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Chapter 1

Introduction

Harmonic analysis is a field epic in both scope and breadth. Admitting tech-

niques that abut on the edge of number theory and providing the vehicle for many

sharp inequalities in PDEs are a couple of examples that illustrate this vast often

disconnected portion of mathematics. With this being said, it is not surprising that

connecting seemingly disparate subjects within the framework of harmonic analysis

can be a feasible reality. This thesis represents three distinct projects within the

realm of pure and applied harmonic analysis. Whether it be the representation,

compression and reproduction of DEM and LIDAR data types with wavelet and

wedgelet methods, dimension reduction of hyperspectral data by frame-based ker-

nel methods or wavelet packet methods for the purposes of material classification

or the analysis of wavelet systems with the multiplicative Zak transform, the clear

and pertinent underlying theme is the analysis of objects by both time and scales.

DEM and LIDAR are related data types that differ from images by a great

deal. Instead of representing color reflectance information about a scene, DEM

represents the altitude of a surface in a raster form and LIDAR is essentially a

point cloud sampling of such a surface. The goal of this portion of the thesis is to

decompose these structures with an intrinsic transform, so that when compression is

performed, the important underlying geometries are preserved. A natural place to

1



start with such a project is by parsing through standard image processing techniques

that share similar goals. Taking into account the way in which the data differs from

images, and improving on the techniques inherited by image processing, we can

establish a couple of transform techniques which perform this process well. The

resulting transforms, contourlets and wedgelets, are part of this larger view into the

analysis of time and scale, and utilizing these structural components to understand

these particular objects.

Hyperspectral data is a pure product of harmonic analysis. Nothing could

be more classical than spectral information of this sort. While the methods for

the reduction of dimension of general data sets has not always existed exclusively

within the world of harmonic analysis, the reduction of dimension of this particular

type of data can certainly be considered loosely part of the family. Frame based

kernel methods for dimension reduction of hyperspectral data can be seen in the

light of time-scale analysis through the diffusion wavelet viewpoint. The methods

in this thesis do not cover this perspective, but the alternate analysis of a spatial-

spectral decomposition of hyperspectral data through the use of wavelet packets

clearly fulfills this condition. The end result in any case is a reduced dimension

data cube for the express purpose of material classification. Both of the methods

above are shown to be superior to classification of the raw data by a collection of

standard techniques.

Wavelets themselves are a personification of time-scale analysis. Ever since

Calderón showed the world that we could represent with scale via the affine group, we

have been honing our ability to generate and utilize these wavelet systems. It is this

2



same scale property that makes the affine group such a confounding group to work

with, so much so that replicating the actions of the Zak transform in the Heisenberg

group case for Gabor systems is neither simple nor straightforward. However, an

idea in the form of the multiplicative Zak transform yields a tantalizing clue to the

reproduction of this process, and allows us the ability to work on familiar ground

with the troublesome affine group.

1.1 Original Elements of the Thesis

1.1.1 Chapter Two

Chapter two concerns the evaluation of many standard and modern multi-scale

wavelet-like representation schemes for DEM/LIDAR data. An innovation within

this framework was the removal of luminance from the calculation of TSSIM, to

more aptly describe the DEM data type.

Another innovation within this chapter concerns the structures used to im-

plement the modified wedgelet algorithms. These were sped up many times from

their basic Beamlab levels merely by using efficient structures tailor built for the

process. The recursive decomposition scheme was created to minimize the number

of redundant calculations.

The largest contribution in this chapter consists of extending the wedgelet

transform to working on raw LIDAR data. This generalization of the standard linear

wedgelet transform works on gridded information and non-uniform data points. This

effectively allows for a multitude of new data types as well as providing a flexible

3



utility for gridding LIDAR data, and removing gaussian and salt-and-pepper noise,

when that noise occurs on large structural elements, all at the same time.

All of these methods are novel when used on DEM data, as many people have

not utilized the fact that DEM and image data behave very distinctly from one

another.

1.1.2 Chapter Three

This chapter is interesting for a number of reasons. The pipeline used to

implement frame based kernel methods for dimension reduction for the purpose of

material classification are all elements that have been used apart from one another

for a very long time. There are two shared contributions within this context. The

first is that by ordering the flow of the pipeline in a particular directions, we have

in effect produced a new kernel for dimension reduction.

The second novel process is the application of frames to replace the aging con-

cept of endmembers. The conceptual difference allows for a great deal of flexibility

when it comes time to classify the data, as frames are essentially designable.

1.1.3 Chapter Four

The multiplicative Zak transform has been around now for over a decade.

However, it hasn’t really progressed from the original result found by Gertner et

al. [35]. Part of the problem with wavelets is that they aren’t much of a problem

at all. Wavelets tend to want to span L2(R), much more often than an average
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function g could create a spanning Gabor system.

One addition to this outlook is the introduction of superframes as an attempt

to glue the two Hardy spaces back together so that actual wavelet sets may be

analyzed. Unfortunately this result has only been shown to be true in one direction,

namely, that of all wavelet frames consisting of a two-part wavelet-superframe. This

result is proven in Theorem 7.

The idea of analyzing the multiplicative Zak transform on wavelet sets is also a

new one. The important structure in use is the dilation-partition of the real-line by a

wavelet set. This preserves all of the important properties of the transform itself, and

allows us to shift our view to various sets, where functions have the splitting property

with their wavelet generators. This leads to a slightly more general classification

of wavelet frames, one that allows support across zero in R̂, allowing for genuine

wavelet frames. This occurs in Theorem 9.

Theorem 11 illustrates a very provocative relationship between the multiplica-

tive Zak transform, and the alternate version of that transform, in relation to the

sum of all dilates of the generating function.

The final innovation of this thesis is the inversion formula for the multiplicative

Zak transform given in theorem 12. Once the other elements from the paper (such

as the inverse of Theorem 7) have been worked out, this will provide a simple

mechanism to create families of wavelet frames with designed properties.
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Chapter 2

Compression of LIDAR Data Types

2.1 Introduction

The use of Digital Elevation Matrices (DEM) has seen a rapid expansion of

activity in many diverse fields in the last decade. Among these fields are geography,

geology and urban planning. Interest in using DEM as a tool spiked with hurricane

Katrina, since all aspects of government and civilian intervention required extensive

and accurate knowledge of surface details along the gulf coast. Given the increasing

prevalence of inexpensive massive data storage, DEM is finding a strong following

in fields where images used to suffice.

Digital Elevation Matrices are processed from raw Light Detection And Rang-

ing (LIDAR) data. LIDAR is essentially a point-cloud of three-dimensional data

taken by attaching a light emitter and collecter to the underside of an airplane and

flying the plane over the region of interest. A combination of GPS information for

the plane’s flight path and collected light returns are converted into a point cloud

that is a rough approximation of the surface that has been sampled. Specialty tech-

nicians and software then convert this raw data into a gridded raster form that we

know as DEM. This is a painstaking process, often involving human manipulation

of altitude values and positional shifts based on ground truth and known artifacts.

Whenever DEM is mentioned in the following pages, it is assumed to implicitly
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depend on the underlying LIDAR structure.

Figure 2.1: An example of raw LIDAR.

Note that in figure 2.1, the data is truly three dimensional, and non-unique

height values can be explained by multiple passes, multi-path propagation or even

the result of first and second pass LIDAR penetrating through different materials.

The process of gridding LIDAR into DEM unfortunately removes much of the rich

structure that LIDAR data sets possess. However, the DEM is a more efficient

structure, containing a great deal of surface information inherited from the LIDAR.

Figure 2.2: Two canonical examples of DEM.

In figure 2.2, and for the remainder of this chapter, the z-value, or altitude of the
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surface at a pixel, is represented by a color between blue (low altitude) and red

(high altitude).

Figure 2.3: Tilted urban DEM displaying surface features.

The fact that DEM is really a gridded approximation to a surface allows us to

utilize the data much differently than you would an image. In figure 2.3 we can rotate

the camera looking down onto the DEM from 25o, changing the light source and

shading to show that the surface lives in three dimensions. This kind of information

is vital for understanding line of sight for mobile phone communications in a densely

populated city, or even to understand large-scale drainage paths in flood-prone areas.

Two facts separate DEM data from traditional image data in important ways.

First, DEM can be an excessively large way to store three dimensional data, and

confounds efficient methods of storage and transmission. It isn’t that DEM is an

obnoxious data structure, but that there is simply too much of it, and increasingly

at higher and higher resolutions. Only a very small portion of the globe has been

mapped via LIDAR/DEM, and even with that supposed dearth, there is simply too
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much data to process. Some groups have been known to deposit their DEM data

into large storehouses often many miles away from the analysis center. In these

cases, in order for data to be processed, first they must requisition the data, and

then have it delivered. A very time consuming and tedious prospect. Secondly,

DEM data is very distinct from image data in that many techniques that derive

from image processing fail to work correctly or are inefficient when used with DEM

data, treated as if it were a black and white image. One very simple way to visualize

this principle is to notice that in an overhead image of a building and a parking lot,

if the two are of the same color and there is no shadow, it may appear that there

is in fact no edge separating the two entities. In this case, DEM would very clearly

show that an edge exists and how extreme it is.

Figure 2.4: Can you tell if there is an extreme edge on this roof?

One solution to the problem of large data sizes for DEM is through some
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method of compression. This is where the second fact emerges to confound the first:

traditional image processing compression techniques do not preserve the important

geometries in DEM that make them useful to an analyst. In a heavily urban DEM,

and this will be the primary focus of this chapter, the data is essentially composed

of many flat areas hemmed in by heavy edge detail. Many traditional wavelet

compression techniques compromise the edges and add Gibbs-like noise where there

was none. For many technicians that work closely with DEM, this is an unacceptable

loss of integrity. The edges are what makes the DEM special!

A straightforward approach to the solution of these problems is by using mod-

ified wavelet-like systems that are amenable to edges and directional details. Specif-

ically, curvelets, contourlets and ridgelets [23] [24] [25] [13] are relatively modern

multi-scale methods that emphasize intelligent tiling of the frequency domain and

are thus directionally oriented wavelet-like systems that can be applied to the rep-

resentation and compression of DEM data. The first portion of this chapter will

detail experiments that conclude the superiority of contourlets over other standard

and modified methods in representing urban DEM. The idea of what it means for

one method to be superior over another will also be discussed since we have estab-

lished that DEM and image data are distinct. Given this, it will be useful to evalu-

ate our quantitative methods of establishing how closely a represented/compressed

DEM resembles the original by going through various quality indices and metrics

that attempt to accomplish this goal. We eventually settle on the Terrain Struc-

tural Similarity index (TSSIM), a modified version of the structural similarity index

(SSIM) [51] and use this as a quality comparison between any two DEM tiles.

10



Since geometry plays a vital role in the underlying structure of urban DEM, it

makes sense that techniques based on scale-space geometric representation may per-

form better than multi-scale methods. The second section of this chapter deals with

studying and modifying wedgelets [26], a geomtrical representation method, to work

specifically with urban DEM. Wedgelets end up vastly outperforming contourlets in

the representation, compression and quality reconstruction of heavily urban DEM

data tiles. We will introduce several modifications to the basic wedgelet scheme

that enhance the ability of the transform to optimally decompose urban structures

in DEM. These increase the potency of the compression while maintaining strong

reconstruction in terms of TSSIM.

2.2 DEM and LIDAR Data Types

Digital Elevation Models/Matrices are real-valued matrices for which the rows

and columns represent some geographic latitude and longitude and the value of the

pixel corresponds to an approximation of the surface altitude at that position. Most

users of this data type either pay to have raw LIDAR data converted to its more

usable form, or have in-house processes and technicians that do the same. Either

way, raw LIDAR point-clouds are the underlying data type that give DEM their

important structure.

DEM has a few very distinct uses. Some very coarse forms (where the grid

points are separated by 50 meters or more) are used to map vast regions, moun-

tainous and sub-sea level alike. These can be used to predict ice/water flow and

11



collection since they contain information about the gradient of elevation. Another

use for such regions is the analysis of straight line paths connecting two entities on

separate parts of the surface. This can be helpful in planning systems of communi-

cation that rely on the propagation of EM signals. Finer versions of DEM (where

the grid points are separated by 1 meter or less) are very useful for analyzing various

aspects of urban importance. Cell-phone tower location, line-of-sight analysis and

noise reduction are a few such uses of the fine-scale urban DEM.

This research project dealt with a few specific data sets that will arise again

and again throughout this chapter. We have what is known as the S data set, a

large portion of New Orleans (note the colors with respect to sea level), which we

have carved into a number of manageable 512 × 512 sized data tiles. We refer to

these as S1 through S15, with the standard urban example being S10.

Figure 2.5: New Orleans S-tile and the sub-tiles S1 through S15.

The second important data set that is used throughout this chapter is the
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so-called T -tile. This is a large portion of Alexandria Virginia, with Telegraph road

running right through the middle. This tile happened to contain the headquarters of

the Topographic Engineering Center (TEC). This is the organization that financed

this research project. Clearly an important tile. Similar to S, this is a very large

high resolution DEM, that we broke up into a number of manageable 512 × 512

sub-tiles. We also refer to these as T1 through T25.

The T tile has a lot going for it aside from its artful color scheme. This

represents an area roughly six thousand meters square, with 1 meter resolution. In

the left most image in figure 2.7, there is a large shaded region that actually sits

above the TEC headquarters. This is one of the only regions for which we had both

LIDAR and DEM data representing the same geographic region. The shaded region

Figure 2.6: The standard urban tile, S10.
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Figure 2.7: Alexandria Virginia T-tile and the sub-tiles T1 through T25.

represents the boundary of the LIDAR data that we received, and this fortunate

concurrence allowed us to try and understand the gridding process in more depth.

The amount data contained within the point cloud is very large, containing roughly

4.9 million three dimensional points. The density of the LIDAR point cloud is

similar to the uniform density of the DEM. The point cloud comprises about 13.6

percent of the points in the entire large T tile.

Since LIDAR comes before DEM in the processing chain, it is likely that the

LIDAR retains more intrinsic geometric information from the scene. Because of this

reason, it seems prudent to try and gain an automatic advantage by working directly

with the LIDAR and avoiding the loss of information that occurs from gridding it.

This seemed like a very good idea, until it became clear that the process was both

intensive, proprietary and not reproducible without other resources. The process

of gridding LIDAR is for all intents and purposes, a black-box. The following is a

14



Figure 2.8: This Map Shows the Density of the Point Cloud Samples.

brief summary of our attempts at studying the gridding process, how sensitive our

techniques were to the gridding mechanism, and ultimately how the conversion to

DEM is quite opaque. For this we create a 26’th T tile, and pull it right from the

region above the TEC headquarters.

Note that our gridded versions of T26 are not nearly as exciting as the DEM

version. We speculate that the data was collected at different times in the year,

accounting for several foliage differences. Furthermore, trees can be a tricky issue to

accurately model with LIDAR, as the first-pass does not often penetrate the canopy

of the trees, while the second-pass can. This can create a multi-valued surface (which

it is) near trees, and is often corrected by hand. Similar issues arise over water. We

specifically repeated this experiment with another tile, now T27, trying to see the
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Figure 2.9: Standard Gridding Techniques on the LIDAR Contained in T26.

effects of water on LIDAR.

2.2.1 Urban DEM, Quality and the Expert

It is always an interesting endeavor to apply mathematics to questions of

subjectivity. How can you quantify attractiveness? Is Monet ε more creative than

Manet? This is embellishing for the actual question of how do you tailor quality

results to your benefactors when the paragon of excellence is to please an expert?

In this project, our indicated goal was to represent, compress and reconstruct urban
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Figure 2.10: Standard gridding techniques on the LIDAR contained in T27.

DEM in such a way that a trained expert would consider the image representation to

be reasonable. This kind of tricky response to the question, ‘what is quality?,’ forced

us to change our perspective on how to measure visual quality in a quantitative way.

There are various schools of thought on this issue, and the norms that first get used

to verify the quality of an image are the `1 norm or the total-variation norm. It

has been suggested that there are physiological explanations for why these norms

generally behave more like the eye’s response.

Following this line of reasoning, we wished to find a measure of quality, that

reflected the human eye’s ability to distinguish structures and differentiate similar

images based on changes that mean-squared-error, `1 and total-variation do not

always pick up on. If we can measure images against each other, especially in a
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way that is amenable to the human eye, then we are one step closer to pleasing the

experts. Since we are not working with images, but scenes in which structure and

detail are the prominent features, we can narrow our scope to finding a measure that

approximates the human eye’s ability to distinguish minute structural differences in

similar scenes.

We will restrict the field of applicable DEM data by insisting that we only

are concerned with urban DEM. This has its own inherent problems with lack of a

rigorous definition. Are the suburbs urban? Is the Guggenheim a structure that we

think of as being in an urban environment? This issue was avoided ahead of time by

quizzing the experts and asking them to sort a collection of tiles into urban, rural

and suburban. In general, we will just think of the distinction as man-made forms

versus natural scenery. For us, urban DEM contains heavy edge discontinuities

that usually lie along polygons. Natural terrain tends to vary continuously along

irregular boundaries.

2.2.2 Terrain Structural Similarity Index (TSSIM)

The problem of automatically measuring image quality in a way that agrees

with human inspection is not new. In 1995, Eskicioglu and Fisher [30] studied

a massive collection of common image quality assessment methods (`p, MSE, `∞

and many more), degraded a collection of black and white images, and then had

human subjects rank degraded images against the original. They then took the

measurements from the collection of quality measures and looked at the correlation
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between human and the measures concept of quality.

Their findings were fairly inconclusive, showing some of the measures to be

essentially worthless for predicting a human’s response to the quality, but they did

make an important point. It is not difficult to create an example of a slightly

degraded image, that is quite strikingly bad to the human eye, for which the MSE

is quite low. It really shouldn’t be that easy to fool a standard measure of image

quality. Really what needs to be understood is how the eye perceives changes and

to model that more efficiently.

In 2004, Wang, Bovik, Sheikh and Simoncelli [51] introduced a new quality

index, known as SSIM, and with it improved upon this type of comparison between

automatic image quality assessment as compared to human subjective tests. With

this experiment, they have shown their index, SSIM, to be far and away better at

predicting human quality judgements, over peak signal to noise ratio (PSNR), which

is related to MSE, Sarnoff and UQI methods.

Part of their approach is to really pay attention to the underlying physiology

of the human eye, and to model their system in a similar manner. They remark

that the perceivability of image details depends on the sampling density of the

image signal, the distance from the image plane to the observer, and the perceptual

capability of the observers visual system. In practice, the subjective evaluation of a

given image varies when these factors vary.

They first act to separate the following three layers from an image: luminance,

contrast and structure. These will be operated on independently.

The SSIM is a statistical measure. It is computed based on the moments of
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the pixel value distribution. Fix a window size N . Let a = {ai}Ni=1 and b = {bi}Ni=1

be the pixels corresponding to this window, centered on the target pixels in the two

images, respectively. We first compute the weighted mean for each window:

µa =
N∑
i=1

wiai and µb =
N∑
i=1

wibi.

where the positive weights w sum up to 1, thus providing a weighted average.

The case when all the w are equal corresponds to the statistical mean estimator,

but inverse distance weights can also be used. We performed our experiments with

an 11× 11 Gaussian window.

The luminance comparison between the two target pixels is given by:

l(a, b) =

(
2µaµb
µ2
a + µ2

b

)
This index ranges from 0 to 1, with 1 being the case for a=b.

Next, the variances (second moments) are computed:

σ2
a =

N∑
i=1

wia
2
i − µ2

a and σ2
b =

N∑
i=1

wib
2
i − µ2

b

and the second component is defined to be

c(a, b) =

(
2σaσb
σ2
a + σ2

b

)
.

The third component is based on the crosscorrelation:

σa,b =
N∑
i=1

wiaibi − µaµb
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and defined as:

s(a, b) =

(
σa,b
σaσb

)
.

Combining the three components multiplicatively, we obtain:

SSIM(a, b) =

(
2µaµb + C1

µ2
a + µ2

b + C1

)(
2σaσb + C2

σ2
a + σ2

b + C2

)(
σab + C3

σaσb + C3

)

where the constants Ci are included for numerical stability in the computation.

