
1

Parameterized Modeling and Scheduling for Dataflow

Graphs1

Bishnupriya Bhattacharya and Shuvra S. Bhattacharyya
Department of Electrical and Computer Engineering, and

Institute for Advanced Computer Studies
University of Maryland

College Park MD 20742, USA
{bpriya, ssb}@eng.umd.edu

Abstract

Dataflow has proven to be an attractive computational model for programming
DSP applications. A restricted version of dataflow, called Synchronous Dataflow
(SDF) is particularly well-suited for modeling a large class of signal processing
applications, as it offers strong formal properties and compile-time predictability.
Efficient techniques have been developed for generating software implementations
from an SDF graph that are geared towards various optimization objectives. How-
ever, the SDF model does not allow data-dependent flow of control or dynamically
varying communication patterns between functional modules. This results in limited
expressive power. Consequently, a variety of extensions to SDF have been devel-
oped, where the objective is to provide increased expressive power, while maintain-
ing a significant part of the compile-time predictability of SDF, e.g., boolean
dataflow, cyclo-dynamic dataflow, and bounded dynamic dataflow.

In this report, we propose a parameterized dataflow framework that can be
applied as a meta-modeling technique to an arbitrary dataflow model that satisfies
certain requirements, to further increase its expressive power. Parameterized mod-
eling imposes a hierarchy discipline on an underlying dataflow model, where the
behavior of a subsystem is controlled by a set of parameters, which can control,
among others, the functional behavior as well as token flow behavior of a dataflow
graph. The parameter coordination mechanism is such that every parameterized
graph always behaves like a graph in the underlying dataflow model during each of
its invocations, but can assume different configurations across invocations. Thus,
any dataflow model that possesses a concept of a graph invocation (iteration) can
be parameterized in this fashion. For clarity, we focus on synchronous dataflow, and
develop the precise semantics of parameterized synchronous dataflow (PSDF).

We propose a formal framework for the PSDF model, and introduce the con-
cept of local synchrony, which is a condition that must be satisfied for consistent
execution of PSDF specifications. We derive precise relationships between local
synchrony and the manner in which subsystem parameters are dynamically config-
ured in PSDF. Based on these, we define a precise operational semantics for the
PSDF model. From our experience, it appears that the PSDF model significantly

1. This research was sponsored by Northrop Grumman Corporation and the National Science

Foundation (CAREER MIP9734275).

Technical Report #UMIACS-TR-99-73, Institute for Advanced Computer Studies,

University of Maryland at College Park, December 2, 1999

2

increases the expressive power of pure SDF, while maintaining many of the desir-
able properties of SDF, like low-overhead scheduling (geared towards software syn-
thesis in embedded systems). The concept of looped schedules developed for SDF
graphs becomes fundamental for implementing PSDF semantics with low run-time
overhead. We develop techniques for implementing the operational semantics of
PSDF that allows efficient quasi-static scheduling of a class of PSDF specifications.

1. Introduction

In the area of digital signal processing (DSP), dataflow is widely recognized

as a natural model for specifying DSP applications. In dataflow, a program is repre-

sented as a directed graph, called a dataflow graph, in which vertices, called actors,

represent computations and edges represent FIFO channels, (also called buffers).

These channels queue data values, in the form of tokens, which are passed from the

output of one actor to the input of another. When an actor is executed (fired), it con-

sumes a certain number of tokens from its inputs, and produces a certain number of

tokens at its outputs.

Different models have been proposed within the dataflow programming

framework, based on diverse objectives. One common strain that runs through these

models is the trade-off between expressivity and compile-time predictability of

specifications expressed in them. Increased predictability translates to desirable fea-

tures such as more thorough optimization and verification, and lower run-time over-

head for scheduling and memory management, but at the cost of sacrificing some

expressive power. Lee and Messerschmitt have proposed the synchronous dataflow

(SDF) model [26], which is a restricted version of dataflow, where the number of

tokens produced (or consumed) by an actor firing, on each output (or input) is a

fixed number that is known at compile time. With relatively low expressivity but

very high compile-time predictability, SDF leans heavily towards one end of the

spectrum from the expressivity/predictability trade-off perspective. At the other end

of the spectrum we have dynamic dataflow (DDF) which supports arbitrary data-

dependent behavior using non-SDF actors with unknown token production/con-

sumption (at compile-time) that can be used to model conditionals, iterations, and

recursion. DDF possesses high expressivity — it is Turing complete, but permits a

3

minimum of useful compile-time analysis and optimization. An implementation of a

DDF based development environment is available in Ptolemy [12] — a tool that pro-

vides an object-oriented framework for simulation, prototyping and software syn-

thesis of heterogeneous systems.

Many extensions to the SDF model have been proposed that lie somewhere

in-between DDF and SDF within the spectrum. The objective is to broaden the

range of applications that can be represented vis. a vis. SDF, while maintaining its

compile-time predictability properties as much as possible, and at the same time,

allowing representations that expose more optimization opportunities to a compiler.

Multidimensional dataflow (MD-SDF) [24] and cyclo-static dataflow (CSDF) [15]

lie in the latter category. MD-SDF allows efficient modeling of multidimensional

applications, and exposes parallelism more effectively than pure SDF. It also

addresses the issue of re-initialization of delays on graph edges, which allows cer-

tain applications that cannot be represented in SDF to be modeled in MD-SDF. In

CSDF token production and consumption can vary between actor firings as long as

the variation forms a certain type of periodic pattern. CSDF offers several benefits

over SDF including increased flexibility in compactly and efficiently representing

interaction between actors, decreased buffer memory requirements for some appli-

cations, and increased opportunities for behavioral optimizations like constant prop-

agation and dead code elimination [7]. Yet another advantage offered by CSDF is

that while hierarchically abstracting the functionality of an SDF graph by represen-

tation through a single actor, the SDF model may introduce deadlock in a system

specification, which can often be avoided if the functionally equivalent CSDF actor

is used [7]. Thus MD-SDF and CSDF possess increased expressive power over SDF,

with similar compile-time predictability properties.

Well-behaved stream flow graphs (WBSFG) proposed by Gao et al. [17],

allows the use of two non-SDF dynamic actors (switch and select) for modeling con-

ditionals and data-dependent iteration, but in a restricted fashion such that the model

retains the key predictability properties of SDF, while offering increased expressiv-

4

ity. On the other hand, in the Boolean dataflow model (BDF), developed by Buck

[10], these kinds of restrictions are not present, and hence it has greater expressive

power — indeed it is Turing-complete. Consequently, it does not have guaranteed

compile-time predictability properties. The objective in BDF is to extend SDF tech-

niques to generate quasi-static schedules [25] whenever possible, and fall back on

fully dynamic scheduling and analysis otherwise. In quasi-static scheduling some

actor firing decisions are made at run-time, but only where absolutely necessary.

The cyclo-dynamic dataflow model (CDDF) [34] extends cyclo-static data-

flow in such a manner that all BDF and CSDF graphs can be expressed in the CDDF

model. In addition, it allows the user to convey application-specific knowledge

about the internals of an actor to the compiler which can lead to better analyzability

than the BDF model [34].

Additionally, some models of computation have been proposed that combine

the SDF paradigm with finite state machine (FSM) models. Two examples of such

composite modeling approaches are heterochronous dataflow (HDF) [18], and

bounded dynamic dataflow (BDDF) [27]). By modeling control-flow along with

dataflow, these approaches lead to increased expressivity over SDF alone. In Sec-

tions 3 and 4 we take a more detailed look at synchronous dataflow, and various

extensions of the SDF model.

2. Basic notation

We denote the set of positive integers by the symbol , the set of extended

positive integers by ; and the set of natural numbers by

. The greatest common divisor of two integers and is denoted by .

The remainder obtained by dividing an integer by an integer is denoted as

. The notation represents a function whose domain and

range are and , respectively. The image of under , denoted , is

defined by , and is called the image of . The cardi-

nality of a finite set , denoted , simply specifies the number of elements in .

Z+

Z+ ∞{ }∪() Z 0 1 2 …, , ,{ }

ℵ a b a b,()gcd

a b

mod a b,() g D R→: g

D R D′ D⊆ g g D′()

g D′() g x() x D′∈{ }= g D() g

S S S

5

The symbol is used to denote set difference.

A directed multigraph denotes an ordered pair , where and

are finite sets, and associated with each there are two properties and

 such that . Each member of is called a vertex of

and each member of is called an edge. is called the source vertex of ,

and is called the sink vertex of . A subgraph associated with any is

the directed multigraph formed by together with the set of edges

, and is denoted by ; if is

understood from context, we may simply say . A path in is a

nonempty sequence such that ,

, and so on. Given a finite path , we say that

 is directed from to . A path that is directed from some vertex to

itself is called a cycle or a directed cycle, and a fundamental cycle is a cycle of

which no proper subsequence is a cycle. A graph is called acyclic, if it does not con-

tain any cycles, and it is called cyclic otherwise.

3. Synchronous dataflow (SDF)

Synchronous dataflow is a restricted version of dataflow in which the num-

ber of tokens produced (or consumed) by an actor firing on each output (or input) is

a fixed number that is known at compile time. Each edge in an SDF graph also has a

non-negative integer delay associated with it, which corresponds to the number of

initial tokens on the edge. If for each edge in the graph, the number of tokens con-

sumed, and the number of tokens produced equal one, then we have homogeneous

SDF. In single-rate SDF, there is no production/consumption mismatch across an

edge; i.e. the number of tokens produced is equal to the number of tokens consumed

for every edge, and thus all actors are invoked at the same average rate. On the other

hand, multi-rate SDF allows sample rate mismatches across edges.

Fig. 1 shows a multi-rate SDF graph . Each edge is annotated with the

number of tokens produced (consumed) by its source (sink) actor, and the on the

–

G V E,() V E

e E∈ e()src

e()snk e()src e()snk V∈, V G

E e()src e

e()snk e V′ V⊆

V′

e E∈ e()src e()snk V′∈,(){ } V′ G,()subgraph G

V′()subgraph V E,()

e1 e2 e3 …, , , E∈ e1()snk e2()src=

e2()snk e3()src= p e1 e2 … en, , ,=

p e1()src en()snk

G

D

6

edge from actor to actor specifies a unit delay. Each unit of delay is imple-

mented as an initial token on the edge. Given an SDF edge , the source actor, sink

actor, and delay of are denoted by , , and . Also, and

 denote the number of tokens produced onto by and consumed from

 by .

A firing of an actor in corresponds to removing tokens from the

head of the buffer for each input edge , and appending tokens to the buffer

for each output edge . We say that an actor is fireable if there are enough input

tokens on each input buffer to fire that actor. A schedule for is a sequence

, which can be finite or infinite, of actors in . Each term of this

sequence is called an invocation of the corresponding actor in the schedule. For each

, is said to be an admissible firing if it is fireable immediately after

have fired in succession. The schedule is an admissible schedule for if is an

admissible firing for each . The process of successively firing the invocations in an

admissible schedule is called executing the schedule, and if a schedule is executed

repeatedly, each repetition of the schedule is called a schedule period of the execu-

tion.

As we fire the invocations in the schedule, we can represent the state of the

system by the numbers of tokens queued on the buffers associated with the edges. A

finite schedule is a periodic schedule if it invokes each actor at least once and pro-

duces no net change in the system state. The number of tokens queued on each edge

is left unchanged. Schedules that are both periodic and admissible are referred to as

Figure 1. A simple SDF graph. Each edge is annotated with the number of tokens

consumed and produced, and by the amount of delay (if any) on the edge. A delay is

also indicated by a triangular mark on an edge.

A
1 13

2D
B C

2

A B

e

e src e() snk e() d e() p e()

c e() e src e()

e snk e()

G c α()

α p α()

β

G

S f 1 f 2 f 3…= G f i

i f i f 1 … f i 1–, ,

S G f i

i

S

7

valid schedules. An SDF graph is consistent if and only if it has a valid schedule.

In DSP applications, we are mostly dealing with infinitely or indefinitely

long sequences of input data, and thus it is mandatory that we support infinite sched-

ules of actor executions. But there are several issues related to such infinite sched-

ules:

• The buffer memory requirement along each edge may become unbounded;

• The graph may become deadlocked;

• The schedule may or may not be periodic;

The most significant advantage of SDF is that all of these issues can be

resolved at compile-time. There exist efficient techniques to determine at compile-

time whether or not an arbitrary SDF graph has a valid schedule (a periodic schedule

that neither deadlocks nor requires unbounded buffer sizes), and to construct a valid

schedule such that the resulting target program is optimized [8]. The minimum num-

ber of times an actor has to be fired in a valid schedule is represented by a vector

, indexed by the actors in (we often suppress the subscript if it is under-

stood). These minimum numbers of firings can be derived by finding the minimum

positive integer solution to the balance equations for , which specify that must

satisfy

, for every edge in . (1)

The vector , when it exists, is called the repetitions vector of . A schedule for

 is a minimal periodic schedule if it invokes each actor exactly times.

The static properties of SDF offers potential for thorough optimization, and

effective optimization techniques have been developed in the contexts of improving

the efficiency of buffering code [6], data memory minimization [1], joint minimiza-

tion of code and data [8, 31, 35], high-throughput block processing [32], multipro-

cessor scheduling (there have been numerous efforts in this category — for example,

see [28, 3, 13, 22, 29]), synchronization optimization [9], as well as a variety of

other objectives.

qG G G

G q

q src e()() p e()× q snk e()() c e()×= e G

q G S

G A qG A()

8

In the course of this report, we will be looking at scheduling and code-gener-

ation techniques for SDF graphs, and their extensions. Fig. 2 shows a commonly

used model for compiling an SDF graph. The compilation begins with constructing

a periodic schedule from the SDF graph. A threading compiler steps through this

schedule and for each actor instance that it encounters, it generates a block of code,

derived from a predefined library of actor code blocks, that implements the actor.

Typically when defining a new actor, the user will specify the code to implement

that actor. The sequence of code blocks output by the code generator is processed by

a storage allocation phase that inserts the necessary code to route data appropriately

between actors and assigns variables to memory locations. The output of this storage

allocation phase is the target program. Further details on this method of compilation

can be found in [8].

Figure 2. Compiling an SDF graph.

Actor Library

Threading Compiler

Storage Allocation

Target Code

SchedulerSDF Graph
periodic
schedule

9

4. Extensions to the SDF model

It is possible to describe a large class of useful DSP applications in SDF,

which provides the benefits of static scheduling as described in Section 3. However,

many interesting applications also require some amount of dynamic or data-depen-

dent behavior, at the inter-actor level, which is not allowed in the SDF model. Thus,

many extensions to the SDF model have been proposed, where the objective is to

accommodate a broader range of applications, while maintaining a significant part

of the compile-time predictability of SDF.

4.1 Boolean dataflow

In the Boolean dataflow model, developed by Buck [10], the number of

tokens produced or consumed on an edge is either fixed, or is a two-valued function

of a control token present on a control terminal of the same actor. Thus a control

token transferred by a control port (input or output of an actor) controls the number

of tokens transferred by a conditional port.

BDF extends the analysis techniques used for SDF graphs to handle BDF

actors with conditional ports, by associating symbolic expressions with conditional

ports [10]. In Fig. 3, the switch actor is shown with its symbolic annotations. The

switch actor is a BDF actor that reads one token from the control input, and depend-

ing on whether the value of the control token is true or false, routes the input to

either the output marked , or the output marked . One possible interpretation of

Figure 3. The symbolically annotated switch actor in the boolean dataflow model.

1

switch

1

p 1-p

T F

T F

10

the symbolic annotations shown in the figure is: given a sequence of actor execu-

tions of the switch actor, in which the proportion of TRUE Boolean tokens con-

sumed by the control port is , the number of tokens produced on the TRUE output

of the switch actor is , and the number of tokens produced on the FALSE output

is . A topology matrix [8] can now be constructed, similar to SDF graphs.

Given a connected BDF graph , a topology matrix of is a matrix whose rows

are indexed by the edges in and whose columns are indexed by the actors in ,

and whose entries are defined by:

(2)

The topology matrix will not be a constant, as in SDF, rather it will be a

function of the symbolic variables present in the BDF graph. The topology matrix is

a compact matrix-vector form of representing the balance equations that we dis-

cussed in Section 3 (1). For boolean dataflow, it is possible to solve these balance

equations symbolically. This symbolic solution can lead to the detection of a com-

plete cycle, which is a sequence of actor executions that returns the BDF graph to its

original state (i.e. there is no net change in the number of tokens residing in the

FIFO queue corresponding to each edge).

In constructing a schedule for BDF actors, Buck tries to come up with a

quasi-static schedule, where each firing is annotated with the run-time condition

under which the firing should occur. Buck has shown that the BDF model is Turing-

complete, and hence many key decision problems, including that of finding a finite

complete cycle becomes undecidable for BDF. Thus, Buck presents heuristics for

finding finite complete cycles in the form of a clustering algorithm, which attempts

to map the graph into traditional control structures like if-then-else and do-while. If

this clustering technique succeeds in reducing the graph to a single cluster, the graph

is executed with the quasi-static schedule corresponding to the clusters. Otherwise,

n

p

np

n 1 p–()

G Γ G

G G

Γ α A,()
α()p if A = α()src,
α()c– if A = α()snk,
0 otherwise,






=

11

the resulting clusters are executed dynamically.

The BDF model has subsequently been extended by Buck to Integer Con-

trolled Dataflow [11], where the value of the control tokens can be arbitrary integers

instead of being Boolean. The scheduling techniques developed there are more or

less extensions of those for the BDF model.

4.2 Well-Behaved stream flow

Gao et al. have studied a programming model called well-behaved stream

flow (WBSF) [17], in which non-SDF actors (switch and select or merge) are only

used as a part of two predefined schemas called the conditional schema, and the loop

schema. These restrictions guarantee that infinite schedules can be implemented

with bounded memory. However, because of these very restrictions, Gao’s model

has much less expressive power than Buck’s BDF model. In particular Gao’s model

is not Turing-complete.

4.3 Multidimensional dataflow

Lee has proposed an extension of SDF to handle multidimensional data effi-

ciently [24]. The standard SDF model assumes one dimensional data streams, and

although a multidimensional stream can be embedded in a one dimensional stream,

the result is not very elegant, and does not expose data parallelism efficiently. In

multidimensional SDF (MD-SDF), programming for data parallelism (in addition to

functional parallelism that dataflow naturally models) in a graphical block diagram

environment is a key objective.

Fig. 4(a) shows a simple 2D-SDF graph. The numbers of tokens produced

and consumed are now given as -tuples. Instead of one balance equation for an

edge, there are now balance equations — one for each dimension, which are

solved for the smallest integers . The solutions give the number of repetitions of

actor in each dimension . For the graph in Fig. 4(a), the balance equations are

given by and . The precedence graph

that can be automatically constructed from a MD-SDF graph exposes both func-

tional and data parallelism leading to efficient scheduling.

M

M

rX i,

X i

rA 1, OA 1, rB 1, IB 1,= rA 2, OA 2, rB 2, IB 2,=

12

MD-SDF also addresses the issue of re-setting of delays on an arc, which is

necessary for correct functionality in certain kinds of applications involving

repeated computations. Applications with such resetting of delays will be illustrated

in Section 6.1. A delay in MD-SDF is coupled with a tuple, as shown in Fig. 4(b). It

can be interpreted as specifying the boundary condition on the index space associ-

ated with that arc. Thus for 2D-SDF as shown in the figure, it specifies the number

of initial rows and columns.

4.4 Cyclo-Dynamic dataflow

Cyclo-dynamic dataflow [34] is an extension of Cyclo-static dataflow

(CSDF) [15]. In cyclo-static dataflow, the number of tokens produced and consumed

by an actor can vary between firings, as long as the variations form a certain type of

periodic pattern. Each time an actor is fired, a different piece of code called a phase

is executed. CSDF specification of a distributor actor (actor), which routes data

received from a single input to each of two outputs in alternation, is shown in Fig. 5.

(a) (b)

Figure 4. The multidimensional dataflow model. (a) A simple MD-SDF graph. (b) A

multidimensional delay in MD-SDF.

A A

(OA,1,OA,2) (IB,1,IB,2)

A A

(d1,d2)

B

(a) (b)

Figure 5. The cyclo-static dataflow model compared with synchronous dataflow.

Actor is a distributor actor. (a) SDF specification. (b) CSDF specification.

A
B

C

D

11

1 1
A B

C

D

1 1,0

0,1

1 2 1 1,1

1

Schedule: AABCD ABCABD

B

13

A CSDF graph can be compiled as a cyclic pattern of pure SDF graphs, and static

periodic schedules can be constructed in this manner. One advantage of CSDF over

SDF is that it can sometimes lead to significantly lower buffer memory require-

ments.

Cyclo-dynamic dataflow extends cyclo-static dataflow, by introducing data-

dependent flow of control in the CSDF model. The semantics are constructed such

that the extra knowledge about the internals of the actors, which are known to the

programmer, can be expressed in a natural way, and in a syntax that can be analyzed

by automatic tools. The CDDF model allows the use of symbolic variables that

reflects relevant properties of actor behavior. Similar to BDF, CDDF also has a con-

cept of control tokens. A CDDF control token can determine the token transfer at an

actor port, and the next actor phase to be executed. To allow the scheduler to evalu-

ate the firing rule for a given phase, the model is restricted as follows: for input ter-

minals the consumption numbers must not depend on a symbolic variable. Also, the

actual phase that will be invoked by the scheduler must not depend on a symbolic

variable; in addition, control tokens must be present at the moment that the actual

phase is determined.

Fig. 6 shows downsampling by a variable factor , as represented in the

CDDF model. The first time the actor fires, one token is consumed from the control

input. The value of this variable , expressed symbolically, corresponds to the

length of the sequence. Thus, for the next firings of the actor, no tokens are

consumed from the control terminal. For other terminals, the token transfer

Figure 6. Downsampling by a variable factor in cyclo-dynamic dataflow.

D1,

(n-2)*Di,

Dout

1[n],(n-2)*0,0

0,(n-2)*0,1

n

n()

n 1–

14

sequence is a function of the value of the first token read from the control edge.

Compared to BDF, CDDF provides a way to express the programmer’s

knowledge about the internals of an actor, which a tool has no way of knowing oth-

erwise, without attempting to parse the individual library specifications. Hence,

some CDDF specifications can be successfully checked for consistency (the number

of tokens produced on an edge is the same as the number of tokens consumed during

one complete cycle), while the corresponding BDF graph cannot be so checked [34].

Thus CDDF specifications possess better analyzability than functionally equivalent

BDF specifications.

4.5 Heterochronous dataflow

In *charts [18], Girault et al. propose the concept of hierarchical finite state

machines with multiple concurrency models, where unlike other concurrent, hierar-

chical FSM models (like Statecharts [19]), the idea is to decouple the concurrency

model from the hierarchical FSM semantics. This allows hierarchical FSMs to be

embedded in a variety of concurrency models, including dataflow, discrete event,

and synchronous/reactive. In the dataflow context, the model allows an SDF graph

to refine a state of an FSM, and conversely an SDF actor can be refined by an FSM.

Interesting possibilities arise when an FSM system has more than one state refined

to an SDF graph, and the type signatures (the number of tokens produced and con-

sumed on each firing) of the SDF graphs are different. In that case the FSM sub-

system cannot be embedded within an SDF graph. This property is exploited to

propose a new model of computation called Heterochronous Dataflow (HDF),

where an actor can have a finite number of type signatures associated with it. When

such an actor fires, a well-defined type signature is in effect. But type signatures are

allowed to change between firings. This is somewhat similar to CSDF, but the order

in which type signatures are used is not cyclic, nor even predictable. When an HDF

system starts execution, the initial type signature in effect for every actor is used to

solve the balance equations, and find an iteration. The semantics demand that each

type signature must remain constant for the duration of the corresponding iteration.

15

After the completion of the iteration, a new set of type signatures take effect, and the

balance equations must be solved anew to redefine an iteration. Although the num-

ber of type signature combinations can be exponential in the number of actors, it is

finite. For each combination, all key issues are decidable (deadlock, bounded mem-

ory), and schedules can be statically constructed. Thus the HDF model combines

SDF and FSM semantics to obtain greater expressivity than SDF alone, but retains

the key advantage of SDF (decidability).

4.6 Bounded dynamic dataflow

Pankert et al. [27] also make use of FSM semantics in introducing control

flow into the SDF framework. They propose a heterogeneous model built on top of

an extension of SDF, called Scalable Synchronous dataflow (SSDF) [32]. An SSDF

actor has the capacity to process any integer multiple of the basic token production/

consumption quantities at an output/input port by providing a block processing

parameter. This can substantially reduce the inter-actor context-switching in synthe-

sized implementations.

SSDF is extended to Bounded Dynamic Dataflow(BDDF), in which a dis-

tinction is made between control flow, and dynamic data flow. The latter is handled

by introducing dynamic ports, distinct from normal SSDF ports, where an upper

bound is provided for the data rate at each dynamic port to keep the model bounded.

The basic strategy for software synthesis is to identify synchronous regions, that

include all SSDF blocks, and provide an internal static schedule for each such

region. Then a program is generated to handle the dynamic behavior at run-time.

Control flow is handled by FSMs. An FSM state consists of an arbitrary set of con-

nected blocks, and each block may be part of multiple states. The set of blocks asso-

ciated with a state form a subgraph to be activated while the corresponding state is

running. A set of transitions is specified for each state. The logical expression of

events needed to trigger a transition is evaluated at run-time, and when it becomes

true, the successor state is started. Code generation for control flow results in pro-

viding a switch-case statement, where each state is repeatedly executed until one or

16

a combination of multiple events causes it to be stopped, and another state to be

entered.

5. Parameterized dataflow modeling

We introduce a parameterized dataflow modeling framework that imposes a

hierarchy discipline on an underlying dataflow model and allows a subsystem’s

behavior to be controlled by a set of parameters. These parameters can vary at run-

time, thus allowing the subsystem behavior to change dynamically. Parameters can

control, among others, the functional behavior as well as the token flow behavior of

a dataflow graph. The parameter coordination mechanism is such that every parame-

terized graph always behaves like a graph in the underlying (“unparameterized”)

dataflow model during each of its invocations, but can assume different configura-

tions across invocations.

Parameterized dataflow modeling differs from the dataflow modeling tech-

niques discussed in Section 4 in that it is a meta-modeling technique: parameterized

dataflow modeling requires only that the underlying model be a dataflow model that

has a notion of a graph iteration (invocation), and hence our dataflow parametriza-

tion concepts can be incorporated into any dataflow model that satisfies this require-

ment, to further increase its expressive power. For example, a minimal periodic

schedule is a natural notion of an iteration in SDF, SSDF, CSDF, and MD-SDF. Sim-

ilarly, in BDF, a complete cycle, when it is exists, can be used to specify an iteration

of a subsystem. Thus it is possible to combine our parameterization techniques with

existing dataflow models like SDF, CSDF, SSDF and MD-SDF to yield more

expressivity. Parameterization as a meta-modeling technique is further discussed in

Section 18.

For clarity and uniformity, and because SDF is currently the most popular

dataflow model for DSP, we develop parameterized dataflow formally in the context

of SDF: we present comprehensive development of a parameterized synchronous

dataflow (PSDF) model, which introduces increased dynamic behavior into the SDF

17

framework in a controlled fashion.

Girault's work on *charts with hierarchical FSMs and multiple concurrency

models is another example of meta-modeling. Bounded dynamic dataflow also seeks

to combine different models of computation — dataflow and finite state machines.

Parameterized dataflow differs from these in that it does not require any departure

from the dataflow framework. This may be advantageous for users of DSP design

tools who are accustomed to working purely in the dataflow domain. However, in a

broader sense, our parameterized dataflow approach is in the same spirit as Girault's

*charts: our goal is to enhance the effectiveness of a range of existing and conceiv-

able models of computation rather than dogmatically advocating a single new tech-

nique.

5.1 Parameterized synchronous dataflow

PSDF uses a hierarchical parametrized representation, where hierarchy is

used to denote control dependency, and parameters (expressed as symbolic vari-

ables) are used to control the functional and dataflow behavior of hierarchical sub-

systems. For every subsystem, associated parameters maintain a constant value

during one invocation of that subsystem, thus constraining the PSDF subsystem to

behave as an SDF subsystem on every invocation. Dynamism is introduced by

allowing the parameters to assume different values across invocations of a sub-

system. This gives rise to a “locally synchronous, globally dynamic” property. We

further elaborate on this concept in Section 5.2.

A PSDF graph is a dataflow graph consisting of PSDF actors and PSDF

edges. A PSDF actor is characterized by certain parameters, where both the actor’s

functionality as well as its dataflow behavior (number of tokens consumed/produced

at different ports — where an edge is incident on it — of an actor) can depend on

these parameters.

For example, a PSDF downsampler actor can be characterized by two

parameters {factor, phase}, where factor is the decimation ratio [33], and phase

denotes the index of the input token that is actually transferred to the output. The

18

functionality of the downsampler actor depends on both these parameters, while the

dataflow behavior depends only on the factor parameter. More precisely, the number

of tokens consumed by the actor depends on factor, and the number of tokens pro-

duced by the actor is fixed at one, being independent of any of its parameters. In

addition to these externally-visible parameters (external parameters), a PSDF actor

can have some internal parameters (like state information) that are not visible out-

side. Henceforth, when we say PSDF actor parameters, we refer to the external

parameters.

From the example of the downsampler actor, we see that among the external

parameters, we can distinguish between the external-dataflow parameters (e.g. fac-

tor), and the external non-dataflow parameters (e.g. phase). The dataflow behavior

of an actor (token production and consumption) depends on its external-dataflow

parameters, but does not depend on its external-nondataflow parameters.

In this context, it is worthwhile to take a closer look at the different roles

played by parameters and dataflow inputs in a PSDF actor. Every time an actor is

invoked, it consumes some tokens from its dataflow inputs, and can perform certain

actions depending on the value of the consumed tokens. The value of a dataflow

input can change across every invocation of the associated actor, and hence can be

used to control the behavior of the actor at the granularity of every actor invocation.

On the other hand, a parameter, in general, is set (“produced”) once and maintains a

constant value for a sequence of successive invocations of the actor. Thus parame-

ters control actor behavior at a coarser level of granularity than dataflow inputs.

In the simplest case, parameters are assigned static values that are main-

tained throughout all invocations of the entire application. The PSDF model allows

more fine-grained control over the time period (in units of number of invocations of

the enclosing subsystem) throughout which parameters maintain constant values. As

an aside, note that although external actor parameters usually maintain constant val-

ues across multiple invocations of an actor, internal actor parameters (like the state

information in a FIR filter) can change on every invocation. We will derive similar

19

properties of subsystem parameters shortly.

A PSDF edge has three characteristics:

• the number of units of delay on the edge (the number of initial tokens);

• the value of the initial token (called the delay value) associated with each

unit of delay;

• the number of invocations of the sink actor after which the associated

delay values are to be re-initialized (re-initialization period);

Like a PSDF actor, a PSDF edge can also have parameters that determine its charac-

teristics.

An application is modeled in PSDF by a PSDF specification, also called a

PSDF subsystem. Usually, an application is naturally expressible in terms of certain

parameters. For example, in a block adaptive filtering application, the size of each

block, and the filter order are two natural parameters of the application [21]. Thus,

PSDF subsystems also have an intuitive concept of parameters, similar to PSDF

actors. Some of the parameters of a PSDF subsystem may be visible externally in

the enclosing graph (external subsystem parameters), while some of the parameters

may not be visible externally (internal subsystem parameters). These parameters

together comprise the immediate parameter set of a subsystem. When we say

parameters of a subsystem, we usually refer to these immediate parameters, unless

otherwise stated.

