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This dissertation deals with a multiterminal source model for secret key gen-

eration by multiple network terminals with prior and privileged access to a set of

correlated signals complemented by public discussion among themselves. Emphasis

is placed on a characterization of secret key capacity, i.e., the largest rate of an

achievable secret key, and on algorithms for key construction. Various information

theoretic security requirements of increasing stringency: weak, strong and perfect se-

crecy, as well as different types of sources: finite-valued and continuous, are studied.

Specifically, three different models are investigated.

First, we consider strong secrecy generation for a discrete multiterminal source



model. We discover a connection between secret key capacity and a new source

coding concept of “minimum information rate for signal dissemination,” that is of

independent interest in multiterminal data compression. Our main contribution is

to show for this discrete model that structured linear codes suffice to generate a

strong secret key of the best rate.

Second, strong secrecy generation is considered for models with continuous ob-

servations, in particular jointly Gaussian signals. In the absence of suitable analogs

of source coding notions for the previous discrete model, new techniques are required

for a characterization of secret key capacity as well as for the design of algorithms for

secret key generation. Our proof of the secret key capacity result, in particular the

converse proof, as well as our capacity-achieving algorithms for secret key construc-

tion based on structured codes and quantization for a model with two terminals,

constitute the two main contributions for this second model.

Last, we turn our attention to perfect secrecy generation for fixed signal ob-

servation lengths as well as for their asymptotic limits. In contrast with the analysis

of the previous two models that relies on probabilistic techniques, perfect secret key

generation bears the essence of “zero-error information theory,” and accordingly,

we rely on mathematical techniques of a combinatorial nature. The model under

consideration is the “Pairwise Independent Network” (PIN) model in which every

pair of terminals share a random binary string, with the strings shared by distinct

pairs of terminals being mutually independent. This model, which is motivated by

practical aspects of a wireless communication network in which terminals communi-

cate on the same frequency, results in three main contributions. First, the concept



of perfect omniscience in data compression leads to a single-letter formula for the

perfect secret key capacity of the PIN model; moreover, this capacity is shown to be

achieved by linear noninteractive public communication, and coincides with strong

secret key capacity. Second, taking advantage of a multigraph representation of

the PIN model, we put forth an efficient algorithm for perfect secret key genera-

tion based on a combinatorial concept of maximal packing of Steiner trees of the

multigraph. When all the terminals seek to share perfect secrecy, the algorithm is

shown to achieve capacity. When only a subset of terminals wish to share perfect

secrecy, the algorithm is shown to achieve at least half of it. Additionally, we ob-

tain nonasymptotic and asymptotic bounds on the size and rate of the best perfect

secret key generated by the algorithm. These bounds are of independent interest

from a purely graph theoretic viewpoint as they constitute new estimates for the

maximum size and rate of Steiner tree packing of a given multigraph. Third, a par-

ticular configuration of the PIN model arises when a lone “helper” terminal aids all

the other “user” terminals generate perfect secrecy. This model has special features

that enable us to obtain necessary and sufficient conditions for Steiner tree packing

to achieve perfect secret key capacity.
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Chapter 1

Introduction: Information Theoretic Secret Key Generation

1.1 Overview of Prior Work

Information security is a crucial requirement in current and emerging commu-

nication networks, and issues of secure communication have thrust themselves to

the forefront of network operation, and of research in information theory. These

developments emphasize the need for the study of network or multiterminal models

of information security, which are of significantly greater scope and complexity than

their point-to-point predecessors.

The security of all currently used cryptosystems is reliant on the difficulty cur-

rently faced in solving an underlying computational problem, e.g., factoring large

numbers into prime numbers or computing discrete logarithms. Such a notion of

computational security can offer guarantees only under assumptions of restricted

computational power available to an adversary. Thus, it is desirable – from both a

theoretical as well as a practical standpoint – to design cryptosystems that are based

on a rigorously provable notion of security which does not assume any restrictions

on an adversary’s computational power. The notion of information theoretic secrecy

or unconditional security meets this requirement. It affords the guarantee that a

secret key and, thereby, a legitimate plaintext message are, in effect, statistically

independent of the observations of an adversary with eavesdropping and wiretap-
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ping capabilities, and not limited in terms of computational resources. The first

information theoretic study of a secret key cryptosystem was Shannon’s classical

work [47].

An important and popular class of models in the study of information theoretic

security, that fall in the category of “keyless” cryptosystems, involve reliable and

secure message transmission over insecure channels. Wyner’s pioneering wiretap

channel [51] has one input and two outputs; a legitimate transmitter controls the

input, while a legitimate receiver and a wiretapper have access to each output. The

wiretapper’s channel output is a degraded version of that of the legitimate terminal.

Subsequently, Csiszár and Körner [12] generalized Wyner’s result for a model in

which the eavesdropper’s channel output need only be more noisy than that of the

legitimate channel. These initial works have inspired numerous important extensions

in several new directions in recent years; a survey can be found in [33].

This dissertation deals with secret key generation for a multiple source model

by multiple network terminals based on prior and privileged access to a set of cor-

related signals followed by public discussion among themselves. Separate terminals

that observe the outputs of distinct albeit correlated sources can generate a secret

key (SK) by means of public communication. Specifically, these terminals are able to

generate “common randomness” (CR) regarding which an eavesdropper, with access

to the public communication, can glean only a negligibly small amount of mutual

information. Typical applications arise in sensor networks and satellite-terrestrial

networks. This phenomenon, first observed by Bennett et al [4] and Maurer [39],

followed by Ahlswede and Csiszár [1], for a model with two terminals, has been
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investigated later by many researchers. A model which includes a helper terminal,

observing the output of another source and assisting in generating SK, was investi-

gated by Ahlswede and Csiszár [1], and by Csiszár and Narayan [14]. These works

were followed by that of Csiszár and Narayan [15, 16] in which SK generation was

studied for models with arbitrary numbers of terminals and arbitrary number of

helpers. These models of SK generation are broadly referred to as “multiterminal

source models.”

Another class of SK generation models namely “multiterminal channel models”

are considered in [39, 1] for models with two terminals, and in [16, 17] for models

with arbitrary numbers of terminals and arbitrary numbers of helpers. In a channel

model, a set of terminals can transmit information over a secure multi-input multi-

output channel to another set of terminals. Additionally, all the terminals are

allowed to communicate over a public noiseless channel of unlimited capacity, which

is observed by an eavesdropper.

1.2 The Multiterminal Source Model

Our focus is on the multiterminal source model introduced in [15]. In this

model, each of the terminals observes a distinct component of a memoryless multiple

source; we consider sources with discrete as well as continuous alphabets. A set of

the terminals then wish to generate a SK with the cooperation of the remaining

terminals. To this end, the terminals are allowed to communicate publicly with

each other, possibly interactively in many rounds. No rate constraint is imposed on
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the public communication. Randomization may be permitted at each terminal.

We assume that an eavesdropper has full access to the public interterminal

communication, but that it is passive, i.e., it cannot tamper with the public commu-

nication. No restrictions are assumed on the eavesdropper’s computational power.

The SK capacity—the largest rate at which a SK can be generated—for a

model with a discrete memoryless multiple source (DMMS) is determined in [15].

This capacity result holds in a strong sense: the mutual information of the SK

and the public communication vanishes exponentially in the observation length. A

concept of strong SK capacity was introduced in [40] in which the mentioned mutual

information is only required to go to 0, and the stronger version we use here was

first considered in [11, 14, 15].

The SK capacity for a model with a DMMS derived in [15] reveals an innate

connection between SK generation and lossless distributed data compression without

any secrecy constraints. In particular, consider m terminals each observing inde-

pendent and identically distributed (i.i.d.) repetitions of discrete random variables

(rvs) X1, . . . , Xm, respectively. A set of terminals A ⊆ {1, . . . , m} seek a SK with

the help of the remaining terminals. The SK capacity for this model can be com-

puted by subtracting from the total joint entropy H(X1, . . . , Xm) the smallest rate

of communication which enables each terminal in A to reconstruct near-losslessly all

the m components of the DMMS, i.e., for the terminals in A to become omniscient.

The problem of determining the latter smallest rate is one of multiterminal data

compression and does not involve any secrecy constraints.

The mentioned connection also suggests a means of generating a SK of op-
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timum rate for such a model with a DMMS by decomposing the problem of SK

generation into two parts. First, the terminals publicly communicate at the most

parsimonious rate to enable all the terminals in A to become omniscient. Second,

each terminal in A generates a SK by extracting from this omniscience part that is

nearly independent of the public communication. It is also shown in [15, 16] that

the SK capacity can be achieved, based on the decomposition, by noninteractive

communication and without randomization.

1.3 Motivation

Algorithms for SK generation for multiterminal source models constitute a

largely unexplored domain; preliminary results are available for models consisting

of two terminals and for special cases with multiple terminals [53, 56]. For example,

for a source model, can a SK of optimum rate be generated using structured codes,

e.g., linear codes?

Next, turning to a multiterminal source model in which the multiple source

observed by the terminals is continuous-valued, e.g., a memoryless jointly Gaus-

sian multiple source, the SK capacity is not immediate, in general, since there is

no meaningful analog of the concept of minimum communication for omniscience.

However, from the discussion above, we can expect an inherent connection between

the problems of SK generation and lossy data compression. What are the char-

acterizations of SK capacities for source models with memoryless jointly Gaussian

multiple sources? Can a SK of optimum rate be generated using structured codes,
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e.g., lattice and linear codes?

SK generation for a special incarnation of the source model has an intriguing

connection with combinatorial problems, in theoretical computer science, of tree

packing in multigraphs. This connection is seen in SK generation for a “pairwise

independent network” (PIN) source model. The PIN model is motivated by practical

aspects of a wireless communication channel in which the transmitters and receivers

operate on the same frequency in a multipath environment. The SK capacity for the

PIN model will be seen to depend on the joint distribution of the underlying rvs only

through the best rates of pairwise SKs. First, this fact suggests that a (globally)

optimum secret key for the terminals in A can be built from locally generated keys for

pairs of terminals. Second, it hints at the possibility of a connection to algorithms

for tree packing in order to propagate optimum pairwise keys to form a globally

optimum key. Can tree packing algorithms be used, in general, to generate global

keys for a set of terminals from locally generated keys? Under what conditions

are such global keys of optimum rate? Furthermore, can information theoretic SK

generation provide tools for investigating problems of tree packing in multigraphs?

This dissertation strives to answer the questions raised above.

1.4 Outline and Summary of Contributions

We begin in Section 2.1 with a description of a general multiterminal source

model for information theoretic secrecy generation by multiple terminals based on

privileged and correlated observations of signals at the terminals, followed by public
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interterminal communication. Various information theoretic security requirements

of increasing stringency: weak, strong and perfect secrecy, are discussed followed by

the operational definitions of the corresponding notions of SK capacity.

Section 2.2 deals with secrecy generation for the discrete multiterminal source

model. Specifically, in Section 2.2.1, we present an existing and motivating result on

a connection between SK capacity and a source coding concept of “minimum rate

of communication for omniscience.” Section 2.2.2 describes our contribution on a

new connection between SK capacity and a new source coding concept of “minimum

information rate for signal dissemination.” Section 2.2.3 contains our results on the

structural properties of optimal codes for secrecy generation; specifically, we show

that linear codes suffice to generate a strong SK of the best rate.

Chapter 3 investigates secrecy generation for models with continuous obser-

vations focusing on jointly Gaussian signals. In the absence of analogs to source

coding notions for the discrete model of Chapter 2, new techniques are required for

the characterization of SK capacity as well as for the design of algorithms for SK

generation. The proof of the SK capacity result in Section 3.2, in particular the

converse proof, as well as the design of capacity-achieving algorithms for SK gener-

ation based on structured codes and quantization, for a model with two terminals

in Section 3.3, constitute the two main contributions of this chapter.

In Chapter 4, we turn our attention to perfect SK generation for fixed sig-

nal observation lengths as well as for their asymptotic limits. In contrast with the

substance of Chapters 2 and 3 that relies on probabilistic techniques, Chapter 4

bears the essence of “zero-error information theory,” and accordingly, we rely on
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mathematical techniques of a combinatorial nature. The model under consideration

in this chapter is the “Pairwise Independent Network (PIN)” model in which every

pair of terminals share a random binary string, with the strings shared by distinct

pairs of terminals being mutually independent. Chapter 4 offers three main contri-

butions. First, the concept of perfect omniscience leads to a single-letter formula

for the perfect SK capacity of the PIN model; moreover, this capacity is shown to

be achieved by linear noninteractive communication, and coincides with the strong

SK capacity. Second, taking advantage of a multigraph representation of the PIN

model, we put forth an efficient algorithm for perfect SK generation based on a com-

binatorial concept of a maximal packing of Steiner trees of the multigraph. When

all the terminals seek to share perfect secrecy, the algorithm is shown to achieve

perfect SK capacity. However, when only a subset of terminals wish to share perfect

secrecy, the algorithm can fall short of achieving capacity; nonetheless, it is shown

to achieve at least half of it. Additionally, we obtain nonasymptotic and asymptotic

bounds on the size and rate of the best perfect SK generated by the algorithm.

These bounds are of independent interest from a purely graph theoretic viewpoint

as they constitute new estimates for the maximum size and rate of Steiner tree

packing of a given multigraph. Third, a particular configuration of the PIN model

arises when a lone “helper” terminal aids all the other “user” terminals generate

perfect secrecy. This model has special features that enable us to obtain necessary

and sufficient conditions for Steiner tree packing to achieve perfect SK capacity, as

also a further sufficient condition that posits a “weak” role for the helper terminal.

In the concluding Chapter 5, we first compile in Section 5.1 specific open
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problems emerging from our work in Chapters 3 and 4 that are yet to be resolved.

Finally, in Section 5.2 we point out broader research directions that are motivated

by this dissertation.

1.5 Apropos Group Secret Key Cryptosystems

There exists a rich body of work on group secret key distribution based on

the approach of computational theoretic security, on which existing cryptosystems

are based (cf. e.g., [6, 29, 36, 35, 37]). It is our hope that our work on information

theoretic group secret key generation will serve as a useful complementary step.
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Chapter 2

The General Multiterminal Source Model

This dissertation deals with models for secrecy generation by multiple ter-

minals based on privileged and correlated observations of signals at the terminals,

followed by public interterminal communication. Typical applications arise in sen-

sor networks and satellite-terrestrial networks. For example, in a sensor network,

multiple sensor nodes are deployed to measure a parameter of the environment; the

distinct measurements at the various sensor nodes usually exhibit certain correlation

structures depending on their locations. In a satellite-terrestrial network, various

ground stations can observe different noisy versions of a common broadcast signal.

In this setting, if the terminals are afforded a means to publicly exchange messages,

then it transpires that the terminals can devise a secret key (SK) [39, 1]. In other

words, these terminals are able to generate common randomness regarding which an

eavesdropper with access to the public communication can glean only a negligibly

small amount of mutual information.

2.1 Description and Secret Key (SK) Capacity

We begin with a description of the “multiterminal source model” for SK gen-

eration. Our model builds on the discrete model introduced in [15, 16]. Termi-

nals 1, . . . , m represent legitimate parties that cooperate in SK generation. Let

10



X1, . . . , Xm be discrete or R-valued rvs with alphabets denoted by X1, . . . ,Xm,

and with (known) joint probability distribution. Let M = {1, . . . , m}. Terminal

i ∈ M observes n independent identically distributed (i.i.d.) repetitions of the rv Xi,

namely Xi = X
(n)
i = Xn

i = (Xi1, . . . , Xin). We use the notation XM , (X1, . . . , Xm)

and XM , (X1, . . . ,Xm). Following these observations, the terminals are allowed

to communicate over a public noiseless channel, possibly interactively in multiple

rounds. We assume without loss of generality that the public communication, which

may be interactive, takes place in consecutive time slots in r rounds. Specifically,

following the formulation in [15], it is depicted by the mappings f1, . . . , fmr with fν

corresponding to the transmission in slot ν by terminal i ≡ ν mod m; we allow fν

to yield any function of the source sequence (Xi = xi) observed at terminal i and of

all previous communication f[1,ν−1] = (f1, . . . , fν−1). The corresponding rvs repre-

senting the communication are denoted by F1, . . . , Fmr, with Fν = fν(Xi, F[1,ν−1]).

We denote the communication collectively by F = F[1,mr]. The goal is for a set of

terminals A ⊆ M to generate secret common randomness with the cooperation of

the remaining terminals in M\A, which is concealed from an eavesdropper with

access to the public communication F. This is formalized next.

Following [15], given ε > 0, a rv L will be said to be ε-recoverable from a rv Z

if there exists a function f(Z) so that Pr{L 6= f(Z)} ≤ ε. If such a function exists

so that Pr{L 6= f(Z)} = 0, then L is said to be perfectly recoverable from Z.

A function L of XM is ε-common randomness (ε-CR) for a set of terminals

A ⊆ M, achievable with communication F, if L is ε-recoverable from (Xi,F), for

each i ∈ A.
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A function K of XM with values in a finite set K constitutes an ε-secret key

(ε-SK) for a set of terminals A ⊆ M, achievable with communication F, if K is

ε-CR for A and, in addition, K has a security index1

s(K;F) , log |K| − H(K|F) ≤ ε, (2.1)

where |K| denotes the cardinality of K. Observe that if K is an ε-SK, then both

log |K| − H(K) ≤ ε (2.2)

and

I(K ∧ F) ≤ ε (2.3)

hold so that K is nearly uniformly distributed and is nearly independent of F, since

ε is typically small.

Definition 2.1: A nonnegative number R is an achievable SK rate for a set

of terminals A ⊆ M if there exist2 εn-SKs K(n) with values in finite sets K(n)

that are achievable with suitable public communication (with the number of rounds

possibly depending on n), such that limn→∞ εn = 0 and limn→∞
1
n

log |K(n)| = R.

The supremum of achievable SK rates for A is called the SK capacity C(A). An

εn-SK is termed a strong SK if εn vanishes exponentially in n; the corresponding SK

capacity is called the strong SK capacity.

Remark: In the earlier works on the source models for SK generation, a weaker

notion of SK was adopted [39, 1]. In particular, the corresponding notion of SK

1All logarithms are natural unless stated otherwise.

2The requirement is only for an infinite sequence of K(n) (infinitely many n), and not necessarily

for all n sufficiently large.
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capacity therein, which we shall call the weak SK capacity, is defined as the largest

rate of a sequence of εn-SKs with εn being required to satisfy only the condition

limn→∞ nεn = 0. In other words, the secrecy requirement on the SK is relaxed from

that one in Definition 2.1 to limn→∞
1
n
s(K;F) = 0. An obvious drawback of this

weak notion of SK is that s(K;F) can grow with n (as long as it grows slower than

n) and, hence, the weak SK K may satisfy limn→∞ I(K ∧ F) = ∞. In effect, the

eavesdropper can gather an unbounded amount of information regarding the SK

with increasing signal observation length. However, it was shown in [41, 15] that in

almost all source models for SK generation studied previously, weak SK capacities

coincide with (strong) SK capacities.

Next, for certain multiterminal source models for SK generation, e.g., the

Pairwise Independent Network model of Chapter 4, it is interesting to investigate

an even stronger notion of SK, namely a perfect SK. It will also be clear that this

notion affords the strongest possible form of information theoretic secrecy. The

notion of perfect secrecy dates back to the work of Shannon [47] in the context of a

secrecy model involving a noiseless channel. Here, we investigate perfect secrecy in

the context of multiterminal source models for SK generation.

Definition 2.2: A nonnegative number R is an achievable perfect SK rate for

a set of terminals A ⊆ M if there exist 0-SKs K (n) with values in K(n) that are

achievable with suitable public communication (with the number of rounds possibly

depending on n), such that limn→∞
1
n

log |K(n)| = R. The supremum of achievable

perfect SK rates for A is called the perfect SK capacity Cp(A).

Observe that if K is a 0-SK, i.e., a perfect SK, then K is independent of F
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and is uniformly distributed.

Remarks: (i) The stringent requirement of a perfect SK K, namely s(K;F) = 0

makes the study of perfect SK generation a subject in zero-error information theory.

Zero-error information theoretic problems are typically of a combinatorial nature

[30], and this is true of perfect SK generation as well. Proof techniques involved

in results concerning perfect SK generation are of a combinatorial kind, and not

probabilistic such as those involved in the study of (strong) SK generation.

(ii) In the formulation of models for SK generation or perfect SK generation,

it is possible to allow the terminals, in addition to engaging public communication,

to also randomize. The randomization at each terminal i ∈ M is represented by a

rv Mi such that the rvs M1, M2, . . . , Mm, (X1, . . . ,Xm) are mutually independent.

By virtue of this mutual independence, it transpires that randomization does not

enhance SK capacities [15]; this is why we chose to exclude randomization in our

general model for SK generation. On the other hand, randomization can facilitate

SK construction and in some of our specific models below, we explicitly use ran-

domization in code constructions for SK generation (without any enhancement in

SK capacity).

2.2 SK Generation for the Discrete Model

In this section, we focus on SK generation for a model in which each Xi takes

values in a finite set Xi, i ∈ M. We discuss certain connections between the SK

generation and related problems of multiterminal data compression. We begin with
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a summary of an existing and motivating result on a connection between the SK

capacity and a source coding concept of “minimum rate of communication for omni-

science.” Then we proceed to describe our contribution on a new connection between

the SK capacity and a new source coding concept of “minimum information rate for

signal dissemination.” Lastly, we discuss our results on the structural properties of

optimal codes for SK generation.

2.2.1 SK Generation from Omniscience

The SK capacity for the model in this Section 2.2 was characterized in [15],

where a connection was established between SK capacity and a new concept in data

compression of “minimum rate of communication for omniscience” (that did not

involve any secrecy constraint).

Definition 2.3 [15]: A number R is called an achievable rate of commu-

nication for omniscience (CO rate) for a set of terminals A if there exists com-

munication F(n) as described in the second pararaph of Section 2.1 such that XM

is εn-CR achievable with F(n), with limn→∞ εn = 0 and limn→∞
1
n

log ‖F(n)‖ = R,

where ‖F(n)‖ denotes the cardinality of the range of F(n). The infimum of achiev-

able CO rates for A is denoted by OMN(A) and is termed the minimum rate of

communication for omniscience.

Proposition 2.1 [15]: The minimum rate of communication for omniscience

for a set of terminals A ⊆ M equals

OMN(A) = min
RM ∈R(A)

m∑

i= 1

Ri, (2.4)
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where

R(A) = {RM = (R1, . . . , Rm) :
∑

i∈B

Ri ≥ H(XB|XBc), B ⊂ M, B + A}. (2.5)

Furthermore, OMN(A) is achievable by noninteractive communication and with an

exponentially vanishing error in recovery at each terminal i ∈ A.

Theorem 2.2 [15]: The (strong) SK capacity for the terminals A ⊆ M

equals

C(A) = H(X1, . . . , Xm) − OMN(A). (2.6)

Furthermore, C(A) is achievable by noninteractive communication.

Remark: The formula (2.6) not only serves as a single-letter characterization

of SK capacity but also carries an interpretation that suggests a specific recipe for

generating a key of maximum rate. Specifically, it follows from (2.6) that there

will be no loss of optimality (in terms of the maximum achievable SK rate) by a

restriction to the class of schemes for SK generation that proceed in the follow-

ing two stages. In the first stage, the terminals engage in the most parsimonious

interterminal communication for the sole purpose of allowing each terminal in A

to become omniscient, i.e., to reconstruct losslessly the signals observed by all the

other terminals. This step involves no secrecy requirement. Then, the second stage

entails SK extraction from omniscience, i.e., the maximal CR XM with the SK being

independent of the communication in the first stage. The maximum rate of the SK

that can be so generated by this two-stage approach is the entropy rate of XM, i.e.,

H(XM), less the minimum rate of communication for omniscience.
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2.2.2 SK Generation from Less-Than-Omniscience

In order to attain SK capacity, it suffices, in effect, for the terminals in A

to obtain omniscience through the most parsimonious communication. It is also

interesting to note that omniscience is not necessary to achieve SK capacity, as is

known already for the case of m = 2 terminals (cf. [39, 1]). In fact, the following

result illustrates this observation.

Theorem 2.3 [16]: The (strong) SK capacity for A ⊆ M can be achieved

with noninteractive communication and with each terminal i ∈ M publicly commu-

nicating a single message fi(Xi). Further, SK capacity can be achieved with the key

generated at any particular terminal k ∈ A obliviously of the public communication.

A useful way of interpreting the result of Theorem 2.3 is by establishing a new

connection, reminiscent of Theorem 2.2, between the SK capacity and a new concept

in source coding of the “minimum information rate of communication for dissem-

inating among A the signal of a member terminal (in A). This new connection,

which is our contribution, is discussed next.