A MATLAB implementation of the SSIM index is available at

http://www.cns.nyu.edu/ zwang/files/research/ssim/ .

For the purposes of studying terrain elevation data, we chose to discard the lumi-

nance component, considering that absolute mean elevation differences play little

role in evaluating the similarity of urban DEMs. We thus defined the Terrain Struc-

tural similarity index as:

TSSIM(a, b) =

(
2σaσb + C2

σ2
a + σ2

b + C2

)(
σab + C3

σaσb + C3

)
.

With the appropriate choice of constants, this expression simplifies to:

TSSIM(a, b) =
σab + C

σ2
a + σ2

b + C
,

It should be noted that while TSSIM is a remarkable tool for detecting visual

differences in DEM, it is extremely sensitive to translation, rotation and scaling. It

would clearly not be a strong choice if we were comparing to sets of data in which
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the movement of a sensor provided error within one of these fields. However, this is

not the case for us, and in fact, since DEM has so much more underlying structure

than do black and white images, we would be hard pressed to find a better measure

of quality that conforms to the experts as well. Note that TSSIM is not a metric,

and two images I1 and I2 are equal if and only if both have the same size and

TSSIM(I1, I2) = 1. Furthermore, note that TSSIM(a, b) is actually a matrix of

local TSSIM values. When we talk about the value of TSSIM between two images,

we are referring to the average across this entire TSSIM map.

2.3 Time-Scale Compression Methods

Computer vision and image processing have long known that edges are the

predominant feature in images: they govern the structure and are boundaries for

remaining smooth portions. The multi-scale property of wavelets have brought new

tools into the realm of dealing with edges within images, but most often these tools

are clunky and difficult to worth with for the kinds of edges typically found in

images. In [43] the authors described the deficiency of standard wavelet technique

to model the edges within images as a problem with the underlying description of

these edges. The issue apparently is due to the behavior of Besov models with

relation to so-called cartoon-like models. These cartoon-like models showed how

sub-optimally standard wavelet techniques dealt with these edges. The standard

cartoon model, as seen below, is composed of two distinct constant valued regions

separated by a curve that is C2, and is more generally in the literature, piece-wise
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C2.

Figure 2.11: Simple Example of a Cartoon Model.

To combat these problems, several new techniques were established to more

optimally decompose the cartoon-like model of edges within images. One way to

think about this optimal decomposition is in expressing an edge along a nice discon-

tinuity in some manner that is intrinsic to the image, and therefore requires very few

coefficients to store. Vetterli and Do have a fantastic image [23] which expresses

this well.

In 2004 Candes and Donoho introduced curvelets [13]. This was the first at-

tempt at sparsely approximating the cartoon model, and doing so in an optimal

manner. Their idea is novel and powerful, and has lead to a variety of important

offshoot results. Contourlets were introduced by Vetterli and Do [23] [24] in 2005

and sought to perform a similar function as curvelets, with a new partition of the fre-

quency domain, directional filter-bank analysis and user-friendly discrete framework

for an algorithmic implementation.
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Figure 2.12: Modeling an Edge in a Cartoon Model: Do and Vetterli.

Figure 2.13: Frequency partition for Contourlets.

Ridgelets were a precursor to Contourlets, and was created by Vetterli and Do

in 2003 [25] to enhance the ability of wavelet systems to be directionally sensitive.

Many of the features of ridgelets become an important part of the wedgelet repre-

sentation scheme, which will be detailed later in this chapter. In 2005, Labate, Lim,

Kutyniok and Weiss [44] furthered each of these methods by creating the shearlet

transform. Unfortunately this transform was not included in the analysis of DEM
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data types, as the transform was still quite new at the time of this projects incep-

tion. It would be interesting to measure how well that transform would perform

against the others gathered already.

This short section shall compare a few standard wavelet compression methods

to those new methods which attempt to encode edge data in an optimal way for

the cartoon model, and will identify the method best able to represent, compress

and accurately reconstruct urban DEM data types. To provide a baseline level of

comparison to more traditional image compression techniques, we have included the

discrete cosine transform (DCT) [54] and a couple of standard (5/7 and 9/7) wavelet

filter banks [46] into our list of techniques.

The experiment consists of the following steps:

1. Select a DEM dataset I, (S1 − S15, T1 − T25),

2. Decompose the DEM data set I into

- 5/3 wavelet filter-bank,

- 9/7 wavelet filter-bank,

- the discrete cosine transform,

- the curvelet transform,

- the contourlets transform (1 level),

- the contourlets transform (2 levels),

- the contourlets transform (3 levels),

- the ridgelet transform.
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3. Stepping p back from 100% to 0%, threshold the representations from 2. re-

taining p percent of the coefficients. Reconstruct each threshed representation

and save the reconstructed image, Ip,

4. Generate curves comparing the original DEM data set I to each of the recon-

structed images varying by p percentage, Ip, using the following metrics and

quality index,

- log(1 + ||I − Ip||`2),

- log(1 + ||I − Ip||`∞),

- ||I − Ip||tv, where tv is the total-variation norm,

- TSSIM(I, Ip).

We have used this experiment flow-chart with three sets of data. First we

have processed the fifteen S tiles using the above steps. For each norm-type, we

have averaged across the fifteen S tiles, creating four graphs, one for each of the

used norms/quality index. Each curve represents a single multi-scale decomposition

method, with the results being averaged across each of the S tiles.

Similarly, the T tiles have been processed using the experiment guidelines and

have been averaged across the 25 different T tiles.

The next group of results deals solely with the tile S10. Instead of thresholding

from 100 percent to 0, we have only run through the important visual range of 0 to

30 percent of retained coefficients.

These metrics/quality index exhibit very different behavior as the DEM data
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Figure 2.14: S-tiles Avg.: log(1 + || ||2) Figure 2.15: S-tiles Avg.: log(1 + || ||∞)

Figure 2.16: S-tiles Avg.: total variation Figure 2.17: S-tiles Avg.: TSSIM

Figure 2.18: T-tiles Avg.: log(1 + || ||2) Figure 2.19: T-tiles Avg.: log(1 + || ||∞)
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Figure 2.20: T-tiles Avg.: total variation Figure 2.21: T-tiles Avg.: TSSIM

Figure 2.22: S10: log(1 + || ||2) Figure 2.23: S10: log(1 + || ||∞)

Figure 2.24: S10: total variation Figure 2.25: S10: TSSIM
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sets are degraded more and more. It became clear during this experiment that the

TSSIM index became a more reliable measurement device as compared to the ex-

pert opinions at the Topographic Engineering Center. In fact, we established that

a TSSIM of 0.8 between two DEM tiles (especially when those tiles were urban)

represented a ‘good-enough representation’ for the experts. Interestingly enough,

the Contourlets level 3 decomposition does essentially as well as the other repre-

sentations until approximately 20 percent retained coefficients. At this point the

Contourlets level 3 method jumps far ahead of the other methods, for the combined

T and S tile averages. Note that around this 20 percent jump, the TSSIM values

hover at or above 0.8. The blow-up of this process for S10 help to illustrate that

for urban DEM tiles, this effect is even sharper. Given that TSSIM is the index

for which we want to optimize, it became clear that contourlets were the optimal

representation to represent urban DEM.

This experiment used brute force to come to a quick solution of how to repre-

sent urban DEM in such a way that the experts find the representation satisfactory.

We have avoided a more intricate study of these methods and how various threshold-

ing techniques, or even small changes in underlying data may effect the results. The

most important information that comes from this data, are the baseline results that

we can use to improve on the technique. The next section of this chapter will deal

with a multi-scale geometric representation which exceeds the ability of Contourlets

to represent DEM data types.
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2.4 Geometric Representation: Wedgelets

Wavelets have certainly enjoyed a strong following in the past 25 years, but

they are not always the most useful or intuitive technique for certain problems. One

of the characteristics of urban DEM is the proliferation of heavy edges throughout

the scene. While directional wavelet methods help to capture these edges, they still

add undesirable noise, by adding Gibbs-like ringing.

Figure 2.26: S10. Figure 2.27: Contourlets defects.

This ringing acts to smooth out the gradient, rendering much of the informa-

tion from the DEM useless.

One way to deal with this phenomenon is to think more intuitively about how

we want to represent this type of data. For instance, ask what kind of shapes we

are seeing primarily, how much elevation change do we expect, and what are typical

neighborhoods in the data resembling? By asking these specific questions we can

note that urban DEM contains edges, corners and very few curves. Unless you are

analyzing the Gugenheim museum, urban DEM contains flat or constant sloped

30



rooves. Furthermore, we typically don’t find an abundance of natural shapes like

trees, or lakes in urban DEM. This means that we are interested in representing

simple flat and constant sloped objects that are well surrounded by heavy edge and

corner detail.

Figure 2.28: Aligned edges, polygonal edges and flat surfaces.

This image, figure 2.28 is as urban as DEM tiles get. The buildings have flat

or slightly sloped rooves, the buildings align on a grid that appears to be shifted

approximately 20 degrees. There are very few details (circled) to stand in the way

of large simple objects to represent.

2.4.1 Wedgelets

In [26] Donoho introduced a multi-scale representation scheme that essentially

extracts geometric edge data from an image and encodes it efficiently into piece-wise
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constant functions that are supported on a dyadic grid of wedges.

Figure 2.29: Examples of Wedgelet Functions.

This construction is highly amenable to our urban DEM data because of the

prevalence of edges and piecewise constant regions in that data.

His aims are to optimally represent the cartoon model sparsely, naturally and

in some type of min-max sense. We wish to use this method because intuitively

buildings, roads and similar objects share many geometric properties with the car-

toon model (except for the C2 along the boundaries of discontinuities). Rectangular

buildings with flat rooves can be perfectly represented by such functions supported

on wedges. Collapsing a building down to such a simple function allows a great deal

of room for compression.

We shall adapt and improve on Donoho’s system in three ways:

1. We use a recursive scheme to compute the wedgelet transform in a faster way,

2. We remove the constraint that our representation functions be piece-wise con-

stant, allowing for our surfaces to be planar,

3. We generalize the notion of wedgelets to the underlying data type, LIDAR

point clouds.
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2.4.2 Piece-Wise Constant Wedgelets

To fix ideas and simplify our notation, we will describe the wedgelet algorithm

using a dyadic square image, where I ∈MN×N(R) is an N×N image, where N = 2k

for some k.

Figure 2.30: The Basic Wedgelet Set-Up.

Next we decompose the image I into a dyadic multi-scale tree, {Sjl }j=0,...,k, l=0,...,2j+1,

where j represents the depth of the decomposition and l keeps track of the 2j + 1

sub-regions at that depth. So at each depth j, there is a partition of I = ∪2j+1
l=0 Sjl .

Figure 2.31: First Layer Dyadic Decomposition.

The ordering structure begins at depth 1 as, from left to right, and top to

bottom, and then for each of the following depths, the ordering is done recursively.

Note that Sjl is an N
2j
× N

2j
sub-image of I. This decomposition continues down

to pixel-scale, i.e. j = log2(N).
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Figure 2.32: Illustration of ordering in Layer 2.

The next stage of the wedgelet decomposition of I involves bisecting each sub-

region Sjl by a collection of line segments and creating a pair of wedges supported on

Sjl . Donoho does this by assigning any two non-redundant pixels on the boundary

of Sjl as being end-points of the edgelet Ej
l (x1, x2), where x1, x2 ∈ ∂Sjl . Edgelets

are directed from x1 to x2 as a mechanism to keep different wedges defined by the

same edgelet separate.

Figure 2.33: An Edgelet on the sub-square Sjl .

In practice, parameterizing the bisection in this way can be troublesome com-
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putationally. Instead we opt to fix a finite set of angles, Θ ⊂ [−π
4
, 3π

4
), and by a finite

collection of offsets k ∈ Z. Since compression is a goal, it is important to see that

parameterizing our edgelets in this manner does not cost any extra storage, since

θ can be chosen from a finite collection of pre-rendered angles and k is naturally

integral. This ordered pair (θ, k) is then a collection of two integers which is pre-

cisely the same amount of storage needed to describe edgelets in Donoho’s scheme.

This choice of parametrization does not come without cost, and accordingly we must

build some machinery to deal with this change.

Local vs. Global Coordinates: The first order of business is to recognize the

distinction between local and global coordinates when working with sub-regions

from the tree {Sjl }. When we are working specifically on the region Sjl , the local

coordinates will be taken from the matrix representing the image on that region.

That is

(x1, x2) ∈ Z2 ∩ [0,
N

2j
− 1]2.

However, we must remember that these points exist globally within the context of the

image I. In fact, all lines and edgelets will be defined globally to save computational

time. To remedy this, we introduce the coordinate transform, Φj : I → ∪2j+1
l=0 Sjl by

Φj(x1, x2) = (x1 −
⌊
x12j

N

⌋
N

2j
, x2 −

⌊
x22j

N

⌋
N

2j
).

Note that by iteratively applying this transform, we can locate each l cor-

responding to j so that the point (x1, x2) ∈ Sjl . This is nothing more than an

application of the division algorithm. This allows the coordinate transform to be

inverted, by stepping up through the depths iteratively as well.
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Figure 2.34: An Edgelet on the sub-square Sjl and its global coordinates.

Definition 1. We will borrow a useful definition of digital line from [33]. Consider

an image I that is affixed to a coordinate axis so that the pixels line up with an

integral mesh of R2. Consider the line y = θx+k. We define the digital line L(θ, k)

to be

L(θ, k) = {(a, b) ∈ Z2 : (k − 1

2
)δθ <

〈
(a, b), v⊥θ

〉
≤ (k +

1

2
)δθ}

where

δθ = max{cos |θ|, sin |θ|}

and

v⊥θ =


(− sin θ, cos θ) | cos θ| ≥ | sin θ|

(sin θ,− cos θ) otherwise

.

Definition 2. Let θ ∈ [−π
4
, 3π

4
) and let (j, l) be a valid set of coordinate for the tree

{Sjl }. We will decompose this range of angles into 4 regions, modified by steep/flat

and standard/alternative to

1. We call θ ∈ [−π
4
, π

4
) a flat angle and θ ∈ [π

4
, 3π

4
) a steep angle,

2. We call θ ∈ [−π
4
, 0) ∪ [π

2
, 3π

4
) a standard increment set and θ ∈ [0, π

2
) an

alternate increment set.
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Figure 2.35: Examples of steep and flat digital lines.

We allow θ ∈ [−π
4
, 3π

4
) and we identify four distinct regions in this set.

Region 1. [−π
4
, 0) are flat lines of standard increment.

Region 2. [0, π
4
) are flat lines of alternate increment.

Region 3. [π
4
, π

2
) are steep lines of alternate increment.

Region 4. [π
2
, 3π

4
) are steep lines of standard increment.

We make these distinctions for a few important reasons concerning the com-

putational use of (θ, k). We wish to make sure that as we vary our lines (of fixed

angle θ) we do not sweep out redundant wedges.

Note that a flat line is just that; a collection of pixels such that no vertical line

will ever cross more than one pixel. Similarly steep lines are collections of contiguous

pixels such that no horizontal line will every cross more than a single pixel.

This means that with a fixed θ, a steep line incremented horizontally will never

overlap with a previous or future version of itself. A similar statement is true of flat

lines incremented vertically.
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Figure 2.36: The four angular regions.

Figure 2.37: Correct Flat Increment. Figure 2.38: Incorrect Flat Increment.

We do not want to add superfluous calculations, and so we investigate the

following cases to lessen our computational workload.

This is where standard and alternative increments come in to play. For θ ∈
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Figure 2.39: Correct Steep Increment. Figure 2.40: Incorrect Steep Increment.

[−π
4
, 0) (region 1), L(θ, 0) corresponds to the first allowable digital line and L(θ, t)

is the final line. The increment values for this line would then occupy the range

[0, t] ∩ Z where these values are known to live on the vertical axis.

Figure 2.41: R1 Increment Values.

For θ ∈ [0, π
4
) (region 2) we have an alternative increment, which means to

allow intersection of the box, our initial line must be incremented as a negative

value. So the allowable increments for this line type occupy the range [−t, N
2j

] ∩ Z.
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Figure 2.42: R2 Increment Values.

Region three and four have the following increment ranges.

Figure 2.43: R3 Increment Values. Figure 2.44: R4 Increment Values.

Having these ideas straightened out will make a description of the algorithm

exceptionally simple.

Next we define what a wedge and a wedgelet are. Suppose that θ ∈ [−π
4
, 3π

4
)

and k is a proper increment for that θ. We define the digital line L(θ, k) and look

at the following scenarios.

We define the main wedge to be the region bounded by the line L(θ,k) and

continuing clockwise back to that line. We call the wedge partitioned opposite the

main wedge, the sister wedge.

So for any given Sjl and (θ, k) we can uniquely define the main wedge and the
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Figure 2.45: R1 Wedgelet. Figure 2.46: R2 Wedgelet.

Figure 2.47: R3 Wedgelet. Figure 2.48: R4 Wedgelet.

sister wedge, WM and WS. Once we have obtained these wedges, we can define the

piece-wise constant functions supported on them as

W j
l (θ, k) =

(
1

|WM |
∑

Sjl
∣∣
WM

)
1WM

+

(
1

|WS|
∑

Sjl
∣∣
WS

)
1WS

.

These are all of the tools needed to perform the wedgelet transform on a dyadic

squared image I. In the recursive portion of the transform, we make use of a local
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error norm. This norm on its own has been the subject of much research, varying

from standards such as `1, `2 and total variation norms, to the idea of creating a

local scaled version of TSSIM that could somehow act more like a metric instead of

an index. Either way, the norm used has to actually satisfy the triangle inequality to

allow for the pruning of the full coefficient tree to a sparse reconstruction partition.

In practice, it is useful to think of this norm as being either `1 or `2.

2.4.3 The Wedgelet Transform

Algorithm 1 Wedgelet Transform

for θi ∈ Θ do

for k ∈ possible increments for S0
0 do

WT (S0
0)

end for

end for

At the end of the transform we have a coefficient tree, where each node repre-

sents an Sjl and holds the value of the θ, k, VWM
, VWS

for which ||Sjl −W
j
l (θ, k)|| is

minimal.

To summarize this process, for each θ and k that makes sense in this context,

and in a recursive sense, for each Sjl that intersects the digital line L(θ,k), we subdi-

vide the square into a main and sister wedge, and average the values on these wedges

and form the wedgelet supported on them. We measure the approximation of that

wedgelet to the original and if it is better than our previous ’best approximation’,

we save the data from this wedgelet at the Sjl node of our large data structure.
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Algorithm 2 WT (Sjl )

Generate L(θ, k).

Create Main and Sister Wedges WM and WS.

Create the wedgelet W j
l (θ, k).

Compute the current error

∣∣∣∣Sjl −W j
l (θ, k)

∣∣∣∣ = Ej
l (θ, k).

If Ej
l (θ, k) < Errjl then set the current node as the active node and replace

Errjl = Ej
l (θ, k).

Subdivide Sjl into the four children squares Sj+1
l1

, Sj+1
l2

, Sj+1
l3

, Sj+1
l4

.

for p = 1 to 4 do

IF Sj+1
lp
∩L(θ, k) 6= ∅ and the side length of Sj+1

lp
is greater than or equal to the

size of a pixel

WT (Sj+1
lp

)

end for
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For a large image, this is a very sizeable computation. The resulting data

structure contains the best wedgelets on each scale, greatly reducing the amount of

information that is needed to be stored. However, we still have a large amount of

redundant information stored in the data structure. Note that for pretty much any

discontinuity that resembles the cartoon model, there will be some collection of res-

olutions that are able to reproduce that discontinuity very well, as long as there are

few other elements in range of the edge and there are no corners or drastic gradients.

This is the strength of wedgelets to resolve those cartoon models efficiently.

An example of a tree for the S10 data tile could show the following wedge

partitions at varying scales.

Figure 2.49: Level 0 Wedge Partitions. Figure 2.50: Level 1 Wedge Partitions.

Definition 3. We define a valid reconstruction partition of the quad-tree {Sjl } to

be any sub-collection of these sets (nodes in the coefficient tree) for which each pixel

in the original image is represented in one square Sjl once and only once.