The external subsystem parameters can again be divided into external-data-

flow, and external-nondataflow parameters, depending on whether or not they affect

the dataflow behavior of the subsystem. Thus from an enclosing hierarchical sub-

system, a PSDF subsystem appears just like a PSDF actor. Indeed, the PSDF model

naturally supports a hierarchical specification format, where a PSDF graph can con-

tain any number of PSDF subsystems that are abstracted as PSDF actors. This

semantic hierarchy, called control hierarchy, is distinct from syntactic hierarchy,

which is allowed and supported in the usual fashion (the system is equivalent to flat-

tening the syntactic hierarchy).

20

Every PSDF subsystem is divided into a (possibly empty) control flow part,

a data flow part, and a (also possibly empty) mixture of control flow and data flow.

These appear in the form of three PSDF graphs called the init graph, the body graph,

and the subinit graph. The body graph models the dataflow functionality of the sub-

system, while the init and subinit graphs are used to control the behavior of the body

graph by appropriately configuring subsystem parameter values in actors present in

the init and subinit graph. The init graph models pure control flow in the sense that it

neither accepts any dataflow input from outside, nor produces any dataflow output.

The subinit graph does accept dataflow input, but does not produce any dataflow

output. The init graph of the subsystem is responsible for assigning values to the

external-dataflow subsystem parameters, while the subinit graph sets up the values

of the internal subsystem parameters. The external-nondataflow subsystem parame-

ters can be configured either by the init graph, or by any actor in the subsystem’s

parent graph that is a (dataflow) predecessor of the subsystem. In the latter case,

there is a dataflow edge from the parent graph actor to the subsystem, and the corre-

sponding parameter is bound to this dataflow edge. We have seen above that the

external parameters can be divided into external-dataflow and external-nondataflow

parameters, depending on how they affect the dataflow behavior of the subsystem.

On the basis of how the external parameters are configured, they can also be divided

into two groups: init-configured external parameters (or simply init-configured

parameters) that are configured by the init graph, and parent-configured external

parameters (or simply parent-configured parameters) that are configured by parent

graph actors. From this viewpoint, internal subsystem parameters are also referred

to as subinit-configured parameters. The subinit-configured parameters and the par-

ent-configured parameters are together referred to as non-init-configured parame-

ters. The init-configured external parameters includes all the external-dataflow

parameters, while the parent-configured external parameters is a subset of the exter-

nal-nondataflow parameters. Every subsystem also inherits the parameter set of its

parent subsystem (inherited parameter set).

21

Within a PSDF specification, actor parameters in a PSDF graph can be

assigned fixed static values, or they can be assigned subsystem parameter values. In

the latter case, we say that the PSDF graph uses those subsystem parameters. Param-

eter values are set and used in a producer-consumer fashion on a graph by graph

basis, and thus a PSDF graph does not use parameters that it sets. In a subsystem

specification, the purpose of the init and subinit graphs is to completely specify the

behavior of the body graph, either by computing values for each parameter that the

body graph uses, or by “passing on” the value from an inherited subsystem parame-

ter value. Thus, it is not necessary for the body graph to use any inherited parame-

ters, it only uses init-configured external parameters, and internal parameters of the

subsystem that it belongs to. In configuring the behavior of the body graph, the init

and subinit graphs utilize information set up in the init and subinit graphs of hierar-

chically higher-level subsystems by using inherited parameters of the associated

subsystem. In addition, the subinit graph also makes use of the (init-configured and

parent-configured) external subsystem parameters values. The usage pattern men-

tioned here is sometimes referred to as the PSDF scoping rules. The motivation for

this usage pattern will become more clear when we introduce the local synchrony

concepts in Section 5.2, and during the formal development of the PSDF model in

Section 7.

The invocation semantics of a subsystem is as follows: the init graph of a

subsystem is invoked once at the beginning of each invocation of the subsystem’s

parent graph, . Furthermore, each actor in the init graph that sets up an external

parameter value is constrained to fire only once per invocation of the init graph. One

invocation of comprises one invocation of the subinit graph, followed by one

invocation of the body graph. If there are any parent-configured external parameters

that are bound to dataflow input edges of , then consumes one token from each

of those edges on every invocation. In the subinit graph also, actors responsible for

setting up internal parameter values are constrained to fire once per invocation of the

subinit graph. Thus, in this scenario, the subsystem internal parameters and the par-

H

H

G

H

H H

22

ent-configured external parameters maintain constant values over one invocation of

the subsystem, but can change values across invocations, while the init-configured

external parameters maintain constant values over one invocation of the parent

graph. Note that this is conceptually similar to what happens in a PSDF actor.

From the perspective of invoking a PSDF subsystem, the application

designer can assign values to actor parameters in the body graph of a subsystem in

one of three ways:

• if the parameter is intended to maintain a constant value over the entire

duration of the application, then assign a static fixed value;

• if the parameter is intended to maintain a constant value over every invoca-

tion of the enclosing parent graph of the subsystem, then assign those subsystem

parameter values that are set up in the init graph (init-configured external parame-

ters);

• if the parameter is intended to maintain a constant value only over one

invocation of the subsystem, but in general, assume different values across sub-

system invocations, then assign those subsystem parameter values that are set up in

the subinit graph (internal subsystem parameters);

Similarly, actor parameters in the subinit graph that are intended to change

across every invocation of the subsystem are assigned parent-configured external

subsystem parameter values, while init-configured external parameters or inherited

parameters are used depending on whether those actor parameters will maintain

constant values over every invocation of the parent graph, or over every invocation

of some ancestor graph further higher up in the hierarchy tree.

As a part of a PSDF specification, the token flow at a port of a PSDF actor

can be specified by the programmer as a statically fixed integer, as a symbolic

expression of the actor’s parameter set, or as an unspecified value. In the third case,

the programmer has to provide a software subroutine, called the parameter interpre-

tation function of the actor, which will take as input an actor port, and an assignment

23

of values to its parameter set, and will produce as output the token flow at the speci-

fied port for that particular configuration of its parameter set. Similarly there is a

notion of a parameter interpretation function of an edge that the programmer can

optionally provide, if the associated characteristics of that edge have not been stati-

cally or symbolically specified.

5.2 Local synchrony

As mentioned before, the init graph of a subsystem does not participate in

any dataflow outside the graph. The subinit graph can accept dataflow input from

outside, but does not produce any dataflow output. The body graph of course, both

accepts and produces dataflow at its interface. Thus the token flow at the ports of a

subsystem can potentially depend both on the internal parameters as well as on the

external parameters of the subsystem. However, the locally synchronous semantics

of PSDF forbids subsystem token flow to depend on internal subsystem parameters,

or on parent-configured external subsystem parameters, the latter being a subset of

the external non-dataflow subsystem parameters. The reason for this restriction can

be explained from two different perspectives — philosophically, and from a sched-

uling viewpoint.

Recall, that the token flow at an actor port is a function of the external-data-

flow parameter set of the actor, and does not depend on the actor’s external-nondata-

flow parameters or internal parameters. In an analogous fashion, from a

philosophical perspective, subsystem token flow should also depend only on the

external-dataflow subsystem parameters, and not on the internal subsystem parame-

ters, or external-nondataflow subsystem parameters. Thus, the functional behavior

of the subsystem should naturally lead to parameter choices such that the interface

token flow behavior of the subsystem satisfies the local synchrony condition.

From the semantic perspective, local synchrony is necessary for schedulabil-

ity of a PSDF graph. Along with the parameter configuration mechanism and the

invocation semantics, local synchrony of a subsystem ensures that each PSDF graph

in a specification always behaves like an SDF graph in each of its invocations. The

24

subsystem’s init graph sets its external-dataflow parameters to fixed values at the

beginning of each invocation of the parent graph , so the token flow of every hier-

archical actor in is fixed, and behaves as an SDF graph during each invocation.

Similarly the external-nondataflow parameters of are set to fixed values either by

the init graph or by actors in before is fired. So, in each of its invocation, the

subinit graph of uses only fixed parameter values, and thus behaves as an SDF

graph. Again, an invocation of the subinit graph of fixes up the internal parame-

ters of , so that the body graph of also uses only fixed parameter values in each

of its invocation, and is equivalent to an SDF graph in that period.

5.3 PSDF and other dataflow models

As explained above, the parameterization concept appears naturally in an

application modeling context, and along with the underlying SDF model, it makes

the powerful semantics of PSDF intuitive and easy to understand. Fig. 7 shows an

example of the PSDF representation of the downsampler actor of Fig. 6. Compared

to the CDDF representation of Fig. 6, the PSDF version is clearly a more concise

representation.

Some of the concepts in PSDF have been explored before in other models in

different contexts or with different treatments. As discussed in Section 4, the BDF

and CDDF model also make use of symbolic variables in some form. The MD-SDF

model addresses the issue of re-initialization of delays. In fact, Lee has also

explored the re-initialization concept in the context of the SDF model [25]. HDF has

the concept of a leaf SDF actor having different token consumption-production type

signatures, although these have to be statically specified. The idea of actor parame-

G

G G

H

G H

H

H

H H

Figure 7. Downsampling by a variable factor in PSDF.

dnSmpl n
(factor=n)

1

25

ters is well known in block diagram DSP programming environments. Convention-

ally, these parameters are assigned static values that remain unchanged throughout

execution.

Our parameterized dataflow approach takes the concept of actor parameters

as a starting point, and develops a comprehensive framework for dynamically recon-

figuring the behavior of dataflow actors, edges, graphs, and subsystems. In addition,

the parameterized framework provides a systematic formalism that unifies various

ideas that have been explored before in a disjoint fashion into one powerful unit. For

example, SSDF has the concept of vectorization of a SDF graph, by providing loops

around an SDF actor with an optional block processing factor. In PSDF, this block

processing factor can be modeled as an actor parameter that can be statically config-

ured, dynamically re-configured, or both. Dynamic re-configuration of the block

processing factor may be desirable to adapt an application’s performance to time-

varying application constraints involving metrics such as latency, throughput, and

power consumption.

6. Modeling in PSDF

In this section, we illustrate the syntax and semantics used to model an appli-

cation in the PSDF representation, through four examples. The first example shows

a portion of a generic PSDF specification that exercises all the features of the PSDF

model. The next three examples demonstrate concrete applications.

We use the following notation. Hierarchy is denoted by enclosing a block in

double rectangles. The immediate parameter set of a subsystem is specified inside

the subsystem with the notation

params = {<param1>, <param2>, ...}.

Inside an actor, actor parameters are represented in the left hand side of an equation,

and are assigned suitable values on the right hand side. For brevity, we have some-

times only included those actor parameters that determine the dataflow behavior of

that actor, whenever that does not affect the macro-level functionality of the applica-

26

tion. The notation (sets <param1>, <param2>, ...) inside an actor, is used to denote

the configuration of those parameter by that actor. If an actor port is not marked with

token flow information (either a static integer, or a symbolic expression of its param-

eters), that implies that the programmer has left it unspecified, and has provided a

suitable parameter interpretation function. A delay on an edge is denoted by placing

a triangular mark on that edge. For units of delay, the edge is labeled with

, followed by comma separated expressions in parentheses that provide the ini-

tial values and re-initialization periods of the tokens. Each expression consists of

two parts, which are again separated by a comma. The first part specifies the initial

value, while the second part specifies the re-initialization period (0 denotes that re-

initialization is not necessary). For units of delay, if less than expressions are

provided, the remaining delay tokens take on properties from the last expression in

the sequence.

PSDF scheduling of Examples 2, 3, and 4 will be illustrated in Section 14.

6.1 Examples of PSDF specifications

Example 1:Fragment of a generic PSDF specification

Fig. 8 shows a component of a generic PSDF specification. Actor parameters

are denoted by the prefix Ap, and subsystem parameters start with the prefix Sp. The

graph consists of four non-hierarchical actors and one hierarchical actor . The

subsystem corresponding to has 3 subsystem parameters — Sp2, Sp3, and Sp4,

which comprise the immediate parameter set of . The init graph of has a single

actor that uses the inherited subsystem parameter Sp1. Among the immediate

parameters, Sp2 is an external-dataflow parameter that is set by the init graph (init-

configured external parameter); Sp3 is an external-nondataflow parameter that is set

by the parent graph actor (parent-configured external parameter); and Sp4 is an

internal parameter that is set by the subinit graph actor S2. Different actor parame-

ters have been assigned different subsystem parameter values, in accordance with all

the scoping rules. Except for the output port of body graph actor B2, the token flow

at all other ports of all other actors have been statically specified, either as fixed inte-

n n 1>()

nD

n n

G H

H

H H

G3

27

Figure 8. A component of a generic PSDF specification. A double rectangle is used

to denote control hierarchy. A PSDF specification is enclosed in a solid rectangle,

while a PSDF graph is enclosed in a dashed rectangle. Assignment of subsystem

parameters to actor parameters, and configuration of subsystem parameters are

shown inside an actor.

G1
(Ap1=Sp1)

G2

G4

G3
 (sets Sp3)

1

H

port1

port2
port3

port4

1

1

 I1
 (sets Sp2)
(Ap2=Sp1)

 S1
(Ap3=Sp3,

S2
 (sets Sp4)

Ap4=Sp2)

Sp3Sp2

port1

 B1
(Ap5=Sp4)

B2
(Ap6=Sp4,

Sp4

Ap7=Sp2)
port2 port3

1

graph G

subsystem H
params={Sp2,Sp3,Sp4}graph H.init

1

Sp4

Sp1

2

graph H.body

graph H.subinit

port41

28

gers, or as symbolic expressions of the subsystem parameters on which the token

flow depends. For example, the body graph actor B1 uses the subsystem parameter

Sp4, and consumes a fixed quantity of two tokens on its input port, and produces Sp4

number of tokens on its output port. For actor B2, the user has provided a suitable

parameter interpretation function to determine the token flow at its output port at run

time. Let us denote this unknown token flow by the symbolic variable UB2O.

For local synchrony verification of subsystem , the token flow at all the

dataflow interface ports of the subinit graph and the body graph of the subsystem

has to be computed and checked for proper containment. In this example, the token

flow at the input port of the subinit graph (port1) is given by Sp2, which is a function

of an init-configured external parameter, while the token flow at the input port of the

body graph (port2) is statically fixed at 2. However, the token flow at the output port

of the body graph (port3) is equal to the unknown quantity UB2O, and hence cannot

be determined at compile-time. From the parameter configuration of actor B2, it can

be seen that UB2O can in general depend on the subsystem parameters Sp2 (exter-

nal-dataflow parameter) and Sp4 (internal parameter). Recall that for the subsystem

to be locally synchronous, UB2O must be independent of the internal subsystem

parameter Sp4, since Sp4 is configured in the subinit graph and not in the init graph.

Since actor parameter Ap6 is assigned the subsystem parameter Sp4, local syn-

chrony of the subsystem will depend on whether or not Ap6 is an external-nondata-

flow parameter, or an external-dataflow parameter of the actor, which will determine

the dependence of UB2O on Sp4. Note that port4 is not a dataflow interface port for

either the subinit graph, or the body graph. The subsystem parameter Sp3 is bound

to this port, and the subsystem always consumes a single token from this input port

(port4) on each invocation. Thus, token flow at port4 is known at compile-time, and

is not relevant for local synchrony verification.

Example 2:Computation of Fibonacci Numbers, based on user input

In this example (Fig. 9), the PSDF subsystem fib has a single parameter,

denoted by the symbolic variable , which corresponds to the Fibonacci Number

H

p

29

being computed. In the init graph of the subsystem, the setFib actor sets the value of

 (e.g., from user input, or by random number generation). In the dataflow part of

the subsystem, the body graph uses the parameter . The add actor has both of its

inputs coming as feedback edges from its output. The first input has one unit of

delay initialized to one. The second input has two units of delay, both initialized to

zero. Both the delay values have to be re-initialized after invocations of the add

actor. The output of this addition goes to the dnSmpl actor, which downsamples by a

factor of . The actor parameter factor of the dnSmpl actor is set to , while the

phase parameter is set to 0, such that the most recent input sample is transferred to

the output. The downsampling result is passed on to the print actor which prints the

result.

Fig. 10 shows the corresponding SDF system for computing the seventh

Fibonacci Number. As is evident from the two representations, the PSDF represen-

Figure 9. Computation of the th Fibonacci Number in PSDF.

2D({0,p},{0,p})

D({1,p})

1 p 1 1
print

dnSmpl
(factor=p,
phase=0)

setFib
(sets p)

add

subsystem fib,
params = {p}graph fib.init

graph fib.body

p

p

p

p

p p

30

tation is a straightforward and intuitive extension of the underlying SDF model to

compute an arbitrary sequence of Fibonacci Numbers.

Example 3:Weighted average of variable length data packets

In this example (Fig. 11), the objective is to compute the weighted average

from an input data stream produced by the genData actor. The data stream has to be

broken up first into packets, and then into frames. Each frame consists of one or

more contiguous packets, and each packet consists of one or more contiguous

tokens. The length of each packet, and the number of packets in a frame are speci-

fied at run-time by the genHdr SDF actor. The weighted average of each frame has

to be computed, with respect to the weighted value of each packet. The correspond-

ing PSDF subsystem wtAvg is modeled as having two parameters, denoted by the

symbolic variables plen, and flen. The length of each packet is denoted by plen, and

flen gives the length of each frame. In the init graph of the subsystem, the readHdr

actor reads these from the two tokens produced by the genHdr actor, and corre-

spondingly sets flen and plen. To compute the weighted average, in the body graph

of the subsystem, the data values in each data packet (of length plen) are multiplied

together by the mult actor, then the product for each packet is added up by the add

actor (for a total of flen additions), and finally this sum is divided by flen in the div

actor, to obtain the weighted average. Here, div is a PSDF actor, where the divisor is

Figure 10. Computation of the 7th Fibonacci Number in SDF.

add

2D(0,0)

 D(1)

1 7 1 1

printdnSmpl

31

specified as an actor parameter (divisor). In this example, the actor parameter divi-

sor is assigned the value of the subsystem parameter flen. Finally, the result of the

computation is printed by the print actor. Re-initialization of the corresponding

delay values are necessary for every plen invocations of the mult actor, and for every

flen invocations of the add actor.

Example 4:Prediction Error Filter

This example (Fig. 12) models a prediction error filter, where a linear adap-

tive filter implementing the least-mean-square (LMS) algorithm [21] is used to pro-

vide the best prediction of the present value of a random signal. The present value of

the signal provides the desired response of the adaptive filter, while past values of

Figure 11. Weighted average of variable length data packets in PSDF. The input data

stream consists of frames that are broken up into packets. Each packet has length

pLen and a frame is made up of fLen packets. The application computes the

weighted average of each frame.

D({1,plen})

 mult

1

D({0,flen})

div

1

genData

(divisor
genHdr

11

print
2 2

1

readHdr
(sets

=fLen)

dnSmpl1
(factor=

phase=0)
plen,

dnSmpl2
(factor=

phase=0)
flen,

1

graph wtAvg.init

subsystem wtAvg,
params={plen,flen}

graph wtAvg.body

1

pLen,
fLen)

1 1 fLen

1
1 1

pLen

add

32

Figure 12. A prediction error filter in the PSDF model. The step size of the adaptive

filtering LMS algorithm [21], the FIR filter length (fLen), and the coefficients

(coeffs) of the FIR filter are parameters of the adaptFilt subsystem.

fork2

FIR
Subtract

wtCntrl
(st=step,

len=fLen)
(sets

coeffs)

(len=fLen,
cfs=coeffs)

graph adaptFilt.subinit

subsystem predictor

1

1

adaptFilt

1

1

1 1 1

1

1

port1

port4

port2

port3

subsystem adaptFilt
params={fLen,step,coeffs}

graph predictor.body

D({0,0})
D({0,0}) port4

1

1

graph adaptFilt.body

setPars
(sets

 step, fLen)

graph adaptFilt.init

fork1

D({0,0})
1

1

1

1000
1

port1

port2

port3

port5

randSig

port5

plot

fork3

1
1

33

the signal supply the input applied to the adaptive filter, and the estimation (predic-

tion) error serves as the output.

In the PSDF model of the application, shown in Fig. 12, the topmost sub-

system predictor has empty init and subinit graphs. The body graph makes use of

several instances of the fork actor. The functionality of the fork actor is to simply

replicate its input to each of its outputs. The outputs of the first fork actor (fork1)

provide the current value of the random signal. One output serves as the desired

response of the adaptive filter (port3), while the other output is delayed and supplied

to the second fork actor (fork2), which provides the past value of the random signal

at its two outputs. One output of fork2 goes into the adaptive filter as the input signal

(port2), while the other output is again delayed and provided as input to the weight

control mechanism of the adaptive filter (port1). The (error) output of the adaptive

filter is plotted by the plot actor and supplied to the weight control mechanism after

a delay (port4). Control hierarchy is used to model the LMS adaptive filtering pro-

cess via subsystem adaptFilt. The parameters of adaptFilt — fLen, step, coeffs,

model the adaptive FIR filter length, the step size of the adaptation weight control

mechanism, and the coefficients of the FIR filter, respectively. In the init graph of

the subsystem, appropriate values are assigned to the step size and the filter length in

the setPars actor, while in the subinit graph, the wtCntrl actor accepts the prediction

error and current value of the random signal as inputs, and uses the step size and fil-

ter length parameters to update the filter coefficients of the FIR actor for filtering the

next input sample. At the first invocation of the wtCntrl actor, both its inputs have

delay tokens initialized to 0, and the actor provides an initial guess of the filter

weights. Actor parameters of the FIR and wtCntrl actors are assigned suitable sub-

system parameter values. The Subtract actor determines the prediction error from

the filter output and the desired response.

In this example, a fixed step size and filter length are used for a thousand

input samples. In multiple runs of the application, the programmer can experiment

with different values of the step size and filter length, to minimize the prediction

34

error. Depending on application-specific requirements, the programmer can also

control the length of the input samples over which a fixed step size and filter length

are used by making that a parameter of the topmost subsystem predictor, and config-

uring the parameter in the predictor subsystem’s init graph.

In the adaptFilt subsystem, the step size (step) and the filter length (fLen)

can be considered as external subsystem parameters (external-nondataflow in this

case) that are visible outside, and serve as handles to control the subsystem function-

ality. These remain fixed over one invocation of the subsystem’s parent graph. On

the other hand the coeffs parameter, modeling the FIR filter coefficients, is an inter-

nal subsystem parameter that the subsystem uses for its local purposes, and which

may change value across every invocation of the subsystem.

In this example, one invocation of the adaptFilt subsystem comprises single

invocations of the wtCntrl, FIR, and Subtract actors. Since, the coeffs internal

parameter changes across every invocation of the subsystem, the FIR actor effec-

tively receives a new set of coefficients on each invocation.

Now, recall our discussion on dataflow inputs and parameters of an actor

(Section 5.1), and observe that the filter coefficients of our prediction error filter

example can also be modeled as a dataflow input of the actor. This alternative model

of the adaptFilt subsystem is shown in Fig. 13. In this model, coeffs is no longer an

internal parameter of the subsystem; instead, the wtCntrl actor supplies fLen number

of filter coefficients to the FIR actor as a dataflow input, and the subsystem now has

an empty subinit graph. This demonstrates that, analogous to other programming

models, there is no one correct way of modeling in PSDF — rather there can be sev-

eral ways of modeling the same functionality, and which one the programmer

chooses in practice may be guided by various application-specific considerations,

for example, the version of the FIR filter that is already available in the actor library.

In Section 11, we further elaborate on the relationship between dataflow inputs and

actor parameters.

35

7. Formal definition of a PSDF specification

The previous sections have introduced PSDF concepts in an intuitive, infor-

mal manner. In this section, we introduce some formalization that enables more pre-

cise specification and analysis of PSDF semantics.

7.1 Parameters

A parameter set is a finite set of objects such that each

 has an associated domain, denoted , which is a finite and nonempty

Figure 13. The adaptFilt subsystem in an alternative modeling style for the predictor

error filter example. In this case, the subinit graph has been removed, and instead,

the wtCntrl actor provides the adapted filter coefficients to the FIR filter in the body

graph through a dataflow input. Hence coeffs is no longer a parameter of the sub-

system.

FIR Subtract(len=fLen)

1

1

1 1

1

1

subsystem adaptFilt
params={fLen,step}

setPars
(sets

step, fLen)

graph adaptFilt.init

graph adaptFilt.body

port4

port1

port2

port3

fLen

 fLen

wtCntrl
(st=step,

len=fLen)

1

port5

P p1 p2 … pn, , ,{ }=

pi domain pi()

36

set. Each is called a parameter of . A special object, which we call the unspec-

ified parameter value, and denote by “ ”, is reserved for use in incomplete parame-

ter settings. Thus, every parameter set must satisfy

. A parameter has a default value — associated

with it such that

. (3)

For example, consider a parameter set , with

, and . Then the default values of the

parameters can be specified as , and .

Now suppose that is a given non-empty parameter set.

A configuration of is a -element subset of ordered pairs

such that for , . Each is said to be the

value of parameter under the given configuration. If

 is a configuration of a parameter set (also

called a parameter configuration), denotes the value for each . If for each

, , we say that the configuration is complete. Otherwise, is a

incomplete. An empty parameter set has an empty configuration, and an empty con-

figuration is always complete. For example, for the parameter set ,

 is a complete configuration, while is an incom-

plete configuration.

Each of the sets can be viewed as the domain of a parameter

that contributes to defining the precise configuration of some higher level object. In

the context of the PSDF model, these higher level objects include graph actors and

edges. However, not all combinations of permissible individual parameter values are

necessarily acceptable. The configuration domain associated with a non-empty

parameter set , denoted 1, is the set of compatible valid configurations

of in the context in which is being used. Thus,

pi P

⊥

p1 p2 … pn, , ,{ }

⊥ domain pi()∉ pi default pi()

default pi() domain pi() ⊥{ }∪()∈

W x y,{ }=

domain x() 1 2,{ }= domain y() a b c, ,{ }=

default x() 2= default y() ⊥=

P p1 p2 … pn, , ,{ }=

P P

p1 v1,() p2 v2,() … pn vn,(), , ,{ }

i 1 2 … n, , ,= vi domain pi() ⊥{ }∪()∈ vi

pi

C p1 v1,() p2 v2,() … pn vn,(), , ,{ }=

C pi() vi i

p P∈ C p() ⊥≠ C C

W

x 2,() y b,(),{ } x ⊥,() y a,(),{ }

domain pi()

P domain P()

P P

37

, (4)

and any configuration can be viewed as an error in the configura-

tion of . For an empty parameter set, an empty domain is associated with it. For

example, in the parameter set , , and , but these

two values may not be compatible together, making an invalid con-

figuration for . This concept of a valid configuration will become more clear in

Section 7.2, when we discuss PSDF actor parameters. Henceforth in this paper, we

consider only valid configurations, unless otherwise stated.

The subset of that consists of all configurations that are both

valid and complete is denoted .

Given a configuration of a non-empty parameter set , and a non-empty

subset of parameters , the projection of onto , denoted , is defined

by

. (5)

Thus, the projection is obtained by “discarding” from all values associated with

parameters outside of . Projecting a configuration (empty or non-empty) onto an

empty configuration produces the empty configuration. For example, for the param-

eter set , given a parameter subset , and a configuration

, .

Given a parameter set , a function into some range set

; and a subset , we say that is invariant over if for every pair

, we have

. (6)

1. We will occasionally “overload” certain symbols, such as , in cases where there

are more than one closely related meanings. In such cases, the meaning will be clear from the

arguments of the overloaded symbols, or from context.

domain

domain P() p1 v1,() p2 v2,() … pn vn,(), , ,{ } vi domain pi() ⊥{ }∪()∈ i∀{ }⊆

p domain P()∉

P

W 1 domain x()∈ a domain y()∈

x 1,() y a,(),{ }

W

domain P()

domain P()

C P

P′ P⊆ C P′ C P′

C P′ p C p(),() p P′∈(){ }=

C

P′

W W′ x{ }=

C1 x 2,() y c,(),{ }= C1 W′ x 2,(){ }=

P f domain P() R→:

R P′ P⊆ f P′

C1 C2, domain P()∈

C1 P P′–()() C2 P P′–()()=() f C1() f C2()=()⇒

38

In other words, is invariant over if the value of is entirely a function of the

parameters outside of . Intuitively, the function does not depend on any member

of , it only depends on the members of .

If is a family of disjoint, parameter sets with associated

domains , the joint domain of ,

denoted is defined by

. (7)

If a set of parameterized objects with disjoint parameter domains are combined into

a single composite object, the resulting composite parameter domain will not neces-

sarily be equal to the joint domain of the two component objects. The actual domain

may be a proper subset of the joint domain if additional configuration constraints are

imposed by the given application context. Such constraints may preclude the joint

use of certain pairs of component configurations. In our development of the PSDF

model, such situations do not arise, and thus, composite objects inherit the joint

domain of their component parts.

We refer to the process of setting unspecified parameter values in an incom-

plete configuration as the process of refining the configuration. Suppose that is a

non-empty parameter set, is a non-empty subset , , and

. Then the refinement of with respect to is defined by

. (8)

where

(9)

denotes the set of parameters that are contained in both and , are unspecified in

, and are not unspecified in . Refining a configuration (empty or non-empty)

f P′ f

P′ f

P′ P P′–()

P m P1 P2 … Pm, , ,

domain P1() domain P2() … domain Pm(), , , P

Jdomain P()

Jdomain P() Ci
i 1=

m

∪ 
  for each i C, i domain Pi()∈

 
 
 

=

P

P′ P′ P⊆ C domain P()∈

C′ domain P′()∈ C C′

rfmt C C′,() C p ⊥,() p P″∈(){ }–() p C′ p(),() p P″∈(){ }∪=

P″ p P′∈ C p() ⊥=() C′ p() ⊥≠()and(){ }=

P P′

C C′

39

with respect to an empty configuration, maintains the original configuration. For

example, for the parameter set W, given , , and

, .

7.2 PSDF actors

To develop PSDF concepts precisely it is useful to employ a slightly more

detailed model of dataflow graph topologies than what has commonly been used for

analysis of pure SDF graphs: rather than representing a dataflow specification as a

directed multigraph in which vertices correspond to actors and edges connect pairs

of vertices, we represent a PSDF graph as a bipartite directed graph in which edges

connect actor output ports to actor input ports. In this representation, a PSDF actor

has a finite set of input ports , and a finite set of output ports . Actor

input and output ports are unique in the sense that for any actor ,

, and for any two distinct actors and ,

. (10)

If is an input or output port of actor , we write .

For a PSDF actor, the number of tokens produced or consumed at each port

is in general dependent on one or more parameter values. The parameter set of a

PSDF actor is a parameter set, denoted , together with a parameter

domain , which defines the set of valid parame-

ter value combinations for . By , we denote the set of combinations

 that are both complete and valid.

A configuration of , denoted by , is a valid — but not necessarily

complete — configuration of . Any configuration for

 can be viewed as a syntax error in the underlying block diagram programming

language. If for some , , this means that the corre-

sponding parameter value is not statically specified (specified by the programmer).

Its value is to be determined dynamically, during run-time. Furthermore, its value

may change across different invocations of the enclosing PSDF subsystem.

W′ x{ }= C x ⊥,() y c,(),{ }=

C′ x 2,(){ }= rfmt C C′,() x 2,() y c,(),{ }=

A in A() out A()

A

in A() out A()∩ ∅= A B

in A() out A()∪() in B() out B()∪()∩ ∅=

p A actor p() A=

A params A()

domain A() domain params A()()≡

A domain A()

domain params A()()

A configA

params A() C domain A()∉

A

p params A()∈ configA p() ⊥=

40

Example 5: The concept of parameterized actors has been employed in block dia-

gram DSP programming environments for years. Most medium- or large-grained

DSP functions, such as FIR and IIR filters, and FFT computations, are naturally

parameterizable. As a simple example, consider the downsampler actor (dnSmpl) in

Ptolemy [12], which has two parameters that

represent respectively, the decimation ratio [33], and the index of the input token to

be actually transmitted to the output. The domains of these two parameters are given

by , and ,

where is some pre-specified maximum integer value, which could, for example,

be determined by the maximum word length on the host computer. The phase

parameter of the dnSmpl actor is constrained to take on a value less than the factor

parameter, and this is reflected in the actor domain, which is

given by

. (11)

Thus, is a valid configuration for the downsampler

actor, but is an invalid configuration.

