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Current observations of debris disks reveal a wealth of radial and azimuthal

structures likely created by planet-disk interactions. Future images of exozodiacal

disks may reveal similar structures. In this work I summarize my observations and

modeling of the structure of exozodiacal dust clouds.

I present our observations of the 51 Ophiuchi circumstellar disk made with

the Keck Interferometer operating in nulling mode at N-band. I modeled these data

simultaneously with VLTI-MIDI visibility data and a Spitzer IRS spectrum and

showed that the best-fit disk model is an optically thin disk with size-dependent

radial structure. This model has two components, with an inner exozodiacal disk

of blackbody grains extending to ∼4 AU and an outer disk of small silicate grains

extending out to ∼1200 AU. This model is consistent with an inner “birth” disk of



continually colliding parent bodies producing an extended envelope of ejected small

grains and resembles the disks around Vega, AU Microscopii, and β Pictoris.

I produced models of resonant ring structures created by planets in debris

disks. I used a custom-tailored hybrid symplectic integrator to model 120 resonant

ring structures created by terrestrial-mass planets on circular orbits interacting with

collisionless steady-state dust clouds around a Sun-like star. I used these models

to estimate the mass of the lowest-mass planet that can be detected through ob-

servations of a resonant ring, and showed that the resonant ring morphology is

degenerate and depends on only two parameters: planet mass and
√

ap/β, where ap

is the planet’s semi-major axis and β is the ratio of radiation pressure force to grav-

itational force on a grain. I introduced a new computationally-efficient “collisional

grooming” algorithm that enables us to model grain-grain collisions in structured

debris disks and used this algorithm to show how collisions can alter the morphol-

ogy of a resonant ring structure. My collisional models reveal that collisions act to

remove azimuthal and radial asymmetries from the disk. I showed that the collision

rate for background particles in a resonant ring structure is enhanced by a factor

of a few compared to the rest of the disk, and dust grains in or near mean motion

resonances have even higher collision rates. I also used this algorithm to model the

3-D structure of the Kuiper Belt’s dust cloud at four different dust levels. I found

that our Kuiper Belt dust would look like an azimuthally symmetric ring at 40–45

AU when viewed from afar at submillimeter wavelengths. At visible wavelengths,

our Kuiper Belt dust cloud would reveal two resonant ring structures: one created

by Saturn near 10 AU and one created by Neptune near 30 AU. A denser version of



our Kuiper Belt dust cloud, with an optical depth 1000 times greater, would look

qualitatively similar at submillimeter wavelengths, but would be void of Neptune’s

resonant ring structure at visible wavelengths. My simulations suggest that mean

motion resonances with planets can play strong roles in the sculpting of debris disks

even in the presence of collisions, though their roles are somewhat different than

what has been anticipated.
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Chapter 1

Introduction

1.1 Debris disks

Approximately 15–20% of nearby Sun-like stars exhibit excess emission at

infrared wavelengths that has been interpreted as emission from a circumstellar disk

of dust (Trilling et al., 2008). These dusty circumstellar disks, or debris disks, are

believed to be mature planetary systems harboring planets and planetesimals, the

remnants of planet formation. Typical dust lifetimes are much shorter than the

age of these systems, so the dust must be continually replenished, likely by the

outgassing and colliding of planetesimals (Backman & Paresce, 1993).

Planets embedded in a debris disk gravitationally interact with the planetes-

imals and dust. Planets can stir up a population of planetesimals, enhancing the

collision and dust production rates (Kenyon & Bromley, 2001). Planets can act as a

shield, preventing dust grains or planetesimals from penetrating into a region of or-

bital space (e.g. Moro-Mart́ın & Malhotra, 2002; Quillen, 2006). Also, planets may

trap dust in exterior mean motion resonances (MMRs), amplifying the dust density

at specific locations (e.g. Jackson & Zook, 1989; Kuchner & Holman, 2003). These

interactions can lead to large-scale structure in the debris disk, such as clumps of

dust, gaps, circumstellar rings, and stellocentric offsets of the disk (e.g. Deller &

Maddison, 2005; Stark & Kuchner, 2008; Chiang et al., 2009).
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The discovery of circumstellar debris disks around nearby stars has revolu-

tionized astronomy. Disks provide us with the opportunity to study the formation,

evolution, and composition of planetary systems. And searching for asymmetries in

debris disks may be a promising method for discovering and characterizing other-

wise undetectable extrasolar planets (exoplanets) (e.g. Quillen, 2006; Chiang et al.,

2009).

However, these disks may also be a troublesome source of noise for upcoming

exoplanet-imaging efforts; future missions that aim to directly image Earth-like ex-

oplanets will have to contend with the diffuse glow of dust in debris disks. Structure

within these disks may only further complicate our ability to distinguish a planet’s

signal from the surrounding disk.

In this dissertation, I present my work on detecting and “decoding” the struc-

ture of debris disks. Chapter 2 presents my observations and models of one of the

first debris disks to be resolved in the inner few AU. In Chapter 3, I introduce my

numerical techniques for modeling tenuous, structured debris disks and present my

simulations and analysis of the geometry of resonant ring structures induced by

terrestrial-mass planets. In Chapter 4, I expand my models to include collisional

debris disks by creating a novel algorithm for modeling grain-grain collisions. Fi-

nally, I apply these collisional models to the Solar System’s Kuiper Belt in Chapter

5. I predict what our Kuiper Belt would look like from 10 pc in its current state and

what it may have looked like at a younger age when the collision rate was hundreds

of times higher.

The remainder of this introductory chapter introduces key concepts and back-

2



ground material in debris disks and disk-planet interactions. My goal is to provide

context for the results presented in Chapters 2–5.

1.2 The dynamics of dust grains in our zodiacal cloud

The Solar System is an evolved debris disk with a warm, inner disk of dust

extending from the dust sublimation radius (approximately 0.03 AU for a 10 µm

silicate grain) to the asteroid belt and a cool, outer dust component likely associated

with Kuiper Belt objects. The inner few AU of the Solar System’s debris disk, the

zodiacal cloud, is composed of a mixture of dust produced by collisions between

asteroids in the asteroid belt, outgassing of comets as they approach the Sun, and the

tidal disruption of Jupiter-family comets (e.g. Nesvorny et al., 2009). The relative

contributions of these sources is still debated, with estimates of the ratio of asteroid

to cometary dust ranging from 1:10 to 7:10 (Ipatov et al., 2008).

Our zodiacal cloud is not a smooth, uniform disk of dust. The geometric

center of the zodiacal cloud is shifted from the Sun by approximately 0.01 AU

and inclined with respect to the ecliptic by approximately 2◦ (Kelsall et al., 1998).

Observations of our zodiacal cloud obtained with the Infrared Astronomical Satellite

(IRAS) revealed several bright bands of dust at distinct declinations (Low et al.,

1984). These bands have been associated with the inclinations of specific asteroid

families, such as the Koronis, Eos, and Themis families, and provide direct evidence

for the production of dust in the asteroid belt (Dermott et al., 1984).

Dust grains in the zodiacal cloud experience a number of forces in addition to
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gravitational forces. Upon the release of a dust grain from its parent body, radiation

pressure immediately changes the orbit of the dust grain. Radiation pressure, which

scales as 1/r2, effectively reduces the gravitational influence of the star and increases

the semi-major axis and eccentricity of the dust grain’s orbit according to

a = a0

1 − β

1 − 2a0β/r
(1.1)

and

e =

[

1 − (1 − 2a0β/r) (1 − e2
0)

(1 − β)2

]1/2

, (1.2)

where we have assumed that the dust grain’s velocity is conserved upon launch,

a0 and e0 are the semi-major axis and eccentricity prior to launch, respectively, r

is the stellocentric distance, and β is the ratio of radiation pressure force to the

gravitational force on the grain. For spherical grains, β is given by

β =
3L⋆QPR

16πGM⋆cρs
, (1.3)

where L⋆ is the stellar luminosity, M⋆ is the stellar mass, G is the gravitational

constant, c is the speed of light, ρ is the mass density of a grain, s is the grain

radius, and QPR is the radiation pressure coefficient (Burns et al., 1979).

For grains on initially circular orbits, the smallest grains, with β > 0.5, will no

longer be bound to the system and will leave on hyperbolic orbits. Of those grains

still bound to the star (β < 0.5), the orbits of the smallest grains will undergo

the largest changes in eccentricity, causing them to spread out and occupy a larger

range of stellocentric distances. Large grains will remain relatively unaffected and

will appear to trace the paths of their parent bodies.
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Dust grains will also experience corpuscular and radiative drag forces. As a

dust grain orbits a star, it travels through a soup of solar wind ions that collide with

the grain, producing a solar wind drag force (see, e.g. Gustafson, 1994). The dust

grain will also feel the relativistic Poynting-Robertson (PR) drag force (Robertson,

1937). A dust grain in orbit around a star will absorb some of the incident starlight

and warm to an equilibrium temperature. In the process the dust grain emits

radiation isotropically in its rest frame. However, in the system’s inertial reference

frame, the grain emits more radiation (and momentum) in the forward direction.

The grain slowly loses momentum and spirals in toward the star in an amount of

time known as the PR time, which can be expressed as (Wyatt & Whipple, 1950)

tPR(r) =
c r2

4GM⋆βeff

, (1.4)

where βeff = β(1+ sw) and sw is the ratio of corpuscular drag to PR drag, typically

∼ 0.3 for solar type stars (Gustafson, 1994). The median silicate grain size in our

zodiacal cloud is on the order of 10 µm, which would reach the Sun in less than 105

years if launched from the asteroid belt.

Dust grains may also be removed by collisions with other dust grains. The

collision time for a dust grain in a uniform disk is approximately

tcoll ≈
torbit

4πτ
, (1.5)

where torbit is the orbital period of the dust grain and τ is the geometric, face-on

optical depth of the disk (Wyatt, 2003). Our tenuous zodiacal cloud has an optical

depth on the order of 10−7; the collision time for a typical asteroidal dust grain is

on the order of a few million years, significantly longer than the PR time. Hence,
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collisions are typically ignored when simulating debris disks similar to our zodiacal

cloud.

As drag forces remove momentum from the dust grains, the grains spiral inward

toward the star. Along the way the grains gravitationally interact with any existing

planets. Planets may simply eject grains from the system via close encounters,

directly collide with dust grains, or produce complex dynamical effects when the

dust grains migrate into external MMRs with the planet. Roughly speaking, an

MMR occurs when the ratio of the dust grain’s orbital period to the planet’s orbital

period is approximately a ratio of two integers. For example, the 3:2 resonance

implies that the dust grain’s orbital period is approximately 1.5 times longer than

the planet’s orbital period.

MMRs produce a periodic gravitational forcing, and can trap the inward-

spiraling dust grains for an extended period of time at a nearly-fixed semi-major axis.

While trapped in resonance, the combination of drag forces and the gravitational

periodic forcing pump up the dust grain’s eccentricity until the grain’s orbit becomes

planet-crossing, at which point the grain may be removed from resonance. The dust

grain may be ejected from the system altogether, continue to spiral inward, or move

to another resonance.

Figure 1.1 illustrates the resonant trapping of dust grains. This figure shows a

sample simulation of four dust grains orbiting in the Sun-Earth system. Drag forces

cause the semi-major axes of the grains to decay over time. The Earth temporarily

halts the migration of all four dust grains, trapping them in exterior MMRs until

they are chaotically ejected from resonance. Figure 1.1 illustrates that resonant
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Figure 1.1: Resonant trapping of dust grains by an Earth-mass planet

on a circular orbit around the Sun at 1 AU. Four 120 µm blackbody

grains are launched exterior to the planet’s orbit; drag forces migrate

the grains inward over time. Grains become trapped in exterior MMRs

(labeled) for a significant fraction of their lifetimes.
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trapping may occupy a significant fraction of the dust grain’s lifetime.

This temporary trapping of dust grains creates a build-up of grains in semi-

major axis space. As a result, an overdense circumstellar ring of dust forms near the

semi-major axis of the planet. Figure 1.2 shows the face-on surface density for one

such ring, created by an Earth-mass planet on a circular orbit at 1 AU around the

Sun in a cloud of 40 µm blackbody grains. This figure also illustrates the azimuthal

asymmetries that resonances can create in a dust cloud, including clumps of dust

trailing the planet and a gap near the planet’s location.

A resonant dust ring created by the Earth has been detected in our zodiacal

cloud. In 1998, infrared observations of our zodiacal cloud made by the Diffuse In-

frared Background Experiment (DIRBE) on board the Cosmic Infrared Background

Explorer (COBE) showed two surface brightness enhancements in the infrared sky,

leading and trailing the Earth (Reach et al., 1995). These enhancements, shown in

Figure 1.3, are evidence for a ring of dust in resonant lock with the Earth (like that

shown in Figure 1.2); they have been interpreted as projections of an overdense torus

of dust, as viewed from the Earth’s perspective (Reach et al., 1995). The surface

brightness enhancements also exhibit the leading-trailing asymmetry predicted by

models of the Earth’s resonant ring (Jackson & Zook, 1989; Dermott et al., 1994).
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Figure 1.2: Face-on surface density of a debris disk model with a resonant

ring structure created by a 1 M⊕ planet orbiting a Sun-like star at 1

AU in a cloud of 40 µm blackbody grains. The Earth, marked with a

white dot, orbits counter-clockwise. Dust grains interior to 0.5 AU were

removed from the model; the central hole is artificial.
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Figure 1.3: COBE-DIRBE image of our zodiacal cloud at 12 µm after

subtraction of the smooth component of the best-fit model to the data.

Black marks regions of missing data. The center of the image is in the

direction of the Sun, the left side trails the Earth’s orbit, and the right

side leads the Earth’s orbit. The galactic plane appears as a red curve

extending from the bottom left of the image to the top right. The Earth’s

resonant dust ring appears as two surface brightness enhancements lead-

ing and trailing the Earth’s orbit. The trailing enhancement is brighter,

in agreement with models.
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1.3 Exozodiacal clouds: a complication for future exo-Earth-imaging

missions

A major science driver for flagship NASA missions over the next few decades

will probably be the detection and characterization of extrasolar Earth-like planets

(exo-Earths) via direct imaging. The zodiacal cloud, although tenuous, has a large

emitting and scattering surface area; when viewed from a distance, a face-on 0.4 ×

0.4 AU patch of our zodiacal cloud scatters as much sunlight as the Earth. If exo-

planetary systems harboring Earth-like planets are anything like the Solar System,

these future missions will have to cope with the scattered and emitted light from

dust within the habitable zone.

Extrasolar zodiacal clouds, or exozodiacal clouds, may well be more dense

than our own zodiacal cloud, potentially obscuring the planet signal altogether. At

least 10–20% of nearby stars harbor an outer debris disk much denser than the

Solar System’s (Beichman et al., 2006). In both images and spectra, light from

the zodiacal and exozodiacal dust will likely dominate an exo-Earth’s signal. The

magnitude of the exozodiacal emission within the point-spread function of a 4-m

telescope is V≈28, assuming a Solar System twin viewed at an inclination of 60◦

from face-on. That is two magnitudes brighter than the Earth viewed at quadrature

from 10 pc away (Roberge et al., 2009).

For these reasons, the detection of exozodiacal clouds and determination of

typical exozodiacal dust levels is of significant importance in planning for future

exo-Earth imaging missions. In the near future, interferometric observation tech-
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niques will likely lead the way in exozodiacal dust detection. Currently the nulling

interferometer at the twin Keck telescopes is the most sensitive instrument that

spatially resolves exozodiacal clouds, capable of detecting disks with optical depths

down to several hundred times the optical depth of our zodiacal cloud (several hun-

dred “zodis”). I present our detection of one such exozodiacal cloud, made with

the Keck Interferometer Nuller, in Chapter 2. Future ground-based interferometers,

like the Large Binocular Telescope Interferometer, aim to achieve exozodiacal disk

detection down to 10 zodis (Lunine et al., 2008), while proposed space-based probes,

like the Fourier Kelvin Stellar Interferometer, aim to detect exozodiacal disks similar

to our own zodiacal cloud (Defrère et al., 2008).

In addition to the unknown overall density of exozodiacal clouds, these dust

clouds may have structures similar to what we see in our own zodiacal cloud. Will fu-

ture missions be able to detect a terrestrial-mass planet in spite of these structures?

Proposed interferometric missions have suggested filtering out point-symmetric com-

ponents of the surface brightness, leaving a relatively clean asymmetric signal that

contains the planet (Defrère et al., 2010). However, asymmetric structures in the

dust cloud may present problems for these missions and may limit them to exozodia-

cal dust levels less than a few tens of zodis (Defrère et al., 2010). In addition, bright

clumps of dust may present false positives for future direct imaging coronagraphs.

While exozodiacal dust structures may be a major source of confusion in direct

imaging of exoplanets, they may also provide another method by which we can

indirectly detect exoplanets. In fact, information gleaned from disk structure can

be used to detect planets that would otherwise be too faint or have a mass that is
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too low to be detected using other techniques. We may be able to use the shape

and location of the dust structure to constrain the mass and orbit of the perturbing

planet, as well as the properties of the dust grains and planetesimals from which

they are launched (Stark & Kuchner, 2008). The distribution of planetesimals also

tells us about the history of the planetary system (Wyatt, 2003) and provides insight

into the planet formation process.

The mere presence of a debris disk is inherently important to planet finding as

well. The relatively short removal time of dust grains in a debris disk as compared

to the age of the system implies that larger parent bodies must also be present; the

detection of an exozodiacal disk is a direct indication of planet-building material.

1.4 Searching for planets with currently detectable debris disk struc-

tures

Debris disk images have emerged as important tools for finding extrasolar

planets at angular separations greater than a few arcseconds from their host stars.

A 2005 Hubble Space Telescope (HST) image of Fomalhaut’s debris disk made with

the Advanced Camera for Surveys (ACS) showed a ring offset from the central star

suggesting perturbations from a hidden planet (Kalas et al., 2005); two years later,

new ACS images revealed one of the first ever directly imaged exoplanets orbiting

inside the disk (Kalas et al., 2008). Fomalhaut is not the only resolved debris disk

to exhibit structure. In fact, the majority of the debris disks imaged to date with

HST coronagraphy display a diversity of asymmetric features (Greaves et al., 1998;
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Holland et al., 1998; Telesco, et al., 2000; Heap et al., 2000; Kalas et al., 2005;

Golimowski et al., 2006; Schneider et al., 2009).

Almost all of the known debris disks have temperatures implying spatial scales

like those in the Kuiper Belt, i.e. on the order of 10–100 AU in extent. Current

instruments limit us to resolving only the largest (& 5 arcsec, or 50 AU at 10 pc) of

those disks. The circumstellar dust ring observed around Fomalhaut, for example,

has an inner semi-major axis of 133 AU, roughly three times larger than the Kuiper

Belt.