Definition 2.4: For each k ∈ A, a number I ≥ 0 is called an achievable in-

formation rate of communication for disseminating among A the signal of terminal

k (ICD-k rate), if there exists communication F(n) as described in the second para-

graph of Section 2.1, such that Xk is εn-CR achievable with communication F(n),

and with limn→∞ εn = 0 and limn→∞
1
n
I(Xk ∧ F) ≤ I. The infimum of achievable

ICD-k rates for A is denoted by CDk(A) and is termed the minimum information

rate of communication for disseminating among A the signal of terminal k.
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Theorem 2.4: For each k ∈ A, the (strong) SK capacity equals

C(A) = H(Xk) − CDk(A). (2.7)

Corollary 2.5: For each k ∈ A, the minimum information rate of commu-

nication for disseminating among A the signal of terminal k equals

CDk(A) = OMN(A) − H(XM\{k} |Xk). (2.8)

Remarks: (i) In disseminating among A the signal of a particular terminal (in

A), the characterization of the minimum rate of the needed communication (rather

than the information rate as in Definition 2.4) is an open problem in multiterminal

data compression that belongs to the longstanding class of open problems collectively

known as the “helper problems” [13, Chapter 3]. However, a characterization of the

minimum “information” rate of such communication in Theorem 2.4 and Corollary

2.5 follows almost immediately from Theorems 2.2 and 2.3, and is also of independent

interest in the context of multiterminal data compression.

(ii) It is seen readily from Theorem 2.4 that for every k ∈ A,

C(A) = lim
n→∞

1

n
max
Fk

H
(
Xk

∣∣Fk

)
(2.9)

where the maximum is over all communication Fk = F
(n)
k for disseminating among

A the signal of terminal k. The invariance with k ∈ A of the operational term in

the right side of (2.9) which does not involve any secrecy requirement, could be of

independent interest in multiterminal data compression.
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2.2.3 Linear Codes for SK Generation

Theorems 2.2 and 2.4 suggest two different schemes that suffice to achieve

the SK capacity. The first scheme involves attaining omniscience with the most

parsimonious communication, followed by the extraction of an optimum-rate SK

from omniscience. The second scheme entails a dissemination among A of the signal

of a member terminal of A in the most “informationally” parsimonious manner,

followed by SK extraction of optimum rate from the mentioned signal. Our next

results establish that, in fact, these two schemes can be implemented with linear

communication and subsequent linear secrecy extraction without sacrificing the rate-

optimality of the resulting SK.

In this Section 2.2.3, we shall assume that X1 = X2 = . . . = Xm = Fq, where

Fq is a Galois field; each X n
i = Fn

q is regarded as a vector space over this field and

each realization xn
i ∈ Fn

q of an Fn
q -valued rv is thought of as a column vector in

Fn
q , i = 1, . . . , m.

Definition 2.5: The communication F = F(n) is termed linear noninteractive

communication (LC) if F = (F1, . . . , Fm) with3 Fi = LiXi, where Li is a bi × n

matrix with Fq-valued entries for some positive integer bi, i = 1, . . . , m.

Theorem 2.6: For any R < C(A), there exists linear noninteractive com-

munication F = F(n) and a b nR
m log q

c × n matrix K with Fqm-valued entries such

that XM is εn-recoverable from (Xj,F) at each terminal j ∈ A, with εn vanish-

ing exponentially in n; further, KXM constitutes a strong SK of rate R, where

3All additions and multiplications are in Fq.
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XM = (XM,1, . . . , XM,n) is regarded as a column vector4 in Fn
qm .

Theorem 2.7: For any R < C(A) and for any fixed k ∈ A, there exists linear

noninteractive communication F = F(n) and a b nR
log q

c × n matrix Kk with Fq-valued

entries such that Xk is εn-recoverable from (Xj,F) at each terminal j ∈ A\{k} with

εn vanishing exponentially in n; further, KkXk constitutes a strong SK of rate R.

2.2.4 Proofs

Proof of Theorem 2.4: First, we show that

C(A) ≤ H(Xk) − CDk(A). (2.10)

For an arbitrary δ > 0, let F = F(n) be communication for omniscience of minimum

rate for A, i.e., XM is εn-CR for A for some εn decaying to 0, and

lim
n→∞

1

n
log ‖F‖ ≤ OMN(A) + δ; (2.11)

the existence of such F is asserted by Proposition 2.1. Noting that F is a function

of XM, it follows from Theorem 2.2 that

lim
n→∞

1

n
H(XM|F) ≥ H(XM) − lim

n→∞

1

n
log ‖F‖ ≥ C(A) − δ. (2.12)

Since k ∈ A, XM\{k} is εn-recoverable from (Xk,F). Then

1

n
I(Xk ∧ F) = H(Xk) −

1

n
H(Xk|F)

= H(Xk) −
1

n
H(XM|F) +

1

n
H(XM\{k}|Xk,F)

≤ H(Xk) − C(A) + δ + αεn, (2.13)

4All additions and multiplications in the computation of KXM are in Fqm
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for some α > 0, by (2.12) and Fano’s inequality. Since Xk is εn-recoverable from

(F,Xi) for every i ∈ A\{k}, F is also communication for disseminating Xk among

A with the ICD-k rate at most H(Xk) − C(A) + δ by (2.13). Since δ is arbitrarily

small, it follows from Definition 2.4 that CDk(A) ≤ H(Xk)−C(A) which is (2.10).

In order to show that

C(A) ≥ H(Xk) − CDk(A), (2.14)

for an arbitrary δ > 0, consider a communication F for disseminating Xk among A

with ICD-k rate 1
n
I(Xk ∧ F) ≤ CDk(A) + δ for all n sufficiently large. Then, Xk is

εn-CR for A for some εn decaying to zero in n and

1

n
H(Xk|F) = H(Xk) −

1

n
I(Xk ∧ F) ≥ H(Xk) − CDk(A) − δ. (2.15)

It suffices to prove assertion (2.14) for blocklengths that are integer multiples

of n. To this end, consider N i.i.d. repetitions of (XM,F). For each j ∈ A\{k},

since Xk is εn-recoverable from (Xj,F), it holds that

H(Xk|Xj,F) ≤ nεn log |Xk| + h(εn). (2.16)

A consequence of the Slepian-Wolf theorem [16, Lemma 3.1], we get that XN
k is

ηN -recoverable from
(
XN

j ,FN , gj

(
XN

k

))
for a suitable

gj : X nN
k → {1, . . . , beN(nεn log |Xk|+h(εn))c} where ηN decays to 0 exponentially rapidly

in N .

It remains to show that there exist SKs K (nN) with rate limN→∞
1

nN
log ‖K(nN)‖

arbitrarily close to the right side of (2.14). To this end, we apply [15, Lemma B3]

with U = Xk, V = F, and R = (|A| − 1) (nεn log |Xk| + h(εn)). With this choice,
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and by (2.16),

H(U |V ) − R = H(Xk|F) − (|A| − 1) (nεn log |Xk| + h(εn))

≥ n

[
H(Xk) − CDk(A) − δ − (|A| − 1)

(
εn log |Xk| +

1

n
h(εn)

)]
.

Since εn decays to 0 in n, [15, Lemma B3] gives that there exists K (nN) with

log ‖K‖ ≥ nN (H(Xk) − CDk(A) − δ), achievable with appropriate communiction

F̃(nN), such that s(K; F̃) decays to 0 exponentially fast in N . Since δ was arbitrary,

this establishes (2.14), thereby completing the proof of the theorem. The corollary

is immediate.

The proofs of Theorems 2.6 and Theorem 2.7 rely on the following technical

lemma which can be regarded as an extension of [15, Lemma B3]. Its proof is

provided in Appendix A.1.

Lemma 2.1: Let A be a rv with values in a Galois field Fq and let U be an Rn-

valued rv (with or without a density with respect to the Lebesque measure). Consider

N i.i.d. repetitions of (A, U), namely
(
AN , UN

)
= ((A1, U1) , . . . , (AN , UN )) and let

B = B(N) ∈ B = B(N) be a finite-valued rv with a given joint distribution with

(AN , UN ). Then, for every δ > 0 and every R < H(A|U) − 1
N

log |B| − 2δ, there

exists a b NR
log q

c×N matrix L with Fq-valued entries such that s(LAN ; UN , B) vanishes

exponentially in N .

Remark: Lemma 2.1 extends [15, Lemma B3] in the following specific ways.

First, [15, Lemma B3] deals with a finite-valued U while the U in Lemma 2.1 can

have an arbitrary alphabet. Second, [15, Lemma B3] asserts the existence of strong

secrecy from
(
UN , B

)
obtained as a function of AN but, unlike in Lemma 2.1,
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without the guarantee that the function is linear.

Proof of Theorem 2.6: We begin by invoking a known result in source

coding from [10] that asserts the existence of linear noninteractive communication

for omniscience (cf. Definition 2.3), yielding that XM is εn-CR for A achievable with

F for an exponentially vanishing εn, with the optimum rate limn→∞
1
n

log ‖F‖ =

OMN(A). Theorem 2.6 now follows from the fact that (cf. (2.6))

C(A) = H (XM) − OMN(A) =
1

n
H (XM) − lim

n→∞

1

n
log ‖F‖ = lim

n→∞

1

n
H (XM|F) ,

and by the use of Lemma 2.1 with N = n, A = XM, B = B(n) = F and with U

being constant, respectively.

Proof of Theorem 2.7: We start in a similar manner as in the proof of

Theorem 2.6. Specifically, by invoking the result of [10], we get that for an arbitrary

but fixed δ > 0 and for all t sufficiently large, there exists linear noninteractive

communication F(t) =
{

FiX
(t)
i , i = 1, . . . , m

}
with log ‖F(t)‖ =

(∑m
i=1 ri

)
log q ≤

t(OMN(A) + δ) where Fi is an ri × t matrix with Fq-valued entries, i = 1, . . . , m,

such that X
(t)
M is ε-recoverable from

(
X

(t)
i ,F(t)

)
for each i ∈ A. Note that for k ∈ A,

H
(
X

(t)
k |F(t)

)
= H

(
X

(t)
k |F(t)

)
− H

(
X

(t)
M|Xk,F

(t)
)

= tH (XM) − H
(
F(t)
)
− H

(
XM|Xk,F

(t)
)

≥ tH (XM) − H
(
F(t)
)
− εt

m∑

i=1

log |Xi| − h(ε)

≥ t

(
C(A) − δ − ε

m∑

i=1

log |Xi|
)

− h(ε). (2.17)

Here the first inequality is a consequence of the ε-recoverability of X
(t)
M from

(
X

(t)
k ,F(t)

)
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and Fano’s inequality, and the second inequality follows from

H
(
F(t)
)
≤ log ‖F(t)‖ ≤ t (OMN(A) + δ)

since H (XM) − OMN(A) = C(A) by Theorem 2.2.

It suffices to prove the assertion for blocklengths equal to integer multiples of

t. To this end, consider N i.i.d. repetitions of
(
X

(t)
M,F(t)

)
, namely

(
X

(t)N
M ,F(t)N

)
.

Then, for each j ∈ A\{k}, since H
(
X

(t)
k |X(t)

j ,F(t)
)

≤ tε log |Xk| + h(ε), the re-

sult of [10] gives that X
(t)N
k is ηN -recoverable from

(
X

(t)N
j ,F(t)N , HjX

(t)N
k

)
for a

bN(tε log |Xk|+h(ε)+δ)
t log q

c×N matrix Hj with Fqt-valued entries, and ηN decays to 0 expo-

nentially rapidly in N . It follows upon setting F̃(tN) =

(
F(t)N ,

{
HjX

(t)N
k

}
j∈A\{k}

)

that F̃(tN) satisfies the recoverability assertion of the theorem with n = tN, N =

1, 2, . . . .

It remains to show that there exists a linear function K (tN) of X
(t)N
k that

satisfies the assertion on K(n) with n = tN . To this end, we apply Lemma 2.1 with

A = X
(t)
k , B = F(t) and B =

{
HjX

(t)N
k

}
j∈A\{k}

. With this choice, by (2.17)

H(A|B) − 1

N
log |B| = H

(
X

(t)
k |F(t)

)
− (|A| − 1)(tε log |Xk| + h(ε) + δ)

≥ t
[
C(A) − δ − ε

(
|A| log |Xk| +

m∑

i=1

log |Xi|
)]

−|A|(h(ε) + δ)

> t(C(A) − 2δ)

upon choosing ε > 0 sufficiently small and t sufficiently large. Hence, Lemma

2.1 gives that there exists a bNt(C(A)−2δ)
t log q

c × N matrix Kk such that for K(tN) =

KkX
(t)N
k , s

(
K(tN); F̃(tN)

)
vanishing to 0 exponentially rapidly in N . The proof of
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Theorem 2.7 is completed by the observation that a linear mapping from FN
qt to FM

qt ,

for some M , that corresponds to left-multiplication of a vector in FN
qt by each of

the matrices Kk, {Hi}i∈A\{k} as above, has an alternative representation as another

linear mapping from FtN
q to FtN

q which can be represented then by a tM ×tN matrix

with Fq-valued entries (instead of with Fqt-valued entries in its current form).
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Chapter 3

SK Generation for the Gaussian Model

In the general model described in Section 2.1, let X1, . . . , Xm be R-valued

jointly Gaussian rvs with

E




X1

...

Xm




= 0, Q = E







X1

...

Xm




[
X1, . . . , Xm

] 


> 0, (3.1)

where Qij = σiσjρij with σ2
i = E [X2

i ] , 1 ≤ i, j ≤ m. It follows as a consequence of

(3.1) that

−∞ < h (XB) ≤ h (XM) < ∞ for every B ⊆ M. (3.2)

This model describes a situation in which the terminals have prior and priv-

ileged access to jointly Gaussian signals. The SK capacity of the Gaussian model

cannot be inferred from the counterpart result for the discrete model in Chapter

2. Specifically, the central role of omniscience in the attainment of SK capacity

Theorem 2.2, cannot be replayed directly now as the minimum rate of public com-

munication for omniscience is unbounded. We characterize the SK capacity for the

Gaussian model. Our achievability proof is based on a suitably refined quantization

of the signals at the terminals combined with our results in Chapter 2. The con-

verse proof, which constitutes the first main contribution of this chapter, provides

a technique that is applicable to the discrete model of [15] as well as to models
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with R-valued rvs under suitable technical conditions. Our SK capacity formula

acquires a simple form for the special case of “symmetrically correlated” Gaussian

signals. Of special interest is the model with two terminals with signals that are

a fortiori symmetrically correlated. Considering schemes that involve quantization

at one terminal, we characterize the best rate of an achievable SK as a function of

quantization rate; SK capacity is attained as the quantization rate tends to infin-

ity. Structured codes are shown to attain the optimum tradeoff between SK rate

and quantization rate, constituting the second main contribution of this chapter.

This result shows how SK rate increases optimally with processing complexity (as

measured by quantization rate).

3.1 SK Capacity

We begin with the observation that the SK capacity for the model above

will depend on the joint distribution of X1, . . . , Xm only through the correlation

coefficients {ρij, 1 ≤ i 6= j ≤ n}. This is obvious since replacing Xi by Xi

σi
where

σi > 0 (by (3.1)), i = 1, . . . , m, does not alter SK capacity.

As in [16], for A ⊆ M, let

B(A) = {B ⊂ M : B 6= ∅, B + A} (3.3)

and Bi(A) be its subset consisting of those B ∈ B(A) that contain i, i ∈ M. Let

Λ(A) be the set of all collections λ = {λB : B ∈ B(A)} of weights 0 ≤ λB ≤ 1,

satisfying

∑

B∈Bi(A)

λB = 1, for all i = 1, . . . , m. (3.4)
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Theorem 3.1: The (strong) SK capacity equals

C(A) = h(X1, . . . , Xm) − max
λ∈Λ(A)

∑

B∈B(A)

λBh(XB|XBc). (3.5)

Corollary 3.2: The (strong) SK capacity for a “symmetric” Gaussian model

with

Q =





Q(i, i) = σ2
i , 1 ≤ i ≤ m

Q(i, j) = ρσiσj, 1 ≤ i 6= j ≤ m,

(3.6)

with − 1
m−1

< ρ < 1, and with A = M, equals

C(M) =
1

2
log

[
1

(1 − ρ) (1 + (m − 1)ρ)
1

m−1

]
. (3.7)

In particular, when m = 2,

C(M = {1, 2}) =
1

2
log

1

1 − ρ2
. (3.8)

3.2 Proof of the SK Capacity Theorem

Proof of Theorem 3.1:

Achievability: The idea is to use scalar quantization of Xi at terminal i, i =

1, . . . , m, followed by SK generation for the resulting finite-alphabet source model

along the lines of [15]. By appropriately choosing the scalar quantizer, the claimed

rate of (3.5) will be shown to be achievable in the limit of infinite quantization rates.
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In particular, for each positive integer q, consider a quantizer fq : R →

{0, 1, . . . , 2q2}, where

fq(x) =





0, if x > q or x ≤ −q

dq(x + q)e, if −q < x ≤ q.

(3.9)

At each terminal i, consider the {0, 1, . . . , 2q2}-valued rv Y
(q)
i = fq(Xi), i = 1, . . . , m.

Define the {0, 1}m-valued rv Y
(q)
m+1 =

(
1(fq(Xi) 6= 0)

)m
i=1

.

Next, consider a fictitious (finite-alphabet) source model for “private key”

generation iwth m + 1 terminals consisting of legitimate terminals 1, . . . , m that

observe respectively Y
(q)
1 , . . . ,Y

(q)
m , and a (compromised helper) terminal m+1 that

observes Y
(q)
m+1. Now the terminals in the set A ⊆ M = {1, . . . , m} seek to generate

a private key (PK), say K, with the help of all the remaining terminals including

terminal m + 1, using public communication, say F, so that the security condition

(2.1) is satisfied with
(
Y

(q)
m+1,F

)
in the role of F, i.e.,

s
(
K;Y

(q)
m+1,F

)
≤ ε. (3.10)

Such a PK K is concealed from terminal m+1 as well as from an eavesdropper that

observes F. The corresponding largest rate of such a PK, namely PK capacity was

characterized in [15]; it was shown therein that PK capacity is achievable by allowing

the compromised terminal m+1 to fully reveal its observations Y
(q)
m+1 prior to public

communication by the various terminals. From [15], the (strong) PK capacity for

this finite-alphabet source model equals

min
λ∈Λ(A)


H

(
Y

(q)
M |Y (q)

m+1

)
−

∑

B∈B(A)

λBH
(
Y

(q)
B |Y (q)

M\B, Y
(q)
m+1

)

 . (3.11)
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Returning to the Gaussian model at hand, terminals 1, . . . , m can simulate

the mentioned model for PK generation by using the scalar quantizer fq at each

terminal and letting each terminal i reveal publicly the i.i.d. repetitions of the rv

1(fq(Xi) 6= 0), i = 1, . . . , m. Consequently, in the limit of infinite quantization,

lim
q→∞

min
λ∈Λ(A)


H

(
Y

(q)
M |Y (q)

m+1

)
−
∑

B∈B(A)

λBH
(
Y

(q)
B |Y (q)

M\B , Y
(q)
m+1

)

 , (3.12)

is an achievable (strong) SK rate for the Gaussian model, by (3.11).

Next, for a fixed λ ∈ Λ(A), using (3.4), we get that

∑

B∈B(A)

λB|B\B| =
∑

B∈B(A)

λB (m − |B|)

= m
∑

B∈B(A)

λB −
∑

B∈B(A)

λB

∑

i=1,...,m

1(i∈B)

= m


 ∑

B∈B(A)

λB − 1


 . (3.13)

Consequently, we have that

H
(
Y

(q)
M |Y (q)

m+1 = 1
)
−

∑

B∈B(A)

λBH
(
Y

(q)
B |Y (q)

M\B, Y
(q)
m+1 = 1

)

=
∑

B∈B(A)

λBH
(
Y

(q)
M\B|Y

(q)
m+1 = 1

)
−


 ∑

B∈B(A)

λB − 1


H

(
Y

(q)
M |Y (q)

m+1 = 1
)

=
∑

B∈B(A)

λB

[
H
(
Y

(q)
M\B|Y

(q)
m+1 = 0

)
− |M\B| log q

]

−


 ∑

B∈B(A)

λB − 1



[
H
(
Y

(q)
M |Y (q)

m+1 = 1
)
− m log q

]
, (3.14)

by (3.13).

We proceed by using the following technical lemma whose proof is relegated

to the end of this proof of achievability.
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Lemma 3.1: For the Gaussian rvs X1 . . . , Xm in the statement of Theorem

3.1, a quantizer fq as described in (3.9), and every B ⊆ M = {1, . . . , m}, we get

that

lim
q→∞

[
H
(
Y

(q)
B |Y (q)

m+1 = 1
)
− |B| log q

]
= h(XB). (3.15)

Furthermore,

lim
q→∞

Pr
{

Y
(q)
m+1 = 1

}
= 1. (3.16)

Continuing with (3.14) upon using (3.15) of Lemma 3.1, we get that for every

λ ∈ Λ(A),

lim
q→∞


H

(
Y

(q)
M |Y (q)

m+1 = 1
)
−

∑

B∈B(A)

λBH
(
Y

(q)
B |Y (q)

M\B, Y
(q)
m+1 = 1

)



=
∑

B∈B(A)

λBh
(
XM\B

)
−


 ∑

B∈B(A)

λB − 1


h (XM)

= h (XM) −
∑

B∈B(A)

λBh (XB|XBc) . (3.17)

In [15], it was shown using the duality of linear programming that the minimization

in the right side of the expression for the PK capacity (3.11) can be taken over a

finite subset Λ′(A) (of Λ(A)) that depends only on M and A. Consequently, the

following achievable (strong) SK rate in (3.12) can be bounded below further as

follows

lim
q→∞

min
λ∈Λ(A)


H

(
Y

(q)
M |Y (q)

m+1

)
−

∑

B: B∈B(A)

λBH
(
Y

(q)
B |Y (q)

M\B, Y
(q)
m+1

)
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= lim
q→∞

min
λ∈Λ′(A)⊂Λ(A)


H

(
Y

(q)
M |Y (q)

m+1

)
−
∑

B∈B(A)

λBH
(
Y

(q)
B |Y (q)

M\B , Y
(q)
m+1

)



≥ lim
q→∞

min
λ∈Λ′(A)⊂Λ(A)

Pr
{

Y
(q)
m+1 = 1

}
×


H

(
Y

(q)
M |Y (q)

m+1 = 1
)
−
∑

B∈B(A)

λBH
(
Y

(q)
B |Y (q)

M\B, Y
(q)
m+1 = 1

)



= min
λ∈Λ′(A)⊂Λ(A)


h (XM) −

∑

B∈B(A)

λBh (XB|XBc)


 ,

by (3.16), (3.17) and by the fact that Λ′(A), which does not depend on q, is finite

= min
λ∈Λ(A)


h(XM) −

∑

B∈B(A)

λBh(XB|XBc)


 ,

which is (3.5).

It remains to prove Lemma 3.1.

Pr
{

Y
(q)
m+1 6= 1

}
= Pr {(X1, . . . , Xm) ∈ ([−q, q]m)c}

=

∫

([−q,q]m)c

exp
(
−1

2
xT Q−1x

)

(2π)n/2 |Q|1/2
dx

≤
∫
{

x:‖x‖≥q
}

exp
(
−1

2
xT Q−1x

)

(2π)n/2 |Q|1/2
dx

≤
∫
{

x:‖x‖≥q
}

exp
(
−1

2
‖x‖2

λmax

)

(2π)n/2 |Q|1/2
dx (3.18)

=
mCm

(2π)n/2 |Q|1/2

∫ ∞

q

rm−1exp

(
−r2

2

)
dr (3.19)

= O
(
q(m−2)exp

(
− q2

2λmax

))
→ 0, as q → ∞, (3.20)

where λmax > 0 in (3.18) is the largest eigenvalue of Q and Cm in (3.19) is a constant

that depends only on m. This establishes (3.16).

Next, for each B ⊆ M, let

εq , Pr
{(

1(Yi 6=0)

)
i∈B

6= 1
}
≤ Pr

{
Y

(q)
m+1 6= 1

}
= oq(1). (3.21)
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Further, for any collection of |B| integers kB, ki ∈ {1, 2, . . . , 2q2}, i ∈ B, let PkB
=

Pr {YB = kB}. It now follows by the uniform continuity of the density function fXB

of XB and the mean value theorem that for any kB, there exists an xB(kB) satisfying

Yi = fq(xi(kB)) = ki, i ∈ B so that PkB
= fXB

(xB(kB))q−|B|. Consequently,

H
(
YB|

(
1(Yi 6=0)

)
i∈B

= 1
)

= −
∑

kB∈{1...,2q2}|B|

( PkB

1 − εq

)
log
( PkB

1 − εq

)

= −
∑

kB∈{1...,2q2}|B|

( PkB

1 − εq

)
log
( PkB

1 − εq

)

= −
∑

kB∈{1...,2q2}|B|

(fXB
(xB(kB))q−|B|

1 − εq

)
log
(
fXB

(xB(kB))q−|B|
)

+ log (1 − εq)

=
1

1 − εq


−

∑

kB∈{1...,2q2}|B|

(
fXB

(xB(kB))q−|B|
)

log
(
fXB

(xB(kB))
)



+ log (1 − εq) + |B| log q.

