can be written in terms of the Landau expansion coefficients (Eq. 2.29)

as

δT =
1

12

f5

f4

(
6f2|∆T |

f4

)1/2(
1

2f2|∆T |
)1/2

. (3.107)

When the temperature dependent coefficients from the O(ε) EOS in Sec. 2.2 are

substituted into this equation it yields

δT = −
[

5

4
a|∆T |β−ν − 5

3
b|∆T |1−α−β−ν

]
B0ξ

−
0 . (3.108)

This expression matches the prediction of Anisimov [69], Eq. 3.16, when we use the

O(ε) relation β/Γ−0 ' 1. A purely thermodynamic expression of this type should

be valid in the limit uλ = 0, when there are no contributions from the asymmetric

gradient term.

To study Tolman’s length for uλ 6= 0, the asymmetric profile must be used.

The Barret expression for δT, Eq. 3.86, was derived for a mean-field equation of

state, however, it may still serve as a reasonable approximation at O(ε), for the

same reason that the surface tension calculated at O(ε) with Eq. 3.6 is very close

to the actual surface tension. When the full density profile, Eq. 3.99 is substituted

into Eq. 3.86 for δT, one finds,

δT

2ξ
=

[
1

3
uλ(2k3 − k1 − k2)− 1

2
a(3k2 − k1)

]
B0|∆T |β

+b(4k1 + 2k2)

(
A−0 − A+

0 /2
α

B0

)
|∆T |1−α−β, (3.109)
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where k1, k2, and k3 are numerical coefficients given by the integrals,

k1 = 2

∫
dx xM [∂xM ]2∫
dx (∂xM)2 −

∫
dx xM∂xM∫
dx ∂xM

, (3.110)

k2 = 2

∫
dx
(
x ∂xM∂2

xM
∫
dxM

)∫
dx (∂xM)2 −

∫
dx
(
x ∂2

xM
∫
dxM

)∫
dx ∂xM

, (3.111)

k3 =

∫
dx xM [∂xM ]2∫
dx (∂xM)2 , (3.112)

and where x = z/2ξ is the integration variable and the limits of integration extend

from −∞ to ∞. These integrals evaluate to

k1 =
1

5

(
επ

6
√

3

)
, (3.113)

k2 =
5

12
+

7

75

(
επ

6
√

3

)
, (3.114)

k3 =
1

4
+

4

15

(
επ

6
√

3

)
. (3.115)

In the limit ε → 1, we find k1 ' 0.061, k2 ' 0.44, and k3 ' 0.33. Based on

Anisimov’s expression for Tolman’s length found in Eq. 3.16, it seems likely that

the term proportional to b also contains a factor of β/Γ−0 which cannot be resolved

at O(ε). Tolman’s length can be written compactly as

δT

2ξ
= δ0|∆T |β + δ1|∆T |1−α−β (3.116)

In terms of the expansion coefficients, these amplitudes are found to be

δ0 ' −(0.25u5 − 0.89uλ)B0, (3.117)

δ1 ' (0.80u5 − 2.26uλ)
A−0 − A+

0 /2
α

B0

. (3.118)

Both coefficients, u5 and uλ, are expected to be negative, and consequently, unlike

the mean-field case, the signs of δ0 and δ1 appear to depend sensitively on their
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HD Ne N2 C2H4 C2H6 SF6 C2Cl3F3 C7H16

δ0 -0.031 -0.013 -0.023 -0.047 -0.050 -0.263 -0.362 -0.521

Table 3.1: Estimates of Tolman’s length amplitude δ0

relative values. In the mean-field theory, and the scaling predictions based on that

theory, the sign of Tolman’s length is strictly negative. If uλ = 0, δ0 would be

positive for a negative u5. However, for positive mixing parameter a, as discussed

at the end of Sec. 2.5, we have |u5| . 3.33|uλ|. Here, we see that δ0 will be negative

for |u5| . 3.56|uλ|. This bound for δ0 is more stringent than that provided by the

positivity of a. We can estimate the values of the Tolman’s length amplitudes using

the values of u5 and uλ found from fits to experimental coexistence curves in Chapter

2. For all of these coexistence curves a was found to be positive. The combined

results of Table 2.2 and Eq. 3.117 are presented in Table 3.1. The leading amplitude

δ0 is found to be negative. The sign of δ1 follows the sign of the asymmetry parameter

b, but its magnitude is more uncertain, since, as discussed below Eq. 3.109, there

may be numerical factors that are not resolved by the current O(ε) calculations.