From our data structure we can piece together many valid partitions of the

original image I. At coarse scales (j is small) we have large wedges that represent
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Figure 2.51: Level 2 Wedge Partitions. Figure 2.52: Level 3 Wedge Partitions.

Figure 2.53: Level 4 Wedge Partitions. Figure 2.54: Level 5 Wedge Partitions.

large areas, with the benefit of high compression and at the cost of a loss of minute

details. On the other hand, at high resolution we can zero in on perfect recon-

struction, but do so at the cost of having to store immense amounts of information

(Storing a group of 4 pixels requires 4 real numbers to be stored, while representing

4 pixels as a wedgelet requires 2 integers and 2 real numbers, which is a very low

savings as opposed to a wedgelet representing a much larger region).

From this data structure we need to construct a representation that is optimal,

in some way.
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Figure 2.55: Example of a Valid Partition.

2.4.4 Pruning the Quad-Tree

We introduce the parameter λ > 0. This parameter will balance in our recon-

struction, the value of compression vs. precision.

For any valid full partition of I, {Sjqlp } we can define the functional

F (Irec) = λ
∣∣∣{Sjqlp }∣∣∣+ ||I − Irec|| .

The goal is to minimize this functional on the tree for all full valid partitions

of I. Clearly a large λ emphasizes having few pieces to represent I, while a small λ

tries to force an exact approximation. Since our measure of two images being close

is within the context of TSSIM and not actually a metric, the above functional is

useful only as a guideline for the pruning procedure. Our modified pruning method

will therefore not locate the absolute minimum of the functional F , but will trade

that for a local minimum that manages to have a competitively large TSSIM. In the
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future, making TSSIM in a more metric-friendly manner will aid in the creation of

an algorithm that could find a global minimum of such a functional.

Localized Example:

Figure 2.56: Local Pruning Example.

Starting from the basic approximation of the region of I corresponding to Sjl

by {Sj+1
lp
}p=1,2,3,4 versus the approximation of that same region by Sjl , we can ask

the question, when do we wish to pass from the approximation on four squares, to

the coarser approximation on a single larger square?

Irec|Sjl = W j
l (θjl , k

j
l )

and

Irec|∪4p=1S
j+1
lp

=
4∑
p=1

W j+1
lp

(θj+1
lp

, kj+1
lp

).

Here the values θjl , k
j
l , θ

j+1
lp

, kj+1
lp

correspond to the fixed values for each coming

from the coefficient data structure at the point specified. Locally we can then write

the functional decision as

F (Irec|Sjl ) = λ+
∣∣∣∣∣∣W j

l (θjl , k
j
l )− I|Sjl

∣∣∣∣∣∣ = λ+ Ej
l

F (Irec|∪4p=1S
j+1
lp

) = λ · 4 +

∣∣∣∣∣
∣∣∣∣∣

4∑
p=1

W j+1
lp

(θj+1
lp

, kj+1
lp

)− I|Sjl

∣∣∣∣∣
∣∣∣∣∣ = 4λ+

4∑
p=1

Ej+1
lp

.
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So we decide to make the change locally if

λ+ Ej
l < 4λ+

4∑
p=1

Ej+1
lp

or whenever

Ej
l −

4∑
p=1

Ej+1
lp

< 3λ.

We will now apply this localized example of small-scale pruning and use it

to generate a formal pruning procedure. Instead of pruning the tree to a full valid

partition by globally minimizing the functional Fλ, we do so by starting out with the

finest possible approximation (namely I represented at the pixel level) and consider

each grouping of 4 pixels to upgrade to a two by two representation.

Since the approximation at pixel level is perfect, we have the following criteria

for a group of 4 pixels to be upgraded to a single two by two wedgelet approximation

Ej
l < 3λ

This algorithm is opportunistic in that it moves from clumps that have the

most to gain from becoming a single wedgelet, to those that are least likely to

benefit.

The true power of wedgelets is then a very fast ability to sort through recon-

structions of varying coarseness based on the parameter λ. This of course comes at

the cost of a massive front-end computational overhead.
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Algorithm 3 Pruning the Wedgelet Tree

Collect all clumps of 4 pixels all belonging to the same parent node.

Collect the error information from each parent node.

Set the error information from pixel nodes to be zero.

ErrorList ← The list of errors of the parent nodes, as a vector.

ChildErrorList← The four child nodes error information. Here ChildErrorList(l)

is a vector with 4 entries.

ErrorList ← SortDescending(ErrorList). Sort ChildErrorList with the same per-

mutation.

while ErrorList(1) - SUM(ChildErrorList(1)) < 3λ do

Flag the node represented by position 1 as current, turn its children nodes off.

Remove entry 1 from both lists.

if The new entry itself has 3 neighbors of which all share a common parent

node which are current nodes then

Place the error from their common parent into the list ErrorList.

Place the four errors of these neighbors as children in the corresponding place

in ChildErrorList.

ErrorList ← SortDescending(ErrorList). Sort ChildErrorList with the same

permutation.

end if

end while
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2.4.5 Implementation and a Discrete Green’s Theorem

We implemented the wedgelet algorithm in Matlab for testing purposes. A

helpful speed-up was implemented from [33], by employing a discrete version of

Green’s theorem for rapid moment calculation. In essence, since steep or flat lines

sweep out non-redundant wedges and partition each of the sub-squares as the index

is incremented, the difference between the moment at index k and the moment at

index k + 1 was the previous moment summed with the information contained on

the incremented line L(θ, k + 1). This can be made clearer with a couple of simple

images. Consider that we already know the wedgelet on square Sjl corresponding to

the line L(θ, k). That is, we have

W j
l (θ, k) =

(
1

|WM |
∑

Sjl
∣∣
WM

)
1WM

+

(
1

|WS|
∑

Sjl
∣∣
WS

)
1WS

. (2.1)

We wish to use this information to speed up the calculation of the wedgelet

corresponding to the incremented line L(θ, k + 1). The following is an image of the

wedgelet at k and the wedgelet at k + 1.

Figure 2.57: Two Consecutive Wedgelets.

The digital line sweeps out unique and complete portions of the square, and so
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with the following relation, indicating how to convey information aboutW j
l (θ, k) into

information about W j
l (θ, k+1), we can arrive at a formula which is true independent

of k, as long as the line L(θ, k) and L(θ, k+ 1) do not sweep out the same wedgelet

on Sjl .

Figure 2.58: Expression Using W j
l (θ, k) to Find W j

l (θ, k + 1).

That is, if we write the known information as

VM
j
l (θ, k) =

(
1∣∣WM
j
l

∣∣ ∑ Sjl
∣∣
WM

)
, (2.2)

and

VS
j
l (θ, k) =

(
1∣∣WS
j
l

∣∣ ∑ Sjl
∣∣
WS

)
, (2.3)

then we can write the updated moments simply as
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VM
j
l (θ, k + 1) =

(∣∣WM
j
l (θ, k)

∣∣VMj
l (θ, k) +

∑
Sjl
∣∣
L(θ,k+1)∣∣WM

j
l (θ, k)

∣∣+
∣∣L(θ, k + 1) ∩ Sjl

∣∣
)

(2.4)

and

VS
j
l (θ, k + 1) =

(∣∣WS
j
l (θ, k)

∣∣VSjl (θ, k)−
∑

Sjl
∣∣
L(θ,k+1)∣∣WM

j
l (θ, k)

∣∣− ∣∣L(θ, k + 1) ∩ Sjl
∣∣
)
. (2.5)

This leaves us with the updated wedgelet

W j
l (θ, k + 1) = VM

j
l (θ, k + 1)1(WM

j
l∪L(θ,k+1)) + VS

j
l (θ, k + 1)1(WS

j
l \L(θ,k+1)). (2.6)

This means that for this particular square, when the angle is fixed, we can

pre-render all of the moments that must be calculated, and we can do so with a

simple recursive formula. This is an over simplification of how the pre-computed

moments are calculated, as there are variances with changes in angle causing the

increments to change, and the line to sweep in a different direction. There is also

the issue of how to apply this to nested squares. That is where the discrete Green’s

theorem comes in. In practice, there are two cumulative matrices that are computed

for each image I ∈ MN ×N(R). These are the vertical and horizontal cumulative

matrices CV and CH where

CV (i, j) =
i∑

k=1

I(k, j),

and

CH(i, j) =

j∑
k=1

I(i, k).
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Note that these matrices can easily be adjusted to any of the sub-squares Sjl

simply by a little arithmetic, for instance, with the vertical cumulative matrix on

the square Sjl we have CV
j
l where

CV
j
l (i, j) =

i∑
k=1

Sjl (k, j) =

k=Φjl 1(i,j)∑
k=Φjl 1(1,j)

I(Φj
l 1(k, j),Φj

l 2(k, j))

=

k=Φjl 1(i,j)∑
k=1

I(Φj
l 1(k, j),Φj

l 2(k, j))−
k=Φjl 1(1,j)+1∑

k=1

I(Φj
l 1(k, j),Φj

l 2(k, j))

= CV (Φj
l 1(i, j), j)− CV (Φj

l 1(1, j) + 1, j).

Here Φj
l : Sjl → I by

(i, j) 7→
(
Φj
l 1(i, j),Φj

l 2(i, j)
)

are the global coordinates of (i, j) ∈ Sjl within the image I.

A similar calculation is true of the horizontal cumulative matrix. All that is

left to implement this scheme is to calculate an angular moment matrix for each of

the finite number of angles in our resolution. This matrix is called Cθ, where

Cθ(i, j) =
∑

(m,n)∈WM
0
0(θ,k̃)

I(m,n)

where k̃ is the increment that allows L(θ, k̃) to pass through the point (i, j). This is

just the cumulative moment matrix with angle theta that can be computed recur-

sively from equations 2.4, 2.5 and 2.6.

With all of these auxiliary matrices defined, the task of calculating any wedgelet

value given a fixed angle θ reduces to adding and subtracting values from CV , CH
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and Cθ along the boundary of the wedgelet. Here is a pictorial example demonstrat-

ing how this process is carried out. We wish to calculate the moment along this

specific wedgelet

Figure 2.59: An Unknown Wedgelet.

We then trace around the boundary attempting to isolate the values of this wedgelet.

Figure 2.60: Step 2. Figure 2.61: Step 3.

And finally we arrive at the line integral around the wedgelet.

The authors in [33] show that these auxiliary matrices speed the wedgelet

transform process up by approximately a factor of 50-700 times over the popular
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Figure 2.62: Step 4. Figure 2.63: Step 5.

Figure 2.64: Step 6. Figure 2.65: Step 7.

Beamlab implementation by Donoho [27]. Unfortunately, the ability to take advan-

tage of this structure is lost when we iterate wedgelets once again and allow the

values supported on the wedges to be planar.

2.4.6 Linear Wedgelets

Wedgelets provide a very elegant way of representing images that resemble

the cartoon model. Since urban DEM data types so closely resemble these cartoon

models it is no wonder that wedgelets can represent them with so few coefficients.
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Figure 2.66: The Value of the Wedgelet is Calculated.

There are however a few drawbacks to the design that can be easily remedied with

a very simple observation. Most structures in urban DEM have typical roof config-

urations. That is, most structures in urban DEM have flat rooves, rooves that have

a constant gradient or a double gradient (A-frame). Piece-wise constant wedgelets

have a very difficult time trying to efficiently encode structures with planar rooves.

The problem is that for a roof with a constant gradient, the average value

of the wedgelet will always be the midpoint of the wedge supported on the roof.

The error will decrease as the resolution becomes finer, which means that all things

being equal, wedgelets will attempt to always reduce to finer resolutions to render

the roof. This creates a tiling effect on such structures, and is very obvious to

the eye. Aside from being an obstacle to reconstruction, it is an inefficient use of

coefficients. Why describe a single large roof as a large collection of small tiles, when
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Figure 2.67: A Typical Urban Roof.

Figure 2.68: Urban Roof Approximation with Wedgelets.

you could describe the roof in one large low-cost chunk of data in a more intrinsic

setting? Here we will make a small modification of the wedgelet scheme that allows

us to render these roof structures extremely well, at the cost of a more demanding

data structure for storage and reconstruction and a more computationally intensive

wedgelet transformation.

The idea is simple, the creation of the wedge structures remains unchanged,

the only difference is that instead of calculating the value of the wedgelet function on

those wedges as being the average value of the image on that wedge, we now apply a
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least squares fit to find a plane that best fits the wedge. Note that a single wedgelet

on a square Sjl (both main and sister wedge) needs to store k, θ and the average values

VM(k, θ), VS(k, θ) to be able to reconstruct that wedgelet. The depth and location

of the square Sjl do not need to be stored since they are contained in the position of

the quad-tree node. This means that a single wedgelet contains 2 integers and 2 real

numbers for storage. Once we have passed to these linear wedgelets, each square will

require the storage of k, θ as before, but now the main wedge and the sister wedge

will require three real numbers each, to describe the plane that is supported on

them. Our data storage has then increased by 4 real numbers per square that need

to be stored for reconstruction. This seems to be a counterintuitive change, since

our goal is one of compression. But as we shall see, the savings we reap in being

able to coarsely represent structures with planar rooves more than makes up for the

increase in data storage per wedgelet. There is another small fact that we need to

be aware of when considering a change that raises the coefficient count, especially

on the small wedgelet scale. In the constant wedgelet case, there is clearly no reason

to represent pixels as wedgelets, since we are wasting energy trying to describe in

3 doubles what could be described in 1 double. In the constant wedgelet case, the

two-by-twos sometimes benefit from being described as a wedgelet. If the two-by-

two were constant or bi-valued, then the wedgelet can represent that two-by-two in

3 doubles as opposed to 4 doubles. However, this all changes in the linear wedgelets

case. First, all two-by-two’s can be perfectly described by linear wedgelets, assuming

nothing strange is going on with the angular resolution. We must realize that this

change has made it always inefficient to describe two-by-twos as a linear wedgelet,

58



since both storing the wedgelet and the pixels are perfect representations. However

the linear wedgelets cost 7 doubles per square, and clearly we would be better off

storing two-by-twos by pixel, if the parameter λ allows such fine resolution.

Figure 2.69: Urban Roof Approximation with Linear Wedgelets.

2.4.7 LIDAR Wedgelets

We generalized the linear wedgelet process from raster images to a LIDAR

point cloud implementation. We have been dealing exclusively so far with the pro-

cessed form of LIDAR, DEM, and we have had few opportunities to interact with

this complex data type. Part of the apprehension with dealing directly with LIDAR

is that the process of converting it to DEM is still a mystery. This makes it very

difficult to analyze the results of compression, since we have no baseline comparison

in the form of a gridded raster image. We possess DEM and LIDAR that physi-

cally overlap in geographic location, but either do not line up temporally or have

been processed beyond our ability to replicate the data. Even with this inability to

easily test our results, there were a few very strong reasons to implement wedgelets
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for LIDAR. First, the process of wedgelets is itself a gridding mechanism, giving

us another mechanism to try and understand the link between DEM and LIDAR.

Second, the averaging effects of linear wedgelets tends to smooth out large wedge

segments containing Gaussian or salt-and-pepper noise; LIDAR wedgelets have real

noise suppression potential when λ is large. Third, it is reasonable to think of a

gridded DEM as a very regular point cloud, allowing us to possibly speed up or im-

prove our standard wedgelet process on urban DEM. The extension of wedgelets to

LIDAR is a true generalization since the action on a DEM by the LIDAR wedgelets

is equivalent to the standard linear process. This may also leave the door open

for studying the effect of perturbations on the representation. The fourth reason

for implementing a point cloud version of wedgelets is because the data structures

and calculations needed to create such a program are very well suited and easily

implemented in C++. Finally, by breaking free of the digital line, we are sometimes

able to discern edges to a sub-pixel resolution.

Since comparing compression ratios and quality of reconstruction is so difficult

when working with LIDAR, we will simply leave this section as a justification for

making wedgelets work with LIDAR. It would be of great benefit to have some ana-

log of TSSIM that can compare a raster version of LIDAR to the point cloud and

make some kind of qualified assessment of quality. Unfortunately, since we have been

relying on the correlation of TSSIM to the human visual system, it seems unlikely

that such an easy fix will be possible. Another immediate benefit of the C++ imple-

mentation of LIDAR wedgelets is the tremendous speed-up by implementing efficient

structures and using optimized linear algebra routines. The results that follow were
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almost all created with the LIDAR wedgelets package, as it is the defacto method

of choice due to its superior speed as compared to the Matlab implementation.

2.5 Experiments and Performance

The following four images (figures 2.70, 2.71, 2.72, 2.73) are reconstructions

of the DEM tile S10, using linear wedgelets with a ten angle resolution, an `1 norm

for local wedgelet selection and varying the parameter λ = 100, 50, 10, 1. Generally

with a heavily urban setting, a reconstruction using λ = 1 is indistinguishable from

the original DEM. Note that the coarser reconstructions still look reasonable and

in fact possess large TSSIM values, but there is the disturbing tendency for the

edges of wedgelets that do not match up to appear looming like an eyesore in the

reconstruction. One method we used to combat this mismatched edge problem was

to introduce a local selection norm that balanced the overall local representation vs.

how closely the edges of the wedgelet matched the altitudes in the original DEM.

We attempted to accept a slightly inferior `1 norm locally, to have the obvious

visual disturbance removed. Unfortunately, it is not so easy to trick the wedgelets

algorithm into accepting wedgelets that the user desires. It seems that in some

locations, wedgelets are doomed to poor reconstruction. These occur at corners or

multiple edge intersections and also are prevalent when the layout of the scene aligns

awkwardly with the less-than-flexible dyadic mesh. A particularly good example of

this kind of misalignment with the decomposition grid occurs on the large building

completely in the scene farthest north. The dyadic squares center around a nexus
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of three edges, and the best wedgelet fit in that position is rarely pleasing to the

eye unless λ is sufficiently small.

Figure 2.70: S10 with λ = 100.

Figure 2.71: S10 with λ = 50.

Figure 2.72: S10 with λ = 10.
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Figure 2.73: S10 with λ = 1.

This next group of six graphs (figure 2.74) attempts to compare important

quantities for the wedgelet transform for the tiles S9 and S10. One of the frustrating

factors of compressing a DEM via a parameter λ is the lack of precise control on

compression ratios. In fact, λ tends to scale differently with various types of images,

leaving a game of guess-and-test when it comes to compressing or reconstructing to

specific levels. When studying the interaction of TSSIM to log10(λ) we didn’t see

a consistent response that gave us a heuristic feel for compression levels. Because

of this, we turned our focus away from graphs comparing TSSIM to some variant

of λ, and instead compared the quality to the total number of coefficients. In this

way we could compare the wedgelets procedure to other methods, like the time-scale

methods in section 2.3.

Now that we have fixed our method of comparison to be between TSSIM and

the number or percentage of retained coefficients, we can compare our flat piecewise

constant wedgelets to the linear wedgelets. The graph in figure 2.75 compares these

two decomposition methods as the percentage of coefficients decrease and the image

degrades. The graph used 10 angles for both methods, and local `1 norm for wedgelet
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Figure 2.74: S9 λ vs. Coeffs. vs. TSSIM.

selection. The response to other tiles in the S and T tile sets were not as tight as the

curve is for S10. Still, this points out why linear wedgelets are such a competitive

compression scheme for urban DEM. Note that at 35% retained coefficients, the

flat wedgelets overtake the linear wedgelets in terms of quality reconstruction. This

is of course due to the small-scale advantage that flat wedgelets have over linear

wedgelets.

In the section on time-scale representation methods for DEM, we discovered

that contourlets level three decomposition was our best method for compression with

high reconstruction TSSIM. We decided that a TSSIM of 0.8 or above is adequate,

and contourlets achieved this with approximately 20% used coefficients. Clearly we

are not interested in this region where flat wedgelets overtake the linear version.

However, note that linear wedgelets cross the crucial 0.8 TSSIM mark with ap-

proximately 17% retained coefficients. This seems to indicate that linear wedgelets

enjoys a healthy advantage with moderate sized wedges, when it can utilize its larger

number of coefficients to more aptly describe large structures.
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Figure 2.75: Flat Wedgelets vs. Linear Wedgelets.