Hence,

H
(
YB|

(
1(Yi 6=0)

)
i∈B

= 1
)

+ |B| log q

=
1

1 − εq


−

∑

kB∈{1...,2q2}|B|

(
fXB

(xB(kB))q−|B|
)

log
(
fXB

(xB(kB))
)

 .

Taking limit as q → ∞, we obtain (3.15); this concludes the proof of Lemma 3.1.

Converse: Our converse constitutes our first main contribution of this chapter.

The main technical tools are supplied by Lemmas 3.2 and 3.3 that follow.

Lemma 3.2: Consider the i.i.d. repetitions of the jointly Gaussian rvs XM =

(X1, . . . , Xm) in the statement of Theorem 3.1, namely, XM = (X1, . . . ,Xm), and

33



let Z be a rv with a joint distribution with XM. For any λ ∈ Λ(A), i = 1, . . . , m,

and any Ui that is a function of (Xi, Z), i.e., Ui = ui (Xi, Z), it holds that

h (XM|Z) −
∑

B∈B(A)

λBh (XB|XBc, Z)

=
∑

B∈B(A):B3i

λBI (Ui ∧ XBc |Z)

+
[
h (XM|Z, Ui) −

∑

B∈B(A)

λBh (XB|XBc, Z, U)
]
. (3.22)

Proof:

h (XM|Z) −
∑

B∈B(A)

λBh (XB|XBc, Z)

= h (XM|Z, Ui) + I (Ui ∧ XM|Z)

−
∑

B∈B(A)

λB [h (XB|XBc, Z, Ui) + I (Ui ∧ XB|XBc, Z)]

=


h (XM|Z, Ui) −

∑

B∈B(A)

λBh (XB|XBc, Z, Ui)




+


I (Ui ∧ XM|Z) −

∑

B∈B(A)

λBI (Ui ∧ XB|XBc, Z)




=


h (XM|Z, Ui) −

∑

B∈B(A)

λBh (XB|XBc, Z, Ui)




+




 ∑

B∈B(A):B3i

λB


 I (Ui ∧ XM|Z) −

∑

B∈B(A):B3i

λBI (Ui ∧ XB|XBc, Z)




=


h (XM|Z, Ui) −

∑

B∈B(A)

λBh (XB|XBc, Z, Ui)




+
∑

B∈B(A):B3i

λBI (Ui ∧ XBc|Z) .
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Lemma 3.3: Consider the i.i.d. repetitions of the jointly Gaussian rvs XM =

(X1, . . . , Xm) in the statement of Theorem 3.1, namely, XM = (X1, . . . ,Xm), and

let Z be a rv with a joint distribution with XM. For any λ ∈ Λ(A), it holds that

h (XM|Z) −
∑

B∈B(A)

λBh (XB|XBc, Z) ≥ 0. (3.23)

Proof:

h (XM|Z) =
∑

i∈M


 ∑

B∈B(A):B3i

λB


h (Xi|X1, . . . ,Xi−1, Z)

=
∑

B∈B(A)

λB

∑

i∈B

h (Xi|X1, . . . ,Xi−1, Z)

≥
∑

B∈B(A)

λB

∑

i∈B

h
(
Xi|X{1,...,i−1}∩B ,XBc, Z

)

=
∑

B∈B(A)

λBh (XB|XBc, Z) .

Suppose that K(n) represents an εn-SK for A achievable with (possibly interac-

tive) communication F(n) with, say, r rounds (as described in the second paragraph

of Section 2.1), where limn→0 εn = 0 (see Definition 2.1).

For j = 1, . . . , mr, by repeated application of Lemma 3.2 with F[1,j], Fj and

j mod m in the roles of Z, Ui and i, respectively, and the fact that

∑
B∈B(A):B3i λBI (U ∧ XBc|Z) ≥ 0, we obtain

h (XM) −
∑

B∈B(A)

λBh (XB|XBc) ≥ h (XM|F) −
∑

B∈B(A)

λBh (XB|XBc,F) .

(3.24)

Next, for some i ∈ A, let Ki = k
(n)
i (Xi,F) be such that Pr

{
K

(n)
i = K(n)

}
≤ εn.

Continuing from (3.24) by using Lemma 3.2 again but now with F and Ki in the
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roles of Z and Ui, respectively, we obtain that

h (XM|F) −
∑

B∈B(A)

λBh (XB|XBc|F)

=
∑

B∈B(A):B3i

λBI (Ki ∧ XBc|F)

+
[
h (XM|F, Ki) −

∑

B∈B(A)

λBh (XB|XBc,F, Ki)
]
.

≥
∑

B∈B(A):B3i

λBI (Ki ∧ XBc|F) , by Lemma 3.3

≥
∑

B∈B(A):B3i

λB

[
H (Ki|F) − H(Ki|XBc,F)

]

≥
∑

B∈B(A):B3i

λB

[
H (K|F) − H(K|Ki,F) − H (Ki|XBc,F)

]

≥ H (K|F) − 2
[
log |K|εn + 1

]
, by (3.4) and Fano’s inequality

≥ (log |K| − εn) − 2
[
log |K|εn + 1

]
, by (2.2)

≥ (1 − 2εn) log |K| − εn − 2. (3.25)

Consequently, by (3.25) and (3.24), we have that for every λ ∈ Λ(A) that

lim
n→∞

1

n
log |K| ≤ h(XM) −

∑

B∈B(A)

λBh(XB|XBc).

The converse proof now follows by minimization over the set of λ ∈ Λ(A).

Proof of Corollary 3.2:

For a set B = {i1, . . . , ib} ⊂ M, i1 < i2 < . . . < ib, and a permutation π

on {1, . . . , m}, let π(B) denote {π(i1), . . . , π(ib)}. For λ∗ ∈ Λ(M) attaining the

maximization in the right side of (3.5) for the symmetric Gaussian model, consider

λ∗∗ =
{

1
m!

∑
π λ∗

π(B), B ∈ B(M)
}

where the summation is over all permutations

on {1, . . . , m}. It is readily seen that λ∗∗ is in Λ(M). By virtue of the fact that

h (XB|XBc) depends on B only through |B|, it is clear that λ∗∗ also attains the
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maximization in (3.7). Note that λ∗∗ has the property that λ∗∗
B = λ∗∗

B′ , for any B, B′

such that |B| = |B′|. Consequently, the optimization in right side of (3.5) can be

reduced to the following easier one:

max

(γi)
m−1
i=1 :

∑m−1
i=1 γi




m − 1

i − 1


 = 1

m−1∑

i=1

γi

(
m

i

)
Hi (3.26)

where Hi = h
(
X{1,...,i}|X{i+1,...,m}

)
= h (XB|XBc) for any B with |B| = i. Let Ki

denote the i× i matrix with diagonal entries being 1 and with all off-diagonal entries

being ρ. It now follows from (3.26) that

C(M) = h (XM) − max
i=1,...,m−1

(
m

i

)
Hi

(
m − 1

i − 1

) = h (XM) − max
i=1,...,m−1

m

i
Hi.

= min
i=1,...,m−1

h (X1, . . . , Xm) − m

i
[h (X1, . . . , Xm) − h (Xi+1, . . . , Xm)]

= min
i=1,...,m−1

−
(

m − i

i

)
h (X1, . . . , Xm) +

m

i
h (Xi+1, . . . , Xm)

= min
i=1,...,m−1

−
(

m − i

i

)
1

2
log ((2πe)mdet (Km))

+
m

i

1

2
log
(
(2πe)m−idet (Km−i)

)

= min
i=1,...,m−1

−1

i

[
1

2
log

(
(2πe)m(m−i)det (Km)m−i

(2πe)(m−i)mdet (Km−i)
m

)]

= min
i=1,...,m−1

−1

i

[
1

2
log

(
det (Km)m−i

det (Km−i)
m

)]

= min
i=1,...,m−1

−1

i




1

2
log




(
1

(1−ρ)m−1(1+(m−1)ρ)

)m−i

(
1

(1−ρ)m−i−1(1+(m−i−1)ρ)

)m







= min
i=1,...,m−1

−1

i

[
1

2
log

(
(1 + (m − i − 1)ρ)m

(1 − ρ)i(1 + (m − 1)ρ)m−i

)]
. (3.27)

By a simple calculation, the minimum in (3.26) is always attained by i∗ = m − 1,

from which (3.7) follows.
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3.3 Trading SK Rate off Quantization Rate by Structured Codes

The achievability proof of Theorem 3.1 involves scalar quantization of Xi at

terminal i, i = 1, . . . , m, followed by SK generation for the resulting finite-alphabet

source model along the lines of [15, 16]; SK capacity is attained in the limit of

infinite quantization rates. The SK, extracted from omniscience at all the terminals

in M, involves public communication by said terminals. As underlying the proof of

achievability of SK capacity for the finite-alphabet source model with two terminals

[39, 1], communication from a single terminal, say terminal 1, suffices to generate

an optimum-rate SK from less-than-omniscience.

In the context of a Gaussian source model with two terminals, this motivates

the following questions.

• Suppose that quantization at a rate R is permitted at terminal 1, what is the

largest rate of SK that can be generated from the quantized source at terminal

1 and the original Gaussian source at terminal 2 using public communication?

• Does the rate of SK thereby generated tend to the SK capacity C(M =

{1, 2}) = 1
2
log 1

1−ρ2 (by (3.8) of Corollary 3.2), as R → ∞?

• Can an explicit code structure be identified for quantization, communication

as well as SK extraction?

In order to address these questions, we pose the following formulation, and

provide answers that involve structured codes, namely, nested lattice codes and

linear codes, combined with randomization at the terminals.
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Let M1, M2 be independent M1- and M2-valued rvs with (M1, M2) being

independent of (X1,X2). For each R > 0, let qR : M1 × Rn → QR be a (vector)

random quantizer of rate R, where QR ⊂ Rn with 1
n

log |QR| ≤ R. Let C(R)

be the largest rate of a SK that can be generated from qR (M1,X1) at terminal 1

and (M2,X2) at terminal 2 by public communication (cf. the second paragraph of

Section 2.1, with (M1,X1) and (M2,X2) in the roles of X1 and X2, respectively)

among all choice of qR, M1, M2 as above.

Theorem 3.3: For every R > 0, we have

C(R) =
1

2
log

1

e−2I(X1∧X2) + (1 − e−2I(X1∧X2)) e−2R
. (3.28)

In particular,

lim
R→∞

C(R) = I(X1 ∧ X2) =
1

2
log

1

1 − ρ2
= C (M = {1, 2}) . (3.29)

We present first the converse proof. The proof of achievability using structured

lattice codes and linear codes constitutes a second main contribution of this chapter

and is presented in Section 3.3.2 below.

3.3.1 The Converse Proof

The proof uses the following technical lemma, the first part of which provides

an alternative expression for C(R) in Theorem 3.3.
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Lemma 3.4: (i) For every R ≥ 0, it holds that

C(R) = max

U −◦− X1 −◦− X2

I(U ∧ X1) ≤ R

I(U ∧ X2). (3.30)

Further, C(R) is nondecreasing, concave and continuous for R ≥ 0.

(ii) For each n ≥ 1 and for every quantizer q : Rn → Q where Q is a finite

set, and R′ = 1
n

log |Q|, it holds that

1

n
I(q(X1) ∧ X2) ≤ C(R′). (3.31)

Proof: Without loss of generality, we assume that X2 = X1 + N , where N is

independent of X1 ∼ N (0, 1). Consequently,

ρ =
E[X1X2]√

E[X2
1 ]
√

E[X2
2]

=
E[X1(X1 + N)]√

1 + σ2
N

=
1√

1 + σ2
N

and, hence,

σ2
N =

1

ρ2
− 1. (3.32)

Let (U, X1, X2) be such that U −◦− X1 −◦− X2 and I(U ∧ X1) ≤ R. We get

that

I(U ∧ X2) = h(X2) − h(X2|U) = h(X2) − h(X1 + N |U)

≤ h(X2) −
1

2
log
[
e2h(X1|U) + e2h(N |U)

]
(3.33)

= h(X2) −
1

2
log
[
e2h(X1|U) + e2h(N)

]
, (3.34)
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where (3.33) follows from the conditional entropy power inequality, and (3.34) follows

from

0 = I(U ∧ X2|X1) = I(U ∧ X1 + N |X1)

= I(U ∧ N |X1) = I(U, X1 ∧ N)

≥ I(U ∧ N),

where the fourth equality is by the fact that X1 and N are independent.

Let I denote I(X1 ∧ X2) = 1
2
log 1

1−ρ2 . Following from (3.34), we have that

I(U ∧ X2) ≤ h(X2) − 1

2
log
[
e2h(X1|U) + e2h(N)

]
(3.35)

=
1

2
log ((2πe)

1

ρ2
) − 1

2
log

[
e2h(X1|U) + (2πe)

1 − ρ2

ρ2

]

=
1

2
log ((2πe)

1

ρ2
) − 1

2
log

[
e−2I(U∧X1)e2h(X1) + (2πe)

1 − ρ2

ρ2

]

≤ 1

2
log ((2πe)

1

ρ2
) − 1

2
log

[
e−2R(2πe) + (2πe)

1 − ρ2

ρ2

]
, (3.36)

=
1

2
log

1

e−2Rρ2 + (1 − ρ2)

=
1

2
log

1

e−2R(1 − e−2I) + e−2I
= C(R).

The first equality follows from (3.32); the second inequality follows from I(U∧X1) ≤

R. Consequently,

max

U −◦− X1 −◦− X2

I(U ∧ X1) ≤ R

I(U ∧ X2) ≤ C(R).

To show equality, i.e., to establish (3.30), we shall select a rv U that satisfies

U−◦−X1−◦−X2 and achieves equalities in both (3.33) (and, hence, (3.35)) and (3.36).
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To this end, we shall find a zero-mean Gaussian rv U satisfying I(U ∧ X2|X1) = 0,

I(X1 ∧N |U) = 0 and I(U ∧X1) = R. By the conditional entropy power inequality,

the condition I(X1 ∧ N |U) = 0 will give equality in (3.33) and the condition I(U ∧

X1) = R will give equality in (3.36). Specifically, let U = X1 + Ñ , where Ñ is

independent of (X1, X2) and Ñ ∼ N (0,
(

e−2R

1−e−2R

)
). Clearly, I(U ∧ X2|X1) = 0.

Also,

I(X1 ∧ U) = h(U) − h(U |X1) =
1

2
log

σ2
U

σ2
Ñ

=
1

2
log

(
1

σ2
Ñ

+ 1

)
= R.

Next,

E[NU ] = E[(X2 − X1)(X1 + Ñ)] = E[(X2 − X1)X1]

= E[NX1] = 0.

The second and last equalities are by the facts that Ñ is independent of (X1, X2)

and that N is independent of X1, respectively. Since (U, N) are jointly Gaussian

with both means being zero, U is independent of N . Consequently,

I(X1 ∧ N |U) = I(X1, U ∧ N) = I(X1, Ñ ∧ N)

= I(X1 ∧ N) + I(Ñ ∧ N |X1)

≤ I(X1 ∧ N) + I(Ñ ∧ N, X1)

= I(X1 ∧ N) + I(Ñ ∧ X1, X2) = 0,

also by the facts that X1 is independent of N and that Ñ is independent of (X1, X2).

With this choice of U , (3.30) is established.
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It is clear from the definition of C(R) in Theorem 3.3 that it is increasing and

continuous for R ≥ 0. Concavity of C(R) follows from the fact that

dC(R)

dR
=

(1 − e−2I)e−2R

e−2R(1 − e−2I) + e−2I
=

1

1 + e2R e−2I

1−e−2I

,

which is positive and decreasing for R ≥ 0.

The proof of part (ii) is similar to the converse proof in [52] and it is given in

Appendix B.1.

Let K be an εn-SK generated by a scheme in Theorem 3.3 using a randomized

quantizer q of rate at most R together with public communication F and random-

ization M1, M2. Then,

H(K) = I(K ∧ M2,F,X2) + H(K|M2,F,X2)

= I(K ∧ F) + I(K ∧ M2,X2|F) + H(K|M2,F,X2)

≤ εn + I(K, M1, q(M1,X1) ∧ M2,X2|F) + H(K|M2,F,X2)

= εn + I(M1, q(M1,X1) ∧ M2,X2|F) + I(K ∧ M2,X2|M1, q(M1,X1),F)

+ H(K|M2,F,X2)

≤ εn + I(M1, q(M1,X1) ∧ M2,X2|F) + H(K|M1, q(M1,X1),F)

+H(K|M2,F,X2),

≤ εn + I(M1, q(M1,X1) ∧ M2,X2|F) + 2(εn log |K| + 1),

≤ εn + I(M1, q(M1,X1) ∧ M2,X2) + 2(εn log |K| + 1), (3.37)

≤ εn + I(q(M1,X1) ∧ X2|M1) + 2(εn log |K| + 1), (3.38)

where the third line follows from (2.3); the sixth line follows from the fact that K

is recoverable from (M1, q(M1,X1),F) as also from (M2,F,X2); (3.37) follows from
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[1, Lemma 2.2] (equivalently, this is tantamount to the repeated use of Lemma 3.2

in the manner similar to the attainment of (3.24)); and the last line follows from

the mutual independence of M1, M2, (X1,X2).

Using Lemma 3.4 and the fact that M1, and (X1,X2) are mutually indepen-

dent, it follows that

1

n
I(q(M1,X1) ∧ X2|M1) ≤ C(

1

n
log |Q|).

Continuing from (3.38) using (2.2), we have that

1

n
log |K| ≤ C(

1

n
log |Q|) + on(1).

The converse proof is completed by the fact that C(R) is continuous for R ≥ 0.

3.3.2 SK Generation Scheme Using Nested Lattice and Linear Codes

In order to describe our scheme for achieving C(R) and, hence, the SK capacity

in Theorem 3.3 using nested lattice codes and linear codes, we first compile, in

Section 3.3.1.1, pertinent definitions and facts from [60]. Our scheme and results

are presented in Section 3.3.1.2.

3.3.2.1 Nested Lattice Codes: Definitions and Facts

Definition 3.1: Consider n basis (column) vectors g1, . . . , gn in Rn. An

n-dimensional lattice code Λ is the set of all integral combinations of these basis

vectors, i.e.,

Λ , {λ : λ = G i for some i ∈ Zn},
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with n × n generating matrix G = [g1, . . . , gn]. Clearly, Λ contains the zero vector

0 in Rn.

• The Voronoi region of a lattice code Λ, denoted by ν(Λ), is the nearest

neighbor set of 0 in Rn, i.e.,

ν(Λ) , {u ∈ Rn : ‖u‖ < min
λ∈Λ, λ6=0

‖u − λ‖},

where ‖ � ‖ denotes Euclidean norm. Let |ν(Λ)| denote the volume in Rn of ν(Λ).

• The second moment per dimension of a lattice code Λ, denoted by σ2(Λ), is

σ2(Λ) ,
1

n
Var[ rv distributed uniformly in ν(Λ)].

• The covering radius of a lattice code Λ, denoted by rcov
Λ (n), is the infimum of

all positive numbers r such that Rn ⊆ Λ+ rB, where B be the n-dimensional sphere

with unit radius.

• The operation of quantization by a lattice code Λ, denoted by QΛ, is

QΛ(x) , arg min
λ∈Λ

‖x − λ‖, x ∈ Rn,

where ties are broken arbitrarily.

• The mod operation of a lattice code Λ is

x mod Λ , x − QΛ(x), x ∈ Rn,

and corresponds to the quantization error.

The following property of the mod operation (cf. [60]) will be useful:

((x mod Λ) + y) mod Λ = (x + y) mod Λ, x,y ∈ Rn. (3.39)
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A pair of lattice codes Λ1, Λ2 are nested, i.e., Λ1 ⊃ Λ2, if there exists an n × n

matrix H with Z-valued entries and with det(H) > 1, such that G2 = G1H, where

G1 and G2 are the generating matrices of Λ1 and Λ2, respectively. It follows that

|ν(Λ2)|/|ν(Λ1)| = det(H).

For λ ∈ Λ1, the set λ + Λ2 ⊂ Λ1 is called a coset of Λ2 relative to Λ1; it turns

out that there are exactly |ν(Λ2)|/|ν(Λ1)| distinct such cosets. For λ′ 6= λ′′ belonging

to both Λ1 and ν(Λ2), the cosets λ′ +Λ2 and λ′′ +Λ2 are disjoint. It transpires that

we can always find a set S of |ν(Λ2)|/|ν(Λ1)| lattice points of Λ1, comprising all the

lattice points of Λ1 in ν(Λ2) and some of the lattice points of Λ1 on the boundary

of ν(Λ2) such that for distinct v ∈ S, the sets v + Λ2 are disjoint and furthermore

Λ1 =
⊔

v∈S

{v + Λ2}.

The set S ⊂ Λ1 is called a set of coset leaders of Λ2 relative to Λ1; note that there

can be several such sets S since the lattice points of Λ1 on the boundary of ν(Λ2) can

be selected in many ways. Upon fixing one such set S, the ties of the quantization

operation QΛ2(x), x ∈ Λ1, can be broken systematically in a unique manner by

requiring that x mod Λ2 = x − QΛ2(x) coincides with the unique coset leader in S

of the coset containing x.

In the dithered quantization of a source using a lattice code (cf. [58, 59]), a rv

distributed uniformly in its Voronoi region and independent of the source, is added to

the source sequence prior to quantization. This procedure, in effect, decorrelates the

“quantization error” from the source, as formalized in the following result of [58, 59].
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Lemma 3.5 [58, 59]: For a Rn-valued rv X and any given lattice code Λ,

let U be the “dither” rv distributed uniformly in ν(Λ) and independent of X. Then,

the quantization error (X+U)−QΛ(X+U) is independent of X and is distributed

as U.

3.3.2.2 The Scheme

Our scheme for SK generation consists of two steps—analog, followed by dig-

ital. It is motivated by, and partly follows, the work of Zamir et al. [60].

1) Analog Part: In the first (analog) step, terminals 1 and 2 agree upon

three n-dimensional nested lattice codes Λ1 ⊃ Λ2 ⊃ Λ3 to be specified below. The

following operations are performed on N i.i.d. repetitions (X1,i,X2,i), i = 1, . . . , N ,

of (X1,X2), where X1,X2 ∈ Rn. We remark that the reason for the use of N i.i.d.

repetitions is to obtain strong secrecy in step (2.2) below.

• (1.1) Dithered quantization at terminal 1: Terminal 1 generates i.i.d. rvs Ui

, i = 1, . . . , N , where Ui is uniformly distributed in ν(Λ1), and {Ui,X1,i,X2,i}N
i=1

are mutually independent. This is followed by dithered quantization of αX1,i, i =

1, . . . , N , and a mod operation of the lattice code Λ3 to yield

Li = QΛ1(αX1,i + Ui) mod Λ3, (3.40)

for α > 0 to be specified below. Each Li takes values in the set of coset leaders of

Λ3 relative to Λ1, denoted by L, where |L| = |ν(Λ3)|
|ν(Λ1)|

. The associated quantization

rate is ∼= 1
n

log |ν(Λ3)|
|ν(Λ1)|

.

• (1.2) Public communication from terminal 1 to terminal 2: Terminal 1 com-
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putes

Pi = Li mod Λ2 = QΛ1(αX1,i + Ui) mod Λ2, i = 1, . . . , N, (3.41)

since Λ2 ⊃ Λ3, and publicly communicates (PN ,UN) = (P1, . . . ,PN ,U1, . . . ,UN)

to terminal 2. Observe that each Pi takes values in the set of coset leaders of Λ2

relative to Λ1, denoted by P, with |P| = |ν(Λ2)|
|ν(Λ1)|

.

• (1.3) Reconstruction of quantized rvs at terminal 2: Terminal 2 reconstructs

Li as L̂i, i = 1, . . . , N , where

L̂i = [(Pi − αX2,i − Ui) mod Λ2 + αX2,i + Ui] mod Λ3. (3.42)

For R > 0 and an arbitrary but fixed D > 0, we select α as

α(R, D) =

√
D
√

e2R − 1

σX1

, (3.43)

whereby

R =
1

2
log

α2σ2
X1

+ D

D
. (3.44)

Let I , 1
2
log 1

1−ρ2 (cf. Theorem 3.3). Our following main technical lemma

summarizes the outcome of the first step of the algorithm.

Lemma 3.6: For R > 0, let

Rp = Rp(R) ,
1

2
log
((

e2R − 1
)
e−2I + 1

)
. (3.45)

For every ε > 0 and all n sufficiently large, there exist n-dimensional nested lattice

codes Λ1 ⊃ Λ2 ⊃ Λ3 such that, for i = 1, . . . , N ,

1

n
log |L| ≤ R + ε,

1

n
log |P| ≤ Rp + ε, (3.46)

Pr{L̂i 6= Li} = on(1), (3.47)
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and R − 1

n
H(Li|Ui) = on(1). (3.48)

2) Digital Part:

Before describing the (digital) part 2, we note that the (finite) set L in step

1.1 above can be shown to be in 1-1 correspondence with a (finite) field F|L| through

a mapping f (see Lemma 3.7 and Appendix B.2 below); the rvs f(Li) will then take

values in F|L|, i = 1, . . . , N . Part 2 of the scheme entails the following.