Current instruments also limit us to imaging only the brightest disks. The

current collection of resolved debris disks, including the disks around the stars Fo-

malhaut, AU Microscopii, β Pictoris, Vega, and ǫ Eridani, have optical depths on

the order of 10−4; these disks are thousands of times more dense than the Kuiper

Belt. Dust grains in these dense disks have typical collision times that are hundreds

of times shorter than their PR times. For example, for a 10 µm grain in the Fo-

malhaut system, Equation 1.5 gives a collision time on the order of 105 years, while

Equation 1.4 gives a PR time on the order of 107 years.

These short collision times imply that the observed dust distribution likely

resembles the parent body distribution (Wyatt, 2005). Can we learn about the

distribution of planetesimals and possibly the dynamical history of the system by

observing the dust grains? The debris disk structure around Fomalhaut provides an

excellent example of recent attempts to do so: Kalas et al. (2005)’s scattered light

observations of the Fomalhaut disk revealed a sharp inner edge to the ring struc-

ture at a single semi-major axis. This prompted studies suggesting that an unseen
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planetary companion may have sculpted the parent bodies into this well-defined

circumstellar ring structure by gravitationally ejecting planetesimals interior to the

inner edge (e.g. Quillen, 2006). Every planet creates a “chaotic zone” exterior to

its orbit in which MMRs overlap, forming a region of orbital space that is unstable

on secular timescales (Wisdom, 1980). Chiang et al. (2009) fit the observed dis-

tribution of dust (and the inferred distribution of parent bodies) in the Fomalhaut

system with numerical simulations of the parent bodies and dust, and were able to

constrain the mass and semi-major axis of the planet based on the appearance of

the ring structure. However, future investigations may reveal other possible mecha-

nisms that can create similar looking dust structures, e.g. outward migration of the

planet or resonant trapping of dust grains/parent bodies.

The short collision times in observed debris disks also imply that grain-grain

collisions are the dominant mechanism for the removal of dust grains. Understanding

the appearances of these debris disks will require models that can treat the dynamics

of planetary perturbations and grain-grain collisions simultaneously. In Chapter 4,

I present a new “collisional grooming” algorithm that allows for the self-consistent

inclusion of both of these physical processes. This algorithm will allow us to model

the dense disks that will be observed in the near future and provide a more complete

means for interpreting disk structures.
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Chapter 2

Spatially resolved detection of an exozodiacal cloud with the Keck

Interferometer Nuller

Reprinted with permission from Stark, C. C., et al. 2009, 51 Ophiuchi: A

Possible Beta Pictoris Analog Measured with the Keck Interferometer Nuller, The

Astrophysical Journal, Vol. 703, pp. 1188-1197. Copyright 2009, American Astro-

nomical Society.

2.1 Introduction

51 Ophiuchi (51 Oph), a rapidly rotating B9.5Ve star located at 131+17
−13 pc

(Perryman et al., 1997), shows an infrared (IR) excess (LIR/L⋆ ≈ 2%) in its spectral

energy distribution (SED) due to the presence of silicate grains (Fajardo-Acosta et

al., 1993; Meeus et al., 2001; Keller et al., 2008). This system probably represents a

rare nearby example of a young debris disk with gas, a planetary system just entering

the late stages of formation, after the primordial gas has substantially dissipated,

but before terrestrial planets have finished accreting. Its nearly edge-on disk of gas

and dust and its variable absorption features (Grady & Silvis, 1993; Roberge et al.,

2002) suggests that 51 Oph may be an analog of β Pictoris (β Pic).

Several spectroscopic observations support the presence of an edge-on gaseous

disk around 51 Oph. Double-peaked Hα emission marks the presence of ionized hy-
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drogen gas in Keplerian orbit (Leinert et al., 2004). Sharp CO bandhead emission

features rule out a spherically symmetric wind and reveal a gaseous disk with tem-

perature ranging from 2000 – 4000 K interior to the dust sublimation radius (Thi

et al., 2005). The CO bandhead observations also point to a disk with inclination

i = 88+2
−35

◦ (Thi et al., 2005) or i = 83+7
−0

◦ (Berthoud et al., 2007). A spectral line

analysis performed by Dunkin et al. (1997) revealed a large projected rotational

velocity for the star of v sin i = 267±5 km s−1. Gas absorption features observed by

Grady & Silvis (1993) and Roberge et al. (2002) are also consistent with an edge-on

disk.

The spatial structure of the 51 Oph dust disk remains puzzling. An HST

ACS V-band non-detection (Doering et al., 2007) and a Keck 18 µm non-detection

(Jayawardhana et al., 2001) suggest that the disk is relatively compact. However,

far-IR photometry reveals cold dust grains extending out to thousands of AU (Wa-

ters et al., 1988; Lecavelier des Etangs et al., 1997).

Leinert et al. (2004) obtained the first spatially-resolved measurements of the

51 Oph disk with the Mid-IR Interferometric (MIDI) instrument on the Very Large

Telescope Interferometer (VLTI). The large visibility values they measured (∼ 0.65)

imply that the 51 Oph disk is relatively compact along the VLTI-MIDI projected

baseline (101.2 m, 23◦ E of N). Leinert et al. (2004) fit the VLTI-MIDI visibility

with a Gaussian disk and found the FWHM to be 7 mas, or 0.9 AU, at 12.5 µm.

Here we present new spatially-resolved observations of 51 Oph using the Keck

Interferometer Nuller that help to constrain the geometry of the dust disk. We

compare these to the VLTI-MIDI observations (Leinert et al., 2004) and Spitzer
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IRS observations (Keller et al., 2008). We simultaneously model all three data

sets using two simple, edge-on disk models: an optically-thin model based on our

zodiacal cloud and a two-layer model based on the Chiang & Goldreich (1997) disk

model.

2.2 Observations

Observations of 51 Oph were conducted using the twin Keck telescopes atop

Mauna Kea, Hawaii, operated in nulling interferometric mode on 2 Apr 2007. 51

Oph was observed twice in the N-band (8 - 13 µm) at an hour angle of ≈ 0.5, with

a projected baseline of 66.2 m at a position angle of 47◦. A calibrator star, Epsilon

Ophiuchi (HD146791), was observed once following the target observations. Table

2.1 lists the details of our observations.

Table 2.1: Keck Interferometer Nuller Observation Log

Object Type Time u v Air Mass
(UT) (m) (m)

51 Oph target 15:08:24 52.00 48.97 1.39
51 Oph target 15:09:26 51.90 48.87 1.39
ǫ Oph calibrator 15:37:21 37.34 59.76 1.21

The Keck Nuller operates with each Keck telescope aperture divided into two

sub-apertures for a total of four apertures (see Serabyn et al., 2005; Colavita et

al., 2008, for details). Long-baseline fringes formed by combining the light from

opposite telescopes are used to null the light from the central star and observe any

spatially resolved structures. Short-baseline fringes formed by combining the light
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from two neighboring sub-apertures are used to remove the thermal background.

The observable quantity is the “null leakage,” the ratio of the amplitude of the

short baseline fringe with the long baseline null fringe on target to the amplitude

of the short baseline fringe with the long baseline constructive fringe on target (see

Serabyn et al., 2005; Barry et al., 2008, for details). We estimated and subtracted the

systematic null leakage by comparing the measured null leakage of the calibration

star, ǫ Oph, with the expected null leakage for a limb-darkened star with the same

diameter. We estimated the diameter of ǫ Oph as 2.94 mas and adopted 1.5 mas

error bars—much larger than the true size error bars—as a simple means of enforcing

a systematic noise floor based on our estimate of the instrument performance.

2.3 Data & analysis

2.3.1 Keck Nuller null leakage

Figure 2.1 presents the calibrated null leakage for 51 Oph. We combined the

data from both observations, which had nearly identical projected baselines. We

limited our analyses to the 8 – 11.6 µm range since noise from decreased instrument

throughput rendered data beyond 11.6 µm unusable. For wavelengths less than 11.6

µm, the null leakage remains relatively flat with a ∼1–σ rise near 9.8 µm.

We first modeled the null leakage at two different wavelengths with uniform

disk and Gaussian surface brightness profiles. We found angular diameters of 13.5±

0.5 mas and 18.5 ± 0.4 mas at 8 and 10 µm, respectively, for the uniform disk

profile. For a Gaussian surface brightness profile, we found FWHM of 8.1 ± 0.3
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Figure 2.1: Keck Nuller null leakage measurements for 51 Oph.
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mas and 11.3 ± 0.2 mas at 8 and 10 µm, respectively. At a distance of 131 pc,

10 mas corresponds to a transverse distance of 1.3 AU, suggesting that the disk is

either truncated at a close circumstellar distance, or the axis of rotation of the near

edge-on disk is oriented within a few tens of degrees of the projected Keck baseline.

To better understand the geometry of the 51 Oph system, we examined our

Keck Nuller observations together with the observations of 51 Oph made with VLTI-

MIDI and Spitzer. Figure 2.2 shows a collection of three independent data sets from

observations of 51 Oph: the Spitzer IRS spectrum (Keller et al., 2008) in the top

panel, our N-band Keck Nuller null leakage in the middle panel, and the N-band

VLTI-MIDI visibility data (Leinert et al., 2004) in the bottom panel.

2.3.2 MIDI visibility

The VLTI-MIDI visibility was obtained on 15 June 2003 with a projected base-

line of 101.2 m at a position angle of 23◦ (Leinert et al., 2004). Figure 2.3 shows how

incorporating this data set improves the (u, v) coverage of our analysis. Although

the VLTI-MIDI baseline was oriented within 25◦ of the Keck baseline, modeled

uniform disk and Gaussian surface-brightness profile sizes are approximately 35%

smaller for VLTI-MIDI measurements than for Keck Nuller measurements. When

we modeled the VLTI-MIDI measurements using a uniform surface-brightness disk,

we found best-fit angular diameters of 8.5 ± 1.4 mas at 8 µm and 12.4 ± 1.1 mas

at 10 µm, consistent with Leinert et al. (2004). For a Gaussian model, we found a

FWHM of 5.0 ± 0.9 mas at 8 µm and a FWHM of 7.7 ± 0.6 mas at 10 µm.
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Figure 2.2: Three data sets included in our analysis. Top: the observed

Spitzer IRS spectrum. Middle: the observed Keck Nuller null leakage

(triangles) shown with error bars. Bottom: the observed VLTI-MIDI

visibility (diamonds) shown with error bars.
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The middle panel in Figure 2.2 shows a 1–σ rise at 9.8 µm in the Keck null

leakage. The VLTI-MIDI visibility contains a 1–σ dip at 9.7 µm. These features mir-

ror the 10 µm silicate emission feature shown in the Spitzer IRS spectrum (Section

2.3.3) and suggest that 51 Oph is more extended near 10 µm.

2.3.3 Spitzer IRS spectrum

The mid-infrared spectrum, shown in the top panel of Figure 2.2, was obtained

on 22 March 2004 using the Infrared Spectrograph (IRS) on the Spitzer Space Tele-

scope (Keller et al., 2008). Spitzer observed 51 Oph in staring mode from 5 to 36

µm using the Short-Low (SL) module from 5 to 14 µm, the Short-High (SH) module

from 10 to 19 µm, and the Long-High (LH) module from 19 to 36 µm. SL has a

resolving power of R= 60–128, while SH and LH have R∼600. 51 Oph was observed

using three slit positions stepped across the nominal position of the source. The

spectral extraction and calibration methods are described in Keller et al. (2008).

Figure 2.2 shows that the spectrum exhibits a pronounced 10 µm silicate feature

and a small 18 µm silicate feature.

Emission from polycyclic aromatic hydrocarbon (PAH) molecules contributes

to the mid-IR spectra of many Herbig Ae/Be stars. We considered the possibility

that this emission could contribute to our data on 51 Oph. Keller et al. (2008)

included 51 Oph in a study that looked for correlations between disk structure and

mid-IR PAH emission from intermediate-mass young stars. They found no measur-

able emission from PAH features in the 6–13 µm range in the mid-IR spectrum of
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51 Oph.

2.4 Modeling the 51 Oph disk

There have been several previous attempts to model the 51 Oph IR excess.

Waters et al. (1988) fit IRAS photometric data with an optically thin, spherically

symmetric dust shell model and found a best fit model with a dust density propor-

tional to r−1.3 and dust temperatures ranging from ∼ 100 K to ∼ 1000 K. Fajardo-

Acosta et al. (1993) modeled photometric data from the Infrared Telescope Facility

(IRTF) and estimated that the IR excess could be attributed to astronomical sil-

icates smaller than 5 µm, ranging in temperature from 400 K to 1000 K. Leinert

et al. (2004) compared an optically-thick Herbig Ae disk model with a puffed inner

rim (Dullemond et al., 2001) to the 51 Oph MIDI visibility in the 8 – 14 µm range

and IR ISO spectra and found that such a model fit poorly.

We developed new models for 51 Oph to incorporate the new data from Spitzer

and the Keck nuller. We do not model the detailed mineralogy of the 51 Oph disk

and do not intend for our models to explain all of the observed spectral features to

high numerical accuracy. We focus on the 3-D dust density distribution and disk

models that qualitatively describe all three data sets.

We adopted the following fitting procedure to simultaneously fit all three data

sets:

1. Model the disk contribution to the Spitzer IRS spectrum to obtain the radial

distribution of grains, the grain size, and the surface density for each model
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component.

2. Using the parameters determined by the best-fit Spitzer IRS spectrum, fit the

interferometric data using 3-D models of the dust distribution to obtain the

scale height of each component and the disk position angle.

To model the disk contribution to the Spitzer IRS spectrum, we first calculated

the IR excess. We modeled the stellar contribution to the Spitzer IRS spectrum as

an ideal blackbody with an effective temperature of 10,000 K and a luminosity of

260 L⊙ at 131 pc (van den Ancker et al., 2001). The stellar continuum contributes

on the order of a few percent in the N-band, so any uncertainties in the stellar

luminosity or temperature are too small to significantly impact the interferometric

or spectral responses of our models. For example, a 10% increase in the assumed

luminosity would only raise the stellar fractional flux contribution from ∼ 5% to

∼ 7% at 10 µm.

The 51 Oph IR excess exhibits a sharp increase in flux at wavelengths shorter

than 7.5 µm that resembles a continuum source. However, this feature may not

be continuum. Using ISO-SWS spectra with a spectral resolution of ∼ .02%, van

den Ancker et al. (2001) showed this region exhibits emission features from hot

circumstellar gas species, including H2O, NO, CO, and CO2. In light of this con-

tamination, we chose to ignore the spectrum at wavelengths shorter than 7.5 µm

while we were fitting our dust cloud models. We also resampled the Spitzer IRS

data to a resolution of ∆λ/λ = 0.0185 to conserve computer time.

To create 3-D optically-thin disk models, we used the ZODIPIC software pack-
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age (Moran et al., 2004). This software (available online at http://asd.gsfc.nasa.gov/

Marc.Kuchner/home.html) synthesizes images of optically thin dust disks based on

the Kelsall et al. (1998) empirical model of the solar zodiacal cloud as observed

by COBE DIRBE. The grain size and inner and outer radius of each modeled disk

component were determined by the best fit to the Spitzer IRS spectrum.

2.4.1 Single-component optically-thin models

For our first models we used a single component of silicate dust grains of size

s distributed from an inner radius, rinner, to an outer radius, router. We assumed

a density distribution similar to that of the zodiacal cloud (Kelsall et al., 1998);

the surface density Σ(r) ∝ r−0.34. We numerically calculated the temperature as

a function of circumstellar distance based on the stellar spectrum and dust optical

constants, accounting for the heating of small grains above the local blackbody

temperature. We examined 100 grain sizes, s, ranging from 0.05 – 2.5 µm and used

the astronomical silicate emissivities from Draine & Lee (1984). We used a non-

linear least squares fitting routine to determine the best fit inner and outer disk

radii for each grain size.

The best-fit single-component disk model, shown in Figure 2.4, consists of

1.0 µm grains distributed from the grain sublimation radius (≈ 0.65 AU) to 189

AU. As you might imagine, this single component does a poor job of fitting the

complexities of the Spitzer IRS spectrum. We found that a single-component model

cannot adequately reproduce the relative 10 µm to 18 µm flux ratio, the width of
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Figure 2.4: Best fit single-component disk model to the Spitzer spectrum

(solid black line). The best fit features 1 µm grains, distributed from

0.65 AU to 189 AU.

the 10 µm feature, and the flux in the 13 – 15 µm range.

2.4.2 Two-component optically-thin models

An additional disk component, either of different composition, grain size, or

location, appears necessary to fit the Spitzer IRS spectrum. Therefore, we examined

several models consisting of two optically-thin components: an outer disk of small

dust grains (. 5 µm), which contribute the 10 µm silicate emission feature, and an

inner disk of large blackbody grains. Our optically-thin models are defined by 10

28



adjustable parameters: inner and outer radii of the outer disk (rin,1, rout,1), inner

and outer radii of the inner disk (rin,2, rout,2), grain size in the outer disk (s1), scale

height of the outer disk (h1/r), scale height of the inner disk (h2/r), surface density

scaling factor of the outer disk (Σ1), surface density scaling factor of the inner disk

(Σ2), and a common position angle for both disk components (PA). We assumed a

fixed inner disk grain size, s2 = 100 µm, a fixed dust density radial distribution,

n(r) ∝ r−1.34 (see below), and a fixed disk inclination, i = 90◦.

First, we fit our two-component model to our resampled Spitzer IRS spectrum.

We examined 20 values for s1 ranging from 0.1 – 3 µm and explored a wide range

of inner and outer disk radii ranging from the dust sublimation radius for silicate

grains (0.65 AU for 1 µm grains) to thousands of AU. Generally, for the models that

best fit the spectrum, the large grain component stretched from ∼ 0.6 AU out to

∼ 5 AU and the small grain component stretched from a few AU out to ∼ 1000 AU.

The top panel in Figure 2.5 shows the total flux of the best fit model, which

we refer to as “Model A.” It also shows the contribution of each component of this

model to the total flux. As shown in Figure 2.5, Model A qualitatively reproduces

all of the major features in the Spitzer IRS spectrum.

We used the parameters that best fit the Spitzer IRS spectrum to create 3-D

optically-thin disk models using ZODIPIC. We examined 237 values of disk scale

heights ranging from h/r = 0.007 to h/r = 0.2 for both the inner and outer disks.

We examined position angles from 0 to 180◦ in 1◦ increments. We calculated the

Keck Nuller null leakage and VLTI-MIDI visibility for all combinations of disk scale

heights and position angle to find the best-fit Model A, the parameters for which
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Figure 2.5: Model A, the best fit to the three data sets using a 2-

component optically thin disk model. Top: best-fit modeled spectrum.

