
ABSTRACT

Title of dissertation: CROSS-LAYER CUSTOMIZATION FOR
LOW POWER AND HIGH PERFORMANCE
EMBEDDED MULTI-CORE PROCESSORS

Chenjie Yu, Doctor of Philosophy, 2010

Dissertation directed by: Assistant Professor Peter Petrov
Electrical and Computer Engineering

Due to physical limitations and design difficulties, computer processor archi-

tecture has shifted to multi-core and even many-core based approaches in recent

years. Such architectures provide potentials for sustainable performance scaling

into future peta-scale/exa-scale computing platforms, at affordable power budget,

design complexity, and verification efforts. To date, multi-core processor products

have been replacing uni-core processors in almost every market segment, including

embedded systems, general-purpose desktops and laptops, and super computers.

However, many issues still remain with multi-core processor architectures that

need to be addressed before their potentials could be fully realized. People in both

academia and industry research community are still seeking proper ways to make

efficient and effective use of these processors. The issues involve hardware archi-

tecture trade-offs, the system software service, the run-time management, and user

application design, which demand more research effort into this field.

Due to the architectural specialties with multi-core based computers, a Cross-

Layer Customization framework is proposed in this work, which combines applica-

tion specific information and system platform features, along with necessary operat-

ing system service support, to achieve exceptional power and performance efficiency

for targeted multi-core platforms. Several topics are covered with specific optimiza-

tion goals, including snoop cache coherence protocol, inter-core communication for

producer-consumer applications, synchronization mechanisms, and off-chip memory

bandwidth limitations.

Analysis of benchmark program execution with conventional mechanisms is

made to reveal the overheads in terms of power and performance. Specific cus-

tomizations are proposed to eliminate such overheads with support from hardware,

system software, compiler, and user applications. Experiments show significant im-

provement on system performance and power efficiency.

CROSS-LAYER CUSTOMIZATION FOR

LOW POWER AND HIGH PERFORMANCE
EMBEDDED MULTI-CORE PROCESSORS

by

Chenjie Yu

Dissertation to be submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee:
Assistant Professor Peter Petrov, Chair/Advisor
Professor Shuvra Bhattacharyya
Associate Professor Gang Qu
Associate Professor Manoj Franklin
Associate Professor Chau-Wen Tseng

c© Copyright by

Chenjie Yu
2010

Acknowledgments

I would like to give my gratitude to all the people who have made this thesis

possible and to all the people who have helped me in my Ph.D program.

I would like to thank my advisor, Dr. Peter Petrov for teaching and directing

on my study and research. He has lent me tremendous help through the entire

processes of all my research projects, from idea forming, experiment implementation,

all the way to publications and presentations.

I also want to thank Dr. Shuvra Bhattacharyya, Dr. Gang Qu, Dr. Manoj

Franklin, and Dr. Chau-Wen Tseng for serving in my thesis defense committee and

for sparing their invaluable time reviewing the manuscript of my dissertation.

I owe my thanks to my colleagues and fellow graduate students at Electrical

and Computer Engineering Department. Among them, Dr. Xiangrong Zhou had

participated in some of my projects and shared his experience with me.

Most of my research projects use the M5 simulator that originally came from

Dr. Donald Yeung’s group. Dr. Yeung has also been generous enough to allow me

to use their computing facilities for simulations. Things will be far more different

without their support.

I owe my deepest thanks to my family - my mother and father. Without their

support I couldn’t have gone this far.

It is impossible to remember all, and I apologize to those I’ve inadvertently

left out.

ii

Table of Contents

List of Tables vi

List of Figures viii

1 Introduction and Motivation 1
1.1 Embedded Systems . 1
1.2 Embedded system design . 2
1.3 Embedded Multi-Core Processors . 3
1.4 Embedded Multi-Core Platform Design Challenges 5

1.4.1 User Application Layer . 5
1.4.2 System Software Layer . 6
1.4.3 Hardware Layer . 6

1.5 System-Level Customization in Embedded Systems 7
1.6 Dissertation Outline . 11

2 Background and Related Work 12
2.1 Embedded Systems . 12
2.2 Power-saving Techniques for Embedded Systems 13

2.2.1 DVFS and Clock-Gating . 13
2.2.2 Architecture Level Power Reduction 15
2.2.3 System Software Techniques for Power Saving 16

2.3 Cross-Layer Customization for Embedded Multi-Cores 17
2.3.1 Cross-Layer Customization Approach for Embedded Systems . 17
2.3.2 Improving Snoop Protocol Power Efficiency 19
2.3.3 Inter-Core Communication based on Producer-Consumer Pat-

terns . 20
2.3.4 Hardware Based Synchronization Mechanisms 20
2.3.5 Cache Partitioning for Memory Bandwidth Minimization . . . 21

3 Low-Power Snoop Architecture for Synchronized Producer-Consumer Com-
munication in Embedded Multiprocessors 22
3.1 Overview . 22
3.2 Related Work . 23
3.3 Functional Overview . 26

3.3.1 Synchronized Producer-Consumer Communication 28
3.3.2 Snoop-Phases in Producer-Consumer Communication 29
3.3.3 Snoop-Phase Detection . 32
3.3.4 Shared Buffer Identification 34

3.4 Passive SPoT Detection . 36
3.5 Active SPoT Migration . 40
3.6 Experimental results . 43

iii

4 Energy and Performance Efficient Communication Framework for Embedded
MPSoCs through Application-Driven Release Consistency 57
4.1 Overview . 57
4.2 Related Work . 63
4.3 Motivation and Overview . 66

4.3.1 Inter-Core Data Sharing: To Invalidate or to Update? 67
4.3.2 Cross-Layer Integration for Data Communication 69
4.3.3 Cache Way Partitioning for Low-Power Data Sharing 74

4.4 Compiler Support . 76
4.4.1 Shared Memory Identification 77
4.4.2 Loop Transformations for Software-triggered Remote Updates 78

4.5 System Software Support . 84
4.5.1 Memory Reference Identification 84
4.5.2 Multi-Tasking Support and False Sharing Avoidance 86

4.6 Cache Partitioning for Low-Power Data Sharing 88
4.6.1 Functional Overview . 89
4.6.2 Cache Way Partitioning: Advantages and Pitfalls 90

4.7 Hardware Support . 92
4.7.1 Shared Data Communication Support 93
4.7.2 Cache Way Partitioning Hardware 96

4.8 Experimental Results . 97
4.9 Conclusion . 120

5 Low-Cost and Energy-Efficient Distributed Synchronization for Embedded
Multiprocessors 131
5.1 Overview . 131
5.2 Related work . 135
5.3 Functional Overview . 139

5.3.1 Distributed Queue Abstraction Model 142
5.3.2 Synchronization Efficiency with Distributed Queues 144

5.4 System Architecture . 147
5.4.1 Synchronization Variable Identification 147
5.4.2 Distributed Synchronization Controller 150
5.4.3 Lock implementation . 153
5.4.4 Barrier implementation . 155
5.4.5 Power Management . 158

5.5 Compiler and OS Support . 160
5.5.1 OS Power Management Role 162
5.5.2 Multi-tasking support per core 165

5.6 Experimental results . 165
5.7 Conclusions . 181

iv

6 Off-Chip Memory Bandwidth Minimization through
Cache Partitioning for Multi-Core Processors 182
6.1 Overview . 182
6.2 Related work . 185
6.3 Memory Bandwidth and Last Level Caches in Multi-Core Systems . . 187

6.3.1 Bandwidth Demand and Cache Resources 188
6.3.2 Cache Sharing in Multi-Core Processor Systems 191

6.4 Partitioning Algorithm . 192
6.4.1 Cache Partitioning Basics . 192
6.4.2 Algorithm Overview . 193
6.4.3 Intuitive and Formal Description 196

6.5 Experimental Results and Discussion 199
6.5.1 Experimental Setup . 199
6.5.2 Benchmark Applications . 200
6.5.3 Results and Analysis . 201
6.5.4 Comparison Between Heuristic Algorithm and Exhaustive Search203

6.6 Conclusions . 204

7 Conclusions 206
7.1 Embedded Multi-Core Architecture Challenges 206
7.2 Cross-Layer Customization for Embedded Multi-Cores 207

Bibliography 208

v

List of Tables

3.1 Snoop-induced cache lookups for 16K shared data buffers; Passive
SPoT v.s. baseline snoop protocol. 46

3.2 Snoop-induced cache lookups for 64K shared data buffers; Passive
SPoT v.s. baseline snoop protocol. 47

3.3 Energy consumption (µJ) for 16K shared data buffers; Passive SPoT
v.s. Baseline . 48

3.4 Energy consumption (µJ) for 64K shared data buffers; Passive SPoT
v.s. Baseline . 49

3.5 Snoop-induced cache lookups for 16K shared data buffers; Active
SPoT v.s. baseline snoop protocol. 53

3.6 Snoop-induced cache lookups for 64K shared data buffers; Active
SPoT v.s. baseline snoop protocol. 54

3.7 Energy consumption (µJ) for 16K shared data buffers; Active SPoT
v.s. Baseline . 55

3.8 Energy consumption (µJ) for 64K shared data buffers; Active SPoT
v.s. Baseline . 56

4.1 Cache Misses: Baseline vs. Achieved Reductions (%); 32K D-Caches . 98
4.2 Cache Misses: Baseline vs. Achieved Reductions (%); 32K D-Caches

(continued) . 99
4.3 Cache Misses: Baseline vs. Achieved Reductions (%); 32K D-Caches

(continued) . 100
4.4 Cache Misses: Baseline vs. Achieved Reductions (%); 64K D-Caches . 101
4.5 Cache Misses: Baseline vs. Achieved Reductions (%); 64K D-Caches

(continued) . 102
4.6 Cache Misses: Baseline vs. Achieved Reductions (%); 64K D-Caches

(continued) . 103
4.7 Bus Transactions: Baseline vs. Achieved Reductions (%); 32K D-

Caches . 104
4.8 Bus Transactions: Baseline vs. Achieved Reductions (%); 32K D-

Caches (continued) . 105
4.9 Bus Transactions: Baseline vs. Achieved Reductions (%); 32K D-

Caches (continued) . 106
4.10 Bus Transactions: Baseline vs. Achieved Reductions (%); 64K D-

Caches . 107
4.11 Bus Transactions: Baseline vs. Achieved Reductions (%); 64K D-

Caches (continued) . 108
4.12 Bus Transactions: Baseline vs. Achieved Reductions (%); 64K D-

Caches (continued) . 109
4.13 Cache way partitioning: Cache energy (mJ) and reductions 121
4.14 Cache way partitioning: Cache energy (mJ) and reductions (continued)122
4.15 Cache way partitioning: Cache misses and impact on miss-rate 123

vi

4.16 Cache way partitioning: Cache misses and impact on miss-rate (con-
tinued) . 124

4.17 Average memory access latency reduction (32K D-Cache) 125
4.18 Average memory access latency reduction (32K D-Cache) (continued) 126
4.19 Average memory access latency reduction (64K D-Cache) 127
4.20 Average memory access latency reduction (64K D-Cache) (continued) 128
4.21 Average memory access latency reduction with cache way allocation . 129
4.22 Average memory access latency reduction with cache way allocation

(continued) . 130

5.1 Performance characteristics (in number of cycles) and DSC reductions
- Increasing data set . 167

5.2 Performance characteristics (in number of cycles) and DSC reductions
- Increasing data set (continued) . 167

5.3 Bus bandwidth characteristics (in number of bus transactions) and
DSC reductions - Increasing data set 168

5.4 Bus bandwidth characteristics (in number of bus transactions) and
DSC reductions - Increasing data set (continued) 168

5.5 Performance characteristics (in number of cycles) and DSC reductions
- Fixed computational workload . 171

5.6 Performance characteristics (in number of cycles) and DSC reductions
- Fixed computational workload (continued) 172

5.7 Bus bandwidth characteristics (in number of bus transactions) and
DSC reductions - Fixed computational workload 173

5.8 Bus bandwidth characteristics (in number of bus transactions) and
DSC reductions - Fixed computational workload (continued) 174

5.9 Thread load imbalance: 4-processor system 177
5.10 Energy characteristics: 4-processor system 178
5.11 Thread load imbalance: 8-processor systems 180
5.12 Energy characteristics: 8-processor system 181

6.1 Benchmark Workloads . 199

vii

List of Figures

1.1 General Purpose System . 3
1.2 Feed-Back and Customization Desig 10

3.1 Synchronized producer-consumer communication with shared mem-
ory. At any time moment access to the shared buffer is exclusive
required by the producer or the consumer only. 26

3.2 Producer-Consumer cache snooping activities. 29
3.3 Transferring to OS shared buffers information 35
3.4 Hardware architecture for SPoT detection. 36
3.5 Hardware architecture for Active SPoT migration. 41
3.6 Application benchmarks organization. 43
3.7 Energy reduction for 16K shared data buffers 50
3.8 Energy reduction for 64K shared data buffers 51
3.9 Active vs. Passive: Energy reductions for 16K shared data buffers . . 55
3.10 Active vs Passive: Energy reduction for 64K shared data buffers . . . 56

4.1 Shared memory multiprocessor organization 66
4.2 Bus transactions involved in communicating data 68
4.3 Synchronized inter-task communication 71
4.4 Propagating updates with explicit store.update 73
4.5 MPSoC cache partitioning . 75
4.6 Transformations for row-wise array traversal with st.update support . 79
4.7 Transformations for row-wise traversal with “irregular” row sizes . . . 79
4.8 Transformations for column-wise traversal with st.update support . . 81
4.9 Loop peeling for st.update support . 81
4.10 Transformation for while loops with unknown at compile-time upper

bounds . 82
4.11 Cache controller support for bus-based systems 93
4.12 Shared/Private-data cache way allocation architecture 95
4.13 Application benchmarks organization. 97

5.1 Distributed lock queue information 142
5.2 Local lock queue management . 144
5.3 Distributed Synchronization Controller (DSC) organization 152
5.4 Local barrier queue management . 155
5.5 Overall system organization . 157
5.6 Example parallel application . 161
5.7 Data-streaming benchmarks organization. 166

6.1 Memory Bandwidth Requirement Curves 188
6.2 Cache Misses Curves . 189
6.3 Cache Miss-rate Curves . 190
6.4 Partitioning Heuristic Pseudocode . 194

viii

6.5 Algorithm Walkthrough on Example 198
6.6 Achieved bandwidth v.s. baseline: APP1, APP2 and APP3 201
6.7 Achieved bandwidth v.s. baseline: APP4, APP5 and APP6 201
6.8 Heuristic Algorithm Compared to Exhaustive Search 204

ix

Chapter 1

Introduction and Motivation

1.1 Embedded Systems

Embedded systems have a wide range of applications. The products span

from day-to-day household and consumer electronics, such as microwave ovens, dig-

ital TVs, set-top boxes, mobile phones, PDAs, vehicular devices, etc, to industry

devices and equipments like wireless communication basestations, robots, aviation

equipments, to the high end military and scientific devices like missles and de-

vices used in space missions. It is estimated that over 10.76 billion embedded sys-

tems/devices were shipped worldwide in 2009[5].

Because of its wide application range, there is no dominating system archi-

tecture for embedded systems. The very simple microcontrollers, such as Atmel’s

8051, AVR[56], and the advanced advanced massive parallel architecture, such as

PC102 from picoChip[3] and Tile64 from Tilera[4] co-exist in today’s design choices.

About 50% of embedded system products shipped use no formal or in-house op-

erating systems, whereas the other half use commercial or open-source operating

systems. In general, however, embedded system designs are moving from board

level to System-On-Chip (SOC), and from single processor to multiprocessors[49]

with more powerful operating systems, which is driven by increasing demand for

performance and power efficiency.

1

1.2 Embedded system design

In general, embedded system design features fast time-to-market, very low

cost, strict performance specification and tight power budget. Embedded system

designers have to make trade-offs between all those factors and fine-tune the system

at hardware architecture, operating system, and application software layers.

System function partitioning is very important in embedded systems. Ap-

plication functions can be implemented in either hardware or software. Using pure

hardware design, such as custom ASIC (Application Specific IC), gives the best per-

formance, hardware cost, and power efficiency, but suffers from long time to market

and excessive design cost and little flexibility for future product upgrades. Using

pure software running on a general-purpose computer system, however, exchanges

performance, cost, and power efficiency to time to market and small design cost and

more flexibility. A designer needs to balance between the two extremes.

Most micro-processor based designs follow the layered system model borrowed

from the general-purpose domain[108], as show in Figure 1.1. The hardware layer

sits at the very bottom, including the processor unit, the off-chip memory, and

peripherals. The operating system layer lies in the middle and directly controls and

manages the hardware resources and provides services for user applications. The

application layer consists of user programs that achieve the desired functionalities.

Off-the-shelf hardware components are used to shorten the time-to market. The

operating system is also chosen from open-source or commercial available ones.

However, to meet design goals, an embedded system design needs to go through

2

Figure 1.1: General Purpose System

a series of customization processes to achieve the design specifications at the lowest

cost. This is achieved by system level hardware-software co-design method, which

tries to meet system level objectives by exploiting the synergism of hardware and

software through the design process. Thus, the designers need to be knowledgeable

in both hardware and software domains to make good trade-offs.

1.3 Embedded Multi-Core Processors

In recent years, the scaling of silicon fabrication technologies has enabled un-

precedented level of chip integration, which provides rich on-chip resource for power-

ful processor designs. However, the traditional design methodology with monolithic

single core architectures has met tremendous difficulties in frequency scaling, power

consumption, design complexity, verification effort, and so on.

The frequency scaling stops around 3GHz and has not advanced ever since. Yet

there is constant need for more powerful processors with affordable energy consump-

tion and cost. Such conflicts have led to the proliferation of multi-core processor

architectures, which naturally address many of these problems. With multiple but

simpler cores, running at lower frequencies, the chip voltage and power consump-

tion are well contained, while achieving very good performance scaling. As a result,

3

multi-core processor products have been widely adopted in today’s computing sys-

tems – including the industrial embedded system applications, the general purpose

desktops and servers, and the building blocks for supercomputers. In fact, embedded

systems are among the first to benefit from multi-core based designs[1].

Although the market has seen flourish of multi-core processor products, the

proper use of such architectures is still far from satisfactory and is thus under inten-

sive study in both academia and industry research communities. The fundamentals

of the hardware architectures are evolving into different directions, including the key

topologies such as on-chip memory structures, coherence mechanisms, interconnect

technologies, etc. The proper system software mechanisms that manage the hard-

ware resrouce and task scheduling are being explored to meet the future many-core

processor demands. Even the programming paradigms for multi-core/many core

architectures are also evolving into varieties, including OpenMP, MPI, pthread,

Thread Building Block(TBB), and many others.

Although embedded systems have an early start with multi-core processors,

because of the wide spectrum of embedded system applications and areas, as well

as vast variation of implementation methods, the problems are even more profound

and complex with embedded multi-core systems.

The fact that so little has been settled on so many issues with multi-core

architectures, which have already been in commercial use for about seven years,

is urging much more involvement from researchers in essentially all sub-areas of

computer engineering.

4

1.4 Embedded Multi-Core Platform Design Challenges

As discussed in the previous section, while multi-core architectures help keep

system performance scaling at affordable hardware, power, and design cost, they

also bring a large number of challenges and a whole new world of design trade-offs.

The challenges span in about every sub-area of the systems and are shared by both

embedded system and general purpose system designs.

1.4.1 User Application Layer

There are programming challenges at user application layer, which have at-

tracted a large number of attention and research interest in both academia and

industry. There has been significant investment in the topics of compiler auto-

parallelization and code transformation techniques, as well as research works in how

to do programming for these highly integrated paralle machines. There is also signif-

icant industry interest in techniques that could help legacy code benefit from future

multi-core platforms. For embedded systems, an important topic is to maintain

hard real-time constraints with significantly higher system complexity. Currently,

there is still no sight of any solution in these areas that present itself general enough

and effective enough.

The current de facto standard of parallel programming on mid/large scale

multi-core processors is up to the programmers to parallelize the sequential solutions

and perform specific tunings according to hardware and OS. Such effort requires

heavy software customization and generally does not provide portable performance

5

across platforms. Furthermore, as will be shown, even perfectly parallelized appli-

cations may suffer execution inefficiencies from the underlying platforms. This is

becoming more prominent as system integration scaling to larger core counts.

1.4.2 System Software Layer

There are also special requirements with system software for embedded multi-

core architectures, including operating systems and hypervisor software. With in-

creasing number of processor cores and application threads in the system, the role of

operating system is becoming more important in task scheduling, resource allocation

and partitioning, and architecture specific system services. It is extremely impor-

tant for system software on a multi-core platform to provide system-level resource

monitoring to prevent serialization on certain bottlenecks. There have already been

attempts to address such need in academia research and commercial practices[2, 6].

However, such mechanisms are often bound with entirely different programming

models and paradigms, which are yet to be accepted by the vast majority of pro-

grammers and market. Like user software applications, the system software also

needs to be tailored to specific multi-core hardware architectures, with possibly

different API interfaces to the programmers.

1.4.3 Hardware Layer

Most of the problems in the application and system software layer have their

roots in the hardware architectures. With multi-core architectures, the processor

6

cores are getting cheaper and simpler, but the shared resources become expensive

and the interaction between different cores becomes more frequent and complicated,

which bring in a large number of design trade-offs. Current multi-core/many-core

hardware architectures are evolving into all kinds of different directions. Vendors

like Intel, IBM, Nvidia and Tilera all have drastically different multi-core processors.

The differences are often in the fundamental aspects of architecture design, such as

being heterogeneous or homogeneous, the interconnect technology, the cache struc-

ture, etc. Such differences make the program performance generally not portable

across the platforms. Even with the same vendor, the new generations of architec-

tures could also be very different in terms of topology organization, especially as

the systems scale into large scale chip multi-processors (CMP). All these have sig-

nificant impact to system performance and often require significant re-structuring

to the existing software stack.

Such challenges must be addressed before the potentials of multi-core/many-

core systems can be truely realized in embedded applications. On the other hand,

this also means tremendous research opportunity in this area.

1.5 System-Level Customization in Embedded Systems

All embedded systems need to be optimized to specific application needs and

purposes, such as power efficiency and performance requirements. For example, a

smart phone design may have chosen processors and operating system that promise

sufficient computing power as well as media and communication processing capa-

7

bilities. Yet, it can still fall short of the power budget, which is often times the

upmost important factor for such devices to be successful in the market place. It is

common practice for embedded system designers to fine-tune every design element

and parameters to meet design specifications.

The complexities with embedded multi-core systems argue strongly for a such

a cross-layer customization approach.

The customization methods span across different layers of the entire system.

Various embedded multi-core processors can be selected for different computing

and control needs. A chosen processor platform needs further customization. For

example, the processor architecture parameters need to be carefully examined and

adjusted to satisfy system demand. The speed of the processors, the register file

sizes, the size and way associativity of cache subsystem or scratch pad memory, all

have significant impact on system performance and run-time power consumption.

Sometimes, such customization may go into micro-architecture level. The designer

may need to implement certain critical systems in hardware blocks so as to optimize

critical path behavior and add instructions to the ISA [1, 7].

The operating system (OS) also needs significant modification while it is be-

ing ported to the target multi-core system. Compared with hardware components

which are more often off-the-shelf commercial products, operating systems in em-

bedded systems traditionally have a much greater variety. It is reported that, of all

the embedded system products shipped in 2007, more than half of them come with

in-house-built operating systems[5], and the other smaller half come with open-

source or commercial operating systems such as VxWorks[119], embedded Linux

8

[121], ThreadX[58] and WinCE[118]. The use of bigger operating systems is grow-

ing faster. More often, the layered system structure in Figure 1.1 is violated a

little bit to give application software direct access to certain hardware resources,

such as IO peripherals. Certain system services, such as scheduling, memory man-

agement, need to be changed for more efficient execution. The use of application

specific instructions and certain micro-architecture facilities also need operating sys-

tem support which is not included in standard releases. As embedded multi-core

processors scale to large scale CMPs, there is also added risk of violation of tradi-

tional symmetrical multiprocessor (SMP) model, which needs special attention for

future many-core platforms.

Likewise, user programs also need a large number of tuning to achieve the best

performance and power efficiency. This usually comes in the form of compiler/user

directed runtime support for specific optimization goals. The compiler or the pro-

grammer extracts application information and pass it down to OS and hardware

layers, via speccial system APIs. At times, for certain critical data paths, the pro-

grammer may need to hand optimize the code at assembly language level. Such

process would require knowledge of the underlying hardware and operating system

platforms.

All above customization is achieved by a cross-layer system level customization

framework in embedded systems. Application specific information is extracted by

profiling and code examination. This information is fed to the operating system and

hardware design. The outcome of the process can be profiled again, until all system

specifications are met. The whole process is usually in a feed-back loop, as shown

9

in Figure 1.2.

Figure 1.2: Feed-Back and Customization Desig

Such need for system level customization is fundamental to the multi-core ar-

chitectures. The philosophy is as following: The future processors are not going

to be faster, but much wider. The performance gains will be solely from architec-

ture improvement. Thus the application software will have to capture most of the

architecture features from the underlying hardware to justy the cost.

The decoupled layer design from general purpose system design method can

hardly fit the upcoming large scale multi-core/many-core processors. Even the su-

percomputer designs are going towards hardware software co-design approaches.

Because of its vast design space, however, the specific co-design techniques of

such customization approach need to be explored on specific system architectures

and applications. This is where this work would make contribution to.

10

1.6 Dissertation Outline

This dissertation covers several embedded multi-core platform specific issues,

including cache coherence protocols, inter-core communication, synchronization mech-

anism, and off-chip bandwidth. Most of these techniques also apply for general pur-

pose multi-core platforms, at small to midium scale. In all these topics, benchmark

studies on embedded application kernels are performed to reveal the inefficiencies

with conventional design methodologies. New approaches are proposed under the

cross-layer customization framework to address such inefficiencies, which often bring

modifications to multiple system aspects. Extensive experiments are shown that

such customization often improve system performance and power efficiency signifi-

cantly as compared to baseline.

11

Chapter 2

Background and Related Work

2.1 Embedded Systems

Embedded processors have been reported to occupy more than 90% of the pro-

cessor market while great amount money and man power have been invested into

the research and development work[102]. The major concerns of many embedded

systems are power consumption and real-time performance constraints. While per-

formance specification requires worst case real-time guarantee, power consumption

has a greater impact on battery life, microprocessor thermal effect, cooling cost,

etc. This is especially true for most battery based products like smart phones and

portable media players. This research will try to address these problems, from dif-

ferent perspectives of embedded multiprocessor systems, while causing little or no

performance and cost overhead.

There have been a large number of research work on power-aware design tech-

niques for computer systems. Many of them apply to both general-purpose and

embedded computing systems. Moreover, embedded system design has the unique

advantage of known target application and thus can exploit application specific in-

formation and achieve very efficient customization and optimization. As for the

high-end embedded multiprocessor systems, because of their special architectural

properties and requirements, more power saving opportunities are being exposed to

12

researchers to achieve even greater power reductions.

2.2 Power-saving Techniques for Embedded Systems

Embedded system design has traditionally adopted the layered system struc-

ture, including the hardware layer, the operating system layer, and user application

layer. Various techniques have been developped to reduce system power consump-

tion at different layers. All power saving techniques are based on the following

equation:

P =
1

2
· C · V 2

DD · f ·N +QSC · VDD · f ·N + Ileak · VDD (2.1)

Where P denotes the total power, VDD is the supply voltage, f is the clock frequency.

The first term represents the dynamic power, where C is the load capacitance

and N is the switching activity, i.e., the number of gate output transitions per clock

cycle. The second term represents short-circuit power, where QSC is the quantity

of charges carried by the short-circuit current per transition. The last term is static

power dissipation due to leakage current Ileak.

There are many research work around trying to minimize every variable in this

equation so as to reduce system power consumption.

2.2.1 DVFS and Clock-Gating

The DVFS(Dynamic Voltage and Frequency Scaling) method has been a very

effective technique in tuning system power consumption at the minimum level. The

13

key idea is to lower clock frequency and scale down supply voltage when the system is

running light weight tasks. It is clear from the above equation that, by lowering clock

frequency and supply voltage, one can reduce dynamic switching power significantly.

And for embedded systems that go into idle status once in a while, such as cell phone

standby mode, this method proves to be very effective. Various DVFS techniques

have been both proposed in academia[87, 103] and developed in industry [46, 113].

Although DVFS works well for dynamic power, it has little impact for the

static power. As transistor density continues increasing and transistor feature size

continues shrinking, static power is gradually becoming the dominant part in total

power consumption. This is especially true for high-end multiprocessor systems,

which have more transistors on a chip and have larger cache area.

Another technique, called clock-gating, also works on dynamic power. The idea

is to temporarily cut off clock signals to certain structures that are inactive for some

period of time and resume clock signals later. For example, a processor pipeline may

decide to clock-gate part of its function units on seeing certain instructions coming

through. This technique usually requires additional gates to control the clock signal

of certain units and dynamically chooses to clock-gate on predefined conditions.

As clock signal contributes to a very large part of the microprocessor total power

consumption, this technique can effectively reduce energy to send the clock signals

over the clock tree and reduce the load capacitance on the clock signal drivers. This

should have greater effect on high-end embedded multiprocessors. However, clock-

gating at coarser grain, such as a cache subsystem as a whole, and bigger structures

may suffer from delay in resuming the clock signal, which may potentially harm

14

real-time performance. Such techniques have been discussed in various papers[23].

Both DVFS and clock-gating techniques are becoming available in newer verisons

of microprocessors. Programmers are given the flexibility to adjust higher level

policies and protocols to form various power-saving modes. Designers can also cus-

tomize processors to apply these techniques to more micro-architecture components,

depending on application specific requirements.

Such circuit level power saving techniques could also have significant appli-

cation into future many-core processors. Due to the complexity of such systems,

however, DVFS and clock-gating are often applied at coarse granularities, such as

per individual cores or groups of cores.

Finding appropriate transistor size [106] or redesigning complex gate[90] will

change the load capacity or reduce the total number of transistor count, thus reduce

the power consumption. These techniques apply to both embedded systems and

general-purpose computer systems.

2.2.2 Architecture Level Power Reduction

A large number of work has been done about processor power consumption at

architecture level, which breaks down to individual components, such as pipelines,

cache subsystems, register files, TLBs, etc., and analyzed according to run time data.

Customizations at this level often give much greater flexity and finer granularity,

with often more complicated algorithms.

Various power analysis and estimation techniques have been discussed [60, 89].

15

More power efficient designs are proposed.

Some techniques maintain transparency to the programmers. In [80], the au-

thors introduced the RegionScout technique to dynamically monitor cache data

sharing status at a coarse grain, in shared memory multiprocessor systems. Shared

data activities are recorded in special hardware structures. The RegionScout con-

troller thus can filter out unnecessary cache snooping from remote processors and

save power.

However, for embedded systems, similar optimization would work much more

effective when put in a hardware-software co-design framework. Application specific

information is used to significantly cut unnecessary modules and reduce unnecessary

complexity. Optimization techniques at this level sometimes require programmer as-

sistance, which is common practice in the embedded system domain. For example,

in Application Specific Instruction Processors (ASIPs), a designer can customize

certain application function to be implemented in hardware and insert new instruc-

tions to the ISA. The programmer and the compiler needs to work together to utilize

that facility for the best of system efficiency.

2.2.3 System Software Techniques for Power Saving

Depending on the embedded system physical resources and requirement, sys-

tem software in embedded system design range from very small size with just basic

interrupt handling routines, to middle size with relative more OS functionality for

embedded process, to full fledged large size OS that has all general-purpose com-

16

puter’s functionalities. Some embedded OS are also required to support hard real-

time guarantees. Small size OSs are lack of many OS functions, which force software

developpers to write many low-level code on hardware layer. Medium size OSs, such

as Vxwork[119], INTEGRETY[38] and Neotrino[101], have relative larger size but

with more system functions. With embedded systems trending to more complex

and intelligent, ”bigger” operating systems are also growing at faster speed than

the embedded system market in general.

The use of operating system itself may be a big overhead in embedded systmes.

Much effort has been contributed to analyzing this problem[107]. Techniques used

at operating system level usually include operating system software, user application

software, and compiler support. Application specific information needs to be carried

down to processor architecture level by the operating system, usually when the

programs are loaded into the system.

Operating systems also needs to be modified to reflect the change in the un-

derlying hardware platform. More often, power saving protocols and policies are

implemented at operating system level so as to give the programmer flexibility in

adapting to specific application requirements.

2.3 Cross-Layer Customization for Embedded Multi-Cores

2.3.1 Cross-Layer Customization Approach for Embedded Systems

Although the above techniques work well for both embedded systems and

general-purpose computer systems, they can become much more effective for embed-

17

ded systems, when put in a system-level customization framework. This is because

embedded systems are dedicated to certain applications. By analyzing the appli-

cation environment, the designer can remove significant redundancy in standard

hardware parts and software routines to make the entire design extremely efficient.

This, however, requires that the designers work concurrently at all system layers so

that the extracted application specific information can be passed across the layers.

For example, in ASIP systems, the register file size and the register allocation

schemes are designed during system synthesis[7]. The power aware scheduling ap-

proach in [132] is combined with the DVS technique and OS scheduling algorithm

to reduce the overall energy consumption. In [88], the authors apply the application

memory access information to the compiler and the cache architecture to reduce the

total cache access energy.

In [116], the authors introduce the Temporal Streaming technique to dynami-

cally identify sequences of memory accesses which correspond to a data stream. By

moving the data stream to the requesting processor in advance, the overall perfor-

mance is improved.

With multi-core processors being used for embedded applications, the systems

are becoming much more complex, which presents more need for customization to

achieve satisfactory power and performance efficiency.

This study covers several specific topics of multi-core system customizations.

18

2.3.2 Improving Snoop Protocol Power Efficiency

The current small to middle scale CMP processors often adopt shared memory

model, which provides a very intuitive programming model. Most of them have

private caches to individual cores and a much larger last level shared cache pool.

This creates the problem of coherency among all the private caches on the same

chip, which is resolved by the installation of cache coherency protocols.

The general purpose cache coherenc protocls, normally the snoop protocols,

are known to be general and consumer significant amount of power[33, 69, 85].

This not only puts a heavy burden for embedded system applications, but

also significantly limits the system scaling into larger scales, making coherent cache

unavailable in many large-scale CMPs for both embedded and general-purpose mar-

kets.

There have been a number of research projects on this topic trying to aug-

ment traditional snoop protocols and their implementations towards better power

efficiency. The basic idea is to catagorize different cache area according to data us-

age and sharing patterns[81, 80, 117, 21, 33]. Being general purpose, however, many

of these approaches could meet advasary cases that yield very little improvement on

power efficiency. In [130], the authors propose to tag shared data regions in virtual

memory, with information provided by the programmer. This information is used

to filter out unnecessary snooping into the caches. Application specific information

is used to preclude the speculation effort needed in general-purpose domain while

the effects are much more pronound, at the same time incurring little hardware

19

overhead.

2.3.3 Inter-Core Communication based on Producer-Consumer Pat-

terns

As multi-core systems scale to larger number of cores, the inter-core commu-

nication and cache subsystem are becoming much more important than the CPUs,

which often hold the key to performance and power efficiency[33, 70, 71]. The

general-purpose shared memory model gives good high level abstraction but doesn’t

guarantee the best performance. For explicit producer-consumer type of communi-

cations, the data sharing based on passive shared memory and cache coherence is

not efficient in multi-core systems.

A number of approaches have been explored to improve such mechanisms for

better efficiency[105, 19, 117, 21]. Some of these approaches try to exploit com-

mon producer-consumer communication patterns [8, 45, 26] and modify the system

consistency model to allow more compact communication operations [27, 55], often

by modifying the cache structure and coherence protocols, with compiler and OS

support for such augmented hardware mechanisms[52, 66, 73].

2.3.4 Hardware Based Synchronization Mechanisms

Synchronization in embedded multi-core processors is also becoming an im-

portant issue, especially in mid-large scale systems. Synchronization is fundamental

in parallel computing systems. The conventional atomic instruction based imple-

20

mentation bears too much overhead in modern system designs in terms of both

performance and power[10, 12, 122, 115, 64, 35].