The port consumption function associated with , denoted

, (12)

gives the number of tokens consumed from a specified input port on each invocation

of actor . For any complete configuration and any input port ,

 gives the number of tokens consumed from port if for each

, parameter of is assigned the value .

The port production function

(13)

params dnSmpl() factor,phase{ }=

domain factor() 1 2 … M, , ,{ }= domain phase() 0 1 … M 1–, , ,{ }=

M

domain dnSmpl()

factor x,() phase y,(),{ } x domain factor()∈ y domain phase()∈ y x<, ,(){ }

factor 5,() phase 0,(),{ }

factor 5,() phase 6,(),{ }

A

κA in A() domain A()×() Z+→:

A C θ in A()∈

κA θ C,() θ

p params A()∈ p A C p()

ϕA out A() domain A()×() Z+→:

41

associated with is defined in a similar fashion. If the actor is understood from

context, we may simply write () in place of ().

In general, a software subroutine is provided that takes as input a complete

configuration , outputs a boolean value indicating whether or not

, and also outputs the values and

1. We refer to this subroutine as the parameter inter-

pretation function of .

In order to facilitate practical implementations of applications specified in

PSDF, a max token transfer function is associated with , denoted as:

(14)

that specifies an upper bound on the maximum number of tokens transferred (pro-

duced or consumed) at a port of actor . This maximum value is necessary to

ensure bounded memory executions of consistent PSDF specifications. The concept

of bounding the maximum token transfer at an actor port appears similar to BDDF

[27], but our use is very different, as we will discuss in Section 10.

From the above definitions, a complete configuration for a

PSDF actor yields a (pure) SDF actor, which we denote by . On

each invocation of , the constant number of tokens is con-

sumed from each input port , and the constant number of tokens is pro-

duced onto each output port . This SDF actor is called an SDF

instance of the PSDF actor . Thus a PSDF actor can be viewed as a mapping from

 into the set of SDF actors.

In summary, a PSDF actor has nine attributes — the parameter set

; the parameter domain ; the configuration , which

may be complete or incomplete, but must be valid; the set of input ports ; the

1. In some cases, this method for processing parameters can be streamlined to reduce the

overall run-time overhead of parameter interpretation. We discuss this further in Section 9.

However, this streamlining does not conflict with our techniques for consistency analysis and

scheduling. Thus, in our analysis, we adopt this simpler formalization for clarity.

A A

κ ϕ κA ϕA

C

C domain A()∈ ρ κA ρ C,(),() ρ in A()∈(){ }

ρ ϕA ρ C,(),() ρ out A()∈(){ }

f A A

A

τA in A() out A()∪() Z+→:

A

C domain A()∈

A instanceA C()

instanceA C() κA θ C,()

θ ϕA θ C,()

θ instanceA C()

A

domain A()

A

params A() domain A() configA

in A()

42

set of output ports ; the port consumption and production functions and

, which specify the dataflow properties of the actor; the parameter interpretation

function , which provides implementations of the functions and ; and the

max token transfer function , which specifies an upper bound on the token trans-

fer at an actor port. Other important properties, such as the actor execution time and

the internal memory requirement, may also be represented and used in a parameter-

ized fashion (e.g. for optimization purposes). In this report, we focus only on prop-

erties that are essential to the operational semantics of PSDF.

From the above definitions, a PSDF actor that has a non-empty parameter

set, but has no valid, complete configurations is pathological. Such an actor is not

usable in any practical sense. Thus, a valid PSDF actor is one that satisfies

, or . Furthermore, we say that a PSDF actor is

a (pure) SDF actor if , or . We also refer to such

actors as type 1 PSDF actors.

Now, consider those PSDF actors that satisfy , and

, but whose port consumption and production quantities (

and) are all known to be constant over their respective parameter domains.

We refer to these as type 2 PSDF actors. At first, this may also seem to be another

pathological class of actors, but in reality, such actors are very common.

Example 6: An IIR filter actor in Ptolemy [12] implements an infinite impulse

response filter with the transfer function

(15)

The actor has three parameters

, (16)

where gain specifies , and the floating point arrays numerator and denominator

specify and respectively. The actor has one input port in, and one output

port out, and it always consumes one token from its input port, and produces one

out A() κA

ϕA

f A κA ϕA

τA

params A() ∅= domain A() 1≥ A

params A() ∅= domain A() 1=

params A() ∅≠

domain A() 1≥ κA θ *,()

ϕA θ *,()

H z() g N 1 z⁄()×() D 1 z⁄()()⁄=

params IIR() gain numerator denominator, ,{ }=

g

N () D()

43

token on its output port. In other words, , and for

any valid configuration of .

Type 2 actors differ from pure SDF actors in that their functionality is

parameterized even though their dataflow behavior is not. Since dataflow behavior is

not affected, the distinction between type 1 and type 2 actors has largely been

ignored in past work on analysis, scheduling, and optimized implementation of SDF

graphs.

An exception is the code sharing optimization developed by Sung, Kim, and

Ha [31], which attempts to implement multiple parameterizations of the same actor

definition (or multiple copies of the same type 1 actor definition) with the same

sequence of program memory instructions. The objective of this technique is to

reduce memory requirements of type 1 and type 2 actors whose core functionality is

replicated within a specification.

The distinction between type 1 and type 2 actors primarily arises in issues of

syntax. Since type 2 actors provide great convenience without complicating the

compilation process, DSP programming environments that employ SDF typically

incorporate such actors. Previous analysis and optimization techniques for SDF

graphs, such as those developed in [1, 4, 32, 35], apply to specifications that contain

arbitrary combinations of type 1 and type 2 PSDF actors.

A type 3 PSDF actor is one that has a non-empty parameter set, and whose

port production or consumption quantities may vary depending on the parameter

setting. This possibility significantly complicates the problem of compiling PSDF

specifications. Indeed, the design of our PSDF representation paradigm is centered

around addressing this complication in an efficient manner. In exchange for accom-

modating this complication, we obtain a model that has much higher expressive

power than what is offered by type 1 and type 2 PSDF actors alone.

7.3 PSDF edges

Like a PSDF actor, a PSDF edge also has an associated parameter set,

parameter domain, and configuration. These are denoted by ,

κA in *,() 1= ϕA out *,() 1=

params IIR()

e

params e()

44

, and , respectively. The set is defined in a manner

analogous to .

Connectivity information of a PSDF edge is specified through two

attributes and . The value of must be an output port of a some

PSDF actor, and must be an input port of some PSDF actor. Note that in this

case we are overloading the directed multigraph definition of an edge (Section 2)

that is used in SDF, where and refer to the source actor and sink

actor, respectively of . In case of PSDF also, we will sometimes use the latter defi-

nition of and , and which definition we actually mean will become

clear from context.

Apart from connectivity, a PSDF edge can have three other characteristics:

the amount of delay on the edge (the number of initial tokens, that are referred to as

delay tokens), the initial value of each delay token, and the number of invocations

(re-initialization period) of after which each delay token has to be

re-initialized with its initial value. Different configurations of the parameter set of a

PSDF edge may allow for a range of different values for each of these three quanti-

ties.

The delay function associated with gives the delay

on that edge that results from any valid parameter setting. For every delay token

on edge , the delay initial value function gives the ini-

tial value of a specified delay token for a valid parameter configuration of . The

delay re-initialization period function specifies the re-

initialization period of a delay token for any valid configuration of the parameter set

of . The parameter interpretation function of provides implementations of

, , and in a manner analogous to the parameter interpretation function of a

PSDF actor.

When the notation is not ambiguous, we may suppress the attributes

, , , , , and simply denote by the ordered pair

, specifying its connectivity information. If , and

domain e() confige domain e()

domain A()

e

e()src e()snk e()src

e()snk

e

e()src e()snk

e

e()src e()snk

actor snk e()()

δe domain e() ℵ→: e

α

e υe: domain e() α× ℜ→()

e

γ e: domain e() α× ℵ→()

e f e e

δe υe γe

params e() δe υe ρe domain e() f e e

e()src e()snk,() params e() ∅≠

45

 is not constant over , then a max delay value, denoted must

be specified for , which provides an upper bound on the maximum number of

delay tokens that can reside at any time on . This bound is necessary to ensure that

there are no unbounded token accumulation on the PSDF edge across invocations

of the PSDF graph to which belongs, leading to bounded memory executions of

consistent PSDF specifications. These issues are discussed in more detail in Sec-

tions 8 and 10.

7.4 PSDF graphs

A PSDF graph is an ordered pair , where is a set of PSDF

actors, and is a set of PSDF edges that connect a subset of the actor output ports

to a subset of the set of input ports. More precisely,

for each , , and , (17)

where

, and . (18)

Furthermore, no two edges share a common originating or terminating port:

if and are distinct members of , then , and

. (19)

If (17-19) do not all hold, then the ordered pair is not a PSDF graph.

Given a PSDF graph , we denote the set of internally-connected

input ports and internally-connected output ports

 by and , respectively. The sets and may be

proper subsets of and . Each member of is called an

interface input of , and similarly, each member of is called an

interface output of . The sets of interface inputs and outputs of are denoted

δe domain e() µe ℵ∈

e

e

e

e

G V G EG,() V G

EG

e EG∈ e() V G()IN∈src e()snk V G()OUT∈

V()IN in v() v V∈(){ }≡ V()OUT out v() v V∈(){ }≡

e1 e2 EG e1()src e2()src≠

e1()snk e2()snk≠

V G EG,()

V G EG,()

e()snk e EG∈(){ }

e()src e EG∈(){ } IG OG IG OG

V()IN V()OUT V()IN IG–()

G V()OUT OG–()

G G

46

 and , respectively.

The parameter set of is defined by

, (20)

where

, (21)

and

. (22)

Each , called an actor parameter of , is a parameter of

with . Similarly, each is

called an edge parameter of , and has . The set of

unspecified parameters of actor in is defined as

, and is empty if

. (23)

The set of unspecified parameters of edge in is similarly defined as

,

, and is empty if

. (24)

For a non-empty parameter set, each member of is a parameter

of . A configuration of is a configuration of . The domain of

, denoted , is the joint domain (see

(7)), and denotes the set of complete configurations in .

Intuitively, is the set of PSDF actor and edge parameters in whose

inputs G() outputs G()

G

params G() Aparams G() Eparams G()∪=

Aparams G() A p,() A V G∈ params A() ∅≠ configA p(), ⊥=,(){ }=

Eparams G() e p,() e EG params e() ∅≠,∈ confige p() ⊥=,(){ }=

A p,() Aparams G()∈ G G

domain A p,()() domain p()= e p,() Eparams G()∈

G domain e p,()() domain p()=

A G

paramsA G() A p,() params A() ∅≠()and configA p() ⊥=(){ }=

params A() ∅=

e G

paramse G()

paramse G() e p,() params e() ∅≠()and confige p() ⊥=(){ }=

params e() ∅=

params G()

G G params G()

params G() domain G() Jdomain params G()()

domain G() domain G()

params G() G

47

values are left unspecified by the application programmer.

The simplified PSDF graph associated with is the directed multi-

graph , where

. (25)

The simplified graph is the most commonly used representation for analyz-

ing pure SDF graphs.

7.5 The parameterized repetitions vector

Suppose that is a PSDF graph, and is a

complete configuration of . Then, clearly, a pure SDF graph emerges by “apply-

ing” the configuration to unspecified actor and edge parameters in , producing

complete configurations for each actor and edge parameter in . For a PSDF actor

 in , we define the instantiated configuration of in associated with the

complete configuration as

(26)

Similarly, for a PSDF edge in , the instantiated configuration of in

associated with the complete configuration is defined as

(27)

The SDF graph that results from the complete configuration , is called the instance

of associated with the complete configuration , and it is denoted by

. In precise terms, we have

, (28)

where

V G EG,()

V G E′,()

E′ actor e()src() actor e()snk(),() e EG∈(){ }=

G V G EG,()= p domain G()∈

G

p G

G

A G A G

p

configA p, rfmt configA p paramsA G(),()≡

e G e G

p

confige p, rfmt confige p paramse G(),()≡

p

G p

instanceG p()

instanceG p() V′ E′,()=

48

, (29)

and

, (30)

If the instantiated SDF graph is sample rate consistent, then it

is possible to compute the parameterized repetitions vector , indexed by the

actors in , with respect to the complete configuration , such that satisfies

the configured balance equations for every edge in :

.(31)

where is the actor at the source of , and

 is the actor at the sink of .

More precisely, if the configured balance equations for have a

positive integer solution, then there exists a unique, minimal positive integer solu-

tion which is given by . If a positive, integer solution does not exist, then

does not exist.

In the context of the simplified PSDF graph (Section 7.4), we will use nota-

tion in accordance with SDF graphs, as described in Section 3. In particular, given a

configuration of the PSDF graph , in the simplified PSDF graph,

we will use to refer to the number of tokens produced onto PSDF edge ,

which is the same as ; to refer to

the number of tokens consumed from PSDF edge , which is the same as

; and to refer to the number of

delay tokens on PSDF edge , which is the same as . Suppressing the

argument does not cause ambiguity in the context in which we use , ,

and . Finally, we will use and to refer to the source and sink

actors of PSDF edge , instead of source and sink actor ports of . In this context,

V′ instanceA configA p,() A V G∈(){ }=

E′ instancee confige p,() e EG∈(){ }=

instanceG p()

qG p,

G p qG p,

e instanceG p()

qG p, SC() ϕSC e()src configSC p,,()× qG p, SN() κSN e()snk configSN p,,()×=

SC actor e()src()= e

SN actor e()snk()= e

instanceG p()

qG p, qG p,

C domain G()∈ G

p e() e

ϕactor e()src() e() configactor e()src() C,,()src() c e()

e

κactor e()snk() e() configactor e()snk() C,,()snk() d e()

e δe confige C,()

C p e() c e()

d e() e()src e()snk

e e

49

the max token transfer bound at an actor port can be interpreted as a bound on the

number of tokens produced () onto or consumed () from the PSDF edge

incident at that actor port.

7.6 PSDF specifications

A PSDF specification contains three PSDF graphs — the init graph ,

the subinit graph , and the body graph . Intuitively, is invoked once at the

beginning of an invocation (a minimal periodic invocation) of the hierarchical “par-

ent” graph of in which is embedded; is invoked at the beginning of each

invocation of ; and is invoked after each invocation of . Parameter values

of and that remain constant throughout an execution of the parent subsystem

are computed by or “passed on” by from subsystem parameter settings.

Parameter values of that remain constant throughout each invocation of , but

can change across invocations are set up by .

The set of interface outputs of the init graph can be partitioned

into two disjoint subsets:

, (32)

where is the set of output ports used to set parameter values in the

body graph, and is the set of output ports used to set parameter val-

ues in the subinit graph. The function

(33)

associates each interface output in with the body graph parameter that

is controlled by it. Similarly, the function

(34)

specifies which parameter of is set by each member of . Each

invocation of must produce exactly one token on each member of .

p e() c e() e

Φ Φi

Φs Φb Φi

Φ Φ Φs

Φ Φb Φs

Φb Φs

Φi Φi

Φb Φ

Φs

outputs Φi()

outputs Φi() ToBody Φi() ToSubinit Φi()∪=

ToBody Φi()

ToSubinit Φi()

Φtb ToBody Φi() params Φb()→:

ToBody Φi()

Φts ToSubinit Φi() params Φs()→:

Φs ToSubinit Φi()

Φi outputs Φi()

50

Such PSDF-specific issues of sample-rate consistency and local synchrony are

examined further in Sections 8 and 14.2.

Interface outputs of the subinit graph are used exclusively to set parameters

in the body graph. Thus, we have a mapping

(35)

that associates each interface output of with the body graph parameter that is set

by it. The “fs” subscript in (35) stands for “from subinit.” Each invocation of is

also constrained to produce exactly one token on each member of .

The mappings and must satisfy

, and

. (36)

That is, the images of and must partition the parameter set of the body

graph.

A specification also has a (possibly empty) set of inputs, denoted

, and a (also possibly empty) set of outputs, denoted . These

inputs and outputs correspond to endpoints of dataflow connections (edges) when

is embedded within a larger subsystem. (Unspecified) parameter values of the sub-

init graph may be bound to dataflow inputs of , and the subinit graph may also

receive dataflow inputs from . In the former case, the values of input tokens are

set as the values of designated graph parameters, and in the latter case, tokens are

directed to the inputs of computational actors in . Thus, there are three types of

inputs to — inputs that are bound to parameters of (parameter inputs), inputs

that are dataflow inputs to (subinit inputs), and inputs that are dataflow inputs to

 (body inputs). These three subsets of are denoted ,

, and , respectively. The mapping

Φfs outputs Φs() params Φb()→:

Φs

Φs

outputs Φs()

Φtb Φfs

Φtb ToBody Φi()() Φfs outputs Φs()()∩() ∅=

Φtb ToBody Φi()() Φfs outputs Φs()()∪ params Φb()=

Φtb Φfs

Φ

inputs Φ() outputs Φ()

Φ

Φ

Φ

Φs

Φ Φs

Φs

Φb inputs Φ() inputsp Φ()

inputss Φ() inputsb Φ()

51

(37)

specifies which parameter is set by each parameter input. Thus,

; (38)

; ; (39)

. (40)

The outputs of are simply the outputs of the associated body graph.

. (41)

All parameters of , and those parameters of contained in the set

(42)

are parameters of . Thus, the parameter set of , denoted , is defined

by

. (43)

The parameters of are configured (assigned values) in init and subinit graphs of

hierarchically higher-level subsystems, and we refer to this mechanism of parameter

value passing as initflow to distinguish it from dataflow. Thus, the parameters of

() that appear as a part of the parameters of are termed the initflow

parameters of . and respectively denote the subsets

of actor and edge parameters in . A configuration of is a configura-

tion of . The domain of , denoted , is the joint

domain (see (7)), and denotes the set of com-

plete configurations in .

Φps inputsp Φ() params Φs()→:

Φps inputsp Φ()() Φts ToSubinit Φi()()∩ ∅=

inputss Φ() inputs Φs()= inputsb Φ() inputs Φb()=

inputs Φ() inputsp Φ() inputss Φ() inputsb Φ()∪∪=

Φ

outputs Φ() outputs Φb()=

Φi Φs

paramsΦS
Φ() params Φs() Φps inputsp Φ()() Φts ToSubinit Φi()()∪()–=

Φ Φ params Φ()

params Φ() params Φi() paramsΦS
Φ()∪≡

Φ

Φs

paramsΦS
Φ() Φ

Φs Aparams Φ() Eparams Φ()

params Φ() Φ

params Φ() params Φ() domain Φ()

Jdomain params Φ()() domain Φ()

domain Φ()

52

In other words, a parameter of is a parameter of the associated init graph,

or a parameter of the associated subinit graph that is not bound to an input of , nor

to an output of the init graph.

7.7 Hierarchical actors

In designing an application of any reasonable complexity, abstraction of por-

tions of the design into a single elementary block (actor) is necessary for scalability

and modularity. Thus all block diagram DSP design environments provide the con-

cept of a hierarchical block in some form, where the internals of the block is

described by another dataflow graph. In our context, we refer to this kind of hierar-

chy as syntactic hierarchy. As mentioned in Section 5.1, syntactic hierarchy is

allowed in PSDF through subblocks, and dealt with in the usual way by flattening

the system and replacing the subblock with the dataflow graph that it represents.

Thus, syntactic hierarchy has no connotations on the semantics of the dataflow

model like scheduling decisions, and simply serves as a convenient tool for the

application programmer.

As presented in Sections 7.1 to 7.6, our parameterized model delivers addi-

tional expressive power to the application programmer by providing PSDF sub-

systems (distinct from subblocks) that can be used to represent logical functional

units capable of configuring their internal functional and dataflow behavior. External

handles are available as subsystem parameters that can be used to control subsystem

behavior from outside the subsystem. This naturally leads to the concept of a hierar-

chical representation, where subsystem parameters are configured by its ancestor

subsystems. In developing support for such a hierarchy, it is particularly desirable

that from above, the “child” subsystem appears just as a PSDF actor. Thus, the

PSDF model incorporates the concept of a hierarchical PSDF actor that represents a

child PSDF subsystem (specification). This hierarchy is very different from syntac-

tic hierarchy in the sense that this arises as a direct consequence of the PSDF seman-

tics — indeed, it is one of the key ingredients in the PSDF semantic model. We refer

to this hierarchy as semantic hierarchy or control hierarchy, and henceforth when-

Φ

Φ

53

ever we refer to hierarchical actors, we do so in the context of semantic hierarchy.

Semantic hierarchy plays an important role in the PSDF operational semantics, as

we will discuss in Section 9. In particular, unlike syntactic hierarchy, semantic hier-

archy is never flattened, instead, its presence is factored into the scheduling and con-

sistency rules.

Formally, a hierarchical PSDF actor, or simply a hierarchical actor, is a

PSDF actor that has an associated subsystem, , which is a PSDF

specification. The input and output ports of are in one-to-one correspondence

with the inputs and outputs of . The bijective mapping

, (44)

defines this correspondence.

An illustration of the coordination mechanism between the init graph, sub-

init graph and body graph in a PSDF specification represented by the hierarchical

actor is given in Fig. 14.

The parameter set of , the domain of , and the set of complete configura-

tions of is given by

; ; and

; (45)

where . In Sections 9, 14.1 and 14.2, we will discuss techniques

to determine the production and consumption functions and , and to derive

the parameter interpretation function . In general, the max token transfer function

 should also be derived from the memory requirements of the subinit and body

graphs of the subsystem that represents. Deriving such tight memory bounds is a

complex issue, and warrants further investigation. At present, we require that the

application programmer explicitly specify a max token transfer function for

each hierarchical actor .

H

subsystem H()

H

subsystem H()

f H in H() out H()∪() inputs subsystem H()() outputs subsystem H()()∪()→:

Φ

H

H H

H

params H() params Φ()= domain H() domain Φ()=

domain H() domain Φ()=

Φ subsystem H()=

κH ϕH

f H

τH

H

τH

H

54

Figure 14. The operational structure of a PSDF specification. (a) shows a hierarchi-

cal PSDF actor as it appears externally, and (b) shows the internals of the specifi-

cation represented by . A wide tip arrow on a block indicates the existence of

parameters of that block that have to be configured externally. A slash on an input or

output edge indicates a group of edges. Dataflow is denoted by bold lines, while init-

flow is denoted by dashed lines.

subinit Φs

in out

out

H

inputss Φ()

inputsp Φ()

 set by initflowparams Φ()

in

inputsb Φ()

init Φi

body Φb

(a)

(b)

H

Φ H

55

An actor that is not a hierarchical actor is called a leaf actor. In general,

PSDF graphs may contain both hierarchical and leaf actors. If is an actor in the

PSDF graph , we say that is immediately nested in . If is hierarchical, we

also say that is immediately nested in . If , we

say that is a child subsystem of , and is called the parent graph of . The

enclosing subsystem of to which is associated as an init, subinit or body graph

is called the parent subsystem (or parent specification) of . If does not contain

any hierarchical actors, it is referred to as a leaf graph. In a leaf subsystem , each

of , , and is a leaf graph. Actor is nested in at nesting depth if

there is a sequence of PSDF specifications such that is immedi-

ately nested in , and each is immediately nested in . Similarly,

is nested in at nesting depth if is nested in at nesting depth

.

The topmost PSDF specification is implicitly assumed to be embedded in

a PSDF graph with a single hierarchical actor that represents .

8. Local synchrony consistency in PSDF

The motivation of consistency issues in PSDF stems from the principle of

local SDF scheduling of PSDF graphs, which is the concept of being able to view

every PSDF graph as an SDF graph on each invocation of the graph, after it has been

suitably configured. Local SDF scheduling is highly desirable, as it allows to sched-

ule any PSDF graph (and the subsystems inside it) as a dynamically re-configurable

SDF schedule, thus leveraging off the rich library of scheduling and analysis tech-

niques available in SDF. Relevant issues in local SDF scheduling can be classified

into three distinct categories — issues that are related to the underlying SDF model,

those that relate to bounded memory execution, and issues that arise as a direct con-

sequence of the hierarchical parameterized representation that PSDF proposes. SDF

consistency issues like sample rate mismatch, and deadlock detection appear in the

first category, while the third category requires that every subsystem embedded in

A

G A G A

subsystem A() G Φ subsystem A()=

Φ G G Φ

G G

G G

Φ

Φi Φs Φb A G d

G1 G2 … Gd, , , A

G1 Gi Gi 1+

subsystem A() G d A G

d

Φ

Φ

56

the graph as a hierarchical actor behave as an SDF actor throughout one invocation

of the graph (which may encompass several invocations of the embedded sub-

systems). Since, in general, a subsystem communicates with its parent graph

through its interface ports, the above requirement translates to the necessity of some

fixed patterns in the interface dataflow behavior of the subsystem. Since consistency

in PSDF implies being able to perform local SDF scheduling, it is referred to as

local synchrony consistency (or simply local synchrony), and applies to both PSDF

graphs and PSDF specifications (subsystems).

A PSDF graph is locally synchronous, if for every , the

instantiated SDF graph has the following properties: it is sample rate

consistent (i.e. exists); it is deadlock free; the max token transfer bound is sat-

isfied for every port of every actor; the maximum delay value bound is satisfied for

every edge; and every child subsystem is locally synchronous. Formally, the local

synchrony condition for a PSDF graph is

for each , has a valid schedule; for each actor ,

for each input port , , and for each output port

, ; for each edge , if exists,

; for each hierarchical actor in , is locally

synchronous. (46)

If (46) is satisfied for every , then is inherently locally

synchronous (or simply locally synchronous). If no satisfies (46),

then is inherently locally synchronous (or simply locally non-synchronous). If

is neither inherently locally synchronous, nor inherently locally non-synchronous,

then is partially locally synchronous (i.e. there exists at least one

 for which (46) is satisfied, and there exists at least one

 for which (46) is not satisfied). We sometimes separately refer to

the different components of (46) as dataflow consistency (existence of a valid sched-

G p domain G()∈

instanceG p()

qG p,

G V E,()=

p domain G()∈ instanceG p() v V∈

φ in v()∈ κv φ configv p,,() τv φ()≤

φ out v()∈ ϕv φ configv p,,() τv φ()≤ e E∈ µe

δe confige p,() µe≤ H G subsystem H()

p domain G()∈ G

p domain G()∈

G G

G

p domain G()∈

p domain G()∈

57

ule), bounded memory consistency (bounds are satisfied for each actor port and each

edge), and subsystem consistency (each subsystem is locally synchronous) of the

PSDF graph .

Intuitively, a PSDF specification is locally synchronous if its interface data-

flow behavior (token production and consumption at interface ports) is determined

entirely by the init graph. As indicated above, local synchrony of a specification is

necessary in order to enable local SDF scheduling when the specification is embed-

ded in a graph and communicates with actors in this parent graph through dataflow

edges. Four conditions must be satisfied for a specification to be locally synchro-

nous.

First, the init graph must produce exactly one token on each output port on

each invocation. This is because each output port is bound to a parameter setting (of

the body graph or subinit graph). An alternative is to allow multiple tokens to be

produced on an init output port, and assign those values one by one to the dependent

parameter on successive invocations of . But this leads to two problems. First, we

would have to line up the number of tokens produced with the number of invoca-

tions of , thus giving rise to sample rate consistency issues across graph bound-

aries, which needlessly complicates the semantics. Second, it violates the principle

that parameters set in init maintain constant values throughout one invocation of the

parent graph of , which in turn violates the requirements for local SDF schedul-

ing. The interface dataflow of the hierarchical actor representing is allowed to

depend on parameters set in the init graph. For the parent graph of to be config-

ured as an SDF graph on every invocation, each such embedded hierarchical actor

must behave as an SDF actor, for which the parameters set in init must remain con-

stant throughout an invocation of the parent graph.

Similarly the subinit graph must also produce exactly one token on each out-

put port. Parameters set in the subinit graph can change from one invocation of to

the next, which is ensured by a single token production at a subinit output port on

every invocation of the subinit graph. Recall that a single invocation of the subinit

G

Φ

Φ

Φ

Φ

Φ

Φ

58

graph is followed by exactly one invocation of the body graph. So, a token produced

on a subinit output port is immediately utilized in the corresponding invocation of

the body graph. Any excess tokens are redundant and will accumulate at the port.

Third, the number of tokens consumed by the subinit graph from each input

port in must be not be a function of the subinit graph parameters that are

bound to dataflow inputs of . Finally, the number of tokens produced or consumed

at each specification interface port of the body graph (each member of

) must be a function of the body graph parameters that

are controlled by the init graph. The third and fourth conditions ensure that a hierar-

chically nested PSDF specification behaves like an SDF actor throughout any single

invocation of the parent graph in which it is embedded, which is necessary for local

SDF scheduling.

In mathematical terms, the first condition is the requirement that

the init graph is locally synchronous; (47)

for each , and each interface output port of ,

. (48)

(47) and (48) comprise the init condition for local synchrony of , which says that

the init graph must be (inherently) locally synchronous and must produce exactly

one token at each interface output port on each invocation. Similarly, the second and

the third conditions are the requirement that

the subinit graph is locally synchronous; (49)

for each , and each interface output port of ,

; (50)

inputss Φ()

Φ

inputsb Φ() outputs Φ()∪()

Φi

p domain Φi()∈ φ Φi

qΦi p, actor φ()() ϕactor φ() φ configactor φ() p,,() 1= =

Φ

Φs

p domain Φs()∈ φ Φs

qΦs p, actor φ()() ϕactor φ() φ configactor φ() p,,() 1= =

59

for each interface input port of , the product

 is invariant over ,

where . (51)

We refer to (49) and (50) as the subinit output condition, and to (49) and (51) as the

subinit input condition for local synchrony of . Thus, the subinit graph must be

(inherently) locally synchronous, must produce only one token at each of its

interface output ports on each invocation, and the number of tokens consumed from

an input port of (during an invocation of) must be a function only of the

parameters that are controlled by the init graph, and the initflow parameters of

(see (42)).

Finally, the fourth condition requires that

the body graph is locally synchronous; (52)

for each interface input port of , the product

is invariant over ,

where ; (53)

for each interface output port of , the product

is invariant over ,

where . (54)

(52), (53) and (54) are termed the body condition for local synchrony of . In other

words, the body graph must be (inherently) locally synchronous, and the total num-

ber of tokens transferred at any port of throughout a given invocation of must

depend only on those parameters of that are controlled by .

φ Φs

qΦs p, actor φ()()κactor φ() φ configactor φ() p,,() Φps inputsp Φ()()

p domain Φs()∈

Φ

Φs

Φs Φ

Φs

Φb

φ Φb

qΦb p, actor φ()()κactor φ() φ configactor φ() p,,() Φfs outputs Φs()()

p domain Φb()∈

φ Φb

qΦb p, actor φ()()ϕactor φ() φ actor φ(),() Φfs outputs Φs()()

p domain Φb()∈

Φ

Φb Φ

Φb Φi

60

We sometimes loosely refer to the subinit input condition and the body con-

dition as the local synchrony conditions, and we collectively refer to the require-

ments of the init condition and the subinit output condition as unit transfer

consistency.