Middle: best-fit modeled null leakage when simultaneously fitting both

Keck and VLTI-MIDI data sets (black line) and when fitting the VLTI-

MIDI data set alone (gray line). Bottom: modeled VLTI-MIDI visibili-

ties. Table 2.2 lists the best-fit parameters of Model A. The best fit to

the VLTI-MIDI data alone gives a disk PA= 117◦ and outer and inner

disk scale heights of h1/r ≈ 0.038 and h2/r ≈ 0.024, respectively.
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Table 2.2: Best-fit optically-thin model parameters with 99.73% joint confidence
estimates

Parameter Model A Model B

s1 (µm) 0.1+0.05
−0.05 0.1†

rin,1 (AU) 2.44+0.07
−0.0 7.1+0.3

−0.3

rout,1 (AU) 1200+2300
−600 1200+2300

−600

h1/r 0.03† 0.19‡

Σ1 (zodis) 1.15+0.08
−0.08×105 2.05+0.06

−0.06×105

s2 (µm) 100a 100a

rin,2 (AU) 0.716+0.006
−0.005 0.54b

rout,2 (AU) 14.5+0.4
−0.2 4.0b

h2/r 0.050+0.004
−0.003 0.04†

Σ2 (zodis) 2.49+0.07
−0.07×105 4.3+0.1

−0.1×105

PA (◦) 131+0.15
−0.05 122+0.5

−0.15

aFixed parameter in both models
bFixed value in Model B
cOne “zodi” refers to a face-on optical depth of 10−7 at 1 AU
†Upper limit
‡Lower limit

are listed in Table 2.2. To calculate the Keck Nuller null leakage and VLTI-MIDI

visibility, we used a software suite that we designed to model these instruments (see

Barry et al., 2008). We confirmed that the results from our software suite agreed

with the Visibility Modeling Tool, a tool developed by the NExSci for simulating

KIN data (http://nexsciweb.ipac.caltech.edu/vmt/vmtWeb/).

The interferometric responses of Model A are shown in the middle and bottom

panels of Figure 2.5. The best simultaneous fit to the Keck Nuller null leakage and

VLTI-MIDI visibility, shown in black, illustrates that Model A does not satisfactorily

reproduce both interferometric responses simultaneously. The Keck null leakage is

well-fit, but the VLTI-MIDI visibility is underestimated by a factor of ∼ 3, indicating
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that this dust disk model is too extended along the VLTI-MIDI baseline. Figure

2.5 also shows in gray the response corresponding to the best fit to the MIDI data

alone, which does not produce a satisfactory Keck null leakage.

Figure 2.6 explains the source of the problem. The top panel in Figure 2.6

shows the Keck and VLTI-MIDI 10 µm responses for Model A as a function of disk

position angle. The VLTI-MIDI response of Model A (gray diamonds) crosses the

measured VLTI-MIDI value (gray line) at a position angle of ∼ 115◦. The Keck

Nuller response of Model A (black triangles) crosses the measured Keck null leakage

(black line) at a position angle of ∼ 131◦. To fit both data sets, the 10 µm responses

for the model would need to intersect their respective measured values at a single

position angle. The top panel in this figure clearly shows that this does not happen;

there is no single position angle for the model that works for both the Keck and

VLTI-MIDI data.

Figure 2.6 also reveals how a new model can remedy the problem. The position

angles of the maximum in the VLTI-MIDI response and the minimum in the Keck

response are fixed and correspond to the alignment of the instrument’s projected

baseline with the disk axis of rotation. So to improve our fit to the interferometric

data, we must change the model so that we broaden the widths of the maximum

in the VLTI-MIDI response and minimum in the Keck response; we must make the

model more azimuthally symmetric.

We attempted to accomplish this improvement manually by increasing the

scale height of the disk models. However, making this change alone reduces the

maximum VLTI-MIDI visibility of the model until it no longer reaches the measured
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Figure 2.6: Top: Modeled 10 µm interferometric response as a function

of PA for the Keck Nuller (black triangles) and VLTI-MIDI (gray di-

amonds) for Model A. The solid black and gray lines show the 10 µm

measurements for Keck and MIDI, respectively, along with shaded re-

gions representing their measurement uncertainties. The modeled Keck

and MIDI responses do not cross their measured values together at any

one PA. Bottom: Modeled 10 µm response for Model B. The modeled

responses cross the corresponding measured values at ≈ 122◦.
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value. So to compensate, we also reduced the outer radius of the inner disk; we forced

the inner and outer radii of the inner disk to 0.54 AU and 4 AU, respectively, and

re-ran the fitting procedure. We call the resulting best-fit “Model B.” The bottom

panel in Figure 2.6 shows that the 10 µm interferometric responses of Model B cross

the measured values approximately simultaneously at a single position angle of 122◦,

indicated with a dotted vertical line in the figure.

Although Model B does not fit the Spitzer IRS spectrum as well as Model

A, it still qualitatively reproduces the spectrum’s major features, as shown in the

top panel in Figure 2.7. The middle and bottom panels of Figure 2.7 show that

these changes significantly improve the fit to the interferometric data; Model B is

consistent with both the Keck null leakage and VLTI-MIDI visibility.

Figure 2.8 shows a simulated image of our Model B circumstellar disk at 10

µm with 1 mas pixel resolution. The inner disk of large dust grains, truncated at

30.5 mas (4 AU), is the brightest feature of our model. The outer disk extends from

53 mas to ∼9200 mas, beyond the range of the figure.

Our models imply that 51 Oph hosts a cloud of small grains located at hun-

dreds to thousands of AU from the star, supporting the models of Waters et al.

(1988) and Lecavelier des Etangs et al. (1997). Our models are consistent with lim-

its placed on the disk flux by previous non-detections. An HST ACS non-detection

at V-band using the 1.8′′ occulting spot limits the disk surface brightness to 3×10−3

Jy arcsec−2 between 2′′ and 4′′ (Doering et al., 2007) and a Keck 18 µm nondetec-

tion places an upper limit on the surface brightness at 1′′ of 2% of the peak flux

(Jayawardhana et al., 2001). Our Model A, which extends to ∼ 1200 AU, has a
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Figure 2.7: Model B, the best fit to the three data sets using a 2-

component optically thin disk model where the inner and outer radii

of the inner disk are forced to 0.54 AU and 4 AU, respectively. The

best-fit parameters of Model B are listed in Table 2.2.
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mean V-band surface brightness of 8 × 10−5 Jy arcsec−2 between 2′′ and 4” and a

mean 18 µm surface brightness at 1′′ of 0.2% of the peak flux, well within the ACS

and Keck non-detection limits. Our Model B has a mean V-band surface brightness

of 1.4 × 10−4 Jy arcsec−2 between 2′′ and 4′′ and a mean 18 µm surface brightness

at 1′′ of 0.4% of the peak flux, also well within the non-detection limits. We also

compared a 10.6 µm model image against recent diffraction-limited Keck imaging

using segment tilting interferometry on a single telescope (Monnier et al., 2009).

Our model appears consistent with these data, which indicate the observed char-

acteristic emission scale to be <30 mas, with >95% of emission arising within an

aperture of 1.5”.

Tatulli et al. (2008) observed the inner portions of the 51 Oph disk at K-

band with VLTI-AMBER. Tatulli et al. (2008) found the best fit to the 2.2 micron

continuum visibility measurements using a narrow ring 0.24 AU in radius, well within

the dust sublimation radius, and noted that this continuum may result from hot dust

interior to the sublimation radius which is shielded from stellar radiation or from

free-free emission from an inner gas disk (Muzerolle et al., 2004). We calculated the

K-band visibility of our Model B for the three baseline orientations used by Tatulli et

al. (2008) and checked these calculations with the Visibility Modeling Tool provided

by NExScI. We calculated K-band visibilities of 0.99, 0.74, and 0.74 for baselines

of 55 m at 34◦, 82 m at 91◦, and 121 m at 69◦, respectively. These values are

close to the measured visibilities of 1.0±0.1, 0.8±0.05, and 0.8±0.03; the latter two

modeled visibilities fall just below the lower limit of the measured visibilities given

the reported uncertainties.
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Figure 2.8: Simulated 10 µm image of Model B in units of flux per pixel,

with a pixel size of 1 mas. The disk midplane is oriented at 122◦ East of

North. The parameters of Model B are listed in Table 2.2.
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Because the Keck Nuller and VLTI-MIDI do not resolve these extreme inner

portions of the disk, the K-band observations may probe a different structure than

what the N-band observations probe. Tatulli et al. (2008) use photometric data to

estimate that the excess continuum contributes 25% of the total flux at 2.2 microns.

By estimating the stellar flux at 2.2 microns and modeling the continuum flux source

as a blackbody at 1500 K (dust at the sublimation temperature), we calculate that

the continuum source’s contribution at N-band would be no larger than 1.9 Jy. This

contribution is a factor of ∼5 less than the flux from the blackbody component of

our best fit two-component optically thin disk models. This disparity suggests that

an additional blackbody component is necessary beyond what Tatulli et al. (2008)

model. Additionally, our Model A and Model B blackbody components contribute

only 1.4 Jy and 3.4 Jy of flux at 2.2 microns, respectively, compared to the 3.6

Jy of excess continuum flux calculated by Tatulli et al. (2008). Perhaps Model A

plus a continuum source interior to the dust sublimation radius (shielded hot dust

or free-free emission from a gas disk), could explain all of the interferometric and

spectral data sets.

2.4.3 Two-layer models

Motivated by the Chiang & Goldreich (1997) and Dullemond et al. (2001) cir-

cumstellar disk models, we explored an alternative edge-on disk geometry consisting

of a blackbody midplane layer sandwiched between two identical optically-thin sur-

face layers of small dust grains. The surface layers are thin; they have a very small
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scale height and are unresolved in the direction perpendicular to the midplane. Our

models were completely defined by 6 parameters: the disk position angle, the tem-

perature and scale height of the middle layer, and the temperature, grain size, and

line density of the surface layers. We investigated 100 middle-layer and 100 surface-

layer temperatures ranging from 300 – 1300 K, and 6 surface layer dust sizes from

0.1 – 1.0 µm. We used the surface-layer temperature, which represents the temper-

ature of the surface layer at the outer truncation radius of the disk, to calculate the

outer radius of the disk. Because our disk is edge-on, we ignore any contribution by

a hot inner wall. We note that Leinert et al. (2004) fit the VLTI-MIDI data with

a Dullemond et al. (2001) flared disk model which included a hot inner wall and

found this model to fit poorly.

We first derived the total emitting area of each component, and therefore the

line density of the surface layers and scale height of the middle layer, by fitting the

flux of the two disk components to the Spitzer observations. For the 500 best fits

to the Spitzer IRS spectrum, we calculated the Keck null leakage and VLTI-MIDI

visibility as a function of position angle in 1◦ increments. Figure 2.9 shows the single

best fit to the three data sets. The best fit two-layer model qualitatively reproduces

the major features of the Spitzer IRS spectrum, shown in the top panel of Figure

2.9, although it underestimates the flux near 8 µm and overestimates the flux from

10–18 µm. The lower two panels of Figure 2.9 shows this model can reproduce

the mean Keck null leakage, but cannot simultaneously reproduce the VLTI-MIDI

visibility. The interferometric data seems to rule out this disk geometry.
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Figure 2.9: Best simultaneous fit to the three data sets using a two-layer

optically-thick disk model. The best fit model is a disk oriented with

a position angle of 38◦ and truncated at outer radius 3.4 AU. The disk

features a middle layer of 360 K blackbody grains with a disk height

of 0.163 AU from the midplane, and 2 surface layers of 0.7 µm grains

heated to 835 K, each with line densities of 8.2 × 1032 AU−1.
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2.5 Discussion & interpretation of models

Our modeling efforts have yielded an optically-thin disk model that can quali-

tatively reproduce our 51 Oph observations with the Keck Nuller and also the VLTI-

MIDI and Spitzer observations of this system. This model, Model B, is composed

of an inner ring of large grains distributed from their sublimation radius (∼ 0.5 AU)

out to ∼ 4 AU, and an outer ring of small grains (< 1 µm) distributed from an

inner radius of ∼7 AU to an outer radius of ∼1200 AU. We also experimented with

optically-thick models, but found them unsatisfactory.

Our preferred optically-thin disk model could be interpreted as an inner “birth”

disk of material producing small dust grains through collisions. Grains produced

in the inner ring that are larger than the blowout size either spiral inward under

Poynting-Robertson drag or are collisionally fragmented. Grains smaller than the

blowout size exit the system on hyperbolic orbits in a dynamical time; the ejected

grains and marginally ejected grains correspond to the outer disk component. The

blowout size for blackbody dust grains in a disk without gas is given by

sblowout =
3L⋆

8πGM⋆cρs

, (2.1)

where L⋆ and M⋆ are the luminosity and mass of the star, respectively, G is the

gravitational constant, c is the speed of light, and ρs is the dust density (Burns et al.,

1979). Assuming L⋆ ≈ 260 L⊙ , M⋆ ≈ 3 M⊙ , and ρs = 2 gm cm−3, the blowout size

for 51 Oph is approximately 50 µm, consistent with our preferred model. A similar

pattern, a central population of large grains and an outer ring of small grains, has

been seen in observations of the debris disks around β Pictoris (Augereau et al.,
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2001), Vega (Su et al., 2005), and AU Microscopii (Strubbe & Chiang, 2006).

2.5.1 Gas in the 51 Oph disk

Of course the disk around 51 Oph is not gas free (e.g. Lecavelier des Etangs et

al., 1997; van den Ancker et al., 2001; Berthoud et al., 2007), so our scenario of an

inner birth ring and outer disk of ejected grains requires that the gas disk is sparse

enough to allow the small grains to be ejected from the system. Here we estimate

the maximum tolerable gas density for which small grains are unbound in the 51

Oph system.

The stopping time of a dust grain undergoing Epstein drag forces is given by

tstop ∼ sρs

ρgcsound

, (2.2)

where ρg is the gas density and csound is the sound speed (see, e.g. Weidenschilling

& Cuzzi, 1993). The dynamical timescale is given by

tdynamic ∼
(

a3

GM⋆

)1/2

, (2.3)

where a is the semi-major axis of the grain. For the dust grains to be significantly

affected by gas drag, tstop < tdynamic. Substituting csound = (kTg/mg)
1/2, where k is

the Boltzmann constant, Tg is the gas temperature, and mg is the mass of an H2

molecule, we find that entraining a 1 µm grain in the gas would require

( ng

1 cm−3

)

. 1010 T−1/2
g

( a

1 AU

)−3/2

. (2.4)

Assuming a gas temperature of 1400 K at a circumstellar distance of 5 AU, near

the vicinity of the inner disk, the gas density required to stop a 1 µm grain is ∼ 107
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cm−3. We conclude that if the disk around 51 Oph is comprised of an inner birth

ring and an outer disk of ejected grains, then the gas density in the 51 Oph disk

must be less than ∼100 times the gas density of β Pic (Brandeker et al., 2004) at a

circumstellar distance of ∼5 AU.

2.5.2 A possible warp in the disk

The outer disk in Model B has a scale height at least ∼4 times larger than the

scale height of the inner disk. So the small grains at high orbital inclinations in the

outer disk seem unlikely to have originated from the thin inner disk in our simple

model. Such small grains cannot easily be perturbed to high-inclination orbits by

hidden planets either, because of their short lifetimes compared to secular time

scales.

The difference in scale heights between the two components of our model

suggests to us that 51 Oph may have an unobserved sub-disk of larger bodies on

inclined orbits in the inner regions of the disk. The limited (u, v) coverage and

resolution of the Keck and VLTI-MIDI observations could easily keep such a sub-disk

hidden from our observations. This sub-disk might be analogous to the X-pattern,

or “warp” imaged by Golimowski et al. (2006) in the β Pictoris disk. The large

bodies in this sub-disk could launch the small grains onto inclined orbits, just as

Augereau et al. (2001) suggested occurs in the β Pictoris disk.
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2.5.3 Limitations of the model & sources of confusion

Here we discuss two possibilities that might complicate our interpretation of

the mid-IR interferometry of 51 Oph: a) the disk composition or structure is more

complex than can be represented by our models, or b) the disk has changed during

the four year interval between VLTI-MIDI and Keck observations.

The chemical composition of the 51 Oph dust disk is not well-known. Our

models assumed astronomical silicates only, and ignored the possibility of a more

complex composition. A detailed model of the 51 Oph disk composition, along the

lines of Reach et al. (2009) for example, which we leave for future work, would help

to further refine our models.

The disk geometry could also be more complex than our models can capture.

As previously discussed, there are a number of observations which suggest that

an inner circumstellar disk is near edge-on in the 51 Oph system. Our optically-

thin models of the dust disk assume an outer disk which is coplanar, but the 51

Oph disk inclination may be more complex. Some debris disks show warps or sub-

disks at different inclinations (e.g. Golimowski et al., 2006). It is possible that our

assumption of coplanar disks does not allow Model A, which best fits the Spitzer

IRS spectrum, to simultaneously fit the VLTI-MIDI visibility and Keck null leakage.

The 51 Oph disk geometry may also have changed between observations. The

blowout time for small grains originating from a belt of material at 1 AU is on the

order of a single dynamical time (only a few years). So the outer disk could evolve

significantly within the four years between Keck and VLTI-MIDI observations via
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a recent collisional event (e.g. van den Ancker et al., 2001). Additionally, 51 Oph’s

inner disk could feature complex resonant structures, such as clumps or rings due

to the presence of planets (e.g. Stark & Kuchner, 2008), which rotate in and out of

view on a dynamical timescale.

A comparison of the Spitzer IRS spectrum shown in Figure 2.5 and the ISO

spectrum published in van den Ancker et al. (2001) reveals that the 51 Oph disk

may have changed significantly in the 8 years between spectral observations. The

silicate emission feature in the Spitzer IRS spectrum peaks at 10 µm, whereas the

ISO spectrum peaks at 10.5 to 11 µm. The slope of the right side of the silicate

emission feature is also noticeably steeper in the Spitzer IRS spectrum; estimated

slopes of the right side of the 10 µm silicate emission feature are ∼ −1.4 Jy µm−1 and

∼ −2.9 Jy µm−1 for ISO and Spitzer observations, respectively. These differences

indicate that the 51 Oph disk may have had larger grains at the time of the ISO

observations. Finally, the flux longward of 20 µm in the ISO spectrum is ∼ 3 Jy

less than the Spitzer IRS spectrum, possibly because there were fewer cold grains

at the time of the ISO observations.

