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Failures of engineered systems can lead to significant economic and societal 

losses. To minimize the losses, reliability must be ensured throughout the system’s 

lifecycle in the presence of manufacturing variability and uncertain operational 

conditions. Many reliability-based design optimization (RBDO) techniques have been 

developed to ensure high reliability of engineered system design under manufacturing 

variability. Schedule-based maintenance, although expensive, has been a popular 

method to maintain highly reliable engineered systems under uncertain operational 

conditions.  However, so far there is no cost-effective and systematic approach to 

ensure high reliability of engineered systems throughout their lifecycles while 

accounting for both the manufacturing variability and uncertain operational 

conditions. 



  

Inspired by an intrinsic ability of systems in ecology, economics, and other fields 

that is able to proactively adjust their functioning to avoid potential system failures, 

this dissertation attempts to adaptively manage engineered system reliability during 

its lifecycle by advancing two essential and co-related research areas: system RBDO 

and prognostics and health management (PHM). System RBDO ensures high 

reliability of an engineered system in the early design stage, whereas capitalizing on 

PHM technology enables the system to proactively avoid failures in its operation 

stage. Extensive literature reviews in these areas have identified four key research 

issues: (1) how system failure modes and their interactions can be analyzed in a 

statistical sense; (2) how limited data for input manufacturing variability can be used 

for RBDO; (3) how sensor networks can be designed to effectively monitor system 

health degradation under highly uncertain operational conditions; and (4) how 

accurate and timely remaining useful lives of systems can be predicted under highly 

uncertain operational conditions. To properly address these key research issues, this 

dissertation lays out four research thrusts in the following chapters: Chapter 3 – 

Complementary Intersection Method for System Reliability Analysis, Chapter 4 – 

Bayesian Approach to RBDO, Chapter 5 – Sensing Function Design for Structural 

Health Prognostics, and Chapter 6 – A Generic Framework for Structural Health 

Prognostics.  Multiple engineering case studies are presented to demonstrate the 

feasibility and effectiveness of the proposed RBDO and PHM techniques for ensuring 

and improving the reliability of engineered systems within their lifecycles. 
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Chapter 1: Introduction 

Failure of engineered systems may cause significant economic and societal losses. 

Although today U.S. industry spends more than $200 billion each year on reliability 

and maintenance [Mobley, 2002], catastrophic unexpected failures of engineered 

systems still take place. The I-35W bridge collapse in Minneapolis, MN in 2007 

offers a good example, in which thirteen people lost their lives, more than 100 

vehicles were damaged, emergency costs totaled $8 million, and societal costs totaled 

over $50 million. Growing costs incurred as a result of system failures and 

increasingly intense competition from global markets impose a great challenge for 

design engineers, who have to develop reliable engineered systems that can be cost-

effectively operated throughout their lifecycles. 

1.1 Background and Motivation 

To ensure the reliability of engineered systems and avoid potential losses caused 

by failures, tremendous efforts have been made to design the systems with a desired 

reliability level in the presence of uncertainties such as manufacturing variability and 

uncertain operational conditions. As a result of these efforts, the probabilistic 

engineering design framework, called reliability-based design optimization (RBDO), 

has been developed to ensure high reliability of engineered system design under 

manufacturing variability. Most RBDO practices have accounted for uncertainties in 

manufacturing processes (e.g., material properties and geometric tolerance), but these 

practices very rarely account for operational conditions.  
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There are two fundamental deficiencies of RBDO when it is used as an 

engineered system design tool. First, in most engineering design practices, the amount 

of data for system uncertainties is lacking in order to precisely model them with 

statistical distributions.  This lack of data is usually due to limited resources (e.g., 

time, budget, facilities). It is extremely difficult to account for uncertainties with the 

dearth of data in the existing RBDO framework. Second, the information about 

operational uncertainties could be completely unknown when the RBDO process is 

executed. Because of these deficiencies, it is almost impossible to maintain high 

reliability of engineered systems throughout their entire lifecycle. As a result, system 

owners have to pay significant maintenance expenses. It is thus crucial to develop 

adaptively reliable (or resilient) engineered systems to prevent potential failures 

throughout their lifecycles.  

The concept of resilience comes from research in ecology, economics, 

organizational science, psychology and other fields.  Resilient systems possess an 

intrinsic ability to sense and adjust their functioning prior to or following changes and 

disturbances, so that they can continue to function during and after a disruption or 

major mishap, and in the presence of continuous stresses. The human body offers a 

good example for its capability to sense environmental temperature changes and 

make appropriate decisions to avoid potential risks due to those changes. Resilience is 

a proactive concept and looks for ways to create processes that are robust yet flexible, 

to monitor health conditions, and to use resources proactively in the face of 

disruptions or ongoing changes.  Compared with engineered systems, natural systems 

have attractive resilience features such as the ability to deal with potential threats with 
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optimally designed functionalities, and natural, inherent neural systems for sensing 

and reasoning. 

To develop an engineered system with resilience features, a new system design 

framework must be established.  This design framework should enable the design of 

reliable systems amidst the uncertainties brought about by manufacturing processes, 

and it should enable the design of intelligent sensing and health reasoning capabilities 

to proactively account for potential failures induced by uncertain operational 

conditions. Given the deficiencies of the existing RBDO methodology, there is a 

strong need for further technological advancement that enables the development of 

resilient engineered systems. On the other hand, significant technological advances in 

sensing have promoted the use of large sensor networks (SNs) to monitor structural 

system health conditions and have helped the development of prognostics and health 

management (PHM) technologies to predict system remaining useful lives (RULs). 

These advances make it possible for design engineers to develop engineered systems 

with embedded health prognostics capabilities, which enable the systems to be 

proactive against potential failures in the operational stage. Despite the tremendous 

advances in sensing and structural health prognostics, technical approaches have been 

application-specific. This necessitates the development of a generic PHM for resilient 

engineered system design, which is the objective of this dissertation. 

Technical developments in both system RBDO and PHM will facilitate the 

establishment of a new resilient engineered system design framework. This 

framework will produce adaptively reliable (or resilient) engineered systems in the 

presence of uncertain operational conditions. It is expected that a system designed 
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under this framework will be in the presence of manufacturing variability and 

uncertain operational conditions.   

1.2 Research Scope and Objectives 

The main objective of this research is to advance two essential and co-related 

research areas for a resilient engineered system design: system RBDO and PHM. 

System RBDO will ensure high reliability of engineered systems early in their 

lifecycles, whereas capitalizing on PHM technology at their early design stage can 

transform passively reliable (or vulnerable) systems into adaptively reliable (or 

resilient) systems while considerably reducing their lifecycle cost.  This design 

framework will therefore shift the design paradigm from reliability- to resilience-

driven system design.  

To achieve this objective, four key research challenges must be carefully 

addressed: (1) how system failure modes and their interactions can be analyzed in a 

statistical sense; (2) how limited data for input manufacturing variability can be used 

for RBDO; (3) how sensor networks can be designed to effectively monitor system 

health degradation under highly uncertain operational conditions; and (4) how 

accurate and timely remaining useful lives of systems can be predicted under highly 

uncertain operational conditions. To make an engineered system resilient, system 

reliability first needs to be ensured during the design and manufacturing stage. Thus, 

technical developments in the system RBDO area focus on producing a reliable 

engineered system considering multiple system failure modes and interactions, 

manufacturing variability, and uncertain operational conditions.  Research questions 

(1) and (2) are thus addressed through system RBDO. As an engineered system enters 
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its operational stage from the design and manufacturing stage, it could be vulnerable 

due to uncertain operational conditions as well as the system performance 

degradation. Thus, technical developments in the system PHM area focus on 

designing an engineered system to be adaptively reliable and proactive to system 

failures during the operational stage through monitoring of the system performance 

degradation and predicting the system’s remaining useful life. The third and fourth 

research questions in this dissertation are thus addressed through system PHM.  

The scope of the work in this dissertation is therefore to develop the following 

research solutions to address the challenges discussed above:   

Research Solution 1: Complementary intersection method (CIM) for system 

reliability analysis: 

The CIM presented in Chapter 3 enables system reliability prediction regardless 

of system structures (series, parallel, and mixed systems). The CIM expresses the 

system reliability in terms of the probabilities of the innovatively defined CI-

events based on the proposed probability decomposition theory. This theory 

allows the use of advanced reliability analysis methods for evaluating the 

probabilities of the CI-events. The CIM has a generalized system reliability 

analysis framework, which employs a new System Structure matrix (SS-matrix) 

and the Binary Decision Diagram (BDD) technique. The SS-matrix is used to 

present any system structure in a comprehensive matrix form. Then the BDD 

technique, together with the SS-matrix, automates the process to identify the 

system’s mutually exclusive path sets, of which each path set is a series system.  

Research Solution 2: Bayesian approach to RBDO: 
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To address one of the deficiencies of the RBDO, Bayesian inference is integrated 

with RBDO, referred to as Bayesian RBDO. Given the dearth of uncertainty data, 

reliability is modeled with a beta distribution based on Bayesian binomial 

inference, and a Bayesian reliability measure is defined based on a user-defined 

confidence level. With the defined Bayesian reliability measure, Bayesian RBDO 

can be generally used for engineering system design in the presence of both 

aleatory1 and epistemic2 uncertainties. 

Research Solution 3: Sensing Function Design for Structural Health Prognostics: 

To optimally allocate sensing units on the structural systems for monitoring 

system degradation and making the systems resilient against potential failures, a 

generic SN design framework is developed using a novel detectability measure. 

The detectability measure is defined in a probabilistic manner to quantify the 

performance of a given SN as evaluated by the detectability analysis. The generic 

SN design framework is formulated as a mixed-integer nonlinear programming 

problem using the detectability measure. Heuristic algorithms, such as the genetic 

algorithm (GA), are employed to solve the SN design optimization problem. This 

design framework can be used for designing a cost-effective SN for structural 

health monitoring and prognostics while achieving a desired high detectability 

level. 

Research Solution 4: A Generic Probabilistic Health Prognostics Framework: 

                                                
1 Aleatory uncertainty, also referred to as irreducible, objective, or stochastic uncertainty, describes the 
inherent variability associated with a physical system or environment. 
2 Epistemic uncertainty can be classified as subjective and reducible uncertainty due to the lack of data 
or knowledge about a quantity [Helton et al. 2008]. 
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The generic framework presented in this dissertation enables structural health 

prognostics with input sensory signals for any type of structural system. This 

generic framework is composed of four core elements: (i) a generic health index 

system with a physics health index (PHI) and a virtual health index (VHI), (ii) a 

generic offline learning scheme using the sparse Bayesian learning (SBL) 

technique, (iii) a generic online prediction scheme using similarity-based 

interpolation (SBI), and (iv) an uncertainty propagation map for prognostic 

uncertainty management. The VHI enables the use of heterogeneous sensory 

signals; the sparseness feature, employing only a few neighboring kernel 

functions, enables the real-time prediction of remaining useful lives (RULs) 

regardless of data size; the SBI predicts the RULs with background health 

knowledge obtained under uncertain manufacturing and operational conditions; 

and the uncertainty propagation map enables the predicted RULs to be loaded 

with their statistical characteristics.  

1.3 Dissertation Overview 

The dissertation is organized as follows. Chapter 2 reviews the current state of 

knowledge on RBDO and PHM. Chapter 3 presents the definition of a 

complementary intersection (CI) event, the probability decomposition theorem, and 

the complementary intersection method based on this theorem for system reliability 

analysis. The unified framework for system reliability analysis is also discussed. 

Chapter 4 proposes a Bayesian reliability measure when data for uncertainties are 

lacking. Subsequently, this Bayesian approach is integrated with RBDO, referred to 

as Bayesian RBDO. In Chapter 5, a new sensor network design framework for PHM 
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is discussed to maximize the degree of structural health detectability. Chapter 6 

presents a generic framework for structural health prognostics.  The framework has 

four essential elements: a generic health index system, a generic offline training 

scheme, an online prediction scheme, and generic prognostic uncertainty 

management. Finally, Chapter 7 summarizes the dissertation and its contributions to 

the field and recommends future work.  
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Chapter 2: Literature Review 

This chapter provides the related state of knowledge of the research topics within 

the scope of this dissertation. The review is presented in the following four sections: 

Section 2.1 presents advanced methods for reliability analysis, Section 2.2 presents 

advanced methods for system reliability-based design optimization, Section 2.3 

presents the sensor network design literatures and finally Section 2.4 presents the 

literature regarding health prognostics.  

2.1 Reliability Analysis 

An engineered system generally consists of numerous failure modes.  Before the 

system is analyzed, all individual failure modes and their coupled effects must be 

carefully analyzed.  All engineering (say, mechanical) parts in a system are designed 

to fulfill multiple missions.  A failure is thus defined as a non-fulfillment of one of 

the missions.  Each failure mode has a corresponding limit state, which separates the 

design space into failure and safe regions.  The probability of failure, Pf, is denoted as  

 ( ( ) 0)
f

P P G= >X  (2.1)  

where G(X) is the performance function and X is the random vector.  The limit-state 

is denoted by the equation G(X) = 0.  An exact solution of Pf can be obtained by the 

multi-dimensional integration of the joint Probability Density Function (PDF), f X(x), 

over the failure domain, G(X) > 0, which is denoted as 

 
( )

( )
0

f
G X

P f d
>

= ∫ ∫ X x x⋯  (2.2) 



 

 10 
 

When multiple failure modes are considered for one system, the probability of the 

system failure can be similarly written as a multi-dimensional integration of the joint 

PDF over the system failure domain, Ω, as 

 
( )fs

P f d
Ω

= ∫ ∫ X
x x⋯

 
(2.3) 

It is very difficult to conduct a multi-dimensional integration over the implicit failure 

domain in Eqs.(2.2) and (2.3).  Therefore, different numerical approaches have been 

developed to evaluate the probability of the failure and carry out the reliability 

analysis. This section reviews the state of the art techniques for component reliability 

analysis and system reliability analysis.   

2.1.1 Component Reliability Analysis 

This subsection provides a review of existing reliability analysis methods.  A 

common challenge in probability analysis is a multidimensional integration to 

quantify probabilistic nature of system responses (e.g., fatigue life, corrosion, and 

injury metrics) in various engineering applications (e.g., vehicle, airplane, and 

electronics). Neither analytical multi-dimensional integration nor direct numerical 

integration is possible for large-scale engineering applications. Other than those 

approaches, existing approximate methods for probability analysis can be categorized 

into five groups: 1) sampling method; 2) expansion method; 3) the most probable 

point (MPP)-based method; 4) response surface approximate method; and 5) 

approximate integration method.  

Sampling method: The sampling method is the most comprehensive but expensive 

method to use for estimating statistical moments, reliability, and quality of system 

responses. Monte Carlo Simulation (MCS) [Varghese et al. 1996; Lin et al. 1997] is 
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the most widely used sampling method, but demands thousands of computational 

analyses (e.g., finite element analysis (FEA), crash analysis, etc.). For reliability 

analysis, MCS provides a reliability estimation of p with a deviation of σp �

���1 � ��/	  where N is the total number of MCS samples and the reliability 

estimated by MCS can be reported with a confidence interval of [p-3σp, p+3σp]. To 

relieve the computational burden, other sampling methods have been developed, such 

as quasi-MCS [Niederreiter and Spanier 2000; Sobol 1998), adaptive importance 

sampling [Engelund and Rackwitz 1993; Melchers 1989; Bucher 1988; Wu 1994], 

directional sampling [Bjerager 1988], etc. Nevertheless, sampling methods are 

considerably expensive. Thus, it is often used for verification of probability analysis 

when alternative methods are used. 

Expansion method:  The idea of the expansion method is to estimate statistical 

moments of system responses with a small perturbation to simulate input uncertainty. 

This expansion method includes Taylor expansion [Jung and Lee 2002], perturbation 

method [Kleiber and Hien 1992; Rahman and Rao 2001], Neumann expansion 

method [Yamazaki and Shinozuka 1988], and polynomial chaos expansion [Kim, et 

al. 2006; Wei et al. 2008] etc. Taylor expansion and perturbation methods require 

high-order partial sensitivities to maintain good accuracy. The Neumann expansion 

method employs Neumann series expansion of the inverse of random matrices, which 

requires an enormous amount of computational effort. Lee and Chen provided a 

comparative study of uncertainty propagation methods based on their performances 

for black-box-type problems [Lee and Chen 2008]. In summary, all expansion 

methods could become computationally inefficient or inaccurate when the number or 
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the degree of input uncertainty is high. Moreover, as it requires high-order partial 

sensitivities of system responses, it may not be practical for large-scale engineering 

applications. 

MPP-based method: The MPP-based method has been widely used to perform 

reliability analysis. Rotationally invariant reliability index is introduced through a 

nonhomogeneous transformation [Hasofer and Lind 1974]. Probability analysis can 

be conducted in two different ways: performance level (G-level) [Hasofer and Lind 

1974] and probability level (P-level) [Wu 1990; Youn et al. 2004; Du and Chen 2002; 

Du 2008] methods. It has been found that the P-level method is more efficient and 

stable than the G-level method [Youn et al. 2004]. However, the MPP-based method 

requires the first-order sensitivities of system responses. Moreover, it could generate 

relatively large error caused by some nonlinearity of system response and is not 

suitable for multiple MPP problems as the MPP-based method estimates the 

reliability value based on the MPP found during the MPP search and all other MPPs 

will be ignored.  

Response surface method:  The response surface method (Myers and Montgomery 

1995) is often used with MCS to perform reliability analysis. A true system response 

is approximated based on limited design of experiment (DOE) samples and a 

response surface approximation method. Once the response surface is constructed, the 

MCS can be used for reliability analysis without extra expense except for the DOE 

samples. In the literature, different approaches [Isukapalli and Roy 1998; Zhao and 

Ono 2001; Youn and Choi 2004; Lee and Kwak 2006; Gavin and Yau 2008] have 

been developed to approximate stochastic response surfaces. However, the accuracy 
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of this method greatly depends on the accuracy of response surface. Besides, the 

response surface method is not suitable for high-dimensional problems because of a 

curse of dimensionality.  

The approximate integration method:  The approximate integration method is a direct 

approach to estimate the PDF (or statistical moments) through numerical integration. 

Numerical integration can be done in the input uncertainty domain [Rahman and Xu 

2004; Seo and Kwak 2003] or the output uncertainty domain [Youn et al. 2005a]. 

Recently, the dimension reduction (DR) method [Rahman and Xu 2004; Xu and 

Rahman 2004] and the Eigenvector Dimension Reduction (EDR) [Youn et al. 2008b] 

method has been proposed and is known to be a sensitivity free method. 

The EDR method calculates the statistical moments (or PDF) of performance 

responses using an additive decomposition scheme [Rahman and Xu 2004] that 

converts a multi-dimensional integration into multiple one-dimensional integrations 

and then uncertainty of performance responses can be evaluated through these one-

dimensional numerical integrations. To effectively calculate one dimensional 

integrations, the EDR method incorporates three technical components: (1) 

eigenvector sampling, (2) one-dimensional response approximations for efficient and 

accurate numerical integration and (3) a stabilized Pearson system for PDF generation 

[Johnson et al. 1995]. The EDR method has been proved to be quite efficient and 

accurate for engineering application with high dimensionality and nonlinearity 

compared with other methods [Youn et al. 2008b; Youn and Wang 2008]. 

A fairly amount of numerical methods have been developed to investigate the 

uncertainty propagation and reliability analysis for the engineering 
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components/systems subject to various engineering uncertainties. However, all of 

these methods are based on an assumption that the statistical information regarding 

the input uncertainties are completely known and given as their PDFs or CDFs. This 

is most likely not true for practical engineering applications. Typically these 

uncertainties are represented as limited amount of data coming from fielding testing, 

laboratory experiments, and maintenance records and so on. These data may evolve 

over the time through several system lifecycles. How to quantify the system input 

uncertainties based on the limited and incomplete data sets and how to update them 

with these evolving data sets are the primary challenges before the above discussed 

methods can actually be used for the practical engineering design and analysis 

problems. 

2.1.2 System Reliability Analysis 

Compared with tremendous advances in component reliability analysis, the 

research in system reliability analysis has been stagnant, mainly due to the technical 

difficulties in formulating system reliability explicitly for multiple system failure 

modes and their complicated coupling effects, as well as the computational efficiency 

and accuracy. Consequently, system reliability analysis has been dominated by 

reliability bounds methods. This subsection provides a review of existing system 

reliability bounds methods: first order bound method, second order bound method and 

the linear programming bound method. 

First-order bound method: The first-order bound (FOB) method for serial system 

reliability and parallel system reliability were proposed in 1960’s and 1980’s by Ang 

and other researchers [Haldar and Mahadevan 2000; Ramachandran 2004], as shown 
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below. In basic, these methods give an upper system reliability bound by assuming 

that all system failure events are perfectly dependent; similarly a lower system 

reliability bound is obtained by assuming that all system failure events are mutually 

exclusive.  The application of this first-order bound method is limited since they 

usually give quite wide bounds.   

Second-order bound method: Ditlevsen et al. proposed the most widely used second-

order bound (SOB) method for system reliability, which gives much tighter bounds 

than the first-order bounds [Ditlevsen and Bjerager 1984]. Other equivalent forms of 

Ditlevsen’s bounds are given by other researchers. [Thoft-Christensen and Murotsu 

1986; Karamchandani 1987; Xiao and Mahadevan 1998; Ramachandran 2004]. 

Second-order system reliability bounds or equivalent forms have been used for the 

system reliability analysis and system reliability based design optimization for many 

engineering system applications [Mahadevan and Raghothamachar 2000; Royset and 

Kiureghian 2001; Liang et al. 2007; McDonald and Mahadevan 2008].   

Linear programming bound method: Song et al. formulated system reliability analysis 

as a linear programming (LP) problem, referred to as the LP bound method [Song and 

Der Kiureghian 2003; Der Kiureghian and Song 2008].  The LP bounds method treats 

the system reliability as the objective function and obtains the lower and upper bound 

through minimizing and maximizing the objective function accordingly. The LP 

bounds method is able to calculate optimal bounds for system reliability with the 

component reliabilities and/or probabilities of joint failure events as provided input 

information. However, it is known that the LP bounds method can suffer when an 

approximate LP algorithm is used for over-constrained problems. Besides, it is 
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extremely sensitive to accuracy of the given input information, which is the 

probabilities for the first-, second-, or high-order joint safety events.  To assure high 

accuracy of the LP bounds method, the input probabilities must be given very 

accurately and the problem must not be over-constrained.   

Besides the system reliability bound methods, one of the popular approaches is 

the multimodal adaptive importance sampling (AIS) method, which is found to be 

satisfactory for the system reliability analysis of large structures [Mahadevan and 

Raghothamachar 2000; Zou and Mahadevan 2006a, 2006b]. The integration of 

surrogate model techniques with MCS–based methods can be an alternative approach 

to system reliability prediction as well [Zhou et al. 2000]. In this approach, the 

surrogate model can be constructed for multiple limit state functions to represent the 

joint failure region. This approach is quite practical and highly valued, but accuracy 

of the method depends on the fidelity of the surrogate model and the number of 

random input variables.  

Although SOB method and LP bound method can give fairly narrow system 

reliability bounds generally assuming that the system input uncertainty information 

are given precisely, evaluation of these bounds will suffer from numerical errors, 

since most of numerical methods cannot evaluate probabilities of second or higher 

order joint events effectively considering implicit coupling effects between different 

system failure modes. Besides, these bounds methods cannot provide continuous 

system reliability with respect to system input variables. In order to carry out system 

RBDO using these bounds methods, response surfaces have to be created for 

reliability bounds. How to explicitly formulate system reliability and how to 



 

 17 
 

efficiently evaluate system reliability are two big challenges for system reliability 

analysis. 

2.2 Reliability-based Design Optimization 

Compared with deterministic design optimization, the RBDO model which 

employs the probabilistic approaches in design optimization enables the incorporation 

of available uncertainty information into the design process and produces reliable 

designs of engineered systems.  Although the RBDO model based on the probabilistic 

approaches enables designers to achieve a reliable design, however, it is 

computationally significantly more expensive compared to deterministic approaches.  

Reliability is of critical importance in product and process design [Hazelrigg 

1998]. Hence in the literature, various methods [Youn et al. 2005b; Chen et al. 1997; 

Du and Chen 2004, Mcdonald and Mahadevan 2008] have been developed to 

systematically treat uncertainties in engineering analysis and carry out RBDO. In 

RBDO, a design optimization strategy has been advanced to improve computational 

efficiency and stability [Wu et al. 2001; Wang and Kodiyalam 2002; Youn et al. 