The next two graphs in figures 2.76 and 2.77 illustrate, to some extent, the

effects that angular resolution and local wedgelet selection norm have on the re-

construction TSSIM on both S10 and S9. There were six distinct wedgelet runs

for each tile, where each run chose either 4 or 41 angles in its resolution, and each

run chose a local `1, `2 or total variation norm. Each of these configurations were

degraded by changing the value of λ, and the graph records TSSIM versus retained

coefficients. It is fairly difficult to see the graphs, but in the region of interest, the

order of quality, while close, steadily gets better in quality from 4 angles `2 norm, 4

angles `1, 41 angles `1 norm and finally the best performer being 41 angles with the

local `1 wedgelet decision norm. This graph seems to indicate that greater angular

resolution is more important than the choice of local wedgelet norm, but they are

really so close it is hard to say for certain. All things being equal, we will choose

the `1 norm as it seems to roundly outperform the `2 norm, especially for strongly
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urban DEM. While the choice of norms does not cost us computationally, increasing

the angular resolution by a factor of ten increases runtime by a factor of ten as well.

The linear growth in computing time per angle makes it an unattractive parameter

to adjust.

Figure 2.76: S10 Varied Angles and Norms.

Figure 2.77: S9 Varied Angles and Norms.

This graph, in figure 2.78, is a first comparison between various permutations
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of the wedgelet algorithm compared to the contourlets compression. In the 15 to

25 percent retained coefficient range, linear wedgelets with 41 angles and a local

`1 norm are clear winners in representing the tile: S10. Note that in the region of

interest, contourlets perform very well against flat wedgelets.

Figure 2.78: Contourlets vs. Wedgelets.

This image attempts to visualize the effect of angular resolution on visual

reproduction of S10. The image uses piecewise constant wedgelets, a local `2 norm

and each retains 25% of the coefficients. While the defects do seem to smooth

themselves out from upgrading the angular resolution from 4 angles to 40, the

errors don’t really go away as much as they don’t appear as abrupt and blocky.

This image drives home the inability of piecewise constant wedgelets to adequately

describe typical urban scenes.

The following 8 images (figures 2.79 - 2.82) are meant to be directly compared
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to one another, as to show how the difference in TSSIM from the above graphs,

translate into visual quality. Note that in each of the next 6 images, 3 pairs of

similar images, the methods being employed are reconstructed using 25% of the

coefficients. The contourlets presents a marked visual enhancement of the piecewise

constant wedgelets on S10. However, as you progress further down, it is hard to tell

that you are looking at a reconstruction at all. The linear wedgelets with 4 or 40

angles, with either norm do exceptionally well visually when retaining 25% of its

coefficients. Just to prove how strong the visual effect is, especially compared to

piecewise constant wedgelets or contourlets, the seventh image (figure 2.83) retains

only 15% of its coefficients and is virtually indistinguishable from the original copy

of S10 below it in figure 2.84.

Figure 2.79: S10 PW Constant Wedgelets 4/40 Angles.

Figure 2.80: S10 Contourlets Level 1/2.

The next two graphs (figures 2.85 and 2.86) attempt to drive home the futility

(in computing time) for drastically raising the number of analyzed Wedgelet angles.
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Figure 2.81: S10 Linear Wedgelets 4/40 Angles.

Figure 2.82: S10 Linear Wedgelets L1 Norm 4/40 Angles.

Figure 2.83: S10 Linear Wedgelets L1 Norm 40 Angles 15% Retained Coefficients.

Computing time scales linearly with the number of angles used in the decomposition;

these graphs illustrate the gain in TSSIM for the two extremal cases for each of the

tiles S10 and S9. The base case is a minimal collection of only two angles (horizontal

and vertical), while the second uses 82 angles at each level of the decomposition.

Note a very small gain in TSSIM/coefficient with a very large computing computing
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Figure 2.84: S10 Original.

cost a factor of 41.

Figure 2.85: S9 Extreme Angular Resolution Test.

Figure 2.86: S10 Extreme Angular Resolution Test.

We noted that many defects in Wedgelet images, to our eyes, took place on the

boundaries between dyadic squares. Even though TSSIM indicates quality recon-

struction on these defects, our eyes pick them up readily. In an effort to combat this

specific problem, a black box modification was implemented in Wedgelets to allow

wedge decisions to be based on the particular wedge that minimizes what we call the
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original boundary defect (essentially a line integral over the boundary of a dyadic

square summing the difference in the original image and the new image). Here is a

set of graphs (figures 2.87, 2.88 and 2.89) that display how the modified norm acts

to subdue these visual defects. Two extremal angular conditions are used, namely 2

and 82 angles. In the percentage of retained coefficients vs. TSSIM graph, a curve

representing S10 with 82 angles and a local `2 norm was added as a reference. Fur-

thermore, two images are included that show the reconstructive differences between

wedgelets with a local `2 norm and the modified boundary total variation norm

(BTV) wedgelets, each with 82 angles. They share a similar number of coefficients,

approximately 40, 000, and have a comparable TSSIM, only differing by about 0.05.

Something to note is how accurately the BTV method finds the break line on any

slanted roof. Aside from this gimmick, the norm does not seem to be able to find

the wedges that match edges with the underlying DEM.

Figure 2.87: S10 Angular Variation and Boundary TV-norm.

The next pair of graphs (figures 2.90 and 2.91) put the nail in the coffin for

the contourlets verus wedgelets debate. One interesting element of the image is how
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Figure 2.88: S10 Boundary TV-norm. Figure 2.89: S10 `
2-norm.

much of a performance hit wedgelets takes to a rural DEM, namely S9. Even with

the performance degradation due to lack of cartoon-like structures, wedgelets still

outperforms contourlets, visual efficacy per coefficient.

Figure 2.90: S10 Contourlets vs. Wedgelets.

This lengthy analysis of the wedgelet representation scheme, and its many

incarnations has shown it to be a versatile and powerful method for a more optimal

and intrinsic technique for reproducing the cartoon model of images. Since our

urban DEM data types are similar to this simple kind of structure, and since our

quality measure emphasizes the accurate reconstruction of that structure we have

found a superior technique for the representation, compression and reconstruction

of urban DEM.
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Figure 2.91: S9 Contourlets vs. Wedgelets.
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Chapter 3

Dimension Reduction and Material Classification

3.1 Introduction

The problem of unwieldy data is one shared amongst many of the fields that

collect and analyze various sources of information. The rapid expansion of computa-

tional power and massive data storage has engendered within us a ravenous need to

expand our sets, increase resolutions and add on other complexities into our already

burgeoning data. This problem is exacerbated in the case of high dimensional data,

being more sensitive to the so-called Hughes effect [47]. The popularity of recent

compressed sensing techniques are a nod to the need to correct for the over-collection

of information. We are simply drowning in this overflow of information, and often,

this excess acts to obfuscate the underlying structures in the data.

In many applications of machine learning, data mining and image processing,

high dimensional data is collected. Examples of such data sets could be composed

of global climate information, stellar or terrestrial spectra or even human genome

distributions. Although the collected data is high dimensional, often it is the case

that the data is intrinsically low dimensional. The following examples are taken from

Maggioni [45] and are excellent illustrations of the power of dimension reduction

techniques.
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Example: Consider a data cloud consisting of 1047 scholarly articles taken from

Science News in some relatively small timeframe. We will collect a dictionary of

2036 relevant words to the articles appearing in this cloud. We order these words

in any manner, and then we assign each of the 1047 articles to a vector xk ∈ R2036,

where the j’th position of the k’th vector is the frequency in which word j appears

in article k.

We assign each of the vectors to one of the eight classes: Anthropology, Astron-

omy, Social Sciences, Earth Sciences, Biology, Mathematics, Medicine and Physics.

We assign these based on the classification under which the articles were published.

We then have {xk}1047
k=1 ⊂ R2036, where each xk is assigned a unique class. As long

as the fields in which the papers are published are relatively separated (that is, not

electrical engineering and applied mathematics), we would expect the jargon differ-

ences would separate the papers in this high dimensional space. Clearly there is a

lot of structure in this data set, but the dimension of the ambient space is extremely

large for the kind of data and number of points.

Maggioni reduces the dimension of this set with a Laplacian kernel method

and then embeds the set into six-dimensions. To visualize the projection, he then

constructs two plots, one with coordinates 3, 4, 5 represented as x, y, z, and the

other with coordinates 4, 5, 6 represented as x, y, z. The reduced dimension points

are colored based on the class from which they derive. These plots show that there

is clearly strong geometry connecting similar papers and differentiating papers that

are dissimilar. The idea is that the embedding preserved all of the structure from

the large dimensional data set, in fact, possibly enhancing the local structures by
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embedding it on an underlying manifold.

Figure 3.1: Article Data Projected onto R3: Maggioni.

Example: The next example that Maggioni uses to illustrate the uses of dimension

reduction comes from a post office data set. The post office has much interest in

being able to identify hand-written numbers and letters, with all of the variations

that humans can produce. The data set consists of 60, 000 28× 28 gray-scale images

of the digits 1 through 9. That is, we have {xk}60,000
k=1 ⊂ R282 = R

784, where each

vector is an unfolded image. We can similarly assign each vector to one of the classes

{1, 2, ..., 9}. The included image shows a sample of the data set.

The data has its dimension reduced, and then 3 of the remaining coordinates

are picked out to visualize the structure in each of the plots. This example shows

a tremendous amount of underlying structure; structure that is only enhanced by

the reduction of dimension. Such a system could be a very rough form of character

recognition, but the important aspect of these examples is that the structure not

only survived the embedding, but appears as very coherent.

These examples illustrate the goals of dimension reduction quite admirably.
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Figure 3.2: Hand-Written Numeral Data Projected onto R3: Maggioni.

Namely, the desire to embed a high dimensional data set onto a much lower dimen-

sional intrinsic manifold, while retaining the pertinent local geometry such as neigh-

borhoods, tangent spaces and geodesics, see [5] [6]. In the words of C. Burges [12],

“Apart from teaching us about the data, dimension reduction can lead to better

models of inference.”

Modern dimension reduction invariably starts with Principal Component Anal-

ysis (PCA), but this is by no means the first incarnation of embedding methods.

The theory has beautiful classical roots that this thesis will not have the space to

document them. PCA will be our baseline linear reduction technique, but our real

tools will be the non-linear kernel methods Laplacian Eigenmaps (LE) and Locally

Linear Embedding (LLE). Typical kernel methods of dimension reduction consist of

representing the data and local geometry within a kernel and approximating that

kernel with a low-rank operator found by truncating its spectral series representa-

tion.

This chapter is specifically focused on the dimension reduction of terrestrial

hyperspectral data, where the purpose of the reduction is to aid in automatic mate-

rial classification. With this narrow scope in mind, we can see the large importance
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we place on the preservation of local geometry through the embedding process, since

classification cannot be performed when dissimilar materials bleed into one another’s

spectral signatures. We will approach this problem from two distinct perspectives.

The first set of ideas comprises a so-called dimension reduction pipeline. This

involves implementing a series of modular stages giving a flexible dimension reduc-

tion framework. These stages can be loosely categorized as Landmarking, Kernel

application, Out of sample extension (inversion of the landmarking process) and

finally the creation of an endmember frame and projection of the data onto that

frame.

Figure 3.3: Frame-Based Kernel Dimension Reduction Pipeline.

The landmarking procedure drastically lowers the computational cost of ex-

pensive processes like nearest neighbor generation and eigenvalue decomposition of

large data sets. This is essentially done by sampling the data and treating the sam-

ple like a full data cube for dimension reduction, with a cost in accuracy that tends

to be acceptable. The out-of-sample extension essentially inverts this process by

extrapolating the dimension reduction to those points that were not sampled. Our
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kernel methods for this pipeline are either Laplacian Eigenmaps or Locally Linear

Embedding. This stage consists of forming a graph from the sampled data, con-

structing a kernel that represents the local geometry and then using a truncated

spectral change of coordinates to reduce the dimension of the points in the sample.

The above steps are all well-known and are only unique in the order in which they

are applied. While this portion of the process is vital for preparing the data for

classification, the novel part of this pipeline is the introduction of frames to replace

traditional endmember constructions. The flexibility that frames allow with the

ability to design elements, and the added redundancy of the representations are

extremely powerful when finally passing to the classification stage of the process.

The second portion of this chapter will briefly develop a technique that couples

wavelet packets with kernel dimension reduction methods to create a process that

is sensitive to both spectral and spatial information. Since our data corresponds

to physical geographic locations, the individual locations contain important local

information that is not otherwise exploited by dimension reduction techniques. This

can be seen clearly by observing that if a certain location can be identified as a

material, like a road, that is typically contiguous, the neighboring spectral positions

(pixels) are more likely to also be road than is a random point in the scene.

This chapter shall be broken down into three sections. Section one shall dis-

cuss our data type: hyperspectral data. Section two shall develop the frame-based

kernel dimension reduction pipeline and conclude that this process outperforms the

corresponding base level technique on its own with respect to material classification.

Section three shall develop the spectral-spatial methodology, and it will be shown
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that the hybrid method with PCA outperforms PCA on its own.

3.2 Hyperspectral Data

No one seems to be quite sure what the precise distinction is between a multi-

spectral data set and a hyper-spectral set. Spectral information has become a ubiq-

uitous member of most government labs and applied harmonic analysis departments

all around. That being said, hyperspectral data is one of the rarer forms that this

information can take. Most organizations that acquire this type of data do so at

tremendous cost, and they tend to keep their data close to the chest. As the public’s

access to satellites increases and sensor costs decrease, we find an increasing number

of spectral bands in our repertoire.

Hyperspectral data is still better described than rigorously defined. Generally

speaking, hyperspectral data is a large collection of spectral reflectance information

for a single geographic (or in some cases, geological core samples) region. In its most

idealized state, hyperspectral data is just the collection of reflectance energy that

returns from an exposure to a specific frequency of light. An oversimplified version

of the truth is that hyperspectral data is collected by satellites or airplanes that can

filter or process multiple separate wavelengths of light at the same time. The data

typically takes the form of a collection of what look like black and white images that

compose a so-called hypercube. In reality, the geographic regions in each image are

the same, but the intensity of a pixel in any particular image corresponds directly

to that locations spectral response to a frequency represented by that band. In this
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sense, we can think of a single pixel as representing a sampling of the spectra of

some material near that pixels location. It is the hyperspectral data that uses a

significant number of samples for each pixel.

In reality, hyperspectral data exists for pretty much any application you could

want. Geologists use it to study the mineral composition of far away regions, or to

study small-scale formations in core samples. Our greatest space telescopes collect

dense spectral information all the time, to peer into the mysteries of the universe.

In this chapter, hyperspectral data will explicitly refer to hypercubes of spectral

reflectance information. A somewhat overused example of a hypercube exhibits the

three dimensional character of the data.

Figure 3.4: The Prototypical Example of a Hypercube.

The most important properties of hyperspectral data are their narrow and con-

tiguous measurements, being spectrally over determined and their utility in target

detection, material classification and surface mapping with material identification.

Two very important and often used hyperspectral data sets are referred to as the
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Urban and Smith Island data set respectively.

Figure 3.5: True Color Image of the Urban Data Set.

Figure 3.6: True Color Image of Smith Island.

These sets are well known and often used for good reason, they are some of

the few collections of data that are not highly classified and restricted from public

study. These will be our primary test data sets, and many of our results will be

based on these hyperspectral sets, since others are not allowed to be published in

this thesis. The Urban data set is 307 by 307 pixels and consists of roughly 161

spectral bands. Note the large prominent Walmart near the center of the image. If
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you look closely in the western portion of the image, you can make out pixel/sub-

pixel swimming pools which will crop up later in the chapter. The Smith data set [2]

is 679 by 944 pixels, and contains 126 spectral bands. If you look really closely in

the watery portion of the western half of the island, for several spectral bands you

can make out sub-sea level structures below the water. These are the elusive targets

that we shall forever endeavor to discover. Figure 3.7 is a statistical envelope for

three spectral classes within the Smith Island dataset. The classes represented are

water, sand and flora, the dotted line represents an average class spectra and the

filled in portion represents a standard deviation in each direction from the mean.

Figure 3.7: Statistical Spectral Envelopes.

Here are a couple of examples (Figures 3.8 and 3.9) of spectral bands from the

Urban set. Note that the true color images are acquired from taking bands closest

to red, green and blue and put their reflectance together for a color image. This

shows that the spectral coverage of the data sits well within the visual wavelengths

of light.
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Figure 3.8: Urban Tile Spectral Band. Figure 3.9: Urban Tile Spectral Band.

3.3 Kernel-Based Frame DR Methods: The Pipeline

We start with a hypercube, X, that is, a real valued N1×N2×D dimensions.

Since our data will almost always contain hyperspectral information, we can think

of this cube as D-spectral bands, where each of the bands is N1 × N2 representing

the same geographical region of space, where a pixel in each band represents some

reflectance of that bands wavelength from the region the pixel represents.

We can think of this as a regular sampling of some manifold M , which has an

unknown underlying dimension d << D. The consensus is not yet in on whether this

is a helpful perspective to take, concerning an underlying manifold even existing.

For instance, clearly the data in X can be embedded into infinitely many manifolds,

or weirder yet, into some one-dimensional curve in space by essentially connecting

the dots.

This frame of reference is further confused upon the realization that spectral

sampling may itself not be possible since the underlying surface, i.e., the surface of
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Figure 3.10: Typical Hyperspectral Data Cube Point xj ∈ RD.

the Earth, may in fact be discrete, assuming some smallest form of matter.

Even with these questions looming about the veracity of underlying manifolds

existing for hyperspectral data, we will accept that the mathematics are simpler

assuming so, and for us, X will be a sampling from a lower dimensional manifold.

This allows us to use analytical results about graph Laplacians by exploiting the

underlying structure of the manifold.

We unfold our data cube into a list of points Xdata = {xk}N1N2
k=1 ⊂ RD, where

the points xk are D-dimensional, and are columns in the D ×N1N2 matrix Xdata.

We take this collection of points and from it create a directed graph, G, using

one of the following criteria:

1. k-nearest neighbors. We choose some 1 < k << N = N1N2 and generate the

set of neighbors to the point xj, Ωk
xj

where we define
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y
xj
1 = argminx∈X\{xj} ||x− xj||

has y
xj
1 ∈ Ωk

xj
, and recursively,

y
xj
l = argmin

x∈X\{xj ,y
xj
1 ,...,y

xj
l−1}
||x− xj|| .

Then Ωk
xj

= {yxj1 , ..., y
xj
k }. In this case, for x ∈ G, x y iff x ∈ Ωy

k.

2. ε-neighbors. Choose an ε > 0. In this simple case, we assert that x  y iff

x ∈ Bε(y).

The choice of neighborhoods for our graph is of great importance. Note that ε-

neighborhoods will generate non-directed graphs, while k-nearest neighbors can have

asymmetries. Laplacians contain a great deal of localized information, essentially

characterizing local geometry within the data. With this perspective it is easy to

see that by choosing our local neighborhoods arbitrarily and without concern for

the underlying geometry of the data, our constructed graph Laplacian will not be

as useful and a host of undesirable features can crop up into our results.

This is a relatively deep problem, about detecting local geometry in discrete

collections of points and is very much still a complicated issue surrounding the cre-

ation of geometrically sensitive operators on graphs. Consider the following simple

example.

Here the two-dimensional data in X, in Figure 3.11, is much like what raw

data typically looks like; a collection of points with no obvious geometry. Figure
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Figure 3.11: Data Points X ⊂ R2. Figure 3.12: Manifold X ⊂M .

3.12 could be considered the underlying structure of the data, lying on the one-

dimensional manifold M . Without knowing M and with only clues provided by

the data itself, how do you choose quality neighborhoods that at least approximate

the structure of M? Note that it is possible for this set of data and underlying

manifold, to choose an ε or k for which the following two data points (Figure 3.13)

are considered neighbors.

Figure 3.13: A Poorly Chosen Neighborhood.

In fact, any larger ε or k will provide the same ‘bad neighbor’ as in Figure 3.13.

This is how k-nearest neighbors and ε-neighborhoods can fail, since they are really

coarse approximations of the underlying local geometry. Ideally, you would like to
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find these local neighborhoods by some geodesic distance function, which somehow

was able to know the underlying structure. The ideal neighborhood for the point in

question would probably look like that in Figure 3.14.