2.6 Summary

We observed the 51 Oph disk at N-band using the Keck interferometer operat-

ing in nulling mode. We combined the observed Keck null leakage with VLTI-MIDI

visibility data and the Spitzer IRS spectrum and simultaneously modeled all three

data sets. We experimented with a variety of optically-thin dust cloud models and
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also an edge-on optically-thick disk model. The Spitzer IRS spectrum ruled out the

single-component optically-thin model, while the interferometric data ruled out our

optically-thick model.

Our preferred model consists of two separate populations of large and small

grains. The three data sets are best simultaneously fit by our Model B (Table 2.2).

This model, shown in Figure 2.7, contains a disk of larger grains that extends from

the grain sublimation radius out to ∼ 4 AU and a disk of 0.1 µm grains that extends

from ∼ 7 AU to ∼ 1200 AU.

This model may be consistent with an inner “birth” disk of continually col-

liding parent bodies. The large grains (& 50 µm) produced by the parent bodies

make up the inner disk, while the small grains (. 50 µm) are blown outward and

eventually ejected from the system by radiation pressure. The large scale height

of the outer disk compared to the inner disk suggests that the small grains which

compose the outer disk may originate from an unseen inclined sub-disk or from a

population of inclined cometary bodies.

Although the 51 Oph disk seems puzzling at first, perhaps it is not so strange

after all. The distribution of grain sizes in our models is not unique to the 51 Oph

system, but has been observed in the β Pictoris (Augereau et al., 2001), Vega (Su et

al., 2005), and AU Microscopii (Strubbe & Chiang, 2006) disks. Our models suggest

that the 51 Oph disk may be another member of a class of debris disks which exhibit

similar dust distributions. Our models also indicate that there may be two sources of

dust at different inclinations around 51 Oph. These models, together with previous

observations of variable absorption features (Grady & Silvis, 1993; Roberge et al.,
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2002) which may be due to transient infalling bodies suggest that the 51 Oph dust

disk may well be an example of a β Pictoris-like system.
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Chapter 3

Decoding the morphologies of exozodiacal cloud structures

Reprinted with permission from Stark, C. C., & Kuchner, M. J. 2008, The

Detectability of Exo-Earths and Super-Earths Via Resonant Signatures in Exozodi-

acal Clouds, The Astrophysical Journal, Vol. 686, pp. 637-648. Copyright 2008,

American Astronomical Society.

3.1 Introduction

A number of proposed experiments like the Terrestrial Planet Finder (TPF)

aim to directly image the scattered and emitted light from extrasolar planets (Law-

son & Traub, 2006). These experiments will also excel at detecting exozodiacal

dust, circumstellar dust analogous to zodiacal dust in the Solar System (e.g. Agol,

2007; Beckwith, 2007). Zodiacal dust in the Solar System consists of ∼ 1− 100 µm

dust grains released through asteroidal collisions and the outgassing of comets (e.g.

Schramm et al., 1989). This dust forms the zodiacal cloud, extending from the solar

corona (e.g. Mann et al., 2000) to beyond Jupiter (e.g. Krüger et al., 1999).

Our zodiacal cloud exhibits several structures interpreted as dynamical sig-

natures of planets (Dermott et al., 1985, 1994; Reach et al., 1995). Several dusty

disks around nearby main-sequence stars show similar structures (e.g. Greaves et al.,

1998; Wilner et al., 2002; Kalas et al., 2005). This trend suggests that exozodiacal
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clouds may be full of rings, clumps and other asymmetries caused by planets and

other phenomena.

This situation raises some important questions. Will the structures in exozo-

diacal clouds be harmful astrophysical noise for direct imaging of extrasolar planets

(Beichman, 1996; Beichman et al., 1999)? Or can the dynamical signatures of plan-

ets in these clouds help us find otherwise undetectable planets (e.g. Kuchner &

Holman, 2003)?

Several studies have examined the geometry of resonant signatures of planets

in debris disks (e.g. Kuchner & Holman, 2003; Reche et al., 2008). However, most

simulations cannot quantitatively study the contrast in these structures: how bright

they are relative to the background cloud. We need to model the contrast of the

structures in exozodiacal clouds to understand their roles as astrophysical noise

and as signposts of hidden planets. However, accurately simulating the contrast of

these structures demands computational resources that have only recently become

available (e.g. Deller & Maddison, 2005).

In this paper we examine the contrast of resonant structures induced by plan-

ets in steady-state exozodiacal clouds and the detectability of these structures via

direct imaging. We simulate high-fidelity images of collisionless exozodiacal clouds

containing a terrestrial-mass planet—an exo-Earth or super-Earth. By using roughly

an order of magnitude more particles than most previous simulations, we overcome

the Poisson noise associated with constructing histograms of the column density

and populating the external mean motion resonances (MMRs) of planets. We use

our simulations to estimate the minimum planet mass that can be indirectly de-
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tected via observations of these structures as a function of the planet semi-major

axis and dominant grain size under the assumption of circular planet orbits. Our

models apply to tenuous exozodiacal clouds less than ∼10 times the optical depth

of the solar zodiacal cloud, clouds for which the collision time is longer than the

Poynting-Robertson (PR) time for typical grains.

Section 3.2 describes our numerical techniques. We present a synthetic catalog

of resonant debris disk structures in Section 3.3. We describe our multiple-particle-

size cloud models and discuss their detectability in Section 3.4. In Section 3.5, we

discuss the limitations of our simulations; we summarize our conclusions in Section

3.6.

3.2 Numerical method

Dust grains in the inner Solar System are primarily released from parent bodies

via collisions or outgassing. Radiation pressure ejects the smallest particles from the

Solar System in a dynamical time while the larger particles slowly spiral inward due

to PR drag (Robertson, 1937; Burns et al., 1979). During their spiral toward the

Sun, particles may become temporarily trapped in the MMRs of planets, extending

their lifetimes by a factor of a few to ten (Jackson & Zook, 1989). This trapping

locally enhances the particle density, creating structures within the zodiacal cloud,

which have been described as circumsolar rings, bands, and clumps (e.g. Kelsall et

al., 1998).

To model these types of structures in exozodiacal clouds we numerically in-
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tegrated the equation of motion of dust particles. The equation of motion for a

perfectly absorbing particle orbiting a star of mass M⋆ is given to first order in v/c

by Robertson (1937):

d2r

dt2
= −GM⋆

r2
(1 − β)r̂ − (1 + sw)β

c

GM⋆

r2
[ṙr̂ + v], (3.1)

where r and v are the heliocentric position and velocity of the particle and sw is the

ratio of solar wind drag to PR drag. We assume a value for sw of 0.35 (Gustafson,

1994). For perfectly absorbing spherical particles in the vicinity of the Sun, Equation

1.3 gives β ≈ 0.57/ρs, where ρ is the mass density of the particle in g cm−3 and s is

the radius in µm.

3.2.1 A customized hybrid symplectic integrator

We implemented a customized hybrid symplectic integrator to perform our

numerical integrations. Chambers (1999), hereby referred to as C99, introduced

hybrid symplectic integration as a method for dealing with close encounters in an

efficient n-body code. Symplectic integrators rely on splitting the Hamiltonian into

two easily integrable portions—a dominant term, HD, and a smaller perturbative

term, HP. However, in the n-body problem, HP may exceed HD during close encoun-

ters. Hybrid symplectic integrators overcome this problem by effectively switching

from a symplectic integrator to an alternate integrator (e.g. Bulirsch-Stoer).

The hybrid method reduces the perturbative term of the Hamiltonian, HP, by a

factor K(rij), where rij is the distance between the two bodies in question, to ensure
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that the perturbative term remains relatively small. The integrator includes the

remaining portion of the perturbative term,
∑

i,j HP,ij[1 −K(rij)], in the dominant

term which is then integrated using a method of choice. The “changeover function,”

K(rij), is a smooth function that varies from 0 for rij . rcrit to unity for rij & rcrit.

Using a hybrid integrator requires choosing a changeover function and a value

for rcrit. We use the same changeover function as C99. We assign a different value

of rcrit,i to each body, calculated as the larger of 3RH,i and vi ∆t, where RH,i and

vi are the Hill radius and velocity of the ith body, respectively, and ∆t is the time

step of the integrator. We then calculate the critical distance for a pair of bodies as

rcrit,ij = rcrit,i + rcrit,j.

Our integrator also incorporates the effects of radiation pressure, PR drag, and

solar wind drag. We implement radiation pressure as a correction to the effective

stellar mass (cf. Eq. 3.1) and treat the drag effects as an additional term in HP,

in much the same way as Moro-Mart́ın & Malhotra (2002), hereby referred to as

MMM02. We also use democratic heliocentric (DH) coordinates, composed of the

barycentric momenta and heliocentric positions, because of their relative ease of

implementation. This choice introduces an additional perturbative term to the

Hamiltonian due to the motion of the star with respect to the barycenter (Duncan

et al., 1998).
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3.2.2 Comparison of integrator with previous results

We checked our integrator using a variety of standard tests. We checked the

energy and Jacobi constant conservation with the drag terms turned off and exam-

ined the evolution of dust particles’ orbital elements under our implementation of

drag effects. We also compared our hybrid integrator to a Bulirsch-Stoer integrator

by examining the path of an individual test particle during a close encounter and

by examining the statistics of a cloud of particles in a collisionless disk containing

a planet.

We tested energy conservation in our integration code by integrating the orbits

of the four outer planets and the Sun for 3 × 105 years using a time step of 0.15

years. The energy error was bounded with a mean value of ∆E/E ≈ 3 × 10−9.

Duncan et al. (1998), which we will refer to as DLL98, tested the relative con-

servation of energy in their symplectic integrator as a function of planet perihelion

distance. We replicated their tests using our code. Figure 3.1 shows the relative

energy error in an integration of the orbit of Jupiter for 3 × 105 years using a time

step of 0.15 years. We initially placed Jupiter at aphelion. Figure 3.1 also shows

the results of integrating the orbits of Jupiter and Saturn under the same condi-

tions. With the DH method, the perturbative solar term increases as the perihelion

distance of the planet decreases, causing the fractional energy error to increase sim-

ilarly. The fractional energy errors shown in Figure 3.1 agree with those obtained

by DLL98.

We checked the conservation of the Jacobi constant by integrating particles
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Figure 3.1: Maximum fractional error in energy during a 3,000-year

integration as a function of perihelion distance for two scenarios: a two-

body system of the Sun & Jupiter (solid line) and a three-body system

of the Sun, Jupiter & Saturn (dashed line). For the two-body system,

Jupiter’s perihelion distance is plotted. For the three-body system, Sat-

urn’s perihelion distance was altered while Jupiter’s remained fixed. The

inclinations and eccentricities of both planets remained fixed. cf. DLL98

Fig. 4.3.
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in the Sun-Neptune system. We found results consistent with those of MMM02.

Particles that did not undergo close encounters conserved the Jacobi constant at

the level of ∼ 10−8 to 10−7.

To test our implementation of PR drag, we replicated a test performed by

MMM02. We integrated the orbit of a particle with β = 0.2 and sw = 0.35 in

the presence of the Sun. Figure 3.2 shows the semi-major axis and eccentricity as

functions of time. These results match the results of MMM02 and agree with the

analytic solution (Wyatt & Whipple, 1950).

We tested the performance of our hybrid scheme by integrating the orbit of

comet P/Oterma in a close encounter with Jupiter, which has been done previously

by Michel & Valsecchi (1996) and C99. The initial conditions for both bodies can

be found in Table 3 of Michel & Valsecchi (1996). Figure 3.3 shows the path of

comet P/Oterma for several values of integration time step ∆t as seen in the frame

co-rotating with Jupiter, which is located at the origin. These results are similar to

those obtained by C99. Our code shows a minor improvement over the other codes,

most noticeable in the ∆t = 100 days case, that is likely only due to differences in

the calculation of the changeover distance. C99 explicitly sets rcrit = 3RH for this

test; we used our prescription for rcrit as described in Section 3.2.1.

3.2.3 Test simulations of a steady-state exozodiacal cloud

We directly compared simulations of resonant structures made with our hybrid

integrator to simulations made with a Bulirsch-Stoer integrator. During the inte-
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Figure 3.2: Top: eccentricity as a function of time for a dust particle

with β = 0.2 and sw = 0.35. Bottom: semi-major axis as a function of

time. Our results match those of MMM02 (cf. MMM02, Fig. 1) and

agree with the analytic solution (Wyatt & Whipple, 1950).
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Figure 3.3: The integrated trajectory of comet P/Oterma during a close

encounter with Jupiter as viewed in the frame centered on and rotating

with Jupiter with the Sun on the negative x-axis. Shown are the re-

sults of a Bulirsch-Stoer integrator and our hybrid symplectic integrator

for four values of integration time step. The hybrid symplectic results

overlap the Bulirsch-Stoer results for a timestep of 1 day (cf. C99, Fig.

4).
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grations we recorded the coordinates of each particle in a 2-D histogram at regular

intervals. This histogram models the surface density distribution in a steady-state

cloud. Since we only modeled planets on circular orbits, we simply recorded the co-

ordinates in the frame co-rotating with the planet. This technique has been widely

used by dust cloud modelers (Dermott et al., 1994; Liou & Zook, 1999; Moro-Mart́ın

& Malhotra, 2002; Wilner et al., 2002; Deller & Maddison, 2005).

Figure 3.4 shows two histograms, one for each integrator, for simulations of

1,000 particles each in the presence of the Sun/Earth system. We used a histogram

bin width of 0.0175 AU. For these simulations we chose β = 0.02 and initially

released the particles with semi-major axis, adust, distributed uniformly between 3

and 5 AU, eccentricity, e, uniformly distributed from 0.0 to 0.1, and inclination, i,

uniformly distributed between 0◦ and 6◦. We used a symplectic time step of 0.02

years and recorded the particle locations every 250 years.

Except for a small number of pixels, the middle panel of the figure (simulation

using the hybrid integrator) looks qualitatively very similar to the left-most panel

(simulation using the Bulirsch-Stoer integrator). The right panel of Figure 3.4 shows

the difference of these two images divided by the
√

n Poisson noise expected for each

pixel where n is the number of particles in the pixel. This figure demonstrates that

the differences between the two models are nearly consistent with the Poisson noise

of the histograms. The two integrators resulted in histograms with minor structural

differences, but the hybrid symplectic integrator runs a few times faster.

Besides pixel-to-pixel Poisson noise in the histogram, this method is also sen-

sitive to noise in the population of MMRs. MMM02 showed that the population of
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Figure 3.4: Comparison of our hybrid symplectic integrator with a

Bulirsch-Stoer integrator. Left: surface density histogram for 1,000 par-

ticles in the Sun-Earth system using a Bulirsch-Stoer integrator. Middle:

surface density histrogram for the same initial conditions using our hy-

brid symplectic integrator. Right: Bulirsch-Stoer histogram minus the

hybrid symplectic histogram (image is in units of σ, the
√

n Poisson

noise associated with the histograms). Except in a handful of pixels, the

difference is roughly consistent with Poisson noise.

59



the dominant resonances varied by a factor of ∼ 3 among sets of 100-particle sim-

ulations of Kuiper Belt dust interacting with Neptune. This noise probably causes

the differences between the two simulations shown in Figure 3.4 beyond those at-

tributable to pixel-to-pixel Poisson noise. Although simulations of 100 particles may

acquaint us with the generic geometry of debris disk structures, we cannot use them

to predict ring contrasts; to model the contrast in a resonant cloud feature we must

include enough particles to accurately populate the MMRs.

We solved this problem by using more particles. We used the 420-processor

Thunderhead cluster at NASA Goddard Space Flight Center to perform simulations

of 5,000 particles each. Figure 3.5 shows the population of MMRs for three inde-

pendent 5,000-particle simulations of the Sun and four outer planets using the same

initial conditions as MMM02. Simulating 5,000 particles reduced the difference be-

tween MMR populations for the three simulations to less than 7% for the dominant

2:1 and 3:2 MMRs, allowing us to synthesize high-fidelity images and quantitatively

study the resonant ring structures.

3.3 Simulations & results

3.3.1 Cataloging debris disk structure

To explore the range of different types of structures formed by terrestrial-mass

planets, we performed 120 simulations of dust interacting with single planets on

circular orbits. The simulations used 5,000 particles each and covered six values

of planet mass, Mp (0.1, 0.25, 0.5, 1.0, 2.0, and 5.0 M⊕ ), four values of planet
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Figure 3.5: Population of Neptune’s MMRs for three independent simu-

lations of 5,000 particles each (shown in green, red, and black). Popula-

tions of the 2:1 and 3:2 resonances differ among the three simulations by

6.4% and 4.3%, respectively (c.f. Moro-Mart́ın & Malhotra, 2002, Fig.

5).
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semi-major axis, ap (1, 3, 6, and 10 AU), and five values of β (0.0023, 0.0073, 0.023,

0.073, and 0.23) corresponding to spherical silicate particles ranging in radius from

∼ 1 − 120µm. We released the particles on orbits with semi-major axes uniformly

distributed between 3.5 and 4.5 times the semi-major axis of the planet’s orbit—well

outside of the strongest MMRs. We used initial eccentricities uniformly distributed

between 0 and 0.2, initial inclinations uniformly distributed between 0 and 20◦, and

the longitude of the ascending node, Ω, and the argument of pericenter, ω, uniformly

distributed between 0 and 2π. We considered planet semi-major axes of 1 to 10 AU

because typical designs for TPF can detect an exozodiacal cloud with 10 times the

optical depth of the solar zodiacal cloud over roughly that range of circumstellar

radii (Levine et al., 2006).

We chose these initial conditions to model only dynamically-cold dust, i.e.

edust . 0.2 and idust . 20◦, since this component of a dust cloud is the dominant

contributor to resonant ring structure. We neglect dynamically hot dust with the

idea that it can always be added in later as a smooth background (Moran et al.,

2004). The asteroid belt probably produces much of the Solar System’s dynamically

cold dust, while comets are thought to contribute a more dynamically hot cloud

component (e.g. Liou et al., 1995; Ipatov et al., 2008). We treat only steady-state

dust clouds, assuming dust is continually replenished, and ignore transient collisional

events.

Figure 3.6 shows some examples of the histograms from our simulations, which

reveal a wide range of trapping behavior. Some histograms show no azimuthal or

radial structure, while others show high contrast rings. All of the patterns are Type
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I structures as identified by Kuchner & Holman (2003).

Several general trends emerged. The ring contrast increased with increasing

planet mass. Reducing β also enhanced trapping, as did increasing the planet’s

semi-major axis.