• (2.1) CR generation at terminals 1 and 2 by Slepian-Wolf data compression:

The i.i.d. sequence f(Li), i = 1, . . . , N , at terminal 1 is reconstructed near-losslessly

at terminal 2 with f(L̂i), i = 1, . . . , N , as side information using Slepian-Wolf

data compression. This reconstruction is performed with error probability vanishing

exponentially in N . Specifically, a linearly encoded Slepian-Wolf codeword A1f(L)N ,

where f(L)N = (f(L1), . . . , f(LN)) and A1 is a matrix with entries taking values in

F|L|, is transmitted publicly. Terminal 2 produces an estimate

f̂(L)N = ̂(f(L1), . . . , f(LN))

based on the codeword A1f(L)N and the side information

f(L̂)N = (f(L̂1), . . . , f(L̂N)).

The rate of the codeword A1f(L)N is

1

n
H(f(L1)|f(L̂1)) = on(1)
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by Fano’s inequality since, from (3.47), Pr{L1 6= L̂1} = on(1).

• (2.2) SK generation by linear operation on CR: Lastly, terminals 1 and 2

generate a SK K, by means of a linear operation on the CR f(L)N , viz. K =

A2f(L)N , with A2 having entries in F|L|, of rate arbitrarily close to

C(R) = R − Rp =
1

2
log

1

e−2I + (1 − e−2I)e−2R
,

the optimum tradeoff between SK rate and the quantization rate in Theorem 3.3.

3.3.2.3 Achievability Proof

Using the two-step scheme described in the previous section, our second main

contribution in this chapter establishes the existence of a strong SK of rate arbitrarily

close to C(R). In particular, we show now that for any R > 0 and any Rs < C(R)

(cf. Theorem 3.3), there exist n-dimensional nested lattice codes Λ1 ⊃ Λ2 ⊃ Λ3,

mapping f and matrices A1, A2, such that the scheme above produces a rv f(L)N of

rate arbitrarily close to R from which a strong SK K (n) = A2f(L)N can be extracted

of rate arbitrarily close to Rs.

Without loss of generality, we can write

X1 = X2 + Z, (3.49)

where Z is independent of X2 and consists of n i.i.d. repetitions of the rv Z ∼

N (0, σ2
Z) with σ2

Z = σ2
X1

−σ2
X2

so that, from (3.44), Rp = Rp(R) can be written also
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as

Rp =
1

2
log ((e2R − 1)e−2I + 1)

=
1

2
log (

(e2R − 1)σ2
Z

σ2
X1

+ 1)

=
1

2
log

α2σ2
Z + D

D
. (3.50)

Further, U is taken to be independent of (X2,Z) and, hence, (X1,X2,Z).

Proof of Lemma 3.6: We suppress the symbol i. The proof relies on the

existence of three “good” n-dimensional nested lattice codes Λ1 ⊃ Λ2 ⊃ Λ3 with the

properties stated below in Lemma 3.7; the proof of existence is obtained by suitably

generalizing ideas from [21] (see the proof in Appendix B.2).

Lemma 3.7: (“Good” lattice codes): For each R > 0 and D > 0, let Rp =

Rp(R) and α = α(R, D) as in (3.43), (3.45). For every ε > 0 and all n sufficiently

large, there exist n-dimensional nested lattice codes Λ1 ⊃ Λ2 ⊃ Λ3 with

1

n
log

|ν(Λ3)|
|ν(Λ1)|

≤ R + ε,
1

n
log

|ν(Λ2)|
|ν(Λ1)|

≤ Rp + ε, (3.51)

Pr{αZ− U /∈ ν(Λ2)} = on(1) (3.52)

Pr{αX1 − U /∈ ν(Λ3)} = on(1), (3.53)

σ2(Λ1) = D, (3.54)

and rcov
Λ1

(n) = O(
√

n). (3.55)

Upon using such “good” lattice codes, the claimed rates in (3.46) follow from
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(3.51). We next consider (3.47). By (3.41), upon using (3.39), we get

(P− αX2 − U) mod Λ2 = (QΛ1(αX1 + U) mod Λ2 − αX2 − U) modΛ2

= (QΛ1(αX1 + U) − αX2 − U) modΛ2

= (αZ − E) modΛ2,

where E = (αX1 +U) modΛ1 is a quantization error with respect to Λ1. Therefore,

from (3.42),

L̂ = [ [(P − αX2 − U) modΛ2] + αX2 + U] mod Λ3

= [(αZ − E) modΛ2 + αX2 + U] modΛ3.

Defining the event E = {αZ − E /∈ ν(Λ2)}, we see that in E c,

L̂ = (αZ − E + αX2 + U) modΛ3

= (αX1 + U − (αX1 + U) modΛ1) mod Λ3

= QΛ1(αX1 + U) mod Λ3

= L,

so that {L 6= L̂} ⊆ E . Now, observe that E is conditionally independent of Z

conditioned on X2 = x2, x2 ∈ Rn, which, combined with the independence of X2

and Z, gives that E is independent of Z. Further, E is distributed as U by Lemma

3.5 and U is independent of Z, so that

Pr{L 6= L̂} ≤ Pr{E} = Pr{αZ− E /∈ ν(Λ2)}

Pr{αZ− U /∈ ν(Λ2)} = on(1),
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by Lemma 3.7, thereby establishing (3.47).

Lastly, in order to establish (3.48), the idea is to show that L serves as a

codeword of an optimum Gaussian rate distortion code for the source X1, with CR U

at the encoder and decoder. Since L can be selected to have rate arbitrarily close to

R, it will possess the mentioned attribute if there exists a decoder for reconstructing

X1 from (L,U) with mean-squared error distortion ∼= e−2Rσ2
X1

. Then, with U

(independent of X1) being known to the encoder and decoder, the codeword L—

at optimality—must be nearly independent of U and nearly uniformly distributed,

thereby establishing (3.48 ). Firstly, we show that, upon using the nested lattice

codes above with a suitable decoder, we can reconstruct X1 from (L,U) with the

distortion above. To this end, consider the decoder that reconstruct X1 as

X̂1 = c((L − U) modΛ3),

where c > 0 is to be chosen later so as to minimize the mean-squared error distortion.

Using (3.39), we have that

(L − U) mod Λ3 = ( QΛ1(αX1 + U) modΛ3 − U) modΛ3

= ( QΛ1(αX1 + U) − U) modΛ3

= (αX1 − E) modΛ3,

so that X̂1 = c((αX1 − E) modΛ3). Observe next that by Lemma 3.5, E is inde-

pendent of X1 and is distributed as U and hence by (3.53),

Pr{(αX1 − E) modΛ3 6= αX1 − E} = on(1). (3.56)
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It readily follows, as shown in Appendix B.3, that

lim
n→∞

1

n
E[‖X1 − X̂1‖2] ≤ (1 − cα)2σ2

X1
+ c2D + on(1). (3.57)

The significant sum on the right-side above is minimized by the choice c =
ασ2

X1

α2σ2
X1

+D
=

ασ2
X1

De2R by (3.44), and so

lim
n→∞

1

n
E[‖X1 − X̂1‖2] = σ2

X1
e−2R + on(1). (3.58)

Now we are ready to prove (3.48). With

RX1(D) , min
E[(X̂1−X1)2]≤D

I(X̂1 ∧ X1) =
1

2
log

σ2
X1

D
, D ≥ 0,

1

n
H(L|U) =

1

n
I(L ∧ X1|U)

=
1

n
I(L,U ∧ X1)

≥ 1

n
I(X̂1 ∧ X1)

≥ 1

n

n∑

t=1

I(X̂1,t ∧ X1,t)

≥ 1

n

n∑

t=1

RX1(E[(X̂1,t − X1,t)
2])

≥ RX1(
1

n

n∑

t=1

E[(X̂1,t − X1,t)
2]). (3.59)

where the second equality above is by the independence of U and X1; the first

inequality follows from X̂1 being a function of L and U; the second inequality is from

X1 having independent components; and the last inequality is by the convexity of

RX1(�). Finally, combining (3.58) and (3.59), and noting that RX1(�) is nonincreasing

and uniformly continuous, we get that

1

n
H(L|U) ≥ R − on(1),
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which is (3.48).

Fix R > 0 and ε > 0, the latter to be specified later. For every η > 0 and all

n sufficiently large, Lemma 3.6 provides for the existence of n-dimensional lattice

codes Λ1 ⊃ Λ2 ⊃ Λ3 such that

log |L| < n(R + η/2), log |P| < n(Rp + η/2), (3.60)

Pr{L̂1 6= L1} < ε (3.61)

and

H(L1|U1) > n(R − ε). (3.62)

By Fano’s inequality and (3.60), (3.61),

H(L1|L̂1) ≤ εn(R + η/2) + h(ε) (3.63)

where h(�) is the binary entropy function. With f being a F|L|-valued mapping as

above, the existence of the matrix A1, follows from [10, Theorem 1] on the adequacy

of linear encoding for the Slepian-Wolf data compression of the i.i.d. rvs f(Li), i =

1, . . . , N , with decoder side-information f(L̂i), i = 1, . . . , N , and decoding error

probability vanishing to zero exponentially in N . Specifically, from [10, Theorem 1]

and using (3.61), there exists a dN [εn(R+η/2)+h(ε)]
log |L|

e × N -matrix A1 with F|L|-valued

entries such that f(L)N can be reconstructed from A1f(L)N and f(L̂)N with the

probability of error vanishing exponentially in N .

It remains to show the existence of a matrix A2 with the asserted property.

To this end, we shall use Lemma 2.1, as for the Section 2.2.4, but now with the U

in the lemma being continuous valued rv.
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Apply Lemma 2.1 with A = f(L1), U = U1 and B = (PN , A1f(L)N) with

1

n
log |B| ≤ n(Rp + η/2) + εn(R + η/2) + h(ε),

and consequentially, using (3.62),

H(A|U) − 1

n
log |B| = H(L1|U1) −

[n(Rp + η/2) + εn(R + η/2) + h(ε)]

≥ n(R − Rp − η)

= n(C(R) − η) (3.64)

if (the yet unspecified) ε > 0 is chosen to be sufficiently small. Hence, Lemma 2.1

gives that there exists a matrix A2 such that for K(nN) = A2f(L)N of range K(nN),

log |K(nN)| = log |L|
dNRse
dlog |L|e

≥ NRs(1 − on(1))

≥ nN(C(R) − η)(1 − on(1)) (3.65)

and s(K(nN);UN ,PN , A1f(L)N) vanishes exponentially in N . Since η is arbitrary,

the rate of f(L) and hence f(L)N can be chosen arbitrary close to R, and the rate

of K(nN) can be chosen arbitrarily close to C(R) for all n sufficiently large. This

completes the proof.
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Chapter 4

Perfect SK Generation for the Pairwise Independent Network Model

4.1 Motivation and the Model

In this chapter, we turn our attention to the problem of perfect SK genera-

tion. In contrast with materials in the previous two Chapters 2 and 3, this chapter

bears the essence of “zero-error information theory,” and accordingly, we rely on

mathematical techniques of a combinatorial nature [30]. Our emphasis here is on

perfect SK generation for fixed signal observation lengths as well as for their asymp-

totic limits [44]. It is of interest also to consider strong (rather than perfect) SK

generation for a natural variant of the model studied in this chapter. This variant

model [45] which entails a probabilistic analog of the blueprint below, is deferred to

Applendix C.3 so as to retain the combinatorial flavor of the chapter.

We consider a “Pairwise Independent Network (PIN)” model in which every

pair i, j of terminals, 1 ≤ i < j ≤ m, share a random binary string of length

eij (bits), with the strings shared by distinct pairs of terminals being mutually

independent.

The PIN model is motivated by practical aspects of a wireless communication

network in which terminals communicate on the same frequency. In a typical mul-

tipath environment, the wireless channel between each pair of terminals produces a

random mapping between the transmitted and received signals which is time-varying
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and location-specific. For a fixed time and location, this mapping is reciprocal, i.e.,

effectively the same in both directions. Also, the mapping decorrelates over different

time-coherence intervals as well as over distances of the order of a few wavelengths.

Our three main contributions in this chapter described below are motivated

by a known general connection between (not necessarily perfect) SK generation at

the maximum rate and the minimum communication for (not necessarily perfect)

omniscience [15, 16].

First, the concept of perfect omniscience enables us to obtain a single-letter

formula for the perfect SK capacity of the PIN model; moreover, this capacity is

shown to be achieved by linear noninteractive communication, and coincides with

the strong SK capacity. This result establishes a connection between perfect SK

capacity and the minimum rate of communication for perfect omniscience, thereby

particularizing to the PIN model a known general link between these notions sans

the requirement of the omniscience or secrecy being perfect [15].

Second, the PIN model can be represented by a multigraph. Taking advantage

of this representation, we put forth an efficient algorithm for perfect SK generation

using a maximal packing of Steiner trees of the multigraph. This algorithm involves

public communication that is linear as well as noninteractive, and produces a perfect

SK of length equal to the maximum size of such Steiner tree packing. When all the

terminals in M seek to share a perfect SK, the algorithm is shown to achieve perfect

SK capacity. However, when only a subset of terminals in A ⊂ M wish to share

a perfect SK, the algorithm can fall short of achieving capacity; nonetheless, it is

shown to achieve at least half of it. Additionally, we obtain nonasymptotic and
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asymptotic bounds on the size and rate of the best perfect SKs generated by the

algorithm. These bounds are of independent interest from a purely graph theoretic

viewpoint as they constitute new estimates for the maximum size and rate of Steiner

tree packing of a given multigraph.

Third, a special configuration of the PIN model arises when a lone “helper”

terminal m aids the “user” terminals in A = M\{m} generate a perfect SK. This

model has two special features: firstly, (a single) terminal m possesses all the bit

strings that are not in A; secondly, a Steiner tree for A is a spanning tree for either

A or M. These features enable us to obtain necessary and sufficient conditions

for Steiner tree packing to achieve perfect SK capacity, as also a further sufficient

condition that posits a “weak” role for the helper terminal m.

The PIN model is a special case of the multiterminal source model for SK

generation in Section 2.1 in which each rv Xi, i = 1, . . .m, is finite-valued and is of

the form Xi = (Yij, j ∈ M\{i}) with m−1 components, with the “reciprocal pairs”

of rvs {(Yij, Yji) , 1 ≤ i < j ≤ m} being mutually independent. We assume further

that Yij = Yji, 1 ≤ i 6= j ≤ m, where Yij is uniformly distributed over the set of

all binary strings of length eij (bits). Thus, every pair of terminals is associated

with a random binary string that is independent of all other random binary strings

associated with all other pairs of terminals. The assumption is tantamount to every

pair of terminals i, j sharing at the outset privileged and pairwise “perfect secrecy”

of eij bits.

Now, the alphabet1 Xi = {0, 1}
∑

j 6=i eij , i = 1, . . . , m and, hence, the alpha-

1It is assumed that
∑

j 6=i eij ≥ 1.
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bets at different terminals can be different, Definition 2.5 of linear noninteractive

communication is suitably modified here for the PIN model as follows.

Definition 4.1: The communication F = F(n) is termed linear noninter-

active communication (LC) if F = (F1, . . . , Fm) with2 Fi = LiX̃
n
i , where Li is a

bi ×
(∑

j 6= i n eij

)
matrix3 with {0, 1}-valued entries, i = 1, . . . , m. The integer

bi ≥ 0, i = 1, . . . , m, represents the length (in bits) of the communication Fi from

terminal i; the overall communication F has length
∑m

i =1 bi (bits).

A central role is played by the notion of perfect omniscience which is a strict

version of the concept of omniscience introduced in [15]. This notion does not involve

any secrecy requirements.

Definition 4.2: The communication F is communication for perfect om-

niscience for A if (X̃n
1 , . . . , X̃n

m) is perfectly recoverable from (X̃n
i ,F) for every

i ∈ A. Further, F is linear noninteractive communication for perfect omniscience

(LCO(n)(A)) if F is an LC and satisfies the previous perfect recoverability condi-

tion. The minimum length (in bits) of an LCO(n)(A), i.e., min
LCO(n)

(A)

∑m
i = 1 bi,

will be denoted by LCO(n)
m (A). The minimum rate of LCO(n)(A) is OMNp(A) ,

lim supn
1
n
LCO(n)

m (A).

4.2 Perfect SK Capacity

Our first main contribution in this chapter is a (single-letter) characterization

of the perfect SK capacity for the PIN model, which brings forth a connection with

2All additions and multiplications are modulo 2.
3It is assumed that

∑
j 6= i eij ≥ 1, i = 1, . . . , m.
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the minimum rate of communication for perfect omniscience.

Theorem 4.1: The perfect SK capacity for a set of terminals A ⊆ M is

Cp(A) =
∑

i,j

eij − OMNp(A) (4.1)

where

OMNp(A) = min
(R1,...,Rm) ∈ R(A)

m∑

i = 1

Ri, (4.2)

with

R(A) =




(R1, . . . , Rm) ∈ Rm : Ri ≥ 0, i = 1, . . . , m,

∑
i∈B Ri ≥ ∑

1≤i<j≤m, i∈B, j∈B eij,

∀B + A, ∅ 6= B ⊂ M





. (4.3)

Furthermore, this perfect SK capacity can be achieved with linear noninteractive

communication.

Remarks: (i) Clearly, the perfect SK capacity, by definition, cannot exceed the

SK capacity Indeed, Theorem 1 implies that the latter is attained by a perfect SK.

(ii) In the same vein, the minimum rate of communication for (asymptotic)

omniscience [15] can be attained for the PIN model with perfect recoverability at

A of (Xn
1 , . . . , Xn

m) for all n sufficiently large, and with linear noninteractive com-

munication. We mention that noninteractive communication, without a claim of

linearity, was shown to suffice for (asymptotic) omniscience in [15].
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4.3 Perfect SK Generation by Steiner Tree Packing

Theorem 4.1 serves to establish the sufficiency of an LC in achieving perfect

SK capacity through the intermediate attainment of perfect omniscience for A, as

seen in its proof below. However, as also evident from the proof, decoding is by

exhaustive search of prohibitive complexity.

The PIN model can be represented by a multigraph. This representation leads

us to an efficient algorithm for perfect SK generation, not necessarily through perfect

omniscience, by a maximal packing of Steiner trees of the multigraph. In particular,

this algorithm will be seen to entail public communication in the form of an LC. On

the other hand, such an algorithm based on maximal Steiner tree packing need not

attain perfect SK capacity. The size of the largest perfect SK that is thus generated

can be estimated in terms of the minimum length of an LCO(n)(A).

Definition 4.3: A multigraph G = (V, E) with vertex set V and edge set E

is a connected undirected graph with no self loops and with multiple edges possible

between any pair of vertices. Given G = (V, E) and a positive integer n, let G(n) =

(
V, E(n)

)
denote the multigraph with vertex set V and edge set E(n) wherein every

vertex pair is connected by n times as many edges as in E; in particular, G(1) = G.

Furthermore, |E(n)| will denote the total number of edges in E(n).

To the PIN model X1, . . . , Xm, we can associate a multigraph G = (M, E)

with M = {1, . . . , m} and the number of edges connecting a vertex pair (i, j) in

E equal to eij; in particular, the edge connecting (i, j) will be associated with the

random binary string Yij.
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By this association, it will be convenient to represent (4.2) and (4.3) as

OMNG(A) = min
(R1 ,...,Rm) ∈ RG(A)

m∑

i= 1

Ri, (4.4)

with

RG(A) =





(R1, . . . , Rm) ∈ Rm : Ri ≥ 0, i = 1, . . . , m,

∑
i∈B Ri ≥

∑
1≤i<j≤m, i∈B, j∈B eij,

∀B + A, ∅ 6= B ⊂ M





, (4.5)

whereupon (4.1) can be restated as

Cp(A) = |E| − OMNG(A). (4.6)

Furthermore, it is easy and useful to note that for every n ≥ 1,

OMNG(n)(A) = nOMNG(A). (4.7)

Definition 4.4: For A ⊆ V , a Steiner tree (for A) of G = (V, E) is a subgraph

of G that is a tree, i.e., containing no cycle, and whose vertex set contains A; such

a Steiner tree is said to cover A. A Steiner tree packing of G is any collection of

edge-disjoint Steiner trees of G. Let µ(A, G) denote the maximum size of such a

packing (cf. [26]), i.e., the maximum number of trees in the packing. The maximum

rate4 of Steiner tree packing of G is lim supn→∞
1
n
µ(A, G(n)). When A = V , a Steiner

tree becomes a spanning tree, with corresponding notions of spanning tree packing,

maximum size and rate.

Given a PIN model, the notion of Steiner tree packing of the associated multi-

graph leads to an efficient algorithm for constructing an LCO(n)(A) and thereby

4In fact, limn→∞
1
n
µ(A, G(n)) exists, as shown later in Proposition 4.4.
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generating a perfect SK. The next Theorem 4.2 indicates that the largest size of

a perfect SK that the algorithm generates is the maximum size of the Steiner tree

packing. Furthermore, Theorem 4.2 and its corollary, and Theorem 4.5 provide

nonasymptotic and asymptotic bounds on the size and rate, respectively, of the best

perfect SKs generated by the algorithm. Of independent interest from a purely graph

theoretic viewpoint, these results also constitute new bounds for the maximum size

and rate of Steiner tree packing of a given multigraph.

Theorem 4.2: For the multigraph G = (M, E) associated with a PIN model

and for A ⊆ M, it holds for every n ≥ 1 that

(i) the terminals in M can devise an LCO(n)(A) of total length n|E(1)| −

µ(A, G(n)) and subsequently generate a perfect SK K (n) with log |K(n)| = µ(A, G(n));

(ii) µ(A, G(n)) ≤ n|E(1)| − LCO(n)
m (A); (4.8)

(iii) furthermore, LCO(n)
m (A) is bounded below by the value of an integer linear

program according to

LCO(n)
m (A) ≥ INTG(n)(A)

where

INTG(n)(A) = min
(I1,...,Im) ∈ I

G(n) (A)

m∑

i =1

Ii, (4.9)

with

IG(n)(A) =





(I1, . . . , Im) ∈ Zm : Ii ≥ 0, i = 1, . . . , m,

∑
i∈B Ii ≥ n

∑
1≤i<j≤m, i∈B, j∈B eij,

∀B + A, ∅ 6= B ⊂ M





. (4.10)
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Corollary 4.3: For every n ≥ 1, the maximum size of Steiner tree packing

of a multigraph G(n) satisfies

µ(A, G(n)) ≤ n |E(1)| − INTG(n)(A), (4.11)

with equality when A = M.

Remarks: (i) Note that the bounds in Theorem 4.2 are nonasymptotic, i.e.,

valid for every n. Also, note in the bound in Theorem 4.2 (ii) for µ(A, G(n)) that

LCO(n)
m (A) is defined in terms of its operational significance.

(ii) Further, Theorem 4.2 provides a nonasymptotic computable lower bound

for LCO(n)
m (A) in terms of an integer linear program. The optimum value of its linear

programming relaxation constitutes a further lower bound which equals OMNG(n)(A) =

nOMNG(A), by (4.7).

Next, we turn to connections between perfect SK capacity Cp(A) and the

maximum rate of Steiner tree packing of G = (M, E). The following concept of

“fractional” Steiner tree packing will be relevant.

For A ⊆ M = {1, . . . , m}, consider the collection {S1, . . . , Sk} of all distinct

Steiner trees (for A) of G, where k = k(G). Consider the region

TG(A) =





(T1, . . . , Tk) ∈ Rk : Tl ≥ 0, l = 1, . . . , k,

∑
l:(i,j) ∈ Sl

Tl ≤ eij

∀(i, j), 1 ≤ i < j ≤ m





. (4.12)

Definition 4.5: For a multigraph G = (M, E) and A ⊆ M, the maximal
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“fractional” Steiner tree packing of G, denoted µf(A, G), is µf(A, G) , maxTG(A)

∑k
l=1 Tl.

Remarks: (i) Clearly, µf(A, G) corresponds to a linear program with finite

optimum value, and the maximum is attained. Furthermore, it is readily verified

that for every n ≥ 1,

µf(A, G(n)) = n µf(A, G). (4.13)

(ii) We observe that in Definition 4.4, µ(A, G) , maxTG(A)∩Zk

∑k
l=1 Tl.