Figure 3.14: A Well Chosen Neighborhood.

There is no reason to think that choosing our neighborhoods in such a clumsy

manner could return elegant results, but it turns out that often local Euclidean

neighborhoods are enough to encode the important geometry of the data into the

Laplacian. While there is ongoing research into finding more intrinsic neighborhoods

within data [56], by choosing ε or k sufficiently large (at the cost of extra compu-

tational expense) we can gather neighborhoods that contain the relevant geometry

with a small remainder of non-relevant neighbors, as in Figures 3.15 and 3.16.

For the purposes of this thesis, these neighborhoods will be sufficient.

3.3.1 The Laplacian-Eigenmaps Kernel

Starting with the graph we generated in the previous section, (G,E), and

continuing with the guidelines established in [5] [6], choose σ > 0 and we define the
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Figure 3.15: A Decent ε−Neighborhood. Figure 3.16: A Decent k−Neighborhood.

Laplacian Eigenmaps weights between connected vertices to be

W (xi, xj) =


e−
||xi−xj ||

2

σ xi  xj

0 otherwise

Next we form the degree matrix, D = (di,j) by

di,j =


0 i 6= j∑N=N1N2

k=1 W (xj, xk) i = j

The graph Laplacian can then be defined as

L = D −W.

3.3.2 Locally Linear Embedding

Roweiss and Saul in [49] developed a nonlinear kernel which attempts to fol-

low the following general steps, which seem to always find a voice with nonlinear

phenomenon:
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1. Stick to not-too-nonlinear structures,

2. Somehow decompose nonlinear structures into linear subspaces,

3. Generalize the eigenvalue problem of minimizing distortion.

Their method for constructing a kernel consists of forming a graph as in the

general case, and finding k-nearest neighbors. From there, the process differs signif-

icantly from the Laplacian Eigenmaps case. The next step is also to compute a set

of weights, and in this case the weights must satisfy, minimizing the residual sum

of squares when reconstructing each point from its neighbors,

RSS(w) =
n∑
i=1

∣∣∣∣∣
∣∣∣∣∣xi −∑

j 6=i

wi,jxj

∣∣∣∣∣
∣∣∣∣∣
2

`2

(3.1)

subject to the constraints that wi,j = 0 unless j is one of i’s neighbors, and having

a unit sum
∑

j wi,j = 1 for each i. Solving for the new coordinates from the weights

then involves minimizing the functional

Φ(Y ) =
n∑
i=1

∣∣∣∣∣
∣∣∣∣∣yi −∑

j 6=i

wi,jyj

∣∣∣∣∣
∣∣∣∣∣
2

`2

(3.2)

subject to the constraints
∑

i Yi,j = 0 for each j and Y TY = I.

Luckily enough, solving this problem really reduces to the construction of the

kernel

K = (I − w)T (I − w), (3.3)
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and then follows the same procedure in the case of the Laplacian Eigenmaps kernel

in order to change the coordinates to the lower dimensional subspace. This is a

convenient change, as it really allows for our pipeline to have a modular assortment

of reduction kernels.

3.3.3 Dimension Reduction by Change of Coordinates

We have now looked at a couple of examples of how to transform a hypercube

X into an operator that faithfully encodes much of the local geometry from the data.

We now wish to change the coordinates of our data into those of a lower dimensional

space, for which we have preserved many important geometric quarks of the data

while projecting it onto a close approximation of its underlying manifold.

Specifically, we are looking for

ρ : X ⊂ RD → Y ⊂ Rd,

where we think of Rd as being the coordinate space of the underlying manifold. Our

method of extracting this change of coordinates will involve the spectral theorem

and only retaining d of the highest energy spectral directions. These are by no means

the only possibly coordinates in which the data can be represented. In some sense,

reducing the dimension of our data by merely lopping off lower energy spectral

directions, from the kernel K, is both not elegant and throws away information

that could contain vital details about the data’s geometry. If the eigenvalues of

the Kernel decay rapidly after some number, then we can say with confidence that
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those largest eigenvectors span almost all of the space, at least the most important

subspace. The hope is that with data that really does exist on a low-dimensional

manifold, and with proper neighborhood selection, the eigenvalues of the Kernel will

decay in such a way that we can estimate the dimension of the underlying manifold

and project our data onto that space with great accuracy. The reason that we use

this particular change of coordinates, is that, at least in the case with Laplacian

Eigenmaps, we have convergence results of this kernel to the actual graph Laplacian

in probability, given very mild conditions on the graph [5] [6].

We decompose K into its eigen-decomposition,

{(λi, vi)}Ni=1 where λ1 ≥ λ2 ≥ .... ≥ λN

We retain the d-eigenvectors corresponding to the largest eigenvalues, and our

change our coordinates is given by

yk = ρ(xk) = (v1[k], v2[k], ..., vd[k]),

where vj[k] is the k’th coordinate of the eigenvector corresponding to the j′th largest

eigenvalue.

3.3.4 Landmarking

Kernel methods for dimension reduction are elegant and powerful. However,

they inherit a fate similar to their data: information overload. Storage of hyperspec-

tral data is cumbersome, even with coarse resolution and sparse spectral sampling,
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the amount of information is simply too great to be processed or stored indefinitely.

The process of creating a kernel for dimension reduction and then reducing the

dimension involves a massive computational load, scaling poorly with the spectral

bands D and even worse in the geographical bounds N1 and N2. The main bottle-

necks in the processing are the neighborhood selection methods (k2 log k) and finally

in the eigenvalue problem . While our kernel is hopefully quite sparse, by choosing

small enough neighborhoods, the eigenvalue problem still scales very poorly. One of

the biggest challenges in processing massive hypercubes is in the amount of physical

memory available to the computer quickly becoming too little to process.

Because of this and other reasons, it is of great benefit to reduce the compu-

tational load as well as the memory requirements of the algorithm. Land-marking

is a process in which we drastically reduce the computational load in such a way

that we preserve most of the relevant geometry and our ability to eventually classify

materials.

We first select a sample {Zi}Mi=1 of points from X. There are many ways to

choose this sample, and the selection method comes with its own list of benefits

and consequences. It is an interesting problem to consider how to sample a large

scene for the purpose of reducing computational complexity, while not leaving out

important anomalies that are represented by few of the data points. We shall select

a uniformly random sample from the data, where M is some percentage of the the

number of data points X. This percentage is typically two to twenty percent. One

advantage of this technique are estimation bounds on error and rates of convergence

established by [9]. Of course, one of the disadvantages are a lack of data dependence

93



and causing the algorithm to be non-deterministic.

After obtaining this sampling, Z, we generate a graph from the points in Z

and create a kernel from this, as if we had reformed the sampled data into a new

smaller data cube, as this picture demonstrates.

Figure 3.17: Typical Landmarking Sample.

We proceed as if this were a full data cube, create a kernel and project the

data onto the lower dimensional space.

Figure 3.18: Dimension Reduction on the Sampled Set.

The strength of the land-marking procedure is that it provides a natural mech-

anism to extrapolate from this sampled dimension reduction, a full projection of the

entire data cube onto the lower dimensional coefficient space. This method was

developed by Bengio, Paiement and Vincent in [9] and refined by Coifman and La-
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fon in [15] for use with LLE. These papers give reasonable estimates relating the

sampling percentage to the result fidelity. Choose an xk ∈ X \ Z, since this is not

a sampled point, we do not know right away how to project it onto Y . The idea is

to represent xk as a combination of ‘pseudo-neighbors’ from the sampled collection

Z. We essentially find a collection of neighbors for xk, {zk1 , zk2 , zk3 , ...}, using one

of our criteria for neighbors, where we exclude all of the vectors that are not part

of the sampled set.

Luckily we do have information about the projection of the ‘pseudo-neighbors’

onto the space Y , so we will extend the projection onto Y , to the vector xk, by

expressing it as a weighted sum of the projections of those same pseudo-neighbors.

The only step remaining is to recalculate the graph weights by taking into account

xk, and then we can define the projection of xk as

ρ̃(xk) =
l∑

i=1

W̃ (xj, zki)ρ(zki).

Figure 3.19: A Schematic of the Out-of-Sample Extension.
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3.3.5 Endmember Selection

The fourth step in our algorithm is to select endmembers for the low dimen-

sional space Y ⊂ R
d. Endmembers are typically defined to be the constituent

elements of a scene, that is, they are generally thought to compose the pure ele-

ments in a spectral data cube. Traditional applications of endmember algorithms

are run on the original high dimensional data set X ⊂ R
D and if s denotes the

number of endmembers then s < D. Since we are finding endmembers for the space

Y , we propose finding s > d endmembers, thus creating a frame Φ = {φi}si=1 for Y .

Frames arise naturally in dimension reduction, and are in fact a generalization of

orthonormal bases. There are many endmember selection algorithms available, e.g.,

N-FINDR [57], ORASIS [11] and Pixel Purity Index [10]; see also [58] and [36]. The

results of this section employ the Support Vector Data Description (SVDD), see,

e.g., [4] algorithm for selecting endmembers. The core idea of SVDD is to obtain

a minimal spherical shaped boundary around the data set, which in turn gives a

description of the data in terms of a set of support vectors.

3.3.5.1 Frame Coefficients

Given a frame Φ = {φi}si=1 for Y , we shall find a set of coefficients C =

{ci,j}N,si,j=1 that represents Y in terms of Φ:

yi =
s∑
j=1

ci,jφj for all i = 1, ..., N. (3.4)

We propose two separate ways to find C, allowing for the pursuit of this
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modular pipeline. The first is based on the frame operator S : Rd → R
d, which is:

Sy =
s∑
i=1

< y, φi > φi for all y ∈ Rd. (3.5)

For any frame Φ, the frame operator S is invertible, and in fact gives the following

representation:

y =
s∑
i=1

< y, S−1φi > φi for all y ∈ Rd. (3.6)

Thus we can define the coefficient set C = {ci,j}N,si,j=1 as:

ci,j =< yi, S
−1φj > for all i = 1, ..., N, j = 1, ..., s.

The coefficients {ci,j} are called the canonical coefficients and they minimize

the `2 energy of the coefficient set C. An alternative to the canonical coefficient

set is to find sparse coefficient representations. Such coefficients can be found by

minimizing the `p energy of the coefficients, where 0 < p ≤ 1:

ci,. = argminc̃ ||c̃||`p subject to yi =
s∑
j=1

c̃jφj. (3.7)

3.3.6 Frame Based Kernel Method Results

Before moving to the main results of this section, there are a couple of impor-

tant images that should be singled out. First, the pipeline implemented with the

urban data set can generate the following class map in Figure 3.20, just to illustrate

the kinds of data we hope to end up with.
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Figure 3.20: Class Map of the Urban Data Tile.

That is, we tell the pipeline which kernel to use, how many neighbors to

make the graph implement, how to compute the reduced coefficients and sampling

percentages for the landmarking process. Once all of these ideas are fixed, there

are only two important numbers to consider. One is the number of dimensions to

reduce to, the second is the number of endmembers used to represent that lower

dimensional set. A very interesting phenomenon came about while running an

experiment on the urban data set, that included permuting those two significant

variables with everything else being fixed. The resulting image in Figure 3.21 is due

to that experiment.

This image is very special. The x-axis represents the number of dimensions

the urban data cube was reduced to, with a range of roughly 10 to 35. The y-axis

represents the number of endmembers used to represent that data. Note that when

s = d the representing set is a basis, and when s > d the representing set is a frame.
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Figure 3.21: The Frame Flag.

The black diagonal line represents the boundary between a frame and a spanning

collection of a subspace. This particular data set comes equipped with ground truth

consisting of 22 classes divided up into pre-known pixel locations. We can assert

the quality of a classification into those 22 classes (like in Figure 3.20) by testing

the classified ‘known pixel’ locations against our attempts at classifying them. This

gives us a percentage of true classifications and false positives. The color of this

flag-image represents the quality of the classification after running the pipeline on

the data, where all classes have been amalgamated to a single overall classification

percentage. The red represents very strong classification while blue is very poor

classification. The fact that the red clusters above the frame-line says that frames

really are the key element of this pipeline and the addition of redundancy to the

concept of endmember is a valuable one.
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The results of this section are based on the Smith Island HSI data described

in the data portion of this chapter. Here these are graphically displayed in Figures

3.22, 3.23 and 3.24. We use the following settings in our pipeline: Kernel: LLE,

Number of Neighbors: 50, Number of Samples: 40000 pixels, Number of reduced

dimensions: 21, Endmember Algorithm: SVDD, Number of Endmembers: 69, Type

of Coefficients: Canonical, Classifier: Vector Angle.

3.4 Wavelet Packets and Spectral/Spatial Representation

In this section we will mirror the developments in [7] to give a short introduc-

tion to the use of wavelet packets in combining spectral and spatial representations

for dimension reduction.

Tools for the analysis of hyperspectral data have successfully been applied to

detect and classify objects in areas ranging from human pathology to geophysics

and satellite imaging. Hyperspectral image analysis relies on using dimension re-

duction, because spectral signatures and their mixtures are supposed to lie on low-

dimensional manifolds. Principal component analysis (PCA) is a common dimension

reduction method, [48]. It is a linear transform that determines the ‘directions’ in

the data by maximizing the captured variance. If the manifold is linear, then PCA

is the optimal choice.

Dimension reduction methods and classification in hyperspectral imaging use

only spectral information. However, the images also have spatial contents that are

useful. Wavelets and their multilevel decomposition are well-suited for the analysis
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Figure 3.22: Frame Coefficient Maps of Smith Island
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Figure 3.23: Smith Trial Ground Truth Results.

Figure 3.24: Smith Competing Ground Truth Results (total only).

of spatial characteristics. We shall combine wavelet analysis with PCA to capture

spatial and spectral data distributions. The naive approach is the sequential wavelet

decomposition of each spectral band, forming an hyperspectral dataset of coefficients

in the wavelet domain, and performing PCA on this coefficient hypercube. This,

however, does not ‘show’ the wavelets that they are in fact decomposing many

images from the same scenery. While decomposing band-wise, one must find a way

to incorporate spatial information from other spectra.
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The Discrete Wavelet Transform (DWT) is an iterative scheme that splits

the signal into approximation and detail coefficients. Each level is computed by

passing through only the previous approximation coefficients. The Wavelet Packet

Transform (WPT), however, decomposes both the approximation and the detail

coefficients. Contrary to the DWT, this yields a full wavelet tree decomposition

that offers flexibility in the choice of reconstruction coefficients. The best bases

algorithm by Coifman and Wickerhauser finds the best subtree for reconstruction,

i.e., the best coefficient set according to an entropy measure, [19]. See Figure 3.25

for a visualization of the subtree concept.

Figure 3.25: The Entropy Determines the Subtree that is Chosen for Reconstruction.

Wavelet Packets and the entropy concept offer the flexibility to transfer spatial

information from one band to the other. We separately decompose each band by

using the WPT, but we consider a common entropy over all bands. The common en-
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tropy still respects the correlation between different frequency bands in the wavelet

domain. The best ’common’ subtree is determined by evaluating the common en-

tropy. Each node of the common subtree then is a set of coefficient vectors whose

entries refer to different spectral bands. PCA is applied to these vectors and we then

reconstruct by applying the inverse WPT. Fusing spectral and spatial information

significantly improves the output of classification schemes.

3.4.1 Wavelet Packets

This subsection will contain a short exposition about wavelet packets and how

they will be utilized in the scheme described in the above section. To simplify the

notation in this section, we will assume that instead of a traditional data cube,

i.e., 3 dimensional matrix containing D−spectral slices, we suppose our ‘cube’, X,

is a D ×M matrix, containing d−linear spectra. We can then define our ‘pixels’,

{xn}Mn=1 ⊂ RD, as columns of the matrix X.

Now choose an orthogonal wavelet, with mother wavelet φ and father wavelet

ψ with associated scaling filter h and wavelet filter g. Typically, the wavelet decom-

position of a vector is done in the following way. Let the initial data, the vector,

x = Co. We define the approximation operator H and the detail operator G acting

on a vector C by

(H C) [k] =
∑
n

C[n]h(n− 2k),

(G C) [k] =
∑
n

C[n]g(n− 2k).
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In this case we can compute the wavelet transform of the vector x = Co by cal-

culating the values of {Cn}, the approximation coefficients, and {Dn}, the detail

coefficients at the n’th scale by following the schematic:

Figure 3.26: The Wavelet Coefficient/Filter Tree.

There is nothing keeping us from completing the tree, by applying H and G

to each new coefficient. This is precisely the idea behind wavelet packets, and the

use of the full tree produces a technique that is rich in complexities. In the wavelet

decomposition, calculating the coefficients by applying the operators G and H can

be both tedious and not often revealing about the coefficients themselves. Note that

if we call wo = φ and w1 = ψ that we can write some of the coefficients from the

above picture as

C1[k] = (H Co)[k] =
〈
x,wo−1,k

〉
,

D1[k] = (G Co)[k] =
〈
x,w1

−1,k

〉
,

C2[k] = (H C1)[k] =
〈
x,wo−2,k

〉
,
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D2[k] = (G C1)[k] =
〈
x,w1

−2,k

〉
.

The point of writing this, is to ask ourselves how we can calculate coefficients

in the wavelet packet sense, in a manner analogous to this. Namely, if we continue

our tree and fill it out, as in the following picture

Figure 3.27: The Wavelet Packet Coefficient/Filter Tree.

where now,

C1 = C0
1 ,

D1 = C1
1 ,

C2 = C0
2 ,

D2 = C1
2 ,

how can we calculate C2
2 or C3

2 in as clean and efficient a way as the above

calculations?

Definition 4. Let wo = φ and w1 = ψ. We can then define the sequence {wn(x)}n∈Z+

of wavelet packet functions recursively by
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w2n(x) =
∑
k

h[k]wn1,k(x),

w2n+1(x) =
∑
k

g[k]wn1,k(x).

In this way, we can define the wavelet packet transform of x as {Cj
k[n] =〈

x,wj−k,n
〉
}.

3.4.2 Best Basis Algorithm

Clearly the wavelet packet transform of x is quite overcomplete. We wish to

reduce the total information contained in the transform by eliminating nodes in the

tree that are both redundant, and in some way add very little to the reconstruction.

This is called the best basis algorithm and is a major component for compression

of data. To select a best basis, we require some criteria for how to do so, and so we

arrive at the so-called entropy (cost) function.

Definition 5. The entropy function, E, maps vectors (of any length) into the real

numbers and has the following properties:

E(0) = 0,

E([v1 v2]) = E(v1) + E(v2),

where [v1 v2] is the concatenation of the vectors v1 and v2.

Examples:
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1. A very simple entropy function is the threshold function with the threshold

value a,

Ea(v) =
∑
j

c[j]

where c[j] = 1 if |v[j]| > a and c[j] = 0 otherwise.

2. A more useful entropy function, from an information theory viewpoint, is the

Shannon entropy function,

EShannon(v) = −
∑
j

v2[j] ln
(
v2[j]

)
.

We will use an example to illustrate the mechanics of the best basis algorithm.

To make matters simpler, we will use the threshold entropy function with threshold

value a = 1.1. Our wavelet packet transform produces the following coefficients, in

Figure 3.28.

Figure 3.28: An Example of a Wavelet Packet Coefficient Tree.
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Calculating the threshold entropy function with value a = 1.1 is easy, since we

must only count the number of entries in each node whose absolute value is greater

than a. The first node is therefore assigned the value 4 and the entire entropy can

be calculated as in Figure 3.29.

Figure 3.29: An Example of a Corresponding Entropy Function.

The algorithm then starts from the bottom, or leaf nodes, and simply applies

the value of the entropy function to those nodes, and considers all of them to be

part of the best basis. The next step looks at the parent nodes to those leaves and

asks the question: is the parent node’s entropy value smaller than or equal to the

sum of the offspring entropy functions? If the answer to this question is affirmative,

then we mark the parent node as a member of the best basis, and forget its children.