These last two trends can be explained by comparing the libration time of a

given MMR to the PR time. The PR time scales as a2
dust/β, while the libration

time for a given resonance scales as a
3/2

dust, where adust is the semi-major axis of a

dust grain’s orbit. The ratio of these quantities yields
√

adust/β, a parameter that

measures the degree to which resonant trapping is adiabatic (e.g. Henrard, 1982);

the trapping becomes more adiabatic and more efficient at greater distances from

the star, and for larger particles. We discuss this phenomenon further in Section

3.3.3 below.

In addition to following these trends, all of the simulated ring structures, like

those shown in Figure 3.6, share some salient features:

1. For cases in which even a modest amount of trapping occurs (azimuthally av-

eraged contrasts > 1.3 : 1), the ring structures exhibit a sharp inner edge at

≈ 0.83ap. This feature probably appears because the eccentricities of parti-

cles trapped in exterior MMRs are typically pumped up to a limiting value

before a close encounter with the planet ejects them from resonance. For

a particular MMR, all particles, regardless of β, tend to approach the same

limiting eccentricity and accordingly, a similar pericenter distance (Beaugé

& Ferraz-Mello, 1994). The limiting eccentricities are such that the limiting
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Figure 3.6: Surface density distributions for four of the 120 simulations

(scale is relative). The star is located at the center of the image and the

planet is marked with a white dot. The planet orbits counter-clockwise in

these images. Integrations were truncated at half the planet’s semi-major

axis. The simulations shown on the right have different values of ap and

β, but the same value of
√

ap/β. Their surface density distributions

are nearly identical; their difference is consistent with Poisson noise (see

Section 3.3.2).
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pericenter distances are nearly equal for the dominant resonances (e.g. the 2:1

and 3:2 resonances have limiting pericenter distances of 0.823ap and 0.827ap,

respectively), creating the ring structure’s sharp inner edge.

2. A gap in the ring structure, a local minimum in the surface density, appears

around the planet. If we define gap width as the FWHM of the minimum in

the azimuthal surface density profile at r = ap, we find that the gap width is

linearly proportional to the contrast of the ring, as shown in the left panel of

Figure 3.7. A linear fit to the data shown in this figure gives wgap ≈ 10◦×CAA,IE

for CAA,IE > 1.6, where wgap is the gap width in degrees and CAA,IE is the

azimuthally averaged inner-edge contrast (see Section 3.3.2).

3. The rings show a leading-trailing asymmetry. The trailing side of the ring

structure is noticeably denser than the leading side, and the structure is rota-

tionally shifted in the prograde direction causing the trailing side to be closer to

the planet (Dermott et al., 1994). To examine the leading-trailing asymmetry

caused by a prograde shift of the ring structure, we measured the azimuthal

offset of the center of the gap described above from the planet. The right

panel of Figure 3.7 shows these measured prograde shifts of our simulations.

Kuchner & Holman (2003) showed for a particular first order exterior MMR,

sin φ0 ∝
β (1 − β)

Mp
√

ap

, (3.2)

where φ0 is the prograde shift of the pericenter. Therefore, we plotted the sine

of each measured prograde shift against β(1− β)/(Mp
√

ap) in the right panel
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of Figure 3.7. Our data reveal the approximate proportionality

sin φring ∝
[

β (1 − β)

Mp
√

ap

]0.5

, (3.3)

where φring is the measured prograde shift of the ring structure. While the

relationship in Equation 3.2 holds for a single MMR, it does not strictly ap-

ply to a given ring structure which consists of several well-populated MMRs.

The relative populations of these MMRs are also functions of Mp, ap, and β.

However, this situation seems to preserve a power-law relationship between

sin φring and β (1 − β) /
(

Mp
√

ap

)

, as shown in Equation 3.3.

4. The radial width of the ring increases with the contrast of the ring, ranging

from a few percent of ap to ∼ 1.6ap in the highest contrast case. As the trap-

ping probabilities of all the MMRs increase, MMRs farther from the planet’s

orbit become populated. For this reason, the outer-edge of the ring structure

differs significantly among simulations. The outer-edge can be quite blurry

or very well-defined, making the radial width of a ring structure difficult to

quantify.

Our catalog of debris disk structures induced by terrestrial-mass planets is pub-

licly available online at http://asd.gsfc.nasa.gov/Christopher.Stark/catalog.php.

This online catalog also contains images synthesized from the density distributions

in scattered light and 10 µm thermal emission assuming blackbody grains. Fu-

ture studies of resonant ring structures with TPF or other experiments can use our

catalog to interpret dust cloud patterns in terms of planet and dust parameters,

assuming the observed image is dominated by a single grain size. We envision the
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Figure 3.7: Left: the angular size of the “gap” in the ring structure around

the location of the planet in our simulations versus the contrast of the

ring structure. Right: the sine of the prograde shift plotted against the

function β(1− β)/(Mpa
1/2
p ). We removed all data with CAA,IE < 1.6 from

these plots. Solid lines show linear fits to the data.
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following process, inspired by recent papers on disks observed with the Hubble Space

Telescope (e.g. Clampin et al., 2003; Kalas et al., 2005):

1. Deproject the image to remove inclination effects.

2. Remove any smooth backgrounds by a power law fit.

3. Estimate the dominant grain size in the resonant ring using infrared photom-

etry or other methods.

4. Compare the image of the disk to the online catalog to constrain the planet’s

mass and location.

3.3.2 Ring contrast

We considered three different metrics for describing the ring contrast in our

simulations:

CMax: The surface density of the ring at its densest point divided by the surface

density of the background cloud

CAA,Max: The maximum value of the azimuthally averaged surface density

divided by the surface density of the background cloud

CAA,IE: The azimuthally averaged surface density at the inner edge of the ring

divided by the surface density of the background cloud

We calculated the above contrast metrics for all 120 simulations. We measured

the surface density of the background cloud at a circumstellar distance r ≈ 0.8ap.

The surface density of the background cloud was nearly constant inside and outside
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of the ring, but did exhibit a small local minimum near r ≈ 0.8ap in a few cases.

To calculate CMax, we must search for the densest pixel, which introduces a

bias toward pixels that exhibit an extreme amount of Poisson noise. To reduce this

noise we averaged the surface density over nine pixels centered on the densest point.

Using CAA,Max or CAA,IE, on the other hand, automatically averages over the effects

of Poisson noise in our simulations.

Figure 3.8 shows two examples of how the contrast, CAA,IE, depends on planet

mass and β. Both plots show a similar behavior with three distinct regions: a

no-trapping regime (contrast ∼1), a transitional regime, and a saturation regime

(maximum contrast). The saturation regime is of particular significance. Our results

suggest that within the range of parameters investigated, for a given value of β, all

contrasts converge to the same value for large planet masses independent of planet

semi-major axis, i.e. the contrast becomes “saturated” and increasing the planet’s

semi-major axis has little effect on the contrast. The right panel in Figure 3.8

illustrates this behavior; all four contrast curves, each of which corresponds to a

different planet semi-major axis, approach the same value of ∼ 7 near Mp = 5 M⊕ .

Similarly, for a given planet mass, contrasts converge to the same value for small

β independent of ap, as shown in the left panel in Figure 3.8. The morphology of

the structure can vary, but the contrast of the ring structure is roughly constant in

these saturation regimes.
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Figure 3.8: The azimuthally-averaged contrast measured at the inner

edge of the ring structure (see Section 3.3.2 for definition of contrast) as

a function of β (left panel) and planet mass (right panel). Both figures

show a transition from a no-trapping regime to a saturation regime where

contrast is independent of semi-major axis.
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Figure 3.9: The contrast in surface density of the ring structure com-

pared to the background cloud for all combinations of Mp, ap, and β (see

Section 3.3.2 for definitions of contrast). The contrast is only a function

of two parameters: planet mass and
√

ap/β. The solid lines are fits to

the data (see Equation 3.4).

3.3.3 Adiabaticity

As we mentioned above, dividing the PR time by the libration time of a given

MMR yields a parameter,
√

ap/β, that indicates the degree to which the resonant

trapping is adiabatic. We plot the contrast in our simulations as a function of this

parameter in Figure 3.9. This figure demonstrates that for Mp . 5 M⊕ and for a

given distribution of parent body orbital elements, the ring contrast is a function of

only two parameters: planet mass and
√

ap/β.
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The morphology of the resonant rings is also, to good approximation, a func-

tion of only the planet mass and
√

ap/β. The models shown in the two right panels

of Figure 3.6 illustrate this phenomenon; for both models
√

ap/β ≈ 137 AU1/2.

These two models have the same morphology to a level consistent with pixel-to-

pixel Poisson noise. Note that for small β in Equation 3.3, the prograde shift is

approximately a function of
(√

ap/β
)−1

for a given planet mass.

For large values of β and Mp, the morphology and contrast of the ring struc-

tures are not simple functions of
√

ap/β. Simulations with large values of β, but

equal values of
√

ap/β (e.g.
√

1 AU/0.073 and
√

10 AU/0.23) show morphologi-

cal differences, including differences in prograde shift. Our simulations with Mp =

5 M⊕ also show contrast differences among rings with equal values of
√

ap/β.

Wyatt (2003) investigated resonant trapping in MMRs for a system of plan-

etesimals exterior to an outward migrating planet on a circular orbit. Wyatt (2003)

plotted the trapping probability for a single MMR in his model as a function of mi-

gration rate and planet mass and found it could be well approximated by a function

of the form P = [1 + (ȧp/p1)
p2]−1, where ȧp is the migration rate and the parame-

ters p1 and p2 are power laws in planet mass. Our trapping scenario assumes dust

migrating inward toward the planet, but the concept is similar. Since contrast is

closely related to trapping probability, we decided to fit the data shown in Figure

3.9 with a function of the form

C = 1 + p1

(

1 +

(

p2√
ap/β

)p3
)−1

, (3.4)

inspired by Wyatt (2003). Each of the three parameters, pi, is a power law in planet

72



mass of the form pi = pi,1M
pi,2
p . We fit all 120 contrast measurements with this

six-parameter function for each of the three contrast metrics. The best fits, two of

which are shown in Figure 3.9, are listed in table 3.1.

Equation 3.4, combined with the above values, summarizes our results for all

combinations of planet mass, planet semi-major axis and β we simulated. Figure

3.9 shows the inner-edge contrast, CAA,IE, deviates significantly from the fits for

large Mp and large
√

ap/β. The increased trapping efficiency for MMRs with these

massive planets likely enhances the population of MMRs farther from the planet’s

orbit and depletes the inner MMRs that cause the sharp inner edge.

Table 3.1: Best fit parameters to Equation 3.4

CAA,IE CAA,Max CMax

p1 4.38 (Mp/M⊕ )0.19 4.54 (Mp/M⊕ )0.17 6.23 (Mp/M⊕ )0.27

p2 207 (Mp/M⊕ )−1.17 205 (Mp/M⊕ )−1.17 164 (Mp/M⊕ )−1.09

p3 2.05 (Mp/M⊕ )0.11 1.63 (Mp/M⊕ )0.19 1.72 (Mp/M⊕ )0.05

3.4 Multi-particle-size models

3.4.1 Composite simulations

We used our 120 simulations to produce 20 multiple-particle-size dust cloud

models by forming weighted sums of the histograms assuming a Dohnanyi distribu-

tion of particle sizes (Dohnanyi, 1969). Each of these composite models effectively

utilizes 25,000 particles. Exactly how we apply the ideas in Dohnanyi (1969) has
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profound effects on our composite models, so we present here two different kinds of

models.

First, we assembled a composite model in which the particles are initially

released from their parent bodies according to a crushing law, and do not undergo

any further collisional processing as they spiral inward. This scenario models a

sparse disk with a belt of dust-producing material, like our own zodiacal cloud. The

crushing law for asteroid material at micron sizes is unknown, so we choose the

crushing law used by Dohnanyi (1969):

dN

ds
∝ s−α, (3.5)

where dN is the number of particles with radius s in a bin of width ds, and α = 3.4.

We calculate the optical depth, τ , for our composite models from τ =
∑

i wiAiσi,

where wi, Ai, and σi are the weighting factor, particle cross-section, and surface num-

ber density of the ith single-particle simulation, respectively. We assume that the

cross-section of each particle is Ai ∝ β−2. The crushing law in Equation 3.5 implies

a weighting factor for the ith histogram of wi = βα−2
i ∆βi, where ∆βi is the width of

the βi bin. For a constant logarithmic spacing in β, like the spacing we used in our

simulations, and the Dohnanyi crushing law, wi = β2.4
i .

Larger particles have longer PR times, so in the absence of collisional pro-

cessing, their density is enhanced by a factor of β−1 under our assumption of a

steady-state cloud model. One might expect that this effect must be included in the

weighting factor. However, our simulations include this effect automatically as long

as we keep the frequency with which particle locations are recorded constant among
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all of our simulations. We did, in fact, vary the recording frequency with the PR

time, but we corrected for the differences in recording frequency before summing

the histograms.

Figure 3.10 shows the optical depth of one of our 20 composite models (Mp =

2.0 M⊕ , ap = 6.0 AU), together with the optical depths of single-particle-size

models using only the smallest and largest particle sizes included in the composite

model. Although the crushing law used by Dohnanyi (1969) favors smaller particles

by number, even more than some empirical crushing laws (Durda et al., 2007), the

optical depth in the composite models is dominated by the largest particles. This

situation occurs because the larger particles are both longer lived (tPR ∝ β−1) and

more likely to be trapped in MMRs. Hence, the upper left panel of the figure closely

resembles the lower right panel.

Next, for the purpose of illustration, we ignored the initial size distribution of

dust particles and forced the disk to obey a size distribution of

dN

ds
∝ s−3.5 (3.6)

at a radius of ∼ 3ap from the star. This scenario probably doesn’t have a physical

interpretation, but it illustrates an interesting phenomenon: how resonant trapping

tends to sort particles by size. We enforce the size distribution at one location within

the disk, but the size distribution will not follow a Dohnanyi distribution elsewhere

in the disk.

The top right panel in Figure 3.10 shows the optical depth of an example of

this kind of composite cloud, normalized to a Dohnanyi distribution at ∼ 18 AU.
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β = 0.23 β = 0.0023
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Figure 3.10: Comparison of the optical depths for a composite cloud

formed by two different methods for Mp = 2.0 M⊕ and ap = 6.0 AU.

Top row: A composite collisionless cloud formed by releasing grains with

a Dohnanyi size distribution (Dohnanyi, 1969) (left) vs. forcing the back-

ground surface density to obey a Dohnanyi distribution. Bottom: The

optical depth of the smallest grains (left) and largest grains (right) in-

cluded in the composite clouds. The largest grains dominate the optical

depth in a cloud of particles released with a Dohnanyi crushing law.
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Models constructed in this fashion are more greatly affected by the smallest grains.

Hence, the top right panel does not greatly resemble the lower right panel in Figure

3.10.

3.4.2 Semi-analytic treatment

We can further develop these ideas with a simple semi-analytic treatment. For

a given planet mass and semi-major axis, the contrast function (see Equation 3.4)

becomes C(s), where s is the particle size. We approximate the contrast function

in Equation 3.4 with the piecewise function

C(s) =































1 for s < s1

(

s
s1

)m

for s1 < s < s2

Clarge for s > s2,

(3.7)

where Clarge = 1 + p1 is the contrast for the largest particles, m is the logarithmic

slope of the contrast in the transition regime, and s1 and s2 are the particle sizes

that mark the beginning and end of the transition regime, respectively. We fit our

contrast data with this piecewise function and obtained the following power law

estimates assuming silicate grains (ρ ∼ 2 g cm−3):

Clarge;AA,IE ≈ 1 + 4.38

(

Mp

M⊕

)0.19

(3.8)

m ≈ 0.6

(

Mp

M⊕

)0.18

(3.9)

(

s1

1 µm

)

≈ 10

(

Mp

M⊕

)−1.12
( ap

1 AU

)−0.5

(3.10)

(

s2

1 µm

)

≈ 150

(

Mp

M⊕

)−1.35
( ap

1 AU

)−0.5

(3.11)
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In the same manner as Section 3.3.2, we defined the contrast of any ring

structure as the surface density within the ring, σring, divided by the background

surface density, σBG. The contrast in optical depth of a cloud containing several

components of various sized particles, labeled with the index i, is

〈Cτ〉 =

∑

i

CiσBG,iAi

∑

i

σBG,iAi

, (3.12)

For a collisionless cloud with a continuous distribution of grain sizes, the contrast

in optical depth of the composite cloud is given by

〈Cτ 〉 =

∫ smax

smin

s3−αC(s) ds

∫ smax

smin

s3−α ds

, (3.13)

where we have explicitly included the particle cross section (A(s) ∝ s2) and back-

ground surface density (σBG(s) ∝ s1−α). For a collisionless cloud, the background

surface density is enhanced by a factor of s due to the PR time scaling as s (see

Section 3.4.1), and a factor of s−α, which describes the assumed crushing law.

Using Equations 3.7, we can now integrate Equation 3.13 directly. Assuming
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smin < s1 < s2 < smax and (smin/smax)
|4−α| ≪ 1 when α 6= 4, we find

〈Cτ 〉 =


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Clarge −
(

s2

smax

)4−α [

Clarge − 4−α
4−α+m

(

s2

s1

)m]

+ m
4−α+m

(

s1

smax

)4−α

for α < 4

(

ln
(

s1

smin

)

+ Clarge ln
(

smax

s2

)

+ m−1
[(

s2

s1

)m

− 1
])

/ ln
(

smax

smin

)

for α = 4

1 +
(

s2

smin

)4−α [

Clarge − 4−α
4−α+m

(

s2

s1

)m]

− m
4−α+m

(

s1

smin

)4−α

for α > 4,
α 6= 4 + m

1 + Clarge

(

s2

smin

)4−α

−
(

s1

smin

)4−α (

1 + ln
(

s2

s1

))

for α > 4,
α = 4 + m.

(3.14)

For cases in which the maximum particle size in a disk is less than s2 (see Equation

3.11), simply replace all instances of s2 in Equations 3.14 with smax. Similarly, for

cases in which the minimum particle size in a disk is greater than s1 (see Equation

3.10), replace all instances of s1 with smin.

Equations 3.14, together with Equations 3.8–3.11, give analytic expressions for

optical depth contrast in terms of Mp, ap, smin, and smax. Although Equations 3.14

address all possible scenarios, the most plausible scenarios have crushing laws with

α < 4 (e.g. Durda et al., 2007). With this assumption, Equations 3.14 combined
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with Equations 3.8–3.11 gives

〈Cτ ;AA,IE〉 ≈


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1 + 4.4M ′0.19
p + s′α−4

max X
[

(

10M ′−1.12
p a′−0.5

p

)4−α

−
(

1 + 4.4M ′0.19
p

) (

150M ′−1.35
p a−0.5

p

)4−α
]

for smax > s2

Xs′α−4
max

(

10M ′−1.12
p a′−0.5

p

)4−α

+ (1 − X) s
′0.6M ′0.18

p
max

(

10M ′−1.12
p a′−0.5

p

)−0.6M0.18
p , for smax < s2

(3.15)

where M ′
p =

(

Mp

M⊕

)

, a′
p =

( ap

1 AU

)

, s′max =
(

smax

1 µm

)

, and X =
0.6M ′0.18

p

4−α+0.6M ′0.18
p

.