Proposition 4.4: For a multigraph G = (M, E) and A ⊆ M, it holds that

the maximum rate of Steiner tree packing (for A) of G satisfies

lim sup
n→∞

1

n
µ(A, G(n)) = lim inf

n→∞

1

n
µ(A, G(n))

= lim
n→∞

1

n
µ(A, G(n))

= µf(A, G). (4.14)

Theorem 4.5: For the multigraph G = (M, E) associated with the PIN model

and for A ⊆ M, it holds that

1

2
Cp(A) ≤ lim

n→∞

1

n
µ(A, G(n)) ≤ Cp(A). (4.15)

Furthermore, when A = M,

lim
n→∞

1

n
µ(M, G(n)) = Cp(M). (4.16)

Remark: For the PIN model with m terminals, every Steiner tree has at most

m−1 edges. Also, from (4.15), µ(A, G(n)) . nC(A) for all large n. Hence, the over-

all complexity of the perfect SK generation algorithm based on Steiner tree packing
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is linear (in n).

The upper bound on limn→∞
1
n
µ(A, G(n)) in Theorem 4.5 is not tight, in gen-

eral, as seen by the following example.

Example: Consider the multigraph [32] in Figure 1 with |M| = 7 and |A| = 4;

the terminals in A are represented by the solid circles and every shown edge is single.

Computations give that Cp(A) = 2.0 by (4.6), (4.4), while limn→∞
1
n
µ(G(n), A) = 1.8

by Proposition 4.4 and the scheme in Lemma 4.1 below.v
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Figure 1: Example

4.4 The Single Helper Case

As observed after Theorem 4.5, the maximum rate of Steiner tree packing

can fail to achieve perfect SK capacity. A natural question that remains open is

whether the maximum rate of Steiner tree packing equals perfect SK capacity for

the special case of the PIN model in which a lone “helper” terminal m assists the

“user” terminals in A = {1, . . . , m − 1} generate a perfect SK. In this section, we

provide partial answers.

First, we derive necessary and sufficient conditions for the maximum rate of

Steiner tree packing to equal perfect SK capacity in (4.15) and, analogously, the
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(nonasymptotic) maximum size of Steiner tree packing to meet its upper bound in

(4.11). These conditions entail the notion of a fractional multigraph. Throughout

this section, we shall assume that A = {1, . . . , m − 1} ⊂ M = {1, . . . , m}.

Definition 4.6: Given a multigraph G = (M, E) as in Definition 4.3, a

fractional multigraph G̃ = (A, Ẽ) in A (with vertex set A) has edge set Ẽ = {ẽij ∈

R, 0 ≤ ẽij ≤ eij, 1 ≤ i < j ≤ m−1}. For any such G̃, the complementary fractional

multigraph G\G̃ = (M, E\Ẽ) has vertex set M and edge set E\Ẽ , {eij − ẽij, 1 ≤

i < j ≤ m− 1; eim, 1 ≤ i ≤ m− 1}. The definitions of RG(A) in (4.5), OMNG(A)

in (4.4), TG(A) in (4.12) and µf(A, G) in Definition 4.5 all have obvious extensions

to G̃ and G\G̃ as well. Further, (4.7) and (4.13) also hold for G̃ and G\G̃.

Proposition 4.6: For the multigraph G = (M, E) associated with the PIN

model, the following hold:

(i)

µf(A, G) ≥ max
G̃

µf(A, G̃) + µf(M, G\G̃);

(ii)

OMNG(A) ≤ min
G̃

OMN G̃(A) + OMNG\G̃(M);

(iii)

µ(A, G) ≥ max
G̃I

µ(A, G̃I) + µ(M, G\G̃I);

(iv)

INT G(A) ≤ min
G̃I

INT G̃I
(A) + INT G\G̃I

(M),

where the optima in (i) and (ii) are over all fractional multigraphs G̃ = (A, Ẽ) in

A, and the optima in (iii) and (iv) are over all multigraphs G̃I = (A, Ẽ) in A for
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which Ẽ consists of only integer-valued ẽijs.

Theorem 4.7: For the multigraph G = (M, E) associated with the PIN

model,

(i)

lim
n→∞

1

n
µ(A, G(n)) = Cp(A) (4.17)

iff

OMNG(A) = min
G̃

OMN G̃(A) + OMNG\G̃(M), (4.18)

where the minimum is over all fractional multigraphs G̃ = (A, Ẽ) in A;

(ii)

µ(A, G(n)) = |E| − INT G(A)

iff

INT G(A) = min
G̃I

INT G̃I
(A) + INT G\G̃I

(M), (4.19)

where the minimum is over all multigraphs G̃I = (A, Ẽ) for which Ẽ consists of only

integer-valued ẽijs.

Our final result provides another sufficient condition for the maximum rate of

Steiner tree packing to equal perfect SK capacity. Recall from Theorem 4.1 that, in

general, perfect SK capacity for A can be attained with public communication that

corresponds to the minimum communication for perfect omniscience. If the latter

can be accomplished with the sole helper terminal m communicating “sparingly,”

then it transpires that maximal Steiner tree packing attains the best perfect SK

rate. An analogous nonasymptotic version of this claim also holds. Heuristically, a
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sufficient “weak” role of the helper terminal m turns the Steiner tree packing of A,

in effect, into a spanning tree packing of A.

Let di ,
∑

j 6=i eij denote the degree of vertex i, i = 1, . . . , m. Clearly,

any (R∗
1, . . . , R

∗
m) (resp. (I∗

1 , . . . , I
∗
m)) that attains the minimum corresponding to

OMNG(A) (cf. (4.4)) (resp. INTG(A) (cf. (4.9))) must satisfy R∗
i ≤ di (resp.

I∗
i ≤ di), i = 1, . . . , m.

Theorem 4.8: For the multigraph G = (M, E) associated with the PIN

model,

(i) if there exists (R∗
1, . . . , R

∗
m) that attains OMNG(A) (cf. (4.4)) with R∗

m ≤

dm/2, then

lim
n→∞

1

n
µ(A, G(n)) = Cp(A) = |E| − OMNG(A).

(ii) if there exists (I∗
1 , . . . , I

∗
m) that attains INTG(A) (cf. (4.9)) with I∗

m ≤

bdm/2c, then

µ(A, G) = |E| − INTG(A).

4.5 Proofs

Proof of Theorem 4.1: From Remark (i) following Theorem 1, we need

prove only the achievability part. The main step is to show, using a random coding

argument, the existence with large probability of an LCO(n)(A) of small length under

appropriate conditions; the terminals in A then extract from the corresponding

perfect omniscience a perfect SK of optimum rate.
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Let Xn
M = (Xn

1 , . . . , Xn
m) take values in X n

M = X n
1 × . . . × X n

m, where X n
i =

{0, 1}
∑

j 6= i n eij . We denote a realization of Xn
M by xn

M = (xn
1 , . . . , x

n
m). Fix b1, . . . , bm.

Let L = (L1, . . . ,Lm) consist of mutually independent random matrices of appro-

priate dimensions as in Definition 4.1. Furthermore, the rv Li consists of i.i.d.

equiprobable components, i = 1, . . . , m. Clearly, L1, . . . ,Lm makes for a random

LC.

Since for L1, . . . ,Lm to constitute an LCO(n)(A), it suffices that the mapping

xn
M → (xn

i ,L1x
n
1 , . . . ,Lmxn

m)

be one-to-one for every i ∈ A, we have

Pr{ L does not constitute an LCO(n)(A) }

= Pr





∃ xn
M 6= x′n

M ∈ X n
M satisfying

xn
j = x′n

j for some j ∈ A such that

Lix
n
i = Lix

′n
i for each i = 1, . . . , m





= Pr





∃ xn
M 6= 0 ∈ X n

M satisfying

xn
j = 0 for some j ∈ A such that

Lix
n
i = 0 for each i = 1, . . . , m





(4.20)

≤
∑

B 6=∅,
B + A

Pr





∃ xn
M ∈ X n

M satisfying

xn
j 6= 0 ∀j ∈ B, and xn

j = 0 ∀j ∈ Bc

such that Lix
n
i = 0

for each i = 1, . . . , m





,

(4.21)
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where (4.20) is by the linearity of the communication and (4.21) is obtained by

applying the union bound to the event in (4.20).

Now, we note by the assumed independence of L1, . . .Lm and the fact that the

components of Li are i.i.d. and equiprobable, i = 1, . . . , m, that for each nonempty

B + A, and any xn
M satisfying xn

j 6= 0 ∀j ∈ B, and xn
j = 0 ∀j ∈ Bc, we have

Pr{Lix
n
i = 0 for every i = 1, . . . , m} = Pr{Lix

n
i = 0 for every i ∈ B}

=
∏

i∈B

2−bi = 2−
∑

i∈ B bi. (4.22)

Continuing with (4.21) upon using (4.22), we obtain

Pr{ L does not constitute an LCO(n)(A) }

≤
∑

B 6=∅,
B + A

∣∣∣∣∣

{
xn
M ∈ X n

M : xn
j 6= 0

∀j ∈ B, xn
j = 0 ∀j ∈ Bc

}∣∣∣∣∣ 2−
∑

i ∈B bi

≤
∑

B 6=∅,
B + A

2n(
∑

l,k ∈B elk)2−
∑

i ∈B bi

=
∑

B 6=∅,
B + A

2−n( 1
n

∑
i ∈B bi−

∑
l,k ∈B elk). (4.23)

We note that in this proof, the special structure of the PIN model is used for the

first time in the second inequality above.

Now, let (R∗
1, . . . , R

∗
m) achieve the minimum in the right side of (4.2). Pick an

arbitrary ε > 0 and choose bi in (4.23) as bi = dn(R∗
i + ε)e, i = 1, . . . , m. Then,

by the definition of R(A), the right side of (4.23) decays to zero exponentially

rapidly in n; in particular, we get that for all n sufficiently large, L constitutes an
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LCO(n)(A) with large probability. This implies the existence of a (deterministic)

L = (L1, . . . , Lm) that constitutes an LCO(n)(A) for all n sufficiently large.

It remains to extract a perfect SK from the perfect omniscience obtained above.

By the definition of the PIN model, observe that

Pr{Xn
M = xn

M} = 2−
∑

l,k n elk for all xn
M ∈ X n

M.

By the linearity of the LCO(n)(A) above, it is readily seen that the cardinality

|{xn
M ∈ X n

M : Lix
n
i = ai, i = 1, . . . , m}| is the same for all feasible (a1, . . . , am)

where ai ∈ {0, 1}bi, i = 1, . . . , m, and that this common number is at least

N = 2(
∑

l,k n elk)−(
∑m

i =1 bi).

For each communication message (a1, . . . , am), we index the elements of the coset

{xn
M : Lix

n
i = ai, i = 1, . . . , m} in a fixed manner. Then, for a realization xn

M ∈ X n
M,

every terminal in A (which knows xn
M by omniscience) picks as the perfect SK the

index of xn
M in its coset, as in [55]. Since Xn

M takes values in X n
M and since each

coset has the same size, it follows that this random index is uniformly distributed

and independent of the coset (the communication message), thereby constituting a

perfect SK. Lastly, the rate of this perfect SK is at least

lim
n→∞

1

n
log N =

∑

l,k

elk −
m∑

i =1

R∗
i − mε

=
∑

l,k

elk − OMNp(A) − mε,

where ε > 0 is arbitrary.

Proof of Theorem 4.2: The proof will rely on the technical Lemma 4.1

which is stated next and established in Appendix C.1.
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Lemma 4.1: Let G = (V, T ) be a tree, and associate with each edge a bit.

Then the terminals in V can devise a (noninteractive) LC of length |T | − 1 bits

enabling every terminal in V to recover all the edges of T , i.e., all the bits associated

with the edges of T .

(i,ii) If µ(A, G(n)) = k, say, then E(n) is the disjoint union of k Steiner trees

T1, . . . , Tk (each of which covers A) and the remaining edge set R, so that

|E(n)| = n|E(1)| =

k∑

i=1

|Ti| + |R|, (4.24)

where |Ti| denote the number of edges in Ti.

Apply Lemma 4.1 to every Steiner tree Ti, i = 1, . . . , k, in (4.24) to get k LCs

that enable every terminal in A to recover the edges of all the Ti, i = 1, . . . , k. An

additional communication of |R| bits will lead to the recovery of the leftover edges

in R. Thus, there exists an LCO(n)(A) of length

k∑

i=1

|Ti| − k + |R| = n|E(1)| − k (bits),

which establishes the first assertion of (i); also, clearly, LCO(n)
m (A) ≤ n|E(1)| − k,

thereby proving (ii). To establish the second assertion of (i), it remains to extract

a perfect SK from the perfect omniscience obtained using the LCO(n)(A) above of

total length n|E(1)| − µ(A, G(n)) (bits). This is accomplished exactly as in the

proof of Theorem 4.1, whereby the terminals in A extract a perfect SK K (n) with

log |K(n)| = µ(A, G(n)).

(iii) Consider an LCO(n)(A) = (L1, . . . , Lm) achieving LCO(n)
m (A) with (b1, . . . , bm)

(bits), respectively. Fix B ⊂ M, B + A, and consider S = {xn
M : xn

j =
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0 for every j ∈ Bc} with cardinality 2n
∑

1≤i<j≤m, i∈B, j∈B eij . For every k ∈ Bc ∩ A

and every xn
M ∈ S, it holds that xn

k = 0. Consequently, by the perfect recover-

ability property of an LCO(n)(A), such a terminal k must be able to discern all

the sequences in S using only (L1, . . . , Lm). Note also that for every xn
M ∈ S and

every i ∈ Bc, it follows that Li(x
n
i ) = 0; therefore, the set of all communication

messages corresponding to S has cardinality at most 2
∑

i∈B bi . From the mentioned

condition on perfect recoverability at terminal k ∈ Bc ∩ A of all sequences in S,

it must hold that 2
∑

i∈B bi ≥ 2n
∑

1≤i<j≤m, (i,j)∈B eij . Since this argument is valid for

every B ⊂ M, B + A, we have that (b1, . . . , bm) ∈ IG(n)(A) and, hence, LCO(n)
m (A)

is at least min(I1,...,Im)∈I
G(n) (A)

∑m
i= 1 Ii.

Proof of Corollary 4.3: The inequality in the Corollary 4.3 is immediate

from (4.8) and (4.10). Equality when A = M relies on Lemma 4.2 and 4.3 below;

Lemma 4.2 is a classic result of Nash-Williams [43] and Tutte [48] on the maximal

size of spanning tree packing of a multigraph, and Lemma 4.3 [15] provides an upper

bound for strong SK capacity

Lemma 4.2 [43], [48]: For a multigraph G = (M, E),

µ(M, G) =
⌊

min
P

1

|P| − 1

∣∣∣{e ∈ E : e crosses P}
∣∣∣
⌋
,

where the minimum is over all partitions P of M.

Lemma 4.3 [15]: For the multigraph G = (M, E) associated with the PIN

model and for A ⊆ M,

Cp(A) = |E| − min
(R1,...,Rm) ∈ RG(A)

m∑

i =1

Ri ≤ min
P

1

|P| − 1

∣∣∣{e ∈ E : e crosses P}
∣∣∣,
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where the minimum is over all partitions P of M such that each atom of P intersects

A .

By (4.5) and (4.10), RG(n)(M) ⊃ IG(n)(M) with G(n) and M in the roles of

G and A in (4.5), it is clear that

⌈
min

(R1,...,Rm) ∈ R
G(n) (M)

m∑

i= 1

Ri

⌉
≤ min

(I1,...,Im) ∈ I
G(n) (M)

m∑

i =1

Ii, (4.25)

noting that the value on the right side above is an integer.

Then the claimed equality follows since

µ(M, G(n)) ≤ n |E(1)| − min
(I1,...,Im) ∈ I

G(n) (M)

m∑

i =1

Ii

≤
⌊
n |E(1)| − min

(R1,...,Rm) ∈ R
G(n) (M)

m∑

i =1

Ri

⌋
, by (4.25)

≤
⌊

min
P

1

|P| − 1

∣∣∣{e ∈ E(n) : e crosses P}
∣∣∣
⌋

(4.26)

= µ(M, G(n)), by Lemma 4.2,

where (4.26) is by Lemma 4.3.

Proof of Proposition 4.4: By Remark (ii) after Definition 4.5 in Section

4.3, we have that

1

n
µ(A, G(n)) =

1

n
max

T
(n)

G (A)∩Zk

k∑

l=1

Tl = max
TG(A)∩ 1

n
Zk

k∑

l=1

Tl.

Since

lim
n→∞

max
TG(A)∩ 1

n
Zk

k∑

l=1

Tl = max
TG(A)

k∑

l=1

Tl = µf(A, G),

the assertion follows.

Proof of Theorem 4.5: The second inequality of the theorem is immediate

by Theorem 4.2 (i) and the definition of Cp(A).
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The proof of the first inequality takes recourse to the following result.

Lemma 4.4 [34, 31]: For a multigraph G = (M, E) that is Eulerian5 and

A ⊆ M,

µ(A, G) ≥
⌊1

2
min

C⊂M:C∩A6=∅

∣∣∣{e ∈ E : e crosses C, Cc}
∣∣∣
⌋
.

Now, for every n, RG(n)(A) ⊃ IG(n)(A), and so

min
I

G(n) (A)

m∑

i= 1

Ii ≥ min
R

G(n) (A)

m∑

i =1

Ri.

By Lemma 4.3,

n|E(1)| − min
R

G(n) (A)

m∑

i = 1

Ri ≤ min
P

1

|P| − 1

∣∣∣{e ∈ E(n) : e crosses P}
∣∣∣

≤ min
C⊂M:C∩A6=∅

∣∣∣{e ∈ E(n) : e crosses C, Cc}
∣∣∣. (4.27)

Restricting ourselves to n even, note that G(n) is Eulerian, i.e., each vertex has even

degree. Then since the term within b c in the right side in Lemma 4.4 is clearly an

integer, we have that

µ(A, G(n)) ≥ 1

2
min

∅6=C⊂M:C∩A6=∅

∣∣∣{e ∈ E(n) : e crosses C, Cc}
∣∣∣

≥ 1

2

[
n|E(1)| − min

R
G(n) (A)

m∑

i =1

Ri

]
, by (4.27)

=
1

2

[
n|E(1)| − OMNG(n)(A)

]

=
1

2
n
[
|E(1)| − OMNG(A)

]
, by (4.7)

=
1

2
nCp(A),

thereby establishing the left inequality of the theorem.

5The number of edges incident on each vertex is even.
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Proof of Proposition 4.6: We prove (i) and (ii). The proofs of (iii) and (iv)

are similar but simpler, and are omitted.

(i) Similarly as in Remark (i) following Definition 4.5, we note that the right

side of (i) corresponds to a linear program with finite optimum value, and the

maximum is attained. Let G̃∗, (T ∗
1 , . . . , T ∗

k1
), (T ∗∗

1 , . . . , T ∗∗
k2

) attain the maximum

in the right side of (i), where (T ∗
1 , . . . , T ∗

k1
) and (T ∗∗

1 , . . . , T ∗∗
k2

) attain the respective

maxima in µf(A, G̃∗) and µf(M, G\G̃∗), with k1 (resp. k2) being the number of all

distinct spanning trees in A (resp. M) of G. Clearly, (T ∗
1 , . . . , T ∗

k1
, T ∗∗

1 , . . . , T ∗∗
k2

) is

feasible for µf(A, G), noting that a Steiner tree for A of G is either a spanning tree

in A or a spanning tree in M.

(ii) Similarly as in the proof of (i), we let G̃∗ (R∗
1, . . . , R

∗
m−1), (R∗∗

1 , . . . , R∗∗
m )

attain the minimum in the right side of (ii), where (R∗
1, . . . , R

∗
m−1) and (R∗∗

1 , . . . , R∗∗
m )

attain the respective minima in OMNG̃∗(A) and OMNG\G̃∗(M). Clearly, (R∗
1 +

R∗∗
1 , . . . , R∗

m−1 + R∗∗
m−1, R

∗∗
m ) is feasible for OMNG(A), thereby proving (ii).

Similar arguments considering the corresponding integer linear programs lead

to (iii) and (iv).

Proof of Theorem 4.7: We shall prove only (i); the proof of (ii) is similar

and is omitted.

First, we show that (4.18) implies (4.17), i.e.,

lim
n→∞

1

n
µ(A, G(n)) ≥ C(A) = |E| − OMNG(A), (4.28)

(since the reverse inequality always hold by Theorem 4.5). Let a fractional multi-
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graph G̃∗ = (A, Ẽ∗) achieve the minimum in the right side of (4.18). Then,

lim
n→∞

1

n
µ(A, G(n)) = µf(A, G), by (4.14)

≥ max
G̃

µf(A, G̃) + µf(M, G\G̃),

by Proposition 4.6 (i)

≥ µf(A, G̃∗) + µf(M, G\G̃∗). (4.29)

Next, because the linear program in the right side of (4.18) involves a cost and

linear constraints with only integer-valued coefficients, G̃∗ = (A, Ẽ∗) can always

be taken to be rational, i.e., all ẽ∗ijs in Ẽ∗ are rational. Next, let l be the least

common multiple of all ẽ∗ijs so that G̃∗(l) = (A, Ẽ∗(l)) is a multigraph with edge set

Ẽ∗(l) = {l ẽ∗ij, 1 ≤ i < j ≤ m − 1}. Then,

µf(A, G̃∗) =
1

l
µf(A, G̃∗(l)), by (4.13)

=
1

l
(|Ẽ∗(l)| − OMNG̃∗(l)(A))

= |Ẽ∗| − OMNG̃∗(A), by (4.7); (4.30)

the second equality is by Proposition 4.4 and the second assertion of Theorem 4.5

noting that the vertex set of G̃∗(l) is A. By a similar argument, we have that

µf(M, G\G̃∗) = |E\Ẽ∗| − OMNG\G̃∗(M). (4.31)

Substituting (4.30) and (4.31) in (4.29),

lim
n→∞

1

n
µ(A, G(n)) ≥ |Ẽ∗| + |E\Ẽ∗|

−(OMNG̃∗(A) + OMNG\G̃∗(M))

= |E| − OMNG(A), by (4.18)
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thereby giving (4.28).

Conversely, to prove that (4.17) implies (4.18), i.e.,

OMNG(A) ≥ min
G̃

OMN G̃(A) + OMNG\G̃(M)

(since the reverse inequality always holds by Proposition 4.6 (ii)), we can assume

similarly as above that µf(A, G) is attained by (T ∗
1 , . . . , T ∗

k ) with rational compo-

nents, where k = k(G) is the number of distinct Steiner trees (for A) of G (see

passage preceding (4.12)). Next, since A = {1, . . . , m − 1} ⊂ M, the collection of

all distinct Steiner trees of (for A) of G, namely {S1, . . . , Sk} can be decomposed as

S1 t S2, where S1 (resp. S2) comprises all spanning trees in A (resp. M). Consider

the fractional multigraph in A defined by

˜̃G∗ = (A, ˜̃E∗), ˜̃E∗ = {˜̃e∗ij =
∑

l:(i,j)∈Sl,

Sl∈S1

T ∗
l , 1 ≤ i < j ≤ m − 1})

Then, it follows that

µf(A, G) = µf(A, ˜̃G∗) + µf(M, G\ ˜̃G∗) (4.32)

since

µf(A, G) =
k∑

l=1

T ∗
l

=
∑

l: Sl∈S1

T ∗
l +

∑

l: Sl∈S2

T ∗
l

≤ µf (A, ˜̃G∗) + µf(A, G\ ˜̃G∗),

by the definition of µf ; the reverse inequality is always true. Finally, the right side

of (4.17) satisfies
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OMNG̃∗(A) + OMNG\G̃∗(M)

≤ OMN ˜̃G∗(A) + OMN
G\ ˜̃G∗(M)

= (| ˜̃E∗| − µf(A, ˜̃G∗)) +

(|E\ ˜̃E∗| − µf(M, G\ ˜̃G∗)),

as in (4.30), (4.31)

= |E| − µf(A, G), by (4.32)

= OMNG(A),

by (4.17), (4.14) and (4.6).

Proof of Theorem 4.8: First, we prove (ii), and then (i) by applying (ii) to

G(n) = (M, E(n)) and taking appropriate limits.

The proof of (ii) entails considering a modification of G = (M, E) obtained by

“edge-splitting” at the helper vertex m. Specifically, if G has more than one vertex

in A connecting to m, then for any two such vertices u, v ∈ A, let Guv = (M, Euv)

denote the multigraph obtained from G by splitting off the edges (u, m) and (v, m),

i.e., by reducing eum and evm each by unity and increasing euv by unity; note that

|Euv| = |E| − 1.

The following claim, whose proof is relegated to Appendix C.2, will be used

to establish the theorem.

Claim: For a multigraph G = (M, E),

(a) if m is connected to at most one vertex in A or if there exists (I ∗
1 , . . . , I

∗
m)
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attaining INTG(A) with I∗
m = 0, then

µ(A, G) = |E| − INTG(A); (4.33)

(b) if m is connected to more than one vertex in A and if there exists (I ∗
1 , . . . , I

∗
m)

attaining INTG(A) with 0 < I∗
m ≤ bdm/2c, then for u ∈ A connecting to m there

exists v = v(u) ∈ A, v 6= u, also connecting to m, such that (I∗
1 , . . . , , I

∗
m−1, I

∗
m − 1)

attains INTGuv(A), and so

|E| − INTG(A) = |Euv| − INTGuv(A); (4.34)

(c) if m is connected to more than one vertex in A, then for u, v ∈ A both

connecting to m,

µ(A, G) ≥ µ(A, Guv).