For embedded applications, dedicated hardware synchronization controllers

have been proposed to address such problems [78, 9, 98, 82, 74, 135, 100, 114, 36,

77, 84, 28, 43, 51]. They often change the underlying synchronization mechanism

significantly, with sizable performance improvement. Additionally, such dedicated

controllers would enable the use of power saving modes in modern multi-core pro-

cessors when individual cores are waiting for synchronization[64].

2.3.5 Cache Partitioning for Memory Bandwidth Minimization

As multi-core architectures scale to mid-large scale at rapid pace, various bot-

tlenecks are emerging that prevent people from fully utilize such platforms. Among

the different bottlenecks, the off-chip memory bandwidth limitation is becoming

a very common problem in modern multi-core processor applications. While such

problem is well recognized and is due to the speed gap between processors and

memory systems[20, 95, 42, 68], there are ways to help alleviate it, such as the cache

partitioning technique[67, 37, 91, 54, 92, 83].

The cache partitioning is well known and well studied in uni-core era. The ef-

fects on multi-core system memory bandwidth is inadequately studied, which makes

it an interesting research topic in this study.

21

Chapter 3

Low-Power Snoop Architecture for Synchronized Producer-Consumer

Communication in Embedded Multiprocessors

3.1 Overview

The snoop-based cache coherence protocols are the most widely deployed as

they rely on the inherent broadcast nature of the common bus connecting the pro-

cessor nodes to the memory. Each cache controller “snoops” the bus for mem-

ory transfers, for each of which a cache lookup is performed in order to determine

whether a cache block state should be changed in the local cache. Easily extend-

able multiprocessor structures and software-transparent implementation have made

snoop protocols easy to understand, deploy, and reuse, with minimal impact on the

performance of memory subsystem [76]. However, these protocols tend to be overly

conservative in many real world programs, especially embedded applications.

Quite often in embedded systems data are cached in just a few nodes. Snooping

in the others leads to a waste of energy. Previous research [85] has shown that only

around 10% of the application memory references actually require cache coherence

tracking. And it has been reported that snoop-related cache activities can contribute

up to 40% of the total cache power [33, 69].

In contrast to general-purpose computing platforms, in embedded system de-

22

signs, fine-tuning hardware, compiler, and system software has been a common

practice to maximize performance and achieve energy efficiency [96, 72, 50]. In this

work[130, 134, 125], we propose a methodology that aggressively eliminates the ma-

jority of unnecessary snoop-induced cache look-ups and thus, achieves significant

power reduction. The proposed technique explicitly exploits application-specific

information regarding the exact producer-consumer relationships between various

tasks as well as information regarding the precise timing of synchronized accesses to

shared memory buffers by their corresponding producers and/or consumers. This

program knowledge is used to eliminate a large number of snoop-induced cache

lookups even for references to the shared memory buffers.

The conventional snoop controllers are augmented with small additional hard-

ware which is controlled by the system software. This hardware dynamically iden-

tifies accesses to relevant memory areas, detects the timings of temporal sharing

between producers and consumers, and thus precludes snooping to those regions

when it is safe to do so. The end result of the proposed methodology is significant

reductions of power spent in unnecessary snoop-induced cache lookups.

3.2 Related Work

The emergence of multi-core processors in embedded applications has exac-

erbated the power concerns with these applications but also has exposed more op-

portunities to reduce power consumption. Many research projects have addressed

power-aware coherence protocol. However, most of them are in the domain of general

23

purpose systems, such as desktop and server computers. Few of them have been in

the embedded system domain, which often times exhibit specific hardware architec-

tures and program behaviors and usually exposes more stringent power constraints.

The contribution presented in this work enables the application of snoop-based cache

coherence solutions in energy-efficient embedded applications.

Jetty [81] is the name of a family of snoop filters designed to reduce energy

consumption in snoopy bus-based multiprocessor systems. Jetty observes cache

activities in local caches and records them in special cache-like hardware-structures.

By doing this, Jetty can dynamically feed the snoop controller information as ”what

is present in the local cache and what is not”. The snoop controllers in local caches

subsequently decide whether it is safe to filter out certain cache loop-ups, which

otherwise would consume a lot of power. The authors report an average of 29%

energy reduction for L2 caches.

RegionScout [80] is another technique that exploits coarse-grain data sharing

information to reduce energy for caches and bus traffic in server applications. In

RegionScout, memory space is divided into a number of chunks(regions). Additional

hardware structure is employed to dynamically record which region is holding use-

ful data and which region is blank. By identifying memory references to different

regions, the snoop controller can filter out remote references that are not relevant

to its local activities, thus saving power to the cache system. In [117] the authors

introduce Temporal Streaming technique to dynamically identify sequences of mem-

ory accesses which correspond to a data stream. By moving the data stream to the

requesting processor in advance, a large number of coherence misses are eliminated.

24

Additionally, the program performance is improved in directory-based snoop pro-

tocols. In [21] the authors propose Coarse-Grain Coherence Tracking to monitor

coherence status of large memory areas so as to avoid unnecessary broadcasts, so as

to enhance performance in commercial, scientific and multiprogrammed workloads.

In [33], the authors target low-power chip-multiprocessors and try to reduce TLB

energy consumption by using virtually addressed data caches, as well as to reduce

snoop energy loss by keeping track of the sharing set of each memory page.

While techniques for general purpose applications report significant power ben-

efits, their hardware and power overhead would be non-trivial in most portable em-

bedded devices. Moreover, in a general purpose environment, system designers have

limited software information and need to assume worst-case situations, which typi-

cally leads to hardware-only methods which dynamically try to uncover important

program properties. For example, in Jetty and RegionScout, additional hardware

structures observe the local caches and extract possible data sharing information

to snoop controllers. This may be less effective against programs that have shared

data scattered in the address space or may lead to large overhead implementing the

monitor hardware as compared to the energy budget of an embedded application.

In embedded applications, however, programs naturally have specific and de-

terministic behaviors according to their application environment and system de-

signers usually have much more detailed control over software and hardware inte-

gration. By exploiting this advantage, we can avoid the speculative mechanisms

usually present in general-purpose approaches and minimize area and power over-

head by precisely determining when and to which specific region to block snooping

25

............. = S[m];

............. = S[n];

..........................

S[i] =;
S[j] =;

S[i]<−−

S[j]<−−

Exit_CS

....................

System Bus

Processor A Processor B

Data CacheData Cache
Data Buffer

Physical Memory

Enter _CS

Exit_CS

Enter _CS

<−−S[m]

<−−S[n]

Figure 3.1: Synchronized producer-consumer communication with shared memory.

At any time moment access to the shared buffer is exclusive required by the producer

or the consumer only.

to local cache. Furthermore, since we are exploiting producer-consumer relation-

ships in typical embedded applications, much stronger run-time sharing patterns

can thus be exploited, yielding even greater energy reductions.

3.3 Functional Overview

The proposed technique benefits from the availability of precise application

information regarding producer/consumer relationships in many embedded applica-

tions. The producer-consumer relationship between different processing nodes oc-

curs naturally in the presence of data sharing. Quite often, sharing exists only within

a small number of nodes rather than across the entire system. In this case, data

would not be cached in other nodes’ caches and probing those caches for shared data

is unnecessary. Furthermore, shared data buffers are essentially temporally ”private”

when access right to them is acquired by a certain node. Consequently, for a certain

26

period of time even snooping for those shared data may be eliminated. Thus, by

precisely differentiating different memory regions that store shared data and the

exact relationships between them, we can enforce a more energy efficient coherence

protocol implementation, which is active only during the ownership transition of

shared data blocks.

There are three scenarios in which snooping can be safely eliminated. Clearly,

if a data is private to a certain processing node, it is guaranteed not to be present

in any remote caches. In this case, it is safe to eliminate snooping for this data

in all remote processor nodes. Secondly, data sharing usually exists within only a

subset of the nodes rather than across the entire MPSoC. In this case, the shared

data is essentially private to the rest of the nodes and would not be cached there;

consequently, it can be safely precluded from snooping. Furthermore, even between

sharing processor nodes the shared data buffers can fundamentally be considered

temporally ”private” when access right to them is acquired by a certain node. This

situation occurs when one of the participating nodes acquires exclusive access to

the shared data by means of synchronization primitives. Consequently, for a certain

period of time even snooping for these shared buffers may be eliminated at the

shared nodes. Thus, by precisely differentiating shared memory buffers and by

capturing the exact timing of the synchronized relationships between the sharing

nodes, an aggressive snoop reduction can be achieved with significant reductions

on the total power. The proposed application-aware low-power snoop coherence

protocol is active only during ownership transitions of shared data blocks.

27

3.3.1 Synchronized Producer-Consumer Communication

In many multi-tasking embedded applications, especially stream applications,

communication between different processing nodes constitutes Producer-Consumer

(P/C) relationships, as illustrated in Figure 3.1. In this example, processor A per-

forms a computation on batches of input data and for each batch it stores the output

to the shared data buffer S. Data stored in this buffer are read by the task run-

ning on processor B performing subsequent computations or manipulations. With

respect to data buffer S, processor A is producer, while processor B servers as con-

sumer. Processor B, in turn can serve as producer to other shared memory buffers,

which are “consumed” by other processors (possibly processor A). Since proces-

sors often read and write from different buffers during a program run, they may

well be producers and consumers at the same time, with respect to different shared

buffers. In order to prevent non-deterministic behavior and race conditions, ac-

cesses to the shared buffers must be fully synchronized. To obtain exclusive access

to the shared buffer S, both producer and consumer use synchronization primitives

such as locks, semaphores, or barriers. The portions of the code where the shared

buffer is exclusively worked on are typically referred to as Critical Sections (CS)

and are surrounded with synchronization operations in the forms of ENTER CS

and LEAVE CS.

In the example in Figure 3.1, processor A is writing to buffer S, which injects

write-misses to the system bus and results in invalidations in all others’ caches,

including the cache of processor B, and triggers snoop-induced cache lookups. Simi-

28

Processor BProcessor BProcessor A Processor A

dcache dcache dcache dcache

Phase 1

Phase 2Phase 2

Phase 1

Enter_CS

Exit_CS

Enter_CS

Exit_CS

t1

t2

SPoT SPoT

S S

Figure 3.2: Producer-Consumer cache snooping activities.

larly, when processor B acquires access to buffer S and starts reading from buffer S,

it generates a large number of read-misses, which in turn triggers snoop activities at

all remote caches including the one of processor A. Clearly, all these snoop-induced

cache lookups in nodes other than A and B are unnecessary, since buffer S is only

shared between A and B and could not be cached anywhere else. Furthermore, even

snooping in A and B’s caches may be redundant when access right to S is exclusively

acquired by either one of them while the other node does not hold any cache block

of S.

3.3.2 Snoop-Phases in Producer-Consumer Communication

The snoop activities at both producer and consumer follow a certain well-

defined pattern that constitutes of two phases.

Phase one occurs in the beginning of a critical section. As is shown, processor

B’s cache contains blocks belonging to the shared buffer S. These cache blocks have

29

been brought into B’s cache while it was “consuming” S in the previous critical

section. Since now processor A is writing to S, it is putting write-misses on the

system bus and all these blocks will be invalidated by the end of the critical section.

Time moment t1, shown in Figure 3.2a, corresponds to such a state. Before these

cache blocks are entirely invalidated, whether by snoop induced invalidation or by

other address conflicts on processor B, snoop protocol should work to ensure data

cache coherence between A and B.

As processor A’s computation proceeds, the number of cache blocks containing

S at B monotonically decreases, since B will not touch S until the next time it

acquires access right to S. The rate of this decrease varies with applications behaviors

and hardware configurations, as will be discussed later. At some point in time while

A is its critical section, the number of cache lines at B holding data from S drops to

zero. It can be seen that from this point on, no snoop activities related to accesses

to S are needed at processor B, because no cache lines holding data from S exist to

create incoherence with respect to S. In the proposed methodology, we refer to this

moment in time as the Snoop-Phase Transitioning (SPoT) point.

The second snoop phase starts from the SPoT point and lasts until the end

of the critical section; with respect to the snoop operations for the shared buffer,

phase two effectively lasts until the beginning of the next data consumption iteration

(critical section). The important characteristic of this phase is that no snooping at

B is needed with respect to accesses to S generated by A. Time instance t2, depicted

in Figure 3.2b has occurred during the second phase as processor B’s cache does not

contain any data belonging to the data buffer S. It is evident that during the second

30

phase B does not have to snoop for remote references to S and is guaranteed to be

safe to do so, since it is holding no valid lines belonging to that region and no new

lines from S will be brought in until the next consumption iteration.

As can be seen from these observations, the potential saving from disabling

snooping at B for references to S depends on how soon the SPoT point occurs in

the production cycle of A. If SPoT comes near the end of the critical section, the

benefits would be limited. However, our experiments on a set of benchmarks show

that SPoT occurs quite early in actual applications. This can be easily explained

by several observations. First, while A is producing to S, B is most likely doing

other useful computations other than idling and thus will touch other shared data

buffers as well as private data. These activities would thrash B’s cache and evict S

quickly. Second, A could be touching data from buffer S in some irregular fashion

that would expedite invalidation in B’s cache. For example, matrix multiplication

usually touches different cache lines much faster than striding accesses and would

cause much faster invalidations, which brings SPoT much earlier. Moreover, if buffer

S is relatively big compared to the cache size, many blocks that contain S would

have already been evicted at the very beginning of the critical section, due to its

own evictions in the previous critical section. This in reality should leave only a few

blocks to be of concern for the snoop controller.

The situation when B is consuming from S is similar. This time, B would start

putting read misses on the bus which cause snooping on A’s side and change blocks

from S in A’s cache from modified or “dirty” to shared state. The number of dirty

cache blocks from S at A would determine how soon SPoT occurs. Following the

31

same argument as above, one can notice that the number of “dirty” cache blocks

from S at A monotonically decreases. In our experiment, SPoT in this case also

happens very soon in most critical sections, for similar reasons as discussed above.

Consequently, snoop-induced cache lookups at A for references to S (generated at

B) would be redundant after SPoT, and can also be safely eliminated.

3.3.3 Snoop-Phase Detection

By exploiting producer/consumer relationship and identifying SPoT for each

shared memory buffer, the snoop controllers can aggressively filter subsequent snoop-

ing to these regions in their respective caches, and thus, achieve significant energy

reduction. Snoop-induced cache lookups at each processor will be allowed only for

small subsets of memory references to shared buffers of that processor, which oc-

cur only before SPoT points for associated memory regions. For all the remaining

memory references that have occurred after SPoT or are not related to the shared

buffers for the particular processor, no snoop activities shall be carried out.

In order to exploit the two snoop-phase pattern and, thus, filter snooping for

accesses to particular shared buffers, a mechanism is needed to distinguish between

references to various shared buffers in multiprocessor systems. The approach we

propose here relies on the help of the operating system memory manager to assign

such unique identifiers. The workings of this identification scheme are outlined in

the next subsection.

We propose two methodologies for snoop elimination based on the snoop-

32

phases for P/C communication:

Passive SPoT Detection. This approach is based on a direct observa-

tion/detection of SPoT during run-time. The objective here is to simply detect the

occurrence of SPoT and, subsequently, to disable all snooping activities for refer-

ences to the particular shared buffer. The implementation involves several hardware

counters which monitor the data sharing status with respect to buffer IDs associated

to cache blocks. These counters keep track of the number of valid cache blocks (for

consumer tasks) or dirty cache blocks (for producer tasks) belonging to different

shared buffers in local caches. It is noteworthy that the counters used to detect the

SPoT occurrence are updated only on a cache line replacement and as such are very

efficiently in terms of cost, performance, and power overheads. In the next sections

of this work we present a detailed description of the hardware architecture for SPoT

detection.

Active SPoT Migration. In the second approach, which is an optimization

over the passive SPoT detection, a special action is undertaken at each processor

node when exiting a critical section to ensure that the SPoT is actively moved and

will occur as early as possible. Instead of waiting for and detecting the SPoT, a

simple hardware structure is employed to ensure that the cache blocks belonging

to the specific shared buffer are either invalidated on the consumer node side, or

changed to shared state with their content written back to memory on the producer

node side. The hardware mechanism is activated when the task exits its critical

section associated with the shared buffer. In effect, this ensures that the SPoT points

occurs much earlier as compared to their natural timing. The aforementioned snoop

33

phase-1 coincides with the latency of this mechanism. The active SPoT migration

approach also guarantees the effectiveness of the snoop filtering methodology to a

broader range of applications where the snoop phase transition may naturally occur

late in the critical section otherwise.

3.3.4 Shared Buffer Identification

The proposed approach distinguishes the shared buffers by letting each task

inform the system software (through a simple API) as of which shared buffers are

used in that task, where is the critical section for each of the buffers, and whether

the buffer is being accessed in a producer or a consumer matter. The OS memory

manager subsequently assigns an unique identifier for each such shared buffer and

tags all the memory pages belonging to that buffer with this identifier. The buffer

identifier associated to each page is captured in the Memory Management Unit

(MMU) and the page table within the OS. For each memory reference that is placed

on the bus, the buffer identifier is obtained from the MMU (together with the

physical address of the location) and placed on the bus as part of the memory

transaction.

When the program is loaded, the operating system obtains this information

and assigns unique buffer identifiers to shared buffers used in the program at the

granularity of pages. The buffer identifiers associated to each page are captured

in the MMU and are managed within the page table entries by the operating sys-

tem. The operating system also distinguishes between producers and consumers for

34

..

..

..
ENTER_CS(S);
...
...
LEAVE_CS(S);

RegisterRegion(S, 100, consumer);

Thread 2

..
RegisterRegion(S, 100, producer);
..
..
ENTER_CS(S);
...
...
LEAVE_CS(S);

Thread 1

..

..
int S[100];

Figure 3.3: Transferring to OS shared buffers information

shared buffers with respect to the processor nodes. The hardware counters that

keep track of the number of valid or dirty cache blocks act differently for producer

and consumer nodes. Since shared buffers are always written to by producers and

read from by consumers they assume different roles on different processors, which is

also maintained by the system software.

Figure 3.3 illustrates how the information regarding shared memory buffers

and the relationship of task to buffers (producer or consumer) is transferred to the

OS. Often times multitasked applications are developed by using multithreading

libraries. Threads are created, terminated, and synchronized at the application

level without intervention from the kernel, thus achieving high efficiency. Because

the multiple threads comprising the application execute within the same address

space (they share a single OS-level process), it is impossible for the OS to determine

which memory buffers from that shared address space are actually shared between

the threads. This information, however, can be easily provided by the embedded

software developer by using a special function, which interfaces with the OS. Follow-

ing this approach during the thread initialization phase, this function will be called

to register all the shared buffers associated with each thread as shown in Figure 3.3.

35

Cache Tags

TLB

Valid bit Dirty bit

P/C bit

Snoop Blocking Register (SBR)

Producer/Conusmer
Counters

To Common Bus
On Cache Miss

Buffer ID (BID)

Buffer ID (BID)

Snoop Controller

Commom Bus

When 0, reset BID bit in SBR

Figure 3.4: Hardware architecture for SPoT detection.

The OS subsequently assigns a unique buffer identifier for each shared buffer.

As the identification occurs at page granularity level, shared buffers need to be

aligned at page boundaries, which is easily done by the compiler. Our experiments

show that supporting up to 16 different shared buffers in the system would be enough

for many multitasked applications. Thus, a 4-bit Buffer Identifiers (BID) would be

assigned to each memory page and captured in the TLB. In the subsequent section

we outline how BIDs are used and explain (and later demonstrate by experimen-

tal results) that their small overhead is worth due to the large power savings in

eliminating a large number of cache lookups.

3.4 Passive SPoT Detection

The passive SPoT detection approach relies on hardware to observe cache ac-

tivity, detect SPoT occurrences and block snoop induced cache lookups for references

to shared buffers. The hardware architecture is shown in Figure3.4.

36

As can be seen, the TLB entries are extended to contain a Buffer ID (BID).

These shared buffer IDs are associated with the page table entries and maintained

by the operating system. This implementation requires that the shared buffers be

aligned at page level, a requirement which is not restrictive as such alignment is

required for other purposes as well such as better physical memory allocation and

elimination of false sharing at cache block and page levels. When page table entries

are loaded into the TLB, their associated BIDs are also obtained. The small table

of BIDs associated to the TLB is implemented as a separate SRAM array and is not

read and compared as a part of the normal TLB lookup which is needed for cache

access. Whenever a cache miss occurs however, the associated BID is accessed and

utilized by the hardware mechanism for SPoT detection; it is also placed on the bus

together with the memory request (read-miss or a write-miss) transaction.

A similar small SRAM array is required in order to associate BIDs with each

cache block. When a new cache block is brought into the cache, its BID is stored in

that array. These buffer IDs are never compared like cache tags or even read when

the cache block is accessed. They are only used as indices to a small set of up-down

counters. In our experiments we have modeled 4-bit BIDs which index 14 counters.

This is enough to handle a total of 14 shared buffers in the system - the remaining

two values are reserved for two special purposes. One is for private data pages.

Snooping to those pages can always be safely blocked, without any cache coherence

concerns. The other is the opposite extreme, in which the programmer cannot

determine the sharing status of the data, such as operating system data, etc. A

conventional snooping for these memory regions is required in order to ensure cache

37

coherence. Because of the very small bit-width of the BIDs, the area overhead of

these small BID SRAM arrays is minimal compared to other components in the

cache system.

The BIDs associated with cache blocks are used in the process of SPoT de-

tection. The hardware counters that BIDs index to are used to keep track of the

number of cache blocks that hold data belonging to corresponding shared buffers.

An additional Producer-Consumer (P/C) bit indicates what type of cache blocks

must the counters track according to the role of the tasks as a producer or a con-

sumer. This bit is also assigned by the operating system at task initialization, with

information fed by the programmer.

The counters act differently according to the P/C bit. For producer tasks

they keep track of the number of dirty cache blocks of the buffers. The producer

(or “dirty”) counter associated to a buffer increments on a write miss and a new

block is brought into the cache, or when there is a write hit on a ”read-only” block

that would turn to “dirty” or “modified” as both actions introduce a new dirty

cache block into that buffer. Note that in some snoop protocol implementations,

a write hit also sends ”write-miss” messages to the system, which can simplify our

implementation. The counters decrement when a dirty block is evicted or when there

is a read miss from other processor and a dirty block is changed from “modified”

to “read-only/shared” state. Similarly, the consumer task counters keep track of

the number of valid cache blocks that belong to the particular shared buffers. They

increment when a new cache block is brought in on a read miss and decrement

whenever a valid block is evicted by local activities or invalidated for remote write

38

misses. All the counters are set to 0 at the beginning of program execution, by the

operating system.

When the value of a counter is zero, there are no cache blocks corresponding to

the associated shared buffers in the local cache and snooping can be safely blocked

for them. Such blocking is achieved through a Snoop Blocking Register (SBR). This

is a simple bit-mask register with a bit per shared buffer, where the bits are directly

indexed by the buffer ID; a zero at bit position indicates that snoop-induced cache

lookups for this buffer are blocked. When the counters reach zero, the corresponding

bit in the SBR is set to 0.

When a memory request in the form of a read-miss or a write-miss is place on

the bus, the BID of the address is obtained from the BID table and is placed on the

bus as a part of the transaction. Note that no additional bus lines are needed as

the data lines for such transactions are used to carry BIDs. The cache controllers

snoop on the bus as usual, only that the SBR register is checked prior to performing

a cache-lookup. References to private data are always blocked, while references

to “unknown” data are always snoop-enabled. This also gives programmers great

flexibility in focusing on most significant data buffers and let conventional snooping

take care of the rest, which adds flexibility in adopting the proposed technique.

Overhead Analysis. The area overhead is dominated by the two 4-bit SRAM

arrays that associate BIDs to TLB entries and individual cache blocks. Compared to

the cache tag and TLB sizes, this area overhead is typically below 5%. The number

producer-consumer counters is determined by the BID bitwidth. With 4-bit BIDs, 16

producer-consumer counters are used. The power overhead is comprised of reading

39

the BIDs and incrementing/ decrementing the buffer counters. Additionally, on a

cache miss the BID is read and placed on the bus. All these events occur only on

cache misses or certain cache block state changes and as such are not significant as

compared to the savings achieved. In our experiment results we have accounted for

all these overhead, including the power needed to transfer on the bus the 4-bit BIDs.

It is also noteworthy that placing the BID on the common bus does not necessitate

additional bus lines. The existing data bus lines are used instead since the memory

transactions of interest comprise of read-misses and write-misses, which only carry

an address of the memory location that is requested by the processor node.

3.5 Active SPoT Migration

Clearly, the earlier in the critical section the SPoT occurs, the better the sav-

ings achieved by the proposed methodology. In the passive SPoT detection scheme,

the effectiveness of the filtering approach depends on how soon the transition be-

tween snoop phase-1 to phase-2 occurs. If the SPoT occurs very early in the critical

section, then a larger number of snoop operation will be eliminated. If this is not

the case for some applications, the overhead may exceed the achieved benefits of

snoop elimination. Even though our experimental results show that the passive

SPoT detection approach achieves extremely good reductions, such an assumption

for early SPoTs can be eliminated by actively ensuring that SPoT occurs very early

in the synchronized region.

The SPoT can be actively moved earlier in time by making sure that the local

40

BID BIDV V

Way1 Way2

CMP CMPSPoT BID

To Cons./Prod. Counters

Index Gen.

Figure 3.5: Hardware architecture for Active SPoT migration.

cache is released from cache blocks that hold content of shared buffers, instead of

waiting for the natural occurrences of SPoTs. A small additional hardware can be

employed for this purpose to forcefully expedite the occurrence of SPoT by either

writing back dirty blocks (and thus changing them to “shared/read-only” state) for

producer tasks, or by invalidating valid blocks for consumers. For this purpose, we

have experimented with a simple hardware mechanism which simply traverses the

BID array associated with the cache blocks and either write-backs (for a producer

buffer) or invalidates (for a consumer) the cache blocks if the BIDs match; BIDs

can be checked in parallel as their width is rather small. This procedure need to be

initiated at the exit of the critical section.

The hardware organization required for the Active SPoT migration technique

is shown in Figure 3.5. On the producer side, each buffer ID is checked if it matches

the BID of the current critical section and, if positive, the state of the cache block

is changed and the data is written to memory. This necessitates checking the Valid

and the Dirty bits of the cache tag and clearing the Dirty bit if the BIDs match,

thus minimizing the overhead. The procedure continues until the associated counter

41

reaches zero, which indicates the SPoT. At that moment snooping for that buffer can

be safely blocked until the next cycle of production. Since BIDs are very short, this

action can be performed in parallel for multiple associativity sets of the cache. The

only limiting factor is the speed of write-backs supported by the memory subsystem

on the producer caches. It is noteworthy that no extra energy is consumed in this

process since those cache blocks would have to be written back to memory anyways,

though maybe later in the execution cycle when the consumer requests them.

Similar steps are needed at the consumer’s side - in this case, however, blocks

from the shared buffer need only be invalidated if present, which only means clearing

the valid bit of the matching cache blocks. Consequently, on the consumer side,

since there is no concern of write-back speed, this action of active SPoT migration

can be easily performed in parallel for multiple associativity sets. In a sense, the

proposed hardware performs a cache invalidation for a particular memory regions -

that corresponding to the shared buffer under consideration.

In our experiments, we have noticed that often times only a few dirty/valid

blocks are left in the cache after exiting the critical section due to other mem-

ory activities in the previous production/consumption. Consequently, the expected

number of write-backs or invalidations should be relatively small. We have seen

that with our active approach, the SPoTs are almost pushed to the very beginning

of their critical sections and snooping is almost completely eliminated as a result of

that.

Overhead Analysis. The hardware/power overhead consists of the logic re-

quired to iterate through the cache associativity sets and compare the BIDs. This

42

Task1 Task2 Task3 Task4

S1

S2

S3
S4 S6

S5

Figure 3.6: Application benchmarks organization.

includes a counter to generate the indices, and a comparator per associativity way.

On the consumer side, in case of a BID match, the line valid bit (V) is reset, while

on the producer side, a write-back is required. As mentioned above, no extra power

is consumed when writing back such a dirty cache line as it eventually needs to be

written to memory and our approach simply moves that event earlier. When a cache

line is invalidate or written back to memory, the corresponding producer/consumer

counters are updated accordingly. When the counter for the SPoT under consid-

eration reaches zero, the cache traversal hardware is stopped. As our experiments

suggest, it is very often the case that this hardware is only active several tens of

cycles only, as only a few cache lines belonging to the particular shared buffer have

remained in the cache.

3.6 Experimental results

To evaluate the proposed technique, we have conducted detailed experiments

on a set of embedded multitasking applications. The simulated systems exhibit four

processor nodes, each performing one computational task on a number of shared

data buffers. The tasks mapped on the different processors work in a pipelined

fashion; each task uses the output from another task in the system as its input and

43

itself produces the input for another task. Consequently, the four parallel tasks act

as both producers and consumers with respect to other tasks in the system. This

environment is typical for streaming data applications and systems [53], where the

input data is streamed through several computational kernels for various manipula-

tions until the final output is produced. Except for the very first task in the pipeline,

all are both producers and consumers and work on more than eight different data

buffers in different synchronization sections. The production are consumption cycles

are interleaved so that at each moment of time the processor is executing in either a

producer or in a consumer critical section. The benchmarks organization is depicted

in Figure 5.7.

The individual tasks constitute of: LU, FFT, ADPCM, matrix multiplication

(MMUL), data encryption (AES, SHA, blowfish), LZO-compression (LZO), g721

speech compression (G721), image processing - the blur and the edge-detection, and

frequently used kernels in multimedia processing, such as the Fast Fourier Transform

(FFT), the Inverse Fast Fourier Transform (IFFT), and the Fast Discrete Cosine

Transformation (FDCT). The tasks cover benchmarks from the Mediabench [61] and

MiBench [39] suits, as well as from other open-source image and video processing

tools [44]. The multitasking applications are combinations of individual tasks. The

ones we have used are: A1={LU, MMUL, AES, LZO}; A2={FFT, G721, blowfish,

SHA}; A3={blur, edge-detection, AES, LZO}; A4={FFT, FDCT, IFFT, AES},

which represent multi-tasked embedded applications in digital filtering, audio, im-

age, video processing, and security arenas.

We have used the M5 [18] simulator to perform our experiments. The simula-

44

tor is used in system-call emulator mode and is extended with a collection of thread

synchronization primitives, such as barriers, mutex locks, etc. Since M5 is based on

Alpha ISA, we have used the gcc cross-compiler to compile all benchmarks. The sim-

ulated hardware platform configuration is of four processors connected to a shared

memory through a common bus. Each processor has local instruction caches and

L1 data caches. We have configured the system with write-back caches, since write-

through caches generally consume more power and require more memory bandwidth

and as such are less frequently deployed in embedded applications. We have exper-

imented with four data cache organizations: caches of size 16KB and 32KB, either

direct-mapped or 4-way set-associative. The data buffers used for communication

between the processor nodes are of sizes 16KB and 64KB; experiments for both data

sizes have been conducted.

The cache power expenditure of the four cache configurations have been ob-

tained through the Cacti v4.2 tool [109] for 0.18µm technology. We have also ac-

counted for the power overheads incurred by the introduced hardware structures.

The BIDs are modeled as 4-bit SRAM arrays, whose energy consumption is sim-

ilarly obtained by Cacti. The SBR is accessed on every bus transaction and is

implemented as a 16-bit register. The hardware counters that track the number of

dirty or valid cache lines are modeled as 12-bit up-down counters. The counters’

actions are accounted for on a cache block replacement, in which a new block is

brought in or an old block is evicted out, or state change in which a dirty block is

changed to shared state. We have also taken into account the overhead of placing

the 4-bit BIDs along with addresses on the bus. The energy data reported in [16]

45

16K-4SA 16K-DM 32K-4SA 32K-DM

A1 16,202/ 67,146/ 29,043/ 42,210/

1,241,013 2,351,109 1,000,890 1,173,708

A2 5,229/ 5,462/ 11,001/ 10,349/

425,580 2,593,260 180,360 2,347,815

A3 20,493/ 34,750/ 20,863/ 31,061/

1,058,058 1,125,651 846,108 973,050

A4 10,466/ 10,322/ 11,274/ 16,636/

598,185 607,671 247,002 425,196

Table 3.1: Snoop-induced cache lookups for 16K shared data buffers; Passive SPoT

v.s. baseline snoop protocol.

has been scaled to 4 bus lines with 50% bit-transition activities.

We have chosen the most widely used snoop-invalidation protocol with four

symmetrical processors connected to a common bus as a baseline. The snooping

activities for the baseline and the proposed Passive SPoT detection approach are

shown in Table 3.1 and Table 3.2. The numbers in the tables come in pairs, the

first showing the total number of snoop-induced cache lookups after applying the

Passive-SPoT technique, while the second number reports the number of snoop-

induced lookups for the baseline general-purpose coherence protocol.

It is clear from the results that the Passive-SPoT-Detection methodology sig-

nificantly reduces the amount of snoop-induced cache lookups. The achieved reduc-

46

16K-4SA 16K-DM 32K-4SA 32K-DM

A1 8,775/ 40,027/ 10,982/ 61,535/

18,571,698 22,576,899 8,903,400 8,523,852

A2 20,589/ 32,336/ 32,798/ 33,128/

3,952,833 23,960,067 3,818,868 23,303,937

A3 59,858/ 74,612/ 85,660/ 101,722/

2,434,974 2,643,678 2,231,496 2,398,860

A4 40,147/ 89,426/ 41,834/ 89,566/

7,124,247 30,993,432 6,864,186 30,685,677

Table 3.2: Snoop-induced cache lookups for 64K shared data buffers; Passive SPoT

v.s. baseline snoop protocol.

tions vary with different shared buffer sizes and cache sizes and organizations and

the nature of different kernels. In general, the larger the cache size is, the smaller

the snoop reductions of the Passive-SPoT-Detection. This is because caches with

larger capacity can hold more cache lines and hold them longer and, thus defer the

SPoT occurrence. However, larger caches exhibit higher power consumption, which

increases the contribution of each saved cache lookup. Increased associativity has

a small impact on the snoop reductions. However, since more cache tags are to be

checked in parallel on every access to the cache, the energy savings of the proposed

methodology are higher. It is evident also that the result differ across the applica-

tion benchmarks. The difference comes from the fact that the applications exhibit

47

16K-4SA 16K-DM 32K-4SA 32K-DM

A1 6.7 / 12.8/ 6.5/ 7.0/

68.1 61.9 62.6 42.2

A2 2.2/ 12.3/ 1.5/ 11.4/

23.3 68.3 11.2 84.4

A3 6.1/ 6.2/ 5.2/ 5.6/

58.1 29.6 52.9 35.0

A4 3.3/ 3.1/ 1.8/ 2.6/

32.8 16.0 15.4 15.2

Table 3.3: Energy consumption (µJ) for 16K shared data buffers; Passive SPoT v.s.

Baseline

different access patterns to the shared data buffers and also have different amount

of private data accessed along with the shared. These properties will result in the

SPoT occurring early or late during the critical section and since the Passive SPoT

detection technique simply registers that event, the achieved snoop reductions will

differ accordingly. Additionally, the size of the shared buffers has an impact on

the reductions. Larger shared data buffers create significantly more misses in the

baseline, which results in increased relative reductions.

The energy estimations for the baseline and the proposed Passive-SPoT detec-

tion approach are shown in Table 3.3 and Table 3.4. The numbers in the tables also

come in pairs, the first showing the total energy consumption (µJ) by the Passive-

48

16K-4SA 16K-DM 32K-4SA 32K-DM

A1 87.7/ 107.1/ 42.5/ 42.2/

1,019.3 594.9 556.9 306.6

A2 19.7/ 113.4/ 20.0/ 110.7/

216.9 631.3 238.89375 838.2

A3 14.7/ 14.3/ 15.8/ 14.9/

133.6 69.6 139.59384 86.2

A4 35.6/ 148.0/ 34.8/ 147.4/

391.0 816.7 429.39718 1,103.8

Table 3.4: Energy consumption (µJ) for 64K shared data buffers; Passive SPoT v.s.

Baseline

SPoT technique, while the second number being the baseline energy consumption.

It can be seen that the percentage reduction of energy is smaller than the

percentage reduction of the number of snoop activities. This can be explained

by the introduced overhead of the proposed methodology. The reported energy

numbers, as described earlier, take into account all the extra activities, such as BID

access on cache-miss, producer-consumer counter increments and decrements, and

transmitting the BID on the common bus to memory.