If, as in our first composite model in Section 3.4.1, we assume that the parti-

cles are released from their parent bodies in accordance with the Dohnanyi (1969)

crushing law and then spiral inward without colliding, α = 3.4. In this case, Equa-

tions 3.14 give a contrast in optical depth of 〈Cτ 〉 ≈ Clarge in the limit smax ≫ s2.

This result confirms our numerical results for our first composite model, shown in

the upper left panel of Figure 3.10; the contrast in optical depth is dominated by

the large particles.

For our second composite model, we forced the background density to obey

a Dohnanyi distribution at ∼ 3ap, i.e. σBG(s) ∝ s−3.5, so that α = 4.5. This

technique essentially removes the factor of s in the background surface density that

results from the PR time scaling as s. For the composite cloud shown in Figure 3.10,

Mp = 2.0 M⊕ , and ap = 6.0 AU, for which m ≈ 0.68, s1 ≈ 1.9 µm, s2 ≈ 24 µm,

and Clarge,AA,IE ≈ 6. We let each simulated particle size represent a range of particle

sizes using the midpoint method, which gives smin ≈ 0.7 µm. With these values,

Equations 3.14 give a contrast in optical depth of 〈Cτ ,AA,IE〉 ≈ 2.4, in agreement
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with the measured contrast of ≈ 2.5 in the top right panel of Figure 3.10.

Figure 3.11 illustrates in general how a distribution of particle sizes affects

the contrast of a ring structure. This figure compares the contrast of a collisionless

multi-particle-size cloud (Equations 3.14) to that of a single-particle-size cloud as

a function of
√

ap/βmin assuming a Dohnanyi (1969) crushing law. Both kinds of

clouds have the same contrast in the adiabatic limit (large
√

ap/βmin), but the con-

tribution of the smaller grains reduces the contrast elsewhere, effectively broadening

the transition between the no-trapping regime and saturation regime. Crushing laws

with α < 3.4 result in contrast curves that more closely resemble the single-particle-

size contrast curves shown in Figure 3.11.

In a real zodiacal cloud, collisions affect the distribution of grains, even far

from the source of the grains. Our composite dust cloud models do not include

collisions and become unreliable for particles with collisional times less than their

PR times. Our composite models also lack the structural results of collisional effects,

such as the loss of particles as a function of circumstellar distance (Wyatt, 2005)

and any potential morphological effects in the ring structure.

More sophisticated models may be required to investigate these phenomena.

However, since dust produced according to a Dohnanyi (1969) crushing law or a

Durda et al. (2007) crushing law yields a cloud dominated by the largest grains,

as we showed above, we hypothesize that resonant rings in exozodiacal clouds may

often be dominated by a single particle size whose PR time is roughly equal to the

its collisional time.
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Figure 3.11: Contrast in optical depth for multi-particle-size clouds (solid

lines) compared to single-particle-size clouds (dashed lines) assuming a

Dohnanyi (1969) crushing law (α = 3.4; see Equations 3.16). From top

to bottom, the six solid lines and six dashed lines correspond to six

values of planet mass: 5, 2, 1, 0.5, 0.25, and 0.1 M⊕ . The contributions

of the small grains reduce the contrasts of the multi-particle-size clouds

compared to single-particle-size clouds with the same minimum value of

β.

82



3.4.3 Ring detectability

The detectability of a resonant ring structure depends on many factors specific

to the telescope being used and the observing conditions. We address this compli-

cated issue by imposing one simplifying assumption: a minimum detectable optical

depth ring contrast of 1.5. This assumption likely underestimates the sensitivity of

a TPF-like mission to rings in exozodiacal clouds analogous to the solar zodiacal

cloud. In such a cloud, a ring 0.4 AU wide located at 1 AU from the star has ∼ 15

times the total flux of an Earth-like planet at 1 AU, even for a contrast of unity.

Our assumption, conservative on the basis of photon noise alone, allows for the

possibility of unknown systematic noise that could hinder the detection of extended

structures.

Figure 3.12 shows the minimum detectable planet mass as a function of semi-

major axis and maximum dust particle size based on Equations 3.15 and a Dohnanyi

(1969) crushing law. The masses and semi-major axes of Earth, Mars, and the planet

OGLE-2005-BLG-390Lb, detected by the microlensing technique (Beaulieu et al.,

2006), are marked for reference. This plot shows that an Earth-mass planet at 1 AU

might be detectable if the ring contains grains more than a few tens of microns in

size and a planet with mass equal to a few times that of Mars might be detectable

near 10 AU if the ring contains grains more than one hundred microns in size.

The detectability of a ring structure depends upon the size distribution of dust

within the ring structure. Dust produced according to a crushing law less steep than

the Dohnanyi (1969) crushing law (α < 3.4) will result in more highly contrasted
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Figure 3.12: Minimum detectable planet mass in a multi-particle-size

collisionless cloud as a function of semi-major axis and maximum grain

size, assuming a Sun-like star, a minimum detectable ring contrast of

Cτ,AA,IE = 1.5, and dust produced according to a Dohnanyi (1969) crush-

ing law (α = 3.4). Earth-like and Mars-like planets are denoted with an

E and M , respectively. The 5.5 M⊕ exoplanet OGLE-2005-BLG-390Lb

is denoted with an O (Beaulieu et al., 2006). Listed values for maximum

dust size in the ring structure assume perfectly absorbing spherical grains

with mean density ρ = 2.0 gm cm−3 and radius smax. The bold line shows

the case of the solar zodiacal cloud, for which the observed emission is

dominated by 30 µm grains (Fixsen & Dwek, 2002). The dashed lines

show typical inner and outer detection limits for a mission similar to

TPF.
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ring structures because of the increased relative contribution of the large grains. For

crushing laws with α = 3 and α = 2, the curves of constant maximum particle size

shown in Figure 3.12 shift downward by a factor of approximately 1.25 and 1.55,

respectively.

These values are subject to the assumptions of our simulations, which do not

include a dynamically hot component in the dust cloud. This component would

reduce the contrast in the ring, making planets harder to detect for a given cloud

mass. So the detection limits shown in Figure 3.12 should be thought of as best-case

scenarios.

3.5 Caveats

Our simulations include a number of simplifying assumptions, which we sum-

marize here. We ignored the effects of dynamically hot dust, like dust that might

come from comets. Trapping probability decreases dramatically for particles on

highly eccentric and inclined orbits, so we expect dynamically cold dust to domi-

nate any resonant debris disk structure. As a first approximation, we can treat the

contribution from the dynamically hot dust as a constant surface density cloud com-

ponent, which reduces the contrast of any structure formed from the dynamically

cold component. Estimates of the ratio of asteroidal dust to cometary dust in the

Solar System range from 1:10 to 7:10 (Ipatov et al., 2008). For other systems, this

ratio is also unknown.

Our simulations also assumed a single planet on a circular orbit around a
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Sun-like star. We have performed trial simulations of the Solar System and demon-

strated that the presence of Jupiter may reduce the Earth’s ring contrast. Other

multiple-planet systems may also exhibit a similar effect. Additionally, planets on

eccentric orbits give rise to additional MMRs with different capture probabilities

and geometries (Kuchner & Holman, 2003).

The ring contrasts of inclined systems can vary significantly depending on the

inclination and radial extent of the dust cloud. In edge-on systems, resonant features

can overlap as seen from the Earth, complicating their interpretation. The contrasts

we provide are useful only to systems for which projection effects can be taken into

account.

Finally, our multi-particle-size models demonstrate the subtlety of collisional

effects in dust clouds. Collisional effects can determine the relative populations of

large and small grains and potentially alter the morphology of the ring structures.

Our simulations can not yet handle these effects in detail.

3.6 Conclusions

We have implemented our own hybrid symplectic integrator for the n-body

problem and used it to simulate collisionless debris disks, taking into account solar

wind and drag effects. Each simulation contained 5,000 particles. We found that

this number of particles suffices to populate the dominant MMRs of a low-mass

planet with an accuracy at the few percent level, yielding for the first time models

of the surface brightness distributions of exozodiacal clouds that we can use to
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quantitatively study the contrasts of resonant features—not just their geometries.

We generated a catalog of resonant structures induced by a single planet on

a circular orbit around a Sun-like star, available online at http://asd.gsfc.nasa.gov/

Christopher.Stark/catalog.php. We investigated 120 sets of model parameters, span-

ning a range of planet masses, planet semi-major axes, and values for β, assuming

dust grains launched from orbits with low edust and idust. The resulting ring struc-

tures exhibited leading-trailing asymmetries, gaps near the locations of the planets,

and sharp inner edges at ≈ 0.83ap.

We performed a detailed analysis of the surface density contrasts of the rings

(Figure 3.9). We showed that for a planet on a circular orbit, the contrast and

morphology of the rings are to good approximation functions of only two parameters,

Mp and
√

ap/β, for a given stellar mass and distribution of dust sources for Mp .

5 M⊕ and β . 0.25. Equation 3.4 summarizes the contrasts of our single-particle-

size models as a function of these parameters. Considering only the dynamically

cold particles analogous to particles released by asteroids in the Solar System, we

find that terrestrial-mass planets are capable of producing resonant ring structures

with azimuthally averaged contrasts up to ∼ 7 : 1.

By combining our simulations of grains with particular β values, we assembled

multi-particle-size models of 25,000 particles each. Releasing the particles according

to a Dohnanyi (1969) crushing law without any subsequent collisional processing

results in composite clouds whose optical depths are dominated by large particles;

large particles will dominate images of these clouds in visible light and throughout

the IR. Based on these composite models, we suggested that the best current models
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for exozodiacal clouds are those with a narrow range of grain sizes corresponding

to grains whose collision time roughly equals their PR time. Future models should

account for processes like grain-grain collisions that destroy large grains.

Equations 3.14 and 3.15 provide semi-analytic predictions for the contrast in

optical depth of a multi-particle-size cloud of dynamically cold grains. For ring

structures composed of silicate grains released according to a Dohnanyi crushing

law (α = 3.4), Equation 3.15 gives an approximate contrast of

〈Cτ ;AA,IE〉 ≈


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(3.16)

where 〈Cτ ;AA,IE〉 is the ratio of the azimuthally averaged optical depth in the ring

structure to the azimuthally averaged background optical depth, smax is the maxi-

mum grain size in the ring structure, and s2 is given by Equation 3.11. For the case

smax > s2, the first two terms in Equation 3.16 represent the contrast in the adia-

batic limit. The remaining term (and the terms in the smax < s2 case) represents

deviations from this limit for smaller particles or smaller semi-major axes.

We plotted the mass of the smallest planet that could be detected through

observation of a resonant ring structure as a function of planet semi-major axis and
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particle size in Figure 3.12. We assumed a cloud composed of a range of particle

sizes adhering to a Dohnanyi (1969) crushing law and a minimum detectable optical

depth contrast of 1.5:1. We found that planets with masses just a fraction of the

Earth’s may form detectable ring structures if the rings harbor grains more than

several tens of microns in size.
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Chapter 4

Incorporating collisions into dynamical models of debris disks

Reprinted with permission from Stark, C. C., & Kuchner, M. J., A New Algo-

rithm for Self-consistent Three-dimensional Modeling of Collisions in Dusty Debris

Disks, The Astrophysical Journal, Vol. 707, pp. 543-553. Copyright 2009, American

Astronomical Society.

4.1 Introduction

Recent resolved images of several debris disks reveal complex structures in the

form of rings, gaps, and warps carved in the circumstellar dust (e.g. Greaves et al.,

1998; Wilner et al., 2002; Kalas et al., 2005; Golimowski et al., 2006; Schneider et al.,

2009). Some of these structures are likely the result of planetary companions that

gravitationally perturb the disk (e.g. Quillen, 2006; Chiang et al., 2009). Modeling

these structures can potentially reveal the physical and orbital parameters of the

planets, dust grains, and sources of dust in these systems, helping us better under-

stand the late stages of planet formation that debris disks represent (e.g. Zuckerman,

2001; Wilner et al., 2002; Moran et al., 2004; Deller & Maddison, 2005; Wyatt et

al., 2007; Stark & Kuchner, 2008).

So far all resolved debris disks are collisionally-dominated systems, meaning

the collision time, tcoll, is much shorter than the PR time, tPR, in these disks (Wyatt,
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2005). For example, tPR/tcoll is ∼300 for 10 µm grains in the resolved circumstellar

dust rings of Fomalhaut (Chiang et al., 2009) and HR 4796A (Debes et al., 2008;

Schneider et al., 2009). Many different modeling techniques have been applied to

these disks. However, no model has yet been able to accurately treat gravitational

dynamics and collisions simultaneously in a self-consistent fashion.

Some models of dust in debris disks ignore collisions altogether (e.g. Moran et

al., 2004; Deller & Maddison, 2005). Some variations on collisionless disk models

simply stop the integration of the particle orbits once dust grains have lived as long

as their collisional time (e.g. Chiang et al., 2009). The collision time is typically

estimated via Equation 1.5. These models do not include the influence of disk

asymmetries and orbital resonances on collision rates.

Other models of dusty disks avoid treating the resonant dynamics of the grains

altogether, opting instead to investigate the long-term collisional evolution of debris

disks with simple geometries. Analytic models of azimuthally symmetric steady-

state collisional disks with a single belt of parent bodies help us develop our intu-

ition about these systems (e.g. Wyatt, 1999; Wyatt et al., 2007). Numerical kinetic

models, which treat collisions with great detail by including processes such as grain

fragmentation and cratering (e.g. Thébault et al., 2003; Löhne et al., 2008), special-

ize in the long-term behavior of the radial and grain size distributions of dust in

disks, and do not include planets. The hybrid model of Bromely & Kenyon (2006)

merges kinetic models with n-body models by combining a multi-annulus kinetic

model which treats small dust grains with an n-body model to treat large planetes-

imals. However, this code is tailored for grain growth simulations and not resonant
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structures in debris disks; it does not model the resonant dynamics of the dust grain

population.

Still other models look at only the transient effects of collisions. The collisional

code of Grigorieva et al. (2007) is designed for modeling collisional avalanche events

in debris disks, but does not have the spatial resolution necessary to model structures

caused by gravitational resonant dynamics. Robust many-particle simulations that

model individual collisional events and follow the orbits of any fragments produced

are currently limited by computer processing power to ∼104 particles for long-term

integrations (e.g. Leinhardt et al., 2009), restricting their debris disk application to

short-term integrations or integrations sampling limited phase space.

Here we present a novel “collisional grooming” algorithm for treating collisions

and resonant dynamics self-consistently in an optically thin disk. The algorithm pro-

duces a dust distribution for each grain size that simultaneously solves the equation

of motion for small dust grains,

d2r

dt2
= −GM⋆

r2
(1 − β)r̂ − (1 + sw)β

c

GM⋆

r2
[ṙr̂ + v] +

∑

i

Gmi

|ri − r|3 (ri − r) , (4.1)

and the particle number flux equation in 3D,

∇ · (nv) − ∂n

∂t
=

∂n

∂t

∣

∣

∣

coll
. (4.2)

Here G is the gravitational constant, M⋆ is the stellar mass, c is the speed of light,

r and v are the heliocentric position and velocity of the grain, β is the ratio of

radiation pressure force to gravitational force on a grain, sw is the ratio of solar

wind drag to PR drag, and mi and ri are the mass and heliocentric position of

the ith planet. The particle number density, n, the mean flow velocity, v, and the
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particle number density removed or added by collisions per unit time, ∂n/∂t|coll,

may be functions of position and grain size.

Our algorithm uses a collisionless disk simulation (a “seed model”) as input

to calculate initial collision rates, similar to the method developed by Charnoz &

Morbidelli (2003). However, our algorithm differs from that of Charnoz & Morbidelli

(2003) in several ways. Our algorithm includes Poynting-Robertson drag and is

therefore applicable to systems with small dust grains. Our algorithm also allows

for the possibility that collisions can affect the dynamics of the system, and it uses an

iterative scheme to find the correct density distribution for a steady-state disk. After

the integration of the seed model, the algorithm can be run on a single processor in

∼1 hour. This algorithm can generate new models that should allow us to interpret

images of collision-dominated disks like those orbiting Fomalhaut, Vega, Epsilon

Eridani, and HR 4796A quantitatively for the first time.

4.2 Numerical method

4.2.1 Collisionless seed models

We first run a seed model, a model of a steady-state collisionless debris disk.

We numerically integrate Equation 4.1 for a collection of particles launched from

parent bodies orbiting a star. This equation includes the dynamical effects of gravity,

radiation pressure, corpuscular drag, and PR drag (see Stark & Kuchner, 2008, for

details). The drag forces cause the particles to slowly lose angular momentum and

spiral inward from the parent bodies from which they were launched.
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During their journey inward toward the star, the particles can become tem-

porarily trapped in the external mean motion resonances (MMRs) of any planets

present, creating an overdense circumstellar ring structure near the planet’s orbit.

We use enough particles, typically on the order of a few thousand, to accurately

populate the external MMRs of the planets (Stark & Kuchner, 2008). During the

integration, we record the barycentric coordinates of each particle at a regular in-

terval, trecord. This commonly-used technique extrapolates the results of a few thou-

sand particles to millions of particles (e.g. Dermott et al., 1994; Liou & Zook, 1999;

Moro-Mart́ın & Malhotra, 2002; Moran et al., 2004). Our algorithm requires the

local velocity distribution to calculate the local collision rate, so we also record the

barycentric velocities of each particle at the same interval, trecord.

We then place all of the records of the barycentric coordinates and velocities

into a 3D spatial grid of bins, forming a 3D histogram that represents the distribution

function for the collisionless system. Panel b in Figure 4.1 shows the histogram of

the particle density viewed face-on for a collisionless disk model with a resonant ring

created by an Earth-mass planet on a circular orbit at 1 AU around the Sun, using

a grid bin size of 0.05 AU. Panel a shows the velocity records from three of these

bins located in the midplane of the disk, pointed to in panel b.

Exterior to the resonant ring structure in Figure 4.1, the velocity distribution is

approximately Gaussian and the dispersion in the radial direction is approximately

twice the dispersion in the azimuthal direction, as expected for a Keplerian disk (e.g.