In order to prove (ii), we observe first that it holds if the hypothesis of Claim

(a) is met. It remains to consider the realm of Claim (b). Let (I∗
1 , . . . , I

∗
m) be as in

Claim (b). Then we obtain G2 = (M, E2) = Guv for some u, v ∈ A connecting to

m, and with (I∗
1 , . . . , I

∗
m − 1) attaining INTG2(A). If I∗

m − 1 = 0 or m connects to

at most one vertex in A in G2, then by (4.33) (4.34),

µ(A, G2) = |E2| − INTG2(A) = |E| − INTG(A).

Else, G2 = (M, E2) is back in the realm of Claim (b), noting that the degree of m

in G2 is dm − 2 and I∗
m − 1 ≤ b(dm − 2)/2c as 2 ≤ I∗

m ≤ bdm/2c. Thus, we obtain a

finite number of multigraphs G1 = G, G2, . . . , Gq, such that Gi = (M, Ei) = Guv
i−1
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for some (u, v) = (u, v)(i) in A, and satisfying

|Ei−1| − INTGi−1
(A) = |Ei| − INTGi

(A), i = 2, . . . , q (4.35)

and

µ(A, Gq) = |Eq| − INTGq(A). (4.36)

Using Claim (c) repeatedly,

µ(A, G) = µ(A, G1) ≥ µ(A, Gq)

= |Eq| − INTGq(A). by (4.36)

= |E| − INTG(A) (4.37)

by the repeated use of (4.35). Then, (ii) is immediate from (4.37) and Corollary 4.3.

To establish (i), the hypothesis implies (with a slight abuse of notation) that

min
RG(A)

⋂
{Rm≤dm/2}

m∑

i = 1

Ri = OMNG(A). (4.38)

Pick (R∗
1, . . . , R

∗
m) that attains the left side with all rational components, and let l

be the least common multiple of their denominators. Thus, for every integer n ≥ 1,

(nlR∗
1, . . . , nlR∗

m) attains INTG(nl)(A). As nlR∗
m ≤ nl dm

2
, it follows from (ii) that

µ(A, G(nl)) = nl|E| − INTG(nl)(A)

= nl|E| − nlOMNG(A), by (4.38).

Upon dividing both sides by nl and taking limits as n → ∞ (with l fixed), we obtain

(i).
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Chapter 5

Conclusion

This dissertation, in a nutshell, investigates secret key (SK) generation for spe-

cific multiterminal source models with emphasis on a single-letter characterization

of SK capacities and algorithms for SK construction. Various security requirements:

weak, strong and perfect secrecy, as well as different types of sources: finite-valued

and continuous, are studied. In this concluding chapter, we first compile specific

open problems emerging from our work that are yet to be resolved. Finally, we

point out broader research directions that are motivated by this dissertation

5.1 Specific Open Problems

5.1.1 SK for Gaussian Sources

In the Gaussian multiterminal model of Chapter 3, it remains to extend the

formulation of Theorem 3.3 to models with arbitrary number m > 2 of terminals;

the resulting model will involve quantization at one terminal in the secrecy-seeking

set A, say terminal k, with randomization allowed at all the terminals. In particular,

following the paragraph preceding the statement of Theorem 3.3, the model under

consideration can be described as follows. Let Mi be a Mi-valued rv, i = 1, . . . , m,

with M1, M2, . . . , Mm,XM being mutually independent. For each R > 0, let qR :

Mk × Rn → QR be a (vector) random quantizer at terminal k of rate R, where
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QR ⊂ Rn with 1
n

log |QR| ≤ R. Let C(R) be the largest rate of a SK that can be

generated from qR(Mk,Xk) at terminal k and (Mi,Xi) at each of the other terminals

i ∈ M\{k}. A characterization of C(R), and devising algorithms for SK generation

that attains the optimum tradeoff C(R), will constitute the main objectives of this

effort. Similarly as in Theorem 3.3, these questions are connected to problems in

multiterminal Gaussian lossy data compression (cf. e.g., [49]).

5.1.2 Perfect SK for the PIN Model

Consider the PIN model of Chapter 4. When all the terminals in M seek to

share a perfect SK, i.e., A = M, we see from Theorem 4.5 that maximal spanning

tree packing attains perfect SK capacity; this is no longer true, in general, when

A ⊂ M (cf. the example in Section 4.3). However, the single helper model in Section

4.4 possesses the special feature that a Steiner tree for A is a spanning tree for either

A or M. In spite of this, it is unresolved whether a maximal Steiner tree packing of A

attains perfect SK capacity (i.e., if the second inequality in (4.15) is tight) or if (4.11)

holds with equality (whereupon the sufficient conditions of Theorem 4.8 become

superfluous). We note that the optimality of maximal spanning tree packing in (4.11)

and (4.16), constitutes, in effect, a reformulation of the classic graph-theoretic results

of Nash-Williams [43] and Tutte [48]. A better information theoretic understanding

of (4.11) and (4.16) is desirable, and might suggest alternative interpretations of

related results in combinatorial tree packing.

Perfect SK capacity in Theorem 4.1 was shown to be achievable by way of the
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attainment of perfect omniscience at a minimum communication rate OMNp(A).

However, when A = M, Theorem 4.5 asserts that maximal spanning tree packing

attains capacity; an examination of its proof (cf. Lemma 4.1) shows the correspond-

ing rate of communication to be (m− 1)Cp(M) which can be less than OMNp(M).

It remains open to characterize the minimum rate of public communication needed

to attain perfect SK capacity.

Maximal Steiner tree packing is guaranteed by Theorem 4.5 to attain a fraction

of at least half of the capacity Cp(A). What is the best feasible value of this fraction?

A natural generalization of the PIN model involves signals observed at vari-

ous terminals that go beyond being correlated in pairs. For example, in a sensor

network a group of proximate sensors can be assumed to observe (nearly) identi-

cal signals. An apt generalization of the PIN model is the Groupwise Independent

Network (GIN) model: Consider a collection of mutually independent binary strings

E1, E2, . . . , Ee, where each Ei is shared by a group of terminals Gi ⊆ M, i = 1, . . . , e,

with overlaps allowed among the groups. Consequently, each terminal i observes

i.i.d. repetitions of the rv Xi = {Ej, j = 1, . . . , e : i ∈ Gj}. Perfect SK capacity

for the GIN model can be characterized using methods similar to those in the proof

of Theorem 4.1. An appropriate combinatorial representation of the GIN model is

now a hypermultigraph with hyperedges replacing edges in the multigraph represen-

tation of the PIN model. The definition of Steiner tree can be suitably modified for

hypermultigraphs, and can be used to generate a perfect SK in an efficient manner.

However, similarly as in the case of the PIN model, these efficient algorithms are

not expected to achieve perfect SK capacity.
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This raises the following question: Can ideas from network coding be exploited

to construct efficient algorithms for generating rate-optimal perfect SKs? Prompt-

ing this question are two findings in Chapter 4: A connection between perfect SK

generation and perfect omniscience, and the adequacy of linear coding for attaining

perfect SK capacity.

5.2 Future Research Directions

The results in this dissertation represent only a small step towards realizing

network cryptosystems that guarantee information theoretic security. Several issues

are left unexplored and remain rich research areas for future exploration.

One avenue of future investigations deals with certain fundamental unanswered

questions concerning SK capacity. First, the results in Sections 2.2.1 and 2.2.2 re-

garding connections between SK generation and related multiterminal data com-

pression problems raise the following interesting question: What are the smallest

(entropy) rates of common randomness (rather than full omniscience) and the as-

sociated communication that are required to attain SK capacity? Answers can be

useful in studying practical cryptographic systems with limited communication or

storage resources.

Second, the feasibility of perfect SK in a general discrete multiterminal source

model merits further investigation. The Pairwise Independent Network (PIN) model

in Chapter 4 possesses a special structure that allows the terminals to devise a

perfect SK instead of a strong SK without sacrificing rate optimality. This will not
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be the case for models with general discrete sources. Thus, what are the correlation

structures of sources that enable perfect SK generation?

Third, can there be an intermediate notion of SK capacity between strong SK

capacity and perfect SK capacity? In particular, for a SK K with key-space K and

the eavesdropper’s observation F, the security index in (2.1) can be interpreted as a

measure of closeness, on the average, of the conditional entropy of K, conditioned on

F = f , to log |K|, the entropy of a rv uniformly distributed on K. A more stringent

criterion can require that the SK is close to being uniformly distributed for every

realization f of F. In this regard, it makes sense to define a new security index as

s̄(K;F) = maxf [log |K| − H(K|F = f)]; a new notion of SK capacity can be defined

suitably with respect to this new security index. Clearly, this new SK capacity is

bounded below by perfect SK capacity and is bounded above by the strong SK

capacity. What are the ramifications of this new security index s̄?

A second avenue of related future research involves code constructions for SK

generation for various multiterminal source models. Such constructions are con-

nected closely to code constructions for multiterminal data compression (lossless

or lossy). These, in turn, are closely related to multiterminal channel code con-

structions which also constitute a largely open research field. Further, the nature

and structure of optimal codes may vary significantly for different types of source

models as well as with different levels of security requirements. The primary goal in

this direction is to obtain explicit constructions of optimal codes for SK generation

that admit efficient implementations. Preliminary works can be found in [56] (see

also [54]). In general, constructing optimal codes for SK generation involves more
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complex models than those for constructing optimal codes for other information

theoretic purposes. One reason is that the problem of SK generation involves two

simultaneous constraints: common randomness (recoverability) and secrecy, while

other information theoretic problems usually deal with a single constraint (proba-

bility of error or distortion).
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Appendix A

Appendix for Chapter 2

A.1 Proof of Lemma 2.1

Consider a random b NR
log q

c × N matrix L with entries taking values mutually

independently and uniformly in Fq, i.e., L is uniformly distributed on the set of all

M × N = b NR
log q

c × N matrices with Fq-valued entries. Further, assume that L is

independent of (AN , UN , B) and, hence, the average of H(LAN |UN , B) over the set

of all M × N matrices L can be written as H(LAN |L, UN , B).

The proof of Lemma 2.1 involves a series of steps that result in successive lower

bounds for H(LAN |L, UN , B), yielding eventually that under the assumptions of

the lemma,

H(LAN |L, UN , B) ≥ M log q − εN , (A.1)

for an exponentially vanishing εN , whereupon the assertion of the lemma follows.

These steps in the proof will follow, in a similar manner, the recipe in the proof of

Lemma 7 of [41] which established an analogous version of Lemma of 2.1 but with

an extra assumption that U is also a finite-valued rv.

Note that the set of all M × N matrices with Fq-valued entries corresponds,

in a one-to-one manner, to the set of all linear functions G = {g : FN
q → FM

q }.

Let G denote a rv distributed uniformly on G. Then, it holds that, for any aN
1 6=
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aN
2 , aN

1 , aN
2 ∈ FN

q ,

P r{G(aN
1 ) = G(aN

2 )} = Pr{LaN
1 = LaN

2 } = q−M =
1

|FM
q | . (A.2)

For a set of functions, not necessarily linear, with a common domain and

a common range, this very property (A.2) of the set that for a random function

distributed uniformly on the set, the reciprocal of the cardinality of the size of the

common range equals the probability that the two values of the random function

applied to any two distinct inputs coincide, is referred to as the “universal” property

in [3], and is used therein to prove the following result.

Lemma A.1 [3, Theorem 3]: For a finite-valued rv X ∈ X , let G be the

rv uniformly distributed on a universal set of functions G from X to a finite set B.

Then it holds that

H(G(X)|G) ≥ log |B| − elog |B|−Hc(X),

where

Hc(X) , − log
∑

x∈X

PX(x)2. (A.3)

The proof of Lemma 2.1 relies, additionally, on the following three lemmas;

the first two of these lemmas are new with their proofs being relegated to the end

of this appendix, while the third lemma was shown in [7].

Lemma A.2: For δ > 0, let

GN (δ) =





(aN , uN) ∈ FN
q × RnN :

PAN |UN (aN |uN) ≤ e−N(H(A|U)−δ)





,
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where H(A|U) , E[− log PA|U(A|U)] and PA|U(�|u), u ∈ Rn, is the conditional pmf

of A conditioned on U = u. Then, Pr
(
(AN , UN) /∈ GN(δ)

)
= oN(e−αN ), for some

α > 0.

Lemma A.3: For δ > 0, let

FN(δ) = GN(δ) ∩




FN
q ×

{uN :
∑

aN :(aN ,uN )∈GN (δ) PAN |UN (aN |uN) > e−δN}


 .

Then Pr
(
(AN , UN) /∈ FN(δ)

)
= oN (e−βN) for some β > 0. Furthermore, for every

uN in a subset of RnN of PUN |FN (δ)-measure 1, it holds that1

Hc

(
AN |UN = uN , (AN , UN ) ∈ FN(δ)

)
≥ N(H(A|U) − 2δ)

for all N sufficiently large.

Lemma A.4 [7]: Let A and B be finite-valued rvs, and let ε > 0 be given.

Then

PB

(
{b ∈ B : Hc(A) − Hc(A|B = b) ≤ log |B| + ε}

)
≥ 1 − 2e−ε/2.

Fix ε > 0. By Lemma A.4, for every uN ∈ RnN ,

PB|UN ,FN (δ)








b ∈ B :
Hc

(
AN |Un = uN , B = b,FN(δ)

)
≥

Hc

(
AN |Un = uN ,FN(δ)

)
− log |B| − ε





∣∣∣∣∣u
N ,FN(δ)




≥ 1 − 2e−ε/2. (A.4)

1Here, Hc

(
AN |UN = uN , (AN , UN ) ∈ FN (δ)

)
is computed according to (A.3) but with the

conditional pmf of AN conditioned on
{
Un = uN , (AN , UN ) ∈ FN(δ)

}
instead of according to its

marginal probability.
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Then with S = S(N) ⊂ RnN denoting the special subset from Lemma A.3 of

PUN |FN (δ)-measure 1, we have

PUN ,B|FN (δ)

({(
uN , b

)
∈ S × B : Hc

(
AN |Un = uN , B = b,FN(δ)

)
≥ Q

} ∣∣∣∣∣FN(δ)

)

≥ 1 − 2e−ε/2 (A.5)

for all N = N(δ) sufficiently large, where

Q , N (H(A|U) − 2δ) − log |B| − ε.

By Lemma A.1, for (uN , b) satisfying the condition of (A.5), we have

H
(
LAN |L, UN = uN , B = b, 1

( (
AN , UN

)
∈ FN(δ)

)
= 1
)
≥ M log q − eM log q−Q.

(A.6)

Since

H(LAN |L, UN , B) ≥ PAN ,UN (F(δ))H
(
LAN |L, UN , B, 1

( (
AN , UN

)
∈ FN(δ)

)
= 1
)

,

and furthermore by (A.5), (A.6),

H
(
LAN |L, UN , B, 1

( (
AN , UN

)
∈ FN(δ)

)
= 1
)
≥ (1−2e−ε/2)(M log q−eM log q−Q),

(A.7)

for all N = N(δ) sufficiently large, we obtain that

H(LAN |L, UN , B) ≥ Pr(F(δ))(1− 2e−ε/2)(M log q − eM log q−Q) (A.8)

for all N = N(δ) sufficiently large.

Upon selecting δ sufficiently small and γ = ε/N such that

R < [H(A|U) − 2δ − 1

N
log |B| − γ,
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we obtain from (A.8) that

H(AUN |L, UN , B) ≥ (1 − oN(e−βN))(1 − 2e−γN/2)(M log q − e−ηN ),

for some η > 0. This proves (A.1) and, hence, the assertion of the lemma.

Proof of Lemma A.2:

The proof uses results from large deviations theory (see, e.g., [18]) to prove

the lemma. Let Xi = − log PA|U(Ai|Ui), i = 1, . . . , N , where
(
AN , UN

)
are N i.i.d.

repetitions of (A, U). Observe that Xi is nonnegative and E[Xi] = H(A|U), i =

1, . . . , N, where 0 < H(A|U) ≤ log |Fq| < ∞.

Then, from Theorem 2.2.3 of [18], we have that for 0 < δ < H(A|U),

lim sup
1

N
log P (

1

N

N∑

i=1

Xi ∈ [0, H(A|U) − δ]) ≤ − inf
x∈[0,H(A|U)−δ]

Λ∗(x),

where

Λ∗(x) , sup
λ∈R

λx − Λ(λ) and

Λ(λ) , log E[eλ(− log PA|U (A|U))].

As in [18], we define DΛ , {λ : Λ(λ) < ∞}. Next, we have that

Λ(1) = log E[
1

PA|U(A|U)
]

= log (

∫ ∑

a:PA|U (a|u)>0

PA|U(a|u)
1

PA|U(a|u)
dFU(u))

≤ log |Fq| < ∞.

In addition, because − log PA|U(A|U) ≥ 0, Λ(�) is nondecreasing. We then have

that (−∞, 0] is in the interior of DΛ. It follows from Lemma 2.2.5(b) in [18] that
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Λ∗(H(A|U)) = 0 and that Λ∗(x) is nonincreasing for x < H(A|U). Consequently,

lim sup
1

N
log P (

1

N

N∑

i=1

Xi ∈ [0, H(A|U) − δ]) ≤ − inf
x∈[0,H(A|U)−δ]

Λ∗(x)

= Λ∗(H(A|U) − δ).

Also, from Lemma 2.2.5(c) in [18] and the fact that 0 is in the the interior of DΛ,

Λ(λ) is differentiable at λ = 0 and Λ′(0) = H(A|U). It suffices to prove that for

0 < δ < H(A|U), Λ∗(H(A|U)−δ) > 0. Suppose this is not the case, i.e., there exists

0 < δ < H(A|U) such that Λ∗(H(A|U)−δ) = 0. Then, from the definition of Λ∗(x),

it is necessarily true that for every λ < 0, λ(H(A|U) − δ) ≤ Λ(λ). Consequently,

lim
λ→0−

Λ(0) − Λ(λ)

0 − λ
= lim

λ→0−

Λ(λ)

λ
≤ H(A|U) − δ,

thereby contradicting the fact that Λ′(0) = H(A|U). This completes the proof of

Lemma A.3.

Proof of Lemma A.3:

We have that

Pr
(
(AN , UN) /∈ FN(δ)

)
≤ Pr

(
(AN , UN) /∈ GN (δ)

)

+PUN








uN : Pr
(
(AN , UN ) /∈ GN(δ)|UN = uN

)

> 1 − e−δN






 .

In the right side above, the first term = oN(e−αN) by Lemma A.2, while the second

term = oN (e−αN )
1−e−δN = oN(e−βN) for some β < α. Thus, Pr

(
(AN , UN) /∈ FN(δ)

)
=

oN(e−βN), which is the first assertion of the lemma.

Next, for every
(
aN , uN

)
∈ FN(δ),

Pr
(
AN = aN |UN = uN ,

(
AN , UN

)
∈ FN(δ)

)
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=
PAN |UN (aN |uN)

Pr
(

(AN , UN ) ∈ FN(δ)|UN = uN
)

=
PAN |UN (aN |uN)∑

aN :(aN ,uN )∈GN (δ) PAN |UN (aN |uN)

<
e−N(H(A|U)−δ)

e−Nδ
, since FN(δ) ⊆ GN (δ)

= e−N(H(A|U)−2δ).

Hence, for every uN ∈ S, it holds that

Hc

(
AN |UN = uN ,

(
AN , UN

)
∈ FN(δ)

)

= − log
∑

aN

[
Pr
(
AN = aN |UN = uN ,

(
AN , UN

)
∈ FN(δ)

)]2

≥ − log
[∑

aN

Pr
(
AN = aN |UN = uN ,

(
AN , UN

)
∈ FN(δ)

)
� e−N(H(A|U)−2δ)

]

= N(H(A|U) − 2δ),

thereby establishing the second assertion of the lemma.
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Appendix B

Appendix for Chapter 3

B.1 Proof of Part (ii) of Lemma 3.4

Note that X1 = (X1,1, . . . , X1,n) = Xn
1 and X2 = (X2,1, . . . , X2,n) = Xn

2 ,

where (X1,i, X2,i), i = 1, . . . , n, are i.i.d. repetitions of the jointly Gaussian random

variables (X1, X2) with both means being zero and with correlation coefficient ρ.

1

n
I(q(X1) ∧ X2) =

1

n
I(q(Xn

1 ) ∧ Xn
2 )

=
1

n
h(Xn

2 ) − 1

n
h(Xn

2 |q(Xn
1 ))

=
1

n

n∑

i=1

h(X2,i) −
1

n

n∑

i=1

h(X2,i|q(Xn
1 ), X i−1

2,1 )

≤ 1

n

n∑

i=1

h(X2,i) −
1

n

n∑

i=1

h(X2,i|q(Xn
1 ), X i−1

1,1 , X i−1
2,1 )

=
1

n

n∑

i=1

I(q(Xn
1 ), X i−1

1,1 , X i−1
2,1 ∧ X2,i). (B-1)

Next,

1

n
log |Q| ≥ 1

n
I(q(Xn

1 ) ∧ Xn
1 )

=
1

n
h(Xn

1 ) − 1

n
h(Xn

1 |q(Xn
1 ))

=
1

n

n∑

i=1

h(X1,i) −
1

n

n∑

i=1

h(X1,i|q(Xn
1 ), X i−1

1,1 )

=
1

n

n∑

i=1

h(X1,i) −
1

n

n∑

i=1

h(X1,i|q(Xn
1 ), X i−1

1,1 , X i−1
2,1 ),

=
1

n

n∑

i=1

I(q(Xn
1 ), X i−1

1,1 , X i−1
2,1 ∧ X1,i), (B-2)
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where the last equality is from

I(X1,i ∧ X i−1
2,1 |q(Xn

1 ), X i−1
1,1 )

≤ I(X1,i, q(X
n
1 ) ∧ X i−1

2,1 |X i−1
1,1 )

≤ I(X1,i, X
n
1,i+1 ∧ X i−1

2,1 |X i−1
1,1 )

≤ I(X1,i, X
n
1,i+1 ∧ X i−1

1,1 , X i−1
2,1 ) = 0,

by the assumption that (X1,i, X2,i), i = 1, . . . , n, are i.i.d.

Let Ui = (q(Xn
1 ), X i−1

1,1 , X i−1
2,1 ). Then,

I(Ui ∧ X2,i|X1,i) = I(q(Xn
1 ), X i−1

1,1 , X i−1
2,1 ∧ X2,i|X1,i)

≤ I(X i−1
1,1 , Xn

1,i, X
i−1
2,1 ∧ X2,i|X1,i)

≤ I(X i−1
1,1 , Xn

1,i, X
i−1
2,1 ∧ X1,i, X

i−1
2,1 ) = 0, (B-3)

by the assumption that (X1,i, X2,i), i = 1, . . . , n, are i.i.d., so that Ui−◦−X1,i−◦−X2,i.

Consequently, from (B-1) and (3.30), we get

1

n
I(q(X1) ∧ X2) ≤

1

n

n∑

i=1

C(I(Ui ∧ X1,i)) (B-4)

and, from (B-2), we get

1

n

n∑

i=1

I(Ui ∧ X1,i) ≤
1

n
log |Q|. (B-5)

Continuing from (B-4), we have that

1

n
I(q(X1) ∧ X2) ≤ 1

n

n∑

i=1

C(I(Ui ∧ X1,i))

≤ C

(
1

n

n∑

i=1

I(Ui ∧ X1,i)

)

≤ C

(
1

n
log |Q|

)
,
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where the second inequality is by the concavity of C(�) and the last inequality is

from (B-5) and the fact that C(�) is increasing.

B.2 Proof of Lemma 3.7

For the proof of Lemma 3.7, we shall need the following definitions.

Definition B.1: The effective radius of an n-dimensional lattice code Λ,

denoted by reff
Λ (n), is the radius of an n-dimensional sphere with the same volume

as the Voronoi region of the lattice code.

Definition B.2: A sequence of lattice codes is good for covering if the ratio

of its covering radius to effective radius approaches 1 as the dimension of the lattice

codes tends to ∞.

Definition B.3: Let Z be a Gaussian rv with mean 0 and variance σ2
Z and

let Z be n i.i.d. repetitions of Z. For each δ > h(Z) = 1
2
log(2πeσ2

Z), a sequence of

lattice codes Λ is said to be exponentially good for AWGN channel coding for noise

Z without power constraint and with parameter δ if there exists a mapping E(�) such

that E(u) > 0 for every u > 0,

lim
n→∞

1

n
log |ν(Λ)| = δ,

and

Pr{Z /∈ ν(Λ)} < e−n(E(δ−h(Z))−on(1)).