The amplitude δ0 depends on two coefficients and therefore cannot be part of

a universal amplitude ratio, unless one of the coefficients is zero. If uλ = 0, then

− δ0B0

D2βξ
−
0

' 1.27 (3.119)

is a universal quantity, where D2β is the amplitude of the 2β contribution to the

diameter. However, experimental evidence from Chapter 2 seems to suggest that

uλ 6= 0.
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3.7 Summary and Conclusions

In Sec. 3.3, the complete scaling transformations were extended to inhomo-

geneous systems by including gradient mixing within the approximation η = 0.

The remainder of the chapter considered the consequences these extended complete

scaling transformations. A simplified form of the transformations is presented in

Eqs. 3.41-3.44. These transformations predict a connection, Eq. 3.48, between the

density gradient and the magnetization gradient, that we argued can be interpreted

as a coordinate transformation, Eq. 3.53, between an asymmetric physical system

and a symmetric Ising-type system. The subsection 3.3.1 demonstrates the complex

connection between the equilibrium conditions for a planar density profile and a

planar magnetization profile. The equilibrium condition was solved in Sec. 3.4, for

the special case b = 0, with the result presented in Eq. 3.80. Based on this profile is

was shown that the mean-field Tolman’s length is still predicted to be negative for

uλ 6= 0. The solution for the full density profile, Eq. 3.99, was completed in subsec-

tion 3.5.1, after the interfacial entropy profile, Eq. 3.94, was derived in Sec. 3.5. The

implications of the entropy profile for the interfacial heat capacity were discussed in

Sec. 3.5.2. Finally Tolman’s length was calculated from the full interfacial profile in

Sec. 3.6. The resulting expression, Eq. 3.109, shares the temperature dependence

of previous thermodynamic derivations, but differs significantly in its predictions of

the amplitudes. In particular, uλ appears to break a proposed universal amplitude

ratio.
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Chapter 4

Summary and Discussion

In this dissertation we have discussed different aspects of asymmetric fluid crit-

icality. In Chapter 1, we provided an introduction to the general concepts associated

with fluid criticality, which were then illustrated in the mean-field approximation.

The results of Chapters 2 and 3 have previously been summarized in Secs.2.6 and

3.7 respectively. Although many of the ancillary results have independent merit, we

recapitulate only the chief findings here. In Chapter 2, the RG treatment of fluid

asymmetry and a set of simplified complete scaling transformations were shown to

yield identical thermodynamic results at first order in ε = 4 − d. Once the com-

plete scaling exponent “2β” has been identified in the excess density, one cannot

separately identify a distinct “θ5” correction term at this order.

In Chapter 3, complete scaling was extended to inhomogeneous systems. This

result was used to calculate the near-critical Tolman’s length. The temperature

dependence of Tolman’s length was shown to agree with previous estimates, however,

the amplitude of the leading contribution was shown to depend on the coefficient

of the asymmetric gradient, which has previously been ignored in some treatments.

The sign of Tolman’s length was found to be negative in real fluids in agreement

with other theoretical treatments and recent simulation results. In the remainder

of this section, we will discuss some outstanding issues in an informal manner.
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One of the unifying themes of this dissertation has been the importance of the

asymmetric gradient contribution, both to the “proof” of complete scaling, and for

determining the amplitude of Tolman’s length. However to the best of the author’s

knowledge, little is known about the nature of this term. The coefficient f1 in front

of the square gradient in Eq. 3.20 is related to the direct correlation function c(r; ρ)

at position r, by [68],

f1(ρ) =
1

6
kBT

∫
r2c(r; ρ)dr. (4.1)

This expression has been used to estimate the amplitude of the correlation length

ξ+
0 , as found in the expansion f1 ' (ξ+

0 )2[1 + (2/3)uλ∆ρ], from the interparticle

potential u(r) by

(ξ+
0 )2 ∼ −1

6

∫
r2u(r)dr. (4.2)

It appears the same has not been done for uλ. In particular it would be interesting

to determine if there are intermolecular potentials for which uλ is negligibly small in

the critical region. Since u5 is expected to be negative, this would imply that a < 0

and b < 0, and that the excess density would consequently exhibit a “wiggle”. More

precisely the second derivative of the excess density with respect to temperature

would change sign in the critical region. The fact that this type of “wiggle” is not

seen in experimental or simulation [83] results, indicates that uλ cannot in general

be ignored. Simulation data for specific forms of the interaction potential could be

combined with fits to complete scaling predictions to determine how the asymmetry

coefficients vary with interaction range and shape of the potential. Precise simu-

lation data of near-critical coexistence curves have already been made for model
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potentials such as the hardcore square-well [84, 83, 85]. It would be worthwhile to

refit the numerical coexistence-curve data presented in these works in light of the

findings of this disertation.