Binney & Tremaine, 1987). However, within the resonant ring structure the velocity

distribution is highly non-Gaussian and the velocity dispersion varies greatly from
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Figure 4.1: Velocity distributions (a) at three locations (b) in a collision-

less dust disk with a resonant ring structure caused by an Earth-mass

planet at 1 AU. The velocity distributions in the resonant ring structure

vary greatly and are non-Gaussian.
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one location to another. This illustration shows that to calculate the collision rates

in a resonant ring we must explicitly calculate the local velocity distribution.

4.2.2 The collisional grooming algorithm

Besides the distribution function, recording the barycentric coordinates and

velocities of all particles at regular intervals during the integration of the seed model

yields a second important ingredient for our algorithm—a chronological record of

each particle’s trajectory, which we refer to as a “stream.” We let each stream from

our seed model represent a large number of particles, which varies from record to

record, i.e. the ith record is scaled to Ni particles. We adjust the scaling factor to

control the mean collision time of the particles.

We initially assume collisions only serve to remove material from a stream. As

they progress through the cloud, the streams become attenuated by collisions with

other streams as

Ni = Ni−1 e−τcoll,i , (4.3)

where Ni is the number of particles in the ith record of a given stream and τcoll,i is

the collision depth for the ith record. Equation 4.3 is analogous to the solution to

the radiative transfer equation for photons passing through an absorptive medium.

We approximate the collisional depth as

τcoll,i ≈
∑

k

nkσk|vi − vk|trecord, (4.4)

where vi is the velocity associated with the ith record of the given stream, nk, σk,

and vk are the particle number density, collisional cross-section, and velocity of the
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other records in the same bin as the ith record, and nk is equal to Nk divided by the

bin volume. This approximation works as long as trecord ≪ tcoll. We perform this

calculation for all records in all particle streams, one at a time, from the first record

to the last record in each stream.

After only one pass through all of the records for all streams, i.e., one iteration,

the particle streams will be attenuated incorrectly; the streams will be attenuated

based on the density distribution of the collisionless seed model, which overestimates

the particle density and therefore the collision rate. To remedy this problem, we

iterate the attenuation process of all records until no record changes by more than a

set tolerance of a few percent. By doing so, we ensure that the final number density

histogram approximately satisfies Equation 4.2 in the steady state.

Figure 4.2 shows an example of the grooming algorithm at work. The top-

left panel shows the surface density of a collisionless disk scaled by 1/r2, where r is

circumstellar distance. The disk of 120 µm grains features a ring structure caused by

an Earth-mass planet on a circular orbit at 1 AU around a Sun-like star. We applied

our collisional grooming algorithm to the disk and scaled the number of particles per

stream equally among all streams such that η0 ≈ 3.7, where η0 = tPR(r0)/tcoll(r0)

and r0 is the mean circumstellar distance at which grains are launched.

After the first iteration, shown in the top-middle panel, the collision rates are

overestimated so that the surface density in the inner disk is too low. During the

second iteration, shown in the top-right, the algorithm underestimates the collision

rates. The algorithm alternates between over- and underestimating the collision

rates while converging on the correct solution.
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Figure 4.2: Surface density scaled by 1/r2 of a collisional model as a func-

tion of iteration number. The upper-left panel shows the surface density

of the seed model, a collisionless disk with a resonant ring structure (see

Section 4.2.3 for simulation details). The iterations alternate between

over- and underestimating the amount of collisions while converging on

the correct solution.
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Our algorithm uses a finite grid of bins to approximate the local density and

velocity structure, so Poisson noise can become an issue in bins with few records. To

help mitigate this Poisson noise, we use a nearest-neighbor averaging routine. For

bins with fewer than 10 records, we include the records from the six nearest-neighbor

bins in the calculation of τcoll. We weight the records in each nearest-neighbor bin

at 50% of the weight of the central bin.

Our calculation of the collisional depth (Equation 4.4) trivially handles seed

models with multiple grain sizes. Given an initial distribution of grain sizes, the

algorithm can simultaneously solve for the collisional interactions among all grains

of all sizes included in the seed model. The algorithm can model complex phenomena

that depend on grain size, such as size-dependent collision rates, radial transport

rates, and resonant structure morphologies.

Equation 4.3 ignores any fragments that may be produced by collisions. Treat-

ing collisions as non-productive is not valid for all collisions in all debris disks, but it

is likely acceptable in a wide range of cases. Backman & Paresce (1993) argued that

in the inner Solar System, grain-grain collision velocities are high enough (on the

order of a few kilometers per second) that grains fragment catastrophically during

any collision, and any fragmentation products are either gas or small enough to be

removed immediately by radiation pressure. In resonant ring structures, like the

circumsolar ring created by Earth, the collision velocities can be even higher, on the

order of tens of kilometers per second (c.f. Figure 4.1). In the outer Solar System,

where collision velocities are lower, grains probably resemble cometary grains. Sam-

ples of cometary interplanetary dust particles directly returned from the Stardust
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mission and observations of cometary ejecta during the Deep Impact mission reveal

that the majority of observed cometary particles are loosely bound aggregates of

submicron-sized grains, which can easily be shattered into unbound β-meteoroids

(A’Hearn et al., 2005; Brownlee et al., 2006; Zolensky et al., 2006).

Our algorithm can also be adapted to handle particle fragmentation. We

discuss this feature in Section 4.4.

4.2.3 Tests

We developed a collisional disk modeling code based upon the algorithm de-

scribed above. We subjected our code to a battery of tests to confirm its operation

and identify its limits. Here we demonstrate the algorithm’s performance, show that

it converges on a unique and correct solution, and place limits on the conditions un-

der which it is valid. For now, we neglect fragmentation; we assume non-productive

collisions.

Below, we will refer to an analytic solution for the surface density as a function

of circumstellar distance for a planet-less disk. Wyatt (1999) showed that Equation

4.2 has the following steady-state solution for an azimuthally-symmetric disk with

a single grain size and grain mass under the assumption that collisions create no

daughter particles:

Σ(r) =
Σ(r0)

1 + 4η0(1 −
√

r/r0)
, (4.5)

where Σ is the surface density and r0 is the circumstellar distance of the dust source.

If we do not add a perturbing planet, we can directly compare the results of our
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algorithm to this expression.

4.2.3.1 Seed models

Throughout this paper, we will refer to two collisionless disk simulations which

we use as seed models: a planet-less disk simulation and a simulation of a disk with

a resonant ring structure. For both simulations, we integrated the orbits of 20,000

particles. Particle integrations were terminated when their semi-major axes were

less than 0.5 AU, so many images will show no data interior to this radius. In

many instances throughout this paper we will only examine a subset of the total

number of integrated particles, and will state the number used when appropriate.

All simulations were performed using a hybrid symplectic integrator (see Stark &

Kuchner, 2008).

Our planet-less disk seed model contains particles with β = 0.0023, where β

is the ratio of the force on the grain from radiation pressure to the gravitational

force (e.g. Burns et al., 1979). For a spherical blackbody grain with a density of 2

gm cm−3, β = 0.0023 corresponds to a grain radius of 120 µm around a Sun-like

star. We initially placed the grains at 10 AU on circular orbits with inclinations

uniformly distributed between 0 and 14◦. We distributed all other initial orbital

parameters (longitude of ascending node, mean anomaly, argument of pericenter)

uniformly between 0 and 2π. We recorded particle positions and velocities every

6956 years.

For the second seed model, we integrated the orbits of particles with β = 0.0023
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as they spiraled inward and interacted with an Earth-mass planet on a circular orbit

at 1 AU around a Sun-like star. We launched grains from parent bodies with semi-

major axes uniformly distributed between 3.5 and 4.5 AU, eccentricities uniformly

distributed between 0 and 0.2, and inclinations uniformly distributed between 0 and

20◦. We distributed all other initial orbital parameters uniformly between 0 and 2π.

We recorded the particle positions and velocities once every 426 years.

4.2.3.2 Bin size test

The finite size of the bins used to approximate the local density and velocity

distributions is a natural source of error for our algorithm. We need to ensure that

the bins are small enough to resolve any structure within the disk. To help us decide

on the appropriate bin size, we performed the following test.

We applied our collisional grooming algorithm to our seed model of a disk

with a resonant ring structure. We used 15,000 simulated particles to ensure that

Poisson noise was not an issue for this test. For the collisional algorithm, we scaled

the number of particles per stream such that η0 ∼ 1, and used four different cubic

bin sizes of 0.02, 0.05, 0.1, and 0.2 AU. For each of the largest three cases, we

calculated the differences in the collision rates compared to the smallest case.

Figure 4.3 shows these relative differences in the collision rates. The left panel

shows that differences in the collision rates between the 0.05 and 0.02 AU bin sizes

are on the order of a few percent or less, and show no signs of structural differences.

The right panel shows that using a bin size of 0.2 AU results in obvious structural
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Figure 4.3: Errors in the collision rate in a model with an Earth-mass

planet at 1 AU. Errors are relative to the collision rates calculated using

a bin size of 0.02 AU.

differences (greater than 10%) compared to a model with a 0.02 AU bin size. The

right panel also shows a subtle imprint of the grid itself, which appears as straight

horizontal and vertical features in the collision rates.

In light of these results, we recommend that the bin size for collisional cal-

culations in a debris disk with a resonant ring structure should be ∼ 0.05 AU for

a planet at 1 AU. The size of structural features in a resonant ring scale linearly

with planet semi-major axis, ap (Stark & Kuchner, 2008), so we suggest that in

general, the optimal bin size for disks with resonant ring structures is ∼ 0.05 ap.

Bins larger than this size fail to resolve the ring structure while bins smaller than

this size become more susceptible to Poisson noise in the distribution function.

For collision times that are short compared to the PR time (η0 ≫ 1), grains
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launched from circumstellar distance r0 have little time to move radially inward

before colliding. This process can result in a very narrow ring structure at r = r0.

If the bin size is larger than the width of the ring, our collisional algorithm will fail

to resolve the ring. So we must also choose a bin size small enough such that the

crossing time of a bin caused by PR drag at r = r0 is shorter than the collision time.

The bin crossing time is given by

tcross(r0) = tPR(r0) − tPR(r0 − b) , (4.6)

where b is the bin size and the PR time is given by Equation 1.4. With the re-

quirement tcross(r0) . tcoll(r0) we find to first order in η−1
0 that the bin size must

satisfy

b .
r0

2η0

. (4.7)

4.2.3.3 Poisson noise test

If there are too few records in a given bin, Poisson noise can dominate the

calculation of the collisional depth, even with our nearest-neighbor averaging rou-

tine. However, we are not specifically concerned with whether a single collisional

depth calculation suffers from Poisson noise, but whether Poisson noise affects the

final outcome of the simulation. To examine the effects of Poisson noise, we applied

our collisional algorithm to our planet-less seed model three times, first using 15,000

simulated particles, then using 5,000 simulated particles, and then using only 1,500

simulated particles. For each application of the collisional algorithm, we used a

cubic bin size of 0.05 AU. We scaled the disk such that η0 ≈ 223 for all three cases.

104



After processing the three disks with our collisional grooming algorithm, we

azimuthally averaged each of the three resulting surface densities. Figure 4.4 shows

the normalized surface density as a function of circumstellar distance for all three

cases compared to the analytic solution (Equation 4.5). The 15,000-particle case

follows the analytic solution well, while the 1,500-particle case deviates by a factor

of ∼ 2 and contains strong fluctuations caused by Poisson noise. From these simula-

tions we estimate that the average number of records per bin near the circumstellar

distance at which grains are launched should be at least on the order of a few to

avoid the effects of Poisson noise.

4.2.3.4 Uniqueness of solution

Figure 4.2 shows that our algorithm does indeed converge, but does not indi-

cate whether the algorithm converges on a unique solution. To test for uniqueness,

we applied the collisional grooming algorithm to three independent seed simulations

of disks with ring structures, using 5,000 particles for each simulation and a value

of η0 ∼ 4. The range of initial conditions were the same for all three simulations,

but individual values were generated using a different random number seed.

We compared the resulting surface densities of all three collisional disks. Ex-

cept for the outer and inner extremities of the disk where the statistics were poor,

none of the final disk surface densities differ by more than a few percent and none

show significant structural differences. All three independent simulations converged

to the same surface density solution to within the limits of Poisson noise.
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Figure 4.4: Azimuthally averaged surface density as a function of circum-

stellar distance in a planet-less collisional disk for three simulations with

different numbers of particles (see Section 4.2.3). The 15,000-particle

simulation follows the analytic solution well, but the 1,500-particle sim-

ulation deviates significantly and shows signs of Poisson noise.
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4.2.3.5 Correctness of solution

To test the correctness of our algorithm’s solution, we directly compared the

results of our algorithm to the analytic solution for a planet-less disk of a single

grain size (Equation 4.5). We applied our collisional grooming algorithm to our

planet-less-disk seed model of 20,000 particles using six different values of η0. Figure

4.5 shows the azimuthally-averaged surface densities as a function of circumstellar

distance for all six cases. The calculated surface densities (solid lines) match the

analytic solutions (dashed lines) well for all values of η0 except η0 = 763. In this

case, collisions happen so quickly that the disk forms a narrow ring at 10 AU whose

width is smaller than the bin size used in our algorithm (0.05 AU); this case does

not meet the bin size criteria in Equation 4.7. If we used a smaller bin size, we could

resolve the ring structure and investigate even larger values of η0.

For all cases shown in Figure 4.5, trecord ≪ tcoll; none of the deviations from the

analytic values are caused by insufficient time sampling. We tested the algorithm’s

behavior when trecord & tcoll, and confirmed that our algorithm fails under these

circumstances. For trecord & tcoll, our algorithm typically overestimates the collision

rate and the result looks qualitatively similar to the η0 = 763 case shown in Figure

4.5.

For the case of a disk with a resonant ring structure, there exists no analytic

solution for the surface density with which we can compare the results of our simu-

lations. However, we can probably assume that our collisional algorithm arrives at

the correct solution if the amount of collisions is very small, i.e., η0 ≪ 1, since such
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Figure 4.5: Azimuthally averaged steady-state surface density as a func-

tion of circumstellar distance for a planet-less disk undergoing PR drag

and non-productive collisions. Analytic solutions are shown with dashed

lines and the results of our collisional algorithm are shown with solid

lines. Our algorithm gives the correct solution for all values of η0 except

the largest, at which point the collisions yield a narrow ring near 10 AU

that is no longer resolved by the grid.
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a disk should deviate from the collisionless case by very little. Under this assump-

tion, we propose the following test to investigate the correctness of our algorithm’s

solution for a disk with a ring structure:

1. Apply our algorithm to the collisionless seed model using η0 ≪ 1.

2. Store the output of the algorithm, call it Model C.

3. Increase η0 by a small amount δη0.

4. Apply our algorithm to Model C disk using the new value of η0.

5. Repeat steps 2 through 4 until η0 is equal to the desired value of η0.

6. Compare the results to a model with the same value of η0 calculated in only

one step.

We performed this test using a 5,000-particle seed model of a disk with a

ring structure. We used a cubic bin size of 0.05 AU and scaled the disk density

so that the final η0 ≈ 3.7. We applied the collisional grooming algorithm using 19

logarithmically-spaced steps in η0. We compared the surface density of this disk

to the surface density calculated by applying the algorithm in the usual single-step

fashion. The disks differed by less than one part in ∼ 105; both methods arrived at

the same solution to within the limits of Poisson noise. A similar test performed in

the opposite direction, i.e., slowly reducing the η0 to the desired value, gave similar

results. This test supports both the uniqueness and correctness of the solution that

our algorithm finds for a collisional disk with a resonant ring structure.
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4.2.3.6 Benchmark tests

We benchmarked our collisional grooming algorithm code by applying it to

our seed model of a disk with a ring structure. We recorded the run time of our

code using 1,250, 2,500, 3,750, and 5,000 simulated particles and cubic bin sizes of

0.05 and 0.1 AU. Table 4.1 shows the run time for a single iteration of our algorithm

on a single 2.2 GHz CPU.

For each bin, the algorithm performs of order n2
b calculations, where nb is the

number of records in that bin. So we would expect that our run time per iteration

scales as B〈nb〉2, where B is the number of bins containing records, or as 〈nb〉2 for

a given bin size. Table 4.1 shows that the run time scales as 〈nb〉2 for a bin size

of 0.1 AU, but not for a bin size of 0.05 AU. In the latter case, our algorithm is

working with many bins that have relatively few entries and is switching on our

nearest-neighbor approximation described in Section 4.2.2, which can cause the run

time to deviate from the 〈nb〉2 scaling relationship.

The number of iterations required to converge on the correct solution depends

on many factors, such as η0, the number of records, the bin size, the structure of the

disk, and the tolerance set for convergence. For a disk with a resonant ring structure

composed of 5,000 particles, typically 5 – 10 iterations are required for better than

5% convergence with η0 ∼ 1. The total run time for such a disk typically ranges

from 20 minutes to 2 hours.
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Table 4.1: Bench mark tests

Number of particles Bin size Run time per iteration†

(AU) (min)

1,250 0.05 0.3
2,500 0.05 0.8
3,750 0.05 1.6
5,000 0.05 2.7
1,250 0.1 1.1
2,500 0.1 4.2
3,750 0.1 9.4
5,000 0.1 16.7

†For a single 2.2 GHz CPU

4.2.4 Limitations

Here we summarize the current limitations of our algorithm. We have already

shown that the bin size must be small enough to resolve any structural features in

the disk, and the collision time must be longer than the time between records for

our algorithm to converge. We also showed that the number of records per bin must

be large enough to avoid the effects of Poisson noise.

The algorithm presently has another, more subtle limitation, which it shares

with many collisionless steady-state disk simulations (e.g. Dermott et al., 1994; Liou

& Zook, 1999; Moran et al., 2004; Deller & Maddison, 2005). As stated in Section

4.2.2, we record the coordinates and velocities of each integrated particle at regular

time intervals, trecord, to extrapolate the results of a few thousand integrated grains

to millions of grains or more and to obtain a chronological record of each particle’s

trajectory. This technique implies that a new parent body launches grains every

trecord with the exact same orbital parameters as the first parent body. Because our
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algorithm requires the use of this technique, our algorithm implicitly assumes that

each parent body’s orbit is populated by many parent bodies uniformly distributed

in mean anomaly and that the orbits of parent bodies do not change over the course

of a collisional time.

4.3 Non-productive collisions in resonant ring structures

We can use our algorithm to investigate the effects of collisions on steady-state

resonant ring structures. To this end, we ran some models of familiar kinds of disk

structures. Here we discuss some of the new physical effects we have observed in

our models.

The top-left panel of Figure 4.6 shows the collision rate per particle in a 0.4

AU-thick cross-section through the mid-plane of a disk. The disk has a resonant ring

structure caused by an Earth-mass planet whose location is marked with a white

dot. We scaled the disk density so that η0 ≈ 3.7. The top-right panel shows the

surface density of the same cross-section for comparison.