If the answer to the question is no, then we replace the entropy function value of

the parent node with the sum of the entropy function values of its children. In this

109



way we can work out way up the tree and at the end have marked our best basis

with respect to that particular entropy function. In our example we would end up

with Figure 3.30

Figure 3.30: The Best Basis Algorithm.

where the colored-in squares are the final best basis. Just for edification, the

Shannon entropy function would have given the values in Figure 3.31. resulting in

exactly the same best basis in this particular case.

3.4.3 Inverting the Wavelet Packet Transform

The inversion of the wavelet packet transform can be easily (and efficiently)

computed by noting the relationship of the operators G and H, and in particular,

their adjoints.
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Figure 3.31: The Shannon Entropy Function.

(H∗c) [k] =
∑
n

c[n] h[k − 2n],

(G∗c) [k] =
∑
n

c[n] g[k − 2n].

Since we have the properties that

HH∗ = GG∗ = H∗H +G∗G = I,

we can recover the coefficient Cj
k by writing

Cj
k[n] = H∗C2j

k+1[n] +G∗C2j+1
k+1 [k].

3.4.4 Combining LLE and Wavelet Packets

We wish to use the properties of wavelet packets to massage our data cube

into a sparse and more natural source of data for LLE to operate upon. The plan

roughly follows the following schematic diagram.
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Figure 3.32: Spectral/Spatial Dimension Reduction Schematic.

This will a short guide to this process, just keep in mind that the notation will

still be within our simpler 2-dimensional framework.

1: Begin with a hyperspectral data cube, X, that is D×M , where D is taken as

quite large. We then slice the cube into individual layers, which we will call

xn. Each xn lives in RM and there are D of them.

2: We choose an orthonormal wavelet system with associated mother wavelet φ,

father wavelet ψ and assign their filters to be h and g. We assign wo = φ

and w1 = ψ and calculate the remaining associated wavelet packet functions,

{wm}, by the recursive formulas

w2m(x) =
∑
k

h[k]wm1,k(x),

w2m+1(x) =
∑
k

g[k]wm1,k(x).

For each slice, xn, we calculate the wavelet packet transform independently,

which we will denote as {Cj
n,k}, by the formula

Cj
n,k[m] =

〈
xn, w

j
−k,m

〉
.
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3: We then specify an entropy function, E, and compute each of the values

E(Cj
n,k) for each node in every tree representing an individual slice. We then

average the entropy functions together, thereby tying each slice to every other

one when it comes time to find a best basis. We write this as

Ẽ(Ajk) =
1

D

D∑
n=1

E(Cj
n,k)

where we understand that Ajk represents a position in any of the individual

trees. Next we replace the assigned entropy values in each tree with the average

version calculated from Ẽ. That is, every node that is in the same position,

will have precisely the same entropy value, across every tree. We then apply

the best basis algorithm to only one of the trees (since they share the same

entropy values, the result will be the same for every tree).

4. The next step involves thresholding the best bases that we have just generated.

This will add sparsity once we have recreated our cube.

5. Now we wish to take our threshed best bases and force them to look like a

data cube that LLE can act upon. One way to do this is to assign nodes

earlier precedence based on a lexicographic like ordering. That is, we have the

best basis represented by the collection {Ajk} where k ∈ Ω and j ∈ Θ, where

these are the appropriate index sets for the best basis, then we say Aj1k1 has

precedence over Aj2k2 if k1 < k2 or if k1 = k2 and j1 < j2. This gives a unique

ordering, and allows us to create the new vectors yn as the concatenation of

the threshed coefficients that are in the best basis, in order of precedence. We

then think of each yn as a row in the matrix Y , which has D rows.

113



6. With our new data cube in hand, we assign ’pixel’ vectors to be the columns

of Y , establish neighbors and neighbor weights and then create an LLE ker-

nel. We then extract the d most important eigenvectors and have effectively

reduced our wavelet packet cube’s dimension to d.

7. We retain the concept that each row in the LLE reduced version of Y still

represents a wavelet packet best basis, and thus each can be reconstructed.

We take the rows, ỹn, for which there are d, and recalling the ordering we used

in step 5, and reverse it, forming true wavelet packet trees. With this in mind,

we can invert the wavelet packet transform using the formula

Cj
n,k[m] = H∗C2j

n,k+1[m] +G∗C2j+1
n,k+1[m],

for each m = 1, ..., d.

What remains after inverting the wavelet packet transform is the desired result; a

d-dimensional representation of the original D-dimensional data cube.

3.4.5 Numerical Results

Given a full wavelet tree, let T denote the collection of all subtrees. The

entropy E (or cost function) of a wavelet packet decomposition is a nonnegative

map E : T → R. Given n spectral bands, we now decompose each band by the

WPT. This gives us an entropy Ei, for i = 1, ..., n, for each band. We define the

common entropy EC through the weighted `p term

114



EC =
n∑
i=1

wi |Ei|p , (3.8)

where 0 < p ≤ 2 and a weight vector {wi}ni=1. Minimizing the entropy yields

the best subtree for reconstruction.

The assumption that the underlying manifold in the wavelet domain is linear

might not hold. It is much more likely that we are in a nonlinear regime. PCA then

cannot capture the essential information by itself. There are two ways to introduce

nonlinearity. We could replace PCA with a nonlinear dimension reduction such as

Locally Linear Embedding (LLE), Laplacian Eigenmaps (LE), Hessian LLE [28],

and Diffusion Wavelets/Diffusion maps [18] [14] [15] [17] [16] that try to recover the

manifold. However, these methods are computationally expensive. Our simplistic

approach is to apply (soft-)shrinkage to the wavelet coefficients the classical concept

for compression and denoising. In the context of hyperspectral imagery, however, we

use the neutral formulation ‘shrinkage concentrates spatial and spectral information

into few coefficients in the wavelet domain’. Through shrinkage, the output of the

WPT becomes a nonlinear approximation of the signal. Moreover, shrinkage means

smoothing of the underlying manifold. This is a step towards linearization. Finally,

we apply PCA to the shrunken coefficients and then transform back. We have

applied the method to the Urban dataset. Since we have ground-truth, we can

compare our proposed method with standard PCA on the original data set with

respect to classification. We use 15 to 50 principal components that capture more

than 99% of the variance. For the Figures 3.33 and 3.34, we have chosen the Haar
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wavelet, with p = 1.3, and wi = 1, for each i = 1, ..., n. Our proposed method

outperforms simple PCA, see Figure 3.35.

Figure 3.33: Classification Results on Urban Data Set.
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Figure 3.34: Selection of Classes of the Vector Angle Classification Scheme for the

Urban Data Set.
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Figure 3.35: The Combination of WPT with PCA Outperforms Simple PCA.
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Chapter 4

The Multiplicative Zak Transform

4.1 Introduction

In 1946, D. Gabor [34] and the systems bearing his name facilitated the re-

discovery of a useful transform first discovered long ago and utilized by Weil [55],

now referred to as the Weil-Brezin, Zak or kq-transforms. Taking our cue from Fol-

land [31], “the transform is referred to in the literature as the Weil-Brezin transform

(the name we shall adopt) or the Zak transform.”

The Zak transform demonstrates its remarkable flexibility in the sheer number

of applications to which it is applied. These applications include solid state physics,

signal processing, and noncommutative algebra. Within the realm of time-frequency

analysis, the Zak transform aids in the characterization and creation of new families

of Gabor systems and is integral in proving the most general form of the Balian-Low

obstruction theorem.

The underlying group structure of Gabor systems is HR, the real Heisenberg

group. This structure is clearly represented in the summands of the Zak transform

as the Schrödinger representations of the Heisenberg group [32]. A corresponding

transformation for wavelet systems would certainly depend on the representations

of the affine group. On the surface, the difference in the action of the Heisenberg

group and the affine group on L2(R) may appear superficial, however, due to the
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non-transitivity and the dearth of subgroups of the affine group, adapting the Zak

transform directly for wavelet systems is likely to fail.

Auslander, Eichmann, Gertner, and Tolimieri defined a multiplicative Zak

transform [1], mimicking the construction of the Gabor Zak transform by taking

into account the quirks of the affine group. This limits their analysis in the subse-

quent paper [35] to a subspace on which the action is transitive, namely the Hardy

space L2((0,∞)). The thrust of this work was the characterization and analysis of

wavelet systems that form frames for their spans, where the Fourier transform of the

generating function is supported on the positive real line. Such wavelets cannot span

all of L2(R) since they do not represent the negative frequencies. Specifically, they

show that analyzing the wavelet collections described above with the multiplicative

Zak transform reduces to checking the bounds of the function

∑
j∈J

∣∣∣ψ̂(2jγ)
∣∣∣2

almost everywhere on [1, 2), where the index set J has finite cardinality.

Segman and Schempp [50] constructed an alternate form of the multiplica-

tive Zak transform. Their results allow the characterization of wavelet-like frames

through the values of the transform on a compact subset of R2. The reason that we

do not use their transform is because their goal was the incorporation of scale into

the Heisenberg group and not necessarily the characterization of wavelet frames.

Because of this, their analyzed wavelet frames do not correspond to those generated

by representations of the affine group.

In this chapter we shall extend the transform constructed by Gertner et al.,
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weaken the condition requiring support within (0,∞), allowing limited support in

R̂ and study possible methods to remove the requirement of compact support of the

Fourier transform of the generating function. Through the use of superframes [3],

we will demonstrate a possible framework within which wavelet frames on the real

line could be characterized by the multiplicative Zak transform. Finally, we will

introduce a simple inversion formula for the multiplicative Zak transform.

4.2 Notation

We will be discussing both Gabor and wavelet systems. Gabor systems will

always be generated by the letter g. All other Latin letters denote functions acting on

the time domain. Greek letters will denote functions acting on the Fourier domain

with the exception that ψ will be considered as acting in the time domain as a

wavelet generating function. Occasionally there will be objects that live on (0,∞),

in each of these cases we mean that (0,∞) ⊂ R̂. The capital Greek letters Φ and

Ψ will always denote dilation periodic functions acting on a periodization of the

Fourier domain. Often these functions will be restricted to a specific set, on which

they are uniquely defined. The context will make this distinction clear.

4.3 Gabor systems and the Zak transform

Before defining the multiplicative Zak transform, it will be instructive to briefly

review Gabor systems and the Gabor Zak transform. Our construction and use of

the multiplicative Zak transform on wavelet collections will mirror that of the Gabor
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situation.

Definition 6. Let a, b > 0 and let g ∈ L2(R). We call the collection

(g, a, b) = {gm,n(t) = e2πibmtg(t− an) |m,n ∈ Z}

the uniform Gabor system generated by g with translation parameters a and b.

Gabor originally used a Gaussian in the place of g with parameters a = b = 1.

It turns out that this particular collection is complete in L2(R) but does not form

a frame. We will only consider the case when a = b = 1.

Definition 7. For f ∈ L2(R) define the Zak transform to be

Zf(t, ω) =
∑
k∈Z

f(t− k)e2πikω, for (t, ω) ∈ [0, 1)2.

4.3.1 Properties of the Zak transform

Let Q = [0, 1)2 and consider the two orthonormal bases of L2(R) and L2(Q),

respectively:

{1[m,m+1)(t) · e2πint} and {e2πimt · e2πinω}.

Proposition 1. Z : L2(R)→ L2(Q) is a unitary isomorphism.

Proof: This is clear from the mapping

Z : 1[m,m+1)(t) · e2πint 7→ e2πimt · e2πinω.

Corollary 1. {fk} is a frame for L2(R) with frame bounds A,B > 0 if and only if

{(Zfk)} is a frame for L2(Q) with frame bounds A,B > 0.
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Note that for a particular gm,n(t) = e2πimtg(t − n), the Zak transform ’pulls’

the modulation and translation off of g in the following way:

(Zgm,n) (t, ω) =
∑
k

gm,n(t− k)e2πikω =
∑
k

g(t− k − n)e2πim(t−k)e2πikω

=
∑

k′=n+k

g(t− k′)e2πim(t−k′+n)e2πi(k′−n)ω = e2πimte−2πinω (Zg) (t, ω).

This allows us to study the properties of the system based solely on the values of

the Zak transform of g. Putting these two important facts together leads us to a

theorem illustrating the utility of the Zak transform.

Theorem 1. The Gabor system generated by g ∈ L2(R) is a frame for L2(R) with

frame bounds A,B > 0 if and only if

A ≤ |(Zg) (t, ω)|2 ≤ B

for almost every (t, ω) ∈ Q.

Proof: This proof is due to Heil and Walnut [38]. Suppose that {gm,n} is a frame

for L2(R) with frame bounds A,B > 0. Then we have for each f ∈ L2(R) that

A ||f ||2L2(R) ≤
∑
m,n

|〈f, gm,n〉|2 ≤ B ||f ||2L2(R) .

Since the Zak transform is an isometry we know that

||f ||2L2(R) = ||Zf ||2L2(Q) .

Furthermore, we can use the unitary property of the Zak transform to write

∑
m,n

|〈f, gm,n〉|2 =
∑
m,n

∣∣∣〈Zf, (Zgm,n)〉L2(Q)

∣∣∣2 =
∑
m,n

∣∣∣〈Zf, e2πimte−2πinωZg
〉
L2(Q)

∣∣∣2
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=
∑
m,n

∣∣∣〈Zf · Zg, e2πimte−2πinω
〉
L2(Q)

∣∣∣2 =
∣∣∣∣Zf · Zg∣∣∣∣2

L2(Q)
(4.1)

since the right part of the inner product in equation 4.1 is an orthonormal basis for

L2(Q) and applying Parseval’s theorem. Suppose that

|Zg|2 < A

almost everywhere on a set Ω ⊆ Q of positive measure. Since Z is a surjective

isometry, we can find an f ∈ L2(R) for which Zf = F = 1 on Ω and zero everywhere

else. Then we would have

Am(Ω) = A ||F ||2L2(Q) ≤
∫ 2

1

∫ 2

1

|FZg|2 dm =

∫ ∫
Ω

|Zg|2 dm < Am(Ω),

clearly a contradiction. A similar contradiction arises if you assume that |Zg|2 > B

almost everywhere on a set of positive measure. Thus we have the forward direction.

Now suppose that A ≤ |Zg|2 ≤ B almost everywhere on Q. We easily prove

this direction by noting that for f ∈ L2(R)

A ||f ||2L2(R) = A ||Zf ||2L2(Q) ≤
∣∣∣∣ZfZg∣∣∣∣2

L2(Q)

=
∑
m,n

|〈f, gm,n〉|2

=
∣∣∣∣ZfZg∣∣∣∣2

L2(Q)
≤ B ||Zf ||2L2(Q) = B ||f ||2L2(R) .

This result is a striking example of the power the Zak transform provides when

analyzing Gabor systems. A short list of results obtained similarly from Theorem 1

and can be summarized in the following theorem.
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Theorem 2. Let g ∈ L2(R).

A. The Gabor system generated by g is complete in L2(R) if and only if Zg 6= 0

a.e. on Q.

B. The Gabor system generated by g is an orthonormal basis of L2(R) if and only

if |Zg| = 1 a.e. on Q.

Even though we have defined the Zak transform onto L2(Q), there is a lot of

analytical information that we can gain by extending the transform to be defined on

all of R2. We can achieve this by using the pseudo-periodicity of the Zak transform.

Namely, for any g ∈ L2(R),

Zg(t+ 1, ω) =
∑
k∈Z

g(t+ 1− k)e2πikω = e2πiω
∑

k′=k−1∈Z

g(t− k′)e2πik′ω

= e2πiωZg(t, ω),

Zg(t, ω + 1) =
∑
k∈Z

g(t− k)e2πik(ω+1) = e2πik
∑
k∈Z

g(t− k)e2πikω = Zg(t, ω).

The Zak transform is 1-periodic by translation in the variable ω, and is a

character away from 1-periodicity by translation in the t variable. Using these

relations, we can easily extend the Zak transform to all of R2. An important result

concerning this extension is the following famous theorem

Theorem 3. Suppose g ∈ L2(R) such that Zg is continuous on all of R2. Then Zg

has at least one zero.
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In this critical sampling case of Gabor systems, with the Zak transform ex-

tended and defined as above, and with this seemingly innocuous result about the

continuity of an extended Zak transform forced to take a zero, we arrive at the

important Balian-Low obstruction theorem.

Theorem 4. Suppose that g ∈ L2(R) and the Gabor system generated by g is a

frame. Then either xg /∈ L2(R) or γĝ /∈ L2(R̂).

4.4 The Multiplicative Zak transform

In this section we shall introduce the multiplicative Zak transform created by

Gertner and Tolimieri [35]. We shall modify the definition so that we have more

flexibility in the types of functions we can analyze. It should be noted that the group

structures underlying Gabor systems and wavelets are vastly different. Both are non-

commutative, but the similarities essentially stop there. The Heisenberg group has

many lattice sub-groups while the 2-dilation affine group essentially has very few.

The Heisenberg group’s representations over L2(R) (Schrödinger representations)

have a beautiful duality through the Fourier transform. The affine group shares

no such property. A further complication to extending the ideas from the Gabor

setting to wavelets is that the Heisenberg group acts transitively while the affine

group has three orbits, taken as actions over L2(R). These differences will show up

many times as obstacles in defining a Zak transform that parallels that of the Gabor

Zak transform.

A few papers have approached either the outright construction of a Zak trans-
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form for wavelets (Gertner, Tolimieri [35] [1]) or have toyed with representations that

include time and frequency with scale (Segman, Schempp [50]). We will consider

the Gertner and Tolimieri paper in this section.

We are ultimately interested in the properties of the wavelet system generated

by the function ψ ∈ L2(R), viz.,

Λ = {ψm,n(t) = 2
m
2 ψ(2mt− n) for m,n ∈ Z}.

Instead of working in the time domain, we are going to switch to the frequency

domain for the remainder of this chapter. For ease of writing, θ will represent a

generic function supported in R̂, and ψ̂ is a specific Fourier transform of a wavelet

generating function. Often ψ̂ = θ. We can see that if Λ has ‘nice’ properties in

L2(R), then that will also be true of the collection

Λ̂ = {ψ̂m,n(γ) = e−2πiγn2−m2
−m
2 ψ̂(2−mγ)} for m,n ∈ Z

in L2(R̂).

The multiplicative Zak transform developed by Gertner and Tolimieri used

dilation periodicity heavily in the framing of their arguments. They use this property

and a property about fractional dilations being periodic under certain circumstances

to prove results about frames generated by ψ̂ that are supported in (0,∞). This

line of reasoning actually gets in the way of extending the transform across γ = 0.

We shall try a slightly different approach, one that allows the characterization of

functions having Fourier transforms with more arbitrary support. The concept of

dilation periodicity is still useful in constructing the transform as initially done.
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Definition 8. We say that a locally square integrable function Φ ∈ L2
loc((0,∞)) is

dilation-periodic (DP) if

2
1
2 Φ(2γ) = Φ(γ) for γ > 0.

Note: If Φ is DP then it can be completely determined for γ > 0 by its values on

[1, 2) by the formula

Φ(γ) = 2−
k
2 Φ(2−kγ) for 2k ≤ γ < 2k+1.

Here we could replace the set [1, 2) by E where {2kE} partitions (0,∞).

NB: We can identify a DP function as the periodic extension of a function defined

strictly on the sets [1, 2), or more generally E. The context will make domain of the

function in question clear.

Definition 9. Let

L2
DP ((0,∞)) = {Φ ∈ L2

loc((0,∞)) | Φ is DP,

∫ 2

1

|Φ|2 <∞}.

This is a Hilbert space with the expected inner product. It is useful to think of

the spaces L2([1, 2)) and L2
DP as being the same. We will do most of our analysis in

L2(R̂), but occasionally will work in L2
DP . To make this convention clear, we will use

upper-case greek letters to specify when an object is considered part of L2([1, 2)),

and will use a tilde on such a letter to show it is a member of L2
DP (technically

defined on all of (0,∞), but determined on [1, 2)). The only distinction being that

to retrieve Ψ̃ ∈ L2
DP from Ψ ∈ L2([1, 2)) requires merely ’periodizing’ Ψ in the
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following manner

Ψ̃(t) = 2−
m
2 Ψ(2−mt) when t ∈ [2m, 2m+1).

Definition 10. We will use the following ONBs of L2([1, 2))

Ψm(t) = e2πim2−kt for m ∈ Z

Φn(ω) =

√
log2(e)

ω
e2πin log2(ω) for n ∈ Z.