2005c]. Additionally, new methods for reliability assessment have been proposed to 

enhance numerical efficiency and stability [Du et al. 2004; Rahman and Xu 2004a; 

Youn et al. 2006; Du 2008; Lee et al. 2008, 2009; Kim and Choi 2008; Youn and Xi 

2009; Noh et al. 2009].  

Although advanced methods have been developed to improve the numerical 

efficiency and stability, for the conventional RBDO framework itself all uncertainties 

regarding the system are required to be characterized as random variables with certain 

statistical distributions. There is still a big gap between the practical engineering 
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design applications and the theoretical RBDO framework, since most of engineering 

design problems are face the situation of lack of data, especially when new products 

are to be designed, new technologies are to be used. When available data is 

insufficient, the classical probability theory may be improper to model uncertainties 

because it may lead to a result with a relatively low confidence. To deal with 

insufficient data sets, different methods have been developed for reliability analysis 

and design optimization. Methods are based on various non-deterministic theories: 

the possibility theory [Utkin and Gurov 1996; Bai and Asgarpoor 2004; Du et al. 

2006; Zhou and Mourelatos 2008; Youn et al. 2008a; Herrmann 2009], the evidence 

theory [Sentz and Ferson 2002; Bae et al. 2003; Helton et al. 2006], and the Bayes’ 

theory [Coolen and Newby 1994; Huang et al. 2006; Youn and Wang 2008a]. 

Although different methods have been developed to deal with subjective and 

insufficient data sets, evolving data sets have little been considered in these methods.  

Besides the RBDO model, to ensure the reliability of the product system, diverse 

design methodologies have been developed, such as possibility-based design 

optimization (PBDO) [Choi et al. 2006; De and Choi 2008], and evidence-based 

design optimization (EBDO) [Mourelatos and Zhou 2006]. Some recent publications 

[Allen and Choi 2009; Huang and Zhang 2009] delivered rigorous studies to deal 

with all kinds of uncertainty (e.g., aleatory/epistemic, discrete/continuous, statistical 

/fuzzy) for system analysis and design. Such research activities have focused on how 

to assess reliability effectively by simply assuming non-deterministic models of 

random system inputs without engaging raw data [Youn et al. 2003; Du and Chen 

2004; Youn et al. 2008b]. Among these design methodologies, Bayesian approaches 
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have been widely used in many engineering and science fields where data is 

progressively accumulated. For example, Bayesian reliability analysis has been 

applied to series systems of Binomial (safe or fail) subsystems and components 

[Fickas et al. 1988], to reliability assessment of power systems [Yu et al. 1999], to the 

effectiveness of reliability growth testing [Quigley and Walls 1999], to robust 

tolerance control and parameter design in the manufacturing process [Rajagopal 

2004], and to input uncertainty modeling [Chung et al. 2004]. Two advanced 

Bayesian (maximum likelihood and parsimony) methods have been compared for 

molecular biology applications [Merl et al. 2005]. Bayesian updating has been 

implemented using Markov Chain Monte Carlo simulation for structural models and 

reliability assessment [Beck and Au 2002]. Dynamic object oriented Bayesian 

networks have been proposed for complex system reliability modeling [Weber and 

Jouffe 2006]. Bayesian approach has also been investigated for the reliability 

modeling [Zhang and Mahadevan 2000], and for reliability based design with 

incomplete information to achieve Pareto trade-off designs [Gunawan and 

Papalambros, 2006]. 

As stated in subsection 2.1.1, current numerical methods for probability analysis 

are based on an assumption that the statistical information regarding the input 

uncertainties are precisely known and given by their PDFs or CDFs. Consequently, 

RBDO requires full statistic information of system uncertainty inputs since it relies on 

those numerical methods for probability analysis at each RBDO design iteration. 

However, most of practical engineering design problems face a common situation of 

lack of data for system uncertainty inputs. Moreover, the limited data may evolve 
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over the time through several system lifecycles and might be subjective such as data 

obtained from expert opinions or customer surveys. The challenge is how to 

systematically perform RBDO for an engineered system design with insufficient, 

subjective and evolving data set. 

2.3 Sensor Network Design 

Significant technological advances in sensing and communication promote the 

use of large sensor networks (SNs) to monitor structural systems, identify damages, 

and quantify damage levels. Prognostics techniques take full advantage of these 

advances and strive to enhance the safety and prolong the service lives of structural 

systems through the means of in situ data acquisition, data feature extraction and 

health diagnostics/prognostics to appropriately assess their health conditions and 

predict remaining useful lives (RULs). Through years of research efforts, structural 

health monitoring systems based on different types of sensors such as fiber optics, 

piezoelectric elements, and MEMS sensors have been developed for a wide variety of 

potential applications ranging from the civil, mechanical, and aerospace industries to 

automotive industry [Li et al. 2004; Zhao et al. 2007; Tanner et al. 2003; Ling et al., 

2009; Bocca et al. 2009]. Despite the worldwide attention and significant advances in 

maturing the technologies for practical implementation, primary challenges still 

remain in sensing technologies to enhance sensitivity, repeatability, robustness and 

reduce limited power consumptions of sensors [Chang and Markmiller 2006]. It is 

clear that successful accomplishment of a structural health prognostic mission relies 

extremely on an effectively designed SN.  
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Most of the research activities for SN design in the past decade targeted on 

maximizing the coverage and minimizing the power consumption of SNs [Buczak  et 

al. 2001; Chakrabarty and Chiu 2002] for various applications that require the data 

acquisition. Several methods have been developed to enhance the detection efficiency 

and minimize the uncertainty in decision-making based on data acquired from the 

SNs [Field and Grogoriu 2006]. The optimum SN was introduced as the sensor 

configuration that can achieve the target probability of detection. Guratzsch and 

Mahadevan also defined the optimum SN for structural health monitoring under 

uncertainties as the sensor configuration that can maximize the probability of damage 

detection [Guratzsch and Mahadevan 2006]. Furthermore, Li et al. obtained a vector 

of sensor placement indices based on the weighted components of the mode shape 

matrix corresponding to the sensor position [Li et al, 2006]. Ntotsios et al. presented 

another approach that addresses the stochastic nature of the sensor measurements 

[Ntotsios et al. 2006]. Azarbayejani et al employed an artificial neural network 

approach to identify the optimum sensor placement for a bridge case study 

[Azarbayejani et al. 2008]. The sensor allocation problem is handled within the 

context of uncertainty and information entropy. A Bayesian method is used to 

quantify damage in the structure based on the change in modal information. The 

information entropy is used to compute a scalar measure of uncertainty in the 

structural damage features. A heuristic sequential sensor placement algorithm is then 

used to predict the optimal sensor configuration. Flynn and Todd also employed a 

Bayesian method for optimal sensor placement with active sensing [Flynn and Todd 

2010]. Research work [Ntotsios et al. 2006; Udwadia 1994; Heredia-Zavoni and 
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Esteva 1998] showed the importance of addressing the issue of uncertainty in 

handling the optimal sensor configuration. Other researchers [Papadimitriou et al. 

2000; Kirkgaard and Brincker 1999] also reported the use of the information entropy 

and information functions such as the Fisher information to formulate the objective 

function for optimal sensor allocations. All of the aforementioned approaches showed 

the significance of considering the uncertainties introduced by sensor units, structure 

systems as well as the operation conditions in the SN design problem and presented 

unique methods to deal with uncertainties in the damage detection. Most of these 

methods were developed for the problem of distributing a finite set of sensors to 

detect a specific type of structural damage and their applications are tied to and 

restricted by the type of failure mechanisms under consideration.   

Given the significance of a SN for system health monitoring and prognostics, and 

years of research efforts, the design of SNs nonetheless becomes tied to the structural 

damage features and the development of a generic design methodology is still a 

hurdle to overcome. The challenge problem is how sensor networks can be designed 

to effectively monitor system health degradation under highly uncertain operational 

conditions. 

2.4 Prognostics and Health Management 

Awareness of the health condition of engineered systems in real time is of great 

importance to critical decision-making processes such as maintenance and logistics. 

Research on health prognosis which interprets data acquired by distributed sensor 

networks, and utilizes these data streams in making critical decisions provides 

significant advancements across a wide range of applications. In the literature, health 
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prognostics has been implemented using approaches that are either model-based or 

data-driven [Pecht 2008;  Pecht and Jaai 2010]. The model-based approaches takes 

into account the physical processes and interactions between components in the 

system, whereas the data-driven approaches use statistical pattern recognition and 

machine-learning techniques to detect changes in parameter data, thereby enabling 

diagnostic and prognostic measures to be calculated.  

Model-based prognostic approaches attempt to incorporate physical 

understanding of the system degradation into the estimation of remaining useful life 

(RUL). Different stochastic degradation models have been investigated in the 

literature, to model various degradation phenomena of systems or components 

[Doksum and Hoyland 1992; Lu and Meeker 1993; Boulanger and Escobar 1994; Lu 

1995; Tseng et al. 1995; Hamada 1995, Chiao and Hamada 1996; Meeker et al. 1998; 

Whitmore et al. 1998; Bagdonavicius and Nikulin 2000]. Dowling, Meeker and 

Escobar used convex and concave degradation models to study the growth of fatigue 

cracks and the degradation of printed circuit boards [Dowling 1993; Meeker and 

Escobar 1998]. Carey and Koenig used similar models to describe degradation of 

electronic components [Carey and Koenig 1991]. Lu and Meeker developed an 

exponential pattern model to study a the life distribution over a population of 

components [Lu and Meeker 1993], and similar exponential pattern degradation has 

been applied with stochastic process of modeling random error term to study the 

residual life of single operating device of ball bearings [Gebraeel et al. 2005]. Model-

based approach to prognostics was demonstrated for lithium ion batteries [Saha et al. 

2009] where a lumped parameter model was used along with extended Kalman filter 
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and particle filter algorithms to estimate RUL. Model-based prognostics methods 

have also been developed and applied for power semiconductors [Goodman 2001; 

Patil et al. 2009], digital electronics components and systems [Kalgren et al. 2007], 

switched-mode power supplies [Kulkami et al. 2009]. 

Although various system degradation models have been developed and used for 

the prognostics purpose, generally developing an accurate model is prohibitively 

expensive when the understanding of first principles of system operation is not 

comprehensive or when the system is sufficiently complex. In these circumstances, 

the data driven prognostics approaches are appropriate. Data-driven techniques are 

used to learn the system state of health and the trends or patterns of system 

degradation from data, and intelligently carry out life predictions. In these 

approaches, in situ monitoring of environmental and operational loads and system 

parameters through distributed sensor networks or inspections is needed. The data 

collected is analyzed using a variety of machine learning techniques depending on the 

type of data available. Many of the existing approaches to data-driven prognosis have 

used artificial neural networks to model the systems [Chinnam 1999; Brotherton et al. 

2000; Wang and Vachtsevanos 2001; Gebraeel et al. 2004]. Besides, the Bayesian 

Belief Network has also been used as an approach for diagnosis and prognosis of 

aircraft avionics [Byington et al. 2003]. Symbolic time series analysis and 

Mahalanobis distance measure were used for feature extraction for health prognostics 

of notebook computers [Kumar and Pecht 2007; Kumar 2009]. Pattern recognition 

algorithms and statistical reasoning techniques for early fault detection have been 

applied for computer servers [Lopez 2007; Urmanov 2007]. Applications of data 
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driven prognostics approaches can also be found in the literatures [Keller et al. 2006; 

Saha et al. 2009; Gebraeel and Hernandez 2009]; Compared with model-based 

prognostics approaches, the data-driven approaches require less understanding of the 

system but more training data and eventually are computationally more expensive.  

Despite the tremendous advances on health diagnostics and prognostics for 

engineered systems, techniques approaches and methodologies become application-

specific. Difficulties in developing an application-generic methodology mostly result 

from heterogeneity of sensory data, a wide range of data acquisition frequency and 

size, and different characteristics in uncertain manufacturing and operation 

conditions. Developing a general probabilistic framework of structural health 

prognostics and uncertainty management for resilient engineered system design 

requires the development of four core elements: (i) a generic health measure for 

system health condition quantification; (ii) a generic offline learning scheme to 

extract system health characteristics from sensory signals and built up a background 

health knowledge; (iii) a generic online prediction scheme for remaining useful life 

prediction; and (iv) an uncertainty quantification and management scheme to manage 

uncertainties involved in the health prognostic process and improve the prediction 

confidence.  

For a generally applicable prognostics framework, extracting health relevant 

information from heterogeneous sensory signals to build a generic health measure is 

the first essential step. Different signal processing methods have been studied and 

employed to find out a set of the most important physical signals and construct 

system health indexes. The methods include regression and classification based 
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methods [Harrell et al. 2006; Yan and Lee 2005], principle component analysis 

[Sharmin et al. 2008; Mina and Verde 2005], time domain analysis, frequency 

domain analysis, wavelet analysis [Wang and Vachtsevanos 2001; Liu et al. 2008], 

and autoregressive moving average methods [Pandit and Wu 1993]. The health index 

can use dominant physical signals as a direct health metric is referred as the physics 

health index, for example, impedance and open circuit voltage for battery health 

management. With the growing complexity of engineered systems and embedded 

sensor networks, the mapping of a multitude of heterogeneous sensory signals to a 

dominant health index is getting more and more difficult.  

After extracting health relevant information from sensory signal and constructing 

system health indexes, system degradation characterization is another crucial task for 

structural health prognostics. Different machine learning techniques have been used 

for this purposes, such as support vector machine [Sotiris and Pecht, 2007], artificial 

neural networks [Huang et al. 2007; Heimes 2008; Byington et al. 2004; Shao and 

Nezu 2000], Bayesian modeling [Gebraeel et al. 2005], Gaussian process regression 

[Rasmussen and Williams 2006; Srivastava and Das 2009]. For the prognostic 

technique to be real-time applicable, the efficiency is one of the key factors to be 

considered. Besides the efficiency, the capability of handling uncertainties is another 

concern due to the uncertain nature of sensory signals in most engineering problems. 

The sparse Bayes learning scheme, for example the relevance vector machine (RVM) 

[Tipping 2001], is not only statistically loaded, but also has a great sparseness feature 

to employ only a few neighboring kernel functions. This sparseness feature of the 

background health knowledge will eventually speed up online data processing and 
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make possible a real-time RUL prediction, especially when sensory data are massive 

and heterogeneous for a set of physical components. 

After the offline learning of the system degradation behavior, the RUL can then 

be predicted by comparing the real-time sensory signals with the background health 

knowledge, with the help of appropriate life prediction techniques, such as artificial 

neural networks, neuro-fuzzy approach [Chinnam and Baruah 2004], Bayesian 

updating approaches [Youn and Wang 2008b], filtering techniques [Qiu et al. 2008; 

Orchard et al. 2008; Saha et al. 2007], and the approach based on the similarities 

[Wang et al. 2008]. One of the grand challenges in structural health prediction is 

managing various uncertainties in RUL prediction. The uncertainties mainly come 

from manufacturing variability over a population of physical artifacts, uncertain 

nature in operational conditions, and sensor noise. To properly manage the 

uncertainty, it is important to build statistically rich background health knowledge (or 

curves) and use an optimal combination of the health curves for accurate RUL 

prediction. 

 In summary, current health prognostics methodologies using model-based or 

data-driven prognostics approaches are case-sensitive with strictly limited 

applications. Developing a generic structural health prognostics framework and 

corresponding technical solutions that can be generally applicable for the general 

purpose of resilient engineered system development remains to be a big challenge. 
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Chapter 3: Complementary Intersection Method for System 

Reliability Analysis 

System reliability prediction is significantly important in aerospace, mechanical, 

and civil engineering fields, its technical development will have an immediate and 

major impact on complex engineered system designs. Despite tremendous advances 

in component reliability analysis, the research in system reliability analysis has been 

stagnant and dominated by system reliability bound methods as discussed in Chapter 

2.  This chapter presents the research solution to the first challenging question which 

is how multiple system failure modes and their interactions can be effectively 

analyzed in a statistical sense for system reliability analysis. 

The work presented in this chapter aims at developing a pioneering method for 

system reliability analysis by which system reliability can be analyzed within a 

generic framework regardless the system structures (series, parallel and mixed 

systems). Section 3.1 proposes the first-ever defined event, referred to as the 

complementary intersection (CI) event, which facilitates the decomposition of the 

probability of the joint safety event. Section 3.2 presents the general formula for the 

decomposition of the probability of joint safety events.  As a numerical showcase, the 

probability of the second-order joint safety event will be introduced and decomposed 

into the probabilities of the CI events.  In order to deal with large-scale problems such 

as a system with a large number of components and system failure modes, Section 3.3 

introduces the CI-matrix that is composed of the component reliabilities and the 

probabilities of CI events.  Section 3.4 presents the system reliability analysis using 
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complementary intersection method (CIM) for series, parallel and mixed systems. As 

a series system or a parallel system can be viewed as a special case of a mixed 

system, Section 3.5 introduces a generalized CIM framework for system reliability 

analysis regardless of the system configurations. Section 3.6 provides four 

engineering case studies to demonstrate the developed CIM methodology and Section 

3.7 summarizes the work presented in this chapter. 

3.1 Definition of CI Event 

Let an Nth-order CI event denote E12…N ≡ {X | G1⋅G2 ⋅ …⋅GN ≤ 0}, where the 

component safety ( or 1st-order CI ) event is defined as Ei = { X | Gi ≤ 0, i = 1, 2, …, 

N}. The defined Nth-order CI event is composed of distinct intersections of 

component events Ei and their complements Ēi where i = 1,…, N. For example, for 

the second order CI event Eij, it is composed of two distinct intersection events, Ē1E2 

and E1Ē2. These two events are the intersections of E1 (or E2) and the complementary 

event of E2 (or E1). Thus, we refer to the defined event as the Complementary 

Intersection (CI) Event. 

Based on the definition of the CI event, the second-order CI event can be denoted 

as Eij ≡ {X | Gi ⋅ Gj ≤ 0}. The CI event can be further expressed as Eij = Ēi Ej ∪ Ei Ēj 

where the component failure events are defined as Ēi = {X | Gi > 0} , Ēj = {X | Gj > 

0}.  The event Eij is composed of two events: EiĒj = {X | Gi ≤ 0 ∩ Gj > 0} and ĒiEj = 

{X | Gi > 0 ∩ Gj ≤ 0}.  Since the events, ĒiEj and EiĒj, are disjoint, the probability of 

the CI event Eij can be expressed as  
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Figure 3-1 illustrates the CI event E12 in the two shaded domains, E12 = {(X1, X2) | 

G1 ⋅ G2 ≤ 0}.  Two component safety events are defined as E1 = {(X1, X2) | G1 ≤ 0} 

and E2 = {(X1, X2) | G2 ≤ 0}, where X1 and X2 are random variables (e.g., random 

manufacturing tolerances and operational conditions). 
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Figure 3-1: Definition of the second order CI event 

3.2 Probability Decomposition Theorem  

Theorem: Decomposition of the Probability of an Nth-Order Joint Safety Event 

With the above definition of the CI event, the probability of an Nth-order joint 

safety event can be decomposed into the probabilities of the CI events as 
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(3.2) 

The detail derivation of Eq. (3.2) can be found in Appendix A as well as in [Youn 

and Wang, 2009].  It is noted that each CI event has its own limit state function, 

which enables the use of any reliability analysis methods. In general, higher-order CI 

events are expected to be highly nonlinear. Considering the tradeoff between 

computational efficiency and accuracy, the study in this dissertation uses the 

probabilities of the first and second-order CI events in Eq. (3.2) for system reliability 

analysis. However, more terms in Eq. (3.2) can be employed as advanced reliability 

analysis methods are developed. 

Based on the probability theory, the probability of the second-order joint safety 

event Ei ∩ Ej can be expressed as 
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i j i i j
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= −

= −
 (3.3) 

From Eq. (3.1) and Eq. (3.3), the probabilities of the second-order joint safety and 

failure events can be decomposed as 
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3.3 CI- Matrix  

For large-scale systems, the probabilities of CI events can be conveniently written 

into a multidimensional matrix, referred to as the CI-matrix.  In this matrix, the item 

CI(i, j, k,….,m) represents the probability of CI-event Ei,j,…,m where i ≤ j ≤ k ≤ … ≤ m. 

As an example, CI(1, 2) in the second order CI-matrix represents the probability of CI 

event E12, P(E12).  In the CI matrix, if two or more indices are equal to each other, it 

means that probability of a lower order CI event is presented. For example in a third-

order CI matrix, element CI(1, 3, 3) represents the probability of a second order CI 

event E13, as P(E13). So if i = j = k = …= m, then the element presents the probability 

of the first order CI event Ei. 

As an example, for up to the second order CI-Events and the system includes m 

components in total, the CI-matrix is written as  

  

1 12 13 1

2 23 2

3 3

( ) ( ) ( ) ( )

- ( ) ( ) ( )

CI - - ( ) ( )

- - -

( )- - - -

m
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⋯

⋯

⋯

⋮⋱

 (3.6)  

In the upper triangular CI-matrix, the diagonal elements correspond to the 

component reliabilities (or probabilities of the first-order CI events) and the element 

on ith row and jth column corresponds to the probability of the second-order CI event 

Eij if j < i.  The probabilities of the second-order joint safety and failure events in Eqs. 

(3.4) and (3.5) can be evaluated with the probabilities of all CI events that are found 

from the CI-matrix. 
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3.4 System reliability analysis using CIM  

3.4.1 CIM for series systems 

This section introduces an explicit formula for system reliability assessment for 

series systems using CIM, developed based a mathematical inequality equation. 

Considering a structural serial system with m components, the probability of system 

failure can be expressed as  
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m

fs i
i

P P E
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 (3.7) 

where Pfs represents the probability of system failure and Ēi denotes the failure event 

of the ith component. Based on the well known Boolean bounds in Eq.(3.8), the first-

order system reliability bound is then given in Eq. (3.9). 
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However, these methods provide wide bounds of system reliability.  Thus, the 

second-order bounds method proposed by Ditlevsen in Eq. (3.10) is widely used 

because it gives quite narrow bounds of system reliability. 
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where E1 is the event having the largest probability of failure. 
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Since the probabilities of all events are non-negative, the following inequalities 

must be satisfied as 
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First, the left-hand side inequality in Eq. (3.10) can be redeveloped as  
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Then, applying the right-hand side inequality in Eq. (3.11) to Eq. (3.10) gives the 

following the inequality as 
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A similar logic can be applied to the right-hand side inequality in Eq. (3.10)and it 

gives 
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Then, using Eq. (3.10) and Eq. (3.14) gives 
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The combination of Eq. (3.13) and Eq. (3.15) provides the following inequalities as 
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Finally, Eq. (3.16) approximates the probability of a serial system failure as  
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It can be proven that this approximate probability lies in the second-order bounds 

in Eq.(3.10) [Youn and Wang 2009]. 

From Eq.(3.17), the system reliability for a serial system can be assessed as one 

minors the probability of system failure and formulated as  
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Note that the terms inside the bracket, 〈 〉, should be ignored if it is less than zero 

and Rs should be set to zero if the approximated one given by Eq. (3.18) is less than 

zero. Equation (3.18) provides an explicit and unique formula for system reliability 

assessment based on the second-order reliability bounds shown in Eq.(3.10) and an 

inequality equation Eq. (3.11).  

3.4.2 CIM for parallel systems  

System reliability formula for a parallel system can be obtained based on the 

formula of series system reliability by using the De Morgan’s law. According to the 

De Morgan’s law, the probability of parallel system failure can be expressed as  
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where Ēi  is the ith component failure event.  

Equation (3.19) relates the probability of parallel system failure with the 

probability of series system safety (reliability). If we treat Ei as the i
th component 

failure event in a series system, the right side of Eq. (3.19) is then the series system 

reliability. Based on this relationship, the probability of parallel system failure can be 
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obtained from Eq. (3.18) by treating the safe events in the series system as the failure 

events in the parallel system as 
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Finally, parallel system reliability can be obtained from Eq. (3.20)  by one minus the 

probability of system failure as 
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3.4.3 CIM for mixed systems  

A mixed system may have various system structures. There is no unique system 

reliability formula available for a mixed system. This study develops a generic 

procedure for mixed system reliability analysis. The developed procedure is 

introduced below with an arbitrary mixed system structure. Considering a mixed 

system with N components, the following procedure can be proceeded to carry out 

system reliability analysis. 

Step I: Constructing a system structure matrix (SS-matrix)  

SS-matrix, a 3-by-M matrix, is proposed in this study to characterize any arbitrary 

configuration of a given engineered system in a unified manner. With the SS-matrix, 

the components and their connections in a system are described with the component 

number and corresponding nodes numbers in a compact matrix form. This matrix 

form standardizes the representation of mixed system structures and facilitates the 

system reliability analysis in a unified way. The first row of the matrix contains 

component numbers, while the second and third rows correspond to the starting and 

end nodes of the components. Generally, the total number of columns of a SS-matrix, 
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M, is equal to the total number of system components, N. In the case of complicated 

system structures, one component may repeatedly appear in between different sets of 

nodes and, consequently, M could be larger than N, for example a 2-out-of-3 system.  