If (47), (49), (52) hold (i.e. each of the graphs , , and is inherently

locally synchronous), and (48) holds for each (i.e. the number of

tokens transferred at each interface output of init is one), and (50) holds for each

 (i.e. the number of tokens transferred at each interface output of

subinit is one), and (51), (53), and (54) all hold (i.e. tokens transferred at the inter-

face inputs of subinit, and at the interface ports of body are invariant over the subinit

and body graph parameters that are not set in init), then is inherently locally syn-

chronous (or simply locally synchronous). If either of the graphs , , and is

locally non-synchronous, or no satisfies (48), or no

 satisfies (50), then is inherently locally non-synchronous (or

simply locally non-synchronous). If is neither inherently locally synchronous,

nor inherently locally non-synchronous, then is partially locally-synchronous.

According to the definition of invariancy (see (6)), (49) can be verified by comput-

ing the tokens consumed at each interface input port of for each

, and checking if the tokens consumed are identical for each pair

, for which is equal to

. Similar verification can be applied to (53),

and (54). Note that if any of the invariancy conditions (49, 53, 54) do not hold, then

that does not lead to local non-synchrony of , but only to partial local synchrony

of .

9. Operational semantics

Based on the formalization introduced in Sections 7 and 8, we develop in

this section a precise operational semantics for PSDF. Fig. 15 gives a pseudocode

description. Executing a PSDF specification is equivalent to executing the graph in

Φi Φs Φb

p domain Φi()∈

p domain Φs()∈

Φ

Φi Φs Φb

p domain Φi()∈

p domain Φs()∈ Φ

Φ

Φ

Φs

p domain Φs()∈

p1 p2, domain Φs()∈ p1 params Φs() Φps inputsp Φ()()–()

p2 params Φs() Φps inputsp Φ()()–()

Φ

Φ

61

function

foreach hierarchical actor in

end for

;

configuration ; configuration

while ()

if (is a hierarchical actor)

else
execute

if (sets graph parameter to value at output port)

if (is an interface output port of)

else
if ()

end if
end if

end if
end while
return

end function

Figure 15. The operational semantics of a PSDF specification.

execute graph G configuration C,()
H G

Φ subsystem H()=

CΦi
configure_graph Φi C,()=

CΦinit-set
execute Φi CΦi

,()=

CΦs
configure_graph Φs C CΦinit-set

∪,()=

CΦb
configure_graph Φb CΦinit-set

,()=

precompute_interface_token_flow Φs CΦs
,()

precompute_interface_token_flow Φb CΦb
,()

configure_as_SDF G C,()
compute_repetitions_vector G() S compute_schedule G()=

Cinternal ∅= Cout ∅=

L get_next_firing S()=() NULL≠
L

Φ subsystem L()=

CΦs
configure_graph Φs C CΦinit-set

Cinternal∪ ∪,()=

CΦsubnit-set
execute Φs CΦs

,()=

CΦb
configure_graph Φb CΦinit-set

CΦsubnit-set
∪,()=

execute Φb CΦb
,()

verify_interface_token_flow Φs Φb,()

L

L p v θ
θ G

Cout Cout p v,{ }∪=

p *,{ } Cinternal∈ Cinternal Cinternal p *,{ }–=

Cinternal Cinternal p v,{ }∪=

Cout

62

which the topmost specification is embedded according to the rules specified in the

routine . Given a graph and a complete configuration for the

parameters of the graph, this routine verifies local synchrony of , computes a

schedule for and executes that schedule. In case of a local synchrony violation,

execution is terminated. The routine returns a configuration of the parameters

that are set at the interface output ports of , as a result of executing . For exam-

ple, if is an init graph of a specification, then in general it will set some parame-

ters of the body graph and the subinit graph at its interface output ports. The

configuration of these parameters will be returned after executing .

To compute a schedule for , we need to know the interface token flow of

every hierarchical actor , which might in general depend on the internals of the

subsystem represented by . In the operational semantics shown in Fig. 15, for

every hierarchical actor present in , first a configuration is determined for the

init graph parameters of the subsystem represented by . Any parameters of the

init graph will also occur in the parameter set of , hence a complete configuration

for the init graph can be determined from the complete configuration of . The

init graph is then executed with this complete configuration by recursively calling

the routine . After execution of the init graph, a configuration of the sub-

init and body graph parameters of that are set in the init graph, is returned in

. Based on the configuration of , and the configuration determined by the

init graph of , a configuration is computed for the subinit and body graphs of .

Those parameters of the subinit graph that are bound to dataflow inputs of , and

those parameters of the body graph that are set in the subinit graph, have as yet

unknown values, and are not present in the known configurations determined so far.

These parameters are assigned their default values, and an unspecified default value

(for any of the unknown parameters) is detected as invalid. The routine for comput-

ing a complete configuration for the parameters of a graph , given a complete con-

figuration of a set of parameters that may include some of the parameters of , is

shown separately in Fig. 16. The configurations of the subinit and body graph of ,

execute() G C

G

G

Cout

G G

G

G

G

H

H

H G

Φ H

G

C G

execute()

Φ

CΦinit-set
G

Φ Φ

Φ

G

G

Φ

63

computed as above, are then used to pre-compute the token flow at the interface

ports of the subinit and body graph of . This is done as shown in the routine

 of Fig. 17(a). Given a graph , and a complete con-

figuration for , the routine first computes the interface token flow of every hier-

archical actor in by recursively calling itself. Then, is set up as an SDF graph

by resolving all the unknown quantities in the graph, using the complete configura-

tion . This process of configuration of as an SDF graph, in the routine

is further elaborated in Fig. 17(b). This is followed by com-

putation of the repetitions vector of , after which the interface token flow is

obtained easily. Note that the interface token flow determined in this fashion is a

speculative quantity (based in general on default values of unknown parameters),

and will be compared later with the actual interface token flow computed with real

(instead of default) values for all the subinit graph parameters that are bound to sub-

system dataflow inputs, and all the body graph parameters that are configured in the

subinit graph. This entire process of computing the unknown token flow at the inter-

face ports of the subinit and body graph of an hierarchical actor can be inter-

preted as determining the port consumption and production functions and ,

function

configuration

foreach ()

if ()

else
if () error(“default value must be specified”)

end if
end for
return

end function

Figure 16. The routine used in the operational semantics of

PSDF. Given a graph , and a configuration of parameters that may or may not

include some of the graph parameters of , this routine determines a complete con-

figuration for the parameters of and returns that.

configure_graph graph G configuration C,()
Cnew ∅=

p params G()∈
p *,{ } C∈ Cnew Cnew p C p(),{ }∪=

default p() ⊥=

Cnew Cnew p default p(),{ }∪=

Cnew

configure_graph()
G C

G

G

Φ

precompute_token_flow() G

C G

G G

C G

configure_as_SDF()

G

H

κH ϕH

64

function

foreach hierarchical actor in

end for

end function

(a)

function

foreach leaf actor in

foreach port of ,

end for
foreach edge in

end for
end function

(b)

Figure 17. Two subroutines used in the operational semantics of PSDF. (a) The rou-

tine for precomputing the token flow at the interface ports of a graph , given a

complete configuration of the graph parameters. (b) The routine for configuring a

graph as an SDF graph given a complete configuration of the parameters of .

precompute_interface_token_flow graph G configuration C,()
H G

Φ subsystem H()=

CΦs
configure_graph Φs C,()=

CΦb
configure_graph Φb C,()=

precompute_interface_token_flow Φs CΦs
,()

precompute_interface_token_flow Φb CΦb
,()

configure_as_SDF G C,()
compute_repetitions_vector G()
assign_interface_token_flow G()

configure_as_SDF graph G configuration C,()
A G

CA configA C,=

θ A assign_token_flow θ f A θ CA,(),()

e G

Ce confige C,=

assign_delay e f e Ce(),()

G

C

G C G

65

and deriving the parameter interpretation function .

Once all of the hierarchical actors have been processed in this fashion, the

graph is configured into an SDF graph by resolving the remaining unknown

quantities in the graph (token flow, edge delays) to non-negative integer values as

shown in the routine in Fig. 17(b). For every leaf actor , a

complete configuration for the parameters of is determined by augmenting the

static configuration of () with the configuration of , as specified in

(26). This complete configuration is then used to resolve the unknown token flow at

each port of actor by calling the parameter interpretation function of . As pre-

sented here, the parameter interpretation function of an actor is assumed to accept a

complete configuration for the actor parameters and an actor port as inputs, and

return the token flow at that port of the actor. This provides a more streamlined rep-

resentation of the parameter interpretation function of an actor from that defined in

Section 7.2. Similarly, the unknown delay characteristics of each edge is obtained as

an integer by calling the parameter interpretation function of that edge with the com-

plete parameter configuration of the edge. After configuring as an SDF graph, the

token transfer and maximum delay value bounds are verified for each actor and each

edge respectively in . A schedule is then determined for by computing the rep-

etitions vector and then constructing a valid schedule. Sample rate consistency and

the existence of valid schedules are verified in this process. If is an init graph or a

subinit graph of a subsystem, then the init condition for local synchrony, or the sub-

init output condition for local synchrony (each actor configuring a parameter should

be invoked once, producing one token at each interface output port) is also verified

after computing the repetitions vector. Once a valid schedule has been constructed

for , actors are fired in the order specified by the schedule. Prior to executing the

schedule, variables and are initialized as empty graph configurations.

Firing a leaf actor is equivalent to executing the (code of the) actor. If

configures a graph parameter at one of its output ports , then one of two actions is

taken depending on the status of the output port . If is an interface output port of

f H

G

configure_as_SDF() A

A

A configA C G

A A

G

G G

G

G

Cinternal Cout

L L

θ

θ θ

66

, then the configuration is augmented, and this will be returned later as the

output of this routine. If however, is not an interface port, but an internal port of

, then it implies that the parameter configured in this fashion appears as a subinit

graph parameter of one of the hierarchical actors in , that represents subsystem

, and the parameter is bound to an interface input of (). In such

cases, the graph configuration is augmented. If already contains a

value for this parameter from a previous firing of , then that entry is removed, and

this new value is added to the configuration. While augmenting , checking for

previous values of the parameter is not necessary as for a locally synchronous spec-

ification, actors setting up parameter values at interface output ports are guaranteed

to fire only once.

The process of firing a hierarchical actor is broken up into five steps. In

the first step, a configuration is assigned to the parameters of the subinit graph of the

subsystem that is represented by . This configuration is assembled from the

configuration of (), the configuration determined by the init graph of

() and the configuration determined by parameters set at internal ports of

(). Note that these three configurations are a superset of all the subinit

graph parameters, and hence, in assigning a configuration to , default values of

parameters will not be necessary. The second step is executing the subinit graph by

recursively calling the routine on the subinit graph, with the complete

configuration of . The parameters set up by the subinit graph at its output ports

are returned in the configuration . The third and fourth steps consist of

assigning a configuration to the body graph, assembled from and

(in this case also, all parameters of the body graph are contained in these

two configurations), and executing the body graph. The final step is that of verifying

the subinit input condition and the body condition for local synchrony of . After

executing the subinit and body graphs in the previous steps, the repetition count of

each interface actor is known exactly, and hence the interface token flow of is

fully specified. This represents the actual interface token flow of , and is com-

G Cout

θ

G

G

Φ Φ inputsp Φ()

Cinternal Cinternal

L

Cout

L

Φ L

G C Φ

CΦinit-set
G

Cinternal

Φs

execute()

Φs

CΦsubnit-set

CΦinit-set

CΦsubnit-set

Φ

H

H

67

pared to the precomputed interface token flow of that was obtained earlier by

performing speculative computation with default values of those subinit graph

parameters that are bound to dataflow inputs of , and those body graph parameters

that are set in the subinit graph. In case of any mismatch between the actual and pre-

computed interface token flow, a local synchrony error is flagged off for subsystem

. After the schedule for is exhausted by firing each actor invocation in the

schedule in this fashion, one invocation of graph is completed, and the configura-

tion is returned as the configuration of the parameters set up at interface output

ports of .

Since, the topmost specification embedded in the top-level graph will

not have any unspecified parameters, so execution of is initiated by calling the

routine on with an empty configuration . Since consists of a

single hierarchical actor representing , it does not have any interface output ports,

and hence it returns the empty configuration , that can be simply discarded.

We have seen that the PSDF operational semantics dictates that the subinit

input condition and the body condition for local synchrony of subsystem are ver-

ified by pre-computation of the interface token flow of and using default

values of parameters of that are bound to dataflow inputs of , and parameters

of that are set in , and subsequently comparing these with the actual interface

token flow. Thus, in assigning default values to parameters, the user has to make

judicious choices. In particular, only those parameters of that are not bound to

dataflow inputs of , and those parameters of that are not set up in can

have an unspecified () default value. All other parameters must have a specified

default value such that their inter-relationship in determining the interface token

flow of is the same as any combination of values that the parameters can take on

at run-time.

10. Consistency issues in PSDF specifications

Before discussing analysis and verification issues for PSDF, we first review

H

H

H G

G

Cout

G

Φ G

Φ

execute() G C G

Φ

Cout

Φ

Φs Φb

Φs Φ

Φb Φs

Φs

Φ Φb Φs

⊥

Φ

68

some pre-requisite consistency notions for general DSP dataflow specifications,

adapted from [7].

10.1 Binary consistency and decidable dataflow

In general DSP dataflow specifications, the term consistency refers to the

two essential requirements — the absence of deadlock and unbounded data accumu-

lation. An inherently consistent dataflow specification is one that can be imple-

mented without any chance of buffer underflow (deadlock) or unbounded data

accumulation (regardless of the input sequences that are applied to the system). If

there exist one or more sets of input sequences for which deadlock and unbounded

buffering are avoided, and there also exist one or more sets for which deadlock or

unbounded buffering results, a specification is termed partially consistent. A data-

flow specification that is neither consistent nor partially consistent is called inher-

ently inconsistent (or simply inconsistent). More elaborate forms of consistency

based on a probabilistic interpretation of token flow are explored in [23].

A dataflow model of computation is a decidable dataflow model if it can be

determined in finite time whether or not an arbitrary specification in the model is

consistent, and it is a binary-consistency model if every specification in the model is

either inherently consistent or inherently inconsistent. In other words, a model is a

binary-consistency model if it contains no partially consistent specifications. All of

the decidable dataflow models that are used in practice today — including SDF,

CSDF, SSDF, and WBSF — are binary-consistency models.

Binary consistency is convenient from a verification point of view since con-

sistency becomes an inherent property of a specification: whether or not deadlock or

unbounded data accumulation arises is not dependent on the input sequences that are

applied. Of course, such convenience comes at the expense of restricted applicabil-

ity. A binary-consistency model cannot be used to specify all applications.

10.2 Consistency of PSDF specifications

In PSDF, consistency considerations go beyond deadlock and buffer over-

flow. In particular the concept of consistency in PSDF includes local synchrony

69

issues. As we have seen in Section 8, local synchrony consistency is, in general,

dependent on the input sequences that are applied to the given system. Thus, it is

clear that PSDF cannot be classified as a binary-consistency model. Furthermore,

consistency verification for PSDF is not a decidable problem. In general, if a PSDF

system completes successfully for a certain input sequence, the system may be

inherently consistent, or it may be partially consistent. Similarly, if a PSDF system

encounters a local synchrony violation for certain input sequences, the system may

be inconsistent or partially consistent.

The elegance of PSDF lies in its robust operational semantics that accommo-

dates, but does not rely on rigorous verification. There exists a well-defined concept

of “well-behaved” operation of a PSDF specification, and the boundary between

well-behaved and ill-behaved operation is also clearly defined, and can be detected

immediately at run-time in an efficient fashion. More specifically, our development

of parameterized dataflow provides a consistency framework and operational

semantics that leads to precise and general run-time (or “simulation time”) consis-

tency verification. In particular, an inconsistent system (a specification together with

an input set) in PSDF (or any parameterized version of one of the existing binary

consistency models) will eventually be detected as being inconsistent, which is an

improvement in the level of predictability over other models that go beyond binary

consistency, such as BDF, DDF, BDDF, and CDDF. In these alternative “dynamic”

models, there is no clear-cut semantic criterion on which the run-time environment

terminates for an ill-behaved system — termination may be triggered when the buff-

ers on an edge are full, but this is an implementation-dependent criterion. Con-

versely, in PSDF, when the run-time environment forces termination of an ill-

behaved system, it is based on a very well-defined semantic criterion that the system

is either inconsistent or partially consistent.

In addition, implementation of the PSDF operational semantics can be

streamlined by careful compile-time analysis. Indeed the PSDF model provides a

promising framework for productive compile time analysis that warrants further

70

investigation. As one example of such streamlining, we develop an efficient quasi-

static scheduling algorithm in Sections 13.2, and 14.1. In our quasi-static scheduling

framework, it is possible to perform symbolic computation, and obtain a symbolic

repetitions vector of a PSDF graph, similar to what is done in BDF and CDDF. Then

depending on how much the compiler knows about the properties of the specifica-

tion through user assertions, some amount of analysis can be performed on local

synchrony consistency. As implied by the operational semantics — which strictly

enforces local synchrony — consistency issues that cannot be resolved at compile

time must be addressed with run-time verification. Illustrations of consistency anal-

ysis using the symbolic repetitions vector technique can be found in Section 14.1.

The general verification problem for PSDF specifications is clearly non-triv-

ial, and deriving effective, efficient verification techniques appears to be a promising

area for further research. In particular, the issue of local synchrony verification of a

PSDF subsystem calls for more investigation, as it arises as an exclusively PSDF-

specific consideration that is inherent in the parameterized hierarchical structure that

PSDF proposes. On the other hand, dataflow consistency issues (sample rate consis-

tency and the presence of sufficient delays) are a by-product of the underlying SDF

model, and have been explored before in a dynamic context in models such as BDF,

CDDF, and BDDF.

Bounded memory execution of consistent applications is a necessary

requirement for practical implementations. Given a PSDF specification that is inher-

ently or partially locally synchronous, there always exists a constant bound such that

over any admissible execution (execution that does not result in a run-time local syn-

chrony violation), the buffer memory requirement is within the bound. This bound

does not depend on the input sequences, and is ensured by bounding the maximum

token transfer at an actor port, and the maximum delay accumulation on an edge.

BDDF also has the concept of upper bounding the maximum token transfer rate at a

dynamic port. However, unlike PSDF, even with these bounds, BDDF does not guar-

antee bounded memory execution, since it does not possess the concept of a local

71

region of well-behaved operation. In PSDF, inherent and partial local synchrony

both ensure bounded memory requirements throughout execution of the associated

PSDF system, as a sequence of consistent SDF executions. The bound on the token

transfer at each actor port ensures that every invocation of a PSDF graph executes in

bounded memory, while the bound on the maximum delay tokens on every edge

rules out unbounded token accumulation on an edge across invocations of a PSDF

graph. A suitable bound for a PSDF graph can be expressed as

, (55)

which is

. (56)

We assume in (55), and (56) that exists for every . The

token production and consumption quantities are bounded (by the max token trans-

fer function), and the delay on an edge is also bounded (by the maximum delay

value), as shown in (56). Since the token transfer at each actor port is bounded, there

is only a finite number of possible different values that the repetitions vector can

take on. Hence the maximum in (55) exists. Computing much tighter bounds may in

general be possible, and this appears to be an useful direction for future work that

warrants further investigation.

G V E,()=

max

p domain G()∈

qG p, actor θ()()ϕactor θ() θ configactor θ() p,,()()[]
θ V()OUT∈

∑

δe confige p,()
e G∈
∑+ 

 
 

max

p domain G()∈

qG p, actor θ()()τactor θ() θ()()[]
θ V()OUT∈

∑

µe
e G∈
∑+ 

 
 ≤

qG p, p domain G()∈

72

11. Actor parameters and dataflow inputs

After having formally defined the PSDF model (Section 7), we would like to

revisit the distinction between dataflow inputs and parameters of a PSDF actor. As

discussed in Section 5.1, the value of a dataflow input can change across every invo-

cation of the associated actor, and hence can be used to control the behavior of the

actor at the granularity of every actor invocation. On the other hand, a parameter, in

general, is configured once and maintains a constant value for a sequence of succes-

sive invocations of the actor. Thus parameters control actor behavior at a coarser

level of granularity than dataflow inputs.

However, the invocation semantics of PSDF allows controlling an actor

parameter through a dataflow input, thus allowing actor behavior to be controlled at

the granularity of every actor invocation. An example is shown in Fig. 18. Fig. 18(a)

shows a PSDF actor with a single parameter param1 and one input and output

port. Typically, in an application scenario, param1 will be so configured that in gen-

eral it will maintain a constant value over a number of successive invocations of .

However, there may be applications which demand that the parameter param1

changes across every invocation of , and assume configurations based on dataflow

input from another actor, say . One possible solution is shown in Fig. 18(b).

param1 is no longer modeled as an actor parameter of , instead, an extra input port

has been added to where it accepts dataflow from , and the value of the token at

this input port is used internally to replace the functionality performed by param1.

A different solution that utilizes the PSDF subsystem semantics is shown in Fig.

18(c). Here, the library specification of actor remains unchanged, instead actor

is encapsulated inside the body graph of a new subsystem S1, and actor provides

dataflow input to the Propagate actor in the subinit graph of S1, and the unspecified

actor parameter param1 is configured at the output port of the Propagate actor. The

functionality of the Propagate actor is simply to copy its input token to its output

port. According to the PSDF invocation semantics, every invocation of will be

preceded by an invocation of Propagate, which will configure the parameter param1

A

A

A

B

A

A B

A A

B

A

73

with the dataflow output of actor , thus effectively allowing the parameter to be

controlled by dataflow input.

The above example demonstrates that in the parameterized framework, it is

possible to simulate the functionality performed by a dataflow input through a

parameter of the associated actor, which makes parameters strictly more general

than dataflow inputs. This translates to increased design flexibility and modularity,

Figure 18. An example to demonstrate that actor parameters are strictly more gen-

eral than dataflow inputs. Each actor port is marked with the name of that port.

Actor parameters are indicated within parentheses inside the actor. (a) The specifica-

tion of an actor in an actor library, with one input port, one output port, and one

parameter param1. (b) To allow dynamic re-configuration of the functionality per-

formed by param1 across each invocation of , a new “version” of actor is added

to the library, where param1 is replaced by an additional input port receiving data-

flow from actor , which now controls the desired functionality. (c) The same effect

is achieved with the original library element of actor by encapsulating in the

body graph of a new PSDF subsystem S1; directing the dataflow output of actor

to the subinit graph of S1; and configuring param1 at the output port of the Propa-

gate actor in the subinit graph.

A
AB

inA1

outA1

inA1

inA2

outB1

outB2

inB1

(param1)

outA1

A
(param1)

B Propagate

inA1

outA1

inB1

outB2

outB1

outP1 (sets param1)

S1

S1.subinit S1.body

inP1

(a) (b)

(c)

A

A A

B

A A

B

B

74

and a condensed actor library in many cases for block diagram DSP design environ-

ments. For example, with a library specification of actor as in Fig. 18(a), the

application designer can fulfil various application-specific needs by suitably config-

uring the parameter param1, which includes assigning a fixed, static value to

param1 to be maintained over all invocations of ; holding param1 constant over a

certain number of invocations of , and allowing it to change across this window;

and allowing param1 to change across every invocation of . This flexibility

implies that it is not necessary to increase the size of the actor library by adding a

different “version” of actor , as in Fig. 18(b).

We will now consider a specific example, shown in Fig. 19. The Ptolemy

actor library provides two versions of a FIR filter — SDFFIR and SDFBlockFIR.

SDFFIR (Fig. 19(a)) implements a simple FIR filter accepting one input token and

producing one output token on each invocation. The coefficients of the filter are pro-

vided as an actor parameter to be configured by the user. The SDFBlockFIR (Fig.

A

A

A

A

A

Figure 19. An example to demonstrate that PSDF naturally leads to increased design

modularity and condensed sizes of actor libraries. Ptolemy provides two version of

the SDF FIR filter, shown in (a) and (b) — one for processing a block of inputs, and

the other for processing single input tokens on each invocation. In contrast (c) shows

the single PSDF actor that can naturally perform both functionalities, by appropriate

parameter configuration.

SDFFIR
(coeffs)

1 1 SDFBlockFIR
(blkSize)

blkSize

1

PSDFBlockFIR
(blkSize,coeffs)

blkSize blkSize

blkSize

reads filter
coefficients

(a) (b)

(c)

75

19(b)) actor is similar, except that it implements a block FIR filter processing a

block of input data of size blkSize on every invocation. In this case, however, the fil-

ter coefficients are no longer modeled as an actor parameter, instead, the coefficients

are read from an additional input port, as indicated in the figure. Conversely, in

PSDF, a single actor PSDFBlockFIR can be used to naturally model both functional-

ities, where the filter coefficients are consistently modeled as an actor parameter.

Assigning a static value of one to the parameter blkSize will configure the PSDF

block FIR filter as a simple FIR filter processing one input token on each invocation.

12. The PSDF application model and the formal model

As the reader may have noticed, the intuitive, informal PSDF model pre-

sented in Section 5 is somewhat different from the formal model presented in Sec-

tion 7. Henceforth we refer to the former as the “application model”, and to the latter

as the “formal model”. In this section, we explain why we have preserved both mod-

els, and how we can map from one model to the other.

In the formal model, a bottom up approach is adopted where unspecified

actor or edge parameters propagate “upwards” as graph parameters, and then as

specification parameters. The init and subinit graphs are responsible for setting up

these unspecified parameters. In the application model, we have a top-down

approach, where subsystem parameters are specified separately and propagate

“downwards”, with unspecified actor and edge parameters being configured with

appropriate subsystem parameters. The init and subinit graphs configure the sub-

system parameters. By specification parameter we refer to the definition of the for-

mal model, while by subsystem parameter we refer to the definition in the

application model. Whenever we say “parameter of a subsystem”, it will always be

clear from context whether we are referring to a specification parameter, or to a sub-

system parameter.

There isn’t any fundamental conceptual difference between the application

and formal models, except for technical details. However, each has justified reasons

76

for a separate existence. From our experience with designing applications in PSDF,

we felt that the application model provides a more natural, intuitive style from the

application designer’s perspective. Typically the algorithm for the application will

have some natural parameters that can be modeled as subsystem parameters. At the

top level, the functionality can be broken up into separate logical units (subsystems)

again with its own natural set of parameters, and so on. While designing practical

systems, actors will be selected from an actor library, and the user will configure

each actor according to the application. In SDF systems, actor parameters are

assigned fixed integer values. As a natural extension to this concept, PSDF also

allows actor parameters to be assigned subsystem parameter values. Accordingly, all

the PSDF examples and applications in this report have been developed in the appli-

cation model. On the other hand, the formal model is useful for precise specification

and analysis of the operational semantics, consistency issues, and synthesis tasks.

Actor parameters have a well defined notion of a domain set, and allowing actor

parameters to be assigned arbitrary subsystem parameter values needlessly clutters

the notion of this domain set.

In Fig. 20, we sketch an algorithm for mapping from the formal model to the

application model. The reverse mapping from an application model to the formal

model is shown in Fig. 21 and Fig. 22.

From the construction specified in Fig. 20, 21, and 22, we see that the sub-

system internal parameters in the application model are equivalent to the graph

parameters in the formal model. Similarly there is an equivalence

between the parent-configured subsystem parameters of the application model and

the graph parameters in the formal model. Thus the subinit input

condition for local synchrony of a subsystem (49, 51) can be interpreted as the

requirement that the number of tokens consumed at each interface input port of the

subinit graph should be invariant over the parent-configured subsystem parameters

of the associated subsystem. Similarly, the body condition for subsystem local syn-

chrony (52, 53, 54) can be restated as the requirement that the token flow at each

Φfs outputs Φs()()

Φps inputsp Φ()()

77

interface port of the body graph should be invariant over the internal subsystem

parameters of the associated subsystem. In the subsequent sections (Section 13 to

18), we will use the notation for subsystem parameters, and utilize this interpretation

of the subinit input condition and the body condition for local synchrony in explain-

ing local synchrony verification techniques.

13. Parameterized looped schedules for PSDF specifications

In this section, we define some quasi-static scheduling terminology for

PSDF. This terminology is based on the framework of looped schedules developed

for SDF graphs [5, 8]. In this section and in the next section (Section 14) we will use

the simplified PSDF graph as the basis of our scheduling techniques, and accord-

ingly, we will use the corresponding notation, as described in Section 7.4.

Step 1: Process the init graph : For each interface output port

in the init graph , assign an init-configured external sub-

system parameter for called , to be set from that port. In the subinit

graph , insert assignment statements of the form , for each

, which configures each actor/edge parameter of the sub-

init graph with the corresponding subsystem parameter. In the body graph,
insert assignment statements for each .

Step 2: Process the subinit graph : For each interface output port

in the subinit graph , assign an internal subsystem

parameter for called , to be set from that port. In the body graph, insert

assignment statements . For each interface input port

of the specification that is bound to a parameter in the

subinit graph, assign a parent-configured external subsystem parameter ,

and bind it to the port . In the subinit graph, insert assignment statements

of the form .

Step 3: For each hierarchical actor in the specification , go to Step 1

with .

Figure 20. An algorithm to map a PSDF specification specified in the PSDF for-

mal model to an equivalent specification in the PSDF application model.

Φi

θ outputs Φi()∈ Φi

Φ pθ
Φs Φts θ() pθ=

θ ToSubinit Φi()∈

Φtb θ() pθ= θ ToBody Φi()∈
Φs

θ outputs Φs()∈ Φs

Φ pθ
Φfs θ() pθ=

θ inputsp Φ()∈ Φ
pθ

θ
Φps θ() pθ=

H Φ
Φ subsystem H()=

Φ

78

13.1 Looped schedules, clustering, and APGAN in SDF

Given an SDF graph , a schedule loop is a parenthesized term of the form

, where is a positive integer, and each is either an actor in or

another schedule loop. The parenthesized term represents the suc-

cessive repetition times of the invocation sequence . If

 is a schedule loop, then represents the iteration count of ,

each is an iterand of , and constitutes the body of . A looped

schedule is a sequence , where each is either an actor or a schedule

loop. Given a looped schedule , it is called a single appearance schedule if each

actor in appears only once in the schedule.

Step 1: For each hierarchical actor in , process that child subsystem

first, i.e. go to Step 1 with . After processing each such
hierarchical actor proceed to Step 2.
Step 2: Process the body graph : Start with an empty set of graph param-

eters , and empty functions and . Consider each assign-

ment statement of the form that configures an actor parameter or

an edge parameter with an immediate subsystem parameter , where

gives the output port of the init or subinit graph that sets the subsystem

parameter . Since the body graph can only use immediate subsystem

parameters, mark each such actor parameter as a graph parameter, i.e.
. If (the subsystem parame-

ter is set up from the init graph), then insert the element into the

function , which is equivalent to introducing the mapping .

Otherwise, if (the subsystem parameter is set up from the

subinit graph), then insert the element into the function . If more

than one actor parameter is configured with the same subsystem parameter,
then direct an edge from port to a fork actor with as many output ports as
the number of actor parameters that map to the same subsystem parameter.
Mark each output port of the fork actor as an interface output port of the
graph, and insert the corresponding mappings for each interface port.

Figure 21. The first two steps of an algorithm to map a PSDF specification speci-

fied in the PSDF application model to an equivalent specification in the PSDF for-

mal model.