Both ONBs obey the rule

Ψo(ω) ·Ψm+k(ω) = Ψm(ω) ·Ψk(ω),

Φo(ω) · Φm+k(ω) = Φm(ω) · Φk(ω).

An additional property is that

|Ψk| = |Ψ1| for all k.

Note that

Ψ̃m(t) =


e2πimt t ∈ [1, 2)

2−
k
2 e2πim2−kt t ∈ [2k, 2k+1)

is the periodized version of Ψm. So {Ψ̃m} and {Φ̃n} are ONBs of L2
DP . The defi-

nitions of {Ψm} and {Φn} are meant to mimic the behavior of the basis functions

from the Gabor Zak case, namely {e2πint} and {e2πimω}. Note that the logarithm is

meant to treat dilations much as the Gabor functions treated translations.

The following is an orthonormal basis for L2((0,∞)) that comes up often

in analyzing the multiplicative Zak transform. It is essentially half of a Shannon

wavelet in the Fourier domain.
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Definition 11. Let gm,n(γ) = 2−
m
2 1[2m,2m+1)(γ)e2πin2−mγ.

Proposition 2. {gm,n} is an ONB of L2((0,∞)).

Proof: Let m,n, k, l ∈ Z. Then

〈gm,n, gk,l〉L2((0,∞)) =

∫ ∞
0

2−
(m+k)

2

(
1[2m,2m+1)(t) · 1[2k,2k+1)(t)

)
·
(
e2πi(n2−m−l2−k)t

)
dt

=

∫ ∞
0

2−
(m+k)

2 1[2m,2m+1)∩[2k,2k+1)(t) e
2πi(n2−m−l2−k)t dt = 0

when m 6= k. Suppose that m = k. Then we have that

〈gm,n, gk,l〉L2((0,∞)) =

∫ ∞
0

2−m1[2m,2m+1)(t) e
2πi(n−l)2−mt dt

= 2−m
∫ 2m+1

2m
e2πi(n−l)(2−mt) dt =

∫ 2

1

e2πi(n−l)t dt.

Clearly the above integral is zero when n 6= l and is unity when n = l. Therefore

{gm,n} is orthonormal.

It is well known that the collection {e2πint}n∈Z is an orthonormal basis of

L2([1, 2)). Therefore it is easy to see that for each fixed m ∈ Z, the collec-

tion {2−m2 1[2m,2m+1)(t) · e2πin2−mt}n∈Z is correspondingly an orthonormal basis of

L2([2m, 2m+1)). Thus, since elements having different m’s in the subscript have dis-

joint support, the collection {gm,n} is an orthonormal basis of L2(∪m∈Z [2m, 2m+1)) =

L2((0,∞)).
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Note: For all n ∈ Z

Ψ̃n(t) =
∑
k∈Z

gk,n(ω).

Definition 12. Let C[1,2) = [1, 2)× [1, 2). For θ ∈ L2((0,∞)) define the multiplica-

tive Zak transform Z∗ : L2((0,∞))→ L2(C[1,2)) by

(Z∗θ) (t, ω) =
∑
k∈Z

2
k
2 θ(2kt)Φk(ω).

Restricting the values of the multiplicative Zak transform to the set C[1,2) serves

the same purpose as restricting the Gabor Zak transform to the set Q. However,

unlike that case, there end up being many different sets for which this transform

will be interesting. Gertner and Tolimieri work only with the set C[1,2) though, and

so will we for the remainder of this small section.

Proposition 3. The multiplicative Zak transform is a surjective isometry from

L2((0,∞)) to L2(C[1,2)).

Proof: We need only to look at how Z∗ operates on the basis {gm,n}.

(Z∗gm,n) (t, ω) =
∑
k∈Z

2
k
2 gm,n(2kt)Φk(ω)

=
∑
k∈Z

2
k−m

2 1[2m,2m+1)(2
kt)e2πin2k−mtΦk(ω).

Since t is restricted to [1, 2), we have that k = m and so

(Z∗gm,n) (t, ω) = 1[1,2)(t)e
2πintΦm(ω) = Ψn(t)Φm(ω).
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Alternately, we can define the multiplicative Zak transform on any function

through its action on the basis {gm,n}. For example, given any θ ∈ L2((0,∞)) we

can write

θ(t) =
∑
k,l

〈θ, gk,l〉 gk,l

thereby making the multiplicative Zak transform on θ as follows

(Z∗θ) (t, ω) := Z∗

[∑
k,l

〈θ, gk,l〉 gk,l

]
(t, ω) =

∑
k,l

〈θ, gk,l〉Φk(ω)Ψl(t).

The multiplicative Zak transform enjoys the following properties, as a direct parallel

to the Gabor Zak transform.

Proposition 4. P1:

2
1
2 (Z∗θ) (2t, ω) =

Φo(ω)

Φ1(ω)
· (Z∗θ) (t, ω),

P2:

2
1
2 (Z∗θ) (t, 2ω) = (Z∗θ) (t, ω),

P3:

||(Z∗θ)||2L2
DP

= ||θ||2L2([0,∞)) .

Proof: P1: 2
1
2 (Z∗θ) (2t, ω) = 2

1
2

∑
k 2

k
2 θ(2k2t)Φk(ω). Setting l = k + 1 we see that

we have
∑

l∈Z 2
l
2 θ(2lt)Φl−1(ω) · Φ1(ω)

Φ1(ω)
= Φo(ω)

Φ1(ω)

∑
l∈Z 2

l
2 θ(2lt)Φl(ω) = Φo(ω)

Φ1(ω)
Z∗θ(t, ω).

P2: 2
1
2 (Z∗θ) (t, 2ω) =

∑
k∈Z 2

k
2 θ(2kt)2

1
2 ·Φk(2ω) =

∑
k∈Z 2

k
2 θ(2kt)Φk(ω) = Z∗θ(t, ω).

P3: ||Z∗θ||2 =
∫ 2

1

∫ 2

1

∣∣∣∑k∈Z 2
k
2 θ(2kt)Φk(ω)

∣∣∣2
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=
∑

k∈Z
∑

m∈Z 2
k+m

2

∫ 2

1
θ(2kt)θ(2mt) dt

∫ 2

1
Φk(ω) · Φm(ω) dω

=
∑

k∈Z 2k
∫ 2

1

∣∣θ(2kt)∣∣2 dt = ||θ||2 .

Let

θm,n(t) = 2−
m
2 θ(2−mt)

Ψn(t)

Ψo(t)
.

Note that with the Ψ’s above, the θm,n’s are exactly the elements of Λ̂. Then the

fourth, and most important property of the multiplicative Zak transform is

P4:

(Z∗θm,n) (t, ω) =
Φm(ω)

Φo(ω)
· Ψn(t)

Ψo(t)
· (Z∗θ) (t, ω).

Unfortunately P4 is not always true. In fact, this is one of the strongest

obstacles to utilizing the multiplicative Zak transform to analyze wavelet sets. This

result holds true for any θ ∈ L2(0,∞) for which supp(θ) ⊂ [2l, 2l+1) for any l ∈

Z. The twisting action of the multiplicative Zak transform cannot overcome this

obstruction in general because unlike the case of Gabor systems, the parameters do

not sit on a regular lattice.

This can be seen clearly from the definition of the multiplicative Zak transform

as the action on the basis {gm,n}. Formally

gm,n =

(∑
k,l

〈g, gk,l〉 gk,l

)
m,n

=
∑
k,l

〈g, gk,l〉 (gk,l)m,n .

We can write

(gk,l)m,n (γ) =
(

2−
k
21[2k,2k+1)(γ)e2πil2−kγ

)
m,n

133



= e−2πin2−mγ2−
m
2 2−

k
21[2k,2k+1)(2

−mγ)e2πil2−k(2−mγ)

= 2−
m+k

2 1[2k+m,2k+m+1)(γ)e−2πi2−(m+k)(n2k−l)γ = gm+k,n2k−l.

The factors representing dilations act additively, while the translation parameter

has a non-commutative twist. The real problem is that each scale becomes wrapped

up in the translation parameters (this is multi-resolution’s forte) and they cannot

be separated unless the original function has a very nice support. Putting this all

together looks like

ˆψm,n(γ) =

(∑
k,l

〈
ψ̂, gk,l

〉
gk,l

)
m,n

(γ) =
∑
k,l

〈
ψ̂, gk,l

〉
(gk,l)m,n (γ)

=
∑
k,l

〈
ψ̂, gk,l

〉
gk+m,n2k−l(γ),

and thus

Z∗
(

ˆψm,n

)
(t, ω) =

∑
k,l

〈
ψ̂, gk,l

〉
Φk+m(ω)Ψn2k−l(t).

Here it is impossible to neatly split these formal Ψn2k−l apart, unless the

original function ψ̂ has support in some [2s, 2s+1) for some s ∈ N to force all of the

dilations to be fixed and allowing the sum to split.

Gertner and Tolimieri constrain their functions to having support in the set

[1, 2N) for some N and alter the dilations of their collection of functions to be

fractional with denominatorN . This allows them to prove the following classification
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theorem, but at the cost of altering the collection of functions from being a true

wavelet collection.

Theorem 5. (Gertner, Tolimieri) Let ψ ∈ L2(R) satisfy supp(ψ̂) ⊆ [1, 2N). Then

{ψm,n} is a frame for the closed subspace it spans if and only if

∃A,B > 0 such that A ≤
N−1∑
j=0

∣∣∣ψ̂(2−jt)
∣∣∣2 ≤ B, a.e. t ∈ [1, 2).

4.4.1 Superframes and Extension

Part of the problem with the approach in the previous section, is that while

analyzing wavelet collections of functions restricted to (0,∞) is interesting, ideally

we want to be able to characterize wavelet frames for all of L2(R). This is simply

not possible when restricted to one half of the real line. This small section will

suggest a method that could be used to fuse together wavelets frames for the Hardy

spaces L2(−∞, 0) and L2(0,∞) for the whole space L2(R) = L2(−∞, 0)⊕L2(0,∞).

We shall apply a neat idea called superframes, and attempt to use this structure

to glue the pieces together. This tool was developed by Balan in [3] to efficiently

represent multiplexed signals.

Definition 13. Suppose that F1 = {x1
k}, ..., FN = {xNk } are frames for the Hilbert

spaces H1, ..., HN where H = H1⊕...⊕HN . We call the collection F = F1⊕...⊕FN =

{x1
k + ...+ xNk } a superframe if it is a frame for the larger space H.

Theorem 6. I. The superset (F1, ..., FN) is a superframe if and only if the following

two conditions hold true:
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a. Fk is a frame for Hk for 1 ≤ k ≤ N ,

b. E1⊕...⊕EN is a direct sum and closed subspace of `2(Z), i.e. Ek∩
(∑

l 6=k El

)
=

{0} and
∑N

k=1Ek is closed.

II. Suppose that F = (F1, ..., FN) is a superframe. Then there is a superframe

(F̃1, ..., F̃N) called the dual superframe of F such that the following reconstruction

formula holds for every f1 ∈ H1, ..., fN ∈ HN :

fk =
∑
n∈Z

(
N∑
l=1

〈
fl, x

l
n

〉)
x̃kn =

∑
n∈Z

(
N∑
l=1

〈
fl, x̃ln

〉)
xkn.

Moreover, if Ẽ1, ..., ẼN denote the coefficient ranges of the component sets of F̃ ,

then F̃ is a dual superframe of F if and only if for every 1 ≤ k ≤ N , F̃k is a dual

of Fk and Ẽk is orthogonal to every El with l 6= k.

A very natural question that arises in conjunction with this definition and the

previous section is, are all wavelet frames for L2(R) wavelet superframes for the

subspaces L2(−∞, 0) and L2(0,∞)? The following theorem shows this to be an

affirmative.

Theorem 7. Let ψ ∈ L2(R) such that {ψm,n} is a wavelet frame for L2(R). Let

ψ−(γ) = ψ̂(γ)1(−∞,0)(γ) and ψ+(γ) = ψ̂(γ)1(0,∞)(γ) be projections onto L2(−∞, 0)

and L2(0,∞). Then {ψ−m,n} is a wavelet frame for L2(−∞, 0) and {ψ+
m,n} is a

wavelet frame for L2(0,∞) and their sum {ψ−m,n +ψ+
m,n = ψ̂m,n} is a superframe for

L2(R̂).

Proof:Define

E1 = {c ∈ `2(Z2) | cm,n =< f, ψ−m,n > for some f ∈ L2((−∞, 0))},

136



E2 = {c ∈ `2(Z2) | cm,n =< f, ψ+
m,n > for some f ∈ L2((0,∞))}.

We need that E1 ∩ E2 = {0} and E1 + E2 is a closed subspace of `2(Z2).

Let c ∈ E1 ∩ E2. Then we have that for some g ∈ L2((−∞, 0)) and f ∈

L2((0,∞)), for each m,n ∈ Z∫ 0

−∞
g(x)ψ̂m,n(x) dx =

〈
g, ψ−m,n

〉
= cm,n =

〈
f, ψ+

m,n

〉
=

∫ ∞
0

f(x)ψ̂m,n(x) dx.

We can extend f, g to all of L2(R̂) by defining them to be zero off of their respective

natural domains. We then have that∫
R

(g(x)− f(x)) ψ̂m,n(x) dx = 0

for every m,n ∈ Z. Since {ψ̂m,n} is a wavelet collection in L2(R̂), the only function

that is orthogonal to all of these is the zero function. Therefore g − f ≡ 0. Since

g and f have disjoint support, this forces g = f = 0 and therefore, c ≡ 0. Thus

E1 ∩ E2 = {0}.

Now we want to see if the sum E1 +E2 is a closed subspace of `2(Z2). This is

in general not true, that is, there are closed sets A,B for which A+B is not closed.

For example consider A = Z and B =
√

2Z. Then the sum A+B is a dense subset

of R, and so is not closed. Now we will look at the specific sum E1 + E2. Take a

sequence {ck}k∈Z2 ⊂ E1 + E2 such that ck → c in `2(Z2). This means that there is

a collection {fk}k∈Z2 ⊂ L2((−∞, 0)) and {gk}k∈Z2 ⊂ L2((0,∞)) such that

ckm,n = xkm,n + ykm,n =
〈
fk, ψ−m,n

〉
+
〈
gk, ψ+

m,n

〉
.
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Given ε > 0, there exists a K ∈ N such that for all k > K we have

∣∣∣∣ck − c∣∣∣∣2
`2(Z2)

=
∑
m,n

∣∣ckm,n − cm,n∣∣2 =
∑
m,n

∣∣∣〈fk + gk, ψ̂m,n

〉
− cm,n

∣∣∣2 < ε.

Since the collection {ψ̂m,n} is a wavelet collection in L2(R̂), we know that for fixed

k, we can represent fk + gk by

fk + gk =
∑
m,n

〈
fk + gk, ψ̂m,n

〉
S−1

(
ψ̂m,n

)
=
∑
m,n

ckm,nS
−1
(
ψ̂m,n

)
,

where S is the frame operator for the wavelet collection. Since the collection {ck}

converges in the `2(Z2) sense, we have that the collection fk + gk converges in the

L2(R̂) sense, to a function h ∈ L2(R̂). We must show that

h =
∑
m,n

cm,nS
−1
(
ψ̂m,n

)
= f + g,

for some f ∈ L2((−∞, 0)) and g ∈ L2((0,∞)). If this is true, then we would have

that cm,n =
〈
h, ψ̂m,n

〉
=
〈
h−, ψ−m,n

〉
+
〈
h+, ψ+

m,n

〉
for each m,n ∈ Z.

Let ε > 0 be given. Since gk+fk → h in L2(R̂) as k →∞, there exists K1 ∈ N

for which
∣∣∣∣h− (fk + gk)

∣∣∣∣ < ε
2

for all k > K1. Similarly, since ck → c in `2(Z2) as

k → ∞ we have that there exists K2 ∈ N for which
∣∣∣∣ck − c∣∣∣∣

`2(Z2)
< εA

2||ψ̂||
L2(R̂)

, for

all k > K2, where A is the frame’s lower bound. Let k > K = max{K1, K2}. Then

we have that

∣∣∣∣∣
∣∣∣∣∣h−∑

m,n

cm,nS
−1
(
ψ̂
)∣∣∣∣∣
∣∣∣∣∣ ≤ ∣∣∣∣h− (fk + gk

)∣∣∣∣+

∣∣∣∣∣
∣∣∣∣∣∑
m,n

(
ckm,n − cm,n

)
S−1

(
ψ̂
)∣∣∣∣∣
∣∣∣∣∣
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≤ ε

2
+
∣∣∣∣∣∣S−1

(
ψ̂
)∣∣∣∣∣∣ ·∑

m,n

∣∣ckm,n − cm,n∣∣2 ≤ ε

2
+

∣∣∣∣∣∣ψ̂∣∣∣∣∣∣
A

εA

2
∣∣∣∣∣∣ψ̂∣∣∣∣∣∣ = ε.

Therefore we must have h =
∑

m,n cm,nS
−1
(
ψ̂
)

. But this means that since h =

f+g = h1(−∞,0) +h1(0,∞) where f ∈ L2((−∞, 0)) and g ∈ L2((0,∞)), then we have

shown that ck → c = a+ b where a ∈ E1 and b ∈ E2. Therefore E1 +E2 is a closed

set.

This result generates a lot of hope for being able to analyze wavelets with the

multiplicative Zak transform. The schematic for doing so appears to be a straight-

forward process. Start with some ψ ∈ L2(R).

1. Analyze ψ−, the projection of ψ̂ onto L2(−∞, 0), with a reflected version of the

multiplicative Zak transform and determine if it is a frame for that subspace.

2. Analyze ψ+, the projection of ψ̂ onto L2(0,∞), with the multiplicative Zak

transform and determine if it is a frame for that subspace.

3. Evaluate some ‘gluing’ condition for which {ψ̂m,n = ψ−m,n + ψ+
m,n} is a super-

frame for L2(R̂).

This presents two natural challenges. The first challenge is to understand

when we can say ψ+
m,n is a frame for L2(0,∞) simply by analyzing the values, or

other properties of Z∗ψ+, even when ψ̂ is not compactly supported. Eventually we

would like to solve the following conjecture

Conjecture 1. Let ψ ∈ L2(R) satisfy supp(ψ̂) ⊆ (0,∞), not necessarily compact.
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Then {ψm,n} is a frame for the closed subspace it spans if and only if

∃A,B > 0 such that A ≤
∣∣∣Z∗ψ̂∣∣∣2 ≤ B, a.e. (t, ω) ∈ [1, 2)2.

The second challenge is that of finding a gluing condition that allows us to put

together two distinct frames, match their parameters and have a superframe for the

larger space. An example of this gluing for a specific function (Shannon’s wavelet)

can be found in [22] pages 67 - 73, along with a collection of well-known estimates

for wavelets frames, for which we believe the above three steps will be comparable

to. This problem is still open.

4.4.2 The Multiplicative Zak Transform on Wavelet Sets

The results of the previous section are a little unsettling. The affine group

forces us to analyze one side of R̂ at a time, and to only do so on special sets.

This lack of freedom is in stark contrast to that of the Gabor Zak transform, and

therefore we wish to extend the multiplicative Zak transform in some way so that

we can generate results resembling that ideal case. One simple way of modifying the

multiplicative Zak transform is by allowing ourselves to get away from the target set

C[1,2) = [1, 2)×[1, 2), and allowing a more general analyzing set to be CE = E×[1, 2)

where E is a wavelet set. An excellent introduction on the theory of wavelet sets

can be found in Hernández and Weiss [39].

Definition 14. (Wavelet Set) The set E ⊂ R̂ is a wavelet set if

ψ(t) = FT −1
1E(t)
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generates an orthonormal wavelet basis for L2(R), where FT −1 is the inverse Fourier

transform.