 

Figure 3-2: A mixed-system reliability block diagram 

Let us consider a mixed system with 7 components, as shown in Fig. 3-2. The 

system structure matrix is a 3×7 matrix. The first column of the system structure 

matrix, [1, 1, 2]T, indicates that the 1st component connects nodes 1 and 2. The SS-

matrix for the system in Fig. 3-2 can be constructed as 

SS-matrix = 

1 2 3 4 5 6 7

1 2 3 4 5 2 3

2 3 4 5 6 4 5

 
 
 
  

 

Step II: Finding system path sets based on the SS-matrix 

Based on the SS-matrix, the Binary Decision Diagram (BDD) technique can be 

employed to find the mutually exclusive system path sets, of which each path set is a 

series system. With the system structure characterized in a uniform way with a 

compact SS-matrix, the BDD technique can automatically identify the mutually 

exclusive path sets. Thus, the SS-matrix standardizes the representation of the 

structures of any given mixed system and facilitates the automatic system reliability 

analysis in a uniform way. More information on the BDD can be found in references 

[Lee 1959; Akers 1978]. For the mixed system shown in Fig. 3-2, the mutually 

exclusive path sets can be found using the BDD as  

 

① 

② 

③ 

④ 

⑤ ⑥ 
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Step III: Evaluating all mutually exclusive path sets and system reliability 

Due to the mutual exclusiveness, the mixed system reliability, Rs_mixed, is the sum 

of the probabilities of all paths as  
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where Pathi is the ith mutually exclusive path set obtained by the BDD and Np is the 

total number of mutually exclusive path sets. For the system in Fig. 3-2, the system 

reliability can be calculated as   
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where the probability of each individual path set can be calculated using the series 

system reliability formula in Eq.(3.18). 

3.5 Generalized CIM framework for system reliability analysis 

As a series system or a parallel system can be viewed as a special case of a mixed 

system, the proposed generalized CIM framework with the SS-matrix and BDD can 

perform system reliability analysis with any system structures (e.g., series, parallel, 

and mixed). Figure 3-3 shows a generalized CIM framework for system reliability. As 

shown in the figure, the first step of the system reliability analysis using the CIM 

framework is to prepare the input system information which includes the limit state 

functions for system components, the system structure of all system components, and 

the statistical information for system random input variables. With system 
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information as input, the CIM will go through a four-step process for the system 

reliability analysis, (1) constructing SS-matrix, (2) evaluating CI-matrix using one of 

probability analysis methods as introduced in chapter 2, (3) identify mutually 

exclusive path sets using BDD with the SS-matrix, and (4) evaluation the probability 

of each path set using CIM system reliability formula of series systems. After 

finishing the process of system reliability analysis, CIM will provide the output of 

reliability of each component, probability of each joint failure event, and the system 

reliability.    

 

Figure 3-3: A generalized CIM framework for system reliability analysis 

3.6 Case Studies 

This section attempts to demonstrate the feasibility of the proposed CIM for 

system reliability analysis.  Four engineering case studies are used to demonstrate the 

numerical efficiency and accuracy of the proposed CIM for system reliability 

analysis.  First of all, the CIM, the first-order system reliability bound methods 

method and the second-order system reliability bounds method are employed for 

system reliability analysis. Their results are compared with that from MCS.  This 

study demonstrates how accurately the CIM estimates system reliability for serial 
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systems.  Then, the CI-matrix in the CIM is evaluated using three different reliability 

methods: FORM, SORM, and the EDR method. 

3.6.1 Series System: Vehicle Side Impact Problem  

The vehicle side crash analysis example is employed here for system reliability 

analysis. In this study, the response surfaces for the vehicle side impact model (10 

constraints and 11 random variables) are employed in this study and they are found in 

Appendix B. Random variables and their random properties are summarized in Table 

3-1. System reliability analyses are performed at the eight different design points 

listed in Table 3-2.  These design points are the optimum designs from RBDO using 

FORM with eight different target reliability levels. As what has been done in the 

previous example, the study on mathematical errors in the formula of different system 

reliability methods are first carried out. Then numerical error is investigated with 

different numerical methods for reliability assessment. 

First, three different system reliability analysis are compared to observe mathematical 

errors in their formulae for system reliability assessment.  This study employs the 

first-order bounds method, the second-order bounds method, and the CIM  To 

minimize numerical errors in system reliability estimates, the MCS with 1,000,000 

sample points is employed to evaluate the probabilities of the component safety (or 

failure), CI, and the second-order joint events. Results for system reliability 

assessment are summarized in Table 3-3 and shown in Fig. 3-4.  It is found that the 

second-order bounds method gives much narrower bounds than the first-order 

regardless of the reliability levels.  The reliability bounds become narrower as 
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reliability level increases.  In summary, the CIM provides more accurate results at all 

reliability levels, compared to the first- and second-order bounds methods. 

Second, this study attempts to observe numerical error in system reliability that is 

given by numerically evaluating the system reliability formula of the CIM in Eq. 

(3.18).  The system reliability formula is numerically computed using three different 

numerical methods: FORM, SORM and the EDR method.  Again, system reliabilities 

are evaluated at eight different designs.  The results from FORM, SORM, and the 

EDR method are also compared with those from MCS with one million sample 

points, as shown in Table 3-4 and Fig. 3-5.  The MCS results are reported with 

confidence intervals MCS low bound (MCS_LB) and MCS upper bound (MCS_UB) 

according to the discussion in Chapter 2. Tables 3-4 and 3-5 summarize the results of 

numerical accuracy and efficiency, respectively.  It is also found that the EDR 

method is much more accurate and efficient than MPP-based methods 

(FORM/SORM) for system reliability assessment because of highly nonlinear 

behavior of the CI events. Again, the CIM results using the EDR method is least 

influenced by the reliability levels unlike using FORM or SORM, as shown in Fig. 3-

5.  The CIM using the EDR method appears to be very accurate and efficient method 

for system reliability prediction. 
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Table 3-1: Properties of random variables in vehicle side impact example 

Random Variables Distr. Type Std Dev. 

X1 (B-pillar inner) [mm] Normal 0.050 

X2 (B-pillar reinforce) [mm] Normal 0.050 

X3 (Floor side inner) [mm] Lognormal 0.050 

X4 (Cross member) [mm] Lognormal 0.050 

X5 (Door beam) [mm] Uniform 0.050 

X6 (Door belt line) [mm] Uniform 0.050 

X 7 (Roof rail) [mm] Uniform 0.050 

X8 (Mat. B-pillar inner) [GPa] Gumbel 0.006 

X9 (Mat. Floor side inner) [GPa] Gumbel 0.006 

X10 (Barrier height) [mm] Normal 10.00 

X11 (Barrier hitting) [mm] Normal 10.00 

 

 

Table 3-2: Eight different design points for system reliability for VSI example 

Optimum 

design points 

Mean Values for Random Variables 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 

1 0.5 1.2669 0.5 1.2298 0.5532 1.5 0.5 0.345 0.1920 0 0 

2 0.5 1.2786 0.5 1.2364 0.5680 1.5 0.5 0.345 0.1920 0 0 

3 0.5 1.2918 0.5 1.2438 0.5840 1.5 0.5 0.345 0.1920 0 0 

4 0.5 1.3071 0.5 1.2524 0.7097 1.5 0.5 0.345 0.1920 0 0 

5 0.5 1.3264 0.5 1.2634 0.7389 1.5 0.5 0.345 0.1920 0 0 

6 0.5 1.3551 0.5 1.2801 0.8149 1.5 0.5 0.345 0.1920 0 0 

7 0.5 1.3876 0.5 1.2998 0.8548 1.5 0.5 0.345 0.1921 0 0 

8 0.5 1.4094 0.5 1.3140 0.9945 1.5 0.5003 0.345 0.2511 0 0 
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Table 3-3: Results of different system reliability analysis methods for VSI example: 

(1) MCS, (2) First-Order Bounds (FOB) using MCS, (3) Second-Order Bounds 

(SOB) using MCS, (4) CIM using MCS (N=1,000,000) 

Methods 
System Reliability at each point 

1 2 3 4 5 6 7 8 

FOB 
Lower 0 0.0961 0.2395 0.4606 0.5867 0.7267 0.8319 0.8748 

Upper 0.4763 0.5269 0.5799 0.6378 0.7055 0.788 0.8589 0.8937 

SOB 
Lower 0.2307 0.3036 0.3869 0.5248 0.6225 0.7415 0.8379 0.8812 

Upper 0.2992 0.3491 0.4146 0.5267 0.6235 0.7424 0.8382 0.8822 

CIM 0.2511 0.3158 0.3935 0.5257 0.6226 0.7416 0.8379 0.8814 

MCS 0.2621 0.326 0.4017 0.5267 0.6227 0.7417 0.838 0.8815 

MCS_LB 0.2608 0.3246 0.4002 0.5252 0.6212 0.7404 0.8369 0.8805 

MCS_UB 0.2634 0.3274 0.4032 0.5282 0.6242 0.743 0.8391 0.8825 

 

Table 3-4: Results of system reliability analysis using CIM with different numerical 

reliability methods for VSI example: (1) FORM, (2) SORM, and (3) EDR 

Analysis System Reliability 

Methods 1 2 3 4 5 6 7 8 

CIM-FORM 0.4331 0.52 0.637 0.747 0.8276 0.9177 0.9648 0.9809 

CIM-SORM 0.4022 0.4824 0.5721 0.6963 0.7585 0.8581 0.929 0.9569 

CIM-EDR 0.2659 0.3288 0.4013 0.5135 0.614 0.7253 0.8271 0.8772 

MCS 0.2621 0.3260 0.4017 0.5267 0.6227 0.7417 0.8380 0.8815 

MCS_LB 0.2608 0.3246 0.4002 0.5252 0.6212 0.7404 0.8369 0.8805 

MCS_UB 0.2634 0.3274 0.4032 0.5282 0.6242 0.7430 0.8391 0.8825 

 



 

 44 
 

Table 3-5: Efficiency of system reliability analysis using CIM with different 

numerical reliability methods for VSI example: (1) FORM, (2) SORM, and (3) EDR 

Methods  EDR FORM SORM MCS 

Total number of function 

evaluation 
23 280 280 1,000,000 

Total number of sensitivity 

evaluation 
0 280 280 0 

Hessian Matrix Evaluation 0 0 55 0 

 

 

 

Figure 3-4: Accuracy of system reliability analysis at eight design points for VSI 

Example 
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Figure 3-5: Absolute errors in system reliability [%] for VSI example 

3.6.2 Series System: Probabilistic Fatigue Analysis for Large Sea Vessel 

Fatigue failure is commonly found in maritime ship structures and spectral fatigue 

analyses are often used for predicting the structural lives of maritime ship structures. 

In this study, fatigue lives of large sea vessel connection ends are considered and the 

fatigue system reliability is determined by using CIM with EDR method.  It has been 

reported that the most critical spot for fatigue failure are longitudinal and Transverse 

Connection as shown in Fig. 3-6. The finite element (FE) model for this study is 

shown in Fig. 3-7 with the model information in Table 3-6. In this study 4 end 

connections with totally 8 weld hot-spots (each end has one weld heel and weld toe) 

are considered as a series system as shown in Fig. 3-8, and the end connection in this 

model is shown in Fig. 3-9. 
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Figure 3-6: Large Sea Vessel End Connections 

 

 

 

Figure 3-7: FE model for a large sea vessel 
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Figure 3-8: Definition of system components 

 

 

Figure 3-9: Longitudinal end connections 

4 connection ends with 

totally 8 hot-spots 
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Table 3-6: Model information (DOF = 789,000) 

Model Component Amount 

Node 131,511 

Elements 

QUAD4 137,387 

TRIA3 18,959 

BAR 65,697 

ROD 68,157 

 

The uncertainties present in this analysis are the loading factors (e.g., wave height 

and period) and material properties.  The variability of the loading factors is 

accounted for in the development of the stress response spectrum [Youn et al. 2007].  

Even if geometric tolerances are uncertain, small variances in the geometric 

tolerances of a large vessel will not be a significant contributor to the overall 

reliability of the welded components.  On the other hand, the uncertainties of the S/N 

curve can be taken into consideration in the fatigue model after the FE analysis.  A 

total of four parameters of the S/N curve can be considered, c, the S-N curve life 

intercept, m1, the negative inverse slope preceding the transition point, m2, the 

negative inverse slope following the transition point, Tp and the location of the 

transition point.  The statistical information of these random variables is located in 

Table 3-7. The response value being attained through this fatigue analysis is 

cumulative fatigue damage ratios, D, (= designed life/fatigue life), where the designed 

life is 20 years.  The structure is safe for fatigue when D is less than one. In order to 

determine the reliability, the EDR method is used with a 4N+1 eigenvector samples. 

Using EDR method, the CI-matrix is obtained as shown in Fig. 3-10 and accordingly 



 

 49 
 

the system reliability for fatigue is obtained through CIM as 03877. Based on this 

calculation, we can also obtain the approximated first-order system reliability bounds 

as: 0.3456 ≤Rs ≤ 0.3975. In order to verify the fatigue system reliability result, a 

Monte Carlo simulation (MCS) is performed, using 1,000 samples.  Both the EDR 

and MCS results are shown in Table 3-8.  It is found that the EDR method with 17 

fatigue analyses gives a good agreement with the MCS in reliability prediction.  

Table 3-7:  Statistical parameters of S/N curve 

Variable c m1 m2 Tp 

Distribution ~N(1.52e12,7.6e102) ~N(3,0.0752) ~N(5,0.252) ~N(1e7,5e52) 

 

fatigue

0.3975 0.5736 0.6093 0.6092 0.6114 0.6090 0.5986 0.6109

0.9564 0.0430 0.0430 0.0419 0.0431 0.0395 0.0421

1 1.5E-6 4.7E-5 9.4E-7 0.0085 2.2E-5

1 4.2E-5 6.5E-7 0.0085 1.9E-5
CI

0.9999 3.5E-5 0.0089 0.0001

1 0.0084 1.6E-5

0.9918 0

=

.0086

1

 
 
 
 
 
 
 
 
 
 
 
  

 

Figure 3-10: CI-matrix for the sea vessel fatigue reliability analysis 

 

Table 3-8: Comparison of results from EDR and MCS 

                                   System Reliability Error Analysis 

CIM_EDR 0.3877 1.09% 17 

CIM_MCS 0.3960 0.00% 1,000 

MCS  
0.3960  

(0.3496 ~ 0.4424) 
N/A  
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3.6.3 Parallel System: A Brittle Ten-Bar System 

The following ten-bar system example is used to demonstrate the effectiveness of 

the CIM framework for parallel systems. As shown in Fig. 3-11, ten brittle bars are 

connected in parallel to sustain a load applied at one end. This case study is modified 

from the example employed in the work [Mahadevan et al. 2001] by increasing the 

total number of bars from 2 to 10. Ten bars are all brittle with different fracture strain 

limits εfi, 1 ≤ i ≤ 10, which are sorted in an ascending order. If the exerted strain ε is 

between the (i–1)th and ith fracture strain limits, i.e.,  εf(i–1) ≤ ε < εfi, , bar components 

with fracture strains below εfi will fail, and the allowable load is then the sum of the 

strength of components with fracture strains equal to or above εfi. Therefore, the strain 

level corresponding to the overall maximum allowable load is among the ten fracture 

strain limits. As the overall maximum allowable load, the system strength RT can be 

formulated in Eq.(3.24).  

 
10 10 10

1 2 10 10
1 10

1 2

max ( ) = max ( ), ( ), , ( )T j fi j f j f f
i

j i j j

R R R R Rε ε ε ε
≤ ≤

= = =

   
=    

   
∑ ∑ ∑ ⋯  (3.24) 

For example, if the exerted strain ε is equal to the fracture strain εf2, the 1st brittle 

bar fails due to the fracture and no longer contributes to the overall system strength. 

Thus, the system strength RT at this fracture strain is the sum of strength of the other 

nine brittle bars. The brittle bar system fails to sustain the load F only if the system 

strength at any of the ten fracture strains is smaller than the load F. This is a parallel 

system with ten components, corresponding to the ten fracture strains. The 

component safety events can be expressed in terms of several random variables. 

 
10 10

( ) ( ) ,        1 10
i j fi j j fi

j i j i

G F R F E A iε ε
= =

= − = − ⋅ ≤ ≤∑ ∑  (3.25) 
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where Rj represents the allowable load that can be sustained by the jth brittle bar, Aj 

the cross section area of the jth brittle bar, and Ej the Young’s modulus of the jth brittle 

bar. 

 

Random variables and their random properties are summarized in Table 3-9. Ten 

different system reliability levels are used for comparison with ten different loading 

conditions (F). These loading points are used to validate the CIM method at different 

reliability levels. Table 3-10 summarizes the results of system reliability analyses 

which are illustrated in Fig. 3-12. It can be seen that the first-order bounds are too 

wide to be of practical use. Whereas, the second-order bounds method gives tighter 

system reliability bounds compared with the first order bounds method. The CIM 

method provides more accurate results at all reliability levels and its high accuracy is 

maintained at high reliability levels, which are often encountered in engineering 

practices. Similar to the first case study, only the first and second order CI events 

were considered and the error for the CIM comes from the effects of the third- or 

1 2 10

F

……

 

 

(a) (b) 

Figure 3-11: Ten brittle bar parallel system: 

 (a) system structure model; (b) brittle material behavior in parallel system 
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higher-order CI events. However, for a parallel system these effects tend to decrease 

as the system reliability decreases, thus the error at a low system reliability level is 

smaller than that at a higher system reliability level, as observed from Fig. 3-12. 

 

Table 3-9: Statistical information of input random variables for the ten bar system 

Random Variable Mean Standard eviation Distribution Type 

E1-E10 (GPa) 200.0 10.0 Gumbel 

A1 (mm2) 100.0 5.0 Lognormal 

A2 (mm2) 120.0 5.0 Lognormal 

A3 (mm2) 140.0 5.0 Lognormal 

A4 (mm2) 140.0 10.0 Lognormal 

A5 (mm2) 140.0 10.0 Lognormal 

A6 (mm2) 150.0 10.0 Lognormal 

A7 (mm2) 150.0 15.0 Lognormal 

A8 (mm2) 150.0 15.0 Lognormal 

A9 (mm2) 200.0 15.0 Lognormal 

A10 (mm2) 300.0 25.0 Lognormal 

εf1 0.0010 0.0002 Uniform 

εf2 0.0012 0.0003 Uniform 

εf3 0.0018 0.0004 Uniform 

εf4 0.0025 0.0005 Uniform 

εf5 0.0027 0.0006 Uniform 

εf6 0.0030 0.0007 Uniform 

εf7 0.0033 0.0008 Uniform 

εf8 0.0036 0.0009 Uniform 

εf9 0.0040 0.0010 Uniform 

εf10 0.0050 0.0011 Uniform 

F (kN) --- 30.0 Normal 
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Table 3-10: Results of system Reliability analysis with MCS, FOB using MCS, SOB using MCS, and CIM using MCS (N=1,000,000) 

Analysis Method 
System Reliability Level at Each Design 

1 2 3 4 5 6 7 8 9 10 

FOB 
Upper 0.4133 0.5639 0.7331 0.9216 1 1 1 1 1 1 

Lower 0.1594 0.2054 0.2507 0.2974 0.3444 0.4395 0.4865 0.5334 0.5803 0.9705 

SOB 
Upper 0.3537 0.467 0.5854 0.7065 0.8293 1 1 1 1 1 

Lower 0.3192 0.4062 0.4849 0.5507 0.6068 0.6917 0.7161 0.7459 0.7897 0.9943 

CIM 0.3417 0.4456 0.549 0.6482 0.7388 0.8714 0.9017 0.9069 0.9051 0.9943 

MCS 0.3301 0.4272 0.5226 0.6131 0.6961 0.8314 0.8813 0.9192 0.9476 0.9998 

MCS_LB 0.3287 0.4257 0.5211 0.6116 0.6947 0.8303 0.8803 0.9184 0.9469 0.9998 

MCS_UB 0.3315 0.4287 0.5241 0.6146 0.6975 0.8325 0.8823 0.92 0.9483 0.9998 
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Figure 3-12: Results of system reliability analysis at ten different reliability levels 

 

3.6.4 Mixed System: Power Transformer Winding Joint System 

Power transformers are among the most expensive elements of high-voltage 

power systems [Rivera et al. 2000]. The power transformer vibration induced by the 

magnetic field loading will cause the windings support joint loosening or the fatigue 

failures, which will gradually increase the vibration amplitude of the winding and 

eventually damage the core [Kim et al. 2009]. In this case study the proposed CIM is 

applied for the system reliability analysis of the power transformer winding support 

joints. We considered four failure modes, which are the fatigue failures at the four 

winding support joints. A power transformer simulation model was built using the 

finite element analysis tool ANSYS 10 (see Fig. 3-13). Figure 3-14 shows the detail 

of the winding bolt joint, which assembles the windings of the power transformer 

with the bottom fixture. The transformer is fixed at the bottom and the vibration load 
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is applied to the magnetic core with the frequency of 120 Hz. This case study 

employed ten random variables, as listed in Table 3-11, which include the geometric 

tolerances and material properties  

This winding support system with the four joints was treated as a 3-out-of-4 

system as shown in Fig. 3-15, which means that the system becomes safe only if at 

least three out of the four support joints survive.  The CI-matrix for this case study 

was evaluated using the MCS (with 1000 samples), as shown in Fig. 3-16. Figure 3-

17 shows the system reliability block diagram and Table 3-12 displays the SS-matrix 

for this transformer joint system.  The mutually exclusive path sets can be determined 

using the BBD (see Fig. 3-18) as 

{ }1 2 3 1 2 3 4 1 2 3 4 1 2 3 4Pathset , , , E E E E E E E E E E E E E E E=  

These path sets are mutually exclusive with the series system structure, as 

discussed in Section 3.4. As shown in Table 3-13, the reliabilities for these mutually 

exclusive path sets can be obtained and the system reliability for this transformer joint 

system can be estimated using Eq. 17. It is found that the CIM accurately assesses 

system reliability compared with the MCS. This demonstrates the feasibility and great 

capability of the CIM for system reliability analysis with any system structure. 
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Figure 3-13: A power transformer FE model (without the covering wall) 

 
Table 3-11: Random property of input variables for the power transformer 

Random 

Variable 
Physical Meaning Mean 

Standard 

Deviation 

Distribution 

Type 

X1 Wall Thickness 3 0.06 Normal 

X2 Angular width of joints 15 0.3 Normal 

X3 Height of support joints 6 0.12 Normal 

X4 Young’s modulus of joints  2e12 4e10 Normal 

X5 
Young’s modulus of loosening 

joints 
2e10 4e8 Normal 

X6 Young’s modulus of winding 1.28e12 3e10 Normal 

X7 Poisson ratio of joints 0.27 0.0054 Normal 

X8 Poisson ratio of winding 0.34 0.0068 Normal 

X9 Density of joints  7.85 0.157 Normal 

X10 Density of windings 8.96 0.179 Normal 
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(a) Side view of one joint 

 

(b) Bottom view of the bolt joint 

Figure 3-14: Winding support bolt joint: (a) side view, (b) bottom view 

 
 

 

0.999 0.000 0.238 0.242

0.000 0.999 0.238 0.242
CI-matrix

0.000 0.000 0.761 0.008

0.000 0.000 0.000 0.757

 
 
 =
 
 
 

 

Figure 3-15: 3 out of 4 system 

with 4 support joints 

Figure 3-16: CI-matrix for the power 

transformer case study 

 
 

 

 

Figure 3-17: System reliability block diagram for power transformer case study 

1          2 
 
 3                  4 

Bolt 
Joints 
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Table 3-12: System structure matrix for the power transformer case study 

Component 

No. 
1 1 1 2 2 2 3 3 3 4 4 

Starting node 1 1 1 1 2 3 4 5 6 7 8 

End node 2 3 4 5 6 7 8 9 10 10 10 

 

 

Figure 3-18: BDD for the power transformer case study 

           

Table 3-13: Results of CIM for power transformer case study comparing with MCS 

(1,000 samples): 

Analysis 

Method 

Reliability of Path Set (Series System) 
System   

Reliability 
1 2 3E E E  

1 2 3 4E E E E  1 2 3 4E E E E  1 2 3 4E E E E  

CIM 0.761 0.000 0.000 0.002 0.763 

MCS - - - - 
0.763 

(0.7227~ 0.8033) 
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3.7 Summary 

In this chapter, the CIM was proposed to evaluate system reliability for series 

system, parallel and mixed systems. The proposed method makes the five technical 

contributions as: 

(1) Definition of the CI event: The key idea of the proposed method is the definition 

of the CI event.  This definition enables the decomposition of the probability of an 

N
th-order joint safety event into the probabilities of the first to Nth-order CI events;   

(2) Analytic expression for the probability of any higher-order joint event by the 

probability decomposition theorem: The probability of any second or higher-order 

joint event can be analytically expressed in terms of the probabilities of the CI 

events. 