In general, since larger caches consumes more power per access they benefit

more from snoop-induced cache loopup reductions. Caches with higher associativity

need to check multiple cache tags simultaneously on every cache access, and thus

49

Figure 3.7: Energy reduction for 16K shared data buffers

should also gain more advantage from the proposed methodology. Consequently,

the actual energy reductions for larger size and higher associativity caches would

be more significant than for those with smaller sizes and associativities. Lower

associativity caches, on the other side, cause significantly more misses and thus

result in more snoop-induced cache lookups - the majority of which are eliminated by

the proposed technique. For this types of caches, the absolute number of eliminated

snoop-induced lookups is higher. Figures 3.7 and 3.8 show the energy reductions in

percentage achieved by the Passive SPoT detection. The former represents all the

configurations with 16K of shared data buffers, and latter shows the results for 64K

shared data buffers.

As the data in the figures confirm, in general higher associativity caches fea-

ture higher reductions in snoop-related energy. One counter example for this general

rule is application A2 as shown in Figure 3.7. For it greater reduction is achieved

for direct-mapped 32KB cache as compared to 4-way associative 32KB cache. This

50

Figure 3.8: Energy reduction for 64K shared data buffers

situation can be explained by the fact that A2 exhibits many cache misses when

using direct-mapped cache, which in the baseline translate to many snoop-induced

lookups; these lookups are eliminated by the proposed technique. Even though,

the energy contribution of each such lookup to the direct-mapped cache is smaller

than the corresponding energy fir 4-was set associative cache, the significantly large

number of such events in direct-mapped caches compensates and better energy re-

duction is achieved. For similar reasons applications A1, A2, and A4 achieve bigger

reductions for 4-way 16KB caches than 4-way 32KB caches. Figure 3.8 confirms the

aforementioned trends for the same cache configurations but for shared buffers of

size 64K. One notable difference is that because of the larger size of shared buffers,

all of the baseline configurations exhibit significantly higher number of misses and,

thus higher power die to snooping. Consequently, eventhou the percentage reduction

is similar, the absolute reductions in energy are significantly higher as compared to

the case of 16K shared buffers.

51

The snooping activities for the baseline and the proposed Active-SPoT migra-

tion approach are shown in Tables 3.5 and 3.6. The numbers in the tables come

in pairs, the first showing the total number of snooping achieved by the Active-

SPoT technique, while the second number being the baseline snoop activities. It is

clear from the results that the Active-SPoT-Migration methodology decreases snoop

activities almost to zero. Although the remaining snoop activities still vary with

cache organizations, cache sizes, different applications and different shared data

buffer sizes, for all practical purposes they are essentially reduced to zero as com-

pared to the baseline cases. It is evident that the active approach is very effective

in pushing the SPoT very early in every critical section of the communicating tasks.

Nonetheless, the Active-SPoT migration methodology comes with an overhead,

which needs to be taken into account when applied in real systems.

The energy estimations for the baseline and the Active-SPoT migration ap-

proach are shown in Table 3.7 and Table 3.8. The numbers in the tables also come

in pairs, the first showing the total energy consumption (µJ) by the Active-SPoT

technique, while the second number being the baseline energy consumption. We

have assumed a hardware scheme, which checks one associativity set per cycle and

invalidates cache lines from the shared data on the consumer side, while writing

them back to memory on the producer side. The energy overhead of accessing the

BID arrays each cycle until the SPoT is enforced is taken into account.

It is interesting to find that the active approach energy reductions for some

applications benchmarks are very close to the reductions achieved by the passive

SPoT detection approach. A reason for this is that the active approach was intro-

52

16K-4SA 16K-DM 32K-4SA 32K-DM

A1 14/ 24/ 79/ 52/

1,241,013 2,351,109 1,000,890 1,173,708

A2 14/ 8/ 14/ 11/

425,580 2,593,260 180,360 2,347,815

A3 251/ 280/ 288/ 325/

1,058,058 1,125,651 846,108 973,050

A4 4/ 12/ 18/ 12/

598,185 607,671 247,002 425,196

Table 3.5: Snoop-induced cache lookups for 16K shared data buffers; Active SPoT

v.s. baseline snoop protocol.

duced as an optimization over the passive SPoT detection approach, for the cases

where the SPoT natural occurrence is rather late. However, our experiments have

shown that for some application SPoT occurs very early, which does not leave much

room for the active SPoT migration. Another factor is, although we eliminate al-

most all snoop activities by using the active approach, its higher overhead offsets

the small benefits achieved by it. As a result, the absolute percentage reductions

for the passive and the active techniques for such applications will be very close.

As the active approach pushes the SPoT almost to the very beginning of

the critical section, regardless of the application benchmark or underlying cache

configurations, the end results is that snoop-related energy is drastically reduced.

53

16K-4SA 16K-DM 32K-4SA 32K-DM

A1 12/ 12/ 42/ 60/

18,571,698 22,576,899 8,903,400 8,523,852

A2 14/ 10/ 26/ 28/

3,952,833 23,960,067 3,818,868 23,303,937

A3 406/ 451/ 939/ 953/

2,434,974 2,643,678 2,231,496 2,398,860

A4 4/ 12/ 30/ 54/

7,124,247 30,993,432 6,864,186 30,685,677

Table 3.6: Snoop-induced cache lookups for 64K shared data buffers; Active SPoT

v.s. baseline snoop protocol.

Figures 3.9 and 3.10 show the percentage of energy reductions of active approach

compared to the passive approach. These two figures actually reveal the potential

of the active approach with regard to different applications. It can be seen that

for certain application/hardware configurations, such as application A2 with 32KB

4-way associative cache, and application A3 with 32KB 4-way associative cache, the

active approach can further reduce energy by about 35%. Such cases are indicative

that the active SPoT migration approach could further benefit applications for which

the snoop phase transition point can be actively enforced to occur very early, and

as such result in significant power reductions.

54

16K-4SA 16K-DM 32K-4SA 32K-DM

A1 5.8 / 11.0/ 4.7/ 5.5/

68.1 61.9 62.6 42.2

A2 2.0/ 12.1/ 0.8/ 11.0/

23.3 68.3 11.2 84.4

A3 4.9/ 5.2/ 3.9/ 4.5/

58.1 29.6 52.9 35.0

A4 2.8/ 2.8/ 1.1/ 1.9/

32.8 16.0 15.4 15.2

Table 3.7: Energy consumption (µJ) for 16K shared data buffers; Active SPoT v.s.

Baseline

Figure 3.9: Active vs. Passive: Energy reductions for 16K shared data buffers

55

16K-4SA 16K-DM 32K-4SA 32K-DM

A1 87.2/ 106.1/ 41.8/ 40.1/

1,019.3 594.9 556.9 306.6

A2 18.5/ 112.6/ 17.9/ 109.5/

216.9 631.3 238.89375 838.2

A3 11.4/ 12.4/ 10.5/ 11.3/

133.6 69.6 139.59384 86.2

A4 33.4/ 145.6/ 32.2/ 144.2/

391.0 816.7 429.39718 1,103.8

Table 3.8: Energy consumption (µJ) for 64K shared data buffers; Active SPoT v.s.

Baseline

Figure 3.10: Active vs Passive: Energy reduction for 64K shared data buffers

56

Chapter 4

Energy and Performance Efficient Communication Framework for

Embedded MPSoCs through Application-Driven Release Consistency

4.1 Overview

The increased integration densities coupled with the abundance of wireless

connectivity have resulted in many modern applications implemented as complex

computing systems. Such applications usually feature a large number of capabili-

ties, such as aggregated multimedia data processing (speech, audio, video), commu-

nication protocols, security functions, user interfaces, and many others. Integrating

multiple functionalities for applications with high demand for performance and data

throughput is naturally achieved by aMulti-Processor Systems-On-a-Chip (MPSoC)

implementation platform.

Each application task or a group of tasks is allocated to a processor core in

the multiprocessor platform. Typically these platforms feature several processor

cores, possibly of heterogeneous natures, with an access to a shared memory. The

memory can be placed independently from the processors and accessed by all the

cores in an identical manner, resulting in a Symmetric Multiprocessor (SMP). Al-

ternatively, the memory can be distributed with each core having a local access to a

portion of it resulting in a Non Uniform Memory Access (NUMA) platform. In both

57

cases, the memory address space is shared across the cores in a way transparent to

the application software and the inter-core communication is implemented directly

through the shared memory. The memory can be physically accessed through vari-

ous interconnection networks. In an SMP platform, the most common solution is a

shared high-speed bus or a hierarchy of buses, while in NUMA platforms more so-

phisticated point-to-point interconnects may be used. Each processor core typically

employs a local cache to alleviate the interconnect bandwidth demand. Both private

and shared data are cached locally, which typically results in sizable speedups and

reductions in memory traffic. Locally caching shared data, however, introduces the

cache coherence problem. When a processor updates a data after that same data is

stored in a remote cache, it is evident that the remote copy becomes stale.

For bus-based platforms, snoopy cache coherence protocols [13] are the most

widely used as they rely on the inherent broadcast nature of the shared bus. Each

cache controller “snoops” the bus for memory operations, for each of which a cache

lookup is performed based on the reference address in order to determine whether

a cache line state change is required. Many variations of snoopy protocols have

been explored. The NUMA platforms typically employ directory-based coherence

protocols [63] where a directory controller maintains caches coherent through point-

to-point control and data messages.

Since the available interconnect bandwidth is one of the limiting factors de-

termining how many cores can be used, write-back local caches are typical. Write-

through caches could quickly overwhelm the available communication bandwidth to

main memory. In terms of data sharing coherence policies, two fundamental choices

58

exist: remote-invalidate and remote-update. The remote-update policy is usually

combined with write-through caches as it propagates each write to all the remote

caches. Consequently, it exhibits better inter-core communication latency as per-

ceived by the consumer tasks since all the writes are immediately pushed to all the

remote caches. However, due to the significant bandwidth and energy demand of

the remote update schemes, such protocols are rarely used in practice, especially

in embedded MPSoCs. The coherence policy of choice for practically all MPSoCs

has been the remote-invalidate scheme. In such protocols the shared data is in-

validated in all remote consumer caches when the producer writes into it. In the

case of bus-based system, the write to shared data triggers an invalidation, e.g. a

write miss causing all remote cores to invalidate this data in their local caches. In

directory-based protocols, the directory sends the invalidation messages to remote

cores sharing the data, after receiving a write message from the producer.

The cache coherence protocols, however, exhibit major shortcomings for em-

bedded multiprocessors. First, they have been recognized as an extremely energy

inefficient. For the snoop-based protocols, this is due to the need for all the proces-

sor nodes to “snoop” the bus for memory accesses and subsequently lookup the local

cache and act accordingly. It has been reported that snoop-related cache activities

can contribute for up to 40% of the total cache power [33, 70, 71]. Directory-based

protocols are similarly power-consuming due to the excessive amount of traffic that

occurs for tightly coupled producers and a set of consumers. Even though the

remote-invalidate policy requires fewer transactions as compared to the other alter-

natives, the interconnect bandwidth is typically always utilized to its maximum by

59

increasing the number of active cores. Second, the communication latency between

two processor cores is increased as each time a node writes a data, this data is in-

validated in the other caches. A subsequent read to that data in a remote processor

results in a miss (known as a coherence miss), which needs to be serviced by at least

two subsequent transactions - a read-miss and a write-back from the producer.

In this article we introduce a framework for an efficient inter-core MPSoC data

sharing. The proposed framework achieves performance-, bandwidth- and energy-

efficient inter-core communication for groups of synchronized producer and (possibly

multiple) consumers. The low-latency communication advantages of remote-update

coherence policies is achieved and surpassed, yet the associated excessive traffic is

avoided as only the last write to a cache line is allowed to generate a remote cache

update transaction. The shared data is “streamed” from the producer’s cache to the

consumers’ caches “just-in-time” so that it is present in the consumer’s cache when

the task enters its synchronization region where the data is read. The cache way

partitioning methodology, which is a component in the proposed framework, ensures

that shared data is not evicted from the consumers’ caches. Moreover, since writes

from the producer are guaranteed to be efficiently propagated to all the consumer

caches as well as to the main memory, no snooping or additional directory-based

transactions are needed for references to the shared data (and to private data as

well), thus saving significant amount of energy.

For SMP platforms with snoop-based coherence protocols, the proposed frame-

work results in a shared data communicated from a producer to a set of consumers

with a single bus transaction per cache line in advance of the moment when it

60

will be needed at the consumer cores. For NUMA platforms, a single transaction

per consumer core is executed prior to the consumer task requesting a read. The

shared data is automatically updated on the consumer cores, and in the subsequent

consumption phase no coherence misses ensue.

Furthermore, the proposed framework leverages limited cache configurability

in terms of mapping the shared buffers to specific associativity ways. In this way the

frequently accessed shared data is prevented from leaving the cache due to conflicts

with private or other shared data. Supporting such cache mapping ensures that from

the consumer process point of view, when entering the corresponding synchronized

program region the updated shared data is guaranteed to be present in the local

cache. Isolating shared data in a subset of the cache ways results in significant

energy reductions as only a part of the cache ways needs to be looked up for each

cache access.

The proposed methodology integrates supports from the programmer, com-

piler, OS, and hardware. Simple loop transformations based on loop unrolling and

utilizing a “remote-update” version of the store instruction, ensure that when the

producer writes into a cache line of a shared data for the last time prior to exiting

the synchronization region, that write is propagated to the interconnect and to all

the remote consumer nodes where the data is updated in their local caches.

The introduced methodology and system organization will be extremely bene-

ficial and relevant for embedded systems since the application, or set of applications,

to be deployed on the MPSoC will be known in advance and often times even de-

veloped in-house (or purchased as software IPs) by the MPSoC manufacturer. This

61

would enable the software tuning required for the precise identification of the shared

buffers and producer/consumer relationships.

At its core, the introduced inter-core communication framework implements

a form of release consistency [34]. Release consistency is one of the most popular

relaxed consistency memory models. It requires that programs use explicit synchro-

nization primitives as provided by the system and that updates to shared data are

made visible to remote processors only after the producer exits its synchronized crit-

ical section, e.g. executes a lock release. The definition of release consistency allows

for various implementation solutions. Most of the hardware-based approaches follow

an eager release consistency policy where writes to shared data immediately trigger

coherence transactions [63]. Lazier policies are implemented mostly in software-

based protocols - the coherence actions are postponed in order to reduce the total

number of transactions [22, 48].

The proposed framework implements a “just-in-time” lazy release consistency

that combines the low synchronization latency benefits of eager release consistency

with the low traffic and elimination of unneeded invalidations and updates of lazy

release models. The proposed cross-layer approach, based on a cooperation between

compiler, OS, and a hardware architecture, enables a low-cost and energy-efficient

data sharing and communication in resource and power constrained embedded MP-

SoCs.

The proposed methodology is applicable to both bus-based SMPs and dis-

tributed memory organizations with more generic interconnect architectures. The

framework does not use specific properties of the underlying interconnect and can

62

be easily applied in any multiprocessor platform with local caches. The application-

driven, “just in-time” remote update is either placed on the common bus and acted

upon by the remote cache controllers or handled by the directory, which sends the

update messages to the remote consumer nodes. The communication latency be-

tween producer and consumer cores, as perceived by the consumer tasks for their

read operations to shared data, is mostly reduced to a local cache hit for either

platform, while the impact on power is expected to be more significant in bus-based

systems as no coherence-triggered cache lookups are required on misses placed on

the bus. In this work[128, 131], we focus on the design requirements and evalua-

tion of the proposed methodology in multi-core platforms with a snoop-based cache

coherence architecture.

4.2 Related Work

Multiprocessor systems, in general, have been the focus of many research

projects. The importance of these platforms for the future of general-purpose com-

puting and high-end embedded systems has become clear in recent years [29, 120].

Power and thermal limitations coupled with the effect of diminishing returns of ag-

gressive uni-processor optimizations have made multiprocessor systems an attractive

implementation choice in many application domains. However, MPSoCs have intro-

duced several important research challenges by their own [75], such as the need for

new programming models and abstractions, efficient compiler and operating system

support, and the ever growing need for power-aware architectures.

63

Inter-core Communication in MPSoCs. The inter-core communication

latency problem has been recognized and addressed in the general-purpose archi-

tecture community [105, 19]. Temporal streaming organization was introduced in

[117] to dynamically identify sequences of memory accesses which correspond to a

data stream. By moving the data stream to the requesting processor in advance,

the overall performance is improved. A coarse-grain coherence tracking technique

was proposed in [21]. The coherence status of large memory areas is monitored so as

to avoid unnecessary broadcasts and enhance performance in commercial, scientific

and multiprogrammed workloads. An evaluation study of fine-grained producer-

consumer communication for cache coherent multiprocessor has been presented in

[8]. An ISA-support, similar to the one used in our framework, for remote write

instructions has been studied, where the programmer manually inserts these in-

structions as well as prefetch instructions at the consumer tasks.

Speculative techniques have been presented in [45], which decouple the cache

coherence in two phases and allow the processor to continue execution when the

block coherence status is not guaranteed. An interconnect-aware coherence protocol

has been introduced in [27]. Coherence techniques capable of exploiting a hetero-

geneous interconnect architecture has been described. A hardware mechanism for

detecting producer-consumer sharing has been proposed in [26]. The mechanism

enables the producer node to function as a home directory node in order to reduce

the number of transactions needed to communicate the shared data block as well as

to eliminate the need for remote memory access on the producer node. A hardware

implementation of a form of lazy release consistency for multiprocessors has been

64

presented in [55]. Writes are buffered into the write buffer and serviced by the di-

rectory without stalling the producer. Only when releasing the lock, the producer

may be stalled until all outstanding writes have been confirmed by the memory.

Low-Power MPSoCs Architectures. Energy-efficient cache coherence method-

ologies have been recently proposed for general-purpose computing systems. Jetty

[81] is a family of snoop filters designed to reduce power in snoopy bus-based mul-

tiprocessors. Local data cache activities are monitored and recorded accordingly

in a special cache-like hardware buffer, in order to infer the sharing and cached

status of particular cache blocks. Jetty targets large server machines and its appli-

cation in embedded systems, where significantly smaller on-chip memories are used

may result in significant overhead in terms of hardware area and power. Region-

Scout [80] is another technique that exploits coarse-grain data sharing information

to reduce energy for caches and bus traffic. By identifying memory references to

different regions, the snoop controller can filter out remote references that are not

relevant to its local activities, thus saving power to the cache system. A snoop

filtering technique is proposed in [124]. Hardware and OS support is introduced to

keep track of the cache content with respect to shared data and disable snooping

when determined that the local cache no longer contains valid blocks of shared data.

Region-based snoop filtering mechanism has been proposed in [86]. The technique

eliminates a large number of redundant snoop operations. Program access semantics

are exploited in [15] to reduce snoop power. Access patterns to shared variables are

used to eliminate unneeded snoop cache probings.

Compiler Support for MPSoCs. Developing efficient parallel programs or

65

Communication/

Coherence Traffic

Cache Cache

Processor 3Processor 2Processor 1

Cache

Memory/System Interconnect

Memory MemoryMemory

Figure 4.1: Shared memory multiprocessor organization

porting existing sequential programs to efficiently use multiple processors has been

a major challenge. Automatic extraction of parallelism has been developed and

well-understood for scientific programs [52, 66, 73]. However, efficiently uncovering

and modeling parallelism in less regular programs has proved to be a significant

research problem. An automatic MPSoC design space exploration approach is pro-

posed in [111]. The system starts from a sequential application specification and

guides the designers through a fast and early in the design exploration of paral-

lel implementation platforms. Compiler-based loop transformation techniques for

improved inter-core data reuse have been proposed in [25]. Loop iterations are reor-

ganized so that the shared data is accessed within short periods of time. In [32], an

infrastructure is proposed where the programmer can explicitly specify the intended

parallelism in the program.

4.3 Motivation and Overview

The shared memory multiprocessor organization, as depicted in Figure 4.1 has

gained popularity in the embedded domain due to its simplicity of implementation

66

and well-understood and efficient programming and communication models. The

use of local caching is required in order to control the heavy bandwidth demand on

the shared interconnect, which is typically implemented as a high-speed system bus.

Caches, however, introduce the problem of coherency, which is resolved through

coherence protocols.

4.3.1 Inter-Core Data Sharing: To Invalidate or to Update?

The remote-invalidate coherence policy requires snoop-induced cache lookups

for both read-miss and write-miss transactions. Every cache write-miss or write into

a clean cache line results in a write-miss transaction interpreted as an invalidate by

all other processor nodes “snooping” the bus or by the directory controller. On the

other hand, a read miss for a data that is modified in a remote cache, similarly

results in a transaction snooped by the remote owner of the data (and every other

processor node in the system as well), which in turn writes back the modified cache

line to memory and to the requesting processor. Such lookups are needed since no

information exists whether a particular memory reference is to a private or a shared

data, and also whether at the time of the memory reference that data is present

in the local cache. Write-misses are essentially treated as invalidate requests, while

read-misses need to be acted upon since the requested data may be present and

modified in the local cache. This protocol has the distinct advantage of requiring

much less interconnect bandwidth thus enabling more processor cores in the system.

The remote-invalidate protocol, however, exhibits two major shortcomings.

67

(1)

(1)

Write−hit
to
clean line

(2)

(3)
Write−back

(2)

MEMORY

Processor

Cache

Processor

Cache

Read−miss

Read

Remote−invalidate

Figure 4.2: Bus transactions involved in communicating data

First, since each transaction results in cache lookups at all other processor cores,

significant amount of power is consumed - up to 40% of the total cache power

[33, 69]. Second, communicating data between a producer and a consumer processor

is achieved by three transactions per cache line, resulting in both performance impact

on the consumer tasks in terms of coherence misses for all the shared data cache lines

and an increased number of transactions. Figure 4.2 illustrates the steps involved

in communicating a data item placed in one cache line. The first step involves the

producer processor modifying the data in its local cache. The first write results

in the invalidation of any outstanding copies of that data in all remote caches.

Subsequently, when a consumer processor tries to read that data, a read miss always

occurs, which is then transmitted and observed by the producing processor. In

result of this, the producer writes-back the requested data as a third transaction

involved; the data would then be written to both memory and the consumer’s cache.

As this process repeats for each production-consumption cycle and involves three

transactions per cache line, the performance impact on the consumer is significant.

On the other hand, remote-update coherence protocols require no snoop-

68

induced cache lookups for write- or read-misses by the consumer cores. They, how-

ever, require that all the writes are snooped (or handled by the directory) and

propagated to the local cache if the block written by the reference is present in the

cache. Remote-update protocols also require write-through caches so that all writes

are immediately observed by all the processors in the system or by the directory.

The advantage of these protocols is that no coherence misses exist since the cached

data is updated in all the consumer processors for each write. Conflict misses for

shared data are still possible, however, if no special actions are taken to lock or

preserve the shared cache lines in the cache. Nonetheless, the requirement that each

write is immediately propagated through the system to all the remote consumer

caches and the memory creates an overwhelming demand for interconnect band-

width. This effect has made the remote-update coherence protocols impractical for

many system.

4.3.2 Cross-Layer Integration for Data Communication

The proposed framework achieves the advantages of both protocol classes

through a customization process that spans the layers of the compiler, operating

system, and hardware architecture. No snoop-induced cache lookups are required

on read- and write-misses or directory actions. The final state of the shared-data

caches lines are propagated and updated in the remote consumer caches when the

producer task has completed its update on each line. Moreover, since there may be

multiple writes to the same cache line before the producer task releases the shared

69

data, a simple compiler support is introduced, which ensures that only the last write

to a shared cache line, prior to exiting the producer’s synchronization region, is prop-

agated to the common bus and triggers an update at the consumers’ caches. This is

achieved with the help of a store-with-remote-update instruction, which behaves as

a normal store with the addition of enforcing a write-through and a remote-update

coherence transaction. Such an instruction support can be trivially added to any

modern microprocessor core. From now on we refer to such an instruction as a

st.update instruction. The system software is provided with information regarding

the shared buffers for each task, and it allocates them in a pre-set memory region

as described below, or assigns a unique identifier for each such shared buffer.

Communication between tasks is always implemented through the careful use

of synchronization mechanisms, such as locks and barriers. Synchronization allows

the producing and the consuming tasks to acquire exclusive access to the shared

data - it is possible for a set of consumers to acquire a simultaneous read-only

access to the shared data. In most of the cases, the code which accesses the shared

data is surrounded by synchronization primitives for acquiring and releasing a lock.

The code between these two points is usually referred to as a critical section and

the synchronization primitives enforce mutual exclusion of the critical sections on

the producer and the consumer tasks. Figure 4.3 depicts the code structure of a

synchronized communication between the two tasks. When the producing task is

within its critical section, it is guaranteed that the consumer is outside his critical

region and vice versa. The proposed technique requires that producer and consumer

tasks are synchronized in this way. This requirement is fundamental for the release

70

S

Acquire
Lock (L)

Release
Lock (L)

Producer Consumer

Shared Buffer

Release

Acquire
Lock (L)

Lock (L)

C
rit

ic
al

 S
ec

tio
n

C
rit

ic
al

 S
ec

tio
n

Figure 4.3: Synchronized inter-task communication

consistency memory model, a form of which the proposed methodology implements.

Cache coherence for the shared data will not be guaranteed to the consumer core,

until it has successfully entered its critical section.

With such synchronized producers and consumers, coherence actions are needed

since it is possible that the producer cache is left with modified cache line after the

producer task has left the critical section; similarly on the consumer cache side there

may be valid cache lines left containing parts of the shared buffer after the consumer

task has left its critical region. Such situations are handled by the write-invalidate

coherence protocol, which writes back cache lines from the producer cache and inval-

idates cache lines from the consumer cache. As explained above, this behavior leads

to excessive power consumption, longer communication latency (requiring three bus

transactions), and increased bus traffic.

Yet, if it can be ensured that upon exiting its critical region the producer core

has pushed the latest write for each cache line of the shared buffer to the consumer

caches and to the memory, no coherence actions would be required and the most

recent copy of the data will be present either in the consumer core caches (if it

71

is not evicted by local cache traffic) or in the memory. Figure 4.4 illustrates the

main aspects of the idea. The fundamental components of the proposed cross-layer

specialization methodology can be outlined as follows:

1. Invalidate elimination. A write hit into a clean cache line does not

generate a write-miss on the bus as in the invalidate coherence protocol. Such a

miss, which triggers remote invalidates, is not needed since the content of the cache

line is guaranteed to be propagated to both remote caches and memory efficiently

and in time.

2. Application-triggered remote update. Multiple writes, if present, to

a cache line are performed with normal store instructions. The write-back cache

will not have them propagate to the bus (unless the line is evicted) until the last

write for the critical section to that cache line is executed for which the compiler

has used the st.update store instruction. Instead, if the cache line data is present

in the consumer’s cache, the last write to it by the producer is propagated and the

consumer cache has the most up-to-date copy of the data. If, on the other hand,

that cache line has been evicted on the consumer side, the memory has the most

recent copy. Note that the consumer processor can only try to read the shared data

after the producer task has exited its critical region. In order to perform the remote

update, the consumer cache controller must look for bus transactions triggered by

a st.update instruction; this is the only bus transaction for which a consumer cache

needs to look for on the common bus. Furthermore, a local cache lookup for an

update is performed only if the write transaction refers to a shared buffer associated

with the consumer task.

72

Consumer
CacheCache Line

Inv?

X

st st st

Processor
Producer

Processor
Consumer

MEMORY

st.update

Forced Write−Back

To other consumers
and Remote−Invalidate

Figure 4.4: Propagating updates with explicit store.update

3. Eliminating coherence transactions. Since all the cache lines modified

by the producer task are guaranteed to leave the local cache before the producer

critical section is exited and the consumer section entered, there is no need for the

producer node to snoop for read-misses on the bus. Similarly, there is no need for a

consumer node to snoop for write-misses since it is guaranteed that the shared data

present in the local cache will be eventually updated and this update will always

occur before the consumer task enters its critical section. For the directory-based

protocols, there will be no coherence messages from the producer, while in its critical

section, other than the single final update per shared cache line, and no coherence

transactions regarding this same shared data from the consumers.

Through the mechanisms outlined above, performance is improved, and more

specifically the latency in reading shared data, due to the significantly reduced

transactions needed in producer-consumer form of communications, namely from

three down to one performed in advance of reading. Moreover, performance is

further improved by the reduction of interconnect traffic, which results in fewer

73

communication scheduling conflicts.

To implement the aforementioned methodology, a number of issues need to

be resolved. First, a compiler support (or software designer support) is required so

that the st.update instruction is used efficiently and correctly. As described above,

its purpose is to propagate the last write to a shared cache line before the producer

critical section is left. This is achieved through a loop transformation which unrolls

the appropriate loop dimension in order to have the last access to the cache line

isolated and translated to a store.update instruction. Additionally, the OS needs to

be informed about the shared buffers involved in the communication, so that each

such buffer is specially allocated, or assigned a unique identifier used at the hardware

level to recognize memory references to each specific shared array. At hardware layer,

the cache controllers need to be adjusted accordingly to recognize the references to

the different shared buffers and perform the remote-update operations triggered by

store.update.

4.3.3 Cache Way Partitioning for Low-Power Data Sharing

Even though the framework outlined about achieves improved latency and

reduced interconnect bandwidth demand, one can also expect a positive impact on

energy as a result of the reduced communication transactions. Since the mechanisms

for distinguishing shared from private data are required by the proposed inter-core

communication technique, it is natural to extend the proposed methodology with a

support for cache way-allocations, which would map and confine private and shared

74

Figure 4.5: MPSoC cache partitioning

data in different cache ways, thereby saving significant amount of power on cache

accesses and eliminating interference between private and shared data.

Reconfigurable cache architectures which allow configuring the associativity

ways and way size of a cache have been proposed so as to customize the cache to

the requirements of the application [11, 37]. If a task requires fewer associativity

ways, only the required ways are kept active, reducing the energy consumption of

the cache memory. Previous work on reconfiguring caches have mostly focused on

a single task and processor core [133].

To this end, the proposed framework leverages recent configurable cache ar-

chitectures, more specifically selective cache way allocation, to isolate shared data

buffers and private data into separate cache partitions and thus achieve sizable power

reductions. The full advantages of remote-update policies are achieved through

shared data isolation in the consumers’ caches. Figure 4.5 illustrates the funda-

mental operating principles of the proposed methodology. The coupling of cache

partitioning and the utilization of store-update instruction that propagates a write

75

in the producer core implements a low-power remote-update cache coherence policy

that not only ensures that the updated shared data at the consumers does not in-

terfere with other data but also performs this update only when it is necessary for

the correct execution of the consumer thread. Such partitioning will result in the

following benefits: First, data cache accesses triggered either by the processor or

the coherence mechanism will need to access only a cache partition instead of the

entire cache structure, resulting in significant power reductions ; And second,

interference (caused by both processor and coherence activities) across private data

and the several shared data buffers is eliminated - this in turn enables the efficient

implementation of the proposed inter-core communication framework.

4.4 Compiler Support

Knowledge about the shared data is readily available to the embedded system

designer and to a certain degree is also available to the system compiler. Typi-

cally, the embedded application is designed as a set of interacting parallel threads.

Each thread works on different pieces of the data set and communicates with the

other threads. The multiple producer/consumer threads run within the same ad-

dress space, and as such, access the same data memory. The actual communication

between the threads, however, is achieved through the common access to a small set

of data items, typically a few data buffers.

76

4.4.1 Shared Memory Identification

Clearly, in order for the compiler to perform the required transformations, it

needs to know which array is the shared array that the producer task writes to. It

is possible that there are multiple arrays, some used for intermediate results, but

only one is used to communicate shared data with remote tasks. This information

can be easily provided to the compiler by the software developer who has complete

knowledge regarding the shared data organization - an interface identical to the C-

language pragma directive can be used for this purpose. The manual annotation of

the shared buffers can be done very efficiently for a large class of software kernels

with regular (affine) access patterns, such as signal, image, voice, and numerical

computations.

On the other hand, automatically identifying the set of shared data objects

between parallel threads of computation has been one of the prominent problems in

the compiler research community for the last decade, known as the pointer analysis

problem [41]. The objective of pointer analysis is to determine all possible run-time

values of a pointer in order to obtain information regarding the memory objects

which can be potentially accessed by that pointer. Pointer analysis together with

escape analysis, i.e. determining when a pointer leaves the scope of a procedure and

therefore can be used to access the data object within the procedure assigned to it,

are used to determine the shared data items across threads [97]. Even though it

has been shown that the static pointer analysis is an undecidable problem [59, 93],

various approximation algorithms have been offered which produce solutions with

77

different precision. An imprecise solution may be quite conservative and include

data objects, which are not accessed by the pointer. Recent solutions have achieved

efficient run-time complexity with high accuracy of the analysis results [30, 99, 17].

Since the proposed methodology requires information regarding the shared

data buffers between producer/consumer threads any of the aforementioned alias

analysis techniques can be applied to extract the required knowledge. In many

cases, nonetheless, the information regarding the shared memory objects between

the software threads can be easily provided by the software developer to the com-

piler/linker infrastructure. We have followed such an approach in our experimental

study.

4.4.2 Loop Transformations for Software-triggered Remote Updates

The proposed methodology relies on the producer task to utilize the st.update

instruction efficiently so that only the last write to a cache line from a shared data

array is propagated to memory and remote consumer caches. It is noteworthy that

this needs to be performed only at the producer processor side and on the shared

array that is written by that producer. Such transformations on the producer’s code

can be very efficiently performed for the cases where the shared array is traversed (for

writing) by using linear or affine indices, which are functions of the loop dimensions.

Figure 4.6 demonstrates one such case where the shared array is traversed lin-

early and written to an element at a time. Even though this example is very simple,

many numerical and digital signal processing kernels access their output buffers in

78

 A[i][j]=.... ;

for i=0 to N1
 for j=0 to N2

 A[i][j]=.... ;

for i=0 to N1
 for j=0 to N2, step 4 {

 A[i][j+1]=.... ;
 A[i][j+2]=.... ;

 }
 A[i][j+3]=.... ; //st.update

.....

st.update

st.update st.update

st.update st.update

st.update

Figure 4.6: Transformations for row-wise array traversal with st.update support

 A[i][j]=.... ;

for i=0 to 5
 for j=0 to 9

 A[i][j]=.... ;
 A[i][j+1]=.... ;
 A[i][j+2]=.... ;

 for j=0 to 7, step 4 {

 }
 A[i][8]=...; A[i][9]=...;
 A[i+1][0]=...;

 for j=2 to 9, step 4 {
 A[i+1][j]=...;
 A[i+1][j+1]=...;
 A[i+1][j+2]=...;

for i=0 to 5, step 2 {

 }
}

 A[i][j+3]=.... ; //st.update

 A[i+1][j+3]=...; //st.update

 A[i+1][1]=...; //st.update

Figure 4.7: Transformations for row-wise traversal with “irregular” row sizes

this way. As Figure 4.6 demonstrates, the loop can be simply unrolled (if it is not

already unrolled for scheduling purposes) which exposes the last write to the cache

line. Of course, it has been assumed here that the array has been allocated on cache

line boundaries in memory following a row-major order and also that the cache line

contains four words. The alignment property can be easily established by the com-

piler, while the cache line size must be known by the compiler or software developer

performing the transformation. For the cases where the row size is not multiple of

79

the cache line size, the outer loop dimension needs to be unrolled accordingly in

order to have several instances of the innermost loop, each accessing the array row

starting from an index, which is aligned at cache line boundaries. Store instructions,

one for each word within the unaligned cache line, are subsequently used in between

the instances of the innermost iterations. Figure 4.7 illustrates this principle.

A more general example of a loop nest accessing an array for writing is shown in

Figure 4.8. Here the leading array index is not from the innermost loop dimension,

which implies that the array is not accessed linearly through the cache lines - in

this case it is accessed column-wise. For this situation, in order to expose the

last access to a cache line, the leading loop dimension, the one that forms the

rightmost and least significant array index, needs to be unrolled accordingly. After

unrolling the outer loop, the traversal of four columns is exposed with one of them

marking the last access to a cache line. It can be seen that if the array is indexed

using a linear function of a loop index for each array dimension, then the loop

dimension corresponding to the leading (i.e. rightmost) array index needs to be

unrolled appropriately to expose the last write to a cache line.

The scenario described above implies that all loop dimensions are used in the

formation of the array index, i.e. the array is traversed only once within that loop.