H Φ
Φ subsystem H()=

Φb

params Φb() Φtb Φfs

ap pθ=

ap pθ
θ

pθ

params Φb() params Φb() ap∪= θ outputs Φi()∈
θ ap,()

Φtb Φtb θ() ap=

θ outputs Φs()∈
θ ap,() Φfs

θ

Φ

G

nT 1T 2…T m() n T i G

nT 1T 2…T m()

n T 1T 2…T m

L nT 1T 2…T m()= n L

T i L T 1T 2…T m L

V 1V 2…V k V i

S

G

79

Step 3: Process the subinit graph : Start with an empty set of graph

parameters , an empty set of specification parameters

, and empty functions and . Consider each assignment

statement of the form that configures an actor parameter or an

edge parameter with an immediate subsystem parameter . Here,

denotes the output port of the init graph that sets this parameter, or the input
port of the subsystem to which this parameter is bound. Mark each such
actor parameter as a graph parameter — . If

(the subsystem parameter is set up from the init graph), then

insert the member into the function . Otherwise, if

(the parameter is bound to an input port of the subsystem), then insert the
element into the function . After immediate subsystem parame-

ters, consider those actor/edge parameters that are configured with inherited
subsystem parameters, for which , where is an inherited sub-

system parameter. Mark each such actor parameter as a graph parameter,
and also as a specification parameter — ,

and . In addition, insert the assignment state-

ment in the parent graph of the subsystem, which will ensure that

these specification parameters are dealt with in the parent graph.
Step 4: Process the init graph : Start with an empty set of graph parame-

ters . Consider each assignment statement of the form

that configures an actor parameter with the inherited subsystem parame-

ter . Recall that the init graph can use only inherited subsystem parame-
ters. Mark each such actor parameter as a graph parameter and as a
specification parameter — and

. Also, insert the assignment statement

 in the parent graph of the subsystem.

Figure 22. The third and fourth steps of an algorithm to map a PSDF specification

 specified in the PSDF application model to an equivalent specification in the

PSDF formal model.

Φs

params Φs()
params Φ() Φts Φps

ap pθ=

ap pθ θ

params Φs() params Φs() ap∪=

θ outputs Φi()∈
θ ap,() Φts θ inputsp Φ()∈

θ ap,() Φps

ap p= p

params Φs() params Φs() ap∪=

params Φ() params Φ() ap∪=

ap p=

Φi

params Φi() ap p=

ap

p

params Φi() params Φi() ap∪=

params Φ() params Φ() ap∪=

ap p=

Φ

80

Given a connected, consistent SDF graph , and a subset of

actors , the repetition count of is defined as

, (57)

and can be viewed as the number of times a minimal periodic schedule for the subset

of actors in is invoked in . If and are adjacent actors, then their repetition

count is denoted as

. (58)

Given an actor , clustering into means generating the new SDF graph

, such that

, (59)

and

, (60)

where is a “modification” of the set of edges that connect actors in to actors

outside of . If for each such that and , is defined

by

, ,

, , and

and similarly, for each such that and , is defined by

, ,

, , and

then, can be specified by

 . (61)

G V E,()=

Z V⊆ Z

qG Z() qG A()| A Z∈(){ }()gcd≡

Z G A B

ρG A B,{ }() qG A B,{ }()≡

Ω V∉ Z Ω

V E,()

V V Z– Ω{ }+=

E E e e()src Z∈()or e()snk Z∈(){ }()– E∗+=

E∗ Z

Z e E∈ e()src Z∈ e()snk Z∉ e

e()src Ω= e()snk e()snk=

e()d e()d= e()p e()p qG e()src()() qG Z()()⁄()×= e()c e()c=

e E∈ e()snk Z∈ e()src Z∉ e

e()src e()src= e()snk Ω=

e()d e()d= e()p p e()= c e() c e() qG e()snk()() qG Z()()⁄()×=

E∗

E∗ e e()src Z∈()and e()snk Z∉()()or e()snk Z∈()and e()src Z∉()(){ }=

81

The graph that results from clustering into in is denoted by

 or simply . Intuitively, an invocation of in

corresponds to an invocation of a minimal valid schedule for the sub-

graph formed by the actors of in . is clusterable if is consis-

tent, and if is acyclic, then introduces a cycle if contains one or

more cycles. Fig. 23 gives an example of clustering in SDF graphs.

APGAN (acyclic pair-wise grouping of adjacent nodes) is a scheduling tech-

nique developed for acyclic SDF graphs geared towards joint code and data minimi-

zation objectives. Given a consistent, acyclic SDF graph as input, APGAN produces

a minimal periodic, single appearance looped schedule that is shown to be optimal

for a certain class of SDF graphs. In the APGAN technique, a cluster hierarchy is

constructed by clustering exactly two adjacent vertices at each step. At each cluster-

ing step, an adjacent pair is chosen as an APGAN candidate, if clustering it does not

introduce a cycle, and its repetition count is greater than or equal to all other adja-

cent pairs that do not introduce cycles. After the cluster hierarchy is constructed,

APGAN outputs a schedule corresponding to the recursive traversal of the cluster

hierarchy.

It is straightforward to construct a single-appearance schedule for the sub-

graph corresponding to cluster . Each such subgraph consists of only two

actors and , such that all edges in are directed from to . Depending

Z Ω G

Z G Ω, ,()cluster Z G,()cluster Ω

Z G,()cluster

Z G Z Z G,()cluster

G Z Z G,()cluster

Figure 23. An example of clustering in SDF, given in [8]. (b) represents

, where denotes the SDF graph in (a). Here

, and thus .

D C B A

10 1 6 4 1 10
(a)

D A

10 2 3 10
(b)Ω

B C,{ } G Ω, ,()cluster G

qG A B C D, , ,() 3 30 20 2, , ,()= ρG B C,{ }() 10=

Gi Ωi

X i Y i Gi X i Y i

82

on the value of for each edge , the optimal schedule is either

, (62)

or

. (63)

Starting with a schedule for the top-level subgraph, APGAN recursively goes down

one level of hierarchy into the subgraph corresponding to a child cluster, and the

flattened schedule of this child subgraph replaces its corresponding hierarchical

actor in the top-level schedule.

13.2 PSDF looped schedules

Given a PSDF graph , a parameterized schedule loop represents succes-

sive repetition of an invocation sequence , where each is either a leaf

actor in , or a hierarchical actor in , or another parameterized schedule loop.

However, unlike SDF, the iteration count of the schedule loop, denoted as

 is no longer an integer, but is a symbolic expression consisting of con-

stants, subsystem parameters of the parent specification of , init-configured sub-

system parameters of child specifications represented by hierarchical actors present

in the invocation sequence , and compiler generated variables. If is a

hierarchical actor in representing specification , then in order to compute a

schedule for , the (interface) token flow of is necessary. This is obtained by

computing a parameterized looped schedule (defined shortly) for and , and

evaluating the token flow at the interface ports of and with default values of

non-init-configured subsystem parameters of . An occurrence of in can be

replaced by , where and represent parameter-

ized looped schedules for the subinit graph of and the body graph of respec-

tively, and and consists of code that checks, respectively, the subinit

input condition and the body condition for local synchrony of . The code in

d e() e

qGi
Y i()Y i() qGi

X i()X i()

qGi
X i()X i() qGi

Y i()Y i()

G L

T 1T 2…T m T i

G G

loopcnt L()

G

T 1T 2…T m T i

G Φ

T i T i

Φs Φb

Φs Φb

Φ T i L

VLSs() SΦs
() VLSb() SΦb

() SΦs
SΦb

Φ Φ

VLSs VLSb

Φ VLSs

83

() consists of conditionals that compare the actual token flow at the interface

input (input and output) ports of the subinit (body) graph (evaluated with the actual

values of the non-init-configured subsystem parameters of) with the pre-com-

puted interface token flow (evaluated with the default values of non-init-configured

subsystem parameter), and flag off local synchrony errors in case of any mis-

matches. These code is together referred to as the synchrony check code of .

Suppose that is a PSDF graph that contains hierarchical actors

. A parameterized looped schedule for consists of three

parts:

, (64)

where each represents a parameterized looped schedule for the init graph of

. Thus, the first part of the schedule for , called the initChild phase

of , consists of successive invocations of the parameterized looped schedules of

the init graphs of the child subsystems of . The third part of the schedule ,

called the body of , is a sequence , where each is either an actor

(leaf or hierarchical) in or a parameterized schedule loop. The second part of the

schedule , called — the preamble of , consists of code that configures

the iteration count of each schedule loop in by defining in a proper order

every compiler generated variable used in the symbolic expression of that iteration

count, and includes conditionals for checking sample rate consistency, and bounded

memory execution of graph . Additionally, if is an init graph,

includes conditionals for checking the init condition for local synchrony of the par-

ent specification of (each actor in the init graph that sets up a parameter value at

an output port must produce exactly one token at that port). Similarly, if is a sub-

init graph, then includes conditionals for checking the subinit output

condition for local synchrony of the parent specification of .

A parameterized looped schedule for a PSDF graph is a single-appear-

ance schedule, if each actor in appears only once in .

VLSb

Φ

Φ

G m

H1 H2 … Hm, , , SG G

SG S1 S2 … Sm, , ,() preambleS() bodyS()≡

Si

subsystem H i() G

S

G bodyS

S V 1V 2…V k V i

G

preambleS S

bodyS

G G preambleS

G

G

preambleS

G

S G

G bodyS

84

The concept of clustering in PSDF graphs is exactly similar to the SDF defi-

nition, except that in addition to integer arithmetic, we now also have symbolic com-

putations being performed. We explain the PSDF clustering process, and the

parameterized APGAN scheduling technique in Section 14.1, through examples.

14. Scheduling PSDF specifications

The PSDF operational semantics allows streamlined implementation by

careful compile-time analysis. However, to avoid dependence on any particular type

of compile-time analysis or optimization, the operational semantics is defined in

terms of a minimal set of requirements for correct, locally synchronous execution.

Any implementation that guarantees these requirements is a valid implementation of

the operational semantics. Our endeavor, in scheduling PSDF specifications, is to

streamline the implementation of the operational semantics by generating a quasi-

static schedule whenever possible, and otherwise fall back on a run-time scheduler

that implements the operational semantics in a straightforward manner. At run-time,

every PSDF graph assumes an SDF configuration on every invocation, and hence

can be analyzed and scheduled using available SDF techniques. The run-time kernel

can utilize quasi-static schedules determined at compile-time for sub-parts of the

specification.

We perform quasi-static scheduling for all PSDF acyclic graphs, and for a

certain class of cyclic graphs that we call simple cyclic graphs. In such cyclic

graphs, each fundamental directed cycle has a single delay element with a known

value, and each such fundamental cycle is statically known to be a single-rate sys-

tem (i.e. for each edge in the fundamental cycle), or can be config-

ured into a single-rate system. Simple cyclic graphs arise frequently in practical

systems that incorporate feedback loops, leading to graph cycles with a single feed-

back edge containing delay tokens.

For simple cyclic graphs, it is easy to determine if they are free of deadlock

(i.e. whether sufficient numbers of delay tokens exist in every fundamental directed

e()p e()c= e

85

cycle in the graph) to enable construction of a periodic schedule [8]. In a deadlock-

free simple cyclic graph, we can effectively “break” the cycles and convert the graph

into an acyclic graph, for scheduling purposes. If the amount of delay on a feedback

edge is less than the number of tokens consumed at , then the graph is

detected as being deadlocked. Otherwise, if edge has an associated delay that is at

least equal to the numbers of tokens consumed by the corresponding sink actor

(), then we break the dependence associated with , which is equivalent to

removing from the cycle that it belongs to, for the purpose of constructing a peri-

odic schedule for the subgraph comprising the associated cycle. This removal of

is possible because in the associated cycle, the repetitions vector components are

identically equal to unity [8], and thus does not depend on data produced by

 within a given schedule period of the associated cycle. Such breaking of

dependencies in single-rate data dependence structures has been studied extensively

in the context of vectorization (see for example [2]) for imperative programming

languages. Systematically breaking cyclic dependencies in the context of general

(possibly multi-rate) SDF graphs has been explored in [4].

Thus, in a fundamental directed cycle in a simple cyclic graph, if the feed-

back edge possesses sufficient delay tokens (at least equal to the numbers of

tokens consumed by), then does not depend on data produced by

 in a given invocation of a (periodic) schedule of the fundamental cycle.

However, the periodic schedule for the complete simple cyclic graph may in general,

consist of several invocations of a periodic schedule of each fundamental cycle, and

data dependencies implied by feedback edges (from to) in a funda-

mental cycle become relevant across invocations of their periodic schedules. Conse-

quently, this data dependence has to be preserved in deriving a complete periodic

schedule for the simple cyclic graph. Hence, the feedback edge cannot be simply

removed from the graph, its presence has to be utilized for scheduling purposes, for

example, in choosing adjacent vertices for clustering (Section 14.1.1).

To process simple cyclic graphs, the quasi-static scheduler is provided with a

e' e′()snk

e'

e'()snk e'

e'

e'

e'()snk

e'()src

e'

e'()snk e'()snk

e'()src

e'()src e'()snk

e'

86

pre-processor which examines an input cyclic graph to check if it is eligible as a

deadlock-free simple cyclic graph, and if so then break every cycle by removing the

feedback edge; assign a unique identifier to each fundamental cycle; mark each

actor with the identifier(s) of the fundamental cycle(s) that it belongs to; and provide

the resulting marked acyclic graph for scheduling.

From our application design experience it appears that a large class of useful

DSP applications falls under the categories of acyclic graphs and simple cyclic

graphs. In fact, efficient, quasi-static schedules can be computed for all the examples

and applications presented in this report.

14.1 Quasi-static scheduling of acyclic PSDF specifications

In this section, we explain the quasi-static scheduling technique that we have

developed for PSDF specifications. We present an extension of APGAN to PSDF

graphs, explain consistency analysis issues, present the complete quasi-static sched-

uling algorithm, make some observations on incorporating re-initializable delays

into our quasi-static scheduling framework, and finally present some examples of

our quasi-static schedules.

14.1.1 Parameterized APGAN — P-APGAN

The basic step in quasi-static scheduling of a PSDF specification is to deter-

mine the body () of the parameterized looped schedule for a PSDF graph

. We use an extension of the APGAN scheduling technique (Section 13.2) to

derive minimal periodic, single-appearance parameterized schedule loops represent-

ing the body of the parameterized schedule for . This extended APGAN schedul-

ing technique is called P-APGAN for parameterized APGAN.

For a PSDF graph, it is not in general possible to select an adjacent pair of

actors for clustering based on the maximum value of the repetition count of the clus-

ter, as the repetition count can only be obtained symbolically. At present, given a

choice among adjacent pairs of actors such that clustering each adjacent pair does

not introduce a cycle in the graph (we refer to each such adjacent actor pair as a P-

APGAN candidate), we use the following scheme for selecting an adjacent pair for

bodyS S

G

G

87

clustering. Recall that a category of cyclic graphs are presented for P-APGAN clus-

tering after breaking the cycles in these graphs, and uniquely marking actors that

belong to the same fundamental cycle. Two adjacent actors that belong to the same

fundamental cycle in the original graph are assigned a higher priority for clustering

compared to adjacent actors that do not satisfy this criterion. More precisely, if a P-

APGAN candidate shares at least one common marking between the two actors that

comprise the P-APGAN candidate, then it is assigned a higher priority for clustering

compared to other P-APGAN candidates that do not share any common marking.

Ties are broken arbitrarily. For example, given the following five choices of P-

APGAN candidates in terms of actor markings — [(s1, s2), (s1)], [(s1, s2), s2)],

[(s2), (s1)], [(s1), {(NULL)], and [(NULL), (NULL)], where the notation [(s1, s2),

(s1)] indicates a P-APGAN candidate with the first actor belonging to two funda-

mental cycle s1 and s2 of the original graph, and the second actor belonging to the

fundamental cycle s1; a marking of NULL indicates that the actor does not belong to

any fundamental cycle — the three P-APGAN candidates [(s1, s2), (s1)], [(s1, s2),

s2)], and [(NULL), (NULL)] are assigned the highest priority for clustering, and any

one among the three can be chosen. This selection scheme among P-APGAN candi-

dates ensures that all actors belonging to the same fundamental cycle of the original

graph are completely clustered among themselves and reduced to a single cluster,

before any clustering is performed with actors outside the fundamental cycle. Thus,

all data precedences present in the original graph are always maintained in the

quasi-static schedule. Among P-APGAN candidates with the same clustering prior-

ity, we are experimenting with giving priority to SDF edges (edges for which

and are constant and known at compile time), and single-rate edges (edges for

which it is statically known that is equal to , but they are not necessarily

known to be constant), with the goal of simultaneously minimizing code size and

run-time computation in the quasi-static schedule. Selecting an adjacent pair for

clustering such that both code size and data size are minimized, at least for a certain

class of graphs (as is guaranteed by the original APGAN) is an interesting area for

p e()

c e()

p e() c e()

88

further research.

The schedule for the subgraph corresponding to each cluster is constructed

by symbolic computation, and code is generated that does the actual computation at

run-time. Clustering of two adjacent vertices in P-APGAN is shown in Fig. 24.

Actors and belong to the PSDF graph . The symbols , , , and either

represent subsystem parameters of the parent specification of , or are compiler-

generated variables representing unknown token flow, and will be suitably initial-

ized with the parameter interpretation functions of the corresponding actors in the

preamble code of the schedule for . The two vertices are clustered into the single

vertex , and the topology of the graph, along with the token flow on the relevant

edges is adjusted as shown in the figure. The schedule of the subgraph correspond-

ing to cluster is constructed as

 — (65)

repeat times {

fire
}
repeat times {

fire
}

(c)

Figure 24. A clustering step in P-APGAN (a) Two adjacent PSDF vertices before

clustering. (b) The single PSDF vertex after clustering. (c) A minimal periodic,

single-appearance schedule for the subgraph corresponding to the cluster .

A B
Ω1

a p q b x y

x a q g⁄()×=

y b p g⁄()×=

(a) (b)

g p q,()gcd=

q g⁄()
A

p g⁄()
B

Ω1

Ω1

A B G a p q b

G

G

Ω1

Ω1

q g⁄() A()() p g⁄() B()()

89

 invocations of A, followed by invocations of B, where is a com-

piler-generated variable defined as . We say that ,

and , where denotes the local repetition factor of actor ,

as opposed to the global repetition count . The schedule in (65) for the sub-

graph of Fig. 24(a) is obtained from the APGAN tech-

nique given in (62), (63). In particular note that and

, thus (63) leads to (65).

For each edge going into actor that does not belong to the subgraph

associated with { , }, the token consumption on is modified from to

, and the edge is re-directed to the cluster — . For

each edge coming out of that does not belong to the subgraph of and , the

token production and the source vertex are modified in an analogous

fashion. Edges incident to actor are also processed similarly. These modification

of the graph topology and the token transfer on the edges incident on

is derived from the clustering process for SDF graphs described

in Section 13.1 in (59), (60), and (61). According to the latter, for an edge going

into actor such that , the tokens consumed from that edge

should be modified to , after the clustering is

completed. As stated above, our clustering process modifies the token consumption

to . We demonstrate in Fig. 25 that the two are equivalent. A similar

derivation can be made for the sink actor of the two-vertex cluster of Fig. 24(a) to

show that is the same as .

Since the data size optimization objective has been dropped in going from

APGAN to P-APGAN, a clustering step in P-APGAN becomes an entirely local

computation, and does not need any global knowledge about the repetitions vector

of the graph. For the same reason, in constructing the schedule of a subgraph corre-

sponding to a cluster, P-APGAN does not take into account the delay on edges

present in the subgraph, and the source actor in each two-vertex cluster always fires

before the corresponding sink actor, as shown in Fig. 24, and (65).

q g⁄() p g⁄() g

g p q,()gcd= reps A() q g⁄=

reps B() p g⁄= reps A() A

qG A()

GA B, A B,{ }()subgraph=

qGA B,
A() q g⁄()=

qGA B,
B() p g⁄()=

e A

A B e c e()

c e() reps A()× Ω1 e()snk Ω1=

e A A B

p e() e()src

B

A B,{ }()subgraph

e

A e A B,{ }()subgraph∉

c e() qG A()() qG A B,{ }()()⁄()×

c e() reps A()×

B

qG B() qG A B,{ }()⁄ reps B()

90

While scheduling a nested PSDF graph , interface edges connecting actors

in G with actors in the parent graph are “hidden” in , but appear in . An

example is shown in Fig. 26. Part (a) shows a PSDF graph containing a single hier-

= [from (57)]

= [from the balance equation for]

= [multiplying numera-

tor and denominator by]

=

=

=

Figure 25. A derivation to demonstrate that the basic P-APGAN clustering step

shown in Fig. 24 is equivalent to the clustering technique for SDF graphs described

in (59) - (61). The derivation demonstrates that in the two-vertex cluster of Fig.

24(a), comprising actors , , and edge , the repetition count of the source actor

 divided by the repetition count of the subgraph associated with the two vertices

{ , } is the same as the local repetition factor of .

qG A() qG A B,{ }()⁄
qG A() qG A() qG B(),()gcd()⁄

qG A() qG A() qG A() p e()
c e()
-----------× 

 , 
 gcd 

 ⁄ e

qG A() c e()×() qG A() c e()×() qG A() p e()×(),()gcd()⁄
c e()

qG A() c e()×() qG A() c e() p e(),()()gcd×()⁄
c e()() c e() p e(),()()gcd()⁄

reps A()

A B e

A

A B A

G

Gp G Gp

Figure 26. An example to demonstrate how interface edges connecting a graph

inside a subsystem to actors in the parent graph of the subsystem, affect P-APGAN

clustering. (a) shows a graph containing a single hierarchical actor and (b)

shows the body graph of the subsystem represented by . Interface edges con-

necting to and to appear as normal edges in , but are “hidden” (indi-

cated by dashed lines) in . While clustering in , the P-APGAN algorithm has to

update the connectivity and token transfer of these hidden interface edges as if they

are normal edges in .

A

(a) (b)

port1 port2H D B Cport1 port2

H

H.body

Gp H

G H

A B C D Gp

G G

G

91

archical actor . Part (b) shows the body graph of the PSDF subsystem corre-

sponding to . Actors and in communicate with the parent graph actors

and through the subsystem ports port1 and port2, respectively. In the parent

graph, , the edge from to (at port1) and the edge from (at port2) to

appear as normal edges in the graph. However, in , the corresponding edges (from

port1 to , and from to port2) are indicated by dashed lines and are hidden in the

graph. In clustering the interface actors in (actors and in this case), the P-

APGAN algorithm is responsible for updating the connectivity and token flow of

such hidden interface edges in accordance with the basic clustering step shown in

Fig. 24, as if the interface edges are normal edges incident on the interface actors.

More precisely, for an input interface edge (the edge from port1 to), , and

have to be updated as a part of a clustering step involving , while for

an output interface edge (the edge from to port2), and have to be

updated as a part of a clustering step involving .

14.1.2 Consistency analysis

Along with scheduling, the compiler has to analyze a PSDF specification for

four types of consistency: sample rate consistency of a PSDF graph, bounded mem-

ory consistency of a PSDF graph, unit transfer consistency of a PSDF subsystem

(the init and subinit graphs produce exactly one token on each output port at each

invocation) and local synchrony consistency of a PSDF subsystem (the subinit input

condition and the body condition for local synchrony). In general, for a graph con-

taining one or more directed cycles, consistency also requires that sufficient delay is

present in every directed cycle. For PSDF specifications however, we are not con-

cerned with the latter, as our quasi-static scheduling techniques are limited to acy-

clic graphs, or cyclic graphs in which all cyclic dependencies are easily broken (as

described in Section 14.1).

The general strategy followed for consistency analysis is to attempt to detect

consistency compliance or violation at compile-time, and terminate execution in

case of the latter. If the compiler does not have sufficient information to reach a

H G

H B C G A

D

Gp A H H D

G

B C

G B C

e B c e()

e()snk e()snk

e C p e() e()src

e()src

92

definitive conclusion at compile-time, then code is generated to verify consistency at

run-time, and terminate execution in case of a run-time consistency violation.

For sample rate consistency analysis, it is possible to compute the repetitions

vector of the PSDF graph symbolically, as in the BDF or CDDF model, e.g. by the

depth-first-search method [8]. Then the balance equations can be verified symboli-

cally for each edge in the graph. For an edge , with , , if the

repetitions vector has been computed as , , then the

balance equation for edge takes on the form , and it can be verified at

compile-time that the balance equation for edge is satisfied. If the balance equa-

tions are similarly satisfied for every edge in the graph, then the graph can be

detected as sample-rate consistent at compile-time only. Otherwise, if the balance

equation for at least one edge in the graph cannot be verified at compile time, then a

run-time sample rate consistency check has to be performed. For example, if for

edge the repetitions vector has been computed as ,

, then the balance equation for edge takes on the form ,

which cannot be verified at compile-time. In such cases, before each invocation of a

graph, code has to be generated, which will verify the balance equations for the cur-

rent values of the parameters.

However, our pairwise clustering method for quasi-static scheduling natu-

rally accommodates an efficient means for detecting sample rate inconsistencies.

Whenever our clustering strategy encounters a pair of adjacent vertices with more

than one edge directed from one actor to the other, consistency in the graph is equiv-

alent to determining whether the ratio of the number of tokens produced to the num-

ber of tokens consumed is identical for all edges in that subgraph. Sample-rate

consistency checks then leads to the setting up of a number of equations, which may

be in terms of some unknown variables. In general, some of these equations can be

verified symbolically at compile-time, and the rest must be verified at run-time, as a

part of run-time local synchrony verification.

As an example, consider the PSDF graph shown in Fig. 27. The condi-

e c e() 3= p e() p=

e()src()q p= e()snk()q 3=

e 3 p 3 p=

e

e e()src()q x=

e()snk()q y= e px 3y=

G

93

tions for consistency of this subgraph are:

(66)

which gives us the single constraint for consistency:

(67)

This equation then has to be verified at run-time for consistency. If the parameters

, and are such that (67) is always satisfied, then graph is inherently dataflow

consistent. If this equation does not hold for any permissible values of the parame-

ters, then is inherently dataflow inconsistent, otherwise is partially dataflow

consistent. For example, if , and

, then is inherently dataflow consistent; if

, and ; then is inherently

dataflow inconsistent, and if , and

, then is partially dataflow consistent.

It is straightforward to verify bounded memory consistency of a PSDF

graph, which consists of checking that the max token transfer bounds are satisfied

for the tokens consumed and produced onto each edge, and the max delay bounds

are satisfied for every edge in the graph. If the token transfer or the delay on an edge

is not statically known, then the quasi-static scheduler generates code that checks for

these bounds at run-time.

Figure 27. A PSDF graph that cannot be fully checked for consistency at compile-

time. Here and represent two vertices in the graph, and may, in general, rep-

resent complex subgraphs that have been consolidated through earlier clustering

steps.

6 4

9 6

p q

Ω1 Ω2

Ω1 Ω2

6 4⁄() 9 6⁄() p q⁄()= =

p q⁄() 3 2⁄()=

p q G

G G

domain p() 3 15 21, ,{ }=

domain q() 2 10 14, ,{ }= G

domain p() 3 15 21, ,{ }= domain q() 5 12 10, ,{ }= G

domain p() 3 15 21, ,{ }=

domain q() 2 12 21, ,{ }= G

94

For unit transfer consistency, each actor in the init (subinit) graph that is

responsible for configuring the value of a parameter has to have a repetition count of

one, and produce a single token at each of its output ports. If this cannot be verified

at compile-time, then a conditional statement has to be inserted into the preamble

code that appears before the init (subinit) graph schedule. An example is shown in

Fig. 28, where actor in the init graph of subsystem produces one token at its

output port and configures the subsystem parameter Sp2. The repetition count of

actor depends on the subsystem inherited parameter Sp1, and the preamble code

of the init graph contains a conditional for checking the value of the repetition count

Figure 28. Quasi-static verification of unit transfer consistency (a) The init graph of

a subsystem . Here, actor produces one token at its output port and configures

the value of parameter Sp2. (b) A quasi-static schedule for the init graph that checks

for unit token production at the output port of actor in one invocation of the init

graph.

subsystem H
params={Sp2, Sp3}

A
B

(sets Sp2)

 Sp1 1

.............

(a)

graph H.init

/* preamble for */

if
error(“unit transfer inconsistent”)

/* body for */

fire

repeat times {

fire
}

H .init()
Sp1 1≠()

H .init()
A

Sp1()
B

(b)

H B

B

B H

B

95

at run-time.

For local synchrony verification of the subinit input condition and the body

condition, once the subinit and body graphs of a PSDF subsystem are completely

clustered by P-APGAN, the symbolic token flow computed on each hidden interface

edge (see Section 14.1.1) of and is evaluated with default values of non-init-

configured subsystem parameters of , and these evaluated values are assigned as

the token flow quantities on the corresponding edges in the parent graph in which

 is embedded. If for every interface edge, it is known at compile-time that the

computed token flow does not depend on any non-init-configured parameter of ,

then the subsystem can be detected as locally synchronous at compile-time. Oth-

erwise, code has to be inserted to compare the default token flow (as determined by

evaluating the interface token flow with default values of non-init-configured param-

eters) with the actual token flow, where the actual token flow is evaluated with the

current values of the non-init-configured parameters of .

For example, consider a subsystem with a body graph comprising two

actors and as shown in Fig. 29. Suppose that the subsystem is represented

by the hierarchical actor , the subinit graph of does not have any interface

Φ

Φs Φb

Φ

H

Φ

Φ

Φ

Φ

Φ

A B

Figure 29. The body graph of a subsystem , where is represented by the hierar-

chical actor . This example is used to demonstrate local synchrony verification

issues in quasi-static scheduling. Different conclusions can be reached about the

local synchrony of , depending on where (init graph or subinit graph) the parame-

ters and are set.

p2

subsystem H
params={p1, p2}

p1

graph H.body

A B1

Φ Φ
H

Φ
p1 p2

Φ

H Φ

96

ports, and the input edge to actor is the only interface edge of . After com-

pletely clustering , the number of tokens consumed on the interface edge is com-

puted as . Now, if and are init-configured parameters of

, or they are compiler-generated variables representing unknown token flow, but

the corresponding actors (actor and actor) have all their actor parameters

assigned either static values or init-configured subsystem parameter values, then it is

clear at compile-time that the interface token flow of subsystem does not depend

on non-init-configured subsystem parameters and hence can be detected as

locally synchronous at compile-time. Otherwise code to check synchrony must be

generated for . If is an init-configured parameter, but is an internal param-

eter (subinit-configured) of with a default value of 4, then the default token flow

is equal to , and this will be assigned as the number of tokens

consumed on the input interface edge of actor . In addition, the synchrony-check-

ing code will attempt to verify the equality

, (68)

which is equivalent to

. (69)

Thus, whatever value takes on at run-time, if it maintains the same gcd relation-

ship with as between and 4, then will be locally synchronous, otherwise it

will be flagged off as locally non-synchronous at run-time. It may be an intrinsic

property of the application (unknown to the compiler) that the gcd of and is

always equal to the gcd of and 4, in which case the system is inherently locally

synchronous, otherwise it is partially locally synchronous or inherently locally non-

synchronous.

14.1.3 User Assertions and compile-time predictability

As can be seen from the P-APGAN quasi-static scheduling technique, sig-

A Φb

Φb

p2() p1 p2,()gcd()⁄ p1 p2

Φ

A B

Φ

Φ

Φ p1 p2

Φ

p2() p1 4,()gcd()⁄

H

p2() p1 p2,()gcd()⁄ p2() p1 4,()gcd()⁄=

p1 p2,()gcd() p1 4,()gcd()⁄ 1=

p2

p1 p1 Φ

p2 p1

p1

97

nificant symbolic analysis and computation must, in general, be performed by the

compiler. In the analysis process, at any point that the compiler does not have suffi-

cient information to reach a conclusion, it generates code to perform the analysis at

run-time. Similarly, in trying to compute a minimal periodic schedule of a PSDF

graph, if the compiler lacks necessary data in the form of gcd information of sym-

bolic token production and consumption quantities, then it uses compiler-assigned

symbolic variables, and generates code to assign appropriate gcd values to those

variables at run-time.