(3) Easy numerical assessment of system reliability: Through the analytic expression 

for system reliability, it can be assessed by simply evaluating the probabilities of 

the CI events using advanced reliability analysis methods (e.g., Dimension 

Reduction (DR), polynomial chaos expansion (PCE), stochastic collocation 

method). 

(4) A general framework of system reliability analysis: Regardless of a system 

structure (e.g., series, parallel, and mixed), the CIM can execute system reliability 

analysis in a generic manner;  

 (5) The CI-matrix facilitates to compute system reliability for large-scale system 

applications. 
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Chapter 4: Bayesian Approach to Reliability-Based Design 

Optimization 

This chapter presents the research solution to the second challenging question 

which is how limited data for input manufacturing variability can be used in RBDO to 

ensure a high reliability of an engineered system in the early design stage. In practice, 

the amount of data to characterize random variables is limitedly given due to the lack 

of resources (e.g., time, budget, facility, and human). This chapter presents a 

Bayesian reliability-based design optimization (Bayesian RBDO) framework as a 

detail design tool for an engineered system when the amount of the data is lacking. 

Section 4.1 presents the Bayesian updating technique and the Bayesian binomial 

inference model for reliability modeling. Section 4.2 presents the Bayesian reliability 

analysis with lack of data and Section 4.3 derives the sensitivity of Bayesian 

reliability with respect to random input variables. The Bayesian RBDO is formulated 

in Section 4.4 and case studies are presented in Section 4.5. Section 4.6 summarizes 

this chapter. 

4.1 Bayesian Updating and Binomial Inference  

This section gives an introduction of the Bayesian updating technique and the 

Bayesian binomial inference model.  

4.1.1 Bayesian updating   

Let X be a random variable with a probability density function f(x,θ), 

θ ∈ Ω. From the Bayesian point of view, θ  is interpreted as a realization of a random 
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variable Θ with a probability density fΘ(θ). The density function expresses what one 

thinks about the occurring frequency of Θ before any future observation of X is taken, 

that is, a prior distribution. Based on Bayes’ theorem, the posterior distribution of Θ 

given a new observation X can be expressed as 

 
|,

|

( | ) ( )( , )
( | )

( ) ( )

XX

X

X X

f x ff x
f x

f x f x

θ θθ
θ Θ ΘΘ

Θ

⋅
= =  (4.1) 

The Bayesian approach is used for updating information about the parameter θ. 

First, a prior distribution of Θ must be assigned before any future observation of X is 

taken. Then, the prior distribution of Θ is updated to the posterior distribution as the 

new data for X is employed. The posterior distribution is set to a new prior 

distribution and this process can be repeated with an evolution of data sets. In 

Bayesian probability theory, a class of prior probability distributions fΘ(θ) is said to 

be conjugate to a class of likelihood functions fX|Θ(x|θ) if the resulting posterior 

distributions fΘ|X (θ|x) are in the same family as fΘ(θ). For example, if the likelihood 

function is Gaussian, choosing a Gaussian prior ensures that the posterior distribution 

is also Gaussian. A Bayesian inference model is called a conjugate model if the 

conjugate prior distribution is used. For conjugate Bayesian inference models, the 

updating results are independent of the sequence of data sets. Conjugate models of 

Bayesian updating are quite useful for uncertainty modeling with evolving data sets, 

since the prior and posterior distributions are given in a closed form. However, it is 

found that the Bayesian updating results often depend on the selection of a prior 

distribution in the conjugate models. Besides, the available conjugate Bayesian 

models are limited. To eliminate the dependency and the limitation, non-conjugate 
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Bayesian updating models can be developed using Markov Chain Monte Carlo 

(MCMC) methods. This is, however, more computationally intensive. 

4.1.2 Bayesian Binomial inference model  

In many engineering applications, outcomes of events from repeated trials can be 

a binary manner, such as occurrence or nonoccurrence, success or failure, good or 

bad, etc. In such cases, random behavior can be modeled with a discrete probability 

distribution model. In addition, if the events satisfy the additional requirements of a 

Bernoulli sequence, that is to say, if the events are statistically independent and the 

probability of occurrence or nonoccurrence of events remains constant, they can be 

mathematically represented by the binomial distribution. In other words, if the 

probability of an event occurrence in each trial is r and the probability of 

nonoccurrence is (1−r), then the probability of x occurrences out of a total of N trials 

can be described by the probability mass function (PMF) of a Binomial distribution as 

 ( ) ( ) ( )Pr , | 1 0,1, 2, ,
N xxN

X x N r r r x N
x

−
= = − = …   (4.2) 

where the probability of success identified in the previous test, r, is the parameter of 

the distribution. 

In Eq.(4.2), the probability of x/N (x occurrences out of N trials) can be calculated 

when a prior distribution on r is provided. This inference process seeks to update r 

based on the outcomes of the trials. Given x occurrences out of a total of N trials, the 

probability distribution of r can be calculated using Bayes’ Rule as  

 ( )
( ) ( )

( ) ( )
1

0

|
|

|

f x r f r
f r x

f x r f r dr
=

∫
 (4.3) 
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where f (r) is the prior distribution of r, f (r | x) is the posterior distribution of r and f 

(x | r) is the likelihood of x  for a given r. The integral in the denominator is a 

normalizing factor to make the probability distribution proper. The prior distribution 

is known for r, prior to the current trials. In this study, a uniform prior distribution is 

used to model r bounded in [0, 1]. However, it is possible to obtain a posterior 

distribution with any type of a prior distribution. 

For use of this Bayesian inference model, both a prior reliability distribution (r) 

and the number (x) of safety occurrences out of the total number of test data sets N 

must be known.  If the prior reliability distribution (r) is unavailable, it will be simply 

modeled with a uniform distribution, r ~ U (a, b) where a < b and a, b ∈ [0, 1]. 

Bayesian binomial inference model can be used to update the prior knowledge of 

reliability (r), which is a parameter of a binomial distribution. In this inference model, 

the binomial distribution likelihood function is used for test data, whereas the 

conjugate prior distribution of this likelihood function is used for reliability (r), which 

is a Beta distribution. The PDF of the Beta distribution is expressed as 

 ( ) ( ) ( ) ( )( )11 11 1

0

1
1 , , 1

( , )
f r r r B t t dt

B

β βα αα β
α β

− −− −= − = −∫   (4.4) 

where α and β are two parameters. For a simple case, α = β = 1 represents a uniform 

distribution over [0, 1].  If this uniform distribution is used as a prior distribution for 

r, the likelihood function f(x|r) can be obtained using Eq. (4.3)and the  posterior  

distribution f(r|x) using Eq.(4.4).  It follows a Beta distribution with α = x + 1 and β = 

N − x + 1. This posterior distribution represents the probability distribution of 

reliability, which is a function of x and N.  With k sets of evolving testing data sets, 

the final updating result for r is also a Beta distribution with   
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As it is a conjugate Bayesian inference model, there is also no data-sequence effect 

on updating results. 

4.2 Bayesian Reliability Analysis 

When only epistemic uncertainties are used in the reliability assessment, the PDF 

of the reliability can be modeled using the Beta distribution in Eq. (4.4) by counting 

the number of safety occurrences, x. In general, both aleatory and epistemic 

uncertainties appear in most engineering design problems. In such situations, the PDF 

of reliability can be similarly obtained through Bayesian reliability analysis. To build 

the PDF of reliability, reliability analysis must be performed at every data point for 

epistemic uncertainties while considering aleatory uncertainties. Different reliability 

measures, Rk = R(xe,k), are obtained at different sample points for epistemic 

uncertainties. In Eq.(4.5), α = x + 1 and β = N − x + 1, where x = ∑Rk. Then, the PDF 

of reliability r with a uniform prior distribution is updated to R(Xa, Xe; d) as 
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N is the number of finite data sets for epistemic uncertainties.  Figures 4-1 and 4-2 

show such a functional relationship between the reliability distribution and its 

parameters, x and N. Figure 4-1 demonstrates the dependence of the reliability PDF 

on the number of safety occurrences, x, out of the given N trials (e.g., N = 40 in Fig. 

4-1). The larger the number of safety occurrences for a given N trials, the greater the 
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mean of reliability. The PDF of reliability appears to be feasible, since the mean of 

the PDF is close to x/N, which is a Frequentist estimate of reliability (e.g., µBeta(5,37) ≈ 

4/36). Figure 4-2 exhibits the dependence of the reliability PDF on the total number 

of trials (N) with the same ratio of x to N. As the total number of trials is increased, 

the variation of reliability is decreased, such as σBeta(451,151) < σBeta(151,51) < σBeta(46,16) < 

σBeta(16,6). In other words, the PDF of reliability asymptotically converges to the exact 

reliability with the increase of the number of trials.  

 

Figure 4-1: Dependence of the PDF of reliability on the number of safety 

occurrences, x/N 

 

 

Figure 4-2: Dependence of the PDF of reliability on the total number of trials, N 
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For design optimization, reliability must satisfy two requirements: (a) sufficiency 

and (b) uniqueness. The sufficiency requirement means that the reliability must be 

conservative or no larger than an exact reliability realized with a sufficient amount of 

data for the input uncertainties. As this reliability is an estimated reliability based on 

the posterior reliability distribution obtained through the Bayesian updating of the 

prior reliability distribution, thus it is referred to as “Bayesian reliability”. Then, 

Bayesian RBDO based on Bayesian reliability measure will provide an optimum 

design with higher reliability than target reliability, regardless of the data size.  

Depends on different applications, the designer may be desired with different 

confidence level of realized Bayesian reliability. This requires that Bayesian 

reliability can be flexibly defined based on the user-defined confidence level. 

Suppose that the user-defined confidence level of Bayesian reliability as CL, and the 

sample size of epistemic uncertainty is N, then Bayesian reliability can be uniquely 

justified as  

 ( )
0

1
BR

L R
C f r dr− = ∫  (4.7) 

This will gives the Bayesian reliability definition with the user-defined confidence 

level as 

 [ ]1 1
B R L

R F C
−= −  (4.8) 

In the case studies of this dissertation, the confidence level in Eq. (4.8) for 

defining Bayesian reliability is chosen to be 0.5N  where N is the number of sample 

size. By choosing the confidence level in such a way, Bayesian reliability is exactly 

the median value of the extreme distribution for the smallest value derived from the 

Beta distribution in Eq.(4.6). 
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Based on the extreme distribution theory, the extreme distribution for the smallest 

reliability value is constructed from the reliability distribution, Beta distribution. For 

random reliability R with the Beta distribution function, FR(r), let 1
R be the smallest 

value among N data points for random reliability, R. Then the Cumulative 

Distribution Function (CDF) of the smallest reliability value, 1
R, can be expressed as 

[Rao 1992] 

 
( ) ( )

( )
1

1

1 2

1

                 , , ,

R

N

F r P R r

P R r R r R r

− = >

= > > >⋯
 (4.9) 

Since the ith smallest reliability values, i
R (i = 1,…, N), are identically distributed and 

statistically independent, the CDF of the smallest reliability value becomes 

 ( ) [ ]1 1 1 ( )
N

RR
F r F r= − −  (4.10) 

Bayesian reliability, RB, is defined as the median value of the reliability distribution. 

That is to say, Bayesian reliability is the solution of the nonlinear equation in Eq. 

(4.10) by setting ( )1 0.5
BR

F R = . 

 ( )1

1 11 1 1 0.5m NN
B R RR

R F F r F− −   = − − = −   
 (4.11) 

Based on this definition, the confidence level o f the Bayesian reliability can be 

calculated as  

 ( ) ( )11 1 1 0.5 0.5B N N

L R B R R
C F R F F −  = − = − − =   (4.12) 

Based on the above definition, Bayesian reliability analysis can be conducted 

using the following numerical procedure as: 

STEP1 Collect a limited data set for epistemic uncertainties where the data size is 

N. 
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STEP2 Calculate reliabilities (Rk) with consideration of aleatory uncertainties at all 

epistemic data points. 

STEP3 Build a distribution of reliability using the Beta distribution in Eq.(4.6) with 

aleatory and/or epistemic uncertainties. 

STEP4 Construct the extreme distribution in Eq. (4.10) with the Beta distribution 

obtained in Step 3. 

STEP5 Determine the Bayesian reliability using Eq.(4.11). 

A mathematical example is used to help understand the numerical procedure of 

Bayesian reliability analysis. 

4.3 Sensitivity Analysis of Bayesian Reliability  

The sensitivity analysis for Bayesian reliability with respect to design variables 

must also be carried out for Bayesian RBDO. Direct calculation of the sensitivities of 

Bayesian reliability follows a complicated mathematical derivation and 

implementation and may encounter numerical singularity [Youn and Wang 2008a], 

thus a more simple way is sought. The idea comes from a one-to-one mapping 

between Bayesian reliability and the mean value of the Beta distribution (the posterior 

distribution) for reliability for a given sample size, Ri
B=Ri

B(Mi) or Mi=Mi(Ri
B). The 

transform between these two values is shown in the equation  

 ( )
( )

0

1
1 1

,

BR qp

L
C d

B p q
θ θ θ− = −∫

  
(4.13)

 

where p= (N+2)Mi, q=(N+2)(1-Mi). Instead of Bayesian reliability, the corresponding 

mean value of the beta distribution for reliability and the sensitivity of the mean value 

with respect to the design variables will be used for design optimization. For a given 



 

 69 
 

sample size, the one-to-one mapping relates a target Bayesian reliability to a single-

valued target mean value of the beta distribution for reliability. Thus, satisfaction of 

the target mean value of the beta distribution for reliability always ensures 

satisfaction of the target Bayesian reliability. 

Suppose that the Beta distribution Beta (α, β) is used to model reliability and its 

mean value, Mi =Mi (Ri
B), can be expressed as 

 2
i i

i

i i

M
N

α α

α β
= =

+ +  
(4.14)  

The sensitivity of its mean value to design variable, dj, can be expressed as 

 
1

2
i i

j j

M

d N d

α∂ ∂
=

∂ + ∂
 (4.15) 

From Eq.(4.6), Eq. (4.15) can be expressed as 

 1 21
 

2
i N

j j j j
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d N d d d

 ∂ ∂∂ ∂
= + + +  ∂ + ∂ ∂ ∂ 

⋯  (4.16) 

The mean value of the reliability, Mi =Mi (Ri
B) , can be converted to a reliability 

index. Then, the sensitivity can be developed for the format of the reliability index B

i
β

, where 1( )B

i i
Mβ −= Φ . Correspondingly, all reliabilities, , 1,2,...,

i
P i N= , can be 

transformed into the reliability indices, 
i

β . The sensitivity of Bayesian reliability 

index can be expressed as 
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where 

 
( )

2

2
1

2

B
i

i

B

i

M
e

β

β π

−∂
=

∂
 (4.18) 



 

 70 
 

Similarly, 

 1 1

1

1

2
i N N

j j N j

M RR

d N d d

ββ

β β

 ∂ ∂ ∂∂ ∂
= + +  ∂ + ∂ ∂ ∂ ∂ 
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where 
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e
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By substituting the sensitivity of reliability index, 
i j

dβ∂ ∂  into Eq.(4.20), the 

sensitivity of Bayesian reliability, B

i j
dβ∂ ∂ , can be obtained as 

 

( )
2

2
2

2
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B
i

kB N
i k

kj j

e
e

d N d

β

ββ β−

=

∂ ∂
=

∂ + ∂
∑  (4.21) 

 

4.4 Bayesian Reliability-Based Design Optimization  

4.4.1 Guideline of target Bayesian reliability 

This section provides a guideline to set target reliability in Bayesian RBDO, 

which depends on a data size of epistemic uncertainties. Based on this definition, 

Bayesian reliability is then a function of user-defined confidence level and the 

reliability distribution, which is a function of the sample size of the epistemic 

uncertainties, N. To enable Bayesian RBDO with this flexibly defined Bayesian 

reliability, the target Bayesian reliability must be determined appropriately. Target 

reliability must depend on the data size of epistemic uncertainties. With few data for 

uncertainties, setting target reliability to 99.9% is not possible. Although high 

reliability is achieved through RBDO, the confidence of reliability will be extremely 
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low. To determine the appropriate target Bayesian reliability for the design 

optimization purpose, the maximum Bayesian reliability which can be possibly 

obtained has the following relationship with the user-defined confidence level CL and 

sample size N as 

 
max

0

0

1
1 (1 )

(1 ,1)

BR
N

L
C r r dr

Beta N
− = −

+∫  (4.22) 

Thus, the maximum Bayesian reliability is a function of user-defined confidence level 

and the sample size N as  

 ( ) ( )max 1 1 where ~ 1 ,1
B R L

R F C R Beta N
−= − +  (4.23) 

Figure 4-3 shows the maximum Bayesian reliability with respect to different sample 

size and confidence levels.  

If the confidence level in Eq. (4.23) is chosen to be 0.5N , the maximum Bayesian 

reliability can be defined for a given sample size as 

 ( ) ( )1

max 1 1 0.5 medianN

B R R
R F F r

−  = − =    (4.24) 

As shown in Fig. 4-4, with the increase of the sample size, PB
max rapidly rises to 90% 

and then slowly increases. Target reliability must be set lower than the maximum 

Bayesian reliability for a given data size. For example, the target reliability with 50 

data for epistemic uncertainties must be lower than 92%. 



 

 72 
 

 

Figure 4-3: Maximum Bayesian reliability with confidence level CL and sample size, 

N 

 

 

Figure 4-4: Maximum Bayesian reliability with confidence level CL= 0.5N  
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4.4.2 Formulation and procedure of Bayesian RBDO 

Knowing that both aleatory and epistemic uncertainties exist in the system of 

interest, Bayesian RBDO can be formulated as 

 

minimize  ( , ; )

subject to  ( ( , ; ) 0) ( ), 1, ,

                 ,  and ,

i

a e

B i a e t

nd na ne

a e

C

P G i np

R R R

β≤ ≥ Φ =

≤ ≤ ∈ ∈ ∈L U

X X d

X X d

d d d d X X

⋯  (4.25) 

where PB(Gi(Xa, Xe; d) ≤0)=RB,i is Bayesian reliability where Gi(Xa, Xe ;d) ≤ 0 is 

defined as a safety event; C(Xa, Xe ;d) is the objective function; d = µµµµ(X) is the design 

vector; Xa and Xe are the aleatory and epistemic random vectors, respectively; βti is a 

prescribed target Bayesian reliability index; and np, nd, na, and ne are the numbers of 

probabilistic constraints, design variables, aleatory random variables, and epistemic 

random variables, respectively.  

Based on the discussion in the previous sections, the procedure of Bayesian 

RBDO is presented in Fig. 4-5. The Bayesian reliability analysis in the left shaded 

box calculates the Bayesian reliabilities as well as their sensitivities, which require 

reliability analyses at all epistemic sample points. For instance, the probabilistic 

constraints at any data point for epistemic uncertainties become functions of only 

aleatory uncertainties and then the existing reliability analysis methods (FORM, 

SORM or EDR method, etc.) could be used for reliability and its sensitivity analyses. 

Thus, one Bayesian reliability analysis engages reliability and its sensitivity analyses 

N times. This is why Bayesian RBDO could become expensive and thus more 

investigation must be made to reduce its computational effort. Once the cost function, 

Bayesian reliability, and their sensitivities are computed, design optimization is 
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conducted in the right shaded box in Fig. 4-5. It is clear from the flowchart that 

Bayesian RBDO completely integrates Bayesian reliability analysis to RBDO. 

 

 
 

Figure 4-5: Bayesian RBDO flowchart 

 
 
 

4.5 Case Studies  

In this section, three case studies are presented to demonstrate the proposed 

Bayesian reliability analysis and Bayesian RBDO. The first case study is the 

Bayesian reliability analysis for a vehicle door system with consideration of customer 

satisfaction of door closure performance and the epistemic random input variables. In 

the second and third case studies, the vehicle lower control arm and the power 
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transformer winding joint are designed with consideration of epistemic loading 

variables.  

 
4.5.1 Bayesian reliability analysis for a vehicle door system 

The problem used in this case study is the body-door system of a passenger 

vehicle, as illustrated in Fig. 4-6. The vehicle door system is of special concern due to 

its frequency of use and its engineering challenge with respect to design, assembly, 

and operation. Variation exists in the CLD (Compression Load Deflection) response 

of the seal, the gap between the body and door, as well as in attaching the door to the 

car body. Besides the presence of variation, the complexity of the system is high due 

to the nonlinear seal behavior and the dynamics of door closing. The detail of vehicle 

door system regarding the problem description, failure mechanism specification, 

physical model creation and response surface construction can be found from Ref. 

[Kloess et al. 2004]. The performance measure selected in this study to assess one 

aspect of door system design is the door closing effort. The measurable quantity for 

this performance measure is the door closing velocity. A response surface for door 

closing velocity was created based on results from physics-based models and the 

performance evaluation criteria were deduced from both expert opinions and voice of 

the customer information. 

For the door system example in this study, 26 random input variables are used to 

specify the uncertainty of the system. Within these 26 random input variables, listed 

in Table 4-1, X5, X6, X7, X25 and X26 are aleatory variables which, for this example, are 

assigned uniform distributions on different threshold values as shown in the table. 

Except for these five random input variables, all others are epistemic variables with a 
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total of 79 sets of measurement data. For illustrative purpose, these epistemic data are 

partially listed in Table 4-2.  

 

Table 4-1: Random variables and descriptions for a vehicle door system 

Variable 

Name 
Description 

Variable 

Type 

X1 UHCC- Upper hinge location in cross-car direction Epistemic 

X2 LHCC- Lower hinge location in cross-car direction Epistemic 

X3 LATCC-Latch location in cross-car direction Epistemic 

X4 LATUD-Latch location in up-down direction Epistemic 

X5 Primary seal CLD property factor U(0.7, 1.3) 

X6 Auxiliary seal CLD property factor U(0.7, 1.3) 

X7 Cutline seal CLD property factor U(0.7, 1.3) 

X8~X24 Primary Seal Margin Regions 1~17 Epistemic 

X25 Auxiliary Seal Margin U(-1, 1) 

X26 Cutline Seal Margin U(-1, 1) 

 

 

Figure 4-6: Vehicle Door system 

Latch: LATCC

LATUD

Seal:
Margins

CLD Properties

Hinges:
UHCC
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Latch: LATCC

LATUD

Seal:
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CLD Properties

Hinges:
UHCC
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Table 4-2: Data for epistemic random variables of the vehicle door system 

Variables 
Data 

Set 1 Set 2 Set 3 Set 4 Set 5 … Set 79 

X1 1.62 2.29 1.58 1.58 1.19 … 2.16 

X2 2.82 2.49 1.8 2.1 2.03 … 1.355 

X3 2.555 2.1 1.82 1.67 1.75 … 1.35 

X4 -0.38 -0.35 -0.01 -0.01 0.61 … -0.61 

X8 1.655 1.235 1.015 0.715 0.71 … 0.559167 

X9 1.0775 0.7725 0.5925 0.2825 0.115 … 0.39875 

X10 0.5 0.31 0.17 -0.15 -0.48 … 0.238333 

X11 1.24 0.74 0.426667 0.113333 -0.23 … 0.955 

X12 -0.27 -0.31 -0.28 -0.66 -1.29 … 0.278333 

X13 0.03 0.16 -0.205 -0.29 -1.02 … 0.1125 

X14 0.33 0.63 -0.13 0.08 -0.75 … -0.05333 

X15 0.5 0.79 0.06 0.22 -0.76 … 0.135 

X16 0.89 1.01 0.87 0.27 -0.63 … 0.24 

X17 0.27 0.51 -0.01 -0.21 -1.565 … 0.233333 

X18 -0.35 0.01 -0.89 -0.69 -2.5 … 0.226667 

X19 -0.35 0.01 -0.89 -0.69 -2.5 … 0.226667 

X20 -0.44 -0.53 -1.27 -1.55 -2.93 … -0.37667 

X21 -0.44 -0.53 -1.27 -1.55 -2.93 … -0.37667 

X22 0.16 -0.03 -0.7125 -0.8625 -1.6825 … 0.12375 

X23 0.76 0.47 -0.155 -0.175 -0.435 … 0.624167 

X24 1.49 0.91 0.56 0.27 0.91 … 0.535 
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Modeling of the Marginal Velocity 

The marginal velocity which serves as the criteria of the door performance 

evaluation is modeled by using the Bayesian updating technique based on expert 

opinion and the customer data. From a hypothetical expert, the door closing velocity 

values for customer satisfaction should be, for example, within the range of 0 m/s to 

vmax m/s. Customer survey regarding the door closing velocity can be carried out by 

using the direct customer survey method [Winkler 1967; Spetzler et al. 1975; 

Wallsten and Budescu 1983] and illustrative results which show the Customer 

Rejection Rate (CRR) versus the door closing velocity (normalized by vmax) are 

shown in Fig. 4-7. For the modeling of the marginal velocity, CRR can be treated as 

the probability of the marginal velocity being smaller than a given a or CRR = P(vm ≤ 

a) where vm is a random marginal velocity and a is within [0, vmax] based on expert 

opinion. 