However, if some subset of the outermost loop indices are not used in the array index

formation, as shown in Figure 4.9, then within that loop nest the array is traversed

multiple times. Since our methodology requires that the last write to a cache line is

propagated to memory and remote caches, it needs to identify the last traversal of

the array and perform the transformation described above. Note that executing the

80

for i=0 to N1
 for j=0 to N2
 A[j][i]=.... ;

for i=0 to N, step 4 {
 for j=0 to N2
 A[j][i]=.... ;
 for j=0 to N2
 A[j][i+1]=.... ;
 for j=0 to N2
 A[j][i+2]=.... ;

}

 for j=0 to N2
 A[j][i+3]=.... ; //st.update

.....

st.update st.update

st.update st.update

st.update st.update

Figure 4.8: Transformations for column-wise traversal with st.update support

for i=0 to N1
 for j=0 to N2
 for k=0 to N3
 A[j][k]=... ;

for i=0 to N1−1
 for j=0 to N2
 for k=0 to N3
 A[j][k]=.... ;

for j=0 to N2
 for k=0 to N3
 A[j][k]=.... ;
 // i replaced with N1

Figure 4.9: Loop peeling for st.update support

st.update instruction for each array traversal would not result in incorrect results in

terms of coherence - it will only result in redundant bus transactions and remote

updates. Eliminating these redundant write updates can be achieved by separating

the loop dimensions responsible for the last traversal of the array in a transformation

that we refer to as loop peeling. Figure 4.9 shows the initial loop with the last array

traversal “peeled out” from the main loop. The peeled-out loop nest, which follows

the main loop is the one on which the unroll-based transformations have to be

applied. In the new peeled-out loop nest each of the new loop iterations participate

in the array index formation as a separate dimension. The outer loop dimensions are

81

for i=0 to N1
 for j=0 to N2
 for k=0 to N3
 A[j][k]=... ;

for i=0 to N1−1
 for j=0 to N2
 for k=0 to N3
 A[j][k]=.... ;

for j=0 to N2
 for k=0 to N3
 A[j][k]=.... ;
 // i replaced with N1

Figure 4.10: Transformation for while loops with unknown at compile-time upper

bounds

no longer present in the peeled-out loop and in the body of that loop they need to

be replaced with their respective upper bounds. In the example shown in the figure,

the loop is peeled from the outer loop dimension i. The variable i is then replaced

with N1 within the body of the peeled loop. The unrolling transformation can now

be applied only on that loop, which performs that last traversal of the shared array

before exiting the critical section.

Finally, while loops with unknown at compile-time upper iteration bounds

can be handled with a simple transformation, resembling in spirit the loop peeling

transformation. Figure 4.10 demonstrates the transformation. First, a new while

loop is extracted such that its upper bound is reduced so as to ensure that it is a

multiple of four (the assumed number of words within the cache line; this constant,

however, can be trivially parameterized). Without a loss of generality we have also

assumed that the starting index of the while loop is either 0, or a multiple of four. If

this is not the case, then it can be easily aligned through a simple “prologue” code

that executes only the first few iterations until the index becomes of the required

82

form. The resulting while loop is then trivially unrolled in order to expose the

last write to a cache line, which will utilize the st.update instruction. Afterwards, a

simple “epilogue” code is inserted that executes the last few iterations of the original

loop that were separated in order to align the upper bound of the unrolled while

loop to a multiple of four. The last write in that code is ensured to use the st.update

instruction.

The majority of signal processing and numerical kernels access their output

buffers in the manner shown in the examples above, i.e. using linear (affine) indices

to access the shared buffer. If, however, some of the stores to the shared buffer are

inside conditional blocks, e.g. if-then-else, it is possible that the st.update instruction

may not execute for some cache lines. Such situations can be treated in the following

way. If the execution of the last write to a shared cache line is predicated on a

condition then st.update instructions will be used for both this write and for the last

preceding store instruction to that cache line that is not predicated on a condition.

In this way, it will be ensured that regardless of the condition value, the updated

shared cache line will always be propagated to the remote consumers. It can be noted

that this approach is conservative and may result in multiple st.update instructions

being executed per cache line. Since the majority of modern high-end processors

feature a write buffer in order to avoid blocking the processor when a cache line

needs to be written-back, if several st.update instruction to a cache line are executed

close to each other, they will be naturally combined by the write buffer to a single

write/remote-update operation, which will absorb most of the overhead of multiple

remote-updates.

83

4.5 System Software Support

It is essential for the proposed framework that each processor core and its cache

controller are aware of the shared buffers involved in any communication for that

core. It is also important that the cache controllers are able to identify whether a

memory reference placed on the bus belongs to a shared buffer operated by the core.

Such an identification is needed in order to perform the remote-update triggered by

a remote producer’s st.update instruction, as well as to filter out all the unnecessary

snoop operations. For the case of directory-based protocols, such an identification is

only needed at the directory controller. This information is maintained and provided

to the hardware support by the system software.

4.5.1 Memory Reference Identification

In the very beginning of its execution, each task is required to notify and

register with the system software all of its shared buffers. This can be easily accom-

plished with a system call provided for that purpose. The software developer would

use that function to register each of the shared buffers by specifying their start ad-

dress and size to the OS. At this step, a mechanism is needed that will enable the

hardware cache controller, or the directory, to uniquely identify references to each

such shared array. Two alternative approaches are possible in terms of operating

system support for this functionality.

1. Explicit Identification. The OS assigns an unique identifier for each of

the shared buffers - the Shared Data Identifier (SDI). The SDI is assigned to the page

84

in which the shared data is allocated and maintained as part of the memory mapping

for that page in the page table. Since the SDI is used as an identifier, its size will

be determined by the total number of shared arrays in the system to be supported

by our approach. For instance, a 4-bit SDI covers a total of 14 shared buffers with

one value (0000) reserved for private memory references, and one value (1111) for

references outside the targeted application tasks, such as kernel data, global scalar

data outside the tasks, etc. For these type of references (with SID=1111), a default

coherence protocol mechanism is triggered.

The SDI is also provided to the hardware Memory Management Unit (MMU)

when the mapping for that page is stored. From the MMU the SDI is used by the

hardware support for two important purposes. First, it is used by the st.update

instruction when placing the special remote-update transaction. Second, on a cache

miss when a memory request transaction is initiated, the SDI for that address is

used to inform the other nodes, or the directory, of the nature of the referred region.

As explained above, an SDI of 1111 refers to regions containing, for instance, kernel

data structure, for which the default coherence mechanism is to be enabled. For

all references belonging to the shared buffers targeted by our methodology and the

task’s private data, the memory requests do not require any coherence related activ-

ities at remote processors. At steady execution state of the system, the interconnect

traffic will consist almost entirely of coherence-unrelated memory references.

2. Implicit Identification through Allocation. The alternative strategy

for identifying the shared arrays without the need for explicitly assigning an SDI

is to allocate these arrays at dedicated segments in the address space of the task.

85

For instance, a large segment from this space can be allotted for shared arrays only.

This segment can be identified by a small number of most significant address bits.

For instance, an extreme case would be to use the most significant bit for this, in

which case the entire upper half of the address space is dedicated for shared ar-

rays. Clearly, in practice the size of this segment can be much smaller and thus

defined through a group (fixed) of most significant bits. Within this segment, each

shared array will be assigned to an unique sub-segment, which is further identified

by another small group of address bits. In a sense, these small group of bits will

correspond to and represent the SDI for that array as described above. With this

approach, the hardware required at each cache controller or the directory for iden-

tifying references to shared arrays is minimal and consists of comparator for the

group of most significant address bits defining the shared memory segment. The

particular SDIs will be subsequently used by the cache controller or the directory

to execute the required cache update.

4.5.2 Multi-Tasking Support and False Sharing Avoidance

In modern MPSoCs, each core typically executes multiple tasks by using the

widely available support for preemptive multitasking in modern embedded operat-

ing systems. Allowing multiple tasks to share a core is clearly a required feature

for modern applications, which typically consist of multiple tasks with varying com-

plexity that are usually significantly more in number than the available processor

cores.

86

The proposed inter-core communication technique does not require any special

support from the system software and will operate correctly when multiple producers

share a processor core. It is possible that the multiple producers interfere in the

cache for their producer buffers. This, however, will not introduce inconsistencies

since a partially filled cache line by a producer that was preempted by another

producer, will be brought back to the cache when the original producer is scheduled

for execution afterwards. Furtheremore, it is possible that the producers share the

same buffer. In this case, however, the producers will be synchronized so that they

do not overwrite each others data, thus effectively rendering this situation similar

to the case where each producer operates in its own subset of the shared buffer,

which as described above is handled efficiently by the proposed technique. Since

write-allocate policy is often used in local caches of multi-core systems, the partially

filled cache line will be brought back into the cache (because it was marked as dirty

when it was evicted and therefore written back to memory or to the next level

cache), the original producer will continue its execution from where it left off and

when the cache line is complete, the st.update instruction will propagate that cache

line to all relevant consumer cores. Meanwhile, the consumer threads expecting to

read that data will, of course, either be executing outside the critical section for

that data or be blocked. The different producers will operate on distinct memory

buffers, identified as such by using any of the identification mechanisms described

in the previous sub-section.

Certain situations of false sharing in cache lines, however, could result in data

inconsistency if not handled properly. This could happen if a producer task’s shared

87

data is mapped to the same cache line with a private, or unrelated shared data, of

a remote consumer or a producer task. The cache line could be brought in to the

remote cache and subsequently updated through st.update with a stale value of the

unrelated (to the first producer) data. This situation can be easily avoided if shared

(and private) data are allocated at cache line boundaries. Such a restriction will

not impose any practical constraints as shared data blocks are typically much larger

in size than a single cache line and can be easily aligned by the compiler at cache

line boundaries; standard compiler “pragma” directives exist for requesting such

alignment in all modern compilers.

4.6 Cache Partitioning for Low-Power Data Sharing

The proposed framework aims at low-latency communication for the shared

data by elimination of the coherence misses. Clearly, the improvements on per-

formance would strongly depend on whether the consumer cache can capture the

shared data in its cache and prevent it from being evicted by other unrelated local

accesses. This would depend on the shared data size and the cache organization

- size and associativity. Isolating the shared data in a separate subsection of the

cache would not only prevent this interference, but it will also have the tremendous

benefit of significantly reducing dynamic power as each access to the cache would

lookup only a subset of the cache resources.

88

4.6.1 Functional Overview

We include in the proposed framework such a support for isolating shared and

private data by leveraging simple cache configurability in the form of way selection.

The shared arrays (or groups of them) are allocated into fixed associativity ways

of the cache and thus preventing evictions caused by references to other shared

buffers or private data. Depending on the cache organization and way size, this

approach allows multiple shared buffers to be mapped into the same associativity

way. However, these arrays must be properly aligned and allocated in memory next

to each other so that they would not evict each other in their allotted way, which

essentially behaves as a separate and smaller direct-mapped cache. In this way,

not only are interferences with private data eliminated but also significant energy

reductions are obtained by eliminating coherence misses and distinguishing private

and shared data accesses.

To implement such a cache partitioning functionality, the proposed technique

can leverage already existing and evaluated configurable cache architectures. Cache

organizations that allow configuring and partitioning the associativity ways and way

size have been proposed with the goal of customizing the cache to the requirements

of the application [11, 37, 133]. If a task requires fewer associativity ways, only

the required ways are kept active, reducing the energy consumption of the cache

memory.

Since shared and private data are mapped to different cache ways, one can

expect minimum interference between them and thus much fewer cache misses due

89

to interferences between local and shared data. In order for this approach to provide

positive results, a careful trade-off analysis is needed to ensure that for the given

cache size the majority of shared and private data can fit in their allotted ways.

Otherwise, either shared data or private data may start evicting itself in its cache

ways and thus increase number of conflict misses. Energy is saved through both

the elimination of coherence misses and the separation of private data and shared

data arrays across the cache associativity ways. By distinguishing whether an access

is for private data or for shared data, the cache controller does not have to probe

unrelated cache ways for a possible hit, thereby saving power. Since this applies for

every memory access, the power savings would be significant.

4.6.2 Cache Way Partitioning: Advantages and Pitfalls

The cache way partitioning allocates cache ways across shared and private

data, in order to prevent eviction of shared data and reduce power. Several trade-

offs, however, need to be carefully examined. By confining the shared and private

data to fixed associativity ways, cache misses due to interference between them will

be eliminated. However, if the cache size is not large enough, fixed cache partitioning

may introduce interference within shared or private data, which can in turn result

in extra misses. For example, if a large part of the cache is allocated to shared

data, what is lost on the private data ways due to increased missed may outweigh

what is gained on the improved shared data handling, and vice versa. Since we

are targeting embedded systems, cache size should also be one of the parameters

90

to such a trade-off. Thus, the flexibility to satisfy both private and shared data is

limited. One needs to achieve a balance between possible gains and losses on both

sides, which are largely dependent on the number and patterns of accesses to each

type of data. In general, way partitioning is beneficial if the shared buffers fit within

their allotted ways, while the remaining local data suffers negligible or no miss-rate

impact when isolated in the remaining cache ways.

Furthermore, although performance benefits may be limited due to relatively

smaller cache sizes in embedded systems, the power reductions are expected to

be significant. The cache subsystem constitutes a significant fraction of the total

number of transistors in a modern microprocessor and consumes a large part of

the total power. For example, it has been shown that in StrongArm-110 [79] the

cache contributes to as much as 43% of the total power. A significant portion

of the cache power is typically contributed by lookup of multiple cache ways on

every access. By having shared and private data residing in different cache ways,

the energy cost per access is significantly reduced. For example, if two associative

ways are allocated to shared data and two for private data then the energy cost

of each cache access is nearly reduced by half. Such energy reductions with no

practical impact on performance (and in many cases actually reducing the total

number of misses thus improving performance) would be of significant advantage to

many power-constrained high-end embedded applications.

The ultimate decision of determining how many cache ways to be allotted to

each type of data is delegated to the application programmers who have full under-

standing and knowledge of the application’s data volumes and access frequencies.

91

Our experience indicates that for most of the application kernels that we have used

in our experimental study, accesses to private and shared data are fairly balanced

(i.e. with largely equal frequencies of access) and for such situations, the most ef-

ficient solution is to assign to each type of data half of the associativity ways. In

the cases of unbalanced accesses, a cache profile information can be easily generated

and subsequently the application developer can select the point in the fairly small

design space that best matches the application requirements in terms of power v.s.

performance. Furthermore, shared data arrays must be properly aligned in memory

in order to completely eliminate evictions due to self-interference. The information

regarding the partitioning of cache ways is passed to the OS and hardware support

in a simple bit-mask control register used by the cache controller at run-time to

decide which ways need to be looked up or the new data allocated to.

4.7 Hardware Support

A hardware support is need to capture the information regarding the shared

buffers and to allow for this information to be used efficiently and in a way specified

by the system software. We first describe the hardware support required for the

explicit SDI identification and how is this identifier propagated to the remote caches.

The implicit identification alternative, which relies on special allocation does not

require such propagation of the SDI since each controller can infer the SDI from the

reference address.

92

Consumer Buffer
Register (CBR)

RdMiss

Snoop
Enable

SDI

4

SDI==1111?

WrMiss

st.update.trans

Perform
Update

System Bus

Figure 4.11: Cache controller support for bus-based systems

4.7.1 Shared Data Communication Support

As explained earlier, the system software is provided with and captures the

information for all the shared buffers involved in communications. For each shared

buffer a unique identifier (SDI) is maintained. The SDI is used by the hardware

to distinguish and identify the memory references to specific shared arrays mapped

to the particular processor. Any read-miss and write-miss bus transaction would

carry on the bus the SDI associated with the missed address. This would enable

the processor nodes to disable snooping for all but the references with SDI=1111.

As explained above, we support this special SDI for the cases of kernel data or rare

cases where the SDI space is exhausted - references to such data (and only that

data) would require a fall back to the default coherence mechanism supported by

the system. Assigning the SDI to read-miss and write-miss transactions requires no

extra bus lines since data lines are not used in these requests and a subset of them

can be used to carry the SDI.

One distinct feature that our methodology requires is the support for the

st.update instruction. It requires no extra hardware beyond the extra encoding

93

point and the trivial decoder adjustment. In terms of basic cache support it does

not require any extra functions as well - whenever decoded it simply forces a write-

back/remote-update transaction to the interconnect. In order to eliminate any re-

dundant cache lookups and updates for the case of bus-based snoopy protocols, it

is important that a write-back transaction caused by st.update is distinguished from

ordinary write-backs caused by cache line evictions - this can be achieved by using a

special bus transaction control value. Furthermore, in order to avoid redundant up-

date attempts for shared data that belongs to other processors, the SDI needs to be

carried as well with the remote-update transaction. Since the write-backs caused by

caches are typically distinguished through the bus control signals from special I/O

byte writes generated from peripherals to the memory, such byte writes will not in-

terfere with the cache update policy for bus-based systems. It is noteworthy that in

the case of the implicit identification scheme being used, the aforementioned mech-

anisms of carrying the SDI within the transaction is not required, since the shared

data is allocated in a segment in the address space that can be easily checked by

the cache controller or the directory.

Figure 4.11 depicts the required hardware support at the cache controllers

for bus-based systems. Similar hardware is needed at the directory controller for

non-bus systems. This is the only hardware required by the implicit identification

scheme. Since this hardware requires the SDI of the shared buffer referred by the

bus transaction, it is extracted from the memory address as explained in the pre-

vious section. Clearly, for the explicit identification scheme, the SDI is part of the

transaction itself.

94

MSB inspection
for access identification

Cache Way

CMP

Address (from CPU or Interconnect)

Shared−1

Data Cache

Shared−2 Private

WABS

Figure 4.12: Shared/Private-data cache way allocation architecture

The Consumer Buffer Register (CBR) captures which shared buffers are con-

sumed by the local processor. The CBR is a bitmask register indexed with the SDI

attached to the st.update on the producer processor or by the group of address bits

determining this identifier in the case of implicit identification through allocation.

The corresponding bit in the CBR is set if the shared array assigned to that SDI

is consumed in the local processor and, consequently, has to be updated when such

write-back occurs on the common bus. The CBR register is written by the system

software when it acquires from the application task the set of shared buffers and

after assigning them the unique identifiers (SDI). For directory-based systems, one

CBR per processor needs to be maintained within the directory controller. If a con-

sumer task is migrated to another core, the CBR bits corresponding to its shared

buffers (consumed data) need to be migrated as well to the new core.

The logic that monitors for write-miss and read-miss transaction identifies the

cases with SDI=1111 that need to be handled by the default coherence mechanism.

These correspond to kernel data structures that can be cached in various caches

95

and at the steady state of application execution will not occur. Note that the

logic formed by these two gates does not constitute a conventional snooping as it

does not trigger undiscriminated cache lookups. Similarly the logic that checks for

whether a valid remote-update is present on the interconnect allows updates only

for write-back transactions and only for shared buffers consumed at that processor.

4.7.2 Cache Way Partitioning Hardware

Figure 4.12 illustrates the general architecture of the proposed selective cache

way allocation methodology. The Way Allocation Bitmap (WAB) register captures

the information regarding which ways are allotted to which type of data. This is a

simple bitmap register consisting of a bit per associativity way and written to by

the OS. Additional hardware support is required to distinguish at run-time whether

a memory reference is an access to shared or private data. For this, the implicit

identification scheme as described in Section 4.5 could be used in a straightforward

manner. A comparator logic would check the few bits from the effective address

to determine whether the reference is to a shared or to a private data. Another

approach would be to use a special bit within the load/store instruction encoding to

specify whether it refers to a private or shared data. Clearly, that approach would

have the disadvantage of requiring a static mapping between a load/store instruction

and a type of memory reference, which can (albeit in very rare cases) restrict the

usage of pointers to access both private and shared data. In our experimental setup

we have followed the implicit identification scheme, where the shared arrays are

96

allocated in a dedicated segment from the address space.

4.8 Experimental Results

To evaluate the proposed technique, we have conducted detailed experiments

on a set of embedded multitasking benchmarks representing six different applica-

tions. The constituent kernels of these applications are mapped for execution as

separate threads on different cores and the communication between them is carried

out in a producer/consumer manner. The simulated platform consists of four pro-

cessor cores and a bus-based interconnect. Each processor executes its thread, which

operates on a number of shared data buffers; each thread clearly operates as a both

producer and consumer, with the first one reading its data from the system input,

and the last one producing its data into the system output (we assume a memory

mapped I/O for these). The threads mapped on the different processors execute in

a pipelined fashion; each thread uses the output from another thread in the system

as its input and it produces the input for another thread. Clearly, the four parallel

threads act as both producers and consumers with respect to other threads in the

system. This environment is typical for streaming data applications and systems

[53], where the input data is streamed through several computational kernels for

Task1 Task2 Task3 Task4

S1

S2

S3
S4 S6

S5

Figure 4.13: Application benchmarks organization.

97

Cache C0 Misses/ C1 Misses/ C2 Misses/ C3 Misses/ Total Reduct.

Config. Reduct. Reduct. Reduct. Reduct Misses

JPEG-E 2K-2SA 5,048 9,100 9,301 4,566 28,015 87.36%

74.23% 89.18% 89.83% 93.25%

8K-2SA 18,573 39,893 37,329 18,006 113,801 81.03%

77.95% 73.09% 85.49% 92.56%

2K-4SA 4,967 9,084 9,301 4,566 27,918 87.61%

75.44% 89.16% 89.83% 93.25%

8K-4SA 18,028 38,816 38,220 18,006 113,070 76.76%

69.53% 68.23% 80.70% 94.02%

JPEG-D 2K-2SA 1,124 9,375 13,752 5,043 29,294 44.29%

10.14% 24.54% 45.84% 84.39%

8K-2SA 3,380 37,172 54,956 20,894 116,402 43.22%

3.37% 22.69% 45.36% 80.54%

2K-4SA 1,069 9,375 13,752 5,043 29,239 44.38%

10.66% 24.54% 45.84% 84.39%

8K-4SA 1,890 38,030 59,453 21,092 120,465 37.92%

6.03% 22.00% 34.98% 77.75%

Table 4.1: Cache Misses: Baseline vs. Achieved Reductions (%); 32K D-Caches

98

Cache C0 Misses/ C1 Misses/ C2 Misses/ C3 Misses/ Total Reduct.

Config. Reduct. Reduct. Reduct. Reduct Misses

M-INV 2K-2SA 4,871 8,725 9,235 4,757 27,588 88.15%

76.21% 92.42% 90.09% 88.80%

8K-2SA 18,062 34,882 37,329 19,081 109,354 87.15%

79.96% 90.95% 87.60% 86.13%

2K-4SA 4,871 8,725 9,235 4,757 27,588 88.15%

76.21% 92.42% 90.09% 88.80%

8K-4SA 17,927 34,888 37,296 19,543 109,654 85.74%

80.07% 89.29% 86.27% 83.58%

SPEECH 2K-2SA 5,217 8,761 9,062 4,806 27,846 87.18%

70.29% 92.04% 91.81% 87.89%

8K-2SA 18,627 34,960 37,731 19,625 110,943 78.52%

65.86% 85.59% 78.56% 77.85%

2K-4SA 4,707 8,761 9,062 4,806 27,336 88.97%

78.86% 92.04% 91.81% 87.89%

8K-4SA 17,103 34,996 36,065 21,737 109,901 76.61%

77.83% 76.50% 79.23% 71.50%

Table 4.2: Cache Misses: Baseline vs. Achieved Reductions (%); 32K D-Caches

(continued)

99

Cache C0 Misses/ C1 Misses/ C2 Misses/ C3 Misses/ Total Reduct.

Config. Reduct. Reduct. Reduct. Reduct Misses

SEC-IMG 2K-2SA 4,949 1,069 55,315 3,442 72,739 21.96%

74.80% 72.10% 6.87% 56.91%

8K-2SA 18,519 36,349 246,147 36,775 337,790 10.55%

77.86% 45.39% 0.52% 9.34%

2K-4SA 4,949 9,017 54,712 3,442 72,120 21.31%

74.80% 69.15% 6.35% 56.91%

8K-4SA 18,005 36,474 242,556 38,301 335,336 10.66%

80.08% 45.64% 0.78% 7.27%

SEC-SPCH 2K-2SA 4,929 6,659 6,903 16,638 35,129 46.12%

76.02% 90.85% 60.77% 13.29%

8K-2SA 18,406 26,533 27,497 46,376 118,812 40.46%

75.98% 87.78% 34.80% 2.64%

2K-4SA 4,925 6,659 6,903 10,656 29,143 68.54%

76.10% 90.85% 88.12% 38.42%

8K-4SA 17,981 33,075 27,893 58,521 137,470 39.10%

82.61% 92.24% 30.06% 0.00%

Table 4.3: Cache Misses: Baseline vs. Achieved Reductions (%); 32K D-Caches

(continued)

100

Cache C0 Misses/ C1 Misses/ C2 Misses/ C3 Misses/ Total Reduct.

Config. Reduct. Reduct. Reduct. Reduct. Misses

JPEG-E 2K-2SA 4,970 9,084 9,301 4,566 27,921 87.60%

75.39% 89.16% 89.83% 93.25%

8K-2SA 18,027 35,964 37,312 18,006 109,309 88.44%

82.56% 89.79% 88.00% 92.56%

2K-4SA 4,967 9,084 9,301 4,566 27,918 87.61%

75.44% 89.16% 89.83% 93.25%

8K-4SA 18,026 35,964 36,949 18,006 108,945 89.42%

82.56% 89.79% 90.16% 94.02%

JPEG-D 2K-2SA 1,069 9,375 13,752 5,043 29,239 44.38%

10.66% 24.54% 45.84% 84.39%

8K-2SA 2,987 37,040 54,956 20,217 115,200 43.77%

3.82% 23.37% 45.16% 83.24%

2K-4SA 1,069 9,375 13,752 5,043 29,239 44.38%

10.66% 24.54% 45.84% 84.39%

8K-4SA 1,857 37,023 54,840 20,019 113,739 44.83%

6.14% 23.85% 45.81% 84.56%

Table 4.4: Cache Misses: Baseline vs. Achieved Reductions (%); 64K D-Caches

101

M-INV 2K-2SA 4,871 8,725 9,235 4,757 27,588 88.15%

76.21% 92.42% 90.09% 88.80%

8K-2SA 17,928 34,876 36,982 19,064 108,850 88.59%

81.04% 91.51% 89.73% 88.11%

2K-4SA 4,871 8,725 9,235 4,757 27,588 88.15%

76.21% 92.42% 90.09% 88.80%

8K-4SA 17,927 34,837 36,883 18,965 108,612 89.57%

82.82% 92.59% 90.23% 89.09%

SPEECH 2K-2SA 4,707 8,761 9,062 4,806 27,336 88.97%

78.86% 92.04% 91.81% 87.89%

8K-2SA 18,485 34,883 36,507 19,625 109,500 83.84%

71.23% 91.38% 86.25% 77.85%

2K-4SA 4,707 8,761 9,062 4,806 27,336 88.97%

78.86% 92.04% 91.81% 87.89%

8K-4SA 17,103 34,873 35,946 19,014 106,936 90.97%

86.82% 92.50% 92.58% 88.86%

Table 4.5: Cache Misses: Baseline vs. Achieved Reductions (%); 64K D-Caches

(continued)

102

Cache C0 Misses/ C1 Misses/ C2 Misses/ C3 Misses/ Total Reduct.

Config. Reduct. Reduct. Reduct. Reduct. Misses

SEC-IMG 2K-2SA 4,949 9,017 42,755 3,442 60,163 31.38%

74.80% 83.66% 13.27% 56.91%

8K-2SA 18,005 35,897 181,016 36,410 271,328 14.28%

82.41% 48.91% 1.54% 9.76%

2K-4SA 4,949 9,017 42,697 3,442 60,105 34.14%

74.80% 88.23% 16.17% 56.91%

8K-4SA 18,005 35,897 181,705 11,762 247,369 19.11%

82.41% 53.87% 2.85% 67.24%

SEC-SPCH 2K-2SA 4,924 6,659 6,903 9,869 28,355 71.59%

76.10% 90.85% 90.44% 43.16%

8K-2SA 18,133 26,435 27,464 38,535 110,567 44.91%

81.44% 91.04% 34.96% 3.17%

2K-4SA 4,924 6,659 6,903 6,143 24,629 82.42%

76.10% 90.85% 90.44% 69.33%

8K-4SA 17,980 26,435 27,447 21,119 92,981 86.25%

82.78% 91.16% 89.55% 78.76%

Table 4.6: Cache Misses: Baseline vs. Achieved Reductions (%); 64K D-Caches

(continued)

103

Cache C0 Trans./ C1 Trans./ C2 Trans./ C3 Trans./ Total Reduct.

Config. Reduct. Reduct. Reduct. Reduct. Trans.

JPEG-E 2K-2SA 9,213 13,452 13,653 4,602 40,920 91.17%

85.11% 92.68% 93.07% 93.29%

8K-2SA 35,090 57,831 54,755 18,042 165,718 84.82%

86.61% 76.75% 89.65% 92.57%

2K-4SA 9,096 13,436 13,653 4,602 40,787 91.44%

86.22% 92.67% 93.07% 93.29%

8K-4SA 34,482 56,242 55,646 18,044 164,414 81.92%

83.86% 74.29% 84.50% 94.03%

JPEG-D 2K-2SA 1,294 13,727 22,456 5,044 42,521 51.28%

18.47% 32.61% 57.14% 84.40%

8K-2SA 3,661 54,599 89,791 21,354 169,405 50.33%

6.56% 30.71% 57.28% 78.81%

2K-4SA 1,201 13,727 22,456 5,044 42,428 51.40%

19.98% 32.61% 57.14% 84.40%

8K-4SA 2,041 55,457 94,288 21,655 173,441 44.30%

11.76% 30.27% 46.04% 75.73%

Table 4.7: Bus Transactions: Baseline vs. Achieved Reductions (%); 32K D-Caches

104

Cache C0 Trans./ C1 Trans./ C2 Trans./ C3 Trans./ Total Reduct.

Config. Reduct. Reduct. Reduct. Reduct. Trans.

M-INV 2K-2SA 8,968 13,077 13,587 4,759 40,391 91.91%

87.07% 94.95% 93.27% 88.80%

8K-2SA 34,510 52,309 54,755 19,202 160,776 90.97%

88.99% 93.74% 91.45% 85.58%

2K-4SA 8,968 13,077 13,587 4,759 40,391 91.91%

87.07% 94.95% 93.27% 88.80%

8K-4SA 34,314 52,315 54,722 20,123 161,474 89.87%

89.58% 92.70% 90.55% 81.18%

SPEECH 2K-2SA 9,479 13,115 13,414 4,807 40,815 90.73%

81.41% 94.69% 94.47% 87.87%

8K-2SA 35,332 52,387 55,667 19,951 163,337 81.67%

76.10% 89.18% 79.97% 76.58%

2K-4SA 8,804 13,115 13,414 4,807 40,140 92.48%

88.69% 94.69% 94.47% 87.87%

8K-4SA 33,521 52,423 53,559 23,114 162,617 82.73%

88.59% 83.00% 85.48% 67.24%

Table 4.8: Bus Transactions: Baseline vs. Achieved Reductions (%); 32K D-Caches

(continued)

105

Cache C0 Trans./ C1 Trans./ C2 Trans./ C3 Trans./ Total Reduct.

Config. Reduct. Reduct. Reduct. Reduct. Trans.

SEC-IMG 2K-2SA 9,048 13,385 79,471 3,528 105,432 24.17%

85.62% 81.17% 6.18% 55.61%

8K-2SA 34,974 53,775 339,166 47,371 475,286 14.69%

86.86% 62.77% 0.67% 7.25%

2K-4SA 9,047 13,369 78,703 3,528 104,647 23.88%

85.66% 79.19% 5.97% 55.61%

8K-4SA 34,406 53,900 335,545 49,235 473,086 14.92%

89.53% 63.13% 0.88% 5.65%

SEC-SPCH 2K-2SA 9,038 8,870 11,255 19,622 48,785 55.06%

86.74% 93.13% 75.94% 11.27%

8K-2SA 34,864 35,291 44,924 50,228 165,307 54.30%

85.94% 90.76% 59.10% 2.43%

2K-4SA 9,024 8,870 11,255 12,480 41,629 73.59%

86.93% 93.13% 92.71% 32.80%

8K-4SA 34,394 41,816 45,320 76,141 197,671 48.69%

90.83% 93.78% 56.91% 0.00%

Table 4.9: Bus Transactions: Baseline vs. Achieved Reductions (%); 32K D-Caches

(continued)

106

Cache C0 Trans./ C1 Trans./ C2 Trans./ C3 Trans./ Total Reduct.

Config. Reduct. Reduct. Reduct. Reduct. Trans.

JPEG-E 2K-2SA 9,102 13,436 13,653 4,602 40,793 91.42%

86.17% 92.67% 93.07% 93.29%

8K-2SA 34,466 53,372 54,720 18,042 160,600 91.95%

90.72% 93.12% 91.39% 92.57%

2K-4SA 9,096 13,436 13,653 4,602 40,787 91.44%

86.22% 92.67% 93.07% 93.29%

8K-4SA 34,446 53,372 54,358 18,042 160,218 92.78%

90.77% 93.12% 93.31% 94.03%

JPEG-D 2K-2SA 1,199 13,727 22,456 5,044 42,426 51.40%

20.02% 32.61% 57.14% 84.40%

8K-2SA 3,207 54,467 89,791 20,319 167,784 50.89%

7.48% 31.60% 56.91% 82.82%

2K-4SA 1,196 13,727 22,456 5,044 42,423 51.40%

20.07% 32.61% 57.14% 84.40%

8K-4SA 1,990 54,433 89,658 20,019 166,100 51.74%

12.06% 32.21% 57.14% 84.56%

Table 4.10: Bus Transactions: Baseline vs. Achieved Reductions (%); 64K D-Caches

107

Cache C0 Trans./ C1 Trans./ C2 Trans./ C3 Trans./ Total Reduct.

Config. Reduct. Reduct. Reduct. Reduct. Trans.

M-INV 2K-2SA 8,968 13,077 13,587 4,759 40,391 91.91%

87.07% 94.95% 93.27% 88.80%

8K-2SA 34,332 52,303 54,390 19,166 160,191 92.15%

90.03% 94.30% 93.02% 87.64%

2K-4SA 8,968 13,077 13,587 4,759 40,391 91.91%

87.07% 94.95% 93.27% 88.80%

8K-4SA 34,312 52,247 54,291 18,967 159,817 92.91%

91.02% 95.06% 93.36% 89.09%

SPEECH 2K-2SA 8,804 13,113 13,414 4,807 40,138 92.48%

88.69% 94.68% 94.47% 87.87%

8K-2SA 35,182 52,291 54,443 19,951 161,867 86.40%

79.41% 93.86% 87.34% 76.58%

2K-4SA 8,804 13,115 13,414 4,807 40,140 92.48%

88.69% 94.69% 94.47% 87.87%

8K-4SA 33,489 52,283 53,354 19,017 158,143 93.89%

93.26% 94.99% 95.00% 88.86%

Table 4.11: Bus Transactions: Baseline vs. Achieved Reductions (%); 64K D-Caches

(continued)

108

Cache C0 Trans./ C1 Trans./ C2 Trans./ C3 Trans./ Total Reduct.

Config. Reduct. Reduct. Reduct. Reduct. Trans.

SEC-IMG 2K-2SA 9,047 13,369 58,995 3,528 84,939 34.37%

85.66% 88.98% 12.86% 55.61%

8K-2SA 34,410 53,305 249,751 46,853 384,319 19.69%

90.60% 65.59% 2.39% 7.59%

2K-4SA 9,047 13,369 59,168 3,528 85,112 37.02%

85.66% 92.06% 16.03% 55.61%

8K-4SA 34,391 53,305 251,336 11,915 350,947 23.53%

90.65% 68.94% 2.67% 66.69%

SEC-SPCH 2K-2SA 9,023 8,870 11,255 11,220 40,368 76.69%

86.92% 93.13% 94.14% 37.96%

8K-2SA 34,582 35,174 44,891 39,202 153,849 59.54%

89.62% 93.26% 59.22% 3.12%

2K-4SA 9,022 8,870 11,255 6,143 35,290 87.72%

86.93% 93.13% 94.14% 69.33%

8K-4SA 34,366 35,176 44,855 21,120 135,517 90.56%

90.98% 93.36% 93.61% 78.76%

Table 4.12: Bus Transactions: Baseline vs. Achieved Reductions (%); 64K D-Caches

(continued)

109

various manipulations until the final output is produced. This is also referred to as

pipeline parallelism, the efficient exploitation of which has been the focus of recent

research projects in the general-purpose architectural community as well [110]. Ex-

cept for the very first task in the pipeline, all are both producers and consumers and

work on more than eight different data buffers in different synchronization sections.