However, from a performance standpoint, the “leaner” the quasi-static

schedule generated by the compiler, the better it is, both in terms of code size and

run-time overhead. Thus, providing more information statically, allows more com-

putation and analysis to be done at compile time, resulting in better performance. To

provide more computation power to the compiler, the programmer can convey appli-

cation specific knowledge to the compiler via user assertions. The following are

examples of user assertion formats that a PSDF programmer can use.

Specify token flow at a PSDF actor port as a symbolic expression of the actor

parameters (or as a static integer if it behaves as an SDF port), instead of providing a

parameter interpretation function for the actor that computes the token flow at run

time. Similarly, statically or symbolically specify the characteristics of a PSDF edge

(amount of delay, initialization values, and re-initialization period), instead of pro-

viding a parameter interpretation function for that edge.

To enable gcd computation of the tokens produced and consumed onto an

edge, as a part of the basic P-APGAN clustering step, specify gcd information

among subsystem parameters, or specify product relationships among subsystem

parameters by expressing a parameter as a product of other parameters, constants,

and possibly some symbolic variables that do not represent parameters. For exam-

ple, , where and are subsystem parameters, while

and are other symbolic variables that do not represent parameters. These product

relationships can be used by the compiler to derive gcd information.

p1 2 a× b× p2×= p1 p2 a

b

98

The flexibility of the PSDF model can be improved considerably if actor

parameters can be identified that do not affect any of the port production or con-

sumption quantities. A parameter is said to be a non-dataflow

parameter of if for every input port , is invariant over ,

and for every output port , is also invariant over .

In general, it may not be always be possible to efficiently deduce or compute

the exact set of non-dataflow parameters of an actor. However, an actor designer

usually knows whether or not a parameter is a non-dataflow parameter. The user can

indicate the known non-dataflow set (KNDS) of , denoted , as a set of

actor parameters that are known not to affect the dataflow behavior of the actor. For

example, in the downsampler actor, the number of tokens consumed by the input

port in is equal to the downsampling factor, while the output port out always pro-

duces one token. Thus, .

Even more information can be provided to the compiler by precisely specify-

ing which actor parameters control dataflow at each port of the actor. In general, the

number of tokens consumed (or produced) at an input (or output) port of an actor

 will depend on a subset of the actor parameters, called the controlling set of ,

denoted by . For example, in the downsampler actor,

, and . With the knowledge of con-

trol sets of an actor port, the compiler can do more sophisticated local synchrony

analysis. For example, in Fig. 29, if is an init-configured parameter, is a com-

piler-generated variable representing unknown token flow, and actor has two

actor parameters — which is assigned an init-configured subsystem parameter,

and which is assigned an internal (subinit-configured) subsystem parameter, then

without any user assertions, the compiler cannot reach any conclusions about local

synchrony of at compile time. If however, the user asserts that the control set of

the output port of actor is given by then the compiler can determine at com-

pile time that the subsystem is locally synchronous.

Such forms of user assertions deliver more power to the compiler and result

p params A()∈

A ρ in A()∈ κA ρ x,() p{ }

ρ out A()∈ ϕA ρ x,() p{ }

A KNDS A()

KNDS dnSmpl() phase{ }=

θ

A θ

ctrlA θ() params A()⊆

ctrldnSmpl in() factor{ }= ctrldnSmpl out() ∅=

p1 p2

A

a1

a2

Φ

A a1{ }

99

in more compact schedules by decreasing the necessity of compiler-generated vari-

ables and compiler-generated conditional statements to perform consistency checks.

14.1.4 The quasi-static scheduling algorithms

We will now present the complete scheduling algorithm,

, for quasi-static scheduling of PSDF graphs. The

algorithm is shown in Fig. 30. Given a PSDF graph , the scheduling is performed

in a bottom-up fashion on a subsystem-by-susbsystem basis. For every hierarchical

actor in , the init, subinit, and body graphs of the subsystem associated with that

hierarchical actor are scheduled first, by recursively calling the

 routine. After scheduling these three graphs, the unit

transfer consistency constraints (if any) of the init graph and subinit graph are deter-

mined. The interface token flow of the subinit graph and body graph is evaluated

with default values of non-init-configured parameters, and local synchrony con-

straints are generated, as necessary. The implementation of the quasi-static sched-

uler is streamlined by inserting the synchrony check code (, and) as a

single block after the body graph execution, instead of inserting before exe-

cuting the subinit graph, and inserting before executing the body graph.

Once each hierarchical actor has been processed in this fashion, the graph

is checked for bounded memory consistency, generating bounded memory con-

compute_QS_schedule()

function

foreach hierarchical actor in

end for

end function

Figure 30. The algorithm for computing the quasi-static schedule of a PSDF graph.

compute_QS_schedule graph G()
H G

compute_QS_schedule H .init()()
compute_QS_schedule H .subinit()()
compute_QS_schedule H .body()()
compute_unit_transfer_constr H H .init() H .subinit(), ,()
compute_interface_token_flow H H .subinit() H .body(), ,()

compute_bounded_memory_constr G()
initialize_for_clustering G()
compute_P_APGAN_schedule G()

G

G

compute_QS_schedule()

VLSs VLSb

VLSs

VLSb

G

100

straints, as necessary. is now ready to be clustered by P-APGAN. Prior to cluster-

ing, is initialized by wrapping each actor in a cluster wrapper. Such initial

clusters are referred to as “leaf” clusters, as opposed to “non-leaf” clusters that are

produced after clustering steps. is then clustered by the P-APGAN scheduling

technique described in Section 14.1.1. In the course of P-APGAN clustering, sample

rate consistency checks are performed, and requisite run-time constraints are gener-

ated. The scheduling process is initiated by calling the

routine with the top-level graph containing a single hierarchical actor representing

the topmost subsystem.

The algorithm for traversing the quasi-static

schedule generated by the routine is shown in Fig. 31.

The schedule is traversed in a top-down fashion, in accordance with the PSDF oper-

ational semantics (Section 9). The routine is called on

a scheduled graph with a list of (possibly empty) unit transfer consistency con-

straints for that graph. The algorithm involves traversing the cluster hierarchy gener-

ated by P-APGAN scheduling. In the first traversal, the schedule of the init graph of

each hierarchical actor in is traversed by recursively calling the

 routine for every leaf cluster in that contains a hier-

archical actor. This is followed by processing in turn, all compiler-generated vari-

ables, all bounded memory consistency constraints, all unit transfer consistency

constraints and all sample rate consistency constraints for . This is followed by

once again traversing the cluster hierarchy of . For a non-leaf cluster, the repeti-

tions (local repetition factor) of that cluster is processed; for a leaf cluster containing

a leaf actor, the actor firing is processed; and for a leaf cluster containing a hierarchi-

cal actor, the subinit graph schedule is traversed, followed by traversing the body

graph schedule and finally processing the local synchrony constraints (if any), com-

prising the subinit input condition and the body condition for local synchrony of the

subsystem represented by the hierarchical actor. As before, the quasi-static schedule

traversal is initiated by calling with the top-level graph

G

G

G

compute_QS_schedule()

traverse_QS_schedule()

compute_QS_schedule()

traverse_QS_schedule()

G

G

traverse_QS_schedule() G

G

G

traverse_QS_schedule()

101

containing a single hierarchical actor representing the topmost subsystem.

We have presented a generic algorithm for traversing the quasi-static sched-

ule generated by the routine, which can be used as a

framework for performing a variety of tasks — for example, printing the schedule,

gathering statistics about the schedule, and synthesizing software based on the

schedule. The different routines present in the algorithm have to be

specified accordingly. At present, we use this traversal algorithm for printing a

quasi-static schedule, and the different routines are specified to print

the arguments passed to them in an appropriate format. Applications to synthesis

function

foreach cluster in cluster hierarchy of

if

if

end if
end if

end for

foreach cluster in cluster hierarchy of

if

if

else

end if
else

end if
end for

end function

Figure 31. The algorithm for traversing the quasi-static schedule of a PSDF graph,

generated by the routine.

traverse_QS_schedule graph G local_synchrony_constr unit_trnsfr,()
C G

is_leaf_cluster C()()
is_hierarchical_actor H C .actor()=()()

traverse_QS_schedule H .init() H .init_unit_trnsfr(),()

process_compiler_generated_variables G()
process_bounded_memory_constr G()
process_unit_transfer_constr unit_trnsfr()
process_sample_rate_consistency_constr G()

C G

is_leaf_cluster C()()
is_hierarchical_actor H C .actor()=()()

traverse_QS_schedule H .subinit() H .subinit_unit_trnsfr(),()
traverse_QS_schedule H .body() ∅,()
process_local_synchrony_constr H .local_synchrony()()

process_actor_firing H()

process_cluster_reps C()

compute_QS_schedule()

compute_QS_schedule()

process()

process()

102

would necessitates additional buffer memory management for the buffers on each

edge of a PSDF graph, and a parameter configuration mechanism to associate each

parameter with the value of the token generated at the actor output port where the

parameter is configured. Arriving at an exact scheme to perform these additional

synthesis tasks appears to be a promising direction for further work.

14.1.5 Re-initialization of delays

Since PSDF extends SDF by allowing the same SDF system to be evaluated

differently in different invocations by suitable assignment of the parameters, re-ini-

tialization of delays on graph edges becomes a necessary functionality. In the sim-

plest case, conceptually, a PSDF system encompasses many runs of the underlying

SDF system. Consider the Fibonacci Number example (Fig. 9), where by changing

the value of on the fly, the dataflow part of the system assumes different SDF con-

figurations across multiple runs. Thus, it becomes necessary to re-initialize the val-

ues of the delay units on the feedback edges to the actor, at the beginning of

every run of the PSDF system.

One possible technique of inserting re-initializations at the proper point in

the quasi-static schedule is the following. After scheduling the complete PSDF spec-

ification, examine each actor that has an input edge specified with a re-initializ-

able delay of re-initialization period . Ascend the cluster hierarchy of the schedule,

starting from actor , until the residual period either equals or becomes less than

the local repetition factor at an ancestor cluster . The residual period is initialized

to and is updated at every cluster encountered on the path, by dividing the local

repetition factor at that cluster () into the residual period, to obtain the new

residual period. At the point of termination, if equals , then insert the ini-

tialization such that while traversing the schedule, the initialization is processed

before processing . If exceeds , then break it up into factors (if

possible), such that is a factor. When traversing the schedule, process each factor

of separately, with coming last, and insert the initialization such that it is

processed before processing the factor of .

p

add

A

p

A r

C

p R

reps R()

reps C() r

reps C() reps C() r

r

reps C() r

r reps C()

103

However, in generating a looped schedule, if the re-initialization period does

not coincide with a loop boundary, then it will not be possible to insert the initializa-

tion at the proper point in the schedule. In such cases, one possibility for the sched-

uler is to insert code at the beginning of the corresponding actor that keeps a count

of the number of invocations of that actor, and initializes itself in a modulo fashion.

But, our application design experience suggests that the re-initialization period often

coincides with loop boundaries, as in the Fibonacci Number example (Fig. 9), and

hence it is frequently possible to incorporate delay re-initializations into the quasi-

static scheduling framework in a natural fashion.

14.1.6 Examples of quasi-static schedules

We will now present quasi-static schedules generated by our quasi-static

scheduling algorithms (Section 14.1.4) for the PSDF examples of Section 6.1. The

quasi-static schedules presented in this report do not include code for verifying the

max token transfer bound at an actor port and the max delay value bound for an edge

in a PSDF graph. This bound check code is straightforward, and has been omitted so

as not to unnecessarily clutter the quasi-static schedules and instead, emphasize the

more intricate issues.

The schedule, generated by our quasi-static scheduler, for the computation of

the th Fibonacci Number is shown in Fig. 32. The application has been fired for

five runs, and in each run it is possible to compute a different Fibonacci Number by

suitably setting the parameter via the setFib actor. The delay values on the two

input feedback edges of the add actor are re-initialized after every invocations of

add, for correct computation of the next Fibonacci Number. After invocations of

add, the Fibonacci Numbers from to are all lined up on the output of

add. The single invocation of dnSmpl transmits the th Fibonacci Number to its out-

put, discarding the rest. The print actor then prints .

Fig. 33 shows the schedule derived by our quasi-static scheduling algorithms

for computing the weighted average of variable length data packets. The application

is fired for a hundred consecutive runs, processing hundred data frames generated by

p

p

p

p

F 1() F p()

p

F p()

104

the genData actor. In each run, the readHdr actor configures the values of the packet

repeat 5 times {
/* begin init graph schedule for fib */
fire setFib /* sets */
/* end init graph schedule for fib */

/* begin body graph schedule for fib */
initialize add
repeat times {

fire add
}
fire dnSmpl
fire print
/* end body graph schedule for fib */

}

Figure 32. The quasi-static schedule for the Fibonacci Number computation exam-

ple of Fig. 9, with five firings.

p

p()

repeat 100 times {
/* begin init graph schedule for wtAvg */
fire genHdr
fire readHdr /* sets fLen, pLen */
/* end init graph schedule for wtAvg */

/* begin body graph schedule for wtAvg */
initialize add
repeat (fLen) times {

initialize mult
repeat (pLen) times {

fire genData
fire mult

}
fire dnSmpl1
fire add

}
fire dnSmpl2
fire div
fire print
/* end body graph schedule for wtAvg */

}

Figure 33. The quasi-static schedule for the weighted average example of Fig. 11,

with a hundred firings.

105

length (parameter pLen) and the number of packets in a frame (parameter fLen). In

pLen invocations, the mult actor multiplies together all the data values in a single

packet, accumulating the intermediate products at its output. One invocation of the

dnSmpl1 actor transmits the final product to the input of the add actor. The input of

the mult actor is then re-initialized to compute the running product of the next data

packet. In fLen invocations, the add actor adds up the computed product of all the

data packets present in a single frame. The dnSmpl2 actor provides the final sum to

the div actor which divides it by the frame length to obtain the weighted average of a

single data frame. The input of the add actor is then re-initialized to process the next

data frame.

Fig. 34 shows the schedule for the predictor application, for five hundred

runs. In a single run, the step size (parameter step) and filter length (parameter fLen)

repeat 500 times {
/* begin body graph schedule for predictor */

/* begin init graph schedule for adaptFilt */
fire setPars /* sets step, fLen */
/* end init graph schedule for adaptFilt */

fire randSig
repeat times {

fire fork1
fire fork2

/* begin subinit graph schedule for adaptFilt */
fire wtCntrl /* sets coeffs */
/* end subinit graph schedule for adaptFilt */

/* begin body graph schedule for adaptFilt */
fire FIR
fire Subtract
/* end body graph schedule for adaptFilt */

fire fork3
fire plot

}
/* end body graph schedule for predictor */

}

Figure 34. The quasi-static schedule for the predictor application of Fig. 12, with

five hundred firings.

1000()

106

of the adaptive filtering mechanism are set to a certain value, and a thousand sam-

ples of a random signal are processed through the adaptive filter, which tries to pre-

dict the future value of the signal based on the present value. The wtCntrl actor

adapts the filter coefficients (parameter coeffs) of the FIR actor after processing

every sample. It is possible to fine tune the step size and filter length across multiple

runs of the application to obtain the best possible prediction result.

14.2 Run-time scheduling of PSDF specifications

Run-time scheduling is performed for PSDF specifications, for which quasi-

static schedules cannot be computed, or only partial quasi-static schedules can be

computed (i.e. portions of the graph can be clustered). The run-time scheduling

algorithm is presented in Fig. 35, and is a straightfor-

ward implementation of the PSDF operational semantics. The function is called on a

PSDF graph with a table of parameter values . The entries in

 represent the current snapshot of known parameter values at this

point of execution in the program. Since partial quasi-static scheduling may have

been done at compile-time through P-APGAN, may consist of normal actor verti-

ces, and cluster vertices. The latter appear just as actor vertices, except that they

contain cluster hierarchies inside them. The first step comprises visiting every hier-

archical actor in (present as an actor vertex, or inside the cluster hierarchy of a

cluster vertex), and scheduling the init graph of by recursively calling

.

If the hierarchical actor is present inside a cluster hierarchy, then the

default interface token flow of has already been computed by P-APGAN. Other-

wise, it is computed now in the routine as shown in

Fig. 36. Given the hierarchical actor , this function first computes the interface

token flow of every hierarchical actor present in the subinit and body graphs of by

recursively calling itself. Once all the hierarchical actors are taken care of, it config-

ures the subinit and body graphs of as SDF graphs in the routine

. This is done in two steps. In the first step, integer

compute_RT_schedule()

G param_table

param_table

G

H G

H

compute_RT_schedule()

H

H

compute_interface_tokens()

H

H

H

configure_graph_as_SDF()

107

function

foreach node in

if

foreach cluster in cluster hierarchy of

if

if

end if
end if

end for
else if

end if
end for

while

if

else if

else

foreach parameter set by to value

end if
end while
foreach hierarchical actor in

end for
end function

Figure 35. The algorithm for computing a run-time schedule of a PSDF graph.

compute_RT_schedule graph G param_values param_table,()
A G

is_cluster A()()
C A

is_leaf_cluster C()()
is_hierarchical_actor H C .actor()=()()

compute_RT_schedule H .init() param_table,()

is_hierarchical_actor A()()
compute_RT_schedule A.init() param_table,()
compute_interface_tokens A param_table,()

configure_graph_as_SDF G param_table,()
compute_SDF_repetitions G()
S construct_valid_schedule G()=

L get_next_firing S()=()
is_hierarchical_actor L()()

configure_parent_configured_params L param_table,()
compute_RT_schedule L.subinit() param_table,()
compute_RT_schedule L.body() param_table,()
verify_interface_token_flow L param_table,()
delete_params L.internal_params() param_table,()
delete_params L.parent_configured_params() param_table,()

is_cluster L()()
cluster_sched invocation_sequence L()=

replace_in_schedule S L cluster_sched, ,()

fire_actor L()
p L v

insert_param p v param_table, ,()

H G

delete_params H .init_configured_params() param_table,()

108

values are assigned to , and of each edge in the graph (including

interface edges) by evaluating symbolic expressions or unknown token flow (via

parameter interpretation functions), using current parameter values. If a parameter

occurs in — this will be true for all init-configured and inherited

parameters of — then the associated value is obtained from , other-

wise the default value of the parameter is used. In the second step, the cluster hierar-

chy of every cluster vertex present in the graph is traversed and all the symbolic

expressions in each cluster are evaluated to an integer value in an analogous man-

ner. These include the local repetition factor () of a cluster, the associated

sample rate consistency constraints, the associated bounded memory consistency

constraints, and for a leaf cluster containing an hierarchical actor, the default inter-

face token flow. After this operation, the body graph and subinit graphs of have

assumed (local) SDF configurations. The next step is to compute the repetitions vec-

tor of each graph. This is done in the routine , by a

depth-first search algorithm as discussed in [8]. Once the repetition counts of the

interface actors are known, the interface token flow of is computed, and stored for

future local synchrony verification.

At this point, the init graphs of all hierarchical actors in have been fired,

function

foreach hierarchical actor in

end for
foreach hierarchical actor in

end for

end function

Figure 36. The algorithm for pre-computing the interface token flow of an hierarchi-

cal actor in a PSDF graph , used in run-time scheduling of .

compute_interface_tokens subsystem H param_values param_table,()
A H .subinit()

compute_interface_tokens A param_table,()

A H .body()
compute_interface_tokens A param_table,()

configure_graph_as_SDF H .subinit() param_table,()
compute_sdf_repetitions H .subinit()()
configure_graph_as_SDF H .body() param_table,()
compute_sdf_repetitions H .body()()
adjust_and_store_interface_token_flow H()

H G G

p e() c e() d e() e

param_table

H param_table

C

reps C()

H

compute_SDF_repetitions()

H

G

109

and their interface token flows have been pre-computed. It remains to determine a

schedule for and execute it. is configured to an SDF graph by calling the rou-

tine as explained above. Note that in this case, all

parameters will have known values in , and default values will not be

needed, as now we are doing the actual scheduling, as opposed to speculative sched-

uling in the case of interface token flow pre-computation. The SDF repetitions vec-

tor of is computed, and a valid schedule is constructed by applying a class-S

algorithm proposed by Lee [26] and given in [8]. consists of a list of firings of

graph vertices, and the next step is to execute these vertex invocations. Each actor

is extracted from in order, and is processed as follows:

If is a non-hierarchical actor in , then we simply fire (execute) it. If the

actor sets any parameters at its output ports, then those parameter entries are inserted

into the .

If is a hierarchical actor, then we first configure any parent-configured

parameter of bound to an input edge of by inserting its value into the

. This is followed by scheduling and executing the subinit graph of ,

and then the body graph of . After the subinit and body graphs have been sched-

uled and executed, we have actual values for the interface token flow of . These are

compared with the pre-computed values in the routine

, and in case of any mismatch, a local non-syn-

chrony error is flagged off, and execution is terminated. This completes one invoca-

tion of subsystem , and its internal parameters and parent-configured parameters

are removed from . These will be set to fresh values in the next invo-

cation .

If is a cluster vertex, then the cluster hierarchy present inside is tra-

versed to obtain an equivalent invocation sequence corresponding to the looped

schedule represented by the cluster hierarchy. For example, the looped schedule

 is equivalent to the invocation sequence . The

firing of is replaced in with the equivalent invocation sequence, so that in the

G G

configure_graph_as_SDF()

param_table

G S

S

L

S

L G

param_table

L

L L

param_table L

L

L

verify_interface_token_flow()

L

param_table

L

L L

5 2A()B() AABAABAABAABAAB

L S

110

next iteration the first member of this sequence will be extracted.

After the schedule is exhausted, one invocation of is completed, and the

init-configured parameters of each hierarchical actor in are removed from

. These will be assigned new values in the next invocation of .

In addition to local synchrony verification (verifying the subinit input condi-

tion and the body condition for local synchrony of a child subsystem of), the run-

time scheduler must also check for deadlock, sample rate consistency, and bounded

memory consistency of . Also, if is an init graph or subinit graph of its parent

subsystem, then the run-time scheduler must verify the init condition or the subinit

output condition for local synchrony of the parent subsystem of . The max token

transfer bounds and the max delay value bounds are verified after the graph has been

configured as a (local) SDF graph in . Sample rate

consistency and unit transfer consistency (init condition or subinit output condition)

are checked in . For non-clustered portions of the

graph, these are detected while constructing the repetitions vector of the graph. For

clustered portions of the graph, these checks are conducted by traversing each clus-

ter hierarchy after computing the repetitions vector. Sample rate constraints are

already associated with a cluster, and these just needs to be verified. For unit transfer

consistency, the number of tokens produced at an output port of each actor contained

in a leaf cluster is computed and compared with one if the actor sets any parameter

of the parent subsystem at that output port. Deadlock detection occurs while con-

structing a valid schedule in . Given the repetitions

vector , our class-S scheduling algorithm ()

maintains the state of the system, and repeatedly schedules fireable actors, updating

the system state as each actor is fired, until all actors have been scheduled exactly

the number of times specified by the corresponding component of , or until no

actor is fireable. In case of the latter, deadlock is detected. Recall that quasi-static

scheduling (through clustering) is done only in acyclic portions of a graph, so dead-

lock analysis need not be done inside clusters present in the graph.

S G

G

param_table G

G

G G

G

configure_graph_as_SDF()

compute_SDF_repetitions()

construct_valid_schedule()

q construct_valid_schedule()

q

111

Re-initializable delays present on an edge can be handled by keeping a

count of the number of executions of in the “while” loop of Fig. 35, and ini-

tializing the delay on after every executions of , where is the re-ini-

tialization period.

Fig. 37 shows the trace generated by the run-time scheduler for the

Fibonacci Number example (Fig. 9). The application is run twice, computing the 5th

and 7th Fibonacci Numbers respectively.

e

e()snk

e p e()snk p

Firing 1 {
/* scheduling init graph of fib */
fire setFib /* set to value 5 */

/* scheduling body graph of fib */
init add
fire add
fire add
fire add
fire add
fire add
fire dnSmpl
fire print

}

Firing 2 {
/* scheduling init graph of fib */
fire setFib /* set to value 7 */

/* scheduling body graph of fib */
init add
fire add
fire add
fire add
fire add
fire add
fire add
fire add
fire dnSmpl
fire print

}

Figure 37. The schedule trace generated by the PSDF run-time scheduler for the

Fibonacci Number example (Fig. 9). The application has been run twice, computing

the 5th and 7th Fibonacci Numbers, respectively.

p

p

112

15. DSP applications in PSDF

In this section, we present three DSP applications, modeled as PSDF repre-

sentations, and the quasi-static schedules obtained for each application by our quasi-

static scheduling algorithm (Section 14.1). In representing the applications, we have

omitted specifying the max token transfer bound at an actor port, and the max delay

value bound on an edge. This has been done so as not to clutter the representation,

and instead emphasize the salient features about PSDF modeling of the application

functionality. From our experience, it appears that specifying an appropriate bound

(for the token transfer and delay), based on the programmer’s application-specific

knowledge, is usually a straightforward task in the design process.

15.1 Speech compression

In this section we will describe a speech compression application modeled in

the PSDF framework. A speech sample is to be transmitted from the sender side to

the receiver side using as few bits as possible, applying analysis-synthesis [20, 21]

techniques. On the sender side, the speech sample is first analyzed through linear

predictors to obtain the corresponding auto-regressive (AR) coefficients of the sam-

ple [20, 21]. To obtain an AR model, we require the speech sample to be wide sense

stationary (WSS) such that the spectral characteristics of the process remain con-

stant over the duration of the sample length. Thus, it is necessary to break up the

speech sample into small segments spanning a duration of a few milliseconds or

less, over which the signal may be assumed to be approximately stationary. A sepa-

rate AR model is then used for each segment. Another important design issue is

choosing the model order of the AR process. Once the optimal model order and seg-

ment size have been determined, the speech segment is analyzed through linear pre-

dictors to obtain the AR coefficients, and the residual error signal. These are then

quantized and transmitted to the receiver side, where the residual and the coeffi-

cients are dequantized, followed by AR modeling to reconstruct the original speech

segment. For a good AR model, the dynamic range of the residual error signal is

113

much smaller than that of the original signal. So this approach allows us to use fewer

bits to transmit the speech signal, compared to direct transmission.

15.1.1 PSDF representation - Style 1

Fig. 38 shows one possible representation of the speech compression appli-

cation modeled by the PSDF specification Compress. The length of a speech

instance is an external parameter of this subsystem, that is set in the init graph. In

the init graph, the genHdr actor generates a stream of header packets, where each

header contains information about a speech instance, including its length . The set-

Spch actor reads a header packet and accordingly configures . The Speech1 and

Speech2 actors are responsible for generating samples of this speech instance (e.g,

via interface to an A/D converter). The segment size , the model order , and the

zero-padded speech sample length are internal parameters of the Compress sub-

system. In the subinit graph, the Select actor reads the entire speech instance, and

examines it to determine the model order and segment size, using any of the existing

techniques, e.g. the Burg segment size selection algorithm, and the AIC order selec-

tion criterion [21]. The zero-padded speech length is determined such that it is the

smallest integer greater than satisfying , i.e. the segment size

divides the zero-padded speech sample length exactly. This fact is conveyed to the

scheduler through the user assertion .

In the body graph of the specification, the upper half of the diagram repre-

sents the transmitter side, and the lower half represents the receiver side. In the

transmitter side, the speech2 actor generates the speech sample, zero-padding it to a

length . The Analyze actor accepts speech segments of size , and performs linear

prediction on the speech segment, producing AR coefficients and the residual

error signal of length at its output. The model order (ord) and input length (len)

actor parameters of the Analyze actor are assigned the subsystem parameters and

, respectively. Each sample of the residual signal is quantized and encoded by a

scalar quantizer (Quant1) and transmitted to the receiver side where it is dequan-

tized by the Dquant1 actor. The AR coefficients are also transmitted and received in

L

L

L

N M

R

R

L mod R N,() 0=

R N,()gcd N=

R N

M

N

M

N

114

Figure 38. The Speech Compression application modeled in PSDF: Style 1. A

speech instance of length is broken up into segments of length ; an AR model

of order is determined for each segment; and the residual and the coefficients are

quantized, encoded, and transmitted to the receiver side where each segment is syn-

thesized and reconstructed. Prior to processing, the speech instance is zero-padded

to a length such that exactly divides .

Speech2
(len=R)

Analyze
(len=N,
ord=M)

Quant1

Quant2

N 1

M 1

R N

Dquant1

Dquant2

Synth
(len=N,
ord=M)

Play
(len=R)

1 N

1 M

N R

1

1

1

1

Compress.body

setSpeech
(sets L)

Speech1
(len=L)

Compress.subinit

SelectL L

subsystem Compress
{params=L,R,N,M}

Compress.init

{gcd(R,N)=N}

(len=L)
(sets R,
N,M)

genHdr

11

L N

M

R N R

115

a similar fashion.The Synth actor reconstructs each speech segment by performing

AR modeling, using the AR coefficients and the residual signal of length as

excitation. Finally the Play actor first allows all the segments to accumulate at its

input, then accepts samples of the entire speech instance, and plays the resulting

audio segment.

Note that for clarity, the above PSDF model does not specify all the details

of the application. Our purpose is to give an overview of the modeling process, and

concentrate on those parameters that are relevant from the scheduler’s perspective.

The model does not go into the details of the Select actor, which will most likely be

a subblock (representing syntactic hierarchy as opposed to semantic hierarchy) con-

sisting of other actors inside it. Also, we have omitted all parameters that do not

affect the dataflow behavior of the application. For example, the Speech1 and

Speech2 actors are treated as “black boxes”, without going into the specifics of how

exactly the speech instance is generated. One possible scheme is reading from a file

(like a .au file), in which case speechFile could be a parameter of the specification,

specified as a part of the header packet, and configured in the setSpeech actor, simi-

lar to the parameter . Such a file-based interface is used, for example in Ptolemy

[12]. Under such an interface, Speech1 and Speech2 could be instances of an actor

with two parameters — fileName (set to subsystem parameter speechFile) and len,

where the functionality is to read a speech instance from the file, and produce len

samples of it. If len is less than the length of the speech instance in the file, then it is

truncated, otherwise it is zero-padded. Similarly, the quantizers and dequantizers

will have actor parameters controlling their quantization levels, thresholds, etc. The

Select block could determine two such sets — one for the residual and one for the

coefficients, and set them up through internal subsystem parameters, which could

then be assigned to the actor parameters. In an alternate specification, the init graph

could consist of a single actor that configures the different characteristics of a

speech instance (e.g., length, name of the associated file) from user input.

The quasi-static schedule generated for the Compress specification by our

M N

R

L

116

quasi-static scheduler is shown in Fig. 39. The application is run five times, and in

each run a different speech instance can be processed. The schedules for the init and

subinit graphs are straightforward, with single invocations of every actor. In the

body graph, the Analyze and Synth actors process samples of the speech instance

in each invocation. So, they are scheduled for invocations to process all

samples of the speech instance. Each invocation of the Analyze actor generates

samples (each of which is processed by the Quant1 and Dquant1 actors) of the

residual signal, and AR coefficients (each of which is processed by the Quant2

and Dquant2 actors). Thus the total number of invocations of the Quant1 and

repeat 5 times {
/* begin init graph schedule for Compress */
fire genHdr
fire setSpeech /* sets */
/* end init graph schedule for Compress */

/* begin subinit graph schedule for Compress*/
fire Speech1
fire Select /* sets , , */
/* end subinit graph schedule for Compress*/

/* begin body graph schedule for Compress*/
fire Speech2
repeat times {

fire Analyze
}
repeat times {

fire Quant1
fire Dquant1

}
repeat times {

fire Quant2
fire Dquant2

}
repeat times {

fire Synth
}
fire Play
/* end body graph schedule for Compress*/

}

Figure 39. The quasi-static schedule generated by our quasi-static scheduling algo-

rithm, for the Speech compression application (Style 1) of Fig. 38, with five firings.