The exponent of the error probability Pr{Z /∈ ν(Λ)} can be expressed in terms

of the ratio, ρ > 1, of the effective radius of the lattice code to the (approximated)
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radius of the Gaussian noise vector
√

nσZ . In [46], Poltyrev characterizes an achiev-

able error exponent EP (ρ). In particular, he shows the existence of a sequence of

lattice codes Λ = Λ(n) with the property that

lim
n→∞

reff
Λ (n)√
nσ2

Z

→ ρ

and

Pr{Z /∈ ν(Λ)} < e−n(EP (ρ)−on(1)),

where EP (ρ) is the Poltyrev exponent given by

EP (ρ) =





1
2
[(ρ2 − 1) − ln ρ], 1 ≤ ρ2 ≤ 2

1
2
ln eρ2

4
, 2 ≤ ρ2 ≤ 4

ρ2

8
, ρ2 ≥ 4.

Observe that the properties of being good for covering and being exponentially

good for AWGN channel coding and achieving the Poltyrev exponent are invariant

under scaling. To prove the existence of nested lattice codes with the required

properties, we shall use the results of [21]. In [21], the authors considered the

random lattice ensemble constructed from a random linear code C by the following

procedure described in x below (The construction is known as Construction A in

the theory of lattices, see, e.g., [9]). The random lattice ensemble is denoted by

Zn + 1
p(n)

C, where p(n) is a sequence of primes and C is the ensemble of uniform

random linear code over Zp(n).

Definition B.4:

• Let C denote the uniform random (n, k(n)) linear code ensemble over Zp(n).

Specifically, the random generating matrix G of the code in the ensemble is obtained
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by drawing each element of G independently and uniformly from Zp(n) and letting

C , {x = iG, i ∈ Zk(n)
p(n)}, where all the operations are over Zp(n) (i.e., modulo-p).

• Transform each codeword of C into a point in [0, 1]n ⊂ Rn by dividing all

the coordinates by p(n). Denote such a random constellation by 1
p(n)

C ⊂ [0, 1]n.

• Replicate 1
p(n)

C over all of Rn by performing Zn + 1
p(n)

C. It is easy to check

that Zn + 1
p(n)

C is indeed a lattice.

Note that if G is nonsingular then the volume of the Voronoi region is p(n)−k(n).

The probability of G being singular can be easily shown to be at most p(n)−n(pk(n)−

1) (see (24) of [21]). Following [21], we shall consider only lattice ensembles such

that k(n) ≤ βn for some 0 < β < 1, so that this mentioned probability goes to

zero in n at least exponentially (p may also grow with n). Consequently, there is a

relationship among the parameters p(n), k(n) and reff
Λ (n) for typical lattice codes

in the ensemble which can be stated as:

p(n)k(n) =
1

VB(reff
Λ (n))

=
Γ(n

2
+ 1)

πn/2(reff
Λ (n))n

(B-6)

≈ √
nπ(

n

2π(reff
Λ (n))2

)
n
2 ,

where VB(reff
Λ (n)) denotes the volume of the ball of radius reff

Λ (n) in Rn.

As in [21], we shall hold reff
Λ (n) approximately constant as n → ∞. Specifi-

cally, since p(n) is prime and k(n) is an integer, reff
Λ (n) cannot be a constant. For

a suitably chosen k(n), it suffices to pick p(n) such that reff
Λ (n) as defined in (B-6)

satisfies, for all sufficiently large n,

rmin < reff
Λ (n) < 2rmin, (B-7)

for a constant rmin. By the fact that k(n) ≤ βn for some β < 1, it transpires that
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for a fixed rmin and for all n sufficiently large there exist a prime p(n) and reff
Λ (n)

satisfying both (B-6) and (B-7). The results of [21], restated here, give constraints

on the ranges of rmin and k(n) of the random lattice ensemble Zn + 1
p(n)

C, with p(n)

appropriately picked as above, such that with probability approaching 1, a lattice

code in the ensemble has full dimension and is good for covering or is exponentially

good for AWGN channel coding, respectively. These constraints are summarized

below.

Lemma B.1 (Goodness for covering): [21, Theorem 2] For any fixed rmin

such that 0 < rmin < 1
4

and any k(n) such that log2 n < k(n) ≤ βn, for some

β < 1, let p(n) and reff
Λ (n) be such that both (B-6) and (B-7) are satisfied (for

all n sufficiently large). Then, for such parameters (n, p(n), k(n)), with probability

approaching 1, the random lattice code in the lattice ensemble Zn + 1
p(n)

C is good for

covering and C has dimension exactly k(n).

Lemma B.2 (Exponentially goodness for AWGN channel coding achieving

the Poltyrev exponent evaluated at ρ): [21, Theorem 4] For any fixed rmin such that

0 < rmin < min( ρ2

32Ep(ρ)
, 1

4
) and any k(n) such that k(n) ≤ βn for some β < 1

2
, let

p(n) and reff
Λ (n) be such that both (B-6) and (B-7) are satisfied (for all n sufficiently

large). Then, for such parameters (n, p(n), k(n)), with probability approaching 1,

the random lattice code in the lattice ensemble Zn + 1
p(n)

C is exponentially good for

AWGN channel coding and achieving the Poltyrev exponent evaluated at ρ, and C

has dimension exactly k(n).

Lemma B.3: For any D, R2, R3, ρ2 > 1 and ρ3 > 1, there exists a sequence
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of three level nested lattice codes Λ1 ⊃ Λ2 ⊃ Λ3 such that |ν(Λ3)|
|ν(Λ2)|

1
n = eR3+on(1) and

|ν(Λ2)|
|ν(Λ1)|

1
n = eR2+on(1). Furthermore, Λ1 is good for covering with second moment

per dimension D and Λ2 (Λ3) is exponentially good for AWGN channel coding and

achieving the Poltyrev exponents evaluated at ρ2 (ρ3), respectively.

Proof of Lemma B.3: We shall consider the nested ensembles of lattice

codes Λ1 = Zn + 1
p(n)

C1 ⊃ Λ2 = Zn + 1
p(n)

C2 ⊃ Λ3 = Zn + 1
p(n)

C3, where C1 ⊃ C2 ⊃ C3

denote the nested uniform random (n, k1(n)), (n, k2(n)) and (n, k3(n)) linear codes

over Zp(n), respectively. In particular, we first draw a uniform random k1(n) × n

matrix (with entries taking values uniformly and independently in Zp(n)) to be the

random generating matrix of C1. Then the first k2(n), k3(n) rows of the random

matrix constitute the random generating matrices of C2, C3, respectively. It is then

left to pick (p(n), k1(n), k2(n), k3(n)) appropriately to obtain the required nested

lattice codes.

To this end, we first select rmin = min( ρ2
2

32EP (ρ2)
, ρ3

2

32EP (ρ3)
, 1

4
). Next we select

rmin3 small enough and rmin1 < rmin2 < rmin3 < rmin so that rmin2

rmin1
= eR2 and

rmin3

rmin2
= eR3 . We then select k1(n) as growing linearly in n, say 1

4
n. Then, k2(n) and

k3(n) are constrained by the ratios of the volume of the Voronoi regions of the three

lattice codes, namely k2(n) = k1(n)−b nR2

log p(n)
c and k3(n) = k2(n)−b nR3

log p(n)
c. Lastly,

we shall select a prime number p(n) so that rmin1 < reff
Λ1

(n) < 2rmin1. Observe that

for every large enough n, we can find a prime p(n) so that rmin1 < reff
Λ1

(n) < 2rmin1.

To see this, let p∗ ∈ R satisfy (B-6) for a radius 2rmin1, i.e., p∗k1(n) = 1
VB(2rmin1)

.

From (B-6) and by rmin1 < reff
Λ1

(n) < 2rmin1, our claim is true if we can find a
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prime p(n) ∈ [p∗, 2
n

k1(n) p∗]. Since k1(n) = 1
4
n, it follows that there exists such a

prime for every large enough n, because there is a prime number between i and 2i

for every integer i (Bertrand’s postulate, see, e.g. [27]). By (B-6), the choice of

k1(n) above and the fact that rmin1 < reff
Λ1

(n) < 2rmin1, it is clear that p(n) grows

subexponentially in n. It then follows, for all n sufficiently large, by the manner

of selection of k2(n), k3(n), rmin2 and rmin3 that rmin2 < reff
Λ2

(n) < 2rmin2 and

rmin3 < reff
Λ3

(n) < 2rmin3. It is clear that (rmin1, k1(n)) satisfy the constraints in

Lemma B.1 above for Λ1 to be good for covering and (rmin2, k2(n)) ((rmin3, k3(n)))

satisfy the constraints in Lemma B.2 above for Λ2, Λ3 to be exponentially good for

AWGN channel coding and achieving the Poltyrev exponent evaluated at ρ2, ρ3,

respectively. Specifically, by Lemma B.1 and Lemma B.2 above, we have that the

events

A = {Λ1 is good for covering and dim(C1) = k1(n)},

B =





Λ2 is good for AWGN channel coding

achieving EP (ρ2) and dim(C2) = k2(n)





and

C =





Λ3 is good for AWGN channel coding

achieving EP (ρ3) and dim(C3) = k3(n)





satisfy Pr{A} = 1−on(1), Pr{B} = 1−on(1) and Pr{C} = 1−on(1), respectively.

Consequently,

Pr{A ∩ B ∩ C} = 1 − Pr{Ac ∪ Bc ∪ Cc} > 1 − on(1).

Therefore, there exists a sequence of three level nested lattice codes Λ1 ⊃ Λ2 ⊃ Λ3

such that Λ1 is good for covering, and Λ2, Λ3 are exponentially good for AWGN
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channel coding and achieving the Poltyrev exponents evaluated at ρ2, ρ3, respec-

tively. The claims regarding the ratio of volume of the Voronoi region of Λ3 to that

of Λ2 and the ratio of volume of the Voronoi region of Λ2 to that of Λ1 follow from

k2(n) − k3(n) = b nR3

log p(n)
c, k1(n) − k2(n) = b nR2

log p(n)
c and the fact that p(n) grows

subexponentially, respectively. Lastly, we shall scale all lattice codes so that the

second moment per dimension of Λ1 is D.

Now, returning to Lemma 3.7, we have the following Lemma.

Lemma B.4: For R > 0 and an arbitrary but fixed D > 0, let α be selected

as in (3.43). Then, for any P > α2σ2
Z + D and any Q > α2σ2

X1
+ D, there exists a

sequence of nested lattice codes Λ1 ⊃ Λ2 ⊃ Λ3 such that σ2(Λ1) = D, Λ1 is good for

covering,

lim
n→∞

1

n
log

|ν(Λ3)|
|ν(Λ1)|

=
1

2
log Q/D, (B-8)

lim
n→∞

1

n
log

|ν(Λ2)|
|ν(Λ1)|

=
1

2
log P/D, (B-9)

Pr{αZ− U /∈ ν(Λ2)} → 0 exponentially in n (B-10)

and

Pr{αX1 − U /∈ ν(Λ3)} → 0 exponentially in n. (B-11)

Proof of Lemma B.4: Let r > 1 be sufficiently close to 1 such that P
r2 >

α2σ2
Z + D and Q

r2 > α2σ2
X1

+ D. By Lemma B.3, there exists a sequence of nested
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lattice codes Λ1 ⊃ Λ2 ⊃ Λ3 such that

|ν(Λ2)|
|ν(Λ1)|

= e
n
2
(log P

D
+on(1));

|ν(Λ3)|
|ν(Λ2)|

= e
n
2
(log Q

P
+on(1)), (B-12)

Λ1 is good for covering with second moment per dimension D, and Λ2, Λ3 are ex-

ponentially good for AWGN channel coding and achieving the Poltyrev exponent

evaluated at ρ2, ρ3, respectively, where

ρ2 =

√
P

r2(α2σ2
Z + D)

, ρ3 =

√
Q

r2(α2σ2
X1

+ D)
. (B-13)

It is then left to prove (B-10) and (B-11) for the sequence of nested lattice codes

Λ1 ⊃ Λ2 ⊃ Λ3.

First, we claim that

2

n
log |ν(Λ1)| = log (2πe)D + on(1). (B-14)

The normalized second moment of ν(Λ1), denoted by G(ν(Λ1)), is defined as (see,

e.g., [9])

G(ν(Λ1)) ,
σ2(Λ1)

|ν(Λ1)|2/n
. (B-15)

It is known that the normalized second moment is invariant under scaling and that

the normalized second moment of a sphere, denoted by G∗
n, converges to 1

2πe
as

n → ∞ (see, e.g. [9]). By the fact that Λ1 is good for covering, we have that (see

[21, Proposition 1])

G(ν(Λ1)) →
1

2πe
. (B-16)

Then (B-14) follows from σ2(Λ1) = D, (B-15) and (B-16).
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The following lemma, from Lemma 6 and 11 in [22], gives upper bounds for

the two probabilities (B-10) and (B-11) in terms of those for i.i.d. Gaussian rvs with

asymptotically equal variances per source symbol.

Lemma B.5: If Λ1 is good for covering and σ2(Λ1) = D, then there exists εn
1

and εn
2 depending only on Λ1 and going to 0 and 1 in n, respectively such that

Pr{αZ− U /∈ ν(Λ2)} ≤ Pr{Ẑ /∈ ν(Λ2)}enεn
1

and

Pr{αX1 − U /∈ ν(Λ3)} ≤ Pr{X̂1 /∈ ν(Λ3)}enεn
1 ,

where Ẑ and X̂1 are n i.i.d. repetitions of Gaussian rvs with mean 0 and variances

εn
2 (α2σ2

Z + D) and εn
2 (α2σ2

X1
+ D), respectively. Specifically,

n

n + 2
≤ εn

1 <

(
rcov
Λ1

(n)

reff
Λ1

(n)

)2

and

εn
2 = log

(
rcov
Λ1

(n)

reff
Λ1

(n)

)
+

1

2
log 2πeG∗

n +
1

n
.

Let ρ̃2 denote the the ratio of the effective radius of Λ2 to the approximated

radius of the Gaussian rv Ẑ (
√

nεn
2 (α2σ2

Z + D)), i.e.,

ρ̃2 =
|ν(Λ2)|

1
n

VB(1)
1
n

√
nεn

2 (α2σ2
Z + D)

=
|ν(Λ2)|

1
n tn√

(2πe)εn
2 (α2σ2

Z + D)
; (B-17)

and let ρ̃3 denote the ratio of the radius of Λ3 to the approximated radius of the

Gaussian rv X̂1 (
√

nεn
2 (α2σ2

X1
+ D)), i.e.,

ρ̃3 =
|ν(Λ3)|

1
n tn√

(2πe)εn
2 (α2σ2

X1
+ D)

, (B-18)
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where VB(1) is the volume of the ball in Rn of radius 1 and, hence, from (B-6)

tn =
√

2πe
n

(
Γ(n/2+1)

πn/2

)1/n

→ 1 (see, e.g. [9]).

Using (B-14), it follows from (B-12) that |ν(Λ2)| = e
n
2
(log (2πe)P+on(1)) and

|ν(Λ3)| = e
n
2
(log (2πe)Q+on(1)). Consequently, for all n sufficiently large, we get from

(B-17) and (B-18) that

ρ̃2 > ρ2 =

√
P

r2(α2σ2
Z + D)

> 1 (B-19)

and, from (B-18) and (B-18), that

ρ̃3 > ρ3 =

√
Q

r2(α2σ2
X1

+ D)
> 1. (B-20)

Let ˆ̂Z and ˆ̂X1 be n i.i.d. repetitions of Gaussian rvs with mean 0 and variances

r2(α2σ2
Z +D) and r2(α2σ2

X1
+D), respectively. From Lemma B.5, (B-19), (B-20) and

the fact that Λ2, Λ3 are exponentially good for AWGN channel coding and achieving

the Poltyrev exponent evaluated at ρ2, ρ3, respectively, for all n sufficiently large,

Pr{αZ− U /∈ ν(Λ2)} ≤ Pr{ˆ̂Z /∈ ν(Λ2)} ≤ e−n(EP (ρ2)−on(1));

Pr{αX1 − U /∈ ν(Λ3)} ≤ Pr{ ˆ̂X1 /∈ ν(Λ3)} ≤ e−n(EP (ρ3)−on(1)),

thereby establishing (B-10) and (B-11).

All assertions in Lemma 3.7 except for (3.55) follow from Lemma B.4 by noting

from (3.44) and (3.50) that

R =
1

2
log

α2σ2
X1

+ D

D
, Rp =

1

2
log

α2σ2
Z + D

D
.

To see (3.55), note that we have shown that log |ν(Λ1)|
2
n

(2πe)D
tends to 0 in n. Consequently,

reff
Λ1

(n) = O(

√
(2πe)D

VB(1)
1
n

) = O(
√

nD).

108



By the fact that Λ1 is good for covering,
rcov
Λ1

(n)

reff
Λ1

(n)
→ 1, rcov

Λ1
(n) = O(

√
nD).

B.3 Proof of (3.57)

Denoting A = {(αX1 − E) mod Λ3 = αX1 − E}, we have that Pr{A} =

1 − on(1) by (3.56). Then

E
[
‖X1 − X̂1‖2

]
= E

[
‖X1 − c((αX1 − E) − QΛ3(αX1 − E))‖2

]

≤ E
[
‖(1 − cα)X1 + cE‖2

]
+

E
[
‖cQΛ3(αX1 − E))‖2

]

= E
[
‖(1 − cα)X1 + cE‖2

]
+

E
[
‖cQΛ3(αX1 − E))‖2 1(Ac)

]

≤ E
[
‖(1 − cα)X1 + cE‖2

]
+

√
E [‖cQΛ3(αX1 − E)‖4] Pr(1(Ac))

= n
[
(1 − cα)2σ2

X1
+ c2D

]
+

√
E [‖cQΛ3(αX1 − E)‖4]

√
Pr(1(Ac)),

where the second equality is by that fact that in A, QΛ3(αX1 − E) = 0; the two

inequalities above are by the triangle inequality and the Cauchy-Schwarz inequality,

respectively. Next,

√
E [‖cQΛ3(αX1 − E)‖4]
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= c2
√

E [‖(αX1 − E) − (αX1 − E) mod Λ3‖4]

≤ c2
[
E
[
‖(αX1 − E)‖4

] 1
4 + E

[
‖(αX1 − E) mod Λ3‖4

] 1
4

]2

≤ c2
[
E
[
‖(αX1 − E)‖4

] 1
4 + E

[
‖(αX1 − E)‖4

] 1
4

]2

≤ 4c2
[
E
[
‖(αX1 − E)‖4

] 1
4

]2

≤ 4c2
[
E
[
‖αX1‖4

] 1
4 + E

[
‖E‖4

] 1
4

]2

=
[
O(n2)

1
4 + O(n2)

1
4

]2
= O(n),

where the first and the last inequalities are by Minkowski’s inequality; the second

inequality is from

‖(αX1 − E) mod Λ3‖ ≤ ‖(αX1 − E)‖;

the last equality is a consequence of the components of X1 being i.i.d. Gaussian rvs

and E taking values in ν(Λ1) that is covered by a ball of radius O(
√

n) in (3.55).

Consequently, we have that

E
[
‖X1 − X̂1‖2

]
≤ n(

[
(1 − cα)2σ2

X1
+ c2D

]
+ on(1)).
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Appendix C

Appendix for Chapter 4

C.1 Proof of Lemma 4.1

We prove a slightly stronger result that there exists an LC whose null space

comprises only the all-zero and the all-one strings (corresponding to the edges in

T being labelled all zero or all one) which clearly enables every terminal in V to

recover all the edges of T . We prove the claim by induction. When |T | = 2, say,

with T = {e1 = (v1, v2), e2 = (v2, v3)}, then e1 + e2 mod 2 constitutes an LC whose

null space is {(00), (11)}. Next, suppose the claim is true for all trees with k − 1

edges, k ≥ 3. Given a tree with k edges, pick an end vertex vk+1 of the tree (a

vertex with degree one), and let vk be the sole vertex connecting to vk+1. Then

G = (V, T ′
⋃{(vk, vk+1)}), and G′ = (V \{vk+1}, T ′) is a subtree of G. By the

induction hypothesis, there exists an LC for G′, say, F (T ′) of length k−2 (bits) and

whose null space is {0k−1, 1k−1}. Let vk−1 be another vertex connecting to vk and

let ek−1 = (vk−1, vk) and ek = (vk, vk+1). Then, consider {F (T ′), ek−1 + ek} as an

LC of G of length k − 1. It is now clear that the null space of this LC is {0k, 1k}.

111



C.2 Proof of Claim in (The Proof of) Theorem 4.8

(a) Let GA = (A, EA) denote a subgraph of G in A, where EA ⊂ E consists

only of those edges in E whose both end vertices lie in A. Clearly,

|E| − INTG(A) ≥ µ(A, G) ≥ µ(A, GA)

= |EA| − INTGA
(A),

by Corollary 3 with M = A

= |E| − (dm + INTGA
(A)) .

Thus, it suffices to show that

dm + INTGA
(A) ≤ INTG(A). (C-1)

Consider first the case where (I∗
1 , . . . , I

∗
m−1, 0) attains INTG(A). Without loss of gen-

erality, let {1, . . . , a}, a ≤ m−1, be the set of vertices in A connecting to m. For any

v ∈ {1, . . . , a}, since {v, m} + A, we have that I∗
v +I∗

m = I∗
v ≥ evm (see (4.10)). Con-

sequently, since dm =
∑a

u = 1 eum, we see that (I∗
1−e1m, . . . , I∗

a−eam, I∗
a+1, . . . , I

∗
m−1),

with components summing to INTG(A) − dm is feasible for INTGA
(A). Thus,

INTG(A)−dm ≥ INTGA
(A), establishing (C-1). A nearly identical argument would

show that (C-1) holds too for the case when at most vertex 1 is connected to m,

and is omitted.

(b) Consider any Guv = (M, Euv) as in the second paragraph of the proof of

Theorem 4.8, and let (I∗∗
1 , . . . , I∗∗

m ) attain INTGuv(A). Then, (I∗∗
1 , . . . , I∗∗

m−1, I
∗∗
m +1)

is feasible for INTG(A), so that

INTG(A) ≤ INTGuv(A) + 1. (C-2)

112



Without loss of generality, let {1, . . . , a} be as in the proof of Claim (a). To prove

Claim (b), it suffices to show for u = 1 that there exists v ∈ {2, . . . , a} such that

(I∗
1 , . . . , I

∗
m−1, I

∗
m − 1) is feasible for INTG1v(A) if 0 < I∗

m ≤ bdm

2
c. This would mean

that

INTG(A) − 1 ≥ INTG1v (A). (C-3)

which, together with the observation that |E|−1 = |E1v|, establishes Claim (b). To

this end, referring to (4.10), for B ⊆ M, set

eG(B) ,
∑

1≤i<j≤m, i∈B, j∈B

eij, eG(∅) , 0, (C-4)

and let

B =





B, ∅ 6= B ⊂ M, B + A,

∑
i∈B I∗

i = eG(B)





. (C-5)

We make the following

Claim (d): For u = 1, there exists v ∈ {2, . . . , a} connecting to m with the

properties that

a) for B ∈ B such that 1 /∈ B, m ∈ B, it holds that v ∈ B;

b) for B ∈ B such that 1 ∈ B, m /∈ B, it holds that v /∈ B.

Then, with the choice of v as in the Claim (d), a simple check of all the possibil-

ities for B (in B or in Bc) that are feasible in (4.10), shows that (I∗
1 , . . . , I∗

m−1, I
∗
m−1)

is feasible for INTG1v(A), thereby establishing (C-3) (and hence Claim (b)).

It only remains to establish Claim (d). We first state the following facts with

accompanying proofs.

Fact 1: For B1, B2 ⊂ M, eG(B1) + eG(B2) ≤ eG(B1 ∪ B2) + eG(B1 ∩ B2).
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This holds by observing that eG(B1 ∪ B2) + eG(B1 ∩ B2) − eG(B1) − eG(B2) =

∑
1≤i<j≤m, i∈B1\B2, j∈B2\B1 or i∈B2\B1, j∈B1\B2

eij ≥ 0.

Fact 2: For B1, B2 ∈ B with B1 ∪ B2 + A, it holds that B1 ∪ B2 and B1 ∩ B2

are both in B. To see this, note first that

∑

i∈B1∪B2

I∗
i =

∑

i∈B1

I∗
i +

∑

i∈B2

I∗
i −

∑

i∈B1∩B2

I∗
i

= eG(B1) + eG(B2) −
∑

i∈B1∩B2

I∗
i

≤ eG(B1) + eG(B2) − eG(B1 ∩ B2)

≤ eG(B1 ∪ B2), by Fact 1.

Also,
∑

B1∪B2
I∗
i ≥ eG(B1 ∪ B2), since B1 ∪ B2 + A is feasible in (4.10). The fact

follows.

Fact 3: For B ⊆ M, let Dm(B) denote the total number of edges connecting

m to all the vertices in B∩A. Then, for B ∈ B, if m ∈ B then Dm(B) ≥ I∗
m, and if

m /∈ B then Dm(B) ≤ I∗
m. To see this, consider first the case m ∈ B ∈ B. As {m} /∈

B (since I∗
m > 0), we have B ∩A 6= ∅. Since B ∈ B,

∑
i∈B I∗

i = eG(B ∩A)+Dm(B).