There are still unresolved issues surrounding the “proof” of complete scaling

presented in Chapter 3. Nicoll’s proof of revised scaling does not depend on the ε-

expansion and holds to all orders. In this sense, revised scaling can be thought of as

an exact “eigenoperator” of the asymmetric Hamiltonian. To explicitly demonstrate

this, revised scaling was shown to hold at order ε2. In the same spirit, we have shown

that complete scaling holds to order ε. The next logical step would be to extend

the demonstration of complete scaling to order ε2. Initial calculations suggest that,

unlike the revised scaling case, this is not a straightforward task. If complete scaling

cannot be shown to hold at all orders, then perhaps it corresponds to an approximate

“eigenoperator”. In order to truly understand the relevance of complete scaling, it is

necessary to understand why the normal RG formalism does not arrive at the same

predictions as complete scaling. In Sec. 2.4 it was shown that the ε-expansion of

the asymmetric “RG” EOS has two different interpretations at first order in ε, one

identifies the exponent θ5, the other matches complete scaling by identifying a 2β

term, but not a distinct θ5 term. The same physical system cannot be described by

both of these interpretations. It seems as though there ought to be a way to isolate

the correct, or physically meaningful, interpretation. Extending the work in this

dissertation to second order in ε seems like a reasonable next step in this direction.

Thus far, the complete scaling mixing parameters have been found from fits to

experimental coexistence curve data, with some work on the Yang-Yang anomaly.
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Fluid asymmetry also affects properties like the susceptibility, and, as discussed in

Chapter 3, the correlation length. If these were independently measured, values for

the mixing parameters, and therefore the coefficients in the effective Hamiltonian,

could be determined more accurately and more consistency. Experiments to measure

the susceptibilities in the “bulk” portions of the coexisting phases via light scattering

have previously been suggested. By varying the scattering angle, the asymmetry in

the correlation length could be similarly probed.

The complete scaling equation of state developed in the ε-expansion was useful

for comparison with the RG EOS, but is not practical for other applications. As

mentioned in Chapter 2, a version of the complete scaling EOS based on a parametric

model would be useful. The details of the resulting EOS still need to be worked

out. A crossover EOS that correctly interpolates between the critical and mean-field

regimes, and incorporates complete scaling, could be another useful extension.

Throughout this work we have discussed liquid-vapor systems without much

reference to fluid mixtures. These systems are connected through the isomorphism

principle, and we have used this connection to justify our seemingly narrow focus.

However, there is one regard in which liquid-vapor systems and fluid mixtures are not

identical, and that is the ease with which experiments can be conducted and accurate

results can be obtained. Data for fluid mixtures is more abundant, can exhibit high

degrees of asymmetry, and can be collected with good accuracy [86, 29]. For these

reasons, it would be interesting to apply the current formulation of complete scaling

to fluid mixtures in order to find experimental values for the mixing parameters and

asymmetric Hamiltonian coefficients. This would require a minor modification, the
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inclusion of an independent linear term, to the previous complete scaling fits for

fluid mixtures, and should be relatively easy to execute.

The concepts used to extend complete scaling to inhomogeneous fluids could

be applied to other thermodynamic fields, in particular to the electric field. To

study the thermodynamics of the dielectric constant, it is necessary to include the

electric field in the EOS. The implications of revised scaling for the near-critical

dielectric constant were investigated by Sengers et al. [87]. Recently, this work was

extended to complete scaling [88]. However, the implications for the complete scaling

equation of state and the effects of the mixing-parameter c were not considered. A

reconsideration in light of these developments could yield additional information.
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Appendix A

Ising-type equation of state in the one-loop approximation

The general results of this Appendix can be found in many other sources, such

as the chapter by Brezin et al. [37]. Our current purpose is to explicitly show some

of details that are often omitted.