The production and consumption cycles are interleaved so that at each instance the

processor is executing in either a producer or in a consumer critical section. The

benchmarks organization is depicted in Figure 5.7. This organization is followed in

all of the benchmarks that we have used.

The first two benchmarks, JPEG-E and JPEG-D, are JPEG encoder and de-

coder. We have constructed by functionally partitioning the standard applications

and mapping the corresponding kernels to different cores. For JPEG-E, the con-

stituent kernels (in their functional order) are: left-shift, fdct, zig-zag-quantization,

and huffman. JPEG-D has been functionally partitioned into: dehuffman, inverse-

zig-zag-inverse-quantization, idct, and inverse-levelshift. Our third benchmark, M-

INV, computes the inverse of the product of two input matrices by using the LU

decomposition approach. Matrix inversion is a fundamental operation in many sig-

nal processing algorithms. The first computational kernel is mmul, which computes

the product of two input matrices: mmul(A,B)→C. The second kernel, lu computes

the LU factorization of C: LU(C)→ L,U. Subsequently, the third kernel, inv, com-

putes the inverse of the triangular matrices L and U produced by the previous kernel.

The fourth kernel, mmul, computes the product of inv(U) and inv(U), produced by

the third kernel. The fourth benchmark, SPEECH, represents a speech coder, which

110

applies the g721 after applying low-pass filter on the input signal. The kernels of

the SPEECH benchmark are: fft, low-pass filter, ifft, g721. The fifth benchmark,

SEC-IMG, processes an image by first detecting the edges in it (and extracting

them), edge-detect, followed by smoothing, smooth. It finishes up by compressing

the resultant image, lzo, and encrypting it through a symmetric cypher, rijndael.

The sixth benchmark, SEC-SPCH, first processes a speech through a low-pass filter,

and adpcm speech encoder. Afterwards, it digitally signs the data with sha, and

finishes up by encrypting it with blowfish.

We have used the M5 [18] simulator to perform our experiments. Since the

proposed methodology is largely independent from the underlying type and class of

processors, we have focused our study on the memory and cache subsystem. The

simulator is used in system-call emulator mode and is extended with a collection of

multi-threading libraries. The simulated hardware configuration is of four proces-

sors connected to a shared memory through a common bus. We have experimented

with four cache organizations: caches of size 32K and 64K which are representative

of modern and future high-end embedded processors, with 2-way set-associative and

4-way set-associative organizations, such as the IntelXScale [47] and ARM11 [14].

We have considered two cases for the upper-limit of the amount of data communi-

cated between the tasks; the shared data is below 2K and below 8K. These limits

are achieved by providing an input data with the appropriate dimensions/resolution.

A processor may use 2 to 4 shared buffers to communicate with its neighbors, de-

pending on specific applications and its role in the data pipeline. The baseline is

also configured with four processors connected to a system bus, with conventional

111

invalidate-based snoop coherence protocol. In the proposed technique all the snoop-

induced cache lookups are completely eliminated since the communication in the

applications is clearly synchronized and no operating system code is simulated.

To model and evaluate the proposed technique we have modeled the OS and

the hardware support by augmenting the M5 simulation infrastructure with the

required features. For instance, the functionality of cache partitioning, the st.update

instruction and its identification by the consumer core’s snoopy cache controllers

is faithfully modeled inside the simulator. Both the required OS and hardware

support, outlined in Sections 4.5, 4.6, and 4.7, are modeled in details and their

impact evaluated in a cycle o bus-transaction accurate manner. The required simple

loop transformations that expose the last write to a cache line and use the st.update

instruction to propagate just-in-time the updated data to the consumer cores, have

been manually applied on the benchmark kernel codes. Our application benchmarks,

as described above, consist of well-known and frequently used signal-processing,

numerical, and image processing kernels. All these kernels feature regular and affine

loop iteration spaces and data access patterns. As such, it was straightforward to

manually apply and model the required simple loop transformations.

In our experimental study we have first focused on evaluating the basics of

the proposed framework, that is the inter-core communication without applying

cache way partitioning. We have evaluated the impact of the proposed data

sharing scheme on the cache misses and the number of bus transactions, which

consist of read/write misses and write-back/remote-update events. These two com-

ponents are a direct consequence of the proposed methodology for inter-core data

112

communication. The proposed technique eliminates coherence misses, which in turn

eliminates a large number of bus transactions, which would have been caused by

these coherence misses. Furthermore, the proposed approach also eliminates write-

miss (invalidate) transaction, which are needed in the baseline for writes into clean

cache lines. As described in the previous sections, the proposed technique does not

introduce new transactions since the “forced” write-back by the st.update instruction

is simply executed earlier in time as compared to the baseline.

Tables 4.1 and 4.4 report the total number of misses for the baseline and the

corresponding reductions (in percentage) achieved by the proposed inter-core com-

munication technique with traditional caching organization, i.e. without applying

the proposed cache way partitioning. Table 4.1 reports the data for 32K caches,

while Table 4.4 focuses on 64K caches. The results for each benchmark are bro-

ken down to its kernels components, i.e. for each application benchmark we show

the baseline misses and the reductions (in percentage) for each of its tasks mapped

to one of the processor cores, e.g. C0-Misses represents the misses incurred by the

first core in the platform executing the first task from the corresponding benchmark.

The last two columns for each benchmark report the total number of baseline misses

and the percentage reductions achieved by the proposed data communication tech-

nique. For each benchmark we have also evaluated different cache configurations

and shared data sizes. The first row for each benchmark (2K-2SA) reports the

achieved miss reductions for a 2-way set-associative cache and a shared data buffers

of size up to 2K used for communication between the constituent tasks. Similarly,

the other three rows for each benchmark report the experimental data for 4-way

113

set-associative caches and shared buffers of size up to 8K.

It is evident from the results that the proposed technique significantly reduces

the number of cache misses. On average, the miss-rates are reduced about 60%.

The achieved reductions vary with different shared buffer sizes and cache sizes and

organizations and the nature of different kernels. In general, the larger the cache size

is with respect to the shared buffer size, the more significant the achieved reductions

are. This is because large caches are more likely to capture the shared data and

not evict it due to local cache traffic. Such shared data would be then updated by

the producer’s st.update write-backs and thus provide for repeated cache hits on the

consumer side. Higher associativity similarly achieves larger miss reductions as they

also tend to preserve shared data.

The miss reductions greatly vary with the different applications due to vari-

ous factors. The applications have different cache requirements, especially for the

private data. With shared buffers and number of accesses to them being of the

same magnitude, the coherence misses the technique eliminates are comparable in

numbers. Consequently, the remaining private data accesses would determine the

overall miss rate. Additionally, the different tasks exhibit fairly different access pat-

terns. Some of them are more prone to cause address conflicts, especially for lower

associativity. The relatively small miss rate reductions at the third processor for

SEC-IMG are due to the fact that lzo, which is the third kernel in these bench-

marks, exhibits relatively high volume of private data traffic that evicts the shared

data thus precluding the benefits of remote updates.

In the baseline cache coherent organization (invalidation-based), the read to a

114

shared data by a consumer always results in a miss (a coherence miss) that is sub-

sequently handled by the memory system by either fetching the data from memory

where it has been written back by the producer or directly from the producer cache

if it is still available there. Thus the latency of a load instruction to a shared data

by a consumer is the latency of two bus (or any other interconnect) transactions.

On the other hand, our technique “preemptively” updates the shared data at the

consumer caches in a way driven the producers. Consequently, when the consumer

reads a shared data, the large majority of the load instructions hit in the cache, thus

the latency of the read operation as perceived by the consumer thread has decreased

from two interconnect transactions to a single-cycle hit in the L1 data cache.

Tables 4.7 and 4.10 report the total number of bus transactions for the base-

line architectures featuring a write-invalidate snoop cache coherence protocol. The

tables also report the reductions (in percentage) of the bus transactions achieved

by the proposed framework. The reduced number of transactions accounts for the

introduced application-triggered remote-updates, which as described earlier can be

thought of as moving the inevitable write-back request from the consumer caches

earlier in time. The structure of these tables is identical to the previous tables.

It is evident that the reductions of transactions are proportional and strongly

correlate to the reductions in cache misses. On one hand, bus transactions are caused

by the read/write misses and write-back/write-update memory requests. Cache

misses account for a large part of the overall transaction numbers, especially for

write-back caches. On the other hand, since most write-backs/write-updates occur

for shared data buffers, they generally follow the number of writes to shared buffers,

115

which are proportional to the coherence misses which the proposed approach elim-

inates. For the same reasons of preserving from evictions more of the shared data,

the proposed framework achieves better transactions reductions for caches with large

sizes and higher associativity. The reported interconnect transaction reductions will

be identical to the bandwidth reductions. This follows from the fact that for the

majority of signal processing and numerical applications, the sustained bandwidth

utilization by the kernels is mostly fixed in time. e.g. the bus transactions generated

by the kernels are uniformly distributed in time. Since bandwidth is a measurement

of the number of bus transactions for a unit of time, the percentage reduction of bus

transactions in this case is identical to the percentage reduction of bus bandwidth.

We now proceed with evaluating the proposed framework in its entirety, i.e.

including the mechanism for application-driven cache way partitioning. The next

two tables report the achieved energy reductions and impact on miss-rate of the

selective cache way allocation methodology. Way allocation is applied in addition

to the inter-core data communication, which was so far evaluated in isolation. As

expected, way allocation can significantly reduce cache energy, while not impacting

the already reduced miss-rate or actually in many cases reducing it even further.

Tables 4.13 and 4.15 report the achieved energy reductions and the impact

on cache misses of the cache way partitioning mechanism. This data reflects the

application of the cache way partitioning scheme compared to the corresponding

baseline cache organization. The hardware configurations are largely identical to

the ones we used to evaluate the communication mechanism without cache way

partitioning. The structure of this and the next tables is identical to the previous

116

tables. They report the per-core data for each benchmark, while in different rows

presenting the data for different cache configurations and shared data buffer sizes.

Clearly, to use in practice and to evaluate the cache way partitioning tech-

nique, the underlying cache organization needs to implement at least several cache

associativity ways. For this reason, we have assumed a baseline cache organization

consisting of 4-way set-associative cache. As the frequency of access and volume of

the shared and private data are largely identical for all the application benchmarks

we have used, the four ways of the underlying cache are evenly divided into two

groups, one for shared data and the other for private data. Each group has two

cache ways. Within each groups, the LRU replacement policy is assumed. For simi-

lar reasons of feasibility, we do not report results for shared data arrays of 8K in 32K

cache configuration, because it is impossible to isolate the shared and the private

data within the cache ways and the way-allocation technique simply does not apply

in such situations. For the rest of the configurations (shared buffer sizes and cache

volumes), we ensure that the shared data fits within the two cache ways. Private

data, however, may evict itself at run-time, because of reduced available cache size.

This effect can be seen in the results for the third phase (lzo) of SEC-IMG, where

for some of the configurations the cache misses are slightly increased even though

the misses to shared data are entirely eliminated (only cold misses to shared data

are suffered in the beginning of execution) and in overall the total number of misses

are reduced. However, for most of the cache configurations, the applications can

place both the shared data and the private data within the allotted cache ways. For

such cases, not only is energy significantly reduced but also are the total number

117

of misses. The cache misses for these cases are mostly due to cold misses when

shared data and private data are first brought in to the cache. Table 4.15 reports

the number of misses achieved after applying the cache way partitioning technique

and the impact on miss rate. On average, the miss-rates are reduced about 67%.

Table 4.13 reports the achieved energy reductions. These results are based on

the energy estimates per access as provided by Cacti-5 [112] for a process technology

of 70nm. The format is identical to the previous table, however, showing in pairs

the total cache energy (in mJ) for a baseline cache organization with invalidate-

based snoop coherence protocol, and the energy reductions (in percentage) achieved

by the proposed cache way allocation methodology. It can be seen that the energy

reductions for all the applications and configurations are fairly stable and close to

50%, which is due to the fact the cache power per access is almost reduced by

half. Both the reduced number of cache ways in which the lookup is performed as

well as the reduction of total number of misses are factors in the achieved energy

improvements. The dynamic energy for the cache misses is modeled as a sum of the

cache access and an access to an SRAM memory of size 256K.

Tables 4.17 and 4.19 report the improvement on system performance. Such

impact on performance is measured by comparing average memory read access la-

tency from CPU side against the baseline. The paired numbers in each cell represent

percentage improvements of the proposed scheme versus the baseline, with L1 cache

miss penalty of 10 and 20 CPU cycles, respectively. The hit latency is assumed at

1 CPU cycle. In general, we observe improvements across the benchmark kernels

on memory access latency, up to 29%. This is due to the reduced cache misses

118

that make the average latency longer. Some of the kernels do not exhibit large

latency reductions due to the fact that they spend the large majority of their ex-

ecution time operating on private data, and as such do not benefit as much from

the proposed technique as other kernels which extensively operate on the shared

data. The reported latency reductions are quite conservative, as they do not take

into account the significantly reduced traffic on the on-chip interconnect as a result

of the proposed technique. In our simulations, we have assumed constant L1 miss

penalty - 10 and 20 cycles. Also, longer cache miss penalties make such reduction

more significant in terms of memory performance, which can be clearly seen by the

reported reductions.

Table 4.21 reports the performance numbers after applying the introduced

cache partitioning methodology. The table format is identical to the previous ta-

bles reporting average memory access latency reductions. The achieved results are

within similar ranges. We observe mostly improvement on memory access perfor-

mance. However, there is a single case where the proposed scheme under-performs

the baseline. This is due to slightly increased number of cache misses on the private

data part, as private data is restricted to a subset of the cache space now. Such

issue is inherited from the cache partitioning technique itself. Nevertheless, such

overhead is negligible even in these rare cases, and can be fixed by applying more

sophisticated cache partitioning techniques that allow partial sharing between the

partitions.

119

4.9 Conclusion

We have presented a framework for performance, bandwidth, and energy

efficient inter-core communication in embedded multiprocessors. The framework

achieves a cost-efficient and in-time remote cache update of shared cache blocks

through the integrated efforts of compiler, system software, and hardware. Cache

way partitioning policy isolates shared and private data in separate associativity

ways thus preventing evictions of shared data and resulting in significant energy

reductions. The methodology seamlessly integrates the system layers as the ap-

plication information is captured and utilized through well-defined interfaces and

software controlled hardware structures, enabling its application to a broad range

of multiprocessor embedded applications.

120

Cache C0 Enrg./ C1 Enrg./ C2 Enrg./ C3 Enrg./ Total Reduct.

Config. Reduct. Reduct. Reduct. Reduct. Enrg.

JPEG-E 32K, 2K-4SA 10,559 205,807 30,841 21,004 268,211 51.07%

52.14% 50.73% 52.27% 52.03%

64K, 2K-4SA 13,245 261,323 38,874 26,538 339,980 50.62%

51.51% 50.35% 51.62% 51.45%

64K, 8K-4SA 50,519 1,045,064 155,271 105,092 1,355,946 50.63%

51.62% 50.35% 51.61% 51.45%

JPEG-D 32K, 2K-4SA 19,914 17,285 50,300 15,448 102,947 48.23%

50.06% 42.33% 48.22% 52.50%

64K, 2K-4SA 25,279 21,637 63,451 19,458 129,825 47.93%

49.84% 42.24% 47.90% 51.88%

64K, 8K-4SA 94,831 86,282 253,605 77,614 512,332 47.89%

49.84% 42.18% 47.89% 51.87%

M-INV 32K, 2K-4SA 26,773 20,948 29,531 20,225 97,478 52.43%

52.18% 53.27% 52.34% 52.04%

64K, 2K-4SA 33,861 26,318 37,211 25,542 122,932 51.53%

50.67% 52.48% 51.67% 51.47%

64K, 8K-4SA 246,436 202,367 272,351 199,243 920,396 50.88%

50.44% 51.36% 50.98% 50.82%

Table 4.13: Cache way partitioning: Cache energy (mJ) and reductions

121

Cache C0 Enrg./ C1 Enrg./ C2 Enrg./ C3 Enrg./ Total Reduct.

Config. Reduct. Reduct. Reduct. Reduct. Enrg.

SPEECH 32K, 2K-4SA 87,527 11,266 100,066 1,975,848 2,174,707 50.55%

50.73% 55.66% 51.08% 50.49%

64K, 2K-4SA 111,106 14,007 126,891 2,511,804 2,763,808 50.21%

50.35% 54.54% 50.85% 50.15%

64K, 8K-4SA 530,684 52,796 603,958 10,046,272 11,233,711 50.21%

50.32% 54.81% 50.73% 50.15%

SEC-IMG 32K, 2K-4SA 416,263 65,394 59,209 124,630 665,496 50.37%

50.51% 51.29% 47.97% 50.54%

64K, 2K-4SA 529,033 82,813 70,930 158,324 841,099 50.08%

50.17% 50.80% 48.36% 50.20%

64K, 8K-4SA 2,273,309 348,331 336,202 620,128 3,577,970 50.10%

50.17% 50.77% 48.73% 50.21%

SEC-SPCH 32K, 2K-4SA 10,166 99,027 8,095 343,371 460,659 50.71%

52.22% 50.89% 55.66% 50.49%

64K, 2K-4SA 12,746 125,657 10,043 435,267 583,713 50.37%

51.57% 50.48% 54.50% 50.21%

64K, 8K-4SA 46,077 502,173 39,971 1,142,539 1,730,760 50.46%

51.77% 50.48% 54.50% 50.25%

Table 4.14: Cache way partitioning: Cache energy (mJ) and reductions (continued)

122

Cache C0 Misses/ C1 Misses/ C2 Misses/ C3 Misses/ Total Impact

Config. Impact Impact Impact Impact Misses

JPEG-E 32K, 2K-4SA 4,967 9,084 9,301 4,566 27,918 87.60%

75.38% 89.16% 89.83% 93.25%

64K, 2K-4SA 4,967 9,084 9,301 4,566 27,918 87.61%

75.44% 89.16% 89.83% 93.25%

64K, 8K-4SA 18,026 35,964 36,949 18,006 108,945 89.42%

82.58% 89.79% 90.16% 94.02%

JPEG-D 32K, 2K-4SA 1,069 9,375 13,752 5,043 29,239 44.08%

2.62% 24.54% 45.84% 84.39%

64K, 2K-4SA 1,069 9,375 13,752 5,043 29,239 44.38%

10.66% 24.54% 45.84% 84.39%

64K, 8K-4SA 1,857 37,023 54,840 20,019 113,739 44.85%

7.22% 23.85% 45.81% 84.56%

M-INV 32K, 2K-4SA 4,871 8,725 9,235 4,757 27,588 88.15%

76.21% 92.42% 90.09% 88.80%

64K, 2K-4SA 4,871 8,725 9,235 4,757 27,588 88.15%

76.21% 92.42% 90.09% 88.80%

64K, 8K-4SA 17,927 34,837 36,883 18,965 108,612 89.57%

82.82% 92.59% 90.23% 89.09%

Table 4.15: Cache way partitioning: Cache misses and impact on miss-rate

123

Cache C0 Misses/ C1 Misses/ C2 Misses/ C3 Misses/ Total Impact

Config. Impact Impact Impact Impact Misses

SPEECH 32K, 2K-4SA 4,707 8,761 9,062 4,806 27,336 88.96%

78.84% 92.04% 91.81% 87.89%

64K, 2K-4SA 4,707 8,761 9,062 4,806 27,336 88.97%

78.86% 92.04% 91.81% 87.89%

64K, 8K-4SA 17,103 34,873 35,946 19,014 106,936 90.97%

86.82% 92.50% 92.58% 88.86%

SEC-IMG 32K, 2K-4SA 4,949 9,017 54,712 3,442 72,120 21.84%

74.80% 89.85% 3.64% 56.91%

64K, 2K-4SA 4,949 9,017 42,697 3,442 60,105 18.11%

74.80% 89.85% -6.74% 56.91%

64K, 8K-4SA 18,005 35,897 181,705 11,762 247,369 19.45%

82.41% 89.96% -3.84% 67.80%

SEC-SPCH 32K, 2K-4SA 4,925 6,659 6,903 10,656 29,143 66.99%

76.10% 90.60% 90.44% 32.84%

64K, 2K-4SA 4,924 6,659 6,903 6,143 24,629 82.15%

76.10% 90.85% 90.44% 68.26%

64K, 8K-4SA 17,980 26,435 27,447 21,119 92,981 86.81%

82.78% 91.16% 90.60% 79.86%

Table 4.16: Cache way partitioning: Cache misses and impact on miss-rate (contin-

ued)

124

Config. C0 impact C1 impact C2 impact C3 impact

JPEG-E 1K-2SA 7.89% / 14.89% 0.89% / 1.87% 6.07% / 11.93% 4.56% / 9.13%

4K-2SA 7.99% / 15.14% 0.80% / 1.67% 5.80% / 11.39% 4.51% / 9.03%

1K-4SA 7.90% / 14.94% 0.89% / 1.86% 6.07% / 11.93% 4.56% / 9.13%

4K-4SA 6.94% / 13.19% 0.73% / 1.52% 5.60% / 10.98% 4.58% / 9.17%

JPEG-D 1K-2SA 0.13% / 0.27% 2.95% / 5.50% 2.81% / 5.56% 6.17% / 12.05%

4K-2SA 0.03% / 0.07% 2.72% / 5.06% 2.78% / 5.50% 6.10% / 11.87%

1K-4SA 0.13% / 0.27% 2.95% / 5.50% 2.81% / 5.56% 6.17% / 12.05%

4K-4SA 0.03% / 0.07% 2.69% / 4.99% 2.31% / 4.54% 5.94% / 11.56%

M-INV 1K-2SA 3.12% / 6.31% 8.59% / 16.43% 6.31% / 12.37% 4.70% / 9.36%

4K-2SA 1.68% / 3.47% 4.46% / 8.92% 3.42% / 6.93% 2.36% / 4.84%

1K-4SA 3.12% / 6.31% 8.59% / 16.43% 6.31% / 12.37% 4.70% / 9.36%

4K-4SA 1.67% / 3.45% 4.38% / 8.76% 3.37% / 6.82% 2.35% / 4.80%

Table 4.17: Average memory access latency reduction (32K D-Cache)

125

Config. C0 impact C1 impact C2 impact C3 impact

SPEECH 1K-2SA 0.95% / 1.97% 15.73% / 27.90% 1.88% / 3.88% 0.05% / 0.10%

4K-2SA 0.67% / 1.39% 15.43% / 27.14% 1.41% / 2.92% 0.04% / 0.09%

1K-4SA 0.96% / 2.00% 15.73% / 27.90% 1.88% / 3.88% 0.05% / 0.10%

4K-4SA 0.72% / 1.51% 13.80% / 24.27% 1.36% / 2.81% 0.04% / 0.09%

SEC-IMG 1K-2SA 0.20% / 0.42% 2.25% / 4.59% 1.40% / 2.41% 0.36% / 0.75%

4K-2SA 0.18% / 0.39% 1.35% / 2.77% 0.10% / 0.17% 0.16% / 0.33%

1K-4SA 0.20% / 0.42% 2.15% / 4.39% 1.28% / 2.21% 0.36% / 0.75%

4K-4SA 0.18% / 0.39% 1.37% / 2.79% 0.15% / 0.26% 0.13% / 0.26%

SEC-SPCH 1K-2SA 8.20% / 15.46% 1.38% / 2.87% 11.35% / 19.84% 0.15% / 0.30%

4K-2SA 8.44% / 15.86% 1.33% / 2.77% 6.50% / 11.37% 0.03% / 0.06%

1K-4SA 8.20% / 15.46% 1.38% / 2.87% 16.46% / 28.77% 0.27% / 0.57%

4K-4SA 8.99% / 16.93% 1.74% / 3.60% 5.68% / 9.91% 0.00% / 0.00%

Table 4.18: Average memory access latency reduction (32K D-Cache) (continued)

126

Config. C0 impact C1 impact C2 impact C3 impact

JPEG-E 1K-2SA 7.90% / 14.94% 0.89% / 1.86% 6.07% / 11.93% 4.56% / 9.13%

4K-2SA 8.24% / 15.66% 0.89% / 1.86% 6.06% / 11.91% 4.58% / 9.17%

1K-4SA 7.90% / 14.94% 0.89% / 1.86% 6.07% / 11.93% 4.56% / 9.13%

4K-4SA 8.24% / 15.66% 0.89% / 1.86% 5.97% / 11.73% 4.51% / 9.03%

JPEG-D 1K-2SA 0.13% / 0.27% 2.95% / 5.50% 2.81% / 5.56% 6.17% / 12.05%

4K-2SA 0.03% / 0.07% 2.84% / 5.30% 2.81% / 5.54% 6.15% / 12.02%

1K-4SA 0.13% / 0.27% 2.95% / 5.50% 2.81% / 5.56% 6.17% / 12.05%

4K-4SA 0.03% / 0.07% 2.79% / 5.20% 2.77% / 5.48% 6.11% / 11.93%

M-INV 1K-2SA 3.12% / 6.31% 8.59% / 16.43% 6.31% / 12.37% 4.70% / 9.36%

4K-2SA 1.73% / 3.57% 4.53% / 9.07% 3.49% / 7.06% 2.43% / 4.97%

1K-4SA 3.12% / 6.31% 8.59% / 16.43% 6.31% / 12.37% 4.70% / 9.36%

4K-4SA 1.69% / 3.49% 4.48% / 8.98% 3.48% / 7.03% 2.41% / 4.94%

Table 4.19: Average memory access latency reduction (64K D-Cache)

127

Config. C0 impact C1 impact C2 impact C3 impact

SPEECH 1K-2SA 0.96% / 2.00% 15.73% / 27.90% 1.88% / 3.88% 0.05% / 0.10%

4K-2SA 0.81% / 1.68% 16.64% / 29.27% 1.58% / 3.28% 0.05% / 0.10%

1K-4SA 0.96% / 2.00% 15.73% / 27.90% 1.88% / 3.88% 0.05% / 0.10%

4K-4SA 0.71% / 1.49% 16.44% / 28.93% 1.50% / 3.10% 0.04% / 0.09%

SEC-IMG 1K-2SA 0.20% / 0.42% 2.75% / 5.61% 2.66% / 4.75% 0.36% / 0.75%

4K-2SA 0.19% / 0.40% 1.59% / 3.25% 0.42% / 0.77% 0.37% / 0.77%

1K-4SA 0.20% / 0.42% 2.60% / 5.32% 2.19% / 3.91% 0.36% / 0.75%

4K-4SA 0.19% / 0.40% 1.44% / 2.95% 0.23% / 0.41% 0.16% / 0.34%

SEC-SPCH 1K-2SA 8.20% / 15.46% 1.38% / 2.87% 16.89% / 29.53% 0.28% / 0.59%

4K-2SA 9.01% / 16.96% 1.38% / 2.86% 16.71% / 29.22% 0.42% / 0.88%

1K-4SA 8.20% / 15.46% 1.38% / 2.87% 16.89% / 29.53% 0.28% / 0.59%

4K-4SA 8.93% / 16.80% 1.38% / 2.86% 6.53% / 11.41% 0.03% / 0.06%

Table 4.20: Average memory access latency reduction (64K D-Cache) (continued)

128

Config. C0 impact C1 impact C2 impact C3 impact

JPEG-E 16K, 1K-4SA 7.89% / 14.93% 0.89% / 1.86% 6.07% / 11.93% 4.56% / 9.13%

32K, 1K-4SA 7.90% / 14.94% 0.89% / 1.86% 6.07% / 11.93% 4.56% / 9.13%

32K, 4K-4SA 8.24% / 15.66% 0.89% / 1.86% 6.06% / 11.91% 4.58% / 9.17%

JPEG-D 16K, 1K-4SA 0.03% / 0.07% 2.95% / 5.50% 2.81% / 5.56% 6.17% / 12.05%

32K, 1K-4SA 0.13% / 0.27% 2.95% / 5.50% 2.81% / 5.56% 6.17% / 12.05%

32K, 4K-4SA 0.04% / 0.09% 2.84% / 5.30% 2.81% / 5.54% 6.15% / 12.02%

M-INV 16K, 1K-4SA 3.12% / 6.31% 8.59% / 16.43% 6.31% / 12.37% 4.70% / 9.36%

32K, 1K-4SA 3.12% / 6.31% 8.59% / 16.43% 6.31% / 12.37% 4.70% / 9.36%

32K, 4K-4SA 1.73% / 3.57% 4.53% / 9.07% 3.49% / 7.06% 2.43% / 4.97%

Table 4.21: Average memory access latency reduction with cache way allocation

129

Config. C0 impact C1 impact C2 impact C3 impact

SPEECH 16K, 1K-4SA 0.96% / 2.00% 15.73% / 27.90% 1.88% / 3.88% 0.05% / 0.10%

32K, 1K-4SA 0.96% / 2.00% 15.73% / 27.90% 1.88% / 3.88% 0.05% / 0.10%

32K, 4K-4SA 0.81% / 1.68% 16.64% / 29.27% 1.58% / 3.28% 0.05% / 0.10%

SEC-IMG 16K, 1K-4SA 0.20% / 0.42% 2.80% / 5.71% 0.73% / 1.26% 0.36% / 0.75%

32K, 1K-4SA 0.20% / 0.42% 2.80% / 5.71% -1.11%/ -1.98% 0.36% / 0.75%

32K, 4K-4SA 0.19% / 0.40% 2.65% / 5.42% -0.57%/ -1.04% 0.37% / 0.78%

SEC-SPCH 16K, 1K-4SA 8.20% / 15.46% 1.38% / 2.86% 16.89%/ 29.53% 0.23% / 0.48%

32K, 1K-4SA 8.20% / 15.46% 1.38% / 2.87% 16.89%/ 29.53% 0.28% / 0.58%

32K, 4K-4SA 9.01% / 16.96% 1.38% / 2.86% 16.90%/ 29.56% 0.43% / 0.89%

Table 4.22: Average memory access latency reduction with cache way allocation

(continued)

130

Chapter 5

Low-Cost and Energy-Efficient Distributed Synchronization for

Embedded Multiprocessors

5.1 Overview

The ever increasing demands of many modern applications for consolidated

functionality, including multimedia, data, communication, security and many other

capabilities coupled with increased integration densities have resulted in the adop-

tion and utilization of embedded multiprocessor implementation platforms. Such

application domains include smart phones, portable media players, navigation de-

vices, and many others. While trying to meet the performance requirements of

such applications, embedded multiprocessor systems have encountered challenges

that are specific to these architectures and application domains, such as energy effi-

ciency concerns in battery-powered devices and real-time performance requirements

for many time-critical tasks. These domain specific requirements have resulted in

new lines of research efforts aiming at adopting and optimizing general-purpose

hardware and software organizations to the low-power and real-time requirements

of the modern embedded applications.

Multiprocessor architectures for the embedded domain have given rise to some

unique problems not present in uni-processor embedded systems, such as inter-core

131

communication, synchronization, data/code sharing, etc. These issues present chal-

lenges for embedded system designers and open new frontiers for developing novel

embedded system architectures. The typical availability of application-specific infor-

mation present at design time has enabled a new set of optimization strategies that

aim at capturing and exploiting this information at run-time, in order to achieve

energy-efficiency and time-deterministic performance for the particular application

program or set of tasks to be executed. One such problem that arises in embedded

multiprocessors is the typical need for synchronization among the threads executing

on the processor cores. Such functionality is needed in almost all instances where

execution progress, data sharing, and communication between the parallel threads

need to be carefully orchestrated. It is usually the responsibility of the program-

mer (or in recent developments of parallel compilation environments, the compiler)

to properly use the set of available synchronization operations in order to ensure

deterministic event ordering and proper communication between the threads.

Several well known synchronization primitives are usually made available to

the software developers/compilers by system libraries or directly by the operat-

ing system. Frequently used synchronization primitives include locks, barriers,

semaphores, and monitors. At hardware level, however, various implementation

approaches are being used based on the underlying hardware architecture. Their

implementation is often based on certain atomic operations provided by the hard-

ware. Conventional examples of such atomic operation implementations include the

paired instructions of load-linked and store-conditional, or an atomic test-and-set

instruction. Such atomic primitives ensure that a software implementation of a

132

synchronization primitive would access a certain synchronization variable and sub-

sequently modify it, without this variable being modified by another core in the

process.

While such implementation provides a general-purpose support for a com-

prehensive set of synchronization primitives, its generality comes with the price of

significant power and inter-core communication overheads. It has been known that

such synchronization can result in severe bus traffic contention when multiple pro-

cessors compete for the same synchronization variable [10, 12]. In the case when

no local caching is available (or when no cache coherence mechanism exists) the

processors need to poll the synchronization variable, thus polluting the interconnect

to memory with a large amount of traffic and also expending a significant amount

of power. When coherent caches are present, the polling is performed at the local

cache by the spin-lock synchronization primitive, which, however, does not resolve

the power problem; significant bus contention ensues too when a processor releases

the synchronization variable, which leads to invalidations and subsequent misses in

all remote caches. For all these cases the latency of acquiring a synchronization

variable is significant. Even requesting an available synchronization variable may

take several bus transactions before the processor acquires it. Moreover, even in

the presense of coherent caches, the need to read and modify the synchronization

variable normally results in two bus transactions.

All these problems stem from the need that all the processors compete to

read and modify a shared variable (the synchronization variable) without any im-

posed ordering. Recently several research projects have proposed hardware based

133

solutions [78], where a special and centralized hardware controller is introduced

that keeps track of the participating tasks and communicates with them to manage

synchronization. Such a solution normally achieves much better synchronization

performance compared to the general-purpose implementations as it imposes an or-

der in acquiring the synchronization variable by effectively maintaining a queue of

the requesting processors for each synchronization variable. In such solutions, how-

ever, all the communication in acquiring, releasing, and granting the synchronization

variable is routed through the centralized controller. Consequently, to acquire an

available lock two communication transactions are still required: one from the re-

questing processor and one from the controller to grant the access. The controller

can also result in silicon area and chip routing overheads, especially in smaller scale

multiprocessors if it is to be connected with each core through dedicated communi-

cation links.

In this work[127, 126], we propose a completely distributed and decentralized

synchronization architecture to address the aforementioned problems. The pro-

posed organization is specifically applicable to shared memory multiprocessors with

the cores accessing the memory through a shared system bus. Local to each pro-

cessor, a very light-weight hardware controller is introduced, which captures the

synchronization variables of interest to the local processor. In this way, each proces-

sor participates in a completely decentralized and distributed protocol of acquiring

and releasing a synchronization variable. Each such local controller monitors the

bus for “acquires” and “releases” of synchronization variables of local interest and

maintains a precise state of the global status for each variable. The proposed orga-

134

nization requires no atomic operations for accessing and modifying main memory as

it relies on the dedicated hardware controllers to manage synchronization and on the

inherent serialization that the system bus imposes on the one-way transactions from

processors to memory and vice versa. Best case lock acquisition latency (when the

synchronization variable is available) of zero bus transactions is achieved, with the

only delay of the core acquiring the bus for communication. Significant performance

and power improvements are achieved through this organization. The end results

is that the semantic of queued locks is implemented in a completely distributed

manner with a near-zero latency lock acquisition and release. The approach

also eliminates bus contention due to synchronization competition, while providing

opportunities for precise and fine-grained power management to significantly

reduce the energy expended while the processors wait on synchronization.

5.2 Related work

A large body of research works exist related to the synchronization problems

in multiprocessor systems. The performance impact of synchronization due to bus

contention and global communication has been recognized from various perspectives

[9, 10, 74, 122, 115]. As observed in these studies, synchronization operations re-

sult in significant communication overhead, when multiple processors compete for

a synchronization variable, thus causing performance degradation. Furthermore,

synchronization operations usually result in elevated power consumption [64, 35].

When a local processor is waiting for its turn to acquire certain synchronization

135

variable, it needs to repeatedly access the cache or memory in order to check for

the latest status, while the rest of the processor has no useful work to do but idling.

This may lead to significant waste of energy [64].