The procedure of marginal velocity modeling can be briefly summarized into 

three steps. First, based on the customer data, one Bayesian inference model should 

be specified. For example, if the Bayesian normal inference model is used, the 

marginal velocity will be modeled as the mean value of the normal distribution which 

is the conjugate distribution for this model. Second, based on the selected model, the 

CDF analysis can be carried out for the CDF/ Velocity data. After completing this 

analysis, the CDF data are then transferred to parameter data for the distribution. 

Third, with one prior distribution assumed, Bayesian updating can then be carried out 

with sets of parameter data. In this study, the Bayesian normal inference model is 

used and the marginal velocity is modeled as the mean value of a Normal distribution. 
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Figure 4-8 shows the Bayesian updating process for the modeling of the marginal 

velocity with three clinic survey data. The detail of the marginal velocity modeling 

process can be found in Ref. [Youn and Wang 2009]. Through the Bayesian updating, 

the CDF of the final Bayesian model, N (0.5946, 0.03552), is used as the distribution 

for the marginal velocity. 

 

 

Figure 4-7: Customer rejection rate 

 

 

Figure 4-8: Bayesian updating for the marginal velocity using a normal distribution 
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Bayesian Reliability Analyses for a Vehicle Door System 

Based on the marginal velocity PDF created, Bayesian reliability analysis is then 

carried out for the door closing effort problem with both aleatory and epistemic 

uncertainties. For a given set of input values, the performance response can be 

obtained from the response surface created based on the physical model. Since 

Bayesian reliability analysis requires the probabilistic performance evaluation for 

each set of epistemic data, two different approaches, MCS and EDR method, are 

employed to calculate the reliability.  

First, for each set of epistemic data, direct MCS is used to carry out the reliability 

analysis. For each aleatory variable (including the variable of marginal velocity), 

10,000 random samples are generated and used for MCS. Table 4-3 shows the 55 

reliabilities corresponding to the first 55 sets of epistemic data. Based on Table 4-3, 

we carried out the Bayesian reliability analysis and obtained the reliability 

distribution as Beta (53.524, 3.476). Then by the Bayesian reliability definition 

described in Section 4.2, the extreme distribution of the smallest value for the Beta 

distribution is constructed and the Bayesian reliability is realized as 0.849185. Figure 

4-9 (a) shows the Beta distribution, extreme distribution and the Bayesian reliability 

value using MCS. With 24 new data sets involved for the epistemic random variables 

the Bayesian reliability is updated. The updated reliability distribution is Beta 

(77.1869, 3.8131) and the Bayesian reliability is updated from the original 0.849185 

to 0.880935. Table 4-4 shows the reliabilities corresponding to each set of the new 

involved data. Figure 4-10 (a) shows the updated Beta distribution, extreme 

distribution and the Bayesian reliability using MCS. 
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As we can see from the Monte Carlo Simulation method, the reliability analysis 

for each set of epistemic data can require a large amount of response performance 

evaluations depending on the simulation sample size (in this case 10,000). In order to 

make the calculation of the Bayesian reliability more efficient, the EDR method is 

used for the probability calculation for each set of epistemic data. By using EDR 

method, the total number of the response performance evaluation is reduced from 

10,000 to 2n+1=13. Based on the marginal velocity PDF created in subsection 1, the 

reliability Ri of a certain design (Xa, Xei) can be formulated as Ri = Pr [V(Xa, Xei) – Vt 

≤ 0] where V(Xa, Xei) is the performance velocity variable corresponding to a certain 

design (Xa, Xei), Xa is the aleatory variable set and Xei is the ith set of epistemic data, 

and Vt  is the marginal velocity. Totally 55 different reliabilities corresponding to 55 

different sets of epistemic uncertainties are realized as shown in Table 4-5. Based on 

these results, the reliability distribution is obtained as Beta (53.5076, 3.4924) from 

Bayesian inference. Then by the Bayesian reliability definition, the extreme 

distribution of smallest value for the Beta distribution is constructed and the Bayesian 

reliability is realized as 0.848752. Figure 4-9 (b) shows the Beta distribution, extreme 

distribution and the Bayesian reliability using the EDR method. With 24 new data 

sets involved, the Bayesian reliability is updated. The updated reliability distribution 

is Beta (77.1567, 3.8433) and the Bayesian reliability is updated from the original 

0.848752 to 0.880363. Table 4-6 shows the reliabilities corresponding to each set of 

the new involved data. Figure 4-10 (b) shows the updated Beta distribution, extreme 

distribution and the Bayesian reliability using the EDR method. 
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A comparison of the results from using the two different probability analysis 

approaches shows that the EDR method maintains good accuracy and at the same 

time provides a higher computational efficiency compared with MCS. From the 

analysis results obtained with both MCS and the EDR method, two points are clear: 

first, Bayesian reliability increases with the increase of the reliability value 

corresponding to each set of epistemic data; secondly, the updated Bayesian 

reliability increases with the addition of more epistemic data into the Bayesian 

reliability analysis. This is because the Bayesian reliability represents not only the 

design uncertainty of the system but also the uncertainty due to the limiting 

information represented by the epistemic uncertainties. As more data is involved, a 

better understanding of the characteristic of epistemic uncertainties can be expected 

and consequently a higher Bayesian reliability can be realized. Also, the Bayesian 

reliability analysis approach proposed in this dissertation offers a convenient and 

effective method for the performance evaluation of the problems involving several 

different types of uncertainty and where uncertainty data are continuously collected 
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Table 4-3:   55 reliabilities corresponding to 55 epistemic data sets (by MCS) 

Data 

Set 
Rel. 

Data 

Set 
Rel. 

Data 

Set 
Rel. 

Data 

Set 
Rel. 

Data 

Set 
Rel. 

1 0.9973 12 1.0000 23 0.9987 34 0.9995 45 0.9988 

2 1.0000 13 0.9993 24 0.9970 35 0.9998 46 0.2703 

3 0.9993 14 1.0000 25 1.0000 36 0.9999 47 0.9987 

4 0.9945 15 1.0000 26 0.9951 37 0.9999 48 1.0000 

5 0.8265 16 1.0000 27 0.9970 38 0.9974 49 0.9955 

6 0.9996 17 0.9999 28 0.9899 39 0.9977 50 0.9937 

7 0.9985 18 0.9991 29 0.9998 40 0.9918 51 0.9918 

8 1.0000 19 0.9999 30 1.0000 41 0.9007 52 1.0000 

9 1.0000 20 0.9993 31 0.9993 42 0.9976 53 0.9994 

10 1.0000 21 1.0000 32 1.0000 43 0.9778 54 0.2109 

11 1.0000 22 0.9999 33 0.9963 44 0.9730 55 0.4436 

 

Table 4-4:   24 reliabilities corresponding to 24 new data sets (by MCS) 

Data 
Rel. 

Data 
Rel. 

Data 
Rel 

Data 
Rel 

Data 
Rel 

Data 
Rel 

Set Set Set Set Set Set 

1 0.9929 5 0.9993 9 0.9996 13 0.8864 17 1.0000 21 0.9842 

2 0.9999 6 0.9994 10 0.9989 14 1.0000 18 1.0000 22 0.9866 

3 0.9995 7 0.9996 11 1.0000 15 0.9963 19 1.0000 23 0.9998 

4 0.9993 8 0.9999 12 1.0000 16 0.9240 20 0.8973 24 1.0000 
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Table 4-5:   55 reliabilities corresponding to 55 epistemic data sets (by EDR) 

No. 

Data 

Set 

Rel. 

No. 

Data 

Set 

Rel. 

No. 

Data 

Set 

Rel. 

No. 

Data 

Set 

Rel. 

No. 

Data 

Set 

Rel. 

1 0.9978 12 1.0000 23 0.9991 34 0.9998 45 0.9993 

2 1.0000 13 0.9997 24 0.9976 35 0.9998 46 0.2642 

3 0.9996 14 1.0000 25 1.0000 36 1.0000 47 0.9992 

4 0.9953 15 1.0000 26 0.9963 37 1.0000 48 1.0000 

5 0.8243 16 1.0000 27 0.9977 38 0.9982 49 0.9963 

6 0.9998 17 0.9999 28 0.9893 39 0.9984 50 0.9944 

7 0.9991 18 0.9995 29 0.9998 40 0.9917 51 0.9915 

8 1.0000 19 1.0000 30 1.0000 41 0.8938 52 1.0000 

9 1.0000 20 0.9996 31 0.9996 42 0.9984 53 0.9997 

10 1.0000 21 1.0000 32 1.0000 43 0.9755 54 0.2070 

11 1.0000 22 0.9999 33 0.9971 44 0.9702 55 0.4394 

 

 

Table 4-6: 24 reliabilities corresponding to 24 new data sets (by EDR) 

Data 
Rel. 

Data 
Rel. 

Data 
Rel. 

Data 
Rel. 

Data 
Rel. 

Data 
Rel. 

Set Set Set Set Set Set 

1 0.9928 5 0.9996 9 0.9998 13 0.8814 17 1.0000 21 0.9835 

2 0.9999 6 0.9997 10 0.9993 14 1.0000 18 1.0000 22 0.9867 

3 0.9997 7 0.9998 11 1.0000 15 0.9969 19 1.0000 23 0.9999 

4 0.9996 8 0.9999 12 1.0000 16 0.9190 20 0.8915 24 1.0000 
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(a) (b) 

Figure 4-9: Bayesian reliability with 55 sets data: (a) by MCS, (b) by EDR 

 

  

(a) (b) 

Figure 4-10 Updated Bayesian reliability with 24 new data sets:  

(a) by MCS, (b) by EDR 

 

4.5.2 Lower control arm design problem 

In this case study, Bayesian RBDO is performed on a lower control arm for the 

High Mobility Multipurpose Wheeled Vehicle (HMMWV). Vehicle suspension 



 

 86 
 

systems experience intense loading conditions throughout their service lives.  For the 

purpose of validating the Bayesian RBDO method, a HMMWV lower control arm is 

presented as a case study.   

The lower control arm is modeled with plane stress elements using 54,666 nodes, 

53,589 elements, and 327,961 DOFs, where all welds are modeled using rigid beam 

elements.  For FE and design modeling, HyperWorks 7.0 is used.  The loading and 

boundary conditions for this case study are shown in Fig. 4-11, where loading is 

applied at the ball-joint (Point D) in 3 directions, and the boundary conditions are 

applied at the bushings (Points A and B) and the shock-absorber/Spring Assemble 

(Point C).  Due to a lack of data, the loads are considered as epistemic random 

variables.  The design variables for this problem are the thicknesses of the seven 

major components of the control arm, as shown in Fig. 4-12.  The statistical 

information of these components, shown in Table 4-7, is well known, and these 

random parameters are therefore considered as aleatory variables in Bayesian RBDO. 

To determine the hot spots (high stress concentrations) in the model, which are 

used to determine the constraints, a worst case scenario analysis of the control arm is 

performed.  For this worst case scenario, all the design variables are set at their lower 

bounds as shown in Table 4-8, and all the loads are set at their highest values attained 

from the epistemic data points. 

From the worst case scenario, thirty nine constraints (G1 to G39) are defined on 

several critical regions using the von Mises stress in Fig. 4-13. For those constraints, 

Bayesian reliabilities are defined as 
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The PDFs for reliabilities at the critical spots are estimated using Bayesian 

inference. Four representative PDFs (G1, G24, G35 and G38) are plotted in the dotted 

curve in Fig. 4-14 to Fig. 4-17. The extreme distributions (solid curves) of the 

reliability PDFs are presented in the figures. The median values of the extreme 

distribution are then defined as the Bayesian reliabilities for different constraints 

which are also plotted in Fig. 4-14 to Fig. 4-17 as vertical dash lines. As illustrated in 

these figures, G1 and G35 (the most critical spots at the current design point) are much 

less reliable than G24 and G38. This observation is consistent with a stress contour in 

Fig. 4-13, since the stresses in G1 and G35 are extremely high. When a target Bayesian 

reliability is set to 90%, G1 and G35 are violated but others are inactive. 

 

Table 4-7: Random properties in lower control Arm model 

Random 

Variable 

Lower Bound 

of Mean 
Mean Std. Dev. Dist. Type 

X1 0.1 0.12 0.006 Normal 

X2 0.1 0.12 0.006 Normal 

X3 0.1 0.18 0.009 Normal 

X4 0.1 0.135 0.00675 Normal 

X5 0.15 0.25 0.0125 Normal 

X6 0.1 0.18 0.009 Normal 

X7 0.1 0.135 0.00675 Normal 
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Figure 4-11: Three loading variables 

(Epistemic) 

Figure 4-12: Seven thickness variables 

(Aleatory) 

 

                

Figure 4-13:   39 Critical constraints of the lower control A-Arm model 

 

  

Figure 4-14: Bayesian reliability for G1 Figure 4-15: Bayesian reliability for G24 
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Figure 4-16: Bayesian reliability for G35 Figure 4-17: Bayesian reliability for G38 

 

The control arm is now used to demonstrate Bayesian RBDO. In this example, 

seven thickness design variables are considered as aleatory random variables, 

whereas three load variables (not design variables) are considered as epistemic 

random variables. 50 data sets are employed for the epistemic loads during Bayesian 

RBDO. These samples are randomly generated using the assumed distributions 

shown in Table 4-8.  The properties of the design and random variables are shown in 

Table 4-9. 

 

Table 4-8: Assumed random properties for epistemic uncertainties 

Epistemic Variable Distribution 

Fx ~  Normal(1900, 95) 

Fy ~  Normal(95, 4.75) 

Fz ~  Normal(950, 47.5) 
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Table 4-9: Random properties in lower control A-Arm model 

Random 

Variable 
dL 

µX=d 

(Mean) 
dU 

Std. 

Dev. 

Dist. 

Type 

X1 0.1 0.120 0.5 0.00600 Normal 

X2 0.1 0.120 0.5 0.00600 Normal 

X3 0.1 0.180 0.5 0.00900 Normal 

X4 0.1 0.135 0.5 0.00675 Normal 

X5 0.15 0.250 0.5 0.01250 Normal 

X6 0.1 0.180 0.5 0.00900 Normal 

X7 0.1 0.135 0.5 0.00675 Normal 

 

With 39 constraints, Bayesian RBDO is formulated as 

 

Minimize  
( )

Subject to  ( ( ) 1 0) (0) ( ),  1, ,39
i i

Bi
B i G t

U

Mass
s

P G F i
s

β= − ≤ = ≥ Φ =
X

X ⋯  (27) 

In this study, target reliability is set to RB,i
t = 90%. Ten design iterations reach the 

Bayesian reliability-based optimum design. The histories of the design parameters, 

objective function, and the Bayesian reliabilities for significant constraints are shown 

in Table 4-10, Fig. 4-18 and Fig. 4-19. At the optimum design, three constraints, G1, 

G35 and G38, become active and others are feasible. Figures 4-20 and 4-21 illustrate 

the reliability PDFs and Bayesian reliabilities at the optimum design for G1, G24, G35 

and G38, of which the PDFs at the initial design are shown in Fig. 4-14 to Fig. 4-17. 

The stress contours and the hot spots for the initial design and optimum designs are 

shown in Figs.4-22 and 4-23. 
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Finally, the Bayesian reliability-based optimum design is verified by MCS with 

10,000 samples. In this verification, three epistemic load variables are assumed to 

follow the distributions in Table 4-8. At the optimum design, reliabilities for G1, G35 

and G38 are 98.85%, 99.15%, and 98.6%. The sufficiency requirement assures higher 

reliability than the target reliability, 90%. 

 

Table 4-10:   Bayesian RBDO design history for lower control arm design 

Design  

Iteration 

Design 
Mass 

X1 X2 X3 X4 X5 X6 X7 

1 0.12 0.120 0.180 0.135 0.25 0.180 0.135 30.76 

2 0.10 0.100 0.109 0.307 0.15 0.500 0.100 37.04 

3 0.10 0.143 0.143 0.100 0.15 0.500 0.100 26.70 

4 0.10 0.144 0.153 0.107 0.15 0.242 0.500 28.013 

5 0.10 0.137 0.153 0.141 0.15 0.500 0.100 29.64 

6 0.10 0.138 0.157 0.151 0.15 0.500 0.100 30.51 

7 0.10 0.138 0.156 0.156 0.15 0.500 0.100 30.84 

8 0.10 0.137 0.156 0.158 0.15 0.500 0.164 31.01 

9 0.10 0.137 0.156 0.160 0.15 0.500 0.156 31.11 

10 (optimum) 0.10 0.137 0.1559 0.1598 0.15 0.500 0.177 31.13 
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Figure 4-18: Objective function history 

of lower control arm design 

Figure 4-19: Bayesian reliability history 

of lower control arm design 

 

 

  

Figure 4-20 Bayesian reliability for G1, 

G35 and G38 at the optimum design 

Figure 4-21: Bayesian reliability for G24 

at the optimum design 
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(a) 

 

(b) 

Figure 4-22:  Element stress contour for G35 

(a) at the initial design and (b) at the optimum design 

 

 

(a) 

 

(b) 

Figure 4-23:  Element stress contour for G38 

(a) at the optimum design and (b) at the initial design 

 

4.5.3 Power transformer winding bolt joint design 

Power transformers are among the most expensive elements of high-voltage 

power systems. The power transformer vibration induced by the magnetic field 

loading will cause the windings support joint loosening or the fatigue failures, which 

will gradually increase the vibration amplitude of the winding and eventually damage 

the core. This case study aims at employing the proposed efficient Bayesian RBDO to 
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design the bolt joints for the power transformer against the fatigue failure. A validated 

power transformer bolt joint model is accomplished in the finite element analysis tool 

ANSYS 10 and shown in Fig. 4-24, together with the global power transformer model 

in which one of outside wall is concealed so that the inner structure can be presented. 

The detail of the winding bolt joints is shown in Fig. 4-25 from different viewing 

angles, with which the windings of the power transformer are assembled with the 

bottom fixture. The transformer is fixed at the bottom and the vibration load is 

applied to the magnetic core with the frequency of 120 Hz. The random variables and 

the statistical information for this case study are listed in Table 4-11, with 6 design 

variables as aleatory uncertainties and 3 epistemic variables. 

 

  

(a) (b) 

Figure 4-24: A power transformer and bolt joint FE models 

(a) Power Transformer Global Model without Covering Wall, and (b) A Bolt Joint 
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(a) (b) 

Figure 4-25: Winding support bolt joint, 

(a) side view, (b) bottom view 

 
 

 

Table 4-11: Random variables and statistical information for transformer joints 

Random     

variables 
Descriptions 

Information 

Dist.      

Type 

Low  

Bound 

Upper 

Bound 

Design Variables 

(Aleatory 

Uncertainties) 

X1:  I-Beam Thickness N(d1, 0.22 ) 5 10 

X2:  Support Hinge Height N(d2, 0.22) 5 10 

X3:  Support Hinge Inner Radium N(d3, 2
2) 40 50 

X4:  Support Hinge Outer Radium N(d4, 2
2) 65 75 

X5:  Angular width of the          

Support Hinge 
N(d5, 0.22) 5 10 

X6:  Bolt Joint Stud Radium N(d6, 0.022) 0.5 1.5 

Epistemic 

Uncertainties 

X7:  X directional dynamic loading Fx 50 data samples 

X8:  Y directional dynamic loading Fy 50 data samples 

X9:  Z directional dynamic loading Fz 50 data samples 
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In this study, the response value being attained through the fatigue analysis is 

cumulative fatigue damage ratios, D = designed life/fatigue life, where the designed 

life is 15 years, and the structure is safe for fatigue when D is less than 1. The 

designed fatigue life is projected to the critical stress range during the cyclic loading 

due to the magnetic field applied on the winding cores. The power transformer bolt 

joint contact surface is simulated with the string elements in between two contact 

surfaces and 27 design constraints are identified through an initial simulation run, as 

shown in the Fig. 4-26. The objective of this design problem is to minimize the 

overall weight (Volume) of the transformer joints with 27 fatigue constraints as hot 

spots identified in Fig. 4-26. The Target Bayesian reliability is set to 90% with a 

confidence level of 95%. Bayesian RBDO is applied on this design problems and the 

Bayesian reliability-based optimum design is reached after totally 29 design 

iterations. The histories of the design parameters, objective function, and the 

Bayesian reliabilities for significant constraints are shown in Table 4-12, and Figs. 4-

27. At the optimum design, two constraints, G2, and G11 which are two hot spots 

located at the end of two bolt studs, become active and others are inactive. 

As is shown in the Table 4-12 and Fig. 4-27 (a), the total volume of the joint has 

been substantially reduced compared with the initial design. With a user defined 

confidence level of 95%, the maximum Bayesian Reliability can be reached with 50 

data samples is 0.9430. As is shown in Fig. 4-27(b), the Bayesian reliabilities at the 

optimum design are equal or close to this maximum Bayesian reliability for most of 

constraints except two active ones. Due to the computational expensiveness, Bayesian 

RBDO is only carried out with 95% confidence level. However, it can produce 
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different optimum designs based on different user-defined confidence levels and 

target Bayesian reliabilities. This case study demonstrates the effectiveness and 

applicability of the proposed Bayesian RBDO methodology on complex engineering 

design applications.  

 
 

            

Figure 4-26: 27 Design constraints selected based on the initial simulation results 
 

Table 4-12: Design history of the power transformer joint case study 

Design 

Iteration 
d1 d2 d3 d4 d5 d6 Volume 

Initial Design 6.000 6.000 45.000 70.000 8.000 1.000 11825.096 

1 5.000 7.110 48.000 67.000 5.000 0.500 10854.665 

2 5.000 7.091 47.250 67.750 5.750 0.641 11026.164 

3 5.000 7.484 48.000 67.000 5.000 0.570 10895.410 

… … … … … … … … 

25 5.000 6.702 47.990 67.047 5.010 0.585 10825.283 

26 5.000 6.738 47.984 67.047 5.015 0.584 10829.502 

27 5.000 6.756 47.982 67.047 5.017 0.584 10831.616 

28 5.000 6.765 47.980 67.047 5.019 0.584 10832.673 

29(Optimum) 5.000 6.763 47.997 67.047 5.000 0.584 10829.601 
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(a) (b) 

Figure 4-27: Design process of the power transformer bolt joint case study:                                

(a) objective function, and (b) Bayesian reliabilities for five constraints 

 

4.6 Summary  

 Practical engineering analysis and design problems involve both sufficient 

(aleatory) and insufficient (epistemic) data for their random inputs, such as geometric 

tolerances, material properties, loads, etc. Conventional RBDO methods cannot 

handle the design problems that involve both aleatory and epistemic uncertainties 

simultaneously. To tackle such design problems, Bayesian RBDO has been proposed. 

In this design framework, (1) the Bayesian binomial inference model has been 

employed for the reliability modeling; (2) Bayesian reliability is uniquely defined for 

the design purpose with a user provided confidence level; (3) an innovative way of 

the sensitivity analysis for Bayesian reliability is developed to avoid complicated 

mathematical derivation and potential numerical singularities; and (4) the EDR 

method is integrated with Bayesian RBDO for Bayesian reliability analysis to 
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improve its efficiency and accuracy. Three engineering case studies are employed to 

demonstrate the Bayesian reliability analysis procedure and the developed Bayesian 

RBDO methodology.  In these case studies, the random parameters related to 

manufacturing variability and material properties are considered as the aleatory 

random parameters, whereas the random parameters associated with the load 

variability are regarded as the epistemic random parameters. It is found that the 

Bayesian RBDO framework can be generally applied to engineered system design 

problems in the presences of both aleatory and epistemic uncertainties, where the 

conventional RBDO model can be viewed as a special case for the developed 

Bayesian RBDO methodology. In addition, the EDR method enhances numerical 

efficiency and accuracy for Bayesian RBDO.  
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Chapter 5:  Sensing Function Design for Structural Health 

Prognostics 

With the technical developments presented in previous two chapters, system 

reliability for a given engineered system can be assessed within a general CIM 

framework; moreover an engineered system can be designed to satisfy given target 

reliability levels using the developed Bayesian RBDO technique. So far the work has 

been mainly focused on addressing the reliability issue in the system design and 

manufacturing stage. Thus, Ch.5 and Ch.6 will focus on the reliability issue of an 

engineered system in the system operation stage. This chapter presents the research 

solution to the third challenging question, as introduced in Chapter 1, which is how 

sensor networks can be designed to effectively monitor system health degradation 

under highly uncertain operational conditions. In this chapter, a generic sensor 

network (SN) design framework based on a probabilistic detectability measure is 

developed. Section 5.1 defines the detectability measure for a given SN, Section 5.2 

presents the detectability analysis, and the generic SN design is proposed in Section 

5.3. 