In this Appendix we will follow the convention that kB = 1, where kB is

Boltzmann’s constant. The Ising- Helmholtz energy Ψ is related to the canonical

partition function Z by

Ψ(m, t) = −T lnZ. (A.1)

The partition function can be written as a path integral, in terms of the continuous

field-variable, φ, as

Z =

∫
Dφ exp

{
−
∫
dxH [φ(x)]

}
, (A.2)

where H is the Hamiltonian density, or Hamiltonian for short. To determine the

leading effects of fluctuations, the integral can be approximated by expanding around

the equilibrium value the field, namely, 〈φ〉 = m. This is known as the loop expan-

sion. If φ = m+ δφ, then the Hamiltonian is expanded in δφ as

H [φ(x)] = H|φ=m +
1

2

∫∫
dx1dx2H(2)(x1, x2)δφ(x1)δφ(x2) + · · · , (A.3)

where the linear term is zero because 〈φ〉 minimizes H. We will not consider the
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higher order terms in this expansion. The quadratic term is defined by

H(2)(x1, x2) =
δ2H

δφ(x1)δφ(x2)

∣∣∣∣
φ=m

. (A.4)

The partition function can now be separated into two factors,

Z = exp

{
−
∫
H|φ=m

}∫
Dδφ exp

{
−
∫
H(2)(δφ)2

}
, (A.5)

where the Gaussian integral is evaluated as∫
Dδφ exp

{
−1

2

∫
H(2)(δφ)2

}
=

√
2π

DetH(2)
. (A.6)

Taking the logarithm, we find the Helmholtz energy density

Ψ = H|φ=m +
1

2
Tr
{

lnH(2)
}

(A.7)

This is the general EOS in the one-loop approximation. To proceed further, an

explicit expression for the Hamiltonian is required.

The Ising-type Landau-Ginzburg-Wilson (LGW) Hamiltonian is given by

H [φ(x)] = −(t0)

2g0

2

+
1

2
t0φ

2 +
g0

4!
φ4 +

1

2
|∇φ|2. (A.8)

The asymptotic Ising mean-field EOS, Eq. 1.37 , is recovered from the first term

in Eq. A.7, if t0 = t and g0 = g. The second term provides the leading fluctuation

corrections. For this reason, H(2) can be called the “fluctuation operator”. The

bare Hamiltonian in Eq. A.8 does not yield finite results. Consequently, the “bare”

coefficients, t0 and g0, must be renormalized. The renormalization conditions can

be expressed in terms of the n-point irreducible vertex functions, Γ(n), and the

renormalized coefficients, t and g, as

Γ(2) (p1, p2; t0, g0)
∣∣
pi=0

= t, (A.9)

Γ(4) (p1, p2, p3, p4; t0, g0)
∣∣
pi=0

= g, (A.10)
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Γ(2) = +

Γ(4) = +

Figure A.1: Ising vertex-function diagrams up to one loop

where the vertex functions have been evaluated at zero momentum. The details

of the renormalization scheme only affect non-universal terms, and are therefore

unimportant. Renormalization at zero-momentum is a conceptually simple scheme,

but it does not always yield the cleanest results. The vertex functions can be

represented through diagrammatic expansions, in which each diagram corresponds

to a particular integral with a numerical coefficient determined by standard counting

rules. For the Ising-type Hamiltonian, the relevant diagrams are shown in Fig. A.1.

Reading off the terms from Fig. A.1, we find

t ' t0

(
1− g0

2
J
)

+ δt (A.11)

g ' g0

(
1− 3

2
g0J

)
, (A.12)

where the “mass shift” is

δt = −g0

2

∫
q

1

q2
, (A.13)

while one has

J =

∫ ∞
0

qd−1dq

(q2 + 1)2
. (A.14)

The expressions for the bare coefficients, found by inverting Eqs. A.11 and
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A.12 and linearizing in g, are

t0 ' t
(

1 +
g

2
J
)
, (A.15)

g0 ' g

(
1 +

3

2
gJ

)
, (A.16)

where the mass-shift, which does not affect our calculations, has been omitted. The

first term in Eq. A.7 is now found to be

H|φ=m = − t
2

2g
+

1

2
tm2 +

g

4!
m4 +

1

4

(
t2 + gtm2 +

g2

4
m4

)
J (A.17)

If we denote the Ising mean-field EOS (Eq. 1.37) by Ψ̄ to distinguish it from the

fluctuation-modified Helmholtz energy Ψ, then the above equation can be compactly

re-expressed as

H|φ=m = Ψ̄ +
(Ψ̄′′)2

4
J, (A.18)

where Ψ̄′′ = ∂2Ψ̄/∂m2. In Nicoll’s previous work [24], a different notation was used,

namely, κ2 = Ψ̄′′. For comparison with Nicoll’s results, we will adopt this notation,

so that

κ2 = t+ (g/2)m2. (A.19)

The mean-field theory correctly describes critical phenomena in d > 4 dimen-

sions, where fluctuations do not affect the leading bulk exponents. Therefore, to

investigate the critical phenomena in d = 3, we will follow Ref. [89] and make an

expansion in ε, where ε = 4 − d, and then extrapolate to ε = 1. This is known as

“the ε-expansion”. To leading order in ε, Eq. A.14 is found to be J ≈ 1/ε − 1/2.