In [122], the authors propose a light-weight distributed synchronization method

in point-to-point communication applications. The approach encodes the global data

dependencies between two processors directly in their memory accesses. In this way,

PEs dynamically check load/store instructions and infer dependencies set at compile

time. Control and communication with global storage architectures are improved,

enabling finer grained parallelism and synchronization for applications with strong

dependencies. In [9] and [98], the authors propose the Lock Cache organization. The

lock cache mechanism implements synchronization in a dedicated and centralized

hardware controller. Synchronization sections are distinguished into long Critical

Sections (CS) and Short CSs, which are handled by the Lock Cache Controller. With

task preemption support from the RTOS, the Lock Cache achieves good performance

for database like applications. This approach, however, implements the Lock Cache

Controller in a centralized fashion, which may lead to potential scalability concerns

with increasing number of processors in the system. In [82], a compiler-only solution

for multitasking synchronization has been presented. The efficiency of a serializing

compiler is analyzed in terms of memory usage and performance.

A light-weight barrier-based parallelization support for non-cache-coherent

MPSoC platforms has been proposed in [74]. A cost-efficient barrier implemen-

tation for the specific targeted architecture is outlined. In [64], the authors propose

the thrifty barrier mechanisms addressing the power problem in general-purpose

136

multiprocessor systems. By carefully predicting and monitoring barrier stall times,

processors are placed in low-power modes and speculatively resumed when the bar-

rier release is predicted. The authors lay out solid analysis of the various possibilities

with existing power-saving mode in existing CPUs and the trade-offs between cost

of entering/existing a power-saving mode and the potential benefit from that par-

ticular mode. The results are promising in terms of reduced energy consumption.

However, that approach only deals with power-saving with barriers. We think other

synchronization primitives such as spin-locks are also commonly used in parallel

programs and should be given equal importance in addressing power concerns.

In [135], the Synchronization State Buffer (SSB) is proposed for fine-grain syn-

chronization on many-core architectures. The hardware buffers are introduced to

the memory controller of each memory bank. Based on the observation that only a

small number of data units participate in synchronization activities, the SSB mech-

anism achieves efficient fine-grain synchronization on many-core platforms through

a combination of hardware and software mechanisms. A fast barrier synchronization

implementation for exploiting fine-grained data parallelism with chip multiproces-

sor platforms is proposed In [100]. A barrier filter mechanism is introduced, which

includes hardware tables residing at cache banks as well as operating system sup-

port. It observes cache invalidation requests from the bus and performs barriers

by filling specific barrier cache lines. In [114], techniques are proposed that aim

at improving performance of multiprocessor’s synchronization mechanisms, espe-

cially for simultaneous multithreaded (SMT) machines. The lock box mechanism

is introduced which optimizes synchronization between threads on the same pro-

137

cessor. In [36], the authors propose a set of architectural primitives for process

synchronization in large scale multiprocessors. Queuing method is used with these

primitives to reduce number of operations on the interconnect. A software solution

for the contention and scalability problem of multiprocessor system synchronization

is proposed in [77]. Synchronization algorithms are presented that keep processors

spinning on locally accessed flag variables while minimizing remote communications.

Generic techniques to accelerate software synchronization primitives are proposed in

[84]. The approach uses atomic memory Read-Modify-Write (RMW) instructions.

Hybrid primitives are proposed which exploit the uncached RMW instructions to

reduce the latency of the arbitration phase. In [28], the authors identify and quan-

tify the performance deficiencies of conventional barrier implementations on large

shared memory machines, based on which they propose a queue based barrier im-

plementation which aims at reducing the round trip network latencies. In [43], the

hot-spot accesses to the memory modules caused by synchronization are targetted

so as to reduce their latencies. A single-stage shuffle-exchange combining network

is proposed as a compromise between multistage combining networks and dedicated

synchronization buses, so as to trade between performance and cost. In [51], the

communication and synchronization challenges with the MIT Multi-ALU Proces-

sor (MAP) chip are described. The architecture aims at achieving good fine-grain

thread-level parallelism. Thread synchronization is implemented by blocking on

specific registers or by executing a special fast barrier instruction.

All these projects address various aspects of synchronization in multiprocessor

systems. Nonetheless, a few of them focus on embedded multiprocessors. Such em-

138

bedded platforms are increasingly becoming the implementation of choice for many

modern embedded applications and devices with strict power, data throughput, and

real-time performance requirements.

The synchronization architecture proposed in this work is completely dis-

tributed and achieves very fast lock acquisition, eliminates bus contention traffic,

and enables very fine-grained and flexible power management. It is suitable for

multithreaded applications, as well as programs exploiting fine-grained parallelism,

which normally incur a high performance and bus bandwidth overhead due to syn-

chronization.

The remaining of the paper is as follows. Section 5.3 analyzes the advantages

and disadvantages of conventional synchronization implementations and introduces

the fundamental idea for a distributed synchronization implementation. In Section

5.4 we detail our technique, which spans across hardware, compiler and operating

system layers. We outline the implementations for locks and barriers using the

proposed approach. In Section 5.6 we present our experimental study.

5.3 Functional Overview

Synchronization is one of the major challenges in parallel systems. The imple-

mentation of synchronization primitives has a direct and significant impact on the

system performance and power, and can thus influence the way many applications

are actually parallelized. In this work we introduce a novel distributed synchroniza-

tion organization for fast and power-efficient synchronization primitives, especially

139

suited for shared-memory, symmetric multiprocessor architectures.

Conventional general-purpose synchronization implementations rely on atomic

operations to access and modify certain memory locations. Such a support enables

the processors to exclusively access a synchronization variable and setting it up

as “acquired”. In many implementations, such as for the most common lock, the

processors compete for such an access and whoever succeeds is “granted” the syn-

chronization variable, while the other processors continue their attempts. Many

other higher level primitives, such as barriers, semaphores, and monitors are built

in a similar way or by using locks. While such synchronization implementations are

general-purpose and impose small hardware and ISA requirements (some assume

coherent caches), they can be extremely inefficient in terms of both performance

and power consumption.

Since the processors have no knowledge as of the global status of the synchro-

nization variables, they all compete for the access to the shared synchronization

variable by overwhelming the system interconnect with transactions. Three ma-

jor problems and overheads ensue when the traditional synchronization primitives,

such as locks or barriers, are employed in shared-memory, symmetric multiproces-

sor organizations. First, even in the presence of coherent caches, at the moment a

synchronization variable is released, all the processors waiting for it enter another

competing cycle, which results in a burst of bus traffic. Such bursts of bus band-

width utilization are due to the cache coherence traffic. Second, when a processor

attempts to acquire a synchronization variable when it is not available, it needs

to continuously poll for it and thus generate significant bus traffic, or in the case

140

of coherent caches, to continuously read it from the local cache until its remote

invalidation. This can be extremely energy inefficient, due to the large number of

bus transactions and the polling to the cache and memory structures. Third, the

latency of acquiring an available synchronization variable is quite high, since it usu-

ally entails at least two bus transactions. Since this is the most common situation

when performing synchronization operations, it can contribute to a significant per-

formance overhead especially for applications that exploit fine-grain parallelism with

frequent synchronization points.

A centralized solution [78] can alleviate the polling energy and the bus traffic

caused by competing accesses, especially for distributed memory organizations and

network-on-chip designs. However, as mentioned in the previous section, it does not

solve the best-case (and also common case) acquisition latency problem since lock

acquisitions and releases will always have to be controlled by the remote centralized

controller. For the most common case of obtaining an available synchronization

variable, the processor must send a request transaction and subsequently receive a

grant from the remote synchronization controller. Furthermore, such a controller

will have to compete for the memory bus or use dedicated communication lines

to the processors, which could result in a significant hardware area cost and chip

routing overhead.

141

Processor P
requests L

i Processor Pj
releases L

3 processors ahead
of local Pt

Total number of processor
attempting to acquire L

....

Queue for lock L

i j

Local processor Pt

t

(AHEAD)(TOTAL)

Figure 5.1: Distributed lock queue information

5.3.1 Distributed Queue Abstraction Model

The proposed distributed synchronization architecture addresses the perfor-

mance, latency, and power problems of the traditional synchronization implemen-

tations. Each processor is assigned a local light-weight controller that observes the

sequences of remote acquisition attempts and synchronization releases and partic-

ipates in a very low-cost and efficient distributed protocol for lock acquisition and

release. By monitoring the system bus, each local controller is able to construct a

state (per synchronization variable) representing how many remote processors are

waiting for the synchronization variable and have requested it before the local pro-

cessor, as well as the total number of processors currently waiting for the variable.

A remote release observed on the bus results in decrementing the number of proces-

sors waiting for the variable before the local processor. When this number reaches

zero, the local processor immediately acquires the lock. After the local processor

exits its synchronization section, it informs the local controller to release the lock,

which results in a bus transaction informing the remote processors that the lock has

been released. In this way, the next processor in the global queue with a local state

142

indicating that there is no processors in-front of it can, thus, immediately acquire

the lock.

Fundamentally, a distributed and completely decentralized implementation of

a queuing mechanism is implemented as each local controller maintains the minimal

amount of information needed to represent the relevant queue of remote processors

waiting to acquire the synchronization variable and the position of the local pro-

cessor within it. Figure 5.1 illustrates the data structure that is captured by each

local controller, and the minimal information needed to capture the structure with

respect to the local processor. Each processor needs to maintain the information

regarding its position within the queue; it also needs to be able to update this in-

formation as remote processors are requesting and releasing the lock. The relevant

information about this can be captured by two variables represented through up-

down counters, shown in Figure 5.1. The TOTAL register captures the total number

of processors in the queue i.e that have requested the lock, but are still waiting for

their turn. The AHEAD register captures the number of processors that are ahead

in the lock queue with regards to the local processor. Clearly, when AHEAD be-

comes zero (down from a non-zero) it is the local processor’s turn to acquire the

lock. The same mechanism is implemented at all the processors in the system. In

this way, no single processor captures the entire queue of waiting processors. How-

ever, from the pieces of information captured at each processor the entire queue

can be easily constructed if needed. This distributed queue abstraction enables the

utilization of distributed hardware controllers at very low cost with highly efficient

synchronization performance.

143

(1) if (RemoteAcquire)

(3) if (RemoteRelease)

(1) if (LocalAcquire) {
(2) send Acquire(Lock) on the bus;

(4) Grant local access;
(5) else
(6) AHEAD = TOTAL; }
(7) if (RemoteRelease) {
(8) if(AHEAD != 0)

(10) if (AHEAD == 0) Grant local access; }

AHEAD register:

TOTAL register:

(2) TOTAL=TOTAL + 1;

(4) TOTAL = TOTAL −1;

(9) AHEAD = AHEAD − 1;

(3) if(TOTAL == 0)

Figure 5.2: Local lock queue management

Maintaining the TOTAL and AHEAD registers can be achieved by only mon-

itoring the bus for remote acquire attempts and releases to that particular lock.

Clearly, acquires and releases generated by the local processor would also have to

be taken into account in this process; they also need to be placed on the bus so

that the remote processors can accordingly adjust their local state regarding this

lock. Figure 5.2 illustares the functionality required to maintain the TOTAL and

the AHEAD registers for each lock, as well as the detection mechanisms for when it

is the local processor’s turn in acquiring the lock. It is evident that this functionality

can be achieved through a rather simple finite-state machine controller and the pair

of registers per synchronization variable.

5.3.2 Synchronization Efficiency with Distributed Queues

The proposed protocol has the distinct advantage of near zero-latency lock

acquisition. When the lock is globally available, the processor does not have to

144

wait for a synchronization variable to be atomically brought back from memory or

to be acquired from some remote centralized controller; the only latency incurred

would be the latency for the local controller to acquire the system bus in order to

send a lock acquire announcement - this operation is represented by Step 2 in the

functional description for the AHEAD register. In the case of a lock just being

released by the last processor that has requested it before the local processor, the

synchronization variable is acquired at the moment the local controller observes the

release operation on the common bus. Such lock acquisition is in effect instantaneous

as it can be triggered in the same clock cycle during which the remote release was

observed. Furthermore, since there is no contention through atomic operations for

the synchronization variable, it takes only two bus transactions per task/processor

in its operation to acquire and release the synchronization variable regardless of the

timings of parallel requests. This is the direct benefit from the queuing mechanism.

Acquire requests may occur concurrently with remote processors. However, the

system bus will serialize the requests and all the local controllers will update their

TOTAL and AHEAD counters accordingly.

Since the local synchronization controllers have the necessary information re-

garding the global status of the synchronization variable, they can provide for fine-

grained power management policies on the local processor. This is also due to the

very low cost implementation of each hardware synchronization controller which

handle synchronization operations while the rest of the functional units are idle. If,

for example, the local task needs to wait for the lock to be acquired (as in the case

of spin-locks), the controller can gate either the entire pipeline or the most power

145

consuming components, such as the access to caches. In this way, the processor can

be switched into a low-power mode very efficiently, and resumed at the exact mo-

ment when the synchronization variable is to be acquired. In the cases of non-trivial

wake-up logic, the procedure can be initiated in advance as the local controller has

a complete information as of the number of tasks/processors, which are in front of

the local task in the lock queue.

The local synchronization controllers can also work cooperatively with the OS.

The OS allocates the synchronization variable information in the controller’s internal

structures. Furthermore, the OS can utilize different power-saving policies and

resume policies based on (and controlled by) the particular application requirements

in order to make the best trade-off between performance and power. On the other

hand, due to the fact that many power saving techniques, such as clock-gating and

power-gating, are often strongly dependant on specific hardware implementations,

the actual parameters may differ greatly between different implementations. There

are often considerable penalties associated with entering and exiting the different

levels of power saving modes, which necessitate flexibility and tuning to the actual

implementations. In view of these, it will be beneficial to provide interface to the

operating system and to the system designers who can then implement a custom

power-saving policy on the particular multiprocessor platform.

146

5.4 System Architecture

The proposed distributed synchronization architecture requires the hardware

support in the form of the local synchronization controllers. We refer to this hard-

ware block as a Distributed Synchronization Controller (DSC); an identical instance

of it (of course, with different run-time state) is assigned locally to each proces-

sor node in the system and operates independently from the other controllers by

reacting to the synchronization requests/releases placed on the bus by the remote

processors.

There exist several synchronization primitives that have been used in the area

of parallel programing and systems. In this work, we present how our distributed

organization implements locks and barriers. We demonstrate the DSC implemen-

tation similarities of these two primitives which reduces the DSC complexity. Most

of the other synchronization primitives can be derived from locks and barriers; thus,

they can be either implemented in the DSC in a similar manner, or emulated by

software in the synchronization library.

5.4.1 Synchronization Variable Identification

Since each lock/barrier is assigned an entry in the DSC, a mechanism is needed

to identify the locks/barriers and their DSC entries. Conventional synchronization

implementations utilize atomic operations to access certain memory locations and

set them to special values to denote ownships of associated synchronization variables.

In the proposed approach, a synchronization variable is still assigned a memory

147

location within a known page/segment of the memory address space. Since our

approach does not require that any particular value is written to or read from

that memory location, its address is used for the sole purpose of broadcasting the

lock acquire and releases on the bus by means of normal read and write memory

transactions to that address. A group of the least significant bits of this memory

address is used to uniquely identify the corresponding synchronization variable. It

is also used to identify the specific DSC entry. We refer to this value as a LockID

or a BarrierID. The number of bits that is actually used to represent a LockID is

determined by the maximum number of synchronization variables that will be used

in the system. In our experimental benchmarks, including Splash-2, Mediabench,

and a number of signal processing applications, this number never exceeds 10, and

thus we have adopted 4-bit IDs.

It is noteworthy that the DSCs need not simultaneously capture all the locks

and barriers used by the program. Often times, the set of locks/barriers used by

the set of parallel threads comprising the program are actively used only in small

sets as the program executes different phases. At any moment, the DSCs only need

capture the set of locks/barriers that are currently used by some threads. That

is, if at least one thread attempts to acquire a lock, an entry for this lock must

be allocated and activated at all the DSCs associated to processors that execute a

thread using this lock. This will ensure that the queue state of that lock is properly

maintained and when the local threads attempt to use that lock, the proper queue

state will be captured by the DSC and the synchronization operation carried out

successfully. If for some application the DSCs entries are exhausted then traditional

148

lock implementation can be used instead for the remaining locks/barriers that cannot

fit in the DSC.

A lock acquire operation can be modeled as a normal read from the address

of that lock, while a lock release is modeled as a write operation to that location.

The particular values written or read are of no importance. The synchronization

variable memory segment or page number, which corresponds to a group of the most

significant address bits of the variables, is used by the DSCs to determine whether

a read/write request to this location is an acquire/release operation rather than

actual memory accesses. A write or a read command to that memory location, cou-

pled with the known memory page or segment where locks are allocated is sufficient

to represent an ”acquire/release lock” command or ”enter/exit barrier” command,

which will be identified and reacted to by the DSCs. In a subsequent subsection

of this work we discuss an alternative approach for lock acquisition/release oper-

ations that uses instead two dedicated lock acquire/release operations. DSCs are

activated only on those commands, which eliminates the need to snoop on the bus

for multiple address bits. Clearly, this approach to lock/barrier identification does

not impose any extra requirements on the bus organization, as only traditionally

supported read/write operations are used. If the system bus supports additional

control operations, special Acquire and Release transactions can be used, with a

parameter corresponding to the lock-ID. These transactions can be triggered by

special lock acquire and lock release instructions. In this way, the local DSCs would

monitor the bus for such transactions only.

149

5.4.2 Distributed Synchronization Controller

The Distributed Synchronization Controllers (DSC) are small controllers asso-

ciated to each processor core that manage the synchronization variables used by the

tasks on that processor. They receive synchronization requests from the local pro-

cessors such as “acquire a lock”, “release a lock”, “enter a barrier” and also monitor

the system bus for relevant synchronization activities from remote processors, so as

to gather enough information for local synchronization operations.

The major part of every DSC is a table of entries for synchronization variables

which are mapped to memory locations. Apart from the synchronization variable

IDs, each entry contains the two registers, AHEAD and TOTAL, which capture the

queue status with respect to the local processor. The number of bits required for

these registers is determined by the total number of processor cores in the system.

A 4 processor system, for instance, requires only 2 bits for each register, which sums

to 4 bits for each entry. Likewise, a 16 processor system requires only 4 bits per

register. These arrangements have made the additional hardware support trivial in

terms of both area and power as well as scalability.

The lock or barrier ID, corresponding to a group of least significant bits from

the address is used to lookup the DSC for that entry. One approach would be to use

a CAM-based parallel lookup. Since the DSC size is very small (16 entries in our

study) and the LockID used as a key is relatively short (4-6 bits wide - corresponding

to the total number of lock/barrier that need to be supported through the DSC),

such a parallel lookup will be very fast and consume a trivial amount of power. An

150

alternative organization will be to use the LockID/BarrierID directly as an index

into the DSC entry. This approach will be very efficient if all the processors in the

system work with the same set of synchronization variables. This situation occurs

when the application expoits loop parallelism with worker threads mapped to all

the processors. However, if the processors use different synchronization variables,

this may result in underutilization of the DSC entries. This can occur since the

locks/barriers have unique identifiers mapping them to DSC entries. If a processor

does not use a particular lock, its DSC entry will remain unused. In this case,

the synchronization variable IDs are not physically stored in the hardware. Yet,

another implementation approach that still uses the variable IDs as an index into

the DSC while avoiding the DSC underutilization problem is to employ an additional

mapping register/table, which will be indexed through the LockID and will provide

the actual DSC index, if that lock/barrier is relevant to the local processor. However,

since the mapping can be managed by the operating system, DSCs on different

processors could have different mappings, which gives the system designer more

flexibility to make more efficient use of hardware DSC entries, when subsets of

processors synchronize on different synchronization variables.

Figure 5.3 illustrates the DSC internal organization. It consists of a number of

entries that correspond to synchronization variables, such as locks and barriers. For

each entry, the controller registers the synchronization variable’s ID. This ID can

be set when the thread/task is loaded onto this processor by the operating system

or the program loader. Alternatively, the DSC can be setup just prior to entering a

program phase that uses a particular set of synchronization variables. Here we have

151

Acquire
to Bus

....

....

B
ar

rie
rs

....

....

....

....

Lock ID1

Lock ID2

Lock ID8

Barr. ID1

Barr. ID

Barr. ID

2

8

TOTAL1

TOTAL2

TOTAL8

TOTAL1

TOTAL2

TOTAL8

AHEAD1

AHEAD2

AHEAD8

AHEAD1

AHEAD2

AHEAD8

Lo
ck

s

Control

TOTAL

AHEAD

RmtAcq

RmtRel

LocalRel

LocalAcq

Release
to Bus

New AHEAD
New TOTAL

Figure 5.3: Distributed Synchronization Controller (DSC) organization

assumed that the Lock/Barrier ID is captured in the DSC and a parallel lookup is

performed. As discussed above, an alternative implementation is also possible where

the ID is mapped to a DSC index through a small set of registers. In this case, even

the ID field is eliminated from the table.

Two counters/registers are associated with each synchronization variable. The

TOTAL and AHEAD counters for each lock/barrier used by the local task are allo-

cated an entry in the DSC. They together denote the position of local processor in a

lock queue. These two registers record synchronization activities both from remote

processors and from the local processor that access the corresponding synchroniza-

tion variable. The algorithm of how they function is described in the following

sub-sections.

On a bus transaction representing a remote lock acquire or release, or on a

local acquire or release, a simple control logic is used to update the registers. The

DSC controller implements the functionality described in Figure 5.2 for lock imple-

mentation. This controller contains two comparators and an increment/decrement

module for the TOTAL register, and a decrement unit for the AHEAD register.

152

The DSC controllers are managed by the operating system. When a program is

loaded onto a processor, the OS sets the ID field of each synchronization variable that

is used in the specific thread/task. Initial value of TOTAL and AHEAD registers

are set to zero, which means no other processor is waiting for the lock and no one is

waiting ahead in the queue. As for barriers, the OS sets the TOTAL counter value

according to program information and sets AHEAD equal to TOTAL. Although the

DSC controller can implement and control simple power saving techniques such as

blocking accesses to certain structures like caches, or power-gating certain functional

units, the actual implementation can delegate some of these capabilities to the

operating system. In this case the system developers are given more flexibility to

fine-tune the implementation to the underlying system platform. Also, since many

power saving techniques, such as clock-gating and power-gating, exhibit considerable

penalties associated with their applications, which are dependant on several physical

parameters specific to the underlying hardware, it may be more prudent to let the

developers to tune the DSCs and the corresponding power saving policies to these

parameters so as to maximize the power savings.

5.4.3 Lock implementation

An algorithmic description for lock implementation is shown in Figure 5.2.

For lock implementation, the TOTAL register captures the total number of remote

processors that are waiting to acquire the particular lock. TOTAL is incremented

when a remote processor sends an “acquire(lock)” command on the bus - for a

153

typical bus this could be a read command to the location for that lock. Similarly, it

decrements when a remote processor broadcasts a release for the lock in the form of a

write to the lock address. In this way, when the local processor issues “acquire(lock)”

command, it knows immediately how many processors are waiting in the queue,

without the need to request information from other processors or from the shared

memory. The TOTAL register is initialized to zero when the lock is created by the

local thread and allocated into the DSC. When the local processor issues an acquire

to that lock, TOTAL is copied into the AHEAD register, since at that moment all

that have requested are in front of the local processor in that logic queue. The

AHEAD register indicates how many other processors are still waiting before the

local processor can acquire a lock. It decreases monotonically on observing remote

processors releasing the lock. When the AHEAD counter reaches zero, the DSC

determines that all remote processors that were before the local one in queue have

released it and it is safe for the local processor to immediately be granted the lock,

without any bus transactions. As is evident from this description, the TOTAL and

AHEAD registers for a particular lock throughout the system represent the queue

for that lock in a consistent way. Each processor keeps track of its place in the queue

locally without global communication with the other processors. This leaves out the

necessity for a centralized controller that manages the entire system, thus making

the design completely distributed and easy to implement in terms of global chip

routing and performance/power overheads. Additionally, atomic memory operations

and synchronization competition, which constitute the fundamental reason for the

bus traffic contention problem, are no longer needed to construct locks and other

154

TOTAL register:

AHEAD register:

(1) if (LocalHitBar) {
(2) send HitBar(Bar) on the bus;

(4) if(AHEAD == 0) {
(5) Grant local access;
(6) AHEAD = TOTAL; }
(7) if (RemoteHitBar(Bar)) {

(9) if (AHEAD == 0) {

(11) AHEAD = TOTAL; }
(10) Grant local access;

(2) (Set by OS during program load)
(1) TOTAL = constant_num_threads_hit_bar;

(3) AHEAD = AHEAD − 1;

(8) AHEAD = AHEAD − 1;

Figure 5.4: Local barrier queue management

primitives that are based on locks, as the bus serialization property is sufficient for

the DSCs operation.

5.4.4 Barrier implementation

While there exist barrier implementations that are based on locks, which in

turn are based on atomic operations of the underlying platform, they are often

very inefficient in terms of performance and power. At the same time, barriers are

frequently used to orchestrate parallel threads during different stages of program

execution and are also frequently used in data parallel loops. Consequently, efficient

barrier implementation will enable the fine-grain parallelization of many applica-

tions. Here we describe a barrier implementation using the same DSC entries, the

cost of which is as low as the locks described in the previous section. The algorithm

description for barrier implementation is shown in Figure 5.4. The distributed im-

plementation scheme for barriers follows the same concept as locks. This time the

155

TOTAL register captures the constant that corresponds to the number of threads

that must reach the barrier before it is released, which is specified in the program

code. In this scheme, the value in TOTAL does not change during program execu-

tion.

When the barrier entry is loaded into the DSC, the AHEAD register is initial-

ized with the constant held in TOTAL representing the number of threads required

to reach the barrier - this constant is typically provided when the barrier variable

is instantiated and initialized. Subsequently, when the DSC observes on the bus

that another processor has reached the barrier, it decrements the AHEAD regis-

ter. Similarly, when the local processor reaches the barrier, the AHEAD counter

is decremented and a bus transaction is initiated by the DSC to notify the remote

processors that the barrier has been reached locally. This bus transaction can be

modelled, for instance, as a read transaction from the memory location of the bar-

rier (of course, no value is expected from that memory location). Similar to locks, if

the bus can support extra commands, a dedicated synchronization transaction type

can be defined for reaching a barrier, which will carry the Barrier-ID needed for

the remote DSCs to update their states. When the AHEAD register reaches zero, it

means that all the threads have reached the barrier (and for all of them the AHEAD

register will decrement to zero) and all the DSCs signal their local processor to pro-

ceed execution and leave the barrier. At that moment the AHEAD register is loaded

back the constant from the TOTAL and in this way the distributed procedure is

re-initialized for that barrier.

It is noteworthy that the bus transaction overhead for implementing barriers

156

Suspend/
Resume

Acquire/
Release Lock

Acquire/
Release Lock

Cache
DSC

Lock Acquire

Lock ReleaseSystem Bus

Processor

Cache

DSC

Processor

Figure 5.5: Overall system organization

through the DSC is drastically reduced to a single bus transaction per thread. Each

thread/processor notifies the rest of processors that is has reached the barrier by

placing the “reach-barrier” bus transaction. When the last thread reaches the bar-

rier the AHEAD counter is decremented to zero, the “reach-barrier” transcation is

placed, and the local processor is signaled to continue execution, i.e. the barrier

instruction returns control immediately. When that bus transaction is observed by

the remote processors, their AHEAD counters similarly are decremented to zero and

the execution control is released at these processors as well.

It is evident from the above description that the implementation of barriers is

very similar to that of locks, based on the same DSC structures. This helps greatly

reduce the complexity of the DSC controllers and lower the cost of DSCs that

support multiple types of synchronization primitives. Most other synchronization

primitives can be constructed in a similar way.

157

5.4.5 Power Management

By having the DSCs handle most synchronization operations, it becomes pos-

sible to place the local processor in various power down modes, including a complete

shut-down, while the local thread is blocked in a synchronization operation. The

DSC continues its operation while the processor is suspended and resumes the pro-

cessor execution when the synchronization conditions are met. As the local DSC

controllers are extremely small and simple, the achieved power savings would be

significant. We quantify this in our experiments.

ISA-transparent approach. Various power-saving schemes can be explored.

One approach would be to disable the accesses to the data cache for a spin-lock soft-

ware implementation, where the proposed distributed synchronization architecture

is implemented in an ISA-transparent way. In this case, the software implementa-

tion of the lock consists of a small loop, which iteratively attempts to read and set

the lock in an atomic way. The DSC will intercept the execution of the lock read op-

eration by matching the address with the known segment/page for synchronization

variables and will then proceed with its function. Note that such an identification

can be achieved very efficiently, for instance by using a status bit in the TLB or

in the cache line (if virtual memory is not supported) to indicate that the memory

reference is to a synchronization variable. In this way, load instructions will not

trigger address comparison each time they are executed. Subsequently, the lock

availability and its status are determined by the DSC based on the lock entry in

the DSC lock table. When the lock is not yet available the DSC will enforce that

158

the lock load operation returns a result indicating that the atomicity of the oper-

ation has failed. The software implementation will proceed with the next attempt

of acquiring the lock. From this moment on, the DSC with the cooperation of the

cache controller will simply return a lock unavailable status to that lock instruction.

For quick identification of this load instruction, the DSC at this moment can place

its program counter into a latch and until the lock is made available by the remote

processor, return status unavailable to this lock load instruction. The spin-access

to the local data cache and/or remote memory through the bus will be blocked and

thus no power will be spent in such energy inefficient operations. While the task

executes this cache-oblivious spin-lock, the thread library or the operating system

may decide to preempt that task and schedule another task for execution. The DSC

controller can thus handle multiple tasks all waiting for a synchronization variable.

When the DSC detects that a lock has become available due to a remote release,

it will inform the system software (if needed to enable the resumption of the task)

and on the next execution the spin-load will return a lock available status to the

application.

Explicit ISA support. Alternatively, the processor ISA can be augmented

to support dedicated instructions for lock acquisition and release. The two new

instructions are very simple and they would have two register operands. The first

register will contain the LockID of the lock being manipulated while the second

register will indicate the status of the lock acquisition operation (the lock release

instruction will not require such a result register). The lock acquisition instruction

can be implemented with a blocking and non-blocking versions. The blocking version

159

would simply stall the pipeline until it is signalled by the DSC to continue execution

when the lock has become available to the local processor. Clearly, while the pipeline

is stalled the processor will be in a low-power mode as no execution activities are

present. The blocking version will be usefull for systems with no system software

support for power management or no operating system at all. The non-blocking

version will enable the system developer with the help of OS or the thread library

to develop user-controlled power management policies. It will also enable the system

software to perform context switch when a lock is not available and thus schedule

for execution another task while the preempted task waits on the synchronization.

Similar instructions can be introduced for handling barriers. Note that with such an

explicit ISA support, no memory locations need be allocated for actual lock/barrier

variables. A trivial compiler (or OS) support may be needed to allocate unique

identifiers to all the locks and barriers in the system. These special instructions will

also result in special bus transactions to announce to all the processors in the system

whether a lock is acquired or released. This does not require any special hardware

support on the bus, but only a few new control values to be used as indicators for

these types of bus transactions. The system-level power management policies are

described in Section5.5.

5.5 Compiler and OS Support

The role of the compiler/software developer is limited to the instantiation of

the locks/barriers and the allocation of unique addresses for each such synchroniza-

160

WorkerThread2() {

}

.....

.....

.....

acquire_lock(LockID1);

release_lock(LockID1);

barrier(barrID1);

WorkerThread1() {
.....
barrier(BarrID1);

}

}

MainTask() {

....

.....

....

start(WorkerThread1)
start(WorkerThread2)

init_barrier(NumThreads, BarrID1)

init_lock(LockID1)
init_lock(LockID2)

Parallel Program:

Figure 5.6: Example parallel application

tion variable. As explained in the previous section, this address will be used to

form the unique LockID or BarrierID. In the case of dedicated instructions for the

synchronization operation and system bus support for acquire/release commands,

the role of the compiler is to generate the globally unique identifier for each lock and

barrier. This can be easily achieved with an operating system support. As this is

performed during program initialization, no performance overhead will be incurred

in practice.

Subsequently, the operating system (or thread library) ensures that the state

for each lock/barrier is stored in the local DSC. This is performed when the threads

are loaded on the processor nodes. The example code structure presented in Fig-

ure 5.6 illustrates this. The main program initializes the lock and barriers and,

subsequently, spawns the worker threads that use them to synchronize across the

processors. The DSC controllers on different processors can have different sets of

synchronization variables allocated to them depending on what threads are operat-

ing on and the way synchronization is performed amongst them.

161

5.5.1 OS Power Management Role

The proposed methodology does not inherently require an operating system

and can be readily applied to systems with no OS support. In this case, as explained

in Section 5.4.5, the DSCs are used to generate the power management signals. For

instance, the pipeline execution may be suspended as in the case of special lock

acquisition instruction. Alternatively, the access to the power hungry data cache can

be disabled as was described in the previous section, while the processor iteratively

spins in its attempt to acquire the lock. While the lock is not available, the result

of the spin-load instruction will be defined by the DSC (and the cache controller)

to indicate the unavailability of the lock. However, in the presence of OS, more

sophisticated power management techniques can be employed as then the OS can

make informed decisions regarding when and how/whether to suspend the current

task or processor, in order to arrive at the best solution for particular applications.

An efficient OS support can be implemented when non-blocking versions of

the lock acquire and release instructions are supported, as the OS can have a full

control in implementing the power saving policies. When the lock or barriers are

released, the DSC will simply generate an interrupt and inform the local OS. There

are various trade-offs between power and performance that need to be considered.

Many power saving techniques bring along side effects that may harm real-time

performance considerably. For example, the techniques of dynamic voltage and

frequency scaling, clock-gating and power-gating can significantly reduce dynamic

and leakage power. However, when a processor, or some portion of it, is clock-

162

gated or power-gated completely, it takes significant amount of time to power down

the clock trees and other structures and even more time to resume their normal

operation. Some power-gating applications may lead to loss of circuit states. All

these requires sophisticated parameter tuning by system developers, according to

specific physical processor implementations.

Application-specific properties must also be taken into account when deciding

which power management policy to follow. For example, some locks are used in very

short but frequent critical sections. In this case, the application must inform the

system software that the processor must not be placed in deep power saving mode as

the latency of resuming execution will negate the power saving benefits. In this case,

the threads would exhibit very short stall times and thus it will be more beneficial to

just stall the processor pipeline or disable the accesses to the cache structures for the

spin-load instructions. This information transfer can be performed at the time when

the locks/barriers are initialized (during the program/phase initialization) by the

means of control values passed to the OS/thread library. Some locks and barriers,

however, may be used for longer critical sections, such as in many parallel programs

where load-balancing is difficult to achieve. In this case, certain processors in the

system may consistently spend significant amount of time waiting for synchroniza-

tion at every iteration. Consequently, such situations create good opportunities that

large processor structures (or even the entire processor) be turned off during that

time to save power. In such cases a thread may stall for a significant amount of time

waiting for its turn; consequently, more aggressive power down techniques must be

considered. In such power-down policies where the processor is brought down to

163

a very low-power mode through voltage/frequency scaling, the latency of resuming

it may be non-trivial. Since the penalty parameters are specific to the processor

microarchitecture and the underlying process technology, it may be best for the

programmer and the OS to decide what power-saving policies are to be employed

to achieve maximum benefits.

For such cases of long synchronization latencies, the OS could program the

DSC to generate a pre-resume signal earlier in time and just-in time to allow the

processor to restore its voltage/frequency level. Based on an application-specific

information regarding how long it takes for a thread to execute its critical section,

a number of different policies can be adopted. Using profile information as of how

long a thread blocks on a lock or barrier can be one option. This information is

provided to the operating system, which subsequently chooses which power-saving

technique to apply on specific synchronization variables. Furthermore, the operating

system can also initiate the waking up procedure earlier so as to hide its latency from

the actual execution time. In this case the DSC can be programmed to generate

a pre-resume signal. When profiling information is not readily available or the

latency is dynamic, the operating system can still collect run time statistics and

make earlier wake-ups based on that, as proposed in [64]. Such an approach would

require additional hardware support for timing measurements. For short critical

section applications, the DSC can also be programed to do early wake-ups based

on AHEAD register values. For instance, the pre-resume signal can be generated

when there is only one processor left in front of the local processor in the lock queue,

which is reflected by a value of 1 in the AHEAD register. In our experimental study,

164

we have assumed the most conservative power-saving approach.