5.1 Detectability of a Sensor Network 

In the proposed SN design framework, a set of health states, denoted as HSi, i = 1, 

2,…, NHS, will first be identified based on critical failure modes for the system under 

consideration and their combinations. The correct detection of each health state is 

then defined in a probabilistic form to measure the performance of a given SN design. 
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This yields a probability of detection (PoD) matrix for a given SN design, from which 

the SN detectability can be derived.  

5.1.1 Probability of Detection Matrix 

The general form of a PoD matrix for a given SN design is shown in Table 5-1, 

where the Pij is defined as the conditional probability that the structural system is 

detected to be at the HSj by the SN given the system is at the HSi. Clearly, Pij 

represents the probabilistic relationship between the true health state of the system 

and the detected health state by the SNs. Mathematically, it is expressed as 

 Pij = Pr (Detected as HSj | System is at HSi) (5.1) 

The diagonal term in the PoD matrix represents the probability of correct 

detection for each corresponding system health state. 

 

Table 5-1: Probability of detection (PoD) matrix 

Probability 
Detected Health State 

1 2 … NHS 

True Health 

State 

1 11P  12P  … 
HS1NP  

2 21P  22P  … 
HS2NP  

… … … … … 

NHS 
HSN 1P  

HSN 2P  … 
HS HSN NP  

 

5.1.2 Detectability Measure 

Based on the PoD matrix, the detectability measure for the ith system health state 

HSi is defined as  
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 Di = Pii = Pr (Detected as HSi | System is at HSi) (5.2) 

The above detectability definition provides a probabilistic measure for the SN 

performance considering uncertainties involved in the SN sensing process, such as 

material properties for structural systems, loading conditions and operating 

environments. Based on this definition, the diagonal terms in the PoD matrix, which 

represent the probabilities of correct detection for predefined health states, will 

determine the overall SN performance, and thus constitute NHS number of 

performance constraints on the detectability during the SN design optimization 

process. Since the detectability measure involves the computation of multiple 

conditional probabilities, an efficient and accurate method must be developed for the 

detectability analysis. 

5.2 Detectability Analysis 

Since the detectability is defined as a probabilistic measure for the performance of 

a SN, the detectability analysis thus needs to take into account various uncertainties 

involved in the structural system itself and/or the system operating condition as well. 

This section will present the detectability analysis method based on the structural 

simulation and system health state classification. The rest of this section will begin 

with a mathematical example of detectability calculation. Valuable information will 

be derived from the discussion of the example, and the detectability analysis method 

will then be presented.  
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5.2.1 An Introductory Example 

In this example, suppose that only one sensor will be used for the damage 

detection. For a healthy condition (Health State 1, HS1), the sensor output is assumed 

to follow a normal distribution as N (0, 0.52), whereas the distribution of sensor 

output will be changed to N (1, 0.82) if there is a minor damage in the system (Health 

State 2, HS2). If there is a severe damage in the system (Health State 3, HS3), the 

sensor output will further increase and follow a normal distribution as N (5, 12). In 

what follows, we will find out the detectability values for all three defined health 

states based on the available information.   

To calculate the detectability measure for each health state, it is necessary to 

classify any given sensory data into one of the three health states. This can be 

accomplished simply by defining the normalized distance between the sensory data 

and the center data point for each health state, and consequently the given set of 

sensor point will be classified into the health state which has the smallest normalized 

distance. In this example, the neutral point X1-2 between HS1 and HS2 can be 

calculated as 

 1 2 1 20 1

0.5 0.8

X X− −− −
=  (5.3) 

which provides X1-2 = 0.3846. Similarly, the neutral point X2-3 between HS2 and HS3 

can be calculated as 

 2 3 2 31 5

0.8 1

X X− −− −
=  (5.4) 

which provides X2-3 = 2.7778. Figure 5-1 shows the sensor outputs at different health 

states, X1-2, and X2-3. 
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Figure 5-1: Sensor outputs and neutral points between health states 

 

Based on the definition in Eq. (1), the detectability of each health state in this 

mathematical example can be calculated as  

 ( )( )
1 11 1 1

2

1 2

Pr(Detected as  | System is at )

Pr | ~ 0,0.5

0.7791

D P HS HS

X X X N−

= =

= ≤

=

  (5.5) 

 ( )( )
2 22 2 2

2

1 2 2 3

Pr(Detected as  | System is at )

Pr | ~ 1,0.8

0.7660

D P HS HS

X X X X N− −

= =

= ≤ ≤

=

 (5.6) 

 ( )( )
3 33 3 3

2

2 3

Pr(Detected as  | System is at )

Pr | ~ 5,1

0.9869

D P HS HS

X X X N−

= =

= ≥

=

 (5.7) 

From the analytical calculation of the detectability measure in the example above, 

it is clear that the classification of the health states and the statistical distributions of 

sensor outputs are crucial for the SN detectability analysis. However, in most 

engineering applications, an SN is always composed of multiple sensors and required 

to deal with much more than three different health states. Consequently, the analytical 
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analysis of SN detectability through the calculation of neutral points between health 

states becomes practically impossible. Besides, the statistical distributions of all 

sensors’ outputs for all health states are usually not available. Instead, only a finite set 

of sensory data might be available as training data set to characterize the sensor 

output for each system health state. Thus, a more sophisticated health state classifier, 

which should be able to classify any given set of multi-dimensional sensory data into 

multiple different system health states based on a finite set of training data, is needed 

for the SN detectability analysis. In this study, the Mahalanobis distance (MD) 

classifier is employed for this classification purpose. 

5.2.2 Mahalanobis Distance Classifier 

The Mahalanobis distance provides a powerful method of measuring how similar 

one set of sensor output data is to another predefined set of training data, and can be 

very useful for identifying which predefined health state is the most similar one to the 

current system health state for the purpose of the health state classification. The MD 

classifier quantitatively measures the similarity between a given sensory data set and 

the training data sets for the ith system health state through the MD, expressed as 

 ( ) ( )1T

i i i
MD X M X M−= − Σ −  (5.8) 

where X is the given sensory data set to be classified, Mi is the vector of mean values 

of the training data set for HSi, and Σ is the covariance matrix of the training data set 

for HSi. The given sensory data set will be classified by the classifier into a 

predefined system health state that gives the smallest MD, or in other words the 

highest similarity. The following mathematical example demonstrates the system 

health state classification using the MD classifier.  
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In this example, two sensors are used and four system health states including one 

healthy state HS1 and 3 faulty states HS2 to HS4 are predefined with 10 sets of data for 

each health state as the training data sets as shown in Table 5-2. To demonstrate the 

MD classifier, there are 5 sets of sensory data in total, as shown in the first two 

columns of Table 5-3, need to be classified into one of the four predefined health 

states. Using the MD classifier, the MDs for each sensory data set can be calculated 

with the training data set shown in Table 5-2 using Eq. (5.8). The MD values together 

with the classified system health state for each sensory data set are also shown in 

Table 5-3.   

Based on the above procedure, the PoD matrix can be evaluated as follows. 

Suppose that there are totally Ti number of testing sensory data sets for HSi, and in 

which after the classification process Tij sets classified into HSj , where i, j = 1, 2, …, 

NHS, then based on the definition of the PoD matrix, the probability of detection Pij 

can be approximately calculated as 

 
ij

ij

i

T
P

T
≃  (5.9) 

Besides, since one set of sensory signal will definitely be classified into one of the 

predefined NHS health states, thus, 

 
1

HSN

ij i

j

T T
=

=∑  (5.10)  

Eq. (5.10) Indicates that the summation of each row of the PoD matrix equals to one. 

Similarly, the detectability for HSi can be obtained as 

 ii
i ii

i

T
D P

T
= ≃   (5.11) 
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Table 5-2: Characteristic data for system health states 

HS1 HS2 HS3 HS4 

S1 S2 S1 S2 S1 S2 S1 S2 

-0.22 -0.09 1.15 -1.20 1.20 -2.51 -1.00 1.28 

-0.83 0.36 0.33 -0.66 2.13 -1.69 -1.16 0.87 

0.06 -0.29 1.36 -0.59 1.47 -1.75 -0.45 0.81 

0.14 1.09 1.81 -0.64 2.71 -1.15 -1.94 0.85 

-0.57 -0.07 0.65 -0.35 1.60 -1.70 -0.79 0.26 

0.60 0.06 1.43 -0.67 2.26 -2.32 -0.55 0.88 

0.59 0.53 1.63 -0.40 2.11 -1.81 -0.63 1.06 

-0.02 0.03 0.20 -1.60 1.54 -2.50 -0.71 1.16 

0.16 -0.05 0.28 -1.01 0.91 -2.01 -0.98 1.72 

0.09 -0.42 1.29 -1.08 1.97 -2.02 -0.66 0.82 

 

 

Table 5-3: System health states classification using MD classifier 

Sensory Data Mahalanobis Distance Classified 

State S1 S2 HS1 HS2 HS3 HS4 

0.74 -1.05 10.75 0.39 17.68 40.42 HS2 

1.59 -2.12 42.55 18.16 0.20 94.23 HS3 

-0.93 1.22 11.81 64.75 169.94 0.43 HS4 

-0.12 -0.21 0.58 10.63 62.58 12.28 HS1 

1.89 -1.97 44.81 17.91 0.07 96.03 HS3 
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5.2.3 Procedure of Detectability Analysis 

Based on the preceding discussion, defining the system health states is crucial for 

the SN design, which will determine the functionality of the SN to be designed. 

Through defining different type of system health states, SNs can be designed to tackle 

different failure mechanisms for structural systems. After defining the health states, 

collecting sample training and testing data sets for each health states are the next step, 

which can be accomplished through the structural simulation using valid numerical 

models, such as finite element analysis (FEA). The sample size of the training and 

testing data sets will determine the accuracy of the detectability evaluation using the 

proposed MD classifier. With the training and testing data sets available, the 

detectability for each predefined health state for a given SN design can be evaluated 

in the same way as we did in the previous example.  

The overall procedure of the detectability analysis can be summarized in Table 5-

4. 

Table 5-4: Procedure for detectability analysis 

STEP 1: Define the problem and system health states; 

STEP 2: Collect characteristic training and testing data sets for each predefined 

system health state;  

STEP 3: Extract a corresponding subset of training and testing data, for a given 

SN design, from the characteristic data sets obtained in STEP 2; 

STEP 4: Perform classification using the MD classifier defined by Eq. (5.8); 

STEP 5: Calculate the detectability measure for each health states using Eq. 

(5.11). 
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5.3 Sensor network design optimization 

The appropriate selection of the sensing devices, such as fiber optics, 

piezoelectric, MEMS sensors, accelerometers, or acoustic sensors, is determined by 

the sensor’s characteristic attributes, such as full-scale dynamic range, sensitivity, 

noise floor, and analog-to-digital converter resolution. Thus, the design variables 

involved in the proposed design framework are the decision variables for the selection 

of sensing devices, numbers of selected sensing devices, sensing device locations, and 

the parameters for controlling the sensing process, such as excitation frequency, 

loading levels. The design constraints are SN probabilistic performance requirements 

considering various uncertainties presented in the structures as well as the operating 

conditions. The performance requirements include the SN detectability for each 

predefined system health state. With all factors considered above, the SN design 

optimization problem can be formulated as: 

 ( )
( )

Minimize    C

subject to     X   

                  1, 2,...,

t

i i

HS

D D

i N

≥
=

T N Loc sX , ,  X ,  X  (5.12) 

where XT is a vector of the binary decision variables for the selection of the types of 

sensing devices, XN is a vector consisting of numbers of each selected type of sensing 

devices, XLoc is a 3-D vector of the location of each sensing device, and Xs is a vector 

of sensing control parameters; NHS is the total number of predefined health states for 

the structural system. Di is the detectability measure of the SN for the ith predefined 

health state, which is a function of the design variables XT, XN, XLoc and Xs, whereas 

Di
t is the target SN detectability for the ith predefined health state. To make the design 

optimization problem manageable, the design space of sensor locations need to be 
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properly defined. In this SN design problem, the sensor noise is not considered and 

the randomness for SN outputs is mainly due to the variability of structural responses.  

The SN design optimization problem in Eq. (5.12) contains discrete decision 

variables for the selection of sensing devices, integer variables for the number of 

selected sensing devices, as well as continuous variables for the sensor locations. 

Thus, it is formulated as a mixed-integer nonlinear programming (MINLP) problem 

[Adjiman et al. 2000], and heuristic algorithms such as Genetic Algorithms (GAs) can 

be used as the optimizer to for the optimization purpose. In this study, the GA is 

employed for the example problem that will be detailed in the subsequent section. 

More alternative algorithms for solving the MINLP problem can be found in 

references [Adjiman et al. 2000; Wei and Realff 2004]. 

Figure 5-2 shows the flowchart of the SN design optimization process. As shown 

in the figure, the process starts from an initial SN design and goes into the design 

optimization subroutine (the right hand side grey box), which will carry out the SN 

cost analysis, call the performance analysis subroutine (the left hand side grey box) to 

evaluate the performance of the SN at the current design, and execute the optimizer to 

generate the new SN design until an optimal SN design is obtained. In the 

performance analysis subroutine, the detectability analysis as discussed in the 

previous section will be carried out. Before solving the optimization problem, valid 

system simulation models have to be built and structural simulations have to be 

accomplished so that the training and testing data sets for each predefined health state 

are available.  



 

 111 
 

 

Figure 5-2: Flowchart of the detectability based framework for structural SN design 

 

5.4 Case Studies 

This section demonstrates the feasibility of the proposed detectability based 

sensor network design framework for structural sensor network design. Two 

examples, one rectangular plate with crack and corrosion failure modes and another 

power transformer winding joint with joint mechanical failures are used to 

demonstrate the proposed methodology.   

5.4.1 Rectangular Plate Example 

In this case study, a two-end fixed rectangular plate (2m x 1m), as shown in Fig.5-

3, is employed to demonstrate the developed sensor network design methodology. 

The plate is assumed to have 6 potential damages as indicated in the figure from D1 

to D6, in which D1 and D2 indicate the crack at the fixed ends of the plate, D3 and 
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D4 indicate the corrosion in the middle field of the plate, whereas D5 and D6 indicate 

cracks at the middle edges of the plate. With different combinations of these 6 

damage locations, 9 health states of the plat are identified for this study as shown in 

table 5-5. The plate is modeled using the finite element too ANSYS 10 using shell 

elements with the thickness of each node follows a Gaussian random field variable. 

The damages of above mentioned crack or corrosion are realized by reducing the 

Young’s modulus of the material. Uncertainties involved in this case study are listed 

in Table 5-6.  

 

 

Figure 5-3: Two-end fixed rectangular plate with indicated damages 

 

 

Table 5-5: Definition of the health states for plate case study 

Health State HS1 HS2 HS3 HS4 HS5 HS6 HS7 HS8 HS9 

Damage 

Combinations 
- D1 D2 D3 D4 D5 D6 

D2 

& 

D6 

D1 

& 

D4 

 

D4

D5

D3

D1

D2 D6

F
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Table 5-6: Random variables for the plate case study 

Random 

Variables 
Descriptions Statistical Information 

h Plate thickness 
Gaussian Random Field:   

N(0.4, 0.012) for each node 

ρ Material property: density N(7.8e3, 2e22) 

E 
Material property: Young’s 

modulus 
N(3e7, 1.5e62) 

ν Material property: Poisson ratio N(2.7e-1, 5.4e-32) 

Ecr Young’s Modulus for crack failure N(3e2, 152) 

Eco 
Young’s Modulus for corrosion 

failure 
N(5e2, 10) 

 

The plate is modeled using the finite element tool ANSYS 10 with 800 of 3D 

shell63 elements in total. The thickness of plate is modeled by a Gaussian random 

field with each node independently follows a normal distribution, as shown in table 5-

5. The damages of above mentioned crack or corrosion are realized by reducing the 

Young’s modulus of the material. Uncertainties involved in this case study are also 

listed in Table 5-5. In this case study, the harmonic analysis with excitation 

frequencies from 0.1Hz to 1.6 Hz.  Figure 5-4 shows the vibration displacement 

responses for health states HS1 and HS2 with excitation frequencies f = 0.3Hz and f = 

1.0Hz.  As shown in the figure, the change of the vibration responses due to the 

introduced damage D1 is slight in terms of both locations and magnitudes, whereas 

the excitation frequency imposes an obvious effect. Thus, the sensors need to be 

optimally located and the excitation frequencies must be optimally chosen, in order to 

detect the minor changes for different health states. In this study, 100 sets of random 
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samples are used for simulation to generate the training data sets, whereas another 

100 sets are used as testing data sets.  

The objective function of this sensor network design problem is to minimize the 

total number of used sensors, whereas the constraints are the detectability 

requirements for each health state. The design variables includes the total number of 

sensors (accelerometers), each sensor’s location (the node number), and excitation 

frequency for each sensors, as we assume that active sensing approach is employed in 

this study.  Following the flowchart shown in Fig. 5-2 and the detectability analysis 

procedure listed in Table 5-4, the SN design problem in this case study was solved 

using the genetic algorithm (GA). To account for the stochastic feature of the GA, the 

SN design problem is repeatedly solved 1000 times, in which 819 runs successfully 

converged to the optimum design with a total number of 5 sensors, whereas 181 runs 

failed.  Figure 5-5 shows the detectability measure for each of 9 health states at the 

optimum SN design versus different total numbers of sensors.  As shown in Fig.5-5, 5 

sensors are required for the sensor network to satisfy a target detectability of 0.95.  

The SN with 5 sensors are obtained as the final optimum design and the sensor 

locations and excitation frequencies for this optimum design are listed in Table 5-7 

and shown in Fig. 5-6 as black dots. 
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(a) (b) 

  

(c) (d) 

Figure 5-4: Vibration displacement contour of the of the plate 

(a) HS1,with f = 0.3, (b) HS2 with f = 0.3, (c) HS1 with f = 1.0, (d) HS2 with f = 1.0 

 

 

Figure 5-5: Detectability for HSi (i = 1 ~ 9) at optimum designs 
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Table 5-7: Optimum SN design for the fixed-end plate case study 

Sensor Index 1 2 3 4 5 

Node Number 137 228 236 518 716 

Frequency 1.3 0.2 1.3 0.3 1.4 

 

 

Figure 5-6: Sensor locations for the optimum SN design 

 

5.4.2 Power Transformer Case Studies 

The monitoring of power transformers enables the transition from the traditional 

time-based maintenance to the condition-based maintenance, resulting in significant 

reductions in maintenance costs [Leibfield 1998]. Due to the difficulties of direct 

measurement inside the transformer, the data that are actually most often used for 

both diagnosis and prognosis of transformers are obtained through indirect 

measurements [Rivera et al. 2000]. For example, measurements of temperature are 

firstly accomplished at accessible points and a modeling of the gradient can then be 

used to induce the maximum temperature in some areas; electric parameters and 

analysis of moisture content of the cooling oil are often performed for the diagnosis 

D4

D5

D3

D1

D2 D6

F
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and condition-based maintenance of transformers, with frequency response analysis 

of electric characteristics being common [Allan et al. 1992]; the vibrations of the 

magnetic core and of the windings could characterize transitory overloads and 

permanent failures before any irreparable damage occurs. This case study aims at 

designing an optimum SN on the front wall surface of a power transformer. The 

measurements of the transformer vibration responses induced by the magnetic field 

loading enables the detection of mechanical failures of winding support joints inside 

the transformer.   

Description of the case study 

In this study, the winding support joint loosening is considered as the failure 

mode, the detection of which will be realized by collecting the vibration signal, 

induced by the magnetic field loading with a fixed frequency on the power 

transformer core, using the optimally designed SN at the external surface of the 

transformer. The validated finite element (FE) model of a power transformer was 

created in ANSYS 10 as shown in previous chapters in Fig. 3-13 and Fig. 4-24. 

Figure 5-7 shows 12 simplified winding support joints with 4 for each winding. The 

transformer is fixed at the bottom surface and a vibration load with the frequency of 

120 Hz is applied to the transformer core. The joint loosening was realized by 

reducing the stiffness of the joint itself. Different combinations of the loosening joints 

will be treated as different health states of the power transformer which will be 

detailed in the next subsection. 

The uncertainties in this case study are modeled as random parameters with 

corresponding statistical distributions listed in Table 5-8, which includes the material 
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properties, such as Young’s modulus’s, densities, Poisson ratios, for support joints 

and windings, as well other parts in the power transformer system. Besides, the 

geometry parameters are also considered as random variables. These uncertainties 

will be propagated into the structural vibration responses and will be accounted for 

when designing an optimum SN. 

 

 

Figure 5-7: Winding support joints and their numberings 

 

Table 5-8: Random property of the power transformer 

Random 

Variable 
Physical Meaning 

Randomness    

(cm, g, degree) 

X1 Wall Thickness N (3, 0.062) 

X2 Angular width of support joints N(15, 0.32) 

X3 Height of support joints N(6, 0.122) 

X4 Young’s modulus of support joint  N(2e12, 4e102) 

X5 Young’s modulus of loosening joints N(2e10, 4e82) 

X6 Young’s modulus of winding N(1.28e12,3e102) 

X7 Poisson ratio of joints N(0.27, 0.00542) 

X8 Poisson ratio of winding N(0.34, 0.00682) 

X9 Density of joints  N(7.85, 0.1572) 

X10 Density of windings N(8.96, 0.1792) 

1           2              3                4             5            6 
 

  7           8              9               10            11         12 
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Health States and Simulations 

For the purpose of demonstrating the proposed SN design methodology, 9 

representative health states (see Table 5-9) were selected from all possible 

combinations of 12 winding support joint failures. Among these 9 selected health 

states, HS1 denotes the healthy condition without any loosening joint, whereas HS2 to 

HS9 are health states with either one or two loosening joints. According to the 

statistical properties of random parameters in Table 5-8, 200 sets of random samples 

were generated and the simulations for each of 9 health states were carried out and 

the vibration response of the displacement amplitudes for all the finite element nodes 

on the outer wall surfaces were saved as the simulation results. The stress contour of 

the healthy state power transformer at the nominal values of the random parameters 

from the structural simulation is shown in Fig. 5-8, whereas the vibration response of 

the covering wall is shown in Fig.5-9. The first 100 sets of simulation results were 

used as the training data set and the others were used as testing data set. These 

simulation results were later used to evaluate the SN detectability. As mentioned in 

the previous section, this case study problem is formulated as designing an SN on the 

surface of the covering wall of the power transformer to minimize the cost of the SN 

while satisfying the detectability constraints for each health state, i.e., the 

detectability should be greater than a target detectability of 0.95.  

 

Table 5-9: Definition of system health states 

Health State HS1 2 3 4 5 6 7 8 9 

Loosening Joints - 1 2 3 1,2 1,3 1,5 1, 9 1, 11 
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Figure 5-8: Stress contour of the winding support for the healthy state of power 

transformer 

 

 

Figure 5-9: Vibration displacement contour of the power transformer covering wall 

for the healthy state of power transformer 

 

As the vibration displacement amplitude of each node on the surface of the 

covering wall was used as the simulated sensor (accelerometer) output. Thus, the 



 

 121 
 

design variables in this case study include: (1) total number of accelerometers, (2) 

location of each accelerometer, and (3) the direction (X or Z) of each accelerometer. 

Results and Discussion 

Following the flowchart shown in Fig. 5-2 and the detectability analysis 

procedure listed in Table 5-4, the SN design problem in this case study was solved 

using the genetic algorithm. To account for the stochastic feature of the GA, the SN 

design problem is repeatedly solved 1000 times, in which 615 runs can successfully 

converge to a feasible solution with 9 sensors and all constraints satisfied whereas 

385 runs failed to find a feasible SN design. Further in the 615 successful runs, only 

17 runs successfully converged to the global optimum design with a total number of 9 

sensors and detectability values for all health states are over the target detectability 

value 0.95. Figure 5-10 shows the detectability for each of 9 health states at the 

optimum SN design versus different total numbers of sensors. With the target 

detectability being 0.95, we obtained the optimum SN design on the outer wall 

surface (140cm x 90cm) with totally 9 sensors, as shown in Table 5-10 and Fig. 5-11. 