Also, since B ∩ A 6= ∅ is feasible in (4.10),
∑

i∈B∩A I∗
i ≥ eG(B ∩ A). Subtracting

the latter from the former gives I∗
m ≤ Dm(B). The second assertion of the fact is

proved similarly.

Fact 4: The intersection of all Bs in B satisfying 1 /∈ B, m ∈ B, when

nonempty, is also in B. The union of all Bs in B satisfying 1 ∈ B, m /∈ B, when

nonempty, is also in B.

The first assertion in Fact 4 is obtained by observing that the union of all Bs

in B with 1 /∈ B, m ∈ B, does not contain A, and by a repeated use of Fact 2. The
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second assertion would follow similarly by Fact 2 if the union of all Bs in B with

1 ∈ B, m /∈ B, is strictly contained in A. Suppose not; then this union is exactly

A. The ensuing contradiction can be seen, for instance, with B1, B2 as above with

B1 ∪ B2 = A. Then

dm = Dm(A) = Dm(B1 ∪ B2)

= Dm((B1\B2) ∪ (B1 ∩ B2) ∪ (B2\B1))

= Dm(B1\B2) + Dm(B1 ∩ B2) + Dm(B2\B1)

= Dm(B1) + Dm(B2) − Dm(B1 ∩ B2)

≤ I∗
m + I∗

m − 1, by Fact 3 and 1 ∈ B1 ∩ B2

≤ 2bdm

2
c − 1, by the assumption I∗

m ≤ bdm

2
c

< dm,

a contradiction.

Finally, to prove Claim (d), let B ′ (resp. B′′) represent the intersection (resp.

union), when nonempty, in Fact 4. It suffices now to show that there exists v ∈ B ′∩A

(when B′ 6= ∅) such that v /∈ B ′′ and v connects to m; this follows from

Dm(B′\B′′) = Dm(B′) − Dm(B′ ∩ B′′)

= Dm(B′) − (Dm(B′′) − Dm(B′′\B′))

≥ I∗
m − (I∗

m − 1), by Fact 3 and 1 ∈ B ′′\B′

= 1.

Then, any B as in Claim (d)(a) must contain B ′ and hence the v above. On the

other hand, any B as in Claim (d)(b) must be contained in B ′′ and so cannot contain
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the v above. The cases B ′ = ∅ or B′′ = ∅ are handled trivially.

(c) Let Guv = (M, Euv) and suppose that T1t . . .tTk ⊆ Euv attain µ(A, Guv).

If Euv\{tk
i=1Ti} contains at least one edge connecting (u, v), then {T1, . . . , Tk} is

also a Steiner tree packing of G = (M, E), so that µ(A, G) ≥ µ(A, Guv). Else, let

T1, say, be the Steiner tree that contains an edge connecting u, v that emerged by

splitting off (u, m) and (v, m) of G = (M, E). Then, {T1\{(u, v)}}∪{(u, m), (v, m)}

is A-connected and hence contains a Steiner tree T ′
1 for A in G = (M, E) that

corresponds to T1; clearly, again µ(A, G) ≥ µ(A, Guv).

C.3 Strong SK for the PIN Model

We shall be concerned in this appendix with a variant of the PIN model

in Chapter 4. Suppose that terminals 1, . . . , m, m ≥ 2, observe n independent

and identically distributed (i.i.d.) repetitions of the rvs X1, . . . , Xm, denoted by

Xn
1 , . . . , Xn

m, where Xn
i = (Xi,1, . . . , Xi,n) , i ∈ M = {1, . . . , m}. Each rv Xi, i ∈

M, is of the form Xi = (Yij, j ∈ M\{i}) with m−1 components, and the “reciprocal

pairs” of rvs {(Yij, Yji) , 1 ≤ i < j ≤ m} are mutually independent.1 See Figure 2.

Thus, every pair of terminals in M is associated with a corresponding pair of rvs

that are independent of pairs of rvs associated with all the other pairs of terminals.

All the rvs are assumed to take their values in finite sets.

The overall goal is to generate a strong SK for a given set A ⊆ M of terminals

at the largest rate possible, with the remaining terminals (if any) cooperating in

1Unlike in Chapter 4, we do not require that Yji = Yji, 1 ≤ i < j ≤ m.
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secrecy generation.

X2 = (Y21, Y23, . . . , Y2m)t 2

tX1 = (Y12, . . . , Y1m)t
1

Xm = (Ym1, Ym2, . . . , Ym,m−1)

'

&

$

%
A

tttm

Figure 2: The PIN Model for Appendix C.3

C.3.1 Results

All references below to a “PIN model” are to the model in this appendix. Our

main results are the following. First, we obtain, upon particularizing the results

of [15], a (single-letter) expression for C(A) for a PIN model, in terms of a linear

combination of mutual information terms that involve only pairs of “reciprocal” rvs

{(Yij, Yji) , 1 ≤ i 6= j ≤ m}. Second, stemming from this observation, a connection

is drawn between SK generation for the PIN model and the combinatorial problem

of maximal packing of Steiner trees in an associated multigraph. Specifically, we

show that the maximum rate of Steiner tree packing in the multigraph is always a

lower bound for SK capacity. Third, for the case |A| = 2 (when the Steiner tree

becomes a path connecting the two vertices in A) and for the case A = M (when

the Steiner tree becomes a spanning tree), the previous lower bound is shown to

be tight. This is done by means of an explicit algorithm, based on maximal path
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packing and maximal spanning tree packing, respectively, that forms an SK out

of independent SKs for pairs of terminals. In fact, the maximum rate of the SK

thereby generated equals the previously known upper bound for SK capacity [15]

mentioned above.

C.3.1.1 Strong SK Capacity

In order to state our result, we recall the notation of Section 3.1.

Proposition C.1: For a PIN model, the SK capacity for a set of terminals

A ⊆ M, with |A| ≥ 2, is

C(A) = min
λ∈Λ(A)



∑

1≤i<j≤m




∑

B∈B(A):

i∈B, j∈Bc

λB


 I(Yij ∧ Yji)


 . (C-6)

Remarks: (i) It is of interest in (C-6) that the SK capacity for a PIN model

depends on the joint probability distribution of the underlying rvs only through a

linear combination of the pairwise reciprocal mutual information terms.

(ii) We note from [15, Theorem 3] that additional independent randomization

at the terminals in M, enabled by giving them access to the mutually independent

rvs M1, . . . , Mm, respectively, that are independent also of (Xn
1 , . . . , Xn

m), does not

serve to enhance SK capacity. Heuristically speaking, the mentioned independence of

the randomization forces any additional “common randomness” among the terminals

in A to be acquired only through public communication, which is observed fully by

the eavesdropper. On the other hand, randomization can serve to enhance secrecy

generation for certain models (cf. e.g., [51])
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Proof: The proof entails an application of the formula for SK capacity in

[15, 16] to the PIN model. For B ∈ B(A), denote XB = (Xi, i ∈ B). From ([16,

Theorem 3.1],

C(A) = H (X1, . . . , Xm) − max
λ∈Λ(A)

∑

B ∈B(A)

λBH (XB|XBc) . (C-7)

For the PIN model, since Xi = (Yij, j ∈ M\{i}) , we observe in (C-7) that

H(X1, . . . , Xm) = H ({(Yij, Yji)}1≤i<j≤m)

=
∑

1≤i<j≤m

H(Yij, Yji) (C-8)

and

H(XB|XBc) = H(XM) − H(XBc)

=
∑

1≤i<j≤m

H(Yij, Yji) −
∑

1≤i<j≤m,

i∈Bc, j∈Bc

H(Yij, Yji)

−
∑

i∈Bc, j∈B

H(Yij)

=
∑

1≤i<j≤m,

i∈B, j∈B

H(Yij, Yji) +
∑

i∈B, j∈Bc

H(Yij|Yji). (C-9)

A straightforward manipulation of (C-7), using (C-8), (C-9), gives

C(A) = min
λ∈Λ(A)

∑

1≤i<j≤m

[
H (Yij, Yji) −




∑

B∈B(A):

i∈B, j∈B

λB


H (Yij, Yji)

−




∑

B∈B(A):

i∈B, j∈Bc

λB


H (Yij|Yji) −




∑

B∈B(A):

i∈Bc, j∈B

λB


H (Yji|Yij)

]
.
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Since by (2),

∑

B∈B(A):

i∈B, j∈B

λB = 1 −
∑

B∈B(A):

i∈B, j∈Bc

λB = 1 −
∑

B∈B(A):

i∈Bc, j∈B

λB,

we get

C(A) = min
λ∈Λ(A)




∑

1≤i<j≤m




∑

B∈B(A):

i∈B, j∈Bc

λB







H(Yij, Yji)

−H(Yij|Yji)

−H(Yji|Yij)







,

thereby completing the proof.

An upper bound had been established for SK capacity for a general multi-

terminal source model [15, Example 4]. This bound was expressed in terms of the

(Kullback-Leibler) divergence between the joint distribution of the rvs defining the

underlying correlated sources and the product of the (marginal) distributions as-

sociated with appropriate partitions of these rvs, thereby measuring the minimum

mutual dependence among the latter. The bound was particularized to the PIN

model in [57], and is restated below in a slightly different form that will be used

subsequently.

Let P be a partition of M = {1, . . . , m}, and denote the number of atoms of

P by |P|.

Lemma C.2 [57]: The SK capacity C(A), A ⊆ M, for the PIN model is

bounded above according to
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C(A) ≤ Cub(A) , min
P

(
1

|P| − 1

)



∑

1≤i<j≤m

(i,j) crosses P

I(Yij ∧ Yji)


 , (C-10)

where for a fixed P, a pair of indices (i, j) crosses P if i and j are in different atoms

of P. The minimization in the right side of (C-10) is over all partitions P of M for

which every atom of P intersects A.

C.3.1.2 SK Capacity and Steiner Tree Packing

There exists a natural connection between SK generation for the PIN model

and the combinatorial problem of Steiner tree packing in an associated multigraph.

We note that when |A| = 2, a Steiner tree for A always contains a path

connecting the two vertices in A. Clearly, it suffices to take µ(A, G) to be the

maximum number of edge disjoint paths connecting the two terminals in A.

Next, assume without any loss of generality in the PIN model that all pair-

wise reciprocal mutual information values I(Yij ∧ Yji), 1 ≤ i 6= j ≤ m, are rational

numbers. Let N denote the collection of positive integers n such that the number of

edges between any pair of vertices i, j is equal to nI(Yij∧Yji) is integer-valued for all

1 ≤ i 6= j ≤ m; clearly, the elements of N form an arithmetic progression. For a PIN

model, consider a sequence of associated multigraphs {G(n) =
(
M, E(n)

)
, n ∈ N},

where E(n), n ∈ N , is such that eij = nI(Yij ∧ Yji). We term supn∈N
1
n
µ(A, G(n))

as the maximum rate of Steiner tree packing in the multigraph G = (M, E). The

connection between SK generation for the PIN model and Steiner tree packing is
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formalized below.

Theorem C.3: For a PIN model,

(i) the SK capacity satisfies

C(A) ≥ sup
n∈N

1

n
µ(A, G(n)) (C-11)

for every A ⊆ M;

(ii) when |A| = 2, the SK capacity is

C(A) = sup
n∈N

1

n
µ(A, G(n)) = Cub(A). (C-12)

Remarks: (i) The inequality in (C-11) can be strict, as shown by the exam-

ple after Theorem 4.5. See also the remark following Theorem C.4 for a heuristic

explanation.

(ii) An exact determination of µ(A, G) is known to be NP-hard [8]. A nontrivial

upper bound for µ(A, G), similar in form to (C-10), is known [28, Paragraph 5 of Sec-

tion 1]. This bound can be extended to yield an upper bound for supn∈N
1
n
µ(A, G(n))

which, in general, is inferior to that provided by C(A) in (C-11).

Proof: (i) The proof consists of two main steps. In the first step, fix an

ε > 0 that is smaller than every positive I(Yij ∧ Yji), 1 ≤ i < j ≤ m. Each pair

of terminals i, j with I(Yij ∧ Yji) > 0, generates a (pairwise) SK Kij = K
(n)
ij of size

bn(I(Yij ∧ Yji) − ε)c bits, using public communication Fij = F
(n)
ij , and satisfying

s(Kij; Fij) = on(1); (C-13)

the existence of such an SK follows from [40]. The SK achievability scheme in [40]
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consists of a “weak” SK generated by Slepian-Wolf data compression, followed by

“privacy amplification” to extract a “strong” SK. Note by the definition of the PIN

model that {(Kij, Fij)}1≤i<j≤m are mutually independent.

In the second step, consider the sequence of multigraphs

{
G

(n)
ε = (M, Ẽ(n))

}∞

n=1
, where Ẽ(n) is such that the number of edges between any

pair of vertices i, j equals bn(I(Yij ∧ Yji) − ε)c. We next show that every Steiner

tree in a Steiner tree packing of G
(n)
ε yields one shared bit for the terminals in

A that is independent of the communication in that Steiner tree. Specifically, for

edges (i, j) and (i, j ′), j 6= j ′, with common vertex i in the Steiner tree, vertex i

broadcasts to vertices j, j ′ the binary sum of two independent SK bits – one with

j and the other with j ′ – obtained from the first step. This enables i, j, j ′ to share

any one of these two bits, with the attribute that the shared bit is independent of

the binary sum. This method of propagation ([15, Proof of Theorem 5]) enables

all the vertices in A, which are connected in the Steiner tree, to share one bit

that is independent of all the broadcast binary sums from this tree. Therefore, the

maximum number of such shared bits for the terminals in A that can be generated

by this procedure equals µ(A, G
(n)
ε ). Denote these shared bits (of size µ(A, G

(n)
ε ))

and the communication messages generated by the mechanism in this second step

by K = K(n)({Kij}1≤i<j≤m) and F = F (n)({Kij}1≤i<j≤m), respectively.

We claim that K constitutes an SK for A. Specifically, it remains to show that

K satisfies the secrecy condition (2.1) with respect to the overall communication in

steps 1 and 2. To this end, we denote by K
(n)
R ({Kij}1≤i<j≤m) all the pairwise SK bits

generated in the first step, that are residual from the maximal Steiner tree packing
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of G
(n)
ε used to generate K by means of F . Clearly,

{Kij}1≤i<j≤m = (K, F, KR). (C-14)

Moreover, since the total number of edges in any Steiner tree equals the sum of

unity (i.e., the shared bit of K) and the number of bits of public communication for

that shared bit, we have

|Ẽ(n)| = log |K| + log |F| + log |KR|, (C-15)

where K, F and KR denote the respective ranges of K, F and KR. Note that

log |K| = µ(A, G
(n)
ε ). Then,

s(K; {Fij}1≤i<j≤m, F ) = log |K| − H(K|{Fij}1≤i<j≤m, F )

≤ log |K| − H(K|{Fij}1≤i<j≤m, F, KR)

= log |K| − H(K, F, KR|{Fij}1≤i<j≤m)

+H(F, KR|{Fij}1≤i<j≤m)

= log |K| − H({Kij}1≤i<j≤m|{Fij}1≤i<j≤m)

+H(F, KR|{Fij}1≤i<j≤m), by (C-14)

≤ log |K| + s({Kij}1≤i<j≤m; {Fij}1≤i<j≤m)

−|Ẽ(n)| + H(F, KR)

≤ s({Kij}1≤i<j≤m; {Fij}1≤i<j≤m), by (C-15)

=
∑

1≤i<j≤m

s(Kij; Fij),

=
m(m − 1)

2
on(1),
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where the second-to-last equality is by the fact that {(Kij, Fij)}1≤i<j≤m are mutually

independent, and the last equality is by (C-13). The maximum rate of the SK thus

generated is equal to limn→∞
1
n
µ(A, G

(n)
ε ) which, since ε > 0 was arbitrary, equals

supn∈N
1
n

µ(A, G(n)).

(ii) Suppose that A = {1, 2}, and note from the paragraph after Definition

3 that µ(A, G) is the maximum number of edge disjoint paths in G connecting

terminals 1 and 2. It is clear that 1
n
µ(A, G(n)) is nondecreasing in n ∈ N , by

the definition of G(n). According to Menger’s theorem [42, 5], given a multigraph

G = (M, E), the maximum number of edge disjoint paths in G connecting terminals

1 and 2 is equal to

min
∅6=B⊂M

1∈B, 2∈Bc

(number of edges that cross {B, Bc}) .

Applying this to G(n) as above, we have that for n ∈ N ,

1

n
µ(A, G(n)) =

1

n


 min

∅6=B⊂M
1∈B, 2∈Bc




∑

1≤i<j≤m:

(i,j) crosses {B,Bc}

nI(Yij ∧ Yji)





 .

It then follows that

C(A) ≥ sup
n∈N

1

n
µ(A, G(n)), by (C-11)

= min
∅6=B⊂M

1∈B, 2∈Bc




∑

1≤i<j≤m:

(i,j) crosses {B,Bc}

nI(Yij ∧ Yji)




= Cub(A), by (C-10).
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The last equality follows upon noting that when |A| = 2, the minimization in (C-10)

is over only those partitions that contain two atoms, each of which includes terminal

1 and terminal 2, respectively. This proves (ii).

C.3.2 SK Capacity and Spanning Tree Packing for A = M

When all the terminals in M seek a shared SK, i.e., when A = M, a Steiner

tree for A is a spanning tree for M. In this case, we show that the lower bound

for SK capacity in Theorem C.3 (i) is, in fact, tight. Specifically, we show that the

algorithm in the proof of Theorem C.3 yields an SK of maximum rate that coincides

with the upper bound for C(M) in Lemma C.2.

Theorem C.4: For a PIN model, the SK capacity C(M) is

C(M) = sup
n∈N

1

n
µ(M, G(n))

= Cub(M). (C-16)

Remark: When A ⊂ M, Steiner tree packing may not attain SK capacity. In

SK generation, a helper terminal in Ac helps link the user terminals in A in complex

ways through various combinations of subsets of A. In general, an optimal such

linkage need not be attained by Steiner tree packing. However, when |A| = 2, the

two user terminals are either directly connected or are connected by a path through

helpers in Ac; both can be accomplished by Steiner tree packing. When A = M,

the mentioned complexity of a helper is nonexistent.

Proof: The proof relies on a graph-theoretic result of Nash-Williams [43] and
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Tutte [48], that gives a min max formula for the maximum size of spanning tree

packing in a multigraph.

It is clear that 1
n
µ(M, G(n)) is nondecreasing in n ∈ N , by the definition of

G(n). By [43, 48], given a multigraph G = (M, E), the maximum number of edge

disjoint spanning trees that can be packed in G is equal to

min
P

⌊ 1

|P| − 1
(number of edges that cross P)

⌋
,

with the minimization being over all partitions P of M. Applying this to G(n) as

above, we have that for n ∈ N ,

1

n
µ(M, G(n)) =

1

n


min

P

⌊ 1

|P| − 1




∑

1≤i<j≤m:

(i,j) crosses P

nI(Yij ∧ Yji)



⌋

 .

Denoting by D the quantity in
[ ]

above, it follows that

C(M) ≥ sup
n∈N

1

n
µ(M, G(n)), by Theorem C.3

≥ sup
n∈N

{D − 1

n
}

≥ min
P

1

|P| − 1




∑

1≤i<i≤m:

(i,j) crosses P

I(Yij ∧ Yji)




= Cub(M), by (C-10).

The assertion in (C-16) is now immediate.

Lastly, the following observation is of independent interest. Given a combi-

natorial problem of finding the maximal packing of Steiner trees in a multigraph,

we can always associate with it a problem of SK generation for an associated PIN
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model. By Theorem C.3 (i), the SK capacity for the PIN model yields an upper

bound for the maximum rate of edge disjoint Steiner trees that can be packed in the

multigraph; the upper bound is tight both in the case of path packing by Theorem

C.3 (ii) and in the case of spanning tree packing by Theorem C.4.

C.3.3 Discussion

Our proofs of Theorems 3.3 and 3.4 give rise to explicit polynomial-time

schemes for forming a group-wide SK for the terminals in A from the collection

of optimum and mutually independent SKs for pairs of terminals in M (namely the

Kijs in the proof of Theorem C.3). When |A| = 2 or A = M, our schemes achieve

SK capacity. Specifically, the schemes combine known polynomial-time algorithms

for finding a maximal collection of edge-disjoint paths (resp. spanning trees) con-

necting the vertices in A when |A| = 2 (resp. A = M) [19, 20, 23] with the technique

for SK propagation in each tree as in the proof of Theorem C.3.

For a general multiterminal source model, the notions of wiretap secret key

(WSK) [38, 1, 15] and private key (PK) [15] have also been proposed. Specifically,

these notions involve an extra “wiretapped” terminal, say m+1, that observes n i.i.d.

repetitions of a rv Xm+1 with a given joint pmf with (X1, . . . , Xm), and to which the

eavesdropper has access. The key must now be concealed from the eavesdropper’s

observations of Xn
m+1 = (Xm+1,1, . . . , Xm+1,n) and the public communication. The

notion of a WSK requires that terminal m + 1 not cooperate in key generation.

The less restrictive notion of a PK allows cooperation by terminal m + 1 by way of
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public communication. The corresponding capacities for the terminals in A ⊆ M

are defined in the usual manner, and denoted by CW (A) and CP (A). We remark

that in the context of a PIN model, terminal m+1 represents a compromised entity.

One model for the wiretapped rv Xm+1 entails its consisting of




m

2


 mutu-

ally independent components, one corresponding to each pair (Yij, Yji), 1 ≤ i < j ≤

m, of legitimate correlated signals. This model is unresolved even in the simplest

case of m = 2 terminals [39, 1, 15, 24, 25]. Instead, we consider a different model

which depicts the situation in which an erstwhile legitimate terminal m+1 becomes

compromised. Specifically, the model now involves every legitimate terminal i in M

observing n i.i.d. repetitions of the rv (Xi, Yi,m+1), while terminal m + 1 observes n

i.i.d. repetitions of Xm+1 = (Ym+1,j, j ∈ M). We argue in the following proposi-

tion that the WSK and PK capacities for this PIN model are the same as the SK

capacity of a reduced PIN model obtained by disregarding terminal m + 1 and with

each legitimate terminal i in M observing just Xn
i .

Proposition C.5: It holds that

CW (A) = CP (A) = C(A).

Proof: We shall prove that

C(A)
(a)

≤ CW (A)
(b)

≤ CP (A)
(c)

≤ C(A).

The inequality (b) is by definition. Next, let K = K(Xn
1 , . . . , Xn

m) be a SK for

A achieved with communication F = F(Xn
1 , . . . , Xn

m) for the reduced PIN model.
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Then K is also a WSK since

s
(
K;F, (Y n

m+1,j, j ∈ M)
)

= log |K| − H
(
K|F, (Y n

m+1,j, j ∈ M)
)

= s(K;F) + I(K ∧ (Y n
m+1,j, j ∈ M)|F)

= on(1)

since I
(
K,F ∧ (Y n

m+1,j, j ∈ M)
)

= 0, thereby establishing (a). In order to estab-

lish (c), we claim that every achievable PK rate is an achievable SK rate for the

reduced PIN model upon using randomization at the terminals in M; by Remark

(ii) after Proposition C.1, (c) then follows. Since (Y n
m+1,j, j ∈ M) is independent

of (Xn
1 , . . . , Xn

m), any terminal in M, say terminal 1, can simulate (Y n
m+1,j, j ∈ M)

and broadcast it to all the terminals. Next, each terminal i in M can simulate

Y n
i,m+1 conditioned on (Y n

m+1,j, j ∈ M) = (yn
m+1,j , j ∈ M). This second step of

randomization is feasible since (Xn
1 , . . . , Xn

m), Y n
1,m+1, . . . , Y

n
m,m+1 are conditionally

mutually independent conditioned on (Y n
m+1,j , j ∈ M) = (yn

m+1,j, j ∈ M). Thus,

each terminal i in M now has access to (Xn
i , Y n

i,m+1) while the eavesdropper observes

(Y n
m+1,j, j ∈ M), so that the reduced PIN model for SK generation can be used to

simulate a PIN model for PK generation with the given underlying joint pmf. Thus,

any achievable rate of a PK for A in the given PIN model for PK generation is an

achievable rate of a PK for A in the simulated model. Further, the latter PK is a

fortiori an SK for A in the reduced PIN model with randomization permitted at the

terminals in M. This establishes (c).

In the proof of achievability of SK capacity for the general multiterminal source

model in [15], an SK of optimum rate was extracted from “omniscience,” i.e., from
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a reconstruction by the terminals in A of all the signals (Xn
i , i ∈ M) observed by

the terminals in M. In contrast, the scheme in Theorem C.3 (ii) (resp. Theorem

C.4) for achieving SK capacity for a PIN model with |A| = 2 (resp. A = M) neither

seeks nor attains omniscience; however, we note that omniscience can be attained

by letting the terminals in M simply broadcast all the residual bits left over from a

maximal path packing (resp. maximal spanning tree packing).
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