L

R N M

R N⁄()

R()

M R N⁄()×()

R N⁄()

N

R N⁄ R

N

M

117

Dquant1 actors is which is equal to , and the total number of invo-

cations of the Quant2 and Dquant2 actors is . This schedule is gener-

ated when the compiler knows that divides exactly (via a user-specified

assertion). Without this knowledge, the scheduler must introduce compiler-gener-

ated variable to represent the gcd of and . The management of this variable

complicates the schedule as shown in Fig.40, which gives an alternative schedule in

which it is not known that divides exactly.

15.1.2 PSDF representation — Style 2

An alternate PSDF model (Style 2) of the speech compression application is

N R N⁄()×() R

M R N⁄()×()

N R

R N

/* begin body graph schedule for Compress*/
/* gcd variable declarations */
int

int

repeat times {

repeat times {
fire Speech2

}
repeat times {

fire Analyze
repeat times {

fire Quant1
fire Dquant1

}
repeat times {

fire Quant2
fire Dquant2

}
fire Synth

}
}
repeat times {

fire Play
}
/* end body graph schedule for Compress*/

Figure 40. The quasi-static schedule for the body graph of the Compress subsystem

of Fig. 38, where the compiler is unaware that divides exactly. Consequently,

the compiler has generated variables to perform gcd computations at run-time, and

the schedule is more complex than the schedule of Fig. 39, where the compiler

knows that divides exactly.

_gcd_1 R N,()gcd=

_gcd_2 N R×() _gcd_1⁄ R,()gcd=

R _gcd_2⁄()
N _gcd_1⁄()

R _gcd_1⁄()

N()

M()

N R×() _gcd_1 _gcd_2×()⁄()

N R

N R

N R

118

presented in Fig. 41. In this model, the analysis and synthesis of the speech sample

are abstracted into a separate subsystem AnalyzeSynthesize embedded in the top-

most subsystem Compress. The init graph of Compress sets up the length of a

speech instance, which is generated once by the Speech actor in the body graph and

passed on to the AnalyzeSynthesize subsystem for processing. Both the subinit and

body graphs of AnalyzeSynthesize receive the speech sample as dataflow input. The

segment size , the model order , and the zero-padded length have now

become parameters of the AnalyzeSynthesize subsystem. These parameters are con-

figured in the subinit graph by the Select actor as before. An additional parameter

has been introduced in the AnalyzeSynthesize subsystem. The need for this parame-

ter, and the appropriate place to configure it are somewhat subtle. The zeroPad actor

in the body graph receives the speech sample of length from the parent graph,

zero-pads it to length and passes it on to the Analyze actor. However, unlike the

subinit graph, the body graph cannot specify as the number of tokens consumed at

the input of zeroPad. This is because is an inherited parameter of AnalyzeSynthe-

size, and as specified in Section 5.1, an inherited subsystem parameter can be used

in the associated subinit graph, but not in the associated body graph. Hence, the sub-

init graph can use , but not the body graph. Thus, the new parameter is neces-

sary, which can be used in the body graph, and whose value has to be set to the

inherited parameter . The new parameter appears on an interface edge of Ana-

lyzeSynthesize, and will be visible in the parent graph (the body graph of Compress),

and so it has to be set up as an external parameter of AnalyzeSynthesize in the init

graph. This function is performed by the Propagate actor that simply assigns the

value of to .

Fig. 42 shows the corresponding quasi-static schedule. It is very similar to

the earlier schedule, but there are two points to be noted here. First, while clustering

the Fork and AnalyzeSynthesize actors in the body graph of Compress, the scheduler

has generated a sample rate consistency constraint that checks if is equal to .

The scheduler does not know that these two parameters are equal, and with that

L

N M R

K

L

R

L

L

L K

L K

L K

L K

119

Figure 41. The Speech Compression application modeled in PSDF: Style 2. A

speech instance of length is produced only once by the Speech actor, unlike the

previous model, where it was being produced twice. The analysis-synthesis of the

speech signal is abstracted into a separate AnalyzeSynthesize subsystem, which

requires the extra parameter to be set equal to in the init graph of the sub-

system.

Analyze
(len=N,
ord=M)

Quant1

Quant2

N 1

M 1

R N

Dquant1

Dquant2

Synth
(len=N,
ord=M)

Play
(len=R)

1 N

1 M

N R

1

1

1

1

Propagate
(sets K)

L

subsystem AnalyzeSynthesize
{params=K,R,N,M}
{gcd(R,N)=N}

AnalyzeSynthesize.subinit

AnalyzeSynthesize.body

zeroPad
(ilen=K,
olen=R)

Select
(len=L)
(sets R,
N,M)

setSpeech
(sets L)

Compress.init

subsystem Compress
{params=L}

Speech
(len=L) Fork

Compress.body

L 1

1

1

port1

port2

K

port1

port2

genHdr

1 1

AnalyzeSynthesize.init

Analyze-
Synthesize

L

K L

120

repeat 5 times {
/* begin init graph schedule for Compress */
fire genHdr
fire setSpeech /* sets */
/* end init graph schedule for Compress */

/* begin init graph schedule for AnalyzeSynthesize */
fire Propagate /* sets */
/* end init graph schedule for AnalyzeSynthesize */

/* begin body graph schedule for Compress */
if

error(“sample rate inconsistent”)
fire Speech
repeat times {

fire Fork
}

/* begin subinit graph schedule for AnalyzeSynthesize */
fire Select /* sets , , */
/* end subinit graph schedule for AnalyzeSynthesize*/

/* begin body graph schedule for AnalyzeSynthesize*/
fire zeroPad
repeat times {

fire Analyze
}
repeat times {

fire Quant1; fire Dquant1
}
repeat times {

fire Quant2; fire Dquant2
}
repeat times {

fire Synth
}
fire Play
/* end body graph schedule for AnalyzeSynthesize */

/* end body graph schedule for Compress */
}

Figure 42. The quasi-static schedule, generated by our quasi-static scheduler, for the

Speech Compression application: Style 2 (Fig. 41) with five firings.

L

K

L K⁄() 1≠()

L()

R N M

R N⁄()

R()

M R N⁄()×()

R N⁄()

121

knowledge, the need to verify this constraint at run-time would have been elimi-

nated. Second, in the previous model (Fig. 38), there were no dataflow interfaces

between graphs and their parent graphs, and thus, local synchrony verification was

not an issue. In this model, however, there is dataflow communication from the body

graph of Compress to the subinit graph and body graph of AnalyzeSynthesize, and

thus local synchrony verification must be performed by the scheduler. For the sub-

init graph, it is straightforward to deduce an interface token flow of , that is inde-

pendent of any parameters of AnalyzeSynthesize. For the body graph, however, if the

scheduler does not know the gcd relationship between and , then the interface

token flow will be computed as being dependent on these two internal parameters of

AnalyzeSynthesize, and hence local synchrony verification constraints will be gener-

ated. Thus, this model has a greater dependency on user assertions for the generation

of an efficient quasi-static schedule, compared to the model of Fig. 38. Also, the

complexity of the schedule is greater in this case, which translates to larger code

size. On the other hand, generating the speech sample only once, instead of twice,

per run of the application is likely to be more efficient from the perspective of execu-

tion time.

15.1.3 Zero-padding the speech sample

We have seen that in both of the PSDF models (Fig. 38, and 41), it is neces-

sary to zero-pad an instance of the speech sample such that the segment size exactly

divides the sample length. This necessity arises as an inherent part of the underlying

SDF model. Consider an SDF design of the body graph of Compress in Style 1 with

, and , and suppose that zero-padding has not

been done. The APGAN schedule is

, (70)

where and . Thus an

instance of the speech signal is generated thrice for every run of the application,

which depending on the exact mechanism of speech production, may result at the

L

R N

R L 1000= = N 150= M 10=

3Speech2 20 Analyze 150Ω1() 10Ω2()Synth()() 3Play()

Ω1 Quant1() Dquant1()= Ω2 Quant2() Dquant2()=

122

worst in incorrect functionality, and at the least in redundancy (inefficiency). An

alternative in SDF is to model the speech source as producing a single sample on

each invocation, but then the zero-padding issue manifests itself in the number of

iterations of the system necessary for processing a single speech instance, with

seven iterations producing 1050 samples from the speech source. Thus, it can be

seen that PSDF inherits the zero padding requirement from the corresponding SDF

model. This agrees with the fact that PSDF closely mimics the underlying SDF sys-

tem, with the additional objective of parameterizing this SDF model such that the

same design can be reused for different inputs by appropriately configuring the

parameters. In this application, the necessity for zero-padding can be avoided if

instead of SDF, CSDF is adopted as the underlying dataflow model. We present a

PCSDF model of this application in Section 18.

15.2 Block adaptive filtering

In certain applications, like acoustic echo cancellation in teleconferencing,

the necessity of frequency domain block adaptive filtering for computational effi-

ciency is well known [21, 30, 16]. In Section 6.1, we had presented a PSDF model

of a linear LMS adaptive filter. In this section we augment that by presenting a

PSDF model of a time-domain block adaptive filter and the corresponding fre-

quency-domain block adaptive filter. In a block adaptive filter, the incoming data

sequence is sectioned into blocks, and applied to a block-FIR filter, one block at a

time. The tap weights of the filter are held fixed over each block of data, so that

adaptation of the filter proceeds on a block-by-block basis rather than on a sample-

by-sample basis as in the standard LMS adaptive filter.

15.2.1 Time-domain block adaptive filtering

Fig. 43 shows a PSDF model of time-domain LMS block adaptive filtering,

represented by subsystem TDBAF. The length of the input data (), the size of each

block () and the length of the FIR filter () are parameters of this subsystem.

These parameters are configured in the init graph through the setPars actor. Actors

Input and desOutput are data sources that produce the input data and the desired out-

R

L M

123

put data, respectively. -point blocks of the input data are provided to the blkFIR

actor, modeling block implementation of a FIR filter, which allows the efficient use

of parallel processing. Each block is filtered with a fresh set of adapted coefficients

received from the wtCntrl actor. The output of the filtering process is compared with

the desired output in the subtract actor, and the error is plotted in the plot actor and

supplied to the wtCntrl actor in blocks of size . The wtCntrl actor looks at the error

corresponding to the most recent input block, and accordingly adapts the current fil-

ter coefficients, using the block LMS algorithm, and produces a new set of filter

coefficients for processing the next input block. Both inputs of the wtCntrl actor are

initialized with tokens of value 0, that correspond to initiating the LMS block

adaptive process with some initial values of the filter weights set in the wtCntrl

actor. The input size and the filter length are actor parameters of both the blkFIR and

wtCntrl actors, and they are assigned the subsystem parameters and , respec-

tively. As before, we have omitted parameters that do not affect dataflow behavior,

Figure 43. A PSDF model representing time-domain block adaptive filtering of an

input signal of length in blocks of size with a FIR filter of length . The block

size exactly divides the input signal size.

fork1

plot

1

1

desOutput

Input

R 1

subtract

L

M
M

L 1

1

setPars

(sets R,

L,M)

wtCntrl
(blk=L,

fLen=M)

blkFIR
(blk=L,

fLen=M)

TDBAF.init

R

L

LD{(0,0)}TDAF.body

L

subsystem TDBAF
{params=R,L,M}
{(gcd(R,L)=L}

fork2

1

1

1

1

1

R L M

L

L

L

L M

124

e.g. the step size of the weight control mechanism of the block LMS algorithm that

can also be set in the init graph. In this application, we have assumed that the block

size exactly divides the data size, and zero-padding as necessary is performed inside

the Input and desOutput black boxes.

Our quasi-static scheduler generates the quasi-static schedule shown in Fig.

44, which implements the functionality in an obvious manner. Each run of the sys-

tem processes a different set of data inputs. In each run, the Input and desOutput

actors are invoked once each to produce all of the data samples. The fork1 actor is

invoked times to transfer the input data samples to the FIR filter and the weight

control mechanism. One invocation of the wtCntrl actor produces a set of coeffi-

cients, used by the blkFIR actor to process input samples. After one invocation of

these two actors in succession, samples are produced at the output of the FIR,

which are then processed by the subtract, fork2, and plot actors in successive

invocations. To process all data samples, this invocation sequence is then repeated

repeat 5 times {
/* begin init graph schedule for TDBAF */
fire setPars /* sets , , */
/* end init graph schedule for TDBAF */

/* begin body graph schedule for TDBAF */
fire Input
fire desOutput
repeat times {

fire fork1
}
repeat times {

fire wtCntrl
fire blkFIR
repeat times {

fire subtract
fire fork2
fire plot

}
}
/* end body graph schedule for TDBAF */

}

Figure 44. The quasi-static schedule for the PSDF model of time-domain block

adaptive filtering of Fig. 43, with five firings.

R L M

R()

R L⁄()

L()

R

R

M

L

L

L

R

125

 times.

15.2.2 Frequency-domain block adaptive filtering

The time-domain block LMS adaptive filtering process discussed in Section

15.2.1, can be implemented in a computationally efficient manner by performing

adaptation of the filter coefficients in the frequency domain using the fast Fourier

transform (FFT) algorithm. The block LMS algorithm so implemented is referred to

as the fast LMS algorithm [21]. The linear convolution performed in the FIR filter

can be speeded up by performing fast convolution using the overlap-save or overlap-

add methods. It has been shown that the most efficient implementation of the fast

LMS algorithm is obtained by using 50 percent overlap in the overlap-save method

[14]. [21] describes a fast LMS algorithm, adapted from [30], that uses the overlap-

save method with 50 percent overlap, and with the block size chosen equal to the fil-

ter length (). A PSDF model of the fast LMS algorithm implemented in this

manner is shown in Fig. 45. According to this method, the tap weights (filter

coefficients) of the FIR filter are zero-padded with an equal number of zeros, and an

-point FFT is used, where . The FDBAF PSDF subsystem represents the

frequency domain block adaptive filtering process. , , and are the subsystem

parameters. The Input actor acts as a signal source, producing samples of the

input signal. The Concat block receives the input data in block sizes of ; concate-

nates the current block with the previous block (the th block is appended to the

th block, for); and provides a block of size to

the FFT1 actor, which computes the FFT coefficients. These coefficients are mul-

tiplied in the frequency domain with the tap weights (computed by the weight

update mechanism described shortly) in the prod1 actor to obtain the estimated out-

put in the frequency domain. After an inverse FFT (in IFFT1), we obtain samples

of the estimated output in the time domain, the first block of which is discarded by

the delFirst actor to obtain samples of the estimated output, corresponding to the

 input samples.

For an acoustic echo cancellation application, the estimated output provides

R L⁄()

L M=

M

N N 2M=

R N M

R

M

k

k 1–() k 0 1 … R M⁄() 1–, , ,= N

N

N

N

M

M

126

(a)

(b)

Figure 45. A PSDF model of frequency-domain block adaptive filtering, that imple-

ments the fast LMS algorithm [21, 30]. Fast convolution is performed using the

overlap-save method with 50% overlap. The input signal is of length ; is the fil-

ter length; and an point FFT is used, where . (a) The body graph of the

PSDF subsystem FDBAF. A bold rectangle encloses the update subblock represent-

ing syntactic hierarchy. (b) The internals of the update subblock.

Input Concat

delFirstprod1

desOutput

IFFT1FFT1

subtract

fork2

plot

insZeroFFT2prod2

Conjgt add

update

fork3

fork1

R M

N
N

N 1 1

1

N N N N N

M

R

M
N
1 M

M

11

1

M 1
N N

N N

N

N

N

N N

N

N

N 1

N 1

ND{(0,0)}

FDBAF.body

subsystem FDBAF
{params=R,N,M}
{(gcd(R,M)=M}

prod3

appZero FFT3

IFFT2 delLast

N N

step
N N N

M
M

N

1

1

N
N

R M

N N 2M=

127

the estimated echo while the desired output comes from the actual echo [16]. The

difference between the estimated output and the desired output is calculated in the

subtract actor. The output of subtract provides the error signal, which determines

the actual echo. The insZero actor inserts zeros at the beginning of the error sig-

nal, and the FFT2 actor transforms the error signal into the frequency domain by an

FFT operation. The Conjgt actor computes the complex conjugate [20] of the ele-

ments of the frequency domain input signal. The complex conjugate transpose is

then multiplied in the frequency domain with the frequency domain error signal in

the prod2 actor, and provided to the update subblock, (shown separately in Fig.

45(b)) to compute the update for the tap weights. This is obtained by performing the

inverse FFT on the product input (actor IFFT2), deleting the last M elements (actor

delLast), appending M zeros to the resulting data (actor appZero), computing the

FFT (actor FFT3), and multiplying with twice the LMS algorithm step size (in

prod3). This update is added (in the add actor) to the FFT coefficients of the tap

weights for the th block () to obtain the FFT coefficients of the next set of tap

weights for the th block (). The initial set of tap weight FFT coeffi-

cients is provided as delay elements initialized to 0 on the output edge of the

add actor.

In this PSDF representation, we have denoted the data flow in the system on

an element-by-element basis, and it is up to the functionality of an actor to interpret

the input data appropriately (as a column vector, row vector, matrix, or identity

matrix) according to the algorithm described in [21], perform the computations, and

provide each element at its output. The subsystem parameters that do not affect data-

flow behavior have been omitted. So as not to clutter up the block diagram, all actor

parameters have also been omitted. From the block diagram, actor parameters that

determine the dataflow behavior of an actor, and the subsystem parameters assigned

to them can be deduced easily. For example, each of the FFT and IFFT actors have a

len parameter denoting the FFT size. Each of these len parameters is assigned the

subsystem parameter . The init graph of the subsystem has not been shown. It is

M

N

µ

k wk

k 1+() wk 1+

w0 N

N

128

exactly similar to the init graph of the TDBAF subsystem, with a single setPars actor

setting up all the subsystem parameters.

The quasi-static schedule is shown in Fig. 46 for five runs of the application.

The block adaptive filtering process is initiated by firing the fork3 actor times.

This transfers the FFT coefficients of the initial tap weights to the input of the

prod1 actor, which performs a convolution product with the FFT of the input in the

frequency domain. As before, we assume that the block size , which is also equal

to the filter length, divides the input length exactly. For an input signal of length ,

the adaptive filtering process is applied times, once on each block of size

. For processing a single block, the fork1 and fork3 actors operate on samples,

for a total of invocations, while the subtract, fork2, and plot actors

process samples for a total number of invocations. Every other

actor in the adaptive filtering process is invoked once per filtering step, for a total

repeat 5 times {
/* begin init graph schedule for FDBAF */
fire setPars /* sets , , */
/* end init graph schedule for FDBAF */

/* begin body graph schedule for FDBAF */
fire Input; fire desOutput;
repeat times {

fire Concat; fire FFT1; fire Conjgt;
repeat times {

fire fork1; fire fork3;
}
fire prod1; fire IFFT1; fire delFirst;
repeat times {

fire subtract; fire fork2; fire plot;
}
fire insZero; fire FFT2; fire prod2;
fire IFFT2; fire delLast; fire appZero;
fire FFT3; fire step; fire prod3;
fire add

}
/* end body graph schedule for FDBAF */

}

Figure 46. The quasi-static schedule for the PSDF model of frequency-domain block

adaptive filtering of Fig. 45, with five firings.

R N M

R M⁄()

N()

M()

N

N

M

R

R M⁄()

M N

R M⁄()N 2R=

M R M⁄()M R=

129

number of invocations each. In this case, the quasi-static scheduling process

is not affected by the relationship between and , as sample rate changes do not

appear on any edge in terms of these two parameters. Thus, the schedule is not

affected even though the scheduler is unaware that .

15.3 CD to DAT sample rate conversion

Fig. 47 shows a PSDF model of a sample rate conversion system to interface

a compact disc (CD) player to a digital audio tape (DAT) player. The sample rates of

CD players and DAT players are respectively 44.1 kHz and 48 kHz. Interfacing the

two, for example, to record a CD onto a digital tape, requires a sample rate conver-

sion. This can be done efficiently by a multi-stage implementation of the sample rate

conversion [33]. Fig. 47 shows a 4-stage parameterized implementation. The sample

rate conversions are performed by 4 polyphase FIR filters that respectively perform

output-to-input conversion ratios for . Each and represents

R M⁄()

N M

N 2M=

Figure 47. The PSDF model of a CD to DAT sample rate conversion system imple-

mented in four stages with four polyphase FIR filters. Filter performs rate

conversion, and these interpolation and decimation factors are parameters of the

PSDF subsystem.

{params=i1,d1,i2,d2,i3,d3,i4,d4}

subsystem CD-DAT

CD DAT

polyFIR1 polyFIR2 polyFIR3 polyFIR4

d1

1

i1 d2 i2 d3 i3 d4

i4

1

setFactor
(sets i1,d1,i2,d2,

i3,d3,i4,d4)

CD-DAT.initCD-DAT.body

i i j:d j

i j:d j j 1 2 3 4, , ,= i j d j

130

the interpolation and decimation factors of polyphase FIR filter . Each of these

quantities are subsystem parameters of the PSDF subsystem CD-DAT, and are con-

figured in the init graph through the setFactors actor.

Rate conversion ratios are chosen by examining the prime factors of the two

sampling rates. The ratio is or . There are vari-

ous ways in which to perform this conversion in four stages, and the application

designer can experiment with different values in different runs of the system. Two

possible choices are (, , ,) and (, , ,).

The polyphase FIR filter polyFIR1 will have actor parameters decimation-

Factor and interpolationFactor, set to the subsystem parameters and respec-

tively. In addition it will possess some parameters that do not affect its dataflow

behavior, such as the decimationPhase which is set to zero, and the filter coefficients

which can be read from a table corresponding to permissible pairs (). This is

true for each of the polyphase FIR filters used in the application.

The quasi-static schedule is shown in Fig. 48. This is the general schedule

for any values of the decimation and interpolation factors. To maintain fixed rela-

tionships between some of these factors, the user can additionally specify such rela-

tionships via user assertions, which may result in a more simplified schedule.

16. Implementation

We have implemented a tool that accepts PSDF specifications written in a

specific textual format, performs quasi-static scheduling and prints a quasi-static

schedule whenever possible. Otherwise our tool performs run-time scheduling, pro-

ducing an output schedule trace of actor firings. All the schedules presented in this

report are automatically generated from this tool, except for a few features explained

below. Work is under progress to incorporate various enhancements into this tool. In

this section, we document the current status of the implementation.

Re-initialization of delays is not yet a part of the tool. We are working on

incorporating the re-initialization feature in our scheduler. The delay re-initializa-

j

441000:48000 3
1
7

2
:2

5
5

1
147:160

2:1 4:3 4:7 5:7 5:3 2:7 4:7 4:1

d1 i1

i1 d1,

131

repeat 10 times {
/* begin init graph schedule for CD-DAT */
fire setFactors /* sets , , , , , , , */

/* end init graph schedule for CD-DAT */

/* begin body graph schedule for CD-DAT */
int

int

int

repeat times {

repeat times {

repeat times {

repeat times {

fire CD
}
fire polyFIR1

}
repeat times {

fire polyFIR2
}

}
repeat times {

fire polyFIR3
}

}
repeat times {

fire polyFIR4
}
repeat times {

fire DAT
}
/* end body graph schedule for CD-DAT */

}

Figure 48. The quasi-static schedule for the PSDF model of the 4-stage CD to DAT

sample rate conversion system of Fig. 47, with ten firings.

i1 d1 i2 d2 i3 d3 i4 d4

_gcd_1 i1 d2,()gcd=

_gcd_2 i2 i1×() _gcd_1()⁄ d3,()gcd=

_gcd_3 i3 i2× i1×() _gcd_2 _gcd_1×()⁄ d4,()gcd=

d4() _gcd_3⁄()
d3() _gcd_2⁄()

d2() _gcd_1⁄()
d1()

i1() _gcd_1⁄()

i2 i1×() _gcd_2 _gcd_1×()⁄()

i3 i2× i1×() _gcd_3 _gcd_2 _gcd_1××()⁄()

i4()

132

tions present in the Fibonacci Number (Fig. 32, Fig. 37) and weighted average (Fig.

33) examples have been manually inserted into the schedules.

At present quasi-static scheduling is performed only for acyclic graphs,

where all the token flow is specified either in terms of symbolic expressions of sub-

system parameters, or as static integers, and there is no unspecified token flow to be

obtained at run-time from a parameter interpretation function. We refer to the latter

as “statically unspecified token flow”. Cyclic graphs and graphs with statically

unspecified token flow are passed on for run-time scheduling. For specifications

with a significant amount of statically unspecified token flow, it appears that the

quasi-static scheduler is left with too little static information, so that the resulting

schedule has a lot of baggage in it, leading to inefficiency.

The pre-processor described in Section 14.1.1 is under development. Cur-

rently, for simple cyclic graphs, cycles are manually broken in the input specifica-

tion, and actors are appropriately marked up, before being presented to the tool.

Quasi static schedules for the adaptive filtering (Figures 34, 44, and 46), weighted

average (Fig. 33), and Fibonacci Number computation (Fig. 32) applications have

been obtained in this fashion.

Our tool currently implements either a quasi-static scheduling strategy,

based on a parameterized looped schedule, or a fully dynamic scheduling strategy,

without any attempt to construct hybrid schedules involving both approaches. Thus,

there is no provision for the run-time scheduler to handle portions of the specifica-

tion for which quasi-static schedules have already been developed at compile-time.

The trade-offs between the two scheduling strategies in the PSDF context, and their

relative degree of usage in a combined model are interesting areas for further

research. However, the advantages of clustering portions of the graph about which

enough static information is present (e.g. SDF subgraphs, single rate subgraphs,

subgraphs for which symbolic gcd information is known through user assertions), as

done in the BDF model, are obvious. So, we are working on moving from the

“either-or” scenario to a “as-much-static-clustering-as-possible” scenario, and hav-

133

ing the run-time scheduler efficiently handle these clustered vertices, as outlined in

the run-time scheduling algorithm (Section 14.2).

At present, we do not have a library of actors that provide the code for exe-

cuting the functionality of an actor. This does not affect the quasi-static scheduler, as

the scheduling process is independent of the internal execution of an actor. However,

the run-time scheduler does depend on those actor executions that are responsible

for configuring the value of a subsystem parameter. In the absence of an actor

library, our tool reads parameter values from an input file, and performs a simulation

of the application based on the schedule constructed with the parameter values read

from the file. The run-time schedule trace of the Fibonacci Number example (Fig.

37) has been obtained in this manner.

17. PSDF with variable topologies

The PSDF model discussed so far parameterizes the functionality and the

token flow of a synchronous dataflow graph. It is possible to naturally extend the

model to parameterize the graph topology also. Recall that a PSDF edge can have

parameters, and the delay on the edge, along with the initial value and the re-initial-

ization period of each delay token, can be a function of its parameter set, specified,

in general, in the edge’s parameter interpretation function. In a similar concept, the

connectivity information of the edge, specified through its source and sink actors

can also be made dependent on its parameter set. Thus, and no

longer must take on fixed actor port values, but can vary as determined by the

parameter configuration of . Just like the other variable quantities in a PSDF graph,

the corresponding subinit or init graph is responsible for fixing up the connectivity

information and configuring it as an SDF graph to be maintained for a certain num-

ber of the graph invocations. Configuring the connectivity of the PSDF graph prior

to executing it is somewhat similar to the concept of higher order functions (HOF)

present in Ptolemy [12]. HOF actors (called stars in Ptolemy) typically replace

themselves with one or more instances of another star or galaxy (subblock), or they

compute_RT_schedule()

e()src e()snk

e

134

alter the connections in the graph without adding any new blocks, and then self-

destruct in the pre-initialization phase of the graph, before the graph is scheduled.

So the scheduler never encounters any HOF stars in the graph. Somewhat analo-

gously, in PSDF, the run-time scheduler never comes across variable graph topol-

ogy, as that has already been resolved and the graph has been configured as an SDF

graph. However, the quasi-static scheduler does have to take variable graph topology

into consideration, as we will elaborate shortly.

The BDF model and the Well Behaved stream flow model make use of two

special non-SDF actors switch and select (or merge), which can be used effectively

to express dynamic graph connectivity. Fig. 49 shows an if-then-else construct mod-

eled in BDF and in PSDF. In the BDF model actor emits a boolean valued token

at its output that serves as the control token for both the switch and the select actors.

In the PSDF representation, dashed edges converging on an PSDF edge indicates

that can vary at run-time, while dashed edges diverging from indicates that

 can vary dynamically. Such an edge has two additional characteristics

 and that take on non-negative integer values, determined

by the parameter configuration of . These can be assigned static integers (in which

case the graph degenerates to a fixed topology PSDF graph), or symbolic subsystem

parameters, or can be left unspecified (in case of the latter, a parameter interpretation

function must be provided to compute these given a parameter configuration). The

integer values taken on by are interpreted to configure as fol-

lows. The dashed edges converging into are enumerated from 0 to , where

is the total number of such dashed edges, based on some criterion (e.g. from first

instantiated edge to last instantiated edge). A value of for implies that

the source actor of dashed edge is the source actor of . A value greater than

is considered invalid. The property is similarly interpreted. In Fig. 49,

edge has a variable sink, while edge has a variable source. The property

has been assigned the subsystem parameter while has

also been assigned the same parameter . The numbers on the dashed edges indicate

B

e

e()src e

e()snk

srcCntrl e() snkCntrl e()

e

srcCntrl e() e()src

e j 1– j

i srcCntrl e()

i e j 1–

snkCntrl e()

e1 e2

snkCntrl e1() p srcCntrl e2()

p

135

the enumeration assigned to them. Token flow has not been specified in the figure.

All the actors are assumed to be homogeneous SDF actors.

Efficient, and general quasi-static scheduling of such variable topology

PSDF graphs is a challenge. One possibility is to apply P-APGAN to each thread of

execution separately, and put in the necessary if-then-else statements in the sched-

ule. However, the code size explodes rapidly with the number of variable connectiv-

ity edges. Efficient management of the code size increase is a useful direction for

further study. Fig. 50 shows a simple example of a PSDF specification with a single

variable connectivity edge and a corresponding quasi-static schedule.

(a) (b)

Figure 49. The if-then-else statement. (a) BDF representation. (b) PSDF representa-

tion. In the BDF model, the boolean valued output token from actor controls the

functioning of the switch and select non-SDF actors. In the PSDF representation,

actor is responsible for setting up the boolean value of the subsystem parameter

, which controls the sink of edge and the source of edge . Each dashed edge

is annotated with its index in the given enumeration of the dashed edges. All actors

are assumed to be homogeneous SDF actors.

A

FT

B

C D

switch

E

T F

select

A

C D

E

e1

e2

1

0 1

0 p

p

B
(sets p)

B

B

p e1 e2

136

(a)

repeat 5 times {
/* begin init graph schedule for Conditional */
fire setPars /* sets , */
/* end init graph schedule for Conditional */

/* begin body graph schedule for Conditional */
if {

repeat 2 times {
fire A

}
fire B
fire D

} else if {
fire A
fire C;
repeat () times {

fire E
}

} else
error(“invalid sink configuration”)

/* end body graph schedule for Conditional */
}

(b)

Figure 50. An example of a PSDF specification using a variable connectivity edge.

(a) The PSDF specification Conditional. The dashed edges are annotated with their

enumeration. (b) A possible PSDF quasi-static schedule.