This value of J , correctly predicts all universal quantities at O(ε). However, it does

not agree with the more commonly encountered value, found by applying slightly
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more sophisticated renormalization conditions. In particular, a “mass-less” theory

is typically renormalized at the symmetry point [37]. The choice of renormalization

schemes only affects non-universal quantities, but in order to compare the current

calculation with previous work, we will adopt the “standard” value from the mass-

less renormalization scheme, specifically,

J ≈ 1

ε

(
1 +

ε

2

)
. (A.20)

This choice of J does not alter the previous discussion.

The fluctuation operator for the Ising-type Hamiltonian is,

H(2) =
[−∇2 + κ2

]
δ(x1 − x2), (A.21)

Therefore the fluctuation correction is given by

1

2
Tr lnH(2) =

1

2

∫
p

ln
(
p2 + κ2

)
=

1

4ε

(
1− ε

4

)−1 (
κ2
)2−ε/2

, (A.22)

where the integral has been performed in d = 4 − ε dimensions. The two parts of

the Helmholtz energy are combined to yield,

Ψ = Ψ̄ +
κ4

4ε

{
εJ −

(
1− ε

4

)−1 (
κ2
)−ε/2}

. (A.23)

After expanding the terms in the braces to O(ε), we can compactly express the

Ising-type EOS as

Ψ = Ψ̄ +
g

16

(
κ4

g

)
[2L+ 1] , (A.24)

where we have defined L = lnκ2. The second term, which comes from the fluctuation

correction, is O(ε), although this is not explicitly manifest. To make the dependence
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on ε explicit, one needs to substitute the fixed-point value of the coupling constant,

g∗ = 2ε/3, into the coefficient of the second term so that g∗/16 = ε/24.

Other thermodynamic properties of the system are easily derived from the

Helmholtz energy. The magnetic field is found to be

h = tm+
g

6
m3 +

ε

6
mκ2 [L+ 1] (A.25)

and the entropy density is

∆s =
t

g
− 1

2
m2 − ε

6

κ2

g
[L+ 1] . (A.26)

The magnetization at coexistence is found by solving h = 0, with the result, for

t < 0,

m = ±
(

6|t|
g

)1/2 (
1− ε

6
[ln 2|t|+ 1]

)
. (A.27)

The ε-expansion is interpreted using the relation, |t|ε ' 1 + ε ln |t|. Therefore the

magnetization can be written

m = ±6

g

(
1− ε

6
[ln 2 + 1]

)
|t|1/2−ε/6. (A.28)

The remaining amplitudes and exponents are found in a similar fashion. The value

for the exponents and amplitudes are summarized in Tables A.1 and A.2. The

amplitudes are not universal and depend on the particulars of the renormalization

scheme. However, certain ratios of the amplitudes form universal quantities. For

example, the susceptibility amplitude ratio is,

Γ+
0

Γ−0
= 2

(
1 +

ε

2

[
1 +

ln 2

3

])
' 2γ−1 γ

β
. (A.29)
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Exponent: β α γ ν η δ

Value: 1
2
− ε

6
ε
6

1 + ε
6

1
2

+ ε
12

0 3 + ε

ε = 1: 0.33 0.17 1.17 0.58 0 4

Table A.1: Critical exponents in the one-loop approximation at O(ε) based on the

Ising-type EOS Eq. A.24

This matches the standard result at O(ε), whereas our value for the heat capacity

amplitude ratio,

A+
0

A−0
=

1

4

(
1 +

ε

6
ln 2
)
' 2α

4
, (A.30)

only matches the standard result, A+
0 /A

−
0 = (2α/4)(1 + ε), to O(1). While the

one-loop expansion provides all other quantities to O(ε), a two-loop calculation is

required to get the correct heat-capacity amplitude ratio at O(ε) [90].

97



Amplitude Mean-field value

B0

(
6
g

)1/2 [
1− ε

6
(ln 2 + 1)

]
A+

0
1
g

(
1− ε

6

)
A−0

4
g

[
1− ε

6
(ln 2 + 1)

]
Γ+

0 1− ε
6

Γ−0
1
2
[1− ε

6
(ln 2 + 4)]

ξ+
0 1− ε

12

ξ−0
1√
2
[1− ε

12
(ln 2 + 4)]

Table A.2: Critical amplitudes in the one-loop approximation at O(ε) based on the

Ising-type EOS Eq. A.24
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