5.5.2 Multi-tasking support per core

The proposed approach can also be supported in more complex multitasking

environments where multiple tasks can share each processor. If all the locks and

barriers in the system can be allocated within the DSCs then no special attention

is needed in this case. If a resume signal is received at a processor for a task

that is currently preempted, the OS will register this and later when the task is

resumed it will succeed in acquiring the lock. In the case when not all system-

wide synchronization variables can be allocated in the DSCs, then the OS when

performing a task preemption on a processor, will also have to preempt that task

in the other processors (its worker threads) as well. This represents a global task

switch, where no parts of the task (as it can run multiple worker threads by itself)

are left executing. In this case, multiple independent tasks, each executing multiple

threads within it, can be easily supported. During such global task switch, the OS

will have to preserve the relevant DSC state for all the processors where threads

from that task are allocated.

5.6 Experimental results

We have conducted detailed simulations on a set of multitasked parallel ap-

plications. We have chosen the kernel programs from the SPLASH-2 [104], and

the parallelized MPEG encoding/decoding applications from ALPBench [65]. The

165

Task1 Task2 Task3 Task4

S1

S2

S3
S4 S6

S5

Figure 5.7: Data-streaming benchmarks organization.

parallelization method of these programs mostly follows Single Program Multiple

Data (SPMD) fashion, where identical threads are spanwed to operate on a subset

of the input data. We have also constructed a set of benchmarks where each bench-

mark is configured to consist of four parallel threads, each performing one stage of

computation in a stream processing pipeline. The threads communicate through

butterfly buffers and synchronize using standard locks and barriers. The individual

tasks constitute of: FFT, ADPCM, matrix multiplication, data encryption tasks,

lzo-compression, g721, image processing - the blur and the edge-detection, and video

processing. The tasks cover benchmarks from the MediaBench [62] and MiBench

[40] suits, as well as from other open-source image and video processing tools. This

set of programs represents the software pipeline parallelization method, which is

another major type of parallelization for embedded systems. The production and

consumption cycles are interleaved so that at each moment of time the processor is

executing in either a producer or in a consumer critical section. The benchmarks

organization is depicted in Figure 5.7. The multitasking applications are combi-

nations of individual tasks. The ones we have used are: A1={LU, MMUL, AES,

LZO}; A2={FFT, G721, blowfish, SHA}; A3={blur, edge-detection, AES, LZO};

A4={FFT, FDCT, IFFT, AES}, which represent multi-tasked embedded applica-

tions in digital filtering, audio, image, video processing, and security arenas.

166

P1-l P2-l

Baseline DSC Reduct. Baseline DSC Reduct.

4p 529,168 401,172 24.19% 589,168 461,172 21.72%

5p 669,166 525,166 21.52% 773,166 629,166 18.62%

6p 793,168 601,172 24.21% 953,168 761,172 20.14%

7p 933,166 725,166 22.29% 1,161,166 953,166 17.91%

8p 1,057,168 801,172 24.22% 1,365,168 1,109,172 18.75%

Table 5.1: Performance characteristics (in number of cycles) and DSC reductions -

Increasing data set

P3-b P4-b

Baseline DSC Reduct. Baseline DSC Reduct.

4p 525,109 113,128 78.46% 525,111 145,127 72.36%

5p 625,113 113,137 81.90% 625,120 157,136 74.86%

6p 725,106 113,146 84.40% 725,119 169,145 76.67%

7p 825,106 113,155 86.29% 793,121 181,154 77.16%

8p 925,099 113,164 87.77% 893,126 193,163 78.37%

Table 5.2: Performance characteristics (in number of cycles) and DSC reductions -

Increasing data set (continued)

167

P1-l P2-l

Baseline DSC Reduct. Baseline DSC Reduct.

4p 64,526 48,505 24.83% 64,543 48,505 24.85%

5p 64,543 52,527 18.62% 64,563 52,518 18.66%

6p 96,554 72,525 24.89% 96,575 72,543 24.88%

7p 96,571 76,540 20.74% 96,569 75,768 21.54%

8p 128,582 96,545 24.92% 128,580 96,560 24.90%

Table 5.3: Bus bandwidth characteristics (in number of bus transactions) and DSC

reductions - Increasing data set

P3-b P4-b

Baseline DSC Reduct. Baseline DSC Reduct.

4p 128,529 64,516 49.80% 132,526 64,522 51.31%

5p 156,541 80,518 48.56% 164,545 80,523 51.06%

6p 184,561 96,529 47.70% 196,556 96,530 50.89%

7p 212,575 112,535 47.06% 228,563 112,541 50.76%

8p 240,587 128,541 46.57% 260,583 128,550 50.67%

Table 5.4: Bus bandwidth characteristics (in number of bus transactions) and DSC

reductions - Increasing data set (continued)

168

As explained before, the proposed approach reduces greatly synchronization

latency and has the potential to significantly reduce performance overheads asso-

ciated with synchronization. However, most of the benchmarks outlined above are

parallelized at task level and communication/synchronization operations are not as

frequent so as to observe significant performance improvements for the entire pro-

gram. With the emergence and prevalence of chip multiprocessors, applications

exploiting fine-grain parallelisation have become feasible. In view of this, we have

created four such kernel programs, P1-l, P2-l, P3-b, P4-b, that perform frequent data

accesses to shared data. These programs utilize frequent synchronization operations

to access shared data and are able to more adequately evaluate the performance ad-

vantage of the proposed synchronization schemes. In P1-l and P2-l, a lock is used

for mutual exclusion by a set of tasks which iteratively access and modify a shared

state. The benchmarks consist of identical threads, each mapped to a different pro-

cessor. In P1-l, the short critical section is accessed iteratively by all tasks with

identical delay (just the loop overhead), which results in both high lock utilization

frequency and high amount of contention for the lock. On the other hand, P2-l

introduces a randon short delay (up to 10 cycles) before the next attempt to enter

the critical section. In this case, the lock is still utilized with great frequency, while

the amount of contention between the threads will be reduced. Benchmarks P3-b

and P4-b have similar structure but are using barriers instead at the end of each

loop iteration to synchronize their execution progress. Both P3-b and P4-b consist

of identical threads which iteratively perform a load, an increment, and a store in-

structions. All the loop iterations execute in parallel by performing this update to

169

a memory location and then synchronize on a barrier before executing the next it-

eration. In this way, all the loop iterations across the tasks are executed in parallel,

while for P1 and P2 the critical sections across the threads are naturally serialized

as only one task is allowed to enter the critical section. Similarly to P2-l, P4-b

introduces a slight variation (within several cycles) in the execution cycles for the

iteration body. In this way, the threads do not arrive at the barrier at exactly the

same time and much less bus contention is introduced as compared to P3-b. These

synchronization-heavy benchmarks are used to evaluate the performance and bus

bandwidth impact of the proposed technique. By measuring the total bus transac-

tions and execution cycles, we demonstrate the performance improvements and bus

bandwidth reductions of the proposed distributed synchronization architecture.

We have used the M5 [18] simulator to perform our experiments, extended

with a collection of thread synchronization primitives. The simulated hardware

configuration is of 4 to 8 processors connected to a shared memory through a com-

mon system bus. Our simulated architecture includes 16K, 4-way set-associative

data caches. The baseline architecture assumes traditional lock and barrier imple-

mentations based on load-linked/store-conditional paired instructions with coherent

caches support.

Tables 5.1 and 5.3 report the performance characteristics and the bus band-

with utilization (as a total number of bus transactions) achieved by the proposed

distributed synchronization organization (DSC) when compared to the baseline for

the four fine-grain parallel benchmarks. In this first study, all the threads in the four

benchmarks execute 4000 iterations regardless of the number of threads instantiated

170

P1-l P2-l

Baseline DSC Reduct. Baseline DSC Reduct.

4p 529,168 401,172 24.19% 589,168 461,172 21.72%

5p 535,566 420,366 21.51% 618,766 503,566 18.62%

6p 529,036 401,072 24.19% 635,676 507,712 20.13%

7p 533,571 414,751 22.27% 663,816 544,996 17.90%

8p 529,168 401,172 24.19% 683,168 555,172 18.74%

Table 5.5: Performance characteristics (in number of cycles) and DSC reductions -

Fixed computational workload

for the particular run. Our study comprises configurations from 4 processors up to 8

processors. This setup corresponds to a situation where the size of the input data set

increases linearly with the number of processors available in the system in order to

achieve higher troughput. From the way our benchmarks are constructed, it is to be

expected that for P1-l and P2-l, the total time needed to perform the computation

must increase linearly with the number of processors since each thread performs a

computation within a critical section accessed through a single lock. Consequently,

the critical sections executed by all the threads are serialized and increasing the

number of threads (each executing a fixed number of iterations) will increase the

total number of critical sections to be executed. On the other hand, P3-b and P4-b

are expected to maintain roughly the same execution time regardless of the num-

171

P3-b P4-b

Baseline DSC Reduct. Baseline DSC Reduct.

4p 525,109 113,128 78.46% 525,111 145,127 72.36%

5p 500,313 90,737 81.86% 500,320 125,936 74.83%

6p 483,652 75,794 84.33% 483,665 113,117 76.61%

7p 471,816 65,135 86.19% 453,551 103,979 77.07%

8p 463,099 57,164 87.66% 447,126 97,163 78.27%

Table 5.6: Performance characteristics (in number of cycles) and DSC reductions -

Fixed computational workload (continued)

ber of processors, since all the loop iterations across the threads execute in parallel

and only synchronize with barriers at the end of each iteration. The increase in

performance will be only due to the synchronization overhead.

In Table 5.1 the performance is measured as a total number of cycles to exe-

cute each benchmark. When comparing the performance achieved by the proposed

approach to the baseline for each configuration, the DSC achieves around 24% per-

formance improvement for P1-l due to the improved lock acquisition latency and

the reduced bus contention overhead achieved by the DSC approach. For P2-l the

reductions in performance are slightly smaller since this benchmark exhibits much

less synchronization-based bus contention. The performance reductions for the bar-

rier benchmarks P3-b and P4-b are greater and in the range of 78% - 87%. This

172

P1-l P2-l

Baseline DSC Reduct. Baseline DSC Reduct.

4p 64,526 48,505 24.83% 64,543 48,505 24.85%

5p 51,743 42,124 18.59% 51,756 42,118 18.62%

6p 64,538 48,521 24.82% 64,559 48,536 24.82%

7p 55,411 43,958 20.67% 55,409 43,976 20.63%

8p 64,582 48,546 24.83% 64,580 48,567 24.80%

Table 5.7: Bus bandwidth characteristics (in number of bus transactions) and DSC

reductions - Fixed computational workload

higher reductions are due the higher barrier overhead as compared to single locks.

Since the actual iteration body is rather short (a memory update operation exe-

cuted through a load, increment, and a store) and that the iterations are executed

in parallel across the threads, the barrier overhead greatly dominates the execution

time on the baseline implementation. The DSC approach almost completely elimi-

nates this overhead by reducing it to a single bus transaction per thread/processor.

Similarly to the lock benchmarks, the reductions for P4-b are smaller than for P3-b

due to the smaller amount of bus contention produced by P4-b.

Since in P3-b the loop iterations across the threads are executed in paral-

lel, increasing the number of processors/threads that execute the same number of

iterations must result in identical total run-time for an ideal synchronization imple-

173

P3-b P4-b

Baseline DSC Reduct. Baseline DSC Reduct.

4p 128,529 64,516 49.80% 132,526 64,522 51.31%

5p 125,341 64,518 48.53% 131,745 64,523 51.02%

6p 123,193 64,517 47.63% 131,190 64,521 50.82%

7p 121,680 64,520 46.98% 128,523 64,521 49.80%

8p 116,589 64,541 44.64% 130,583 64,546 50.57%

Table 5.8: Bus bandwidth characteristics (in number of bus transactions) and DSC

reductions - Fixed computational workload (continued)

mentation with no overhead. It can be observed, however, that due to the very high

barrier overhead in the baseline, the total number of cycles is significantly increased

when more processors are introduced. The more processors result in more cache co-

herence traffic to handle the contention for the lock used to implement the barriers.

On the other hand, since the DSC approach reduces this overhead drastically, it is

seen that the total number of cycles for P3-b is only minimally increased when more

processors are included.

Bus bandwidth results are reported in Table 5.3. As can be seen from the

results, the DSC architecture significantly reduces the total number of bus transac-

tions. For the lock-based benchmarks, the reductions are in the range of 20%-24%,

while for the barrier-based benchmarks, the reductions increase to 55%-60%. This

174

can be explained by the fact that the baseline (and traditional) barrier implemen-

tation requires a significant amount of bus transactions, while the proposed DSC

approach requires only a single bus transaction per thread for the barrier implemen-

tation and two bus transactions per thread for locks.

Tables 5.5 and 5.7 report the performance and bus characteristics for the

same set of benchmarks but with a fixed input data set, i.e. the total number

of iterations executed by all the threads in the system is constant and does not

depend on the number of processors. This scenario corresponds to a situation where

more processors (computing power) is used to speed up the computation time for a

fixed amount of input data per benchmark. For this experiment we have assumed

a total of 16000 iterations to be executed by the benchmarks. That is for the case

of 4 processors, each thread executed 4000 iterations. The other border case is the

8 processor configuration for which each processor/thread executes 2000 iterations.

This setup demonstrates the scalability of the proposed synchronization architecture,

i.e. its increased utility when dealing with larger number of processors as compared

to the baseline lock/barrier implementation with coherent caches. These two tables

have an identical organization to the first two tables and report performance (in

terms of cycles) and bus transactions, respectively.

The results show consistent reductions in terms of performance and bus trans-

actions. This is a very clear and strong indication of the efficiency and the good

scalability of the proposed DSC approach. This time, however, due to the constant

amount of computation performed by the benchmarks, the performance for lock-

based benchmarks is independent from the number of processors/threads, while

175

the barrier-based benchmarks achieve better performance as the number of pro-

cessors grow. P3-b for example emphasizes the case where the performance must

improve linearly with number of processors assuming no overhead synchronization

and inter-core communication. The performance is significantly improved by the

proposed DSC approach; in the range of 20%-25% for the lock-base benchmarks,

and 72%-87% for the barrier-based. Similarly to the case of increasing data set, the

improvements for P2-l and P4-b are slightly smaller due to the less bus contention

these two benchmarks exhibit.

For this case of fixed computational workload, it is to be expected that the per-

formance for the barrier-based benchmarks will be improved when more processors

are added. For a perfect, no-overhead synchronization and inter-core communica-

tion, the total number of cycles must linearly decrease with the number of processors

added. However, it can be observed that for the baseline implementation this re-

duction is far worse than linear. On the other hand, the DSC approach eliminating

a large fraction of the barrier overhead, achieves performance improvements much

closer to the linear rate.

Table 5.7 reports the total number of bus transactions for the four bench-

marks and the reductions achieved by the DSC approach. Significant reductions are

achieved across the benchmarks and multi-processor platforms, ranging from 18%

to 60%. Much greater reductions are observed for the barrier-based benchmarks as

the overhead of barriers is significant for the baseline architectures.

It is evident from Tables 5.1, 5.3, 5.5, and 5.7 that the proposed approach

not only significantly reduces bus bandwidth and improves performance but it also

176

provides for better scalability when more processors are to be used within the system.

Idle Cycles (I) Total Cycles (T) I/T

FFT 78,045 228,722,336 0.03%

LU con 393,799,327 1,117,336,393 35.24%

LU noncon 151,248,064 788,640,101 19.18%

RADIX 222,772 23,251,486 0.96%

CHOLESKY 78,175 924,734,914 0.01%

Mpegenc 62,020,947 192,784,501 32.17%

Mpegdec 1,312,658 15,388,463 8.53%

APP1 10,594,745 18,069,904 58.63%

APP2 72,411,385 112,554,584 64.33%

APP3 23,963,057 36,836,670 65.05%

APP4 5,899,673 12,160,014 48.52%

Table 5.9: Thread load imbalance: 4-processor system

In the subsequent part of this section we report on the power savings that can

be achieved by the proposed distributed synchronization architecture. The cache

power expenditure have been obtained through Cacti v4.2 tool [109] for 0.18µm

technology. The energy associated with the additional hardware structures for the

proposed approach is also accounted for. The DSCs are modeled as small SRAM

177

Energy (mJ) DSC Baseline Reduction

FFT 28,043 28,057 0.05%

LU con 139,786 214,661 34.88%

LU noncon 132,593 161,350 17.82%

RADIX 4,411 4,454 0.95%

CHOLESKY 100,796 100,811 0.01%

Mpegenc 29,531 41,324 28.54%

Mpegdec 3,056 3,305 7.55%

APP1 1,406 3,420 58.89%

APP2 7,625 21,394 64.36%

APP3 2,458 7,014 64.96%

APP4 1,174 2,296 48.86%

Table 5.10: Energy characteristics: 4-processor system

178

tables, which energy is similarly obtained by Cacti. The counters are modeled as

4-bit up/down counters, in order to support a maximum of 16 processors.

We have evaluated the most conservative power management technique as

described in Section 5.4.5, i.e. disabling the accesses to the data cache while the ap-

plication performs a spin-lock implementation. This power management technique

is relatively easy to implement as the DSC can directly control the cache access for

the lock/barrier variables while the lock/barrier is not yet available for the local

processor. As described in Section 5.4.5 this can be easily implemented in an ISA-

transparent or, in an even more straightforward way, with a special ISA support

for lock acquire and release instructions. For this study we have used the Splash

benchmarks, as well as the parallel Alp-Mpeg and the four data streaming parallel

applications as described in the beginning of this section. We have experimented

with system configurations consisting of 4 and 8 processors.

Table 5.9 reports the number of cycles that each benchmark spends while

waiting to acquire a lock or be released from a barrier. The reported numbers are

for a 4-processor system. The total number of execution cycles are also reported. As

can be seen, the results vary significantly across the benchmarks. Some kernels, such

as FFT, RADIX, and CHOLESKY from Splash2, are well balanced and execute a

relatively small number of synchronization operations. Consequently, the idle cycles

spent on synchronization are minimal. In other benchmarks, however, a significant

thread disbalance is observed that can be exploited for sizable energy savings.

Table 5.10 reports the potential energy reductions for a 4-processor system.

The DSCs gate the cache accesses to the synchronization variables; consequently,

179

Idle Cycles (I) Total Cycles (T) I/T

FFT 182,147 393,749,964 0.05%

LU con 897,590,421 1,626,303,087 55.19%

LU noncon 334,876,812 976,744,941 34.28%

RADIX 698,940 24,808,530 2.82%

Mpegenc 37,055,282 209,898,754 17.65%

Mpegdec 3,073,405 20,074,903 15.31%

Table 5.11: Thread load imbalance: 8-processor systems

during the spin loop for acquiring a lock, no data cache energy is expended. Clearly,

the energy reductions are strongly related to the thread load disbalance. The more

balanced the threads, the less amount of time is spend idling on a lock or within a

barrier. The average energy reduction across these benchmarks is 29%. Tables 5.11

and 5.12 report the load-imbalance and energy results for a 8-processor system.

It must be noted that as the number of processors increases, the DSC improve-

ments increase as well. This is because as the system scales up, the synchronization

contention as well as the associated overheads increase faster, which makes the bene-

fits of the DSC controllers even more prominent. This indicates the good scalability

and efficiency achieved by the proposed distributed synchronization architecture.

180

Energy (mJ) DSC Baseline Reduction

FFT 13,236 13,270 0.26%

LU con 36,178 206,843 82.51%

LU noncon 45,835 93,379 50.92%

RADIX 1,562 1,695 7.84%

Mpegenc 15,603 22,649 31.11%

Mpegdec 879 1,464 39.92%

Table 5.12: Energy characteristics: 8-processor system

5.7 Conclusions

In this work we have presented a novel synchronization implementation ap-

proach that significantly improves performance, bus bandwidth, and power efficiency

of the fundamental synchronization primitives. The proposed methodology features

light-weight distributed controllers across the system that cooperatively implement

a distributed synchronization protocol. Operating system and compiler support are

integrated to provide flexible management of the synchronization controllers. Ex-

perimental results demonstrate significant performance, bus bandwidth, and energy

improvements for a broad range of benchmarks.

181

Chapter 6

Off-Chip Memory Bandwidth Minimization through

Cache Partitioning for Multi-Core Processors

6.1 Overview

Uniprocessor systems have encountered enormous design difficulties as proces-

sors reached GHz frequencies. Design complexity, circuit synchronization, power

consumption, and thermal issues have hindered the rate of further advancements.

To continue the growth of computer system performance, the industry has turned

to multi-core platforms [94]. Multi-core processors, which often consist of multiple

but simpler cores running at lower frequencies, naturally address many of the above

problems with promising and steady increases of theoretical peak performance [57].

However, multi-core architectures impose significant challenges of their own [94] that

have been the focus of the state-of-the-art research in industry and academia.

One of the most challenging problems facing multi-core systems is the widening

gap between the ever increasing memory bandwidth demand due to the increasing

number of processor cores and the limited speed of accessing off-chip memory struc-

tures [20, 95, 42, 68]. Shrinking transistor dimensions have enabled unprecedented

integration density, however, the off-chip memory access time has remained relatively

unchanged. To keep up with the scaling trend, large on-chip caches are implemented

182

accompanied with many other hardware and software optimization techniques. In

the absence of sufficient off-chip memory bandwidth, the number of cores that can

be integrated into a single chip will be severely restricted. This is especially true

for most memory demanding applications, which achieved parallelism often falls far

short from the expected teoretical levels, due to serialization and wasted cycles on

the memory traffic. Nonetheless, even applications with moderate memory access

demand would soon face the very same problem as multi-core architectures scale

up quickly and the gap with respect to available off-chip bandwidth and ability to

further increase cache sizes keeps growing.

On-chip caching has been employed as a very effective approach to reduce

memory bandwidth requirement. While caching helps reduce off-chip memory band-

width significantly, the effective use of caches is not always guaranteed. Useful con-

tent may be evicted due to address conflicts, which adds to the off-chip memory

pressure. The problem is more significant in multi-core systems, in which multiple

tasks are executing simultaneously. The contention of cache resources would poten-

tially lead to significant inter-task cache interferences and thus much higher memory

bandwidth requirements.

Cache partitioning techniques have been a well studied area in recent years.

These cache organizations aim at improving cache utilization to achieve better per-

formance and power efficiency [67, 37, 91, 54, 92, 83]. Most existing cache parti-

tioning techniques focus on reducing cache miss rates in order to increase system

throughput or overall performance. However, the majority of these approaches do

not consider off-chip memory bandwidth as a primary optimization goal. As we

183

show in the later sections, memory bandwidth based cache partitioning is superior

in terms of performance and power since off-chip memory bandiwdth is a bottlenck

that is reached easily by modern data-intensive applications and is the most signif-

icant contributor to system perfromance, throughput, and power.

In this work[129], we propose a framework for an L2 cache partitioning in

multi-core platforms. The novelty of our approach is that it considers the off-chip

memory bandwidth demand of the system as a primary optimization goal; the pro-

posed partitioning algorithm is tailored for off-chip bandwidth demand functions

exhibited by the different tasks in the system as a function of the cache resources

assigned to the task. A miss-rate metric may result in suboptimal solutions as it

does not precisely capture the density (in time) of the off-chip memory accesses,

which is by definition what the memory bandwidth requirement captures. It may

happen that a task with higher miss-rate may exhibit lower bandwidth demand

than another task that has a lower miss-rate. The proposed technique judiciously

partitions and allocates last level cache resources to concurrently running tasks ac-

cording to their specific memory bandwidth requirement characteristics which are

functions of the cache resources used by the task. By isolating each task in its

own cache partition, inter-task interference is eliminated. Overall system memory

bandwidth requirement is minimized, which helps the designers to keep the work-

loads within the bandwidth budget as much as possible. Our experimental results

demonstrate the significant reductions of memory bandwidth demand of a set of

multiprogrammed and/or multithreaded benchmarks.

184

6.2 Related work

The problem of limited off-chip memory bandwidth in multi-core systems has

attracted a lot of attention. With transistor density continuing to shrink, a large

number of processor cores can be integrated into a single chip, which leads to in-

creasingly powerful processors. On the other hand, the bandwidth to the off-chip

main memory hasn’t improved much, compared to the processor core scaling. While

caching has long been employed as the most effective approach to reduce bandwidth

pressure, its effectiveness in the mid/large scale multiprocessor systems could be

highly suboptimal due to significant contention across the parallel tasks.

In [20] the authors discuss extensively the problem of limited pin bandwidth

to multiprocessor systems. They have focused on program performance in multipro-

cessor systems and make detailed decomposition of program execution times. They

conclude that even more complex on-chip cache structures would prove to be cost-

effective, with the limited pin bandwidth severely restricting performance increases.

In [95] the authors have carefully studied the requirements for on-chip cache struc-

tures along with all sorts of optimization techniques that come along with scaling of

processor core numbers. Their study shows that cache size need to grow much faster

than processor core numbers to compensate for the limited off-chip bandwidth. Be-

cause of that, the near future processors need to allocate a huge percentage of chip

area for caches, which means much less core counts than expected. The study also

shows that effective bandwidth optimization techniques can help reduce cache size

requirement and thus help scaling processor cores. [68] acknowledges the critical

185

role of last level cache and studies the application of different organizations of L2,

including processor based split-L2, private L2 and address-interleaved shared L2 de-

signs. [42] also does extensive research into cache/memory structures, and provide

insights into the metrics for performance/bandwidth for multi-core processors.

The topic of cache partitioning has been well studied, in the context of both

uni-processor and multi-processor systems. While most of the previous projects

consider cache miss rates and per-task performance as an optimization goal, a large

number of them also report the reduced bandwidth pressure that comes as a result of

proper cache partitioning schemes. In [67], the authors take an efficient software ap-

proach and use OS based memory address mapping to thoroughly experiment with

multiple cache partitioning schemes that target performance, fairness and quality

of service (QoS). This work confirms the effectiveness of cache partitioning schemes

that are previously obtained through simulation based studies. The study also pro-

vides new insights into cache partitioning technique, one of which indicates that

bandwidth requirement can be reduced by using the proper partitioning schemes

such that the overall memory bandwidth contention is reduced. This could be more

important to an application’s performance than sheer cache space. A cooperative

cache partitioning for chip multiprocessors is proposed in [24]. The time-sharing be-

tween cache partitions for concurrently running threads allows multiprocessor cache

partitioning to unfairly supress some threads for greater performance improvement

for the entire system, while at the same time maintain fairness among the threads.

This method can actually be extended to help the other cache partitioning schemes

that focus on overall throughput to achieve better fairness and QoS. [31] also tries

186

to address the last level shared cache contention through cache partitioning method

in a software method.

Very few cache partitioning techniques target off-chip memory bandwidth of

multi-core system designs as a primary optimization goal. Considering only cache

miss-rates can result in suboptimal solutions with respect to bandwidth since tasks

with higher miss rate may exhibit lower bandwidth requirements than tasks with

lower miss rates. This paper contributes to a better understanding of the impact on

cache partitioning on the system off-chip memory demand as well as a specific algo-

rithm that judiciously identifies a cache partitioning based on the tasks bandwidth

demands as a function of the cache resources assigned to them.

6.3 Memory Bandwidth and Last Level Caches in Multi-Core Sys-

tems

In this work, we address multi-core systems with a shared last level (L2) cache.

Our primary optimization goal is the last level cache utilization with respect to

off-chip memory bandwidth demand. This optimization goal, rathen than miss-rate

reduction, is selected because of the significant gap between on-chip network and off-

chip memory. This is true for most modern multi-core processor systems. Regardless

of the type of memory system used, the off-chip memory bandwidth is very likely to

be the single largest bottleneck impacting the system performance than any other

resource, especially as the system scales to more processor cores [20, 95]. Since the

proposed partitioning technique is for last level caches, the type of on-chip network

187

Figure 6.1: Memory Bandwidth Requirement Curves

and its bandwidth is of no special importance.

6.3.1 Bandwidth Demand and Cache Resources

Although many studies exist of the relation between cache organization and

cache misses, the direct relation of cache organization and the memory bandwidth

requirement in the context of multi-core systems, is a new problem that requires a

special attention. As one can naturally expect, the memory bandwidth demand, i.e.

the total number of bytes transferred within a fixed time period, correlates well with

the total number of cache misses. In our study, we have evaluated the bandwidth

demand, cache misses, and miss-rates as a function of the cache resources for a set

of applications. This data is shown in Figures 6.1, 6.2, and 6.3

Due to the time factor involved in the off-chip bandwidth requirement, the

applications that exhibit larger number of cache miss rates (or misses) do not nec-

essarily consume more memory bandwidth. This can be easily explained with more

188

Figure 6.2: Cache Misses Curves

computational instructions that stretch the overall execution and/or good L1 uti-

lization. Meanwhile, applications that exhibit less significant cache miss rates (or

misses) could exhibit much higher bandwidth requirements, due to denser memory

accesses. Depending on the memory access patterns, some applications, like matrix

multiplications (MMUL), incur earlier declines in the bandwidth/misses curve than

others, which lend themselves better targets for bandwidth optimizations as they

can more efficiently use smaller cache resources without polluting the remaining

cache.

Figure 6.1 shows the profiling information of memory bandwidth requirement

of several applications as a function of the L2 cache size. The applications work on

data arrays with sizes in the range from 0.5MB to 1.5MB. The horizontal axis is

the varying L2 cache size that changes from 8kB to 4MB. The vertical axis is the

recorded off-chip memory bandwidth, in Mbit/s. For these data we have used the

M5 [18] system simulator configured as a single-core processor. A simple CPU model

189

Figure 6.3: Cache Miss-rate Curves

was used to reduce simulation times, which can result in slightly smaller bandwidth

demands due to lower IPCs as compared to more sophisticated out-of-order pro-

cessors that may attempt to speculatively load data. The system bandwidth is set

to a very large number so that the required bandwidth from different applications

doesn’t saturate bus capacity; in effect this setup measures the bandwidth demand

of each application.

Figure 6.2 shows the data regarding L2 cache misses for the same applications

with the same cache configurations. The vertical axis in this figure depicts the total

L2 cache misses recorded during the same execution pass. Figure 6.3 reports the

cache miss rate as a function of L2 cache size for the same applications.

As can be seen from these charts, the individual bandwidth curves are cor-

related (with respect to their shapes) with the cache miss. Comparing across the

applications, however, one can find that bandwidth requirement does not correlate

linearly with cache misses or miss-rates. For example, LU decomposition consumes

190

much more bandwidth than MMUL for the same amount of cache misses. Like-

wise, TRI is more bandwidth demanding than EJ. MMUL, although working across

1.5MB data regions, exhibits the earliest decline in memory bandwidth/cache misses

than LU decomposition (LU), which covers 1MB of data. These observations clearly

indicate that bandwidth demand need to be considered as a primary minimization

goal in partitioning the L2 cache resources between the tasks in the system.

6.3.2 Cache Sharing in Multi-Core Processor Systems

For multi-programmed/multi-threaded workloads, however, there is one added

layer of complexity regarding cache sharing when the individual tasks are scheduled

to run simultaneously, as is suggested in [67]. With the last level cache being

shared among the processor cores, the applications are expected to compete for

cache space and could evict each other’s cache blocks, therefore generating a sizable

number of cache misses in addition to normal self-evictions. This often leads to

much more severe memory access contention and thus more severe off-chip bus

congestion. An off-chip bus congestion, in turn, will result in severely deteriorated

system performance, as can be seen from the above figures, when more cores are

integrated into the system.

Whenever such demand exceeds the bandwidth that can be supported by the

underlying memory sub-system, the memory bus becomes saturated, and the off-

chip memory access becomes the bottleneck of the entire system, i.e. the workload

becomes memory bound. At this point, the memory service speed would become

191

the sole resource that dictates the system performance. Such contention-induced

memory accesses directly translate to performance slow-downs, until the bandwidth

requirement drops and can thus be sustained by the off-chip memory interface. With

ever increasing number of cores to be integrated into a single multi-core platform, it

becomes very easy to saturate the off-chip bandwidth with multiple copies of even

moderate (with respect to their working set) applications running simultaneously.

This makes it even more important to keep control of memory bandwidth demand

and reduce unnecessary cache misses. We discuss the cache partitioning method for

such purpose in the next section.

6.4 Partitioning Algorithm

6.4.1 Cache Partitioning Basics

Several configurable cache architectures have been proposed in the research

literature recently [11, 123, 133]. In what follows we assume a configurable cache

that supports a “set”-based partitioning. The algoirthm can be easily extended to

support the other forms of cache configurability such as the “way”-based or the

combination of the two. The proposed technique identifies a fixed cache partition-

ing that is used throughout the execution of the entire workload, i.e. the cache is

configured in the very beginning when the set of tasks is loaded for execution. Other

partitioning mechanisms, such as dynamic partitioning, multiple sharing partition-

ing (MTP), can also be implemented to give better dynamic bandwidth reductions

and more fair benefits to the individual components of a workload.

192

The cache partitioning implementation used in this work relyes on ”set” based

partitioning, i.e. each partition is allocated a certain number of sets, each set keeps

a fixed number of associativity ways. Due to cache implementation constaints, the

number of sets in each partition are required to be a power of two. A particular

configurable cache woul support a certain minimal partition size, which our algo-

rithm takes into account. We have set this minimal partition size to 8kB (or 128

cache blocks) in our experiment setup. The power of two size requirement for each

partition and the minimum partition size set the granularity of the proposed parti-

tioning algorithm. These parameters, however, even partitioning implementations,

can change, to satisfy different partitioning granularity needs and can be handled

by (a modified version of) our algorithm.

To find an optimal partitioning scheme, one can certainly perform an exhaus-

tive search to test all possible solutions. However, such a method could become very

expensive at finer partitioning granularities and large number of tasks. In view of

this, we have devised a heuristic algorithm, which exploits common characteristics

of the bandwidth-cache curves in 6.1. The cost of this heuristic algorithm is fixed

at O(logS), where S is the size of total L2 cache. We describe this algorithm in the

following subsection.

6.4.2 Algorithm Overview

Our partitioning algorithm optimizes towards minimum overall bandwidth and

takes as input a) the total available cache size S, and b) the bandwidth-cache charac-

193

PARTITIONING[W, BWdrop_tbl, S]:

To find a partition scheme with workload W of K tasks,

bandwidth drop table BWdrop_tbl with N partition sizes

and total L2 size S

1. FOR i = 1 to K

2. P[i] = p_min;

//init to min partitions

3. SUM = K*p_min; res = S - SUM;

4.

5. WHILE(res > 0) do

6. MAX = 0;

7. FOR k = 1 to K, j = 1 to N

// find max bandwidth drop and record position

8. IF SIZE[k][j] < res

and BWdrop_tbl[k][j] > MAX

9. THEN MAX = BWdrop_tbl[k][j];

10. p = k; q = j;

11. P[p] = p_min * (2**q);

12 BWdrop_tbl[p][q] = 0;

13. SUM = SUM + P[k]-p_min; //calculate remaining resources

14. res = S - SUM;

Figure 6.4: Partitioning Heuristic Pseudocode

194

teristics of each task, which can be obtained through offline profiling or simulations.

The nature of such an algorithm is NP-hard. This can be proved by reducing

the ”knapsack” problem to an instance of our problem, as following. The knapsack

problem consists of P objects {pi}, each associated with a weight {wi}, and value

{vi}. One wants to maximize the total value V under a certain capacity W . If we let

the weight be the partition size of a particular task among all possible configurations

and value be the bandwidth reduction achieved with that partition size, we get

an instance of our partitioning problem, with the target of maximum bandwidth

reduction under the constraint of limited total cache space and a total of P tasks.

Because of the huge search space of such a problem, we have developed a heuristic

algorithm.

The algorithm iteratively attempts a distribution of cache resources to different

tasks in order to identify a mapping that minimizes the total bandwidth demand.

Due to the power of two contraint of the hardware based partitioning technique,

the different partitions can only grow to twice as large between consecutive config-

urations. Thus for a total cache size of S, there will only be N = logS possible

partition sizes. The bandwidth-cache functional relation is used to generate a PxN

look-up table that records the bandwidth changes (drop) between consecutive steps

for each constituent application in the workload.

The algorithm works in the following iterative steps: It begins by assigning

each task the minimum partition size, p min as the initial partitioning scheme. For

each iteration, it calculates the difference of total cache size, S, and the sum of

partition sizes of the current partitioning scheme SUM(P k). This difference is the

195

amount of available cache resources the algorithm can explore. This number is also

used to calculate the maximum number of partition sizes, n, an individual partition

can grow from the minimum size.