The detectability for each health state at the optimum design is listed in Table 5-11. 

The results of the power transformer case study demonstrate that the proposed SN 

design framework is capable to tackle the SN design problems for complicated 

engineered systems with multiple system health states and a variety of system input 

uncertainties. The authors also would like to address the following comments for the 

readers to better understand the problem. Firstly, in this case study, the GA was 

implemented for the design optimization and repeatedly executed for 1000 times. 

Although, for most of times as discussed above, the optimization converged to a 
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feasible design with the same minimum number of sensors, the convergence to local 

minima was also observed. Thus, it would be interesting to investigate other 

optimization algorithms (e.g., the particle swarm optimization [Valle et al. 2008]) to 

make the SN design process more robust; secondly, due the computational time, only 

100 samples were simulated for each health state, resulting in 2 decimal digits of 

precision in the detectability estimates. To obtain more accurate results, more samples 

from the structural simulation are needed. Lastly, to make the SN design more 

reliable, the redundancy could be easily integrated to the proposed SN design 

framework by adding the redundancy as an additional set of design variables and the 

SN reliability as an additional constraint. 

 

Figure 5-10: Detectability for HSi (i = 1 ~ 9) at optimum designs 
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Table 5-10: Optimum SN design for the power transform case study 

Sensor Index 
Location (cm) 

Direction 
x z 

1 -56.4 0.0 Z 

2 67.2 -34.4 X 

3 -2.6 -30.0 Z 

4 49.7 -34.4 X 

5 -57.9 30.0 X 

6 -30.6 15.3 X 

7 27.5 30.0 X 

8 39.3 35.2 X 

9 59.1 0.0 X 

 

Table 5-11: Detectability at optimum design for the power transform case study 

HS1 HS2 HS3 HS4 HS5 HS6 HS7 HS8 HS9 

1 1 1 1 0.98 1 1 0.98 1 

 

 

Figure 5-11: Optimal design of the distributed SN for power transformer case study 
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5.5 Summary 

This chapter presented the generic design framework for SN design optimization 

using the detectability measure while accounting for uncertainties in material 

properties and geometric tolerances. The proposed work defined the detectability 

measure to quantify the performance of a designed SN in a probabilistic form. Then, 

detectability analysis was developed based on structural simulation and health state 

classification, where the Mahalanobis distance classifier was proposed for health state 

classification. Finally, the generic SN design framework was formulated as a mixed 

integer nonlinear programming (MINLP). The genetic algorithm was used as the 

optimizer to solve the SN design optimization problem. The power transformer case 

study demonstrated that the proposed generic SN design framework is feasible to 

handle multiple failure modes and uncertainties in material properties and geometric 

tolerances. 
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Chapter 6:  A Generic Framework for Structural Health 

Prognostics 

Structural heath prognostics utilize sensory signals to monitor the health condition 

of an engineered system in the operational stage and predict the remaining useful live 

(RUL). The predictive remaining useful life information enables the system to be 

proactively maintained against potential system failures. This chapter presents the 

research solution to the fourth challenging question, as identified in Chapter 1, which 

is how remaining useful lives can be predicted accurately and timely under highly 

uncertain operational conditions.  

Structural health prognostics can be broadly applied to various engineered 

artifacts in an engineered system. However, techniques and methodologies for health 

prognostics become application-specific. Difficulties in developing an application-

generic methodology mostly result from heterogeneity of sensory data, a wide range 

of data acquisition frequency and size, and different characteristics in uncertain 

manufacturing and operational conditions. This chapter thus aims at formulating a 

generic framework for structural health prognostics, which is composed of four core 

elements: (i) a generic health index system, (ii) a generic offline training scheme 

using the sparse Bayesian learning (SBL), (iii) a generic online prediction scheme 

using the similarity-based interpolation (SBI), and (iv) an uncertainty propagation 

map for prognostic uncertainty management. This generic structural health 

prognostics framework is generally applicable to different engineered systems. The 

rest of Chapter 6 is organized in the following way. Section 6.1 provides an overview 

of the proposed framework, whereas Sections 6.2 to 6.5 presents the above mentioned 
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four core elements of the prognostics framework respectively. Two cases studies are 

presented in Section 6.6 to demonstrate the effectiveness of the proposed generic 

structural health prognostics methodology. 

6.1 Overview of the Framework  

Figure 6-1 outlines the proposed generic framework for structural health 

prognostics. This framework is unique in that it offers the general approaches for 

defining structural health index, building background health knowledge, and 

predicting RULs. 

The proposed generic health index system can model the health state of an 

engineered component or system using two health index measures: (i) Physics Health 

Index (PHI), and (ii) Virtual Health Index (VHI). The PHI uses a dominant physical 

signal as a direct health measure. With the growing complexity of engineered systems 

and embedded sensor networks, the mapping of a multitude of heterogeneous sensory 

signals to a dominant health measure is getting more and more difficult. In such 

cases, the VHI is proposed which uses a normalized health index as a function of 

multiple physical signals.  

The proposed generic offline training process is of great importance to structural 

health prognostics because online prediction is made based on background health 

knowledge built in the offline training process.  In the offline process, it is very 

important to build statistically rich background health knowledge, which can account 

for manufacturing variability and uncertain operational conditions. On the other hand, 

the statistically rich background health knowledge should be efficiently managed to 

enable real-time RUL prediction in the online predicting process, especially when 
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sensory data are massive and heterogeneous. The SBL scheme, such as the relevance 

vector machine (RVM), is a state-of-the-art technique for statistical regression that 

provides a regression result with not only a probabilistic form but also a great 

sparseness feature. 

 

 

Figure 6-1: A generic framework for structural health prognostics 

  

Table 6-1: Procedure of the generic structural health prognostics framework 

STEP1 Defining the prognostics problem and determining sensor 

configurations; 

STEP2 Acquiring training sensory signal sets from offline system unit; 

STEP3 Performing the offline learning process using the SBL technique with 

the training sensory signals and building the background health 

knowledge; 

STEP4 Acquiring testing sensory signals from online system units; 

STEP5 Predicting the RUL distributions using the SBI technique through the 

online prediction process, which employs the background health 

knowledge obtained from STEP 3. 
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The online prediction process employs the background health information for the 

health prognostics using the SBI technique. This framework also enables the 

continuous update of the health information and prognostics results in real-time with 

new sensory signals. Table 6-1 details the proposed unified prognostics framework 

with the five steps. STEP 2 to STEP 5 can be repeated to update the RUL 

distributions as new training sensory signals are acquired. 

 

6.2 Generic Health Index System 

This task considers massive training/testing sensory signals from embedded sensor 

networks over a complex engineered system. In this section, a generic health index 

system is proposed, which is composed of two distinguished health indexes: Physics 

Health Index (PHI) and Virtual Health Index (VHI). 

Physics Health Index (PHI): this health index requires ample understanding of 

physics-of-failures of engineered system units. The PHI is thus applicable if sensory 

signals are directly related to physics-of-failures. In general, the PHI uses a dominant 

physical signal as a direct health metric. In the literature, most engineering practices 

of health prognostics are based on various PHIs. For example, the vibration signal has 

been used to characterize the health condition of the roll bearing by [Gabreel et al. 

2005]; the radio frequency impedance has been used for the prognostics of electronic 

solder joint degradation [Kwon et al. 2008]; the  battery impedance value has been 

used to monitor the health condition of space application batteries [Saha et al. 2009]; 

and the capacitance of generator stator winding has been used for the wet bar 

detection and prognostics for water-cooled turbine generators [Inoue et al. 2003], and 
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so on. Just like the examples above, when sensory signals are directly related to 

physics-of-failures, it is straightforward and comprehensive to use the PHI for 

extracting health conditions of engineered system units. Otherwise, the application of 

the PHI is limited. It is expected that the mapping of a multitude of heterogeneous 

sensory signals to the dominant physical signal is getting more and more difficult 

with the growing complexity of engineered systems and embedded sensor networks. 

Virtual Health Index (VHI): the VHI is proposed as a possible solution to overcome 

the difficulty of the PHI above. This health index is applicable when there is no 

dominant physical signal. One-dimensional VHI can be extracted from multi-

dimensional sensory signals using advanced data processing techniques, such as 

weighted averaging methods [Xue et a;. 2008], Mahalanobis distance measure [Nie et 

al. 2007], flux-based methods [Baurle and Gaffney 2008]. 

This study employs a linear data transformation method to construct the VHI, and 

this transformation method is a special case of weighted averaging methods. Suppose 

there are two groups of multi-dimensional sensory dataset that represent the system 

faulty and healthy states, Q0 of M0×N matrix and Q1
 of M1×N matrix, respectively, 

where M0 and M1 are the numbers of dataset for system faulty and healthy states and 

N is the dimension of each dataset. With these two data matrices, a transformation 

matrix T can be obtained to transform the multi-dimensional sensory signal into the 

one-dimensional VHI as 

 ( )
-1

T T

off
=T Q Q Q S  (6.1) 

where Q=[Q0; Q1]
T, Soff = [S0, S1]

T, S0 is a 1×M0 zero vector and S1 is a 1×M1 unity 

vector. This transformation matrix T can transform any sensory signal from the 
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offline or online prediction process to the normalized VHI as H = T · Qoff or H = T · 

Qon where H is a 1×N vector, Qoff and Qon are offline and online sensory signals 

respectively.  The VHI can also be denoted as h(ti) for i = 1,…, N, varying between 0 

and 1. Since this VHI contains health condition signatures extracted from multi-

dimensional sensory signals, it can be used to construct background health knowledge 

(e.g., predictive health degradation curve) in the offline training process and to further 

conduct the online prediction process. 

6.3 Generic Offline Training Scheme 

The proposed offline training process aims at building background health 

knowledge using training sensory signals from offline system units. The SBL is 

employed to build the statistical form of background health knowledge, such as 

predictive health degradation curves for an engineered component of interest. 

The SBL is a generalized linear model in a Bayesian form and it shares the same 

functional form of the support vector machine (SVM). The SVM is a pervasive 

machine learning technique using a linear combination of kernel functions centered at 

a subset of the training data, known as support vectors. Despite its widespread 

success, the SVM suffers from a critical limitation, being that it makes point 

predictions rather than statistical predictions. To overcome this problem, Tipping has 

formulated this generalized linear model in a Bayesian form, named the relevance 

vector machine (RVM) [Tipping 2001]. It achieves comparable machine learning 

accuracy to the SVM but provides a full predictive distribution with substantially 

fewer kernel functions. To improve the efficiency and convergence of the RVM, 

several advances have been made for the original RVM, for example, the variational 
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RVM [Bishop and Tipping 2000], adaptive kernel RVM [Nonero and Hansen 2002] 

and so on. This section briefly discusses a sparse linear regression model and the 

RVM with the sparse Bayesian learning for data regression and feature extraction. 

Sparse Bayesian Learning 

This dissertation proposes to use a sparse Bayesian learning scheme for the offline 

training process. During offline training, an unknown true health index function value 

f(t) needs to be predicted at an arbitrary point t with a set of health index values, 

h1,
...,hN, measured at training points  t = {t1 ,

..., tN }: 

 ( ) ( ) ( )h t f t tε= +   (6.2) 

where ε(t) is the measurement noise. Under a linear model assumption, the health 

index function f(t) can be a linear combination of some known basis functions φi(t), 

i.e., 

 ( ) ( )
1

M

i i

i

f t tω φ
=

=∑  (6.3) 

where ωωωω = (ω1,
...,ωΜ ) is a vector consisting of the linear kernel function weights. 

Equation (6.2) can then be written in a vector form as: 

 = ⋅ +h Φ ω ε  (6.4) 

where Φ is an N×M kernel matrix, whose ith column is formed with the values of a 

basis function φi(t) at all the training points, and ε=(ε1, 
…, εN) is the noise vector. 

To develop linear regression models with the optimum weights ��different 

approaches have been developed, for example the least square estimate (LSE), 

maximum likelihood estimation (MLE), and support vector machines (SVM). In 

many applications, the LSE and MLE estimates suffer from over-fitting. Although the 
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SVM-based approach overcomes the over-fitting problem, it provides only point 

estimates for basis function weights rather than statistical distributions, which is a 

critical aspect especially for the decision-making under various types of uncertainties. 

Another desirable property is sparseness, in which the least number of basis functions 

is desired in the function representation, while all the other basis functions are pruned 

by setting their corresponding weight parameters to zero. Sparseness property is 

extremely useful for fast computation during the online real-time prognostics process. 

The sparse Bayesian learning methodology, known as the RVM, provides an elegant 

approach to the sparse linear models by treating the parameters as random variables. 

With this treatment, both the statistical outputs and the good sparseness can be 

obtained. The remainder of this subsection will briefly introduce the RVM technique 

with the sparse Bayesian learning for data regression and feature extraction. 

The RVM is a special case of a sparse linear model, where the basis functions are 

formed by a kernel function centered at the training points t = {t1 ,
..., tN}:  

 ( ) ( )
1

,  
N

i i

i

h t t tω φ
=

=∑  (6.5) 

The study in this dissertation uses a multi-kernel RVM, consisting of several different 

types of kernels as: 

 ( ) ( )
1 1

,  
M N

mi m i

m i

h t x xω φ
= =

=∑∑  (6.6) 

The sparseness property enables automatic selection of the proper kernel at each 

location by pruning all irrelevant kernels. A sparse weight prior distribution can be 

assigned, in such a way that a different variance parameter is assigned for each 

weight, as:  
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 ( ) ( )1

1

| | 0,
M

i i

i

p N ω α −

=

= ∏ω α  (6.7) 

where α = (α1,
…,αM) is a vector consisting of M hyper parameters, which are treated 

as independent random variables. To specify this hierarchical Bayesian inference 

model, prior distributions for α must be defined. For a scale hyper parameter (αi), it is 

common to use a Gamma prior distribution as: 

 ( ) ( ),
i i i

p Gamma a bα =  (6.8) 

where ai and bi are the hyper-parameters and initially set to a flat Gamma distribution. 

The weight prior p(ωωωω) can be obtained by integrating over the hyper-parameters as  

 ( ) ( ) ( )|p p p d= ∫ω ω α α α  (6.9) 

Assuming independent, zero-mean, Gaussian noise with a variance vector β−1, 

i.e., ε ~ N(0, β−1
Ι) where I is an identify matrix,  we have the likelihood of the 

observed data as: 

 ( ) ( )1| , , | ,p h N h −=ω α β Φω β I  (6.10) 

where ΦΦΦΦ is either an N×N or an N×(N×M) kernel matrix for the single and multi-

kernel cases, respectively. This matrix is formed by all the basis functions evaluated 

at all the training points, i.e., Φ = [φ(t1),
…,φ(tN)] where φ(ti) = [φ(t1–ti),

…,φ(ti–1–ti), 

φ(ti+1–ti),
…, φ(tN–ti)]. In order to make predictions using the Bayesian model, the 

parameter posterior distribution p(ωωωω, α, ββββ | h) needs to be computed. However, this 

posterior distribution cannot be computed analytically owing to its complexity and 

thus approximations must be made through the decomposition of the posterior 

distribution and employing appropriate iterative optimization methods, such as 

marginal likelihood optimization [Tipping and Faul 2003], expectation maximization 



 

 134 
 

(EM) algorithms [Hogg et al. 2005] or incremental optimization algorithms [Syros 

2008]. 

This SBL scheme can be applied on the system training dataset to construct the 

background knowledge of system degradation with a set of predictive health 

degradation curves (hp) where each of them is represented in a statistical form as 

shown in Eq. (6.3). By applying the SBL, only a few critical basis points of the kernel 

functions will be employed to build the background health knowledge without losing 

the representativeness and uncertainty information. This desirable sparseness will 

substantially speed up the online prediction process and make it feasible for real-time 

prognostics applications. 

6.4 Generic Online Prediction Scheme 

The proposed online prognostics process aims at predicting the RULs for online 

system units by employing a set of predictive health degradation curves built in the 

offline learning process. This online prediction process involves two procedures: (i) 

determination of initial health condition and (ii) RUL prediction using the similarity-

based interpolation (SBI).  

Initial Health Condition 

Component and system units tested in the online prediction process may have 

different initial health conditions, due to manufacturing variability or different service 

lives. So determination of initial health conditions for component units is of great 

importance to precise RUL prediction. In the first step, health index data can be 

generated from testing sensory signals of online system units, based on either the PHI 

or the VHI. Then, the predictive degradation curve (hp) as the background knowledge 
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will be employed to determine a time-scale initial health state (T0, or initial age) 

corresponding to the initial health condition where T0 is a time state with the optimum 

fitting between online health data and predictive health degradation curve. The 

optimum fitting can be formulated as 

 
( )

0

0

2

0

1

To determine  ,    

min  ( ) ( ) ,  subject to  [0, ]
N

p

j j
T

j

T

h t h t T L t
=

− ∈ − ∆∑
 (6.11) 

where h(tj) and hp(tj) are the online health data and predictive health degradation data 

at tj; N the number of data; T0 the time-scale initial health state (or initial age); ∆t the 

time span (= tN − t1) of the online health index data; L the time span of a predictive 

health degradation curve, which is the total life of an offline system unit. This 

optimization process basically moves the online health index data h(tj) along the time 

axis to find the best time-scale initial health state (T0) by minimizing the fitting error 

with the predictive health degradation curve h
p(tj). Once T0 is determined, the 

projected remaining life of the online system unit on a given projected health 

degradation curve can be calculated as 

 0RUL L t T= − ∆ −  (6.12) 

As the predictive health degradation curve in Eq. (6.5) is statistically obtained, the 

time-scale initial health state (T0) and projected RUL will be statistically modeled 

instead of a point estimate. To construct the histogram of the projected RUL, we 

generate a random sample set from the statistical information of the kernel function 

weights (ωωωω) for the RVM regression in Eq. (6.10). These samples will result in 

random realizations of the predictive health degradation curve in Eq. (6.5) and further 

random realizations of the projected RULs in Eq. (6.12). Through this sampling 
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process, we can observe the propagation of the uncertainties in raw sensory signals to 

the probability distributions of the projected RULs, which will be discussed at the end 

of this section. 

It should be noted above that different predictive health degradation curves are 

generated for different offline units in the offline training process. Repeating this 

process will provide different projected RULs (RULi for i = 1,…,K) on different 

predictive health degradation curves (hp) where K is the number of offline system 

units. The projected RULs can then be used to model the predictive RUL of an online 

unit. The remainder of this section will introduce the definition of similarity weights 

and the RUL interpolation.  

Similarity-Based Interpolation  

This study proposes the Similarity-Based Interpolation (SBI) to predict the RUL of 

an online unit. The predictive RUL of an online unit is a linear interpolation function 

in terms of the projected RULs (RULi for i = 1,…, K) of the offline units. The 

predictive RUL of an online unit can be expressed as 

 ( )
1 1

1
     where   

K K

i i i

i i

RUL W RUL W W
W = =

= ⋅ =∑ ∑  (6.13) 

where RULi is the projected RUL on the ith predictive health degradation curve; Wi is 

the ith similarity weight. Then the predictive RUL of an online unit will be primarily 

determined as a linear function of RULi having larger degrees of similarity. The 

similarity weights can be defined as the inverse of the square-sum error as 

 ( )
1

2

1

( ) ( )
N

p

i i j i j

j

W h t h t

−

=

 
= − 
 
∑  (6.14) 

It is obvious that greater weight is given to the offline units with greater similarity to 
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the online unit. In other words, the offline units with greater weight have greater 

similarity to the online unit in manufacturing and service conditions. The similarity 

weights must be random due to the randomness in the predictive health degradation 

curve, hi
p(tj), in Eq. (6.5). Using the random samples of hi

p(tj), we can generate 

random sample sets of both similarity weights and projected RULs (RULi for i = 

1,…,K) and then construct the histogram of the predictive RUL of an online unit using 

Eq. (6.13).  

6.5 Generic Prognostic Uncertainty Management 

In summary, the uncertainty propagation from the raw sensory signals to the 

predictive RUL is shown in Figure 6-2. In the offline training process, uncertainties in 

the raw data are propagated to the health index. The SBL technique uses the 

uncertainties of the health index and builds the predictive health degradation curves in 

a stochastic fashion. Finally, in the online prediction process, the SBI predicts the 

predictive RUL of an online system unit in Eq. (6.13) using the predictive health 

degradation curves of all offline system units. 

 

 

Figure 6-2: Uncertainty propagation map in the structural health prognostics 

framework 
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6.6 Case Studies  

This section demonstrates the effectiveness of the proposed generic framework 

for structural health prognostics with two case studies: (i) IEEE Prognostics and 

Health Management (PHM) 08 Challenge Problem and (ii) electric cooling fan.  

6.6.1 IEEE PHM 08 Challenge Problem 

The dataset provided by the 2008 IEEE PHM Challenge problem consists of 

multivariate time series signals that are collected from an engine dynamic simulation 

process. Each time series signal represents a degradation instance of the engine 

system [Saxena and Goebel 2008]. The data for each cycle of each engine unit 

include the unit ID, cycle index, 3 values for an operational setting and 21 values for 

21 sensor measurements. The sensory signals were contaminated with measurement 

noise and also each engine unit starts with a different initial health state. It is found 

that three operational settings have a substantial effect on engine degradation 

behaviors and result in six different operation regimes as shown in Table 6-2. The 21 

sensory signals were obtained from six different operation regimes. The dataset was 

divided into training and testing subsets. The sensory signals were obtained from 218 

offline engine units, so the number of training dataset is 4578 (=21×218) in total. The 

unit operated normally at the beginning of each time series and stopped until a fault 

condition was developed. The fault grows in magnitude until the system failure, at 

which time one or more limits for safe operation have been reached. There is no 

specific failure threshold defined. In the testing dataset, the time series signal ends 

some time prior to system failure. The objective of the problem is to predict the 

number of remaining operational cycles before failure in the testing dataset.  
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Table 6-2:  Six different operation regimes 

Regime ID 
Operating  

parameter 1 

Operating  

parameter 2 

Operating 

 parameter 3 

1 0 0 100 

2 20 0.25 20 

3 20 0.7 0 

4 25 0.62 80 

5 35 0.84 60 

6 42 0.84 40 

 

The proposed prognostics framework takes the following steps: i) sensor data 

screening, ii) constructing the VHI, iii) SBL on the VHI to build the background 

health knowledge, iv) determination of initial health condition, and v) RUL 

predictions of online system units using the SBI. Steps i) to iii) corresponds to the 

offline training process involving the training dataset, whereas the online prediction 

process continues in steps iv) and v) that engages the testing dataset. These steps will 

be explained in detail in the following subsection. 

Adjusting Cycle Index 

To account for different initial degradation condition, an adjusted cycle index is 

proposed as: Cadj = C – Cf  where C is the operational cycle of the training data for an 

engine unit and Cf is the cycle-to-failure of an engine unit. The cycle index 0 

indicates engine unit failure whereas negative cycle indices are realized prior to the 

failure. By setting the unit failure to a baseline, health degradation can be clearly 

displayed even with different initial degradation conditions and degradation paths. 
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Sensor Signal Screening 

Among 21 sensory signals, some signals contain no or little degradation 

information of an engine unit whereas the others do. To improve the RUL prediction 

accuracy and efficiency, important sensory signals must be carefully selected to 

characterize degradation behavior for engine unit health prognostics. This study thus 

intended to screen sensory signals by observing the degradation behaviors of the 21 

sensory signals. Seven sensory signals (2, 3, 4, 7, 11, 12 and 15) were selected in this 

study [Wang et al. 2008]  

Building VHI 

As discussed above, seven sensory signals were used for engine prognostics study. 

Based on the signals, we built the VHI to represent the engine health degradation 

process. Different transformation matrices Tk must be constructed using Eq. (6.1) for 

different operation regimes (k =1 to 6) because health degradation paths strongly 

depend on operation conditions. So, different Q0 and Q1 matrices can be built for 

different operation regimes. For a given operation regime, health index data to 

represent system failure and healthy states must be carefully identified to build Q0 

and Q1. In this study Q0 was created with the health index data in a system failure 

condition, –4 < VHI ≤ 0, in the adjusted cycle index, while Q1 with those in a healthy 

condition, –300 < VHI, in the adjusted cycle index. Different Q0 and Q1 can be 

created by repeating this process for all different operating regimes. As shown in 

Table 6-3, a 7×6 transformation matrix Tk can be constructed using Eq. (6.1), in 

which each column is a transformation vector for the corresponding operation regime. 

The dots in Figure 6-3 represent the VHI data obtained using H = Tk·Qoff with the 
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training dataset of an offline engine unit.  