Wavelet frames have a rich theory and a variety of properties; they are a tool

for which wavelets and geometry can be closely linked. A few key properties of

wavelets sets are

Proposition 5. Suppose that E is a wavelet set. Then the following are true:

A. {E + n}n∈Z partitions R̂,

B. {2mE}m∈Z partitions R̂,

C. ∃ bijection σE : E → [−2,−1) ∪ [1, 2), characterizing the wavelets set.

Definition 15. Let E be a wavelet set. Let θ ∈ L2(R̂), we define the multiplicative

E-Zak transform to be

Z∗Eθ(t, ω) =
∑
k∈Z

2
k
2 θ(2kt)Φk(ω)

where (t, ω) ∈ CE = E × [1, 2).

The multiplicative E-Zak transform is useful because it shares all of the prop-

erties of the multiplicative Zak transform, but has a lot more flexibility in the

star-crossed fourth property.

Proposition 6. Let E be a wavelet set. Then the following are true

- Z∗E is a surjective isometry from L2(R̂) to L2(CE),
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P1:

2
1
2 (Z∗Eθ) (2t, ω) =

Φo(ω)

Φ1(ω)
· (Z∗Eθ) (t, ω),

P2:

2
1
2 (Z∗Eθ) (t, 2ω) = (Z∗Eθ) (t, ω),

P3:

||(Z∗Eθ)||
2
L2
DP

= ||θ||2L2([0,∞)) .

Proof: The result follows from the original multiplicative Zak transform proofs

combined with the dilation partition property of the wavelet set E.

This gives us a great multitude of multiplicative Zak transforms to work with,

to analyze wavelets with. We probably do not need to force the wavelet set structure

on ourselves, since we are really only utilizing the dilation partition property of such

sets. However, for the time being, we will continue to hold this frame of reference.

Also notice that we are not restricted to one half-line of R̂. Note that by freeing

ourselves of the static set C[1,2) we can attain the following proposition.

Proposition 7. Let ψ ∈ L2(R) such that supp(ψ̂) ⊂ E where E is some wavelet

set. Then the following property is true.

P4:

(Z∗Eθm,n) (t, ω) =
Φm(ω)

Φo(ω)
· Ψn(t)

Ψo(t)
· (Z∗Eθ) (t, ω).

Proof: Let (t, ω) ∈ CE. Then

(Z∗Eθm,n) (t, ω) =
∑
k∈Z

2
k
2 θm,n(2kt)Φk(ω) =

∑
k∈Z

2
k
2 2−

m
2 θ(2k−mt)e−2πin2−mtΦk(ω).
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Since t ∈ E, and since supp(θ) ⊂ E, we must have the summands are zero

except when k = m. Thus we see

∑
k∈Z

2
k
2 2−

m
2 θ(2k−mt)e−2πin2k−mtΦk(ω) = e−2πintΦm(ω)Z∗Eθ(t, ω)

=
Φm(ω)

Φo(ω)
· Ψn(t)

Ψo(t)
· (Z∗Eθ) (t, ω).

Having this fourth property of the multiplicative Zak transform be true for a

wider variety of wavelets than originally possible allows us to resurrect the following

theorem, which parallels a similar theorem in the Gabor Zak case.

Theorem 8. Suppose that ψ ∈ L2(R) such that {ψ̂m,n}m,n∈Z is a (Fourier-side)

wavelet frame for L2(R̂) with frame bounds A,B > 0 and supp(ψ̂) ⊂ E for some

wavelet set E. Then {Z∗Egm,n}m,n∈Z is a frame for L2(CE) with the same bounds.

Furthermore, there exist 0 < Ao

(
= log2(e)A

2
< A

)
, (B <)Bo (= log2(e)B) <∞ such

that

Ao ≤
∣∣∣Z∗Eψ̂∣∣∣2 ≤ Bo

a.e. for (t, ω) ∈ CE.

Proof: Let F ∈ L2(CE). Since Z∗E is surjective, there is an f ∈ L2(R̂) such that

Z∗Ef = F a.e. on CE. The following calculation justifies the first claim in the

theorem:

∑
m,n∈Z

∣∣∣∣〈F,Z∗E (ψ̂m,n)〉
L2(CE)

∣∣∣∣2 =
∑
m,n∈Z

∣∣∣〈Z∗Ef, Z∗E (ψ̂m,n)〉∣∣∣2 =
∑
m,n∈Z

∣∣∣∣〈f, ψ̂m,n〉
L2(R̂)

∣∣∣∣2 ,
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since we know that for any f ∈ L2(R̂),

A ||f ||2L2(R̂) ≤
∑
m,n∈Z

∣∣∣∣〈f, ψ̂m,n〉
L2(R̂)

∣∣∣∣2 ≤ B ||f ||2L2(R̂)

and we know that for all f ∈ L2(R̂), ||f ||2L2(R̂) = ||Z∗Ef ||
2
L2(CE), we can conclude that

A ||F ||2L2(CE) ≤
∑
m,n∈Z

∣∣∣〈F,Z∗E (ψ̂m,n)〉∣∣∣2 ≤ B ||F ||2L2(CE) (4.2)

for all F ∈ L2(CE). This means that {Z∗E
(
ψ̂m,n

)
}m,n∈Z is a frame for L2(CE) with

bounds A,B > 0.

To show the second conclusion of the theorem, consider again the inequality

in (4.2). Note that

〈
F,Z∗E

(
ψ̂m,n

)〉
=

〈
F,Z∗Eψ̂ ·

Φm ·Ψn

Φo ·Ψo

〉
=

〈
F ·

(
Z∗Eψ̂

Φo ·Ψo

)∗
,Φm ·Ψn

〉
. (4.3)

Here the ∗ outside of the parenthesis represents the complex conjugate. Since we

know that {Φm(ω) · Ψn(t)}m,n∈Z is an ONB of L2(CE), combining (4.2) with (4.3)

yields:

A ||F ||2L2(CE) ≤

∣∣∣∣∣
∣∣∣∣∣F ·

(
Z∗Eψ̂

Φo ·Ψo

)∗∣∣∣∣∣
∣∣∣∣∣
2

L2(CE)

=
∑
m,n∈Z

∣∣∣∣∣∣
〈
F ·

(
Z∗Eψ̂

Φo ·Ψo

)∗
,Φm ·Ψn

〉
L2(CE)

∣∣∣∣∣∣
2

≤ B ||F ||2L2(CE)

for all F ∈ L2(CE). This shows that

inf
(t,ω)∈CE

∣∣∣∣∣ Z∗Eψ̂Φo ·Ψo

∣∣∣∣∣
2

≥ A,

sup
(t,ω)∈CE

∣∣∣∣∣ Z∗Eψ̂Φo ·Ψo

∣∣∣∣∣
2

≤ B.
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Since Ψo ≡ 1 and since Φo(ω) =
√

log2(e)
ω

, we have that

2

log2(e)
· inf

(t,ω)∈CE

∣∣∣Z∗Eψ̂∣∣∣2 ≥ inf
(t,ω)∈CE

∣∣∣∣∣ Z∗Eψ̂Φo ·Ψo

∣∣∣∣∣
2

≥ A,

1

log2(e)
· sup

(t,ω)∈CE

∣∣∣Z∗Eψ̂∣∣∣2 ≤ sup
(t,ω)∈CE

∣∣∣∣∣ Z∗Eψ̂Φo ·Ψo

∣∣∣∣∣
2

≤ B.

This means that

Ao

(
=

log2(e)A

2

)
≤
∣∣∣Z∗Eψ̂∣∣∣2 ≤ (log2(e)B =)Bo

a.e. (t, ω) ∈ CE.

This result immediately lets us write down a theorem that is a modification

of the conjecture in the previous section.

Theorem 9. Let ψ ∈ L2(R) satisfy supp(ψ̂) ⊆ E for some wavelet set E. Then

{ψm,n} is a frame for L2(R) if and only if

∃A,B > 0 such that A ≤
∣∣∣Z∗Eψ̂∣∣∣2 ≤ B, a.e. (t, ω) ∈ CE.

Note a theorem which resembles the above result, in a slightly different context.

This is taken from [22], page 973.

Theorem 10. If the ψm,n(t) = 2
m
2 ψ(2mt − n) for m,n ∈ Z, is a frame for L2(R)

with bounds A,B > 0, then

ln 2

2
A ≤

∫ ∞
0

|ψ̂(γ)|2

γ
dγ ≤ ln 2

2
B,

ln 2

2
A ≤

∫ 0

−∞

|ψ̂(γ)|2

γ
dγ ≤ ln 2

2
B.
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This shares the bounds with our frame test, and also the ability for a frame on

one half, and a frame on another, to not necessarily combine to form a superframe

for the whole set.

Note: Unfortunately, while this theorem seems like a large improvement over

the conjectures and theorems of Gertner and Tolimieri, we must point out that

in the cases we are working with, that is, ψ̂ ⊂ E where E is a wavelet set, the

multiplicative E-Zak transform is identity on such functions. That means studying

the wavelet generated by ψ ∈ L2(R) for which supp(ψ̂) ⊂ E for a wavelet set E,

amounts to simply checking that |ψ̂|2 is bounded above and below. This is a special

case from [20], problem 12.1 on page 281. With this in mind, we wish to test part of

this multiplicative Zak transform to see if it can detect the simplest kinds of wavelet

frames. Namely, those that are orthonormal bases for L2(R). That means we should

be able to detect the following simple conditions for an orthonormal wavelet basis,

since these conditions partially classify such collections of functions. For the rest

of this chapter, we will switch the use of the variable t in the multiplicative Zak

transform, to γ to make the Fourier transforms looks more natural.

∑
j∈Z

∣∣∣ ˆψ(2jγ)
∣∣∣2 = 1 a.e., (4.4)

∞∑
j=1

ψ̂(2jγ)ψ̂ (2j(γ + l)) = 0 for l ∈ 2Z+ 1. (4.5)

To deal with the first of these characteristic formulas, we define the alternate

multiplicative E-Zak transform.
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Definition 16. We define the alternative multiplicative Zak transform to be

Z̃∗Eθ(γ, ω) =
∑
k∈Z

2−
k
2 θ(2kγ)Φk(ω),

where (t, ω) ∈ CE.

Note that in general, we would not expect such a series to converge. Consider

the following formal calculation

∫ 2

1

Z∗Eθ(γ, ω) Z̃∗Eθ(γ, ω) dω =

∫ 2

1

(∑
k∈Z

2
k
2 θ(2kγ)Φk(ω)

)(∑
l∈Z

2−
l
2 θ(2lγ)Φl(ω)

)
dω

=
∑
k,l∈Z

2
k−l
2 θ(2kγ)θ(2lγ)

∫ 2

1

Φk(ω) Φl(ω) dω =
∑
k∈Z

∣∣θ(2kγ)
∣∣2 .

This ‘Parseval-like’ equality seems to show that the information contained in

equation 4.4 can be replicated with the multiplicative Zak transform and its alternate

form. We can make this precise with the following.

Theorem 11. Let ψ ∈ L2(R). Then

∫ 2

1

Z∗Eθ(γ, ω) Z̃∗Eθ(γ, ω) dω =
∑
k∈Z

∣∣θ(2kγ)
∣∣2

almost everywhere γ ∈ E.

Proof: For N ∈ N, we define the function

FN(γ, ω) =
N∑

k=−N

2−
k
2 ψ̂(2kγ)Φk(ω).

Clearly FN ∈ L2(E × [1, 2)) for every N ∈ N. Since ψ ∈ L2(R), we know that

Z∗ψ̂ ∈ L2(E × [1, 2)). We can then compute
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∫ 2

1

Z∗Eψ̂(γ, ω)FN(γ, ω) dω =
∑
k∈Z

N∑
l=−N

2
k−l
2 ψ̂(2kγ)ψ̂(2lγ)

∫ 2

1

Φk(ω)Φl(ω) dω

=
N∑

k=−N

∣∣∣ψ̂(2kγ)
∣∣∣2

for every N ∈ N.

Proposition 8. Suppose that supp(ψ̂) ∩ (−η, η) = ∅ for some η > 0. Furthermore,

assume that ψ̂ ∈ L∞(R) (or some mild decay towards infinity). Then {FN(γ, ω)} is

a Cauchy sequence and FN → Z̃∗Eψ̂ pointwise in CE.

Proof: Suppose that N > M and consider

∫
E

∫ 2

1

|FN(γ, ω)− FM(γ, ω)|2 dω dγ =

∫
E

∫ 2

1

∣∣∣∣∣∣
N∑

|k|=M+1

2−
k
2 ψ̂(2kγ)Φk(ω)

∣∣∣∣∣∣
2

dω dγ

=

∫
E

∫ 2

1

 N∑
|k|=M+1

2−
k
2 ψ̂(2kγ)Φk(ω)

 N∑
|l|=M+1

2−
l
2 ψ̂(2lγ)Φl(ω)

 dω dγ

=
N∑

|k|,|l|=M+1

2−
(k+l)

2

∫
E

ψ̂(2kγ)ψ̂(2lγ) dγ

∫ 2

1

Φk(ω)Φl(ω) dω

=
N∑

|k|=M+1

2−k
∫
E

∣∣∣ψ̂(2kγ)
∣∣∣2 dγ.

Assuming that our wavelet set E is not pathological, we can safely assume that

there exists a K ∈ N such that if k > K, 2−kE ⊂ (−η, η) and consequently,
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=
−N∑

k=−M−1

2−k
∫
E

∣∣∣ψ̂(2kγ)
∣∣∣2 dγ +

N∑
k=M+1

2−k
∫
E

∣∣∣ψ̂(2kγ)
∣∣∣2 dγ

=
N∑

k=M+1

2−k
∫
E

∣∣∣ψ̂(2kγ)
∣∣∣2 dγ ≤ N∑

k=M+1

2k
∫
E

∣∣∣ψ̂(2kγ)
∣∣∣2 dγ < ε.

What are the implications of such a formalized calculation? Suppose that θ

was the Fourier transform of ψ, and {ψm,n} generated an orthonormal basis for

L2(R). We know that if ψ satisfies equation 4.4, then we have that

∫ 2

1

Z∗ψ̂(γ, ω) Z̃∗ψ̂(γ, ω) dω =
∑
k∈Z

∣∣∣ψ̂(2kγ)
∣∣∣2 = 1.

Since we already know that Z∗ψ̂ is well defined and in fact L2([1, 2)2), this

does say something about the values of the alternative multiplicative Zak transform.

The following is a formal attempt at trying to find the information contained

in equation 4.5 from the multiplicative Zak transform and its alternate version. Let

q ∈ 2Z+1 and γ ∈ E. Since E is a wavelet set, γ+q /∈ E. Our periodicity conditions

in the multiplicative Zak transform say nothing about additive periodicity. However,

there exists a unique l ∈ Z and γq ∈ E for which γ + q = 2lγq. In this way we can

calculate the formal inner product

∫ 2

1

Z∗Eψ̂(γ, ω)Z̃∗Eψ̂(γ + q, ω) dω

=

∫ 2

1

(∑
k∈Z

2
k
2 ψ̂(2kγ)Φk(ω)

)(∑
m∈Z

2−
m
2 ψ̂(2m(γ + q))Φm(ω)

)
dω
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=
∑
k,m∈Z

2
k−m

2 ψ̂(2kγ)ψ̂(2m(γ + q))

∫ 2

1

Φk(ω)Φm(ω) dω =
∑
k∈Z

ψ̂(2kγ)ψ̂(2k(γ + q)).

We can also write the expression as

∫ 2

1

Z∗ψ̂(γ, ω)Z̃∗ψ̂(γ + q, ω) dω =

∫ 2

1

Z∗ψ̂(γ, ω)Z̃∗ψ̂(2lγq, ω) dω

=

∫ 2

1

Z∗ψ̂(γ, ω)2−
l
2

Φo(ω)

Φl(ω)
Z̃∗ψ̂(γq, ω) dω

using our algebraic manipulation γ + q = 2lγq and the periodicity of the multiplica-

tive Zak transform. We can take this extra term, 2−
l
2

Φo(ω)
Φl(ω)

and note that in the

case of our {Φk}, this can be rewritten as 2−
l
2

Φo(ω)
Φ−l(ω)

, which will allow us to use the

periodicity of Z∗ to write

∫ 2

1

Z∗ψ̂(γ, ω)2−
l
2

Φo(ω)

Φl(ω)
Z̃∗ψ̂(γq, ω) dω = 2−l

∫ 2

1

Z∗ψ̂(2−lγ, ω)Z̃∗ψ̂(γq, ω) dω.

4.4.3 Inversion Formula

Consider the Multiplicative E-Zak transform on the function ψ̂ ∈ L2(R̂). Note

that since the inner product on L2(R̂) is defined for Schwartz functions and since

the multiplicative E-Zak transform is an isometry onto L2(CE) then we can extend

the multiplicative E-Zak transform to act on tempered distributions. Given this

fact, for γ ∈ R̂ we have

ψ̂(γ) =

∫ ∞
−∞

ψ̂(s)δγ(s) ds =
〈
ψ̂, δγ

〉
=
〈
Z∗Eψ̂, Z

∗
Eδγ

〉
.
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Therefore, to compute the value of ψ̂(γ), it is imperative to calculate Z∗Eδγ. Note

that

(Z∗Eδγ) (t, ω) =
∑
k∈Z

2−
k
2 δγ(2

kt)Φk(ω) = 2−
m
2 δγ(2

mt)Φm(ω),

where γ ∈ 2mE. Given this we can calculate

ψ̂(γ) =
〈
Z∗Eψ̂, Z

∗
Eδγ

〉
=

∫ 2

1

∫
E

Z∗Eψ̂(t, ω)2−
m
2 δγ(2mt)Φm(ω) dt dω

= 2
m
2

∫ 2

1

Z∗Eψ̂(
γ

2m
, ω)Φm(ω) dω.

This creative formula leads to the following inversion theorem.

Theorem 12. Let F ∈ L2(CE). Define the function

θ(γ) =
∑
k∈Z

(
2−

k
2

∫ 2

1

F (2−kγ, ω)Φk(ω) dω

)
12kE(γ).

Then θ ∈ L2(R̂) and

Z∗Eθ = F a.e. (t, ω) ∈ CE.

Proof: Let θ be defined as above. Then we can write the norm

||θ||2
L2(R̂)

=

∫ ∞
−∞
|θ(γ)|2 dγ =

∑
k∈Z

∫
2kE

|θ(γ)|2 dγ

=
∑
k∈Z

∫
2kE

∣∣∣∣2− k2 ∫ 2

1

F (γ2−k, ω)Φk(ω) dω

∣∣∣∣2 dγ.
For each k ∈ Z, we substitute u = 2−kγ and obtain

=
∑
k∈Z

∫
E

∣∣∣∣∫ 2

1

F (u, ω)Φk(ω) dω

∣∣∣∣2 dγ.
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Note that for a fixed uo ∈ E, we can define

Guo(ω) =
∑
k∈Z

(∫ 2

1

F (uo, ω)Φk(ω) dω

)
Φk(ω).

Since the collection {Φk(ω)} is an orthonormal basis for the space L2([1, 2)), we

have that the norm of Guo(ω) is given by

||Guo ||2 =
∑
k∈Z

∣∣∣∣∫ 2

1

F (uo, ω)Φk(ω) dω

∣∣∣∣2 .
This sum clearly converges for each uo ∈ [1, 2) and thus the sum converges uniformly

on the interval [1, 2). But this means that

||ĝ||2 = ||F ||2L2([1,2)2),

θ ∈ L2(R̂).

Now we wish to calculate

Z∗Eθ(t, ω) =
∑
k∈Z

2
k
2 θ(2kt)Φk(ω) =

∑
k∈Z

2
k
2

(
2−

k
2

∫ 2

1

F ((2kt)2−k, s)Φk(s) ds

)
Φk(ω)

=
∑
k∈Z

(∫ 2

1

F (t, s)Φk(s) ds

)
Φk(ω) = Gt(ω) = F (t, ω)

for almost all (t, ω) ∈ CE.

Example: Consider the function F (t, ω) =
√

log2(e)
ω

on C[1,2). Inverting yields

θ(γ) = 1[1,2)(γ),

where Z∗θ(t, ω) = F (t, ω) almost everywhere on C[1,2).

Example: Now let θ be the Mexican hat function. That is, θ(γ) = γ2e−
γ2

2 . Then

we can estimate the values of |Z∗θ(t, ω)|2 on C[1,2) ∩ [1, 1.5)2 by
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Figure 4.1: Estimate of the MZT of the MHF.
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