Subsequently, the algorithm searches for the maximum bandwidth drop that

can be reached under current cache resource constraint for all K tasks. Suppose

the maximum bandwidth drop belongs to the curve of task p at q-th partition size.

In this case, task p is assigned the partition size of P min ∗ 2q. Note that in each

step, the algorithm finds and selects the task that exhibits the steepest drop in

bandwidth demand when moving from one partition size to the next larger one. For

that task, the algorithm selects the cache size for which this maximal bandwidth

drop is achieved. The algorithm continues in the same way to identify the partition

sizes for the rest of the tasks within the remaining cache resources. Because the

partition sizes must be a power of two, this algorithm is guaranteed to complete

within O(logS) iterations.

6.4.3 Intuitive and Formal Description

Although this heuristic algorithm is based on a greedy search, it has proven

to be very effective for the benchmark workloads in our experiments. And there is a

good intuitive reason for this. This heuristic exploits a characteristic that is typical

for the majority of tasks’ bandwidth-cache functions. As can be seen from the

Figure 6.1 in the previous section, most functions start from (the smallest partition

size) very high bandwidth requirement/misses/miss-rates and stay on the plateau

196

until they reach a threashold size, then dive quickly to another much lower plateau.

Furthermore, most functions have only one such dramatically diving phase

which represents the biggest bandwidth/misses drop near a favorable partition size.

In the heuristic algorithm, this property would show up (in the bandwidth-drop

table) as the few largest bandwidth-drop numbers for each task with all possible

partition sizes. Selecting the smallest cache size that causes the largest bandwidth

drop is clearly very benefitial because the smaller partition sizes before this sharp

drop are still too small and the bandwidth demand is close to the worst case of severe

cache contention. The larger partition sizes beyond the sharp decline, however, will

result in a waste of cache reources since the gains from increased partition size would

remain moderate. In this case, it may be better to use the available resource wisely

on the other tasks if they can achieve a larger drop in bandwidth.

When the total cache size is relatively small, the algorithm will run out of

cache resources shortly after finding a good partition size for very few tasks. The

rest of the tasks will keep their initially assigned minimum partition size. Although

seemingly unfair to satisfy the needs of the few, these schemes often turn out to

achive much lower overal system bandwidth. Judging from the bandwidth-cache

functions, most applications stay very close to the high plateau before they reach

certain threashold. Taking or giving any resource before that does not result in

sizable difference to them. When the total cache size is very large, the algorithm

could end up with extra cache space not assigned to any task. Again referring to the

bandwidth-cache curves, keeping it or evenly distributing this space will not make

much difference either, since most tasks would be sitting on their lower plateau. The

197

Figure 6.5: Algorithm Walkthrough on Example

real interesting part in between of these two scenarios, however, is very short. Most

applications exhibit in the bandwidth drop table only one or two very significant

numbers, which is very well suited and targetted by this greedy based algorithm.

Figure 6.4 gives a detailed description of this algorithm.

Figure 6.5 provides an example of an input bandwidth table with different

partitioning sizes. As can be seen, the algorithm finds the best partitioning scheme

in two steps.

Because the nature of the problem is NP-hard, the greedy heuristic algorithm

does have adversary cases. This often happens to particular combination of tasks,

which is very dependent on the specific workloads. This can be improved signifi-

cantly, however, by further optimizing the heuristic program with more hints from

the programmers. In the experiment section below, a comparison is made between

the simpliest form of heuristic algorithm and exhaustive search method to show such

differences.

198

6.5 Experimental Results and Discussion

APP1: MMUL MMUL MMUL MMUL TRI TRI TRI TRI

APP2: MMUL MMUL MMUL MMUL SOR SOR SOR SOR

APP3: EJ EJ EJ EJ FFT FFT FFT FFT

APP4: EJ EJ FFT FFT SOR SOR TRI TRI

APP5: EJ EJ LU LU SOR SOR TRI TRI

APP6: MMUL MMUL FFT FFT TRI TRI SOR SOR

Table 6.1: Benchmark Workloads

6.5.1 Experimental Setup

We have conducted detailed experiments to evaluate the effectiveness of the

proposed cache partitioning methodology. We have used the M5 [18] simulator

platform to conduct our experiments. M5 is a cycle-accurate full-system simulator

and has been extensively enhanced for our study. The simulated machines are

configurated as 8-processor systems running at 1GHz, with 16kB split L1 caches

and a shared L2 cache. We have evaluated the proposed technique for L2 cache

sizes from 256kB to 16MB with a power of two increment. At each configuration,

the proposed memory bandwidth-based cache partitioning is applied to compare it

with a baseline architecture in which the cores share the entire L2 cache.

199

6.5.2 Benchmark Applications

Each benchmark workload constitutes a set of parallel applications. Each of

these application in turn can be data parallel application and naively parallelized

into several identical threads each running on its own part of the input data set. The

input data size and the memory access patterns are the biggest factors determining

their execution. The individual tasks execute one of the following computational

kernels that are broadly used in many numerical and signal processing applications:

EJ, FFT, FDCT, LU, MMUL, SOR, TRI. The combinations that we have used as

multi-tasked benchmarks are listed in Table 6.1. Among the individual kernels in

the workloads, matrix multiplication (MMUL) executed the multiplication of two

square matrices; successive overrelaxation method (SOR) is a program for solving a

linear system of equations; fast Fourier transform (FFT) computes discrete Fourier

transform of input signals; LU decomposition (LU) is a matrix decomposition al-

gorithm used in many communications applications; EJ is the extapolated jacoby

method, and TRI is a transformation that converts a matrix into an upper triangular

form.

Each of the computational kernels operates on an input data buffer with a size

from 0.5MB to 1.5MB. The off-chip bandwidth requiremetns as well as the cache

miss characteristics for each task have been reported in a previous section of this

work. The entire applications cover data arrays ranging from 4MB to 12MB. All

caches are warmed up before the main execution in order to exclude cold cache

misses.

200

Figure 6.6: Achieved bandwidth v.s. baseline: APP1, APP2 and APP3

Figure 6.7: Achieved bandwidth v.s. baseline: APP4, APP5 and APP6

6.5.3 Results and Analysis

Figure 6.6 and Figure 6.7 report the results of the six benchmarks compared

to the baseline architecture in terms of bandwidth requirements. The yellow lines

are the bandwidth requirements from baseline executions. The blue lines represent

the overall bandwidth demand when the proposed cache partitioning is applied.

The bandwidth reductions achieved by the proposed technique are clearly

demonstarted by the experimental data. Bandwidth requirements reductions of

up to 50% are achieved by the proposed cache partitioning.

201

The experiment results clearly demonstrate three distinct situations with re-

spect to the total L2 cache size. The first situation corresponds to the initial points

in the L2 cache size space, i.e. when the entire L2 cache is significantly smaller than

1) the total workload data size and 2) to any individual kernel’s earliest bandwidth

drop point of its specific bandwidth-cache function. In this situation, cache parti-

tioning cannot help with such limited resources and the algorithm ends up with a

configuration with bandwidth requirements close to the baseline - sometimes worse

due to the enforced cache partition size limitations.

The proposed cache partitioning exhibits its benefits in the second situation,

in which it is possible to allocate sufficiently large fractions of the cache resources to

most of the kernels while the rest may remain in their worst scenarios. In this stage,

the cache partitioning algorithm is able to exploit the opportunities to move indi-

vidual kernels off the high plateaus in the bandwidth demand functions. It should

be noted that this algorithm minimizes the overall systen bandwidth requirement

but it does not do so uniformaly accross all the tasks. In this way, a particular task

that can provide the most bandwidth benefit to the system will be selected for most

cache resources, especially when such resource are somewhat limited. Replicas of

the same tasks are treated as different tasks with the same bandwidth-cache curves.

For L2 caches with relatively large sizes, i.e. between 1M and 8M, the algorithm can

afford to make more flexible choices. The largest reductions can be seen for such

L2 cahes, as the partitioning algorithm is able to move towards the direction of and

achieve the fastest bandwidth drops for all the tasks in the workload.

The third distinct situation is when the L2 cache size approaches 16MB. In

202

this case the bandwidth reductions compared to the baseline are minimal. This

can be easily explained by the fact that such large L2 caches can be easily shared

by all the tasks as then can fit their working sets with very few or no inter-task

conflicts. The difference between these three different situation is often determined

by the earliest significant bandwidth-cache reduction point of a task with sizable

bandwidth requireemnts. This is also the earliest point when the algorithm can

identify an effective partitioning scheme.

Of cousre, it is also possible to have workloads for which the baseline may

slightly outperform any cache partitioning. This is largly due to increased contention

when seperate cache partitions are enforced. In these cases, multiple kernels do not

interfere significantly and actually benefit from larger shared L2 resources. However,

even in these cases, the actual bandwidth requirements from the baseline and the one

with cache partitioning tend to be very close. This case is illustrated by benchmark

APP5. Overall, the experimental results clearly demonstrate that our partitioning

technique is effective in achieving significant off-chip bandwidth reductions.

6.5.4 Comparison Between Heuristic Algorithm and Exhaustive Search

As mentioned in the previous section, the heuristic algorithm is greedy based

and thus could meet adversary cases for a real NP-hard problem. The study that

compares heuristic algorithm with a exhaustive search algorithm is conducted in

6.8.

Shown in 6.8 is the additional amount of total bandwidth achieved through

203

Figure 6.8: Heuristic Algorithm Compared to Exhaustive Search

heuristic algorithm as compared to the exhaustive search.

From this chart, one can see that the heuristic algorithm achieves much of

the benefit as an exhaustive one. It starts to behave less effective as the total

cache space grows, which corresponds to significantly larger total search space of all

possible partitioning schemes . It is also very clear that different workloads lead to

different heuristic effectiveness.

Overall, the heuristic algorithm does often come up with reasonably good

partitioning scheme with constant time, while the exhaustive search, even with

simple tuning, runs considerably longer as the search space grows.

6.6 Conclusions

In this work we have studied the relation between off-chip memory bandwidth

requirement and L2 cache partitioning for multi-core processor systems. Off-chip

memory bandwidth limitation is becoming a pressing problem for multi-core archi-

204

tectures, which significantly undermines the scaling trend for future platforms.

We have shown that L2 cache partitioning can be an effective technique in

reducing system bandwidth pressure. The proposed partitioning algorithm utilizes

the bandwidth-cache functions of individual programs in a workload and identifies

a partitioning scheme that significantly reduces overall bandwidth requirement. We

have shown convincing experimental data that our bandwidth based cache parti-

tioning approach is effective in alleviating overall memory bandwidth requirements.

205

Chapter 7

Conclusions

7.1 Embedded Multi-Core Architecture Challenges

In this thesis study, a number of issues about embedded multi-core architec-

tures and their applications are covered, including the cache coherence protocols,

the shared memory based inter-core communication, the synchronization mecha-

nism, and last level cache space partitioning for bandwidth reduction. For all these

different topics, benchmark studies show the inefficiencies of conventional implemen-

tations, in terms of power and performance. Much of such inefficiencies come from

the general-purpose architectures that such mechanisms are first implemented for.

There is strong motivation to improve on these inefficiencies. On the one hand,

chip multiprocessors are developing into unprecedented and unanticipated level of

integration. The quick pace of system scaling into much larger core counts is ex-

posing the conventional implementations to very serious challenges. Such challenges

must be addressed before further scaling can be meaningful to system designers.

On the other hand, many of the multi-core mechanisms have been developed

towards general-purpose platforms. The trade-offs in embedded system domain

make it necessary to tailor such mechanisms for specific applications, thereby re-

ducing overhead and improving power and performance efficiency.

This study shows how much can be achieved by such hardware-software cus-

206

tomization method.

There is more to certainly more areas to explore and more different techniques

to integrate into this framework.

7.2 Cross-Layer Customization for Embedded Multi-Cores

This work also shows the effectiveness of cross-layer customization or hardware-

software co-design method for embedded multi-core systems. Such heavy system

level tuning often exists in embedded system designs, to make the most potential

out of the existing platform.

Embedded systems traditionally adopt a lot from the general-purpose archi-

tectures. However, their dedicated nature makes it possible for highly specialized

optimizations. The efficiency improvement over the general-purpose counter parts

is often very significant.

While general-purpose system designs don’t modify hardware layer, they can

still tune the software layer to the specifications of hardware platforms. Such prac-

tice is more common with large scale CMPs even in the general-purpose systems

and the design of future supercomputer systems.

In that regard, this work could also provide some insights into the proper

co-design method for such systems.

207

Bibliography

[1] Cavium octeon multi-core processor family.

[2] Grand Central Dispatch (GCD) Reference.

[3] http://www.picochip.com/products/pc102.

[4] http://www.tilera.com.

[5] http://www.vdc-corp.com/ehw/default.asp.

[6] Intel Threading Building Blocks.

[7] Xtensa architecture and performance, http://www.tensilica.com.

[8] H. Abdel-Shafi, J. Hall, S.V. Adve, and V.S. Adve. An evaluation of fine-grain
producer-initiated communication in cache-coherent multiprocessors. In High-
Performance Computer Architecture, 1997., Third International Symposium
on, pages 204–215, Feb 1997.

[9] B. Akgul, J. Lee, and V. Mooney. A system-on-a-chip lock cache with task
preemption support. In Conference on Compilers, Architecture, and Aynthesis
for Embedded Systems (CASES), pages 149–157, 2001.

[10] B. Akgul and V. Mooney. Parlak: Parameterized lock cache generator. In
Design Automation and Test in Europe (DATE), pages 1138 – 1139, 2003.

[11] D. H. Albonesi. Selective cache ways: On-demand cache resource allocation.
In International Symposium on Microarchitecture (MICRO), pages 248–259,
November 1999.

[12] T. E. Anderson. The performance of spin lock alternatives for shared-money
multiprocessors. IEEE Transactions on Parallel and Distributed Systems,
1(1):6–16, January 1990.

[13] James Archibald and Jean-Loup Baer. Cache coherence protocols: evaluation
using a multiprocessor simulation model. ACM Transactions on Computer
Systems (TOCS), 4(4):273–298, 1986.

[14] ARM Ltd. ARM11 Family.

[15] C. Ballapuram, A. Sharif, and H-H. Lee. Exploiting access semantics and
program behavior to reduce snoop power in chip multiprocessors. In ASPLOS,
pages 60–69, 2008.

[16] Rizwan Bashirullah, Wentai Liu, and Ralph K. Cavin. Low-power design
methodology for an on-chip bus with adaptive bandwidth capability. In Design
Automation Conference (DAC), pages 628–633, 2003.

208

[17] M. Berndl, O. Lhotak, F. Qian, L. Hendren, and N. Umanee. Points-to analysis
using bdds. In Conference on Programming language design and implementa-
tion (PLDI), pages 103–114, 2003.

[18] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S. Reinhardt. The
m5 simulator: Modeling networked systems. IEEE Micro, 26(4):52–60, 2006.

[19] J. Brown, R. Kumar, and D. Tullsen. Proximity-aware directory-based coher-
ence for multi-core processor architectures. In ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 126–134, 2007.

[20] Doug Burger, James R. Goodman, and Alain Kägi. Memory bandwidth lim-
itations of future microprocessors. In International Symposium on Computer
Architecture (ISCA), pages 78–89, 1996.

[21] Jason F. Cantin, Mikko H. Lipasti, and James E. Smith. Improving multi-
processor performance with coarse-grain coherence tracking. SIGARCH Com-
putuer Architecture News, 33(2):246–257, 2005.

[22] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation
and performance of munin. In Symposium on Operating Systems Principles
(SOSP), pages 152–164, 1991.

[23] Anantha P. Chandrakasan. Low-Power Digital CMOS Design. PhD thesis,
University of California at Berkeley, 1994.

[24] Jichuan Chang and Gurindar S. Sohi. Cooperative cache partitioning for chip
multiprocessors. In International Conference on Supercomputing (ICS), pages
242–252, 2007.

[25] G. Chen and M. Kandemir. An approach for enhancing inter-processor data
locality on chip multiprocessors. In Springer-Verlag Lecture Notes in Com-
puter Science, pages 214–233, 2007.

[26] L. Cheng, J. Carter, and D. Dai. An adaptive cache coherence protocol op-
timized for producer-consumer sharing. In International Symposium on High
Performance Computer Architecture (HPCA), pages 328–339, 2007.

[27] L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramonian, and J. Carter.
Interconnect-aware coherence protocols for chip multiprocessors. In Interna-
tional Symposium on Computer Architecture (ISCA), pages 339–351, 2006.

[28] Liqun Cheng and John B. Carter. Fast barriers for scalable ccnuma systems.
In ICPP, pages 241–250, 2005.

[29] P. Cumming. The ti omap platform approach to soc. In Winning the SOC
Revolution. Kluwer Academic Publishers, 2003.

209

[30] M. Das. Unification-based pointer analysis with directional assignments. In
Conference on Programming language design and implementation (PLDI),
pages 35–46, 2000.

[31] Livio Soares David Tam, Reza Azimi and Michael Stumm. Managing shared
l2 caches on multicore systems in software. In WIOSCA ’07, 2007.

[32] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang. Software
behavior oriented parallelization. In Conference on Programming Language
Design and Implementation (PLDI), pages 223–234, 2007.

[33] M. Ekman, F. Dahlgren, and P. Stenstrom. Tlb and snoop energy-reduction
using virtual caches in low-power chip-microprocessors. In ISLPED, pages
243–246, August 2002.

[34] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hen-
nessy. Memory consistency and event ordering in scalable shared-memory
multiprocessors. International Symposium on Computer Architecture (ISCA),
pages 15–26, May 1990.

[35] O. Golubeva, M. Loghi, and M. Poncino. On the energy efficiency of synchro-
nization primitives for shared-memory single-chip multiprocessors. In Great
Lakes Symposium on VLSI (GLSVLSI), pages 489–492, 2007.

[36] James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient synchro-
nization primitives for large-scale cache-coherent multiprocessors. SIGARCH
Comput. Archit. News, 17(2):64–75, 1989.

[37] A. Gordon-Ross and F. Vahid. A self-tuning configurable cache. In Design
Automation Conference (DAC), pages 234–237, 2007.

[38] Green Hill Software. INTEGRITY: The most advanced RTOS technology.

[39] M.R Guthaus, J. S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B.
Brown. Mibench: A free, commercially representative embedded benchmark
suite. In WWC-4: Workshop on Workload Characterization, pages 3–14, De-
cember 2001.

[40] M.R Guthaus, J. S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B.
Brown. Mibench: A free, commercially representative embedded benchmark
suite. In WWC, pages 3–14, Dec 2001.

[41] Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE), 2001.

[42] Lisa R. Hsu, Steven K. Reinhardt, Ravishankar Iyer, and Srihari Makineni.
Communist, utilitarian, and capitalist cache policies on cmps: caches as a
shared resource. In International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 13–22, 2006.

210

[43] William Tsun-Yuk Hsu and Pen-Chung Yew. An effective synchronization
network for hot-spot accesses. ACM Trans. Comput. Syst., 10(3):167–189,
1992.

[44] http://www.gimp.org. The GNU Image Manipulation Program.

[45] J. Huh, J. Chang, D. Burger, and G. Sohi. Coherence decoupling: making use
of incoherence. ACM SIGARCH Computur Architecture News, 32(5):97–106,
2004.

[46] Intel. Intel XeonTM Processor at 1.40 GHz, 1.50 GHz, 1.70 GHz and 2 GHz.

[47] Intel Corporation. Intel XScale Microarchitecture.

[48] Vadim Iosevich and Assaf Schuster. A comparison of sequential consistency
with home-based lazy release consistency for software distributed shared mem-
ory. In International Conference on Supercomputing (ICS), pages 306–315,
New York, NY, USA, 2004. ACM.

[49] Ahmed A. Jerraya. Long term trends for embedded system design. In DSD
’04: Proceedings of the Digital System Design, EUROMICRO Systems, pages
20–26, Washington, DC, USA, 2004. IEEE Computer Society.

[50] V. Kathail, S. Aditya, R. Schreiber, B. R. Rau, D. C. Cronquist, and
M. Sivaraman. Pico: Automatically designing custom computers. IEEE Com-
puter, 35(9):39–47, 2002.

[51] S. Keckler, W. Dally, D. Maskit, N. Carter, A. Chang, and W. Lee. Ex-
ploiting fine-grain thread level parallelism on the mit multi-alu processor. In
International Symposium on Computer Architecture (ISCA), pages 306–317,
1998.

[52] Ken Kennedy and John R. Allen. Optimizing compilers for modern architec-
tures: a dependence-based approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2002.

[53] B. Khailany, W. Dally, U. Kapasi, P. Mattson, J. Namkoong, J. Owens,
B. Towles, A. Chang, and S. Rixner. Imagine: Media processing with streams.
IEEE Micro, 21(2):35–46, 2001.

[54] Seongbeom Kim, Dhruba Chandra, and Yan Solihin. Fair cache sharing and
partitioning in a chip multiprocessor architecture. In International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages 111–
122, 2004.

[55] L. Kontothanassis, M. Scott, and R. Bianchini. Lazy release consistency for
hardware-coherent multiprocessors. Supercomputing Conference (SC), pages
61–61, 1995.

211

[56] Claus Kuhnel. Avr Risc Microcontroller Handbook. Elsevier, 1998.

[57] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen. Single-
isa heterogeneous multi-core architectures: The potential for processor power
reduction. In MICRO, pages 81–92, 2003.

[58] Edward L. Lamie. Real-Time Embedded Multithreading : Using ThreadX and
ARM. CMP Books, 2004.

[59] William Landi. Undecidability of static analysis. ACM Letters on Program-
ming Languages and Systems, 1(4):323–337, December 1992.

[60] P. Landman and J. Rabaey. Black-box capacitance models for architectural
power analysis. In International Workshop on Low Power Design, page 65170,
April 1994.

[61] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: A tool
for evaluating and synthesizing multimedia and communications systems. In
International Symposium on Microarchitecture (MICRO), pages 330–335, De-
cember 1997.

[62] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: A tool
for evaluating and synthesizing multimedia and communications systems. In
MICRO, pages 330–335, Dec 1997.

[63] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
directory-based cache coherence protocol for the dash multiprocessor. In Inter-
national Symposium on Computer Architecture (ISCA), pages 148–159, 1990.

[64] J. Li, J. Martinez, and M. Huang. The thrifty barrier: Energy-aware synchro-
nization in shared-memory multiprocessors. In International Symposium on
High Performance Computer Architecture (HPCA), 2004.

[65] M-L. Li, R. Sasanka, S. Adve, Y-K. Chen, and E. Debes. The alpbench bench-
mark suite for complex multimedia applications. In International Symposium
on Workload Characterization, pages 34–45, October 2005.

[66] A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing synchro-
nization with affine transforms. In Symposium on Principles of Programming
Languages, pages 201–214, 1997.

[67] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and
P. Sadayappan. Gaining insights into multicore cache partitioning: Bridging
the gap between simulation and real systems. In International Symposium On
High Performance Computer Architecture (HPCA), pages 367–378, 2008.

[68] Chun Liu, Anand Sivasubramaniam, and Mahmut Kandemir. Organizing the
last line of defense before hitting the memory wall for cmps. In International
Symposium on High Performance Computer Architecture (HPCA), page 176,
2004.

212

[69] M. Loghi, M. Letis, L. Benini, and M. Poncino. Exploring the energy efficiency
of cache coherence protocols in single-chip multi-processors. In GLSVLSI,
pages 276–281, 2005.

[70] M. Loghi and M. Poncino. Exploring energy/performance tradeoffs in shared
memory mpsocs: Snoop-based cache coherence vs. software solutions. In Con-
ference on Design, Automation and Test in Europe (DATE), pages 508–513,
2005.

[71] M. Loghi, M. Poncino, and L. Benini. Cache coherence tradeoffs in shared-
memory mpsocs. ACM Transactions on Embedded Computing Systems,
5(2):383–407, 2006.

[72] D. Lyonnard, S. Yoo, A. Baghdadi, and A. Jerraya. Automatic generation of
application-specific architectures for heterogeneous multiprocessor system-on-
chip. In Design Automation Conference (DAC), pages 518–523, 2001.

[73] S. A. Mahlke, W. Y. Chen, J. C. Gyllenhaal, and W.-M. W. Hwu. Com-
piler code transformations for superscalar-based high performance systems.
In Conference on Supercomputing, pages 808–817, 1992.

[74] A. Marongiu, L. Benini, and M. Kandemir. Lightweight barrier-based par-
allelization support for non-cache-coherent mpsoc platforms. In Conference
on Compilers, Architecture, and Synthesis for Embedded Systems (CASES),
pages 145–149, 2007.

[75] Grant Martin. Overview of the mpsoc design challenge. In DAC ’06: Pro-
ceedings of the 43rd annual Design Automation Conference, pages 274–279,
2006.

[76] M. K. Martin, M. D. Hill, and D. A. Wood. Token coherence: decoupling
performance and correctness. In International Symposium on Computer Ar-
chitecture (ISCA), pages 182–193, 2003.

[77] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable syn-
chronization on shared-memory multiprocessors. ACM Trans. Comput. Syst.,
9(1):21–65, 1991.

[78] M. Monchiero, G. Palermo, C. Silvano, and O. Villa. Efficient synchronization
for embedded on-chip multiprocessors. IEEE Transactions on Very Large Scale
Integration Systems, 14(10):1049–1062, October 2006.

[79] J. Montanaro et al. A 160mhz, 32b 0.5w cmos risc microprocessor. In IEEE
ISCC, pages 214–229, February 1996.

[80] A. Moshovos. Regionscout: Exploiting coarse grain sharing in snoop-based
coherence. In International Symposium on Computer Architecture (ISCA),
pages 234–245, 2005.

213

[81] A. Moshovos, G. Memik, A. Choudhary, and B. Falsafi. Jetty: Filtering snoops
for reduced energy consumption in smp servers. In International Symposium
on High-Performance Computer Architecture (HPCA), pages 85–96, 2001.

[82] A. Nacul and T. Givargis. Lightweight multitasking support for embedded
systems using the phantom serializing compiler. In Conference on Design,
Automation and Test in Europe (DATE), pages 742–747, 2005.

[83] Kyle J. Nesbit, James Laudon, and James E. Smith. Virtual private caches.
SIGARCH Computuer Architecture News, 35(2):57–68, 2007.

[84] Dimitrios S. Nikolopoulos and Theodore S. Papatheodorou. Fast synchroniza-
tion on scalable cache-coherent multiprocessors using hybrid primitives. In In
Proceedings of the 14th International Symposium on Parallel and Distributed
Processing, pages 711–719, 2000.

[85] Jim Nilsson, Anders Landin, and Per Stenstrom. The coherence predictor
cache: A resource-efficient and accurate coherence prediction infrastructure.
In International Symposium on Parallel and Distributed Processing, pages 10–
17, 2003.

[86] A. Patel and K. Ghose. Energy-efficient mesi cache coherence with pro-active
snoop filtering for multicore microprocessors. In International Symposium on
Low Power Electronics and Design (ISLPED), pages 247–252, 2008.

[87] T. Pering, T. Burd, and R. Brodersen. Dynamic voltage scaling and the design
of a low-power microprocessor system, 1998.

[88] P. Petrov, D. Tracy, and A. Orailoglu. Energy-efficient physically tagged
caches for embedded processors with virtual memory. In Design Automation
Conference, pages 17–22, June 2005.

[89] S. Powell et al. Estimating power dissipation of vlsi signal processing chips:
The pfa technique. In VLSI Signal Processing, page 250259, 1990.

[90] S. C. Prasad and K. Roy. Circuit optimization for minimization of power
consumption under delay constraint. In Intl Workshop on Low Power Design,
page 1520, April 1994.

[91] M. Qureshi and Y. Patt. Utility-based cache partitioning: A low-overhead,
high-performance, runtime mechanism to partition shared caches. In Interna-
tional Symposium on Microarchitecture (MICRO), pages 423–432, 2006.

[92] Nauman Rafique, Won-Taek Lim, and Mithuna Thottethodi. Architectural
support for operating system-driven cmp cache management. In International
Cconference on Parallel architectures and Compilation Techniques (PACT),
pages 2–12, 2006.

214

[93] G. Ramalingam. The undecidability of aliasing. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 16(5):1467–1471, 1994.

[94] R. M. Ramanathan. Intel multi-core processors: Making the move to quad-
core and beyond. Technology@Intel Magazine, pages (1):2–4, 2006.

[95] Brian M. Rogers, Anil Krishna, Gordon B. Bell, Ken Vu, Xiaowei Jiang, and
Yan Solihin. Scaling the bandwidth wall: challenges in and avenues for cmp
scaling. SIGARCH Computer Architecture News, 37(3):371–382, 2009.

[96] C. Rowen. Engineering the Complex SOC. Fast, Flexible Design with Config-
urable Processors. Prentice Hall, New Jersey, 2004.

[97] R. Rugina and M. Rinard. Pointer analysis for multithreaded programs.
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 34(5):77–90, 1999.

[98] B. Saglam and V. Mooney. System-on-a-chip processor synchronization sup-
port in hardware. In Design, Automation and Test in Europe (DATE), pages
633–641, 2001.

[99] A. Salcianu and M. Rinard. Pointer and escape analysis for multithreaded
programs. In Symposium on Principles and practices of parallel programming
(PPoPP), pages 12–23, 2001.

[100] Jack Sampson, Ruben Gonzalez, Jean-Francois Collard, Norman P. Jouppi,
Mike Schlansker, and Brad Calder. Exploiting fine-grained data parallelism
with chip multiprocessors and fast barriers. In MICRO, pages 235–246, 2006.

[101] D. C. Sastry and M. Demirci. The qnx operating system. Computer, 28(11):75–
77, 1995.

[102] M. Schlett. Trends in embedded microprocessor design. Computer Magazine,
31(8):44–49, August 1998.

[103] T. Simunic, L. Benini, A. Acquavia, P. Glynn, and G. De Micheli. Dynamic
voltage scaling and power management for portable systems. In 38th DAC,
pages 524–529, June 2001.

[104] J. Singh, W-D. Weber, and A. Gupta. Splash: Stanford parallel applica-
tions for shared-memory. SIGARCH Computer Architectures News, 20(1):5–
44, 1992.

[105] K. Strauss, X. Shen, and J. Torrellas. Flexible snooping: Adaptive forwarding
and filtering of snoops in embedded-ring multiprocessors. In International
Symposium on Computer Architecture (ISCA), pages 327–338, 2006.

[106] C. H. Tan and J. Allen. Minimization of power in vlsi circuits using transistor
sizing, input ordering, and statistical power estimation. In Intl Workshop on
Low Power Design, pages 75–80, April 1994.

215

[107] T. Tan, A. Raghunathan, and N. Jha. Embedded operating system energy
analysis and macro-modeling, 2002.

[108] Andrew Tanenbaum. Modern Operating Systems. Prentice Hall, 2001.

[109] D. Tarjan, S. Thoziyoor, and N. Jouppi. Cacti 4.0: An integrated cache
timing, power and area model. Technical report, HP Laboratories Palo Alto,
June 2006.

[110] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to
exploiting coarse-grained pipeline parallelism in c programs. In International
Symposium on Microarchitecture (MICRO), pages 356–369, 2007.

[111] M. Thompson, H. Nikolov, T. Stefanov, A. Pimentel, C. Erbas, S. Polstra,
and E. Deprettere. A framework for rapid system-level exploration, synthesis,
and programming of multimedia mp-socs. In International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages
9–14, 2007.

[112] S. Thoziyoor, N.Muralimanohar, J. Ahn, and N. Jouppi. Cacti 5.3. Technical
report, HP Laboratories Palo Alto, April 2008.

[113] Transmeta. Crusoe LongRun Power Management White Paper.

[114] Dean M. Tullsen, Jack L. Lo, Susan J. Eggers, and Henry M. Levy. Supporting
fine-grained synchronization on a simultaneous multithreading processor. In
HPCA ’99: Proceedings of the 5th International Symposium on High Perfor-
mance Computer Architecture, page 54, Washington, DC, USA, 1999. IEEE
Computer Society.

[115] O. Villa, G. Palermo, and C. Silvano. Efficiency and scalability of bar-
rier synchronization on noc based many-core architectures. In International
Conference on Compilers, Architectures and Synthesis for Embedded Systems
(CASES), pages 81–90, 2008.

[116] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and B. Fal-
safi. Temporal streaming of shared memory. In ISCA, 2005.

[117] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and B. Fal-
safi. Temporal streaming of shared memory. In International Symposium on
Computer Architecture (ISCA), pages 222–233, 2005.

[118] James Y. Wilson and Aspi Havewala. Building Powerful Platforms with Win-
dows CE. Addison-Wesley Professional, 2001.

[119] WindRiver. VxWorks, http://www.windriver.com. Wind River.

[120] W. Wolf. The future of multiprocessor systems-on-chips. In DAC, pages 681–
685, June 2004.

216

[121] Karim Yaghmour. Building Embedded Linux Systems. O’Reilly Media, Inc.,
2003.

[122] C. Yang and A. Orailoglu. Light-weight synchronization for inter-processor
communication acceleration on embedded mpsocs. In Conference on Com-
pilers, Architectures, and Synthesis for Embedded Systems (CASES), pages
150–154, 2007.

[123] S-H. Yang, B. Falsafi, M. D. Powell, and T. N. Vijaykumar. Exploiting choice
in resizable cache design to optimize deep-submicron processor energy-delay.
Symposium on High-Performance Computer Architecture (HPCA), 00:0151,
2002.

[124] C. Yu and P. Petrov. Aggressive snoop reduction for synchronized producer-
consumer communication in energy-efficient embedded multi-processors. In
CODES+ISSS, pages 245–250, 2007.

[125] C. Yu and P. Petrov. Low-power snoop architecture for synchronized producer-
consumer embedded multiprocessing. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 17, Issue:9:1362 – 1366, September 2009.

[126] C. Yu and P. Petrov. Low-cost and energy-efficient distributed synchronization
for embedded multiprocessors. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 18 Issue:8:1257 – 1261, August 2010.

[127] Chenjie Yu and Peter Petrov. Distributed and low-power synchronization
architecture for embedded multiprocessors. In CODES+ISSS ’08: Proceedings
of the 6th IEEE/ACM/IFIP international conference on Hardware/Software
codesign and system synthesis, pages 73–78, New York, NY, USA, 2008. ACM.

[128] Chenjie Yu and Peter Petrov. Latency and bandwidth efficient communication
through system customization for embedded multiprocessors. In DAC ’08:
Proceedings of the 45th annual Design Automation Conference, pages 766–
771, New York, NY, USA, 2008. ACM.

[129] Chenjie Yu and Peter Petrov. Off-chip memory bandwidth minimization
through cache partitioning for multi-core platforms. In DAC ’10: Proceed-
ings of the 47th Design Automation Conference, pages 132–137, New York,
NY, USA, 2010. ACM.

[130] Chenjie Yu and Peter Peter Petrov. Aggressive snoop reduction for synchro-
nized producer-consumer communication in energy-efficient embedded multi-
processors. In CODES+ISSS ’07: Proceedings of the 5th IEEE/ACM interna-
tional conference on Hardware/software codesign and system synthesis, pages
245–250, New York, NY, USA, 2007. ACM.

[131] Chenjie Yu, Xiangrong Zhou, and Peter Petrov. Low-power inter-core commu-
nication through cache partitioning in embedded multiprocessors. In SBCCI

217

’09: Proceedings of the 22nd Annual Symposium on Integrated Circuits and
System Design, pages 1–6, New York, NY, USA, 2009. ACM.

[132] W. Yuan and K. Nahrstedt. Integration of dynamic voltage scaling and soft
real-time scheduling for open mobile systems, 2002.

[133] C. Zhang, F. Vahid, and W. Najjar. A highly configurable cache architecture
for embedded systems. In International Symposium on Computer Architecture
(ISCA), pages 136–146, 2003.

[134] X. Zhou, C. Yu, A. Dash, and P. Petrov. Application-aware snoop filtering for
low-power cache coherence in embedded multiprocessors. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 13(1), January 2008.

[135] Weirong Zhu, Vugranam C Sreedhar, Ziang Hu, and Guang R. Gao. Syn-
chronization state buffer: supporting efficient fine-grain synchronization on
many-core architectures. In ISCA, pages 35–45, 2007.

218