A

B D

2
1 1

1

1
p

setPars
(sets p,q)

subsystem Conditional
{params=p,q}

Conditional.body

Conditional.init

1

0

C E

q 1

p q

p 0=()

p 1=()

q

137

18. Parameterization as a meta-modeling technique

The PSDF model applies the parameterization concept to the synchronous

dataflow formalism. As discussed in Section 5, it should also be possible to apply

the same parameterization techniques to other static models and obtain similar

extensions. In fact, it should be applicable to arbitrary dataflow models by imposing

a hierarchy discipline, and requiring that certain properties hold for a given sub-

system over a well-defined period of time. Dataflow models that have a well-defined

concept of a graph iteration are particularly amenable to parameterized extensions.

For example, cyclo-static dataflow (CSDF) can be extended to a parameter-

ized cyclo-static dataflow (PCSDF) model, that has the same appealing re-configu-

ration-related properties as PSDF. An illustration is given in Fig. 51 that models the

speech compression application (Section 15.1) in PCSDF. This is a straightforward

extension of the PSDF specification of Fig. 38 (Section 15.1.1). Recall that in the

PSDF specification, an instance of the speech sample of length had to be zero-

padded to length , such that the size of each segment () exactly divides the zero-

padded length. This zero-padding is no longer necessary in the PCSDF specifica-

tion. Instead of the zero-padded length , we have two other parameters — ,

which gives the number of segments of size contained in the speech sample, and

, which represents the size of the residual segment. Thus, if is divided by ,

then represents the quotient, and represents the remainder. As before, gives

the model order of the AR model of each speech segment.

In the PCSDF specification C-Compress, the code for the Analyze and Synth

actors have been divided up into phases, so that their token flow can vary even in the

same invocation of the parent graph, unlike PSDF, where the token flow can vary

only across invocations of the parent graph. The notation denotes the

parameterized cyclo-static token flow sequence with repeated

times. Similarly denotes a sequence of the form , in which

 is repeated times. The token consumption pattern signifies that

the first invocations of Analyze consume tokens each from the input port, and

L

R N

R p

N

Q L N

p Q M

p N() Q,

N N … N Q, , , , N p

p 1+()M M M … M, , ,

M p 1+ p N() Q,

p N

138

Figure 51. The PCSDF (parameterized cyclo-static dataflow) specification of the

speech compression application. Zero-padding a speech instance of length is no

longer necessary. The parameter represents the quotient obtained after dividing

by the segment size , and represents the remainder. The notation

denotes the parameterized cyclo-static token flow sequence with

repeated times.

Speech2
(len=L)

Quant1

Quant2

p(N),Q

(p+1)M

L

Dquant1

Dquant2

Play
(len=L)

1

1

p(N),Q

1

1

C-Compress.body

setSpeech
(sets L)

Speech1
(len=L)

C-Compress.subinit

SelectL L

subsystem C-Compress
{params=L,N,M,p,Q}

C-Compress.init

(len=L)
(sets N,
M,p,Q)

p(N),Q

1

p(N),Q

(p+1)M

L

1

1

1

Analyze

Synth

L

p L

N Q p N() Q,
N N … N Q, , , , N

p

139

the th invocation consumes tokens.

A possible PCSDF quasi-static schedule for the body graph of C-Compress

is shown in Fig. 52. The actor invocations enclosed in the first firings process

segments of the speech sample, each of length . The next block of actor execu-

tions process the residual segment of length .

In summary, we have demonstrated an informal, intuitive concept of PCSDF,

illustrated through the speech compression application. A rigorous formalism in the

lines of PSDF calls for further investigation.

19. Summary and future work

The parameterized synchronous dataflow (PSDF) model significantly

increases the expressivity of synchronous dataflow (SDF), by imposing a hierarchy

p 1+() Q

/* begin body graph schedule for C-Compress */
fire Speech2
repeat times {

fire Analyze
repeat times {

fire Quant1; fire DQuant1;
}
repeat times {

fire Quant2; fire Dquant2;
}
fire Synth

}
fire Analyze
repeat times {

fire Quant1; fire Dquant1;
}
repeat times {

fire Quant2; fire Dquant2;
}
fire Synth
fire Play
/* end body graph schedule for C-Compress */

Figure 52. The quasi-static schedule for the body graph of the PCSDF specification

of the speech compression application of Fig. 51. The actor invocations enclosed in

the first firings process segments of the speech sample, each of length . The

next block of actor executions processes the residual segment of length .

p()

N()

M()

Q()

M()

p p N

Q

p p

N

Q

140

discipline on an underlying SDF model that allows parameterized, dynamic control

of a subsystem at different levels of granularity. The basic building block provided

to an application designer is a PSDF specification (subsystem) , that can be

decomposed into three distinct PSDF graphs — the init graph , the subinit graph

, and the body graph . Parameters are provide to control the functional behav-

ior as well as the dataflow behavior (token production and consumption) of a sub-

system, and the parameters can change dynamically, thus dynamically modifying

system behavior. In a specification, the init and subinit graphs control the behavior

of the body graph by configuring the body graph parameters appropriately. A speci-

fication can be embedded within another specification, giving rise to a powerful

hierarchical structure that an application designer can use to represent nested and

concurrent logical functional units capable of dynamically configuring their internal

functional and dataflow behavior. Parameterization of subsystem functionality

comes out as a natural concept from the application modeling viewpoint, and com-

bined with the underlying SDF model that has proven to be very well-suited for

designing static DSP systems, it makes PSDF a natural choice for modeling a broad

class of data-dependent, dynamic DSP systems. The underlying SDF model makes

the semantics intuitive and easy to understand. Furthermore, the parameterized

framework provides a natural concept of re-configurability and design re-use that

are desirable properties of any modeling environment. From our experience it seems

that a significant population of practical, data-dependent DSP applications can be

represented naturally in the PSDF model.

From the performance viewpoint, PSDF possesses a robust and elegant oper-

ational semantics that provides a promising framework for developing elaborate ver-

ification techniques (for verifying qualities such as bounded memory execution and

local synchrony), but does not rely on rigorous verification for correct operation.

Efficient quasi-static schedules, geared towards minimizing code size and buffer

memory requirements, can be developed for a large class of PSDF specifications,

making it attractive for synthesis purposes, and optimized synthesis of quasi-static

Φ

Φi

Φs Φb

141

schedules appears to be an interesting area for future work. The parameterized

framework of the PSDF model looks promising as naturally extensible for incorpo-

rating dynamically re-configurable graph topologies (conditionals), thus further

increasing its expressivity. In addition, the parameterized modeling architecture that

underlies PSDF appears to hold promise as a general meta-modeling technique

applied to alternative dataflow models beyond SDF.

20. Glossary of PSDF concepts and notation

: The unspecified parameter value.

: The PSDF actor to which port belongs.

body condition:

A part of the requirement for local synchrony of PSDF specification

 — the body graph is inherently locally synchronous, and the

token transfer at the interface ports of the body graph is invariant

over the body graph parameters that are not set in the init graph.

body graph: Same as .

: The third part of a parameterized looped schedule of a PSDSF

graph , called the body of . It is a sequence , where

each is either an actor (leaf or hierarchical) in or a parameter-

ized schedule loop.

bounded memory consistency:

A part of the requirement for local synchrony of PSDF graph —

every possible instantiated SDF graph of should satisfy the upper

bounds on max token transfer at each actor port, and max delay value

on each edge.

: The value of parameter under the configuration of the non-

empty parameter set .

: The number of tokens consumed from the PSDF edge , which is

equivalent to the token consumption function of the actor to which

the sink port of belongs, corresponding to a complete configuration

of the associated PSDF graph.

child subsystem (child specification) of :

⊥

actor p() p

Φ

Φb

bodyS S

G S V 1V 2…V k
V i G

G

G

C p() p P∈ C

P

c e() e

e

G

142

A PSDF specification for a hierarchical actor in

PSDF graph .

complete configuration:

A configuration of a non-empty parameter set such that for each

, .

: A configuration of , may be incomplete.

: A configuration of , that may be incomplete.

: The instantiated configuration of in associated with the com-

plete configuration of PSDF graph , which is obtained by

“applying” the configuration to unspecified parameters of .

: The instantiated configuration of in associated with the com-

plete configuration of PSDF graph , which is obtained by

“applying” the configuration to unspecified parameters of .

configuration: An assignment of values to parameters of a non-empty parameter set

, denoted by , such that for

, . An empty parameter set

has an empty configuration.

configuration of :

A configuration of the parameters () of PSDF graph .

control hierarchy:

The hierarchy represented by a PSDF hierarchical actor that corre-

sponds to a PSDF specification.

: The delay re-initialization period function which specifies the re-ini-

tialization period of a delay token for any complete, valid configura-

tion of the parameter set of PSDF edge .

: The number of delay tokens on the PSDF edge , which is equivalent

to for a complete valid configuration of .

dataflow consistency:

A part of the requirement for local synchrony of PSDF graph —

every possible instantiated SDF graph of should have a valid

schedule.

: The default value of parameter , such that

subsystem H() H

G

C P

p P∈ C p() ⊥≠

configA params A()

confige params e()

configA p, A G

p G

p A

confige p, e G

p G

p e

P p1 v1,() p2 v2,() … pn vn,(), , ,{ }
i 1 2 … n, , ,= vi domain pi() ⊥{ }∪()∈

G

params G() G

γe

e

d e() e

δe e

G

G

default p() p

143

.

: The domain of the parameter set of PSDF actor .

: The set of all valid and complete configurations of the parameter set

of PSDF actor .

: The domain of the parameter set of PSDF graph , defined as

.

: The set of complete configurations in for a PSDF graph

.

: The set of compatible valid configurations of a non-empty parameter

set , in the context in which is being used. An empty parameter

set has an empty domain.

: The domain of the parameter set of PSDF edge .

: The set of all valid and complete configurations of the parameter set

of PSDF edge .

: The subset of of a parameter set , that consists of all

configurations that are both valid and complete.

: A finite, non-empty set denoting the domain of a parameter , i.e.

the set of all values that can take on.

external subsystem parameters:

Subsystem parameters that control the behavior of the subsystem in

such a way that they are visible externally in the parent graph of the

subsystem. These parameters are configured in the associated init

graph, or in actors of the parent graph of the subsystem.

: The parameter interpretation function of PSDF actor that imple-

ments and .

: The delay function that gives the number of delays on PSDF edge

for a complete valid configuration of .

: The internally connected input ports of a PSDF graph comprising

of the set of input ports of actors that belong to on which edges of

 originate.

immediate parameters of a subsystem:

Same as subsystem parameters.

default p() domain p() ⊥{ }∪()∈

domain A() A

domain A()
A

domain G() G

Jdomain params G()()

domain G() domain G()
G

domain P()
P P

domain e() e

domain e()
e

domain P() domain P() P

domain p() p

p

f A A

κA ϕA

δe e

e

G
I

G

G

G

144

: The set of input ports of PSDF actor .

inherently locally synchronous:

See local synchrony of , and local synchrony of .

inherently locally non-synchronous:

See local synchrony of , and local synchrony of .

inherited parameters of a subsystem:

Every subsystem inherits the immediate and inherited parameters of

the parent subsystem of its parent graph, as its inherited parameters.

Thus, the inherited parameters of a subsystem comprises the immedi-

ate parameters of all the ancestor subsystems.

init-configured subsystem parameters:

Subsystem parameters that are configured in the associated init

graph.

init condition: A part of the requirement for local synchrony of PSDF specification

 — the init graph is inherently locally synchronous, and it pro-

duces exactly one token at each output port on each invocation for

every possible configuration of the init graph parameters.

init graph: Same as .

initChild phase of :

The first part of a parameterized looped schedule of a PSDSF

graph that consists of successive invocations of the parameterized

looped schedules of the init graphs of the child subsystems of .

initflow: The mechanism of configuring the parameters of a specification

() in the init and subinit graphs of hierarchically higher-

level subsystems. This is distinct from dataflow.

: The interface inputs of a PSDF graph comprising of the set of

input ports of actors that belong to at which no edges of termi-

nate.

: The interface inputs of PSDF specification , comprising all the

dataflow inputs that go into when is embedded in a PSDF

graph.

: The body inputs of PSDF specification , comprising the set of

in A() A

G Φ

G Φ

Φ

Φi

S

S

G

G

Φ
params Φ()

inputs G() G

G G

inputs Φ() Φ
Φ Φ

inputsb Φ() Φ

145

dataflow inputs to that appear as dataflow inputs to .

: The parameter inputs of PSDF specification , comprising the set

of dataflow inputs to that are bound to parameters of .

: The subinit inputs of PSDF specification , comprising the set of

dataflow inputs to that appear as dataflow inputs to .

:

A (pure) SDF actor obtained from a complete configuration of a

PSDF actor .

:The instance of associated with the complete configuration . It

denotes the SDF graph that emerges by “applying” the complete con-

figuration to unspecified actor and edge parameters

in the PSDF graph .

internal subsystem parameters:

Subsystem parameters that control the internal behavior of a sub-

system, and are not visible externally, in the parent graph of the sub-

system. These parameters are configured in the associated subinit

graph.

invariant: For a parameter set , a function into some

range set ; and a subset , is invariant over if the func-

tion does not depend on any member of .

: The joint domain of , where is a family of disjoint, parameter

sets , and is defined as the union of all valid configu-

rations of each parameter set.

: The iteration count of a parameterized schedule loop in PSDF

graph , denoting the number of repetitions of the invocation

sequence associated with . In general, it is a symbolic

expression consisting of constants, compiler-generated variables, and

subsystem parameters.

local synchrony of :

A PSDF graph is inherently locally synchronous if for every

, the instantiated SDF graph has the

following properties: it has a valid schedule (i.e. it is dataflow consis-

tent and is deadlock free); it satisfies the max token transfer bound at

each actor port, and the max delay value bound on each edge; every

child subsystem is locally synchronous. If no satis-

Φ Φb

inputsp Φ() Φ
Φ Φs

inputss Φ() Φ
Φ Φs

instanceA C()

C

A

instanceG p() G p

p domain G()∈
G

P f domain P() R→:

R P′ P⊆ f P′
f P′

Jdomain P() P P m

P1 P2 … Pm, , ,

loopcnt L() L

G

T 1T 2…T m L

G

G

p domain G()∈ instanceG p()

p domain G()∈

146

fies these properties, then is inherently locally non-synchronous.

Otherwise, is partially locally synchronous.

local synchrony of :

A PSDF specification is inherently locally synchronous (or simply

locally synchronous), if each of , , and is inherently locally

synchronous; for each , produces one token on

each output port on each invocation; for each ,

produces one token on each output port on each invocation; the token

transfer on the interface input ports of is invariant over the

parameters of that are bound to dataflow inputs of ; the token

transfer on the interface ports of is invariant over the parameters

of that are not set in . If either of the graphs , , and

is locally non-synchronous, or the init and subinit graph do not pro-

duce one token at each output port for any valid configuration of the

respective graph parameters, then is inherently locally non-syn-

chronous (or simply locally non-synchronous). Otherwise, is par-

tially locally synchronous.

max token transfer function:

See .

maximum delay value:

See .

non-init-configured subsystem parameters:

Subsystem parameters that are not configured in the associated init

graph, comprising internal subsystem parameters and parent-config-

ured subsystem parameters.

: The port consumption function of PSDF actor , that is defined as

: The internally connected output ports of PSDF graph comprising

the set of output ports of actors that belong to h on which edges of

 terminate.

: The set of output ports of PSDF actor .

: The interface outputs of a PSDF graph comprising of the set of

output ports of actors that belong to at which no edges of origi-

nate.

G

G

Φ

Φ
Φi Φs Φb

p domain Φi()∈ Φi
p domain Φs()∈ Φs

Φs
Φs Φ

Φb
Φb Φi Φi Φs Φb

Φ
Φ

τA

µe

κA A

κA in A() domain A()×() Z+→:

G
O

G

G

G

out A() A

outputs G() G

G G

147

: The interface outputs of PSDF specification , comprising all the

dataflow outputs that go out of when is embedded in a PSDF

graph. These outputs of are simply the outputs of the associated

body graph .

P-APGAN: The clustering technique used for quasi-static scheduling of acyclic

PSDF graphs, called parameterized APGAN (acyclic pairwise group-

ing of adjacent nodes).

P-APGAN candidate:

Two adjacent actors in a PSDF graph, clustering which through P-

APGAN does not introduce a cycle in the graph.

PSDF actor, :

A PSDF actor with a set of input and output ports, and a parameter

set.

PSDF edge, :A PSDF edge with a parameter set, connecting a PSDF actor output

port to a PSDF actor input port.

PSDF graph :

A bipartite, directed graph, represented by an ordered pair

, where is a set of PSDF actors, and is a set of

PSDF edges that connect a subset of the actor output ports to a subset

of the set of input ports.

PSDF hierarchical actor:

A PSDF actor that represents a PSDF specification .

PSDF specification, :

A PSDF specification or subsystem, composed of three PSDF graphs

— the init graph, the subinit graph, and the body graph.

: The number of tokens produced onto the PSDF edge , which is

equivalent to the token production function of the actor to which the

source port of belongs, for a complete configuration of the parame-

ters of .

parameter set :

A finite set of objects , where each is called a

parameter of .

outputs Φ() Φ
Φ Φ

Φ
Φb

A

e

G

V G EG,() V G EG

Φ

Φ

p e() e

e

e

P

p1 p2 … pn, , ,{ } pi
P

148

parameterized looped schedule :

A schedule for a PSDF graph , consisting of three parts — the init-

child phase of , the preamble of , and the body of .

parameterized schedule loop :

For a PSDF graph , it represents successive repetition of an invoca-

tion sequence , where each is either a leaf actor in ,

or a hierarchical actor in , or another parameterized schedule loop.

: The parameter set of PSDF actor .

: The parameter set of PSDF graph , which comprises all the

unspecified actor parameters and edge parameters in .

: The parameter set of PSDF edge .

: The parameter set of PSDF specification , called the specification

parameters of . Comprises the initflow parameters of , and the

parameters of . These are set in the init and subinit graphs of hier-

archically higher level subsystems.

: The set of unspecified parameters of actor in , obtained as the

set , where the configuration of parameter of PSDF actor

 in a PSDF graph is unspecified (), for a non-

empty parameter set of , and is defined to be empty for an empty

parameter set of .

: The set of unspecified parameters of edge in , obtained as the set

, where the configuration of parameter of PSDF edge in

PSDF graph is unspecified (), for a non-empty

parameter set of , and is defined to be empty for an empty parame-

ter set of .

:

The initflow parameters of comprising of those parameters of

that are not bound to an interface output port of , nor to a dataflow

input of .

parent-configured subsystem parameters:

Subsystem parameters that are configured in actors of the parent

graph of the subsystem.

parent graph of :

SG

G

S S S

L

G

T 1T 2…T m T i G

G

params A() A

params G() G

G

params e() e

params Φ() Φ
Φ Φs
Φi

paramsA G() A G

A p,(){ } p

A G configA p() ⊥=

A

A

paramse G() e G

e p,(){ } p e

G confige p() ⊥=

e

e

paramsΦS
Φ()

Φs Φs
Φi

Φ

Φ

149

The PSDF graph to which hierarchical actor belongs, where

.

parent specification (parent subsystem) of :

The PSDF specification with which the PSDF graph is associated

as an init graph, subinit graph, or body graph.

partially locally synchronous:

See local synchrony of , and local synchrony of .

: The second part of a parameterized looped schedule of a PSDSF

graph , called the preamble of . It consists of code that configures

the iteration count of each schedule loop in by defining in a

proper order every compiler-generated variable used in the symbolic

expression of the iteration count, and includes conditionals for

checking sample rate consistency, and bounded memory consistency

of graph . Additionally, if is an init graph, includes

conditionals for checking the init condition for local synchrony of the

parent specification. Similarly, if is a subinit graph, then

includes conditionals for checking the subinit output con-

dition for local synchrony of the parent specification.

projection: For a non-empty parameter set , a configuration of , and a

non-empty subset of parameters , the projection of onto

is obtained by discarding from all elements containing parameters

that do not belong to . Projecting a configuration (empty or non-

empty) onto an empty configuration produces the empty configura-

tion.

: The parameterized repetitions vector associated with the instantiated

SDF graph , for a complete configuration

 of PSDF graph .

quasi-static schedule:

A schedule that is computed at compile-time, but contains code for

performing some data-dependent computations at run-time.

: The maximum delay value on PSDF edge specifying an upper

bound for dynamically varying delay tokens on .

refinement: For a non-empty parameter set , a non-empty subset of parameters

, a configuration of , and a configuration

of , the refinement of with respect to is

obtained by augmenting the configuration by assigning the value

H

Φ subsystem H()=

G

G

G Φ

preambleS S

G S

bodyS

G G preambleS

G

preambleS

P C P

P′ P⊆ C P′
C

P′

qG p,
instanceG p()

p domain G()∈ G

µe e

e

P

P′ P⊆ P C domain P()∈
P′ C′ domain P′()∈ C C′

C

150

to all parameters of that are unspecified in , but specified

in . Refining a configuration (empty or non-empty) with respect to

an empty configuration, maintains the original configuration.

semantic hierarchy:

Same as control hierarchy.

simple cyclic graph:

A cyclic PSDF graph, where each fundamental directed cycle has a

single delay element with a known value, and each such fundamental

cycle is statically known to be a single-rate system (i.e.

 for each edge in the fundamental cycle), or can be

configured into a single-rate system.

simplified PSDF graph:

A directed multigraph associated with the PSDF graph

, where

. In other words,

edges are interpreted to connect actors, instead of connecting actor

ports.

: The PSDF actor input port at which PSDF edge terminates. Over-

loaded in the simplified PSDF graph to indicate the actor at which

PSDF edge terminates.

: The PSDF actor output port at which PSDF edge originates. Over-

loaded in the simplified PSDF graph to indicate the actor at which

PSDF edge originates.

subinit-configured subsystem parameters:

Same as internal subsystem parameters.

subinit input condition:

A part of the requirement for local synchrony of PSDF specification

 — the subinit graph is inherently locally synchronous, and the

token transfer at the interface input ports of the subinit graph is

invariant over the subinit graph parameters that are not set in the init

graph.

subinit output condition:

A part of the requirement for local synchrony of PSDF specification

 — the subinit graph is inherently locally synchronous, and it pro-

C′ p() P′ C

C′

e()p e()c= e

V G E′,()
G V G EG,()=

E′ actor e()src() actor e()snk(),() e EG∈(){ }=

e()snk e

e

e()src e

e

Φ

Φ

151

duces exactly one token at each output port on each invocation for

every possible configuration of the subinit graph parameters.

subinit graph: Same as .

:The PSDF subsystem (specification) associated with a PSDF hierar-

chical actor .

subsystem parameters:

The parameters of a PSDF specification or subsystem, directly

derived from the application, while modeling an application in PSDF.

Actor and edge parameters in a PSDF graph are configured with sub-

system parameters.

syntactic hierarchy:

The hierarchy represented by a PSDF actor (subblock), where the

internals of the actor is represented by another PSDF graph. This

hierarchy can be flattened and the subblock can be replaced with the

graph that it represents.

: The set of interface output ports of that are used to set parameters

of the body graph .

:

The set of interface output ports of that are used to set parameters

of the subinit graph .

unit transfer consistency:

The input condition and subinit output condition for local synchrony

of PSDF specification .

: A block of code to verify the body condition for local synchrony of a

PSDF specification that appears as a part of a parameterized

schedule loop in the parent graph of .

: A block of code to verify the subinit input condition for local syn-

chrony of a PSDF specification that appears as a part of a parame-

terized schedule loop in the parent graph of .

: The max token transfer function of PSDF actor that specifies an

upper bound on the maximum number of tokens transferred (pro-

duced or consumed) at a port of .

: The delay initial value function of PSDF edge which gives the ini-

Φs

subsystem H()
H

ToBody Φi() Φi
Φb

ToSubinit Φi()

Φi
Φs

Φ

VLSb Φ
Φ

VLSs
Φ

Φ

τA A

A

υe e

152

tial value associated with a delay token for a complete valid configu-

ration of the parameters of .

: The body graph of a PSDF specification .

: The function that maps each output port of the subinit graph to a

parameter in the body graph .

: The init graph of a PSDF specification .

: The function that maps each member of to a parameter

of .

: The subinit graph of a PSDF specification .

: The function that maps each member of to a parameter

in .

: The function that maps each member of to a parame-

ter in .

: The port production function of PSDF actor , and is defined as

.

21. References

[1] M. Ade, R. Lauwereins and J.A. Peperstraete, “Data Memory Minimization for

Synchronous Data Flow Graphs Emulated on DSP-FPGA Targets,” Proceedings of

the Design Automation Conference, June, 1994.

[2] R. Allen, and D. Kennedy, “Automatic Transformations of FORTRAN Programs

to Vector Form,” ACM Transactions on Programming Languages and Systems, Vol.

9, No. 4, October, 1987.

[3] S. Banerjee, T. Hamada, P. M. Chau, and R. D. Fellman, “Macro Pipelining

Based Scheduling on High Performance Heterogeneous Multiprocessor Systems,”

IEEE Transactions on Signal Processing, Vol. 43, No. 6, June, 1995.

[4] S.S. Bhattacharyya, J.T. Buck, S. Ha, and E.A. Lee, “Generating Compact Code

from Dataflow Specifications of Multirate Signal Processing Algorithms,” IEEE

Transactions on Circuits and Systems -- I: Fundamental Theory and Applications,

March, 1995.

e

Φb Φ

Φfs Φs
Φb

Φi Φ

Φps inputsp Φ()
Φs

Φs Φ

Φtb ToBody Φi()
Φb

Φts ToSubinit Φi()
Φs

ϕA A

ϕA out A() domain A()×() Z+→:

153

[5] S.S. Bhattacharyya and E.A. Lee, “Looped Schedules for Dataflow Descriptions

of Multirate Signal Processing Algorithms,” Journal of Formal Methods in System

Design, December, 1994.

[6] S. S. Bhattacharyya, and E. A. Lee, “Memory Management for Dataflow Pro-

gramming of Multirate Signal Processing Algorithms,” IEEE Transactions on Sig-

nal Processing, Vol. 42, No. 5, May, 1994.

[7] S. S. Bhattacharyya, R. Leupers and P. Marwedel, “Software Synthesis and Code

Generation for Signal Processing Systems,” Tech. Report UMIACS-TR-99-57,

Institute for Advanced Computer Studies, University of Maryland, College Park,

September, 1999.

[8] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Data-

flow Graphs, Kluwer Academic Publishers, 1996.

[9] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Optimizing Synchronization in

Multiprocessor DSP Systems,” IEEE Transactions on Signal Processing, Vol. 45,

No. 6, June, 1997.

[10] J.T. Buck, “Scheduling Dynamic Dataflow Graphs with Bounded Memory

using the Token Flow Model,” Tech. Report UCB/ERL 93/69, Ph.D. thesis, Univer-

sity of California at Berkeley, September,1993.

[11] J.T. Buck, “Static Scheduling and Code Generation from Dynamic Dataflow

Graphs With Integer-Valued Control Streams,” 28th Asilomar Conference on Sig-

nals, Systems, and Computers, November,1994.

[12] J.T. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt, “Ptolemy: A Framework

for Simulating and Prototyping Heterogeneous Systems,” International Journal of

Computer Simulation, Vol. 4, April, 1994.

[13] L. F. Chao, and E. Sha, “Unfolding and Retiming Data-Flow DSP Programs for

RISC Multiprocessor Scheduling,” Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing, April, 1992.

154

[14] G.A. Clark, S.K. Mitra, and S.R. Parker, “Block Implementation of Adaptive

Digital Filters,” IEEE Transactions on Circuits Syst., Vol. CAS-28, 1981.

[15] M. Engels, G. Bilsen, R. Lauwreins, J. Peperstraete, “Cyclo-Static dataflow,”

IEEE Transactions on Signal Processing, 44(2), pp 397-408, February 1996.

[16] L. Freund, M. Israel, F. Rousseau, J. M. Berge, M. Auguin, C. Belleudy, and G.

Gogniat, “A Codesign Experiment in Acoustic Echo Cancellation: GMDF ,” ACM

Transactions on Design Automation of Electronic Systems, Vol. 2, No. 4, October,

1997.

[17] G.R. Gao, R. Govindarajan, and P. Panangaden, “Well-Behaved Programs for

DSP Computation,” Proceedings of the International Conference on Acoustics,

Speech, and Signal Processing, San Francisco, March, 1992.

[18] A. Girault, B. Lee, E.A. Lee, “Hierarchical Finite State Machines with Multiple

Concurrency Models,” October 19, 1998, revised from Memorandum UCB/ERL

M97/57, Electronics Research Laboratory, UC, Berkeley, August 1997.

[19] D. Harel, “StateCharts: A Visual Formalism for Complex Systems,” Sci. Com-

put. Program., Vol. 8, pp 231-274, 1987.

[20] M. Hayes, Statistical Digital Signal Processing and Modeling, by John Wiley

and Sons, Inc., 1996.

[21] S. Haykin, Adaptive Filter Theory, 3rd edition, Prentice Hall Information and

System Sciences Series, 1996.

[22] P. Hoang, and J. Rabaey, “A Compiler for Multiprocessor DSP Implementa-

tion,” Proceedings of the International Conference on Acoustics, Speech, and Signal

Processing, March, 1992.

[23] E.A. Lee, “Consistency in Dataflow Graphs,” IEEE Transactions on Parallel

and Distributed Systems, 2(2), April, 1991.

[24] E. A. Lee, “Representing and Exploiting Data Parallelism Using Multidimen-

sional Dataflow Diagrams,” Proceedings of the International Conference on Acous-

tics, Speech, and Signal Processing, April, 1993.

α

155

[25] E.A. Lee, “Static Scheduling of Data-Flow Programs for DSP,” Advanced Top-

ics in Data-Flow Computing, ed. J. Gaudiot, L. Bic, Prentice Hall, 1991.

[26] E.A. Lee and D.G. Messerschmitt, “Static Scheduling of Synchronous Data-

flow Programs for Digital Signal Processing,” IEEE Transactions on Computers,

Vol. C-36, No. 2, February, 1987.

[27] M. Pankert, O. Mauss, S. Ritz, H. Meyr, “Dynamic Data Flow and Control

Flow in High Level DSP Code Synthesis,” Proceedings of the 1994 IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing, Vol. 2, pp 449-452,

Adelaide, Australia, April 19-22, 1994.

[28] K. K. Parhi, and D. G. Messerschmitt, “Static Rate-optimal Scheduling of Iter-

ative Data-flow Programs via Optimum Unfolding,” IEEE Transactions on Comput-

ers, Vol. 40, No. 2, February, 1991.

[29] J.L Pino, S.S. Bhattacharyya, and E.A. Lee, “A Hierarchical Multiprocessor

Scheduling System for DSP Applications,” Proceedings of the IEEE Asilomar Con-

ference on Signals, Systems, and Computers, November, 1995.

[30] J. J. Shynk, “Frequency-Domain and Multirate Adaptive Filtering,” IEEE Sig-

nal Processing Magazine, Vol. 9, No. 1, January, 1992.

[31] W. Sung, J. Kim and S. Ha, “Memory Efficient Synthesis from Dataflow

Graphs,” Proceedings of the International Symposium on Systems Synthesis, 1998.

[32] S. Ritz, M. Pankert and H. Meyr, “Optimum Vectorization of Scalable Synchro-

nous Dataflow Graphs,” Proceedings of the International Conference on Application

Specific Array Processors, October, 1993.

[33] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall Signal

Processing Series, 1993.

[34] P. Wauters, M. Engels, R. Lauwereins, J.A. Peperstraete, “Cyclo-dynamic data-

flow,” 4th EUROMICRO Workshop on Parallel and Distributed Processing, Braga,

Portugal, January, 1996.

156

[35] E. Zitzler, J. Teich and S. S. Bhattacharyya, “Evolutionary Algorithms for the

Synthesis of Embedded Software,” to appear in IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 1999.