 
Table 6-3: Transformation matrix (T) for the VHI 

 Regime 1 Regime 2 Regime 3 Regime 4 Regime 5 Regime 6 

 

-0.03352 0.00420 0.01725 0.07551 0.04861 0.06308 

-0.00358 -0.00571 -0.01046 -0.00551 -0.00720 -0.01003 

-0.00760 -0.00741 -0.00624 -0.00695 -0.00891 -0.01105 

0.03902 0.06381 0.05371 0.04381 0.05489 0.03470 

-0.29961 -0.34434 -0.30928 -0.39681 -0.51199 -0.50965 

0.07080 0.05048 0.07701 0.06448 0.08791 0.10163 

-0.67360 -1.36813 -1.62036 -2.68974 -1.25800 -0.49316 

 

Sparse Bayesian Learning on VHI 

Figure 6-4 displays the randomly realized VHI data and the randomness is mainly 

due to the measurement noise from the signals. Thus, RVM regression can be used to 

model the VHI data in a stochastic manner. As discussed in Section 6.3, the RVM is 

Bayesian representation of a generalized sparse linear model, which shares the same 

functional form with the SVM. In this study, the linear spline kernel function was 

used as a basis function for the RVM. To build the predictive health degradation 

curves (hi
p(t), i=1, 2, …, 218) for 218 offline engine units, the RVM regression model 

can be formed with statistical coefficient vector (ωωωω) in the generalized sparse linear 

model of Eq. (6.5). 

Figure 6-3 shows the health degradation curve with a desirable sparseness by only 

employing a small set of critical data points. Besides, the regression model gives both 

the mean and the variation of the predictive health degradation curve, as shown in 
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Figure 6-4. These predictive health degradation curves for the offline units altogether 

construct background health knowledge which characterizes the system degradation 

behavior. Later, this background knowledge can be used for modeling the predictive 

RUL distributions of online engine units. Some degradation curves for this challenge 

problem are exemplified in Fig. 6-5. 

Determination of Initial Health Condition 

The online prediction process employed testing dataset obtained from 218 online 

system units. The adjusted cycle index was used to determine an initial health 

condition. As explained in Section 6.4, the optimization problem in Eq. (6.11) was 

solved to determine a time-scale initial health degradation state (T0) with the testing 

dataset for an online engine unit while minimizing the square-sum error between the 

online health data, h(tj), and predictive health degradation data, h
p(tj). Then, the 

predicted RULs and similarity weights of each online engine unit can be obtained 

using Eqs. (6.12) and (6.14) with L=224, ∆t = 87. Figure 6-6 shows the process to 

determine the initial health degradation state (T0) with the online testing data, h(ti), for 

the first engine unit and the predictive health degradation curve, h
p(t), for the first 

unit. It should be noted that the offline learning process generates different predictive 

health degradation curves from K identical offline units. Repeating this process 

provided different projected RULs (RULi for i = 1,…, K) on different predictive health 

degradation curves. The projected RULs can be used to predict the RUL of an online 

unit in next section.  
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Figure 6-3: Sparseness of the RVM regression 

 

 

Figure 6-4: VHI and the RVM regression 
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Figure 6-5: Background Degradation Knowledge from SBL 

 

 

Figure 6-6: Determination of initial health index 

 

Online RUL Prediction  
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From 218 offline engine units, the same number of the predictive health 

degradation curves and projected RULs was obtained for each online engine unit. 

Likewise, the same number of similarity weights was sought for each online engine 

unit using Eq. (6.14). Equation (6.13) modeled the RUL prediction for each online 

engine unit as a function of the projected RULs while considering the first 50 largest 

similarity weights. Note that hi(ti) and hi
p(ti) are random as mentioned in Section 6.3. 

Thus, the similarity weights were modeled in a statistical manner, so was the RUL of 

the online unit. Using the mean and covariance matrices of the relevance vector 

coefficients for the RVM regression in Eq.(6.6), the random samples of the 

coefficients result in the random samples of the similarity weights for the projected 

RULs of the engine unit. The randomness of the similarity weights and projected 

RULs is then propagated to the predictive RUL of the engine unit through Eq. (6.13). 

Figure 6-7 shows the RUL histogram and the true value with the testing dataset for 

the first four online engine units. 

 

  

(a) (b) 

Figure 6-7: Predicted RUL histograms with true RULs for 

(a) units 1 and 2, and (b) units 3 and 4 
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Using the mean value of the predictive RUL with the testing dataset, the 

cumulative score loss was then calculated using Eq. (6.15), which was used in the 

IEEE PHM challenge problem competition. An average score loss of 5.224 is 

obtained for the testing dataset and the result is more accurate compared with the best 

average score loss of 12.956 in the competition. 

 
/13

/10

1

Predicted True 

1, 0
1, 0

1
Average Score Loss, 

k

k

k k k

d

k
dk

k

K

k

k

d RUL RUL

e d
S

e d

S S
K

−

−

=

= −

 − ≤
=  − ≥

= ∑

 (6.15) 

6.6.2 Electric Cooling Fan  

In this section, the generic prognostics framework is applied to the health 

prognostics of electronic cooling fan units. Cooling fans are one of the most critical 

parts in system thermal solution of most electronic products and have been a major 

failure contributor to many electronic systems [Tian 2006]. This study aims to 

demonstrate the proposed health prognostics methodology with 32 electronic cooling 

fans. 

In the experimental study, thermocouples and accelerometers were used to 

measure temperature and vibration signals. To make time-to-failure testing 

affordable, the accelerated testing condition for the DC fan units was sought with 

inclusion of a small amount of tiny metal particles into ball bearings and an 

unbalanced weight on one of the fan units. The experiment block diagram of DC fan 

accelerated degradation test is shown in Figure 6-8. As shown in the diagram, the DC 

fan units were tested with 12V regulated power supply and three different signals 
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were measured and stored in a PC through a data acquisition system. Figure 6-9 (a) 

shows the test fixture with 4 screws at each corner for the DC fan units. As shown in 

Figure 6-9 (b), an unbalanced weight was used and mounted on one blade for each 

fan. Sensors were installed at different parts of the fan, as shown in Figure 6-10. In 

this study, three different signals were measured: the fan vibration signal from the 

accelerometer, the Printed Circuit Board (PCB) block voltage, and the temperature 

measured by the thermocouple. An accelerometer was mounted to the bottom of the 

fan with superglue, as shown in Figure 6-10 (a). Two wires were connected to the 

PCB block of the fan to measure the voltage between two fixed points, as shown in 

Figure 6-10 (b). As shown in Figure 6-10 (c), a thermocouple was attached to the 

bottom of the fan and measures the temperature signal of the fan. Vibration, voltage, 

and temperature signals were acquired by the data acquisition system and stored in 

PC. The data acquisition system from National Instruments Corp. (NI USB 6009) and 

the signal conditioner from PCB Group, Inc. (PCB 482A18) were used for the data 

acquisition system. In total, 32 DC fan units were tested at the same condition and all 

fan units run till failure.  

 

 

Figure 6-8: Electronic Fan Degradation Test Block Diagram 
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Figure 6-9: DC fan testing setup: (a) fixture and (b) the unbalance weight 

 

 

Figure 6-10: Sensor installations for DC fan test 

(a) accelerometer, (b) voltage measurement, and (c) thermocouples 

 

 

Figure 6-11: Sample degradation signals from DC fan testing 
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The sensory signal screening found that the fan PCB block voltage and the fan 

temperature did not show clear degradation trend, whereas the vibration signal 

showed health degradation behavior. This study involved the root mean squares 

(RMS) of the vibration spectral responses at the first five resonance frequencies and 

defined the RMS of the spectral responses as the PHI for the DC fan prognostics. 

Among 32 fan units, Figure 6-11 shows the RMS signals of three fan units to 

demonstrate the health degradation behavior. The RMS signal gradually increases as 

the bearing in the fan degrades over time. It was found that the PHI is highly random 

and non-monotonic because of metal particles, sensory signal noise, and input voltage 

noise. For the DC fan prognostics, the first 28 fan units were employed for the 

training dataset in the offline training process, while the rest were used to produce the 

testing dataset in the online prediction process. Following the same procedures of the 

previous case study, the prognostics work performed two distinguished processes: the 

offline training to obtain the predictive health degradation curves of the fan units 

using the RVM regression and the online prediction to predict and update the 

predictive RULs of three online testing fan units using the SBI. 

The RUL predictions for the three online testing fan units were conducted after 

2000-, 3000-, and 4000-minute uses and the results are shown in Table 6-4. The 

prediction results of the online testing fan units are quite accurate with the maximum 

error of 314 minutes of the fourth fan after 2000–minute use. As more fan test data 

were used in the online prediction process, the prediction results become more 

accurate. The mean of the RUL prediction error after 4000–minute use are much 

smaller than those after 2000– and 3000-minute uses.  As did in the previous case 
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study, the final RUL prediction was made in a statistic manner. Figure 6-12 shows the 

histogram of the predicted RUL for the first online testing fan after three different 

operation periods. Various statistical information of the predicted RUL, such as 

variation and confidence interval of prediction, can be provided to condition-based 

maintenance. 

 

 

Figure 6-12: Predicted RUL histogram for a DC fan 

 

Table 6-4: Prognostics results for DC fans 

Predicted Mean of RUL (Minutes) 
True Life 

Operation time, T 2000 3000 4000 

Test Fan 1 2768 1802 1018 4957 

Test Fan 2 3615 2563 1394 5468 

Test Fan 3 3325 2298 1211 5124 

Test Fan 4 4107 2588 1662 5793 

Error, % 3.961 2.950 1.636  
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6.7 Summary 

This chapter presented the generic probabilistic framework for structural health 

prognostics and uncertainty management. The proposed two health indexes (PHI and 

VHI) provide the generic framework to define the degree of health condition 

regardless of system complexity, sensory data size, physical data types, and so on. 

The proposed prognostics framework is also generic in that it can predict the RULs of 

online units while considering various uncertainty sources, such as data acquisition, 

manufacturing, and operation processes. The framework is composed of two steps: 

the offline training (or learning) and online prediction processes. In the offline 

training process, the SBL scheme was employed to build predictive health 

degradation curves for offline training units in a statistical and sparse form. A set of 

curves become the background health knowledge while considering uncertainty in 

operational and manufacturing conditions. With this background knowledge, the SBI 

technique was then proposed for predicting and continuously updating the RUL in a 

statistical manner in the online prediction process. The proposed prognostic 

framework with an uncertainty propagation map enables the statistical prediction of 

RULs. Two engineering case studies (PHM challenge problem and the electric 

cooling fan prognostics problem) were used to demonstrate the effectiveness of the 

proposed generic structural health prognostics methodology. Due to the generic 

capability of the proposed prognostics framework, its wide application to other 

engineered systems is promising. 
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Chapter 7:  Conclusion and Future Work 
 

7.1 Conclusion of the Research Work 

The work presented in this dissertation focused on advancing two essential and 

co-related research areas for the development of resilient engineered systems: system 

RBDO and system prognostics and health management (PHM). System RBDO will 

ensure high reliability of engineered systems in their early lifecycles, whereas 

capitalizing on PHM technology at the early design stage can transform passively 

reliable (or vulnerable) systems into adaptively reliable (or resilient) systems while 

considerably reducing their lifecycle cost.  

To make an engineered system resilient, system reliability first needs to be 

ensured during the design and manufacturing stage. Thus, technical developments in 

Chapter 3 and Chapter 4 addressed the system RBDO area, focusing on addressing 

challenges for producing a reliable engineered system considering multiple system 

failure modes and input uncertainties.  Two research questions regarding system 

RBDO were posed: how system failure modes and their interactions can be analyzed 

in a statistical sense, and how limited data for input manufacturing variability can be 

used for RBDO. As an engineered system enters its operational stage from the design 

and manufacturing stage, it could be vulnerable due to uncertain operational 

conditions as well as system performance degradation. Thus, Chapter 5 and Chapter 6 

focused on addressing challenges in making an adaptive reliable engineered system 

that can be proactive to system failures during the operational stage.  This can be 

accomplished through monitoring of the system performance degradation and 
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predicting the system remaining useful life. The third and fourth research questions in 

this dissertation work addressed system PHM: how sensor networks can be designed 

to effectively monitor system health degradation under highly uncertain operational 

conditions, and how accurate and timely remaining useful lives of systems can be 

predicted under highly uncertain operational conditions.  Research solutions to these 

four research questions were presented in Chapter 3 to Chapter 6, accordingly.   

Subsection 7.2 summarizes the principal contributions to the field and the 

significance of this research. Subsection 7.3 discusses limitations of the developed 

techniques and the recommended future work. 

 

7.2 Principal Contributions and Significances 

The proposed research solutions make significant contributions in various 

engineering applications as discussed below: 

Contribution 1: A generalized framework for system reliability analysis 

This dissertation has contributed significant advancement in our knowledge 

through the development of an innovative probability decomposition theory and a 

generic system reliability analysis framework regardless of the system structure 

and its size. The method developed here delivers a unique contribution by 

defining the CI-event. In aid of this definition, the probability of an Nth-order 

joint safety event can be decomposed into the probabilities of the first to Nth-

order CI-events through the developed probability decomposition theorem. 

Subsequently, system reliability of any series system can be explicitly expressed 

in terms of the probability of the CI-events and can be evaluated using advanced 
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probability analysis methods. To facilitate the system reliability analysis for large-

scale system applications, the CI-matrix and SS-matrix are innovatively defined 

to store the probabilities of CI-events and to represent any system structure in a 

compact and comprehensive matrix form, respectively. With the SS-matrix, the 

BDD technique automates the process to identify a system’s mutually exclusive 

path sets, of which each path set is a series system. With these technical 

contributions, a generic system reliability analysis framework is formed that 

substantially enhances our capability to assess system reliability for complex 

systems and provides a solid foundation for engineering resilience analysis and 

design.    

Contribution 2: Reliability analysis with evolving, insufficient and subjective data 

sets 

The Bayesian reliability methodology developed in this dissertation presents a 

unique contribution by providing a new paradigm for system reliability 

prediction.  This methodology enables the use of evolving, insufficient, and 

subjective data sets. Bayesian reliability analysis incorporates the reliability 

analysis with a Bayesian updating mechanism, and a generic definition of 

Bayesian reliability is introduced as a function of a predefined confidence level. 

Subsequently, Bayesian reliability is integrated to RBDO, referred to as the 

Bayesian reliability-based design optimization (Bayesian RBDO) methodology. 

The contribution of Bayesian RBDO is to provide a systematic design platform that 

enables engineering system design in the presence of evolving, insufficient and 

subjective data sets. The close-form relationship between Bayesian reliability, 
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user-desired confidence level, and the data sample size is developed, which 

provides designers with a guideline to set appropriate target Bayesian reliabilities 

when the data for uncertainty is insufficient. In order to develop more a stable 

Bayesian RBDO that is free of numerical singularities, an innovative approach for 

Bayesian reliability sensitivity analysis is developed through one-to-one mapping 

of Bayesian reliability with the mean value of the reliability distribution. 

Contribution 3: Generic SN design for PHM 

A generic probabilistic detectability measure is defined for evaluating the 

performance of any given SN, and a generic SN design framework is developed to 

build a cost-effective and reliable SN for health condition monitoring of an 

operating system. In the presented work, the detectability measure is defined as 

the probability of correct detection of each predefined health state. Subsequently, 

a generic detectability analysis is developed by integrating structural simulations 

with health-state classification tools. The generic SN design framework is 

formulated as a mixed-integer nonlinear programming problem using the 

detectability measure, and artificial intelligence algorithms such as the genetic 

algorithm (GA) are employed to solve the SN design optimization problem. The 

generic SN design tool provides a solid foundation for resilience-driven system 

design.  

Contribution 4: Generic structural health prognostics 

The proposed generic framework for structural health prognostics makes four 

technical contributions: (1) a generic health index system regardless of system 

complexity, sensory data size, physical data types, and so on; (2) an efficient 
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offline training process with the SBL scheme to build predictive background 

health knowledge in a statistical and sparse form; (3) a real-time online prediction 

process with the SBI technique in a statistical manner; and (4) a generic 

uncertainty propagation map to systematically manage uncertainties and errors in 

RUL prediction. 

Contribution 5: A solid foundation for resilience-driven system design 

This research advances two essential and co-related research areas for a resilient 

engineered system design: system RBDO and prognostics and health management 

(PHM). These will provide a solid foundation for resilience-driven system design 

because they are the pillar technologies for the resilience-driven system design 

process. 

 

7.3 Recommended Future Research 

Although the proposed research solutions and advanced methodologies developed 

in this dissertation have addressed critical challenges in both system RBDO and 

PHM, it is still a grand challenge to unify these technique advances and develop a 

resilience-driven system design methodology. Further research and technical 

developments are needed to make the resilience-driven system design methodology 

feasible and effective. The rest of this section presents a few open questions in the 

resilient engineered system design and provides possible approaches to address these 

questions.  

• Allocation of system capacity into subsystems and components from the 

perspective of system resilience 
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The proposed system RBDO and PHM methods can design engineered systems 

with target reliability and detectability. However, little or no study has been done 

to allocate the system capacity into subsystems and components to meet the target 

system resilience. To answer this question, a resilience allocation problem has to 

be carefully defined in order to allocate target reliabilities of subsystems and 

components while minimizing the system lifecycle cost. 

•  Cost benefit analysis of resilience engineered system design 

As the resilience-driven system design framework involves development in both 

RBDO and PHM, a generic cost model must be developed as a function of the 

resilienceredundancy, reliability and PHM efficiency levelswhile considering 

the PHM cost model and PHM benefit model. 

• Sensor noise in the SN design 

In the current work, randomness of the sensor outputs is considered mainly due to 

the variability of structural systems, and the sensor noise from SN itself is not 

considered. Considering the sensor noise in SN design optimization will enhance 

the robustness of the SN and needs further investigation. 

 

• Integration of RBDO and PHM 

Two core research topics—system RBDO and PHM—are separately developed to 

address their own challenges. However, their integration has not been studied in 

this research. To address this problem, a resilience-driven system design problem 

should be carefully defined with conceptual and mathematical definitions of 

engineering resilience and resilience analysis methods. To this end, the 

multidisciplinary system design optimization framework has to be employed.  
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• Designing a PHM system 

The existing PHM methodology enables the RUL prediction of structural 

components. However, there has been little effort to design PHM systems by 

enhancing sensing, detection, and prediction functions. In order to address this 

issue, a metric for sensing, detection, and prediction functions needs to be 

appropriately defined, and corresponding analysis methods need to be further 

developed.  
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Appendices 

Appendix A:  Derivation of the Probability Decomposition Theorem 

Hailperin 3 ∗ divided the sample space of a system with N number of the 

component events into 2N mutually exclusive and collectively exhaustive (MECE) 

events, each consisting of a distinct intersection of the component events Ei and their 

complements Ēi, i =1,...,N. They are called the basic events. For example, in the case 

of 3 (=N) component events, one finds the 23=8 basic events to be E1E2E3, Ē1E2E3, 

E1Ē2E3, E1E2Ē3, Ē1Ē2E3, Ē1E2Ē3, E1Ē2Ē3, and Ē1Ē2Ē3. For any system with N number 

of components, there are 2N basic events and any event can be expressed as a linear 

combination of the basic events. The basic events can be classified into N+1 groups 

where the basic events in ith group include i number of component failure events as 
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∗ Hailperin, T., 1965, “Best possible inequalities for the probability of a logical function of events.” Am. Math. Monthly, 

72(4), 343–359. 
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For example, the basic event in the 0th group, E1E2…EN (≡ E1∩E2∩…∩EN), has 

no component failure event, whereas the basic events (Ē1E2E3 … EN and E1Ē2E3 … 

EN) in the 1st group have one component failure event. 

The probability of any order CI events can be expressed as a linear combination 

of the probabilities of the basic events in the N+1 group. For the system with 2 

components, the coefficients of the linear combinations are shown in Tables A1. For 

example, the first column of Table A1 can be expressed as  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

[ ]

1 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 3

1 0 1 0

, , ,  

1 0 1 0
T

P E P E E P E E P E E P E E

P E E P E E P E E P E E E

= × + × + × + ×

 = 

×

 

Grouping the basic events into N + 1 different groups can give us the compact 

expression of the linear combinations. Then it is possible to express the summation of 

the probabilities of the CI events as a linear combination of the probabilities of the 

basic events in a compact manner. For the system with 2 components, the coefficients 

of the linear combinations are shown in Tables A2. For example, the first column of 

Table A2 can be expressed as 

 

( )

( )

( ) ( )

( )

2

1

1 2

1 2 1 2

1 2

2

 1

 0

i

i

P E

P E E

P E E P E E

P E E

=

= ×

 + × + 

+ ×

∑

 (A1) 

Using the tables A2, the probabilities of the second and third-order joint events 

can be decomposed into the CI events as  
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 ( ) ( ) ( ) ( )1 2 1 2 12

1

2
P E E P E P E P E= + −    (A2) 

 
Table A1: Probability Decomposition of 2 components system 

CI Events 

Basic Events                       
P(E1) P(E2) P(E12) 

P(E1E2) 1 1 0 

P(Ē1E2) 0 1 1 

P(E1Ē2) 1 0 1 

P(Ē1Ē2) 0 0 0 

 

Table A2: Probability Decomposition of 2 components system with grouping 

CI Events Basic 

 Events 
P(E1) +P(E2) P(E12) 

P(E1E2) 2 0 

P(Ē1E2)+P(E1Ē2) 1 1 

P(Ē1Ē2) 0 0 

 

Considering a general system with N number of the components in total, Table A3 

displays a linear combination of the CI events in the general system. For a given 

general system, the following equations can be developed for two different cases as: 
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Table A3: Probability Decomposition of N components system 
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Case I: N is an odd number 
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From the equations above, the general formula for decomposing the probability 

of the Nth-order joint event can be developed and expressed as 

( ) ( ) ( )
�

( ) ( )
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Appendix B: Response Surface of Vehicle Side Impact Model 

The response surface for ten constraints of vehicle side impact model is constructed 

as {Gi < gi, i=1, 2, … , 10} where gi  are from vector g = [ 1, 32, 32, 32, 0.32, 0.32, 

0.32, 4, 9.9,15.7] and Gi are as follows. 

 

G1 = 1.16 − 0.3717X2X4 − 0.00931X2X10 − 0.484X3X9 + 0.01343X6X10; 

G2 = 28.98 + 3.818X3 − 4.2X1X2 + 0.0207X5X10 + 6.63X6X9 − 7.7X7X8 + 0.32X9X10; 

G3 = 33.86 + 2.95X3 + 0.1792X10 − 5.057X1X2 − 11X2X8 − 0.0215X5X10 − 9.98X7X8 + 

22X8X9; 

G4 = 46.36 − 9.9X2 − 12.9X1X8 + 0.1107X3X10;   

G5 = 0.261 − 0.0159X1X2 − 0.188X1X8 − 0.019X2X7 + 0.0144X3X5 + 0.0008757X5X10 + 

0.08045X6X9 + 0.00139X8X11 + 0.00001575X10X11;  

G6 = 0.214 + 0.00817X5 − 0.131X1X8 − 0.0704X1X9 + 0.03099X2X6 − 0.018X2X7 + 

0.0208X3X8 + 0.121X3X9 − 0.00364X5X6 + 0.0007715X5X10 − 0.0005354X6X10 

+0.00121X8X11 + 0.00184X9X10−0.018X2
2; 

G7 = 0.74 − 0.61x2 − 0.163X3X8 + 0.001232X3X10 − 0.166X7X9 + 0.227X2
2;  

G8 = 4.72 − 0.5X4 − 0.19X2X3 − 0.0122X4X10 + 0.009325X6X10 + 0.000191X11
2;  

G9 = 10.58 − 0.674X1X2 − 1.95X2X8 + 0.02054X3X10 − 0.0198X4X10 + 0.028X6X10;  

G10 = 16.45 − 0.489X3X7 − 0.843X5X6 + 0.0432X9X10 − 0.0556X9X11 − 0.000786X11
2;  
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Glossary 
 

CDF:   Cumulative Distribution Function 

CIM:  Complementary Intersection Method 

DBDO:  Detectability Based Design Optimization 

FOB:  First Order Bounds 

FORM:  Second Order Bounds 

LP:  Linear Programming 

PDF:  Probability Density Function 

PHI:  Physical Health Index 

PoD:  Probability of Detection 

PHM:  Prognostics and Health Management 

RBDO:  Reliability Based Design Optimization 

RUL:  Remaining Useful Life 

RVM:  Relevance Vector Machine 

SBI:  Similarity Based Interpolation 

SBL:  Sparse Bayesian Learning 

SN:  Sensor Network 

SOB:  Second Order Bounds 

SORM:  Second-Order Reliability Method 

SVM:  Support Vector Machine 

VHI:  Virtual Health Index 
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