The collision rate is high in a circumstellar ring near the location of the parent

bodies (∼3 AU), i.e., the birth ring. Grains in this region of the disk are too young to

have been destroyed by collisions, so the local density is relatively high, as seen in the

top-right panel. The collision rate drops just interior to this ring, at a circumstellar

distance of ∼2 AU.

As you might expect, the top-left panel of Figure 4.6 shows that the collision

rate reaches its highest point in the resonant ring structure, where the density is
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Figure 4.6: Top-left: Collision rate per particle (|dN/Ndt|) in a 0.4 AU-

thick cross-section through the midplane of a disk with a resonant ring

structure. A white dot marks the location of an Earth-mass planet or-

biting at 1 AU. Top-right: Surface density of the midplane cross-section

shown in the upper-left panel. Bottom-left: Collision rate per particle

in a 0.4 AU-thick edge-on cross-section of the same disk. Bottom-right:

Surface density of the edge-on cross-section shown in the bottom-left

panel. The collision rate is affected by both the local density structure

and the local velocity distribution; the collision rate is highest in the res-

onant ring structure, a region of enhanced density and relative particle

velocities.
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enhanced by resonant trapping and relative velocities are higher because of resonant

pumping of the grains’ eccentricities. The average collision rate in the resonant

ring structure is higher by a factor of a few when compared to the collision rate

exterior to the resonant ring structure, consistent with analytic estimates (Queck

et al., 2007). Figure 4.6 also shows that the collision rate exhibits azimuthal and

radial structure in the resonant ring. This structure reflects both localized density

enhancements and regions of higher velocity dispersion. For example, the region of

enhanced collision rate located ∼90◦ clockwise from the planet generally corresponds

to a region of higher density. But the region of enhanced collision rate located ∼90◦

counterclockwise from the planet does not. This second region of enhanced collision

rate is primarily caused by an increase in the local velocity dispersion, as shown in

Figure 4.1.

We show the collision rate and surface density for an edge-on cross-section of

the same disk in the bottom two panels of Figure 4.6. The bottom-left panel reveals

a trend toward higher collision rates in the disk mid-plane, which is denser than the

rest of the disk, as shown in the bottom-right panel. The bottom-left panel of Figure

4.6 also shows that the collision rate at a circumstellar distance of ∼0.7 AU is higher

than the collision rate at ∼2 AU by a factor of ∼2, even though the density is higher

near ∼2 AU. This increase in the collision rate occurs because grains that survive and

spiral inward past the resonant ring structure have typically had their eccentricities

pumped up by passage through the resonance, so the velocity dispersion interior

to the resonant ring structure is higher than the velocity dispersion exterior to the

resonant ring structure.
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The top panel in Figure 4.7 shows the collision rate per particle as a function

of semi-major axis in the region of the resonant ring, a kind of continuum with

spikes. The continuum of the collision rate is higher for semi-major axis values close

to 1 AU than for larger semi-major axis values because the resonant ring enhances

the local collision rate by a factor of ∼ 2, as shown in Figure 4.6. The spikes in the

collision rate correspond to MMRs: the 2:1, 5:3, 3:2, 7:5, 4:3, 9:7, 5:4, etc., from

right to left. Most of the first order resonances (p+1:p) show a split peak, with

higher collision rates at the edges of the resonance than at the center. The split

peaks may be caused by collisions between the grains just outside of the MMRs with

the grains in the MMRs.

The dashed line in the top panel of Figure 4.7 shows the classically-calculated

collision rate, 1/tcoll = ατ/torbit. We set α = 15.8 so that the median collision rates

were equal. This value of α is larger than the estimate α ≈ 4π by Wyatt et al. (1999),

and hence our collision rate is higher, likely because Wyatt et al. (1999) assumes

the mean relative velocity is determined solely by the range of orbital inclinations,

whereas in a resonant ring the large range of orbital eccentricities will also contribute

to the relative velocities.

Our algorithm shows how the classically-calculated collision rate fails for disks

with planets, since this approximation neglects collisional enhancement of particles

in resonance. It also cannot correctly reproduce the vertical structure of the collision

rate, like that shown in the bottom-left panel of Figure 4.6. The failure of this

approximation is even more dramatic than these figures show because the particles

spend most of their time in the MMRs.
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Figure 4.7: Collision rate per particle (|dN/Ndt|) as a function of semi-

major axis and eccentricity for a disk with a resonant ring structure.

The spikes in the collision rate vs semi-major axis and eccentricity show

that the collision rate is enhanced for particles in resonance, and also

adjacent to the first order MMRs.
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The bottom panel of Figure 4.7 shows the collision rate per particle as a

function of eccentricity. The particles attain an eccentricity of no more than e ≈ 0.2

when they are launched. So any particles with e > 0.2 in this plot must have

had their eccentricities increased by resonant pumping or close encounters with the

planet. These particles have higher collision rates because they are typically located

in the resonant ring, a region of higher density and larger velocity dispersion. The

small peaks in the collision rate at e = 0.27, e = 0.31, and e = 0.37 correspond

to the maximum eccentricities that particles can obtain in the 5:4, 4:3, and 3:2

exterior MMRs (Beaugé & Ferraz-Mello, 1994), and also correspond to localized

regions of higher density within the resonant ring structure. The data become noisy

for e > 0.38 because relatively few particles end up with such large eccentricities,

except in close encounters with the planet.

Figure 4.8 illustrates some of the morphological effects collisions can have on

resonant ring structures. The top row shows surface density histograms of a disk

with a resonant ring structure for three different values of η0, increasing from left

to right. The bottom row shows zoomed-in views of the resonant ring structures

from each of the disks in the top row. Each of the six histogram images was scaled

independently to highlight differences in geometry.

Collisions de-emphasize the resonant ring and emphasize the birth ring. They

also change the morphology of the resonant ring. In the collisionless case on the

left, the resonant ring structure has a sharp inner edge with well-defined azimuthal

and radial structure. For the slightly collisional system (η0 ∼ 0.09), shown in the

middle, the density at the resonant ring’s inner edge is significantly reduced relative
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to the rest of the ring structure. As we further increase the overall collision rate in

the disk, the density of the inner edge of the resonant ring continues to drop relative

to the rest of the ring, while azimuthal structures in the ring become smeared out.

Collisions reduce the density of the inner edge of the resonant ring for two

reasons. First, as previously shown, collision rates are higher in regions of higher

density. Second, grains that contribute to the inner edge of the resonant ring are

typically older, having had their eccentricities pumped up while in resonance. These

older grains have had more time to collide with other grains.

4.4 Particle fragmentation

Our algorithm, as described above, can handle seed models with multiple grain

sizes with no modifications. With a small modification the algorithm can also model

fragmentation, i.e., collisions that produce daughter particles. Here we describe a

method for including particle fragmentation and present some preliminary results.

When two particles collide and produce fragments, the fragments are launched

into new orbits such that the fragment velocity vectors are distributed around the

center of momentum velocity vector of the colliding particles (e.g. Krivov et al.,

2005). Integrating the orbits of all of these fragments would be computationally

prohibitive, so we make a numerical approximation: we limit the trajectories of the

fragments we model to the recorded trajectories that already exist in the seed model.

To make this approximation work, our seed model must include a sufficiently wide

range of initial conditions to ensure that trajectories are available that closely match

118



0 25 50 75 100
Relative surface density (linear scale)

  

0 25 50 75 100
Relative surface density (linear scale)

  

η0 ~ 0.00 η0 ~ 0.09 η0 ~ 0.73

Figure 4.8: Surface density as a function of η0 for a disk with a ring struc-

ture caused by an Earth-mass planet at 1 AU viewed face-on. The top

row shows the entire disk, which extends out to 4.25 AU. The bottom row

shows zoomed-in views of the resonant ring structure. Collisions reduce

the sharp inner-edge feature of the resonant ring structure, smear out

azimuthal structure, and de-emphasize the resonant ring while empha-

sizing the birth ring. Even a low collision rate (η0 ≪ 1) can significantly

alter resonant ring structures.
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the desired distribution of fragment trajectories.

To include particle fragmentation in our algorithm, we first run a seed model

with several discrete particle sizes, each of which represents a range of sizes, and ini-

tially populate each size bin according to a mass distribution function (e.g. Dohnanyi,

1969). Then we apply our collision algorithm with the following additional subrou-

tine, implemented during the calculation of the collision depth (Equation 4.4) for

every record of each stream:

1. Calculate the kth record’s contribution to the collision depth of the ith record

(c.f. Equation 4.4), call it

τcoll,i,k = nkσk|vi − vk|trecord. (4.8)

Remember that the index i refers to records in a stream while the index k

refers to records in a bin.

2. Calculate the mass of particles removed from the ith record by collisions with

the kth record, given by

∆Mi,k = miNi−1

(

1 − e−τcoll,i,k
)

, (4.9)

where mi is the mass of a single particle in the ith record.

3. Record the center of momentum velocity vector of the colliding particles, given

by

vCOM,i,k =
mivi + mkvk

mi + mk
. (4.10)

We assume the difference between the fragment velocities and vCOM,i,k is small

and use vCOM,i,k as the desired fragment velocity.
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4. Distribute the fragments by size according to a crushing law.

5. Search within the local spatial bin for streams that closely match the grain

size, s, and center of momentum velocity vector, vCOM,i,k, of the fragments.

Once the appropriate streams are found, increase the numbers of particles in

those streams to account for the fragments.

The subroutine described above must be executed for every pair of records in

every bin. In practice, searching for an appropriate stream in which to put fragments

during every interaction is computationally expensive; the algorithm run time scales

as 〈nb〉3 instead of 〈nb〉2. One could imagine many possible approximations that

would reduce the amount of computer time spent searching for fragment streams.

For our preliminary models, we chose to place all of the fragments from the ith

record into a single mean center of momentum stream, with velocity

〈vCOM,i〉 =

∑

k

∆Mi,kvCOM,i,k

∑

k

∆Mi,k

. (4.11)

We leave a detailed investigation into the accuracy and efficiency of this approxi-

mation for future work.

We have implemented this particle fragmentation subroutine in our code and

produced a simple model of a fragmenting disk with a resonant ring structure to

illustrate the procedure at work. For our seed model, we integrated the orbits of

2,500 120 µm grains (β = 0.0023) and 2,500 12 µm grains (β = 0.023) and recorded

the particle positions and velocities every 426 and 42 years, respectively, as they

orbited a Sun-like star (sw = 0.35) in the presence of an Earth-mass planet on
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a circular orbit at 1 AU. We launched the grains from parent bodies with initial

conditions identical to the second seed model described in Section 4.2.3.1. For

the purposes of illustration, we initially populated only the 120 µm grain streams

and implemented a simple fragmentation scenario in which 120 µm grains shatter

completely into 12 µm grains, conserving mass. Fragments from 12 µm grains were

deleted from the model. We assumed all colliding grains were shattered completely,

regardless of the mass or velocity of the target or projectile. We scaled the number

of 120 µm particles per stream such that η0 ∼ 0.04.

Figure 4.9 shows the results of our fragmenting disk model. The inset two-

color image shows the face-on surface density of the disk. The 120 µm (large) grains,

shown in red, dominate the surface density exterior to the resonant ring structure.

The 12 µm (small) grains, shown in blue, dominate the surface density near the

center of the disk.

The plot in Figure 4.9 shows the disk mass distribution as a function of semi-

major axis for each of the grain sizes in our simple model. At the outer edge of the

disk, near the birth ring of large grains at ∼4 AU, the large grains dominate the

mass of the disk. As the large grains spiral inward, collisional fragmentation reduces

the disk mass in large grains and transfers that mass to the small grains.

Near 1.5 AU, the resonant ring structure enhances the collision rates of the

large grains and therefore also the disk mass in small grains. The spikes in the mass

distribution function near 1 AU show that the two grain sizes populate different

sets of MMRs. The combined effects of collisional fragmentation and PR drag

would cause the resonant ring structure, and the disk as a whole, to look different
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Figure 4.9: Disk mass (in Lunar masses) as a function of semi-major axis

for a disk of fragmenting grains in the presence of an Earth-mass planet

at 1 AU orbiting the Sun. The inset false-color image shows the face-on

surface density of the disk. MMRs near 1 AU trigger fragmentation, a

process which may explain the population of small warm dust interior

to Fomalhaut’s resolved ring structure (Stapelfeldt et al., 2004).
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at different wavelengths, because grains of different sizes emit differently. Figure

4.9 shows that PR drag and resonant interactions can sort collisionally fragmenting

grains by size, allowing smaller grains to spiral in to smaller circumstellar distances.

The radial distribution of dust grains produced by our model is analogous to

that observed in the Fomalhaut disk. Stapelfeldt et al. (2004) resolved the Fomal-

haut disk at 24, 70, and 160 µm using the Multiband Imaging Photometer for Spitzer

(MIPS) and obtained a 17.5–34 µm spectrum with the Infrared Spectrograph (IRS).

Both the IRS spectrum and the 24 µm MIPS image reveal a compact source of dust

likely interior to 20 AU, well inside of Fomalhaut’s outer ring structure near 140

AU. This compact source of dust, responsible for ∼0.7 Jy of flux at 24 µm, is not

seen in the 70 or 160 µm MIPS images, suggesting that the warm dust grains are

inefficient at radiating at these wavelengths; the compact warm dust grains may be

smaller in size than the grains near the outer ring. Our preliminary fragmentation

model shown in Figure 4.9 suggests that collisional fragmentation of large grains

triggered by MMRs may be the source of small dust grains.

4.5 Summary

We have developed a new algorithm to self-consistently treat collisions and

resonant gravitational dynamics in dusty disks. Our algorithm handles disks with

multiple grain sizes and can be adapted to model particle fragmentation. The algo-

rithm uses the density and velocity distributions of a collisionless disk simulation to

iteratively solve for the density distribution of a steady-state collisional disk. The
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algorithm is applied after the simulation of the collisionless system, removing the

need to re-integrate the equations of motion for disks with different collision rates,

and can run on a single processor in ∼ 1 hour.

We performed several tests to show that our algorithm arrives at a unique

and correct solution for collisional disks with and without a resonant ring structure.

We showed that collisions can reduce the contrast of resonant ring structures, espe-

cially at the inner edge of the ring structure, and smear out azimuthal asymmetries.

We also showed that particle fragmentation triggered by resonant interactions can

radially sort particles by size, producing smaller particles at smaller circumstellar

distances. This process may explain the population of warm dust found interior to

Fomalhaut’s ring (Stapelfeldt et al., 2004).

Our collisional grooming algorithm should allow us to accurately model and

synthesize multi-wavelength images of observed debris disks, like Fomalhaut, Vega,

and HR 4796A. The algorithm enables us to investigate the effects that collisions

have on dust disk morphology, such as asymmetries from clumping of parent bodies,

resonant trapping of dust grains, and the radial sorting of grain sizes illustrated in

Figure 4.9. It should be useful for modeling long-lived grains in the solar zodiacal

cloud and it should help us predict the morphology of ring structures in disks yet

to be observed.
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Chapter 5

Collisional models of the Kuiper Belt dust cloud

Submitted for publication in The Astronomical Journal.

5.1 Introduction

Debris disks around other stars are often described as more massive versions

of the Solar System’s Kuiper Belt (KB) (e.g. Greaves et al., 2004; Bryden et al.,

2006; Jewitt et al., 2009; Booth et al., 2009). Debris disks, like the disks around

Fomalhaut, Vega, ǫ Eridani, etc. can only be imaged if they have optical depths of

∼ 10−4 or higher with existing techniques. Models of KB dust production informed

by dust detectors in the outer Solar System suggest a face-on optical depth of more

like 10−7 for the Kuiper Belt (Backman et al., 1995; Stern, 1996; Yamamoto &

Mukai, 1998). But perhaps when the Kuiper Belt was younger and more massive,

it closely resembled the debris disks we have seen so far around other stars.

This analogy has many ramifications. For example, images of debris disks

around nearby stars show rings, clumps, warps and other asymmetries; these asym-

metries have often been compared to the asymmetries in the Kuiper Belt, caused

by dynamical perturbations from Neptune and other planets. When we see these

patterns in debris disks, can we recognize the planets that are sculpting them? Can

we use the patterns to find hidden planets that we couldn’t otherwise detect, or
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measure the orbital parameters of planets orbiting too slowly to track? The Kuiper

Belt, because of its proximity to the Earth, is potentially an important laboratory

for testing our dynamical models of debris disks and our ideas about debris disk

morphologies.

Several authors have made dynamical models of the distribution of dust in

the Kuiper Belt for comparison with images of other debris disks. Liou & Zook

(1999) showed that Neptune may temporarily trap dust in MMRs, forming a wide

circumsolar ring, from 35–50 AU, with a gap in the ring at the location of Neptune.

This model has often been compared to the wide, clumpy rings seen around Epsilon

Eridani and Vega. Moro-Mart́ın & Malhotra (2002) explored how grains of various

sizes behave in the outer Solar System, and predicted the spectral energy distri-

bution of the Kuiper Belt dust (see also Moro-Martin & Malhotra, 2003). Holmes

et al. (2003) explored how a particular family of Kuiper Belt Objects (KBOs), the

plutinos, could contribute to the resonant Kuiper Belt dust population.

But these models contain an important limitation: they largely neglect grain-

grain collisions. In some debris disks the typical collision time can become shorter

than the typical PR time, affecting the disk morphology (e.g. Wyatt, 2005); we

find that this effect sets in at even lower optical depths than previously anticipated.

Moreover, as we mentioned above, the debris disks we see around other stars are

much more massive than the KB, making collisions even more important.

In this paper, we take a step toward a better understanding of the analogy

between the KB and extrasolar debris disks. We use our new “collisional groming”

algorithm (Stark & Kuchner, 2009) to explore the effects of grain-grain collisions on
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the distribution of Kuiper Belt dust. We break the KB source population into three

populations: hot, cold and plutinos. We model the effects of grain-grain collisions

in today’s KB, and we model how the KB dust morphology would change as the

amount of dust is increased from a face-on optical depth of ∼ 10−7 to ∼ 10−4.

5.2 Numerical techniques: collisional grooming

Here is a brief summary of the collision grooming algorithm; Stark & Kuchner

(2009) described the algorithm in depth and various numerical tests it has passed.

First the orbits of a set of dust grains are numerically integrated using an n-body

integrator, and the positions and velocities of the particles are recorded periodically

in a histogram. We call this histogram the “seed” model. Then the trajectories of

each particle are re-interpreted as steady state streams of particles, with weights

that define the number of particles in each stream at any given point along the

trajectory. The weights are then iteratively manipulated so that they describe a

self-consistent cloud of interacting particles. The result is a 3-D grid that contains

the number density of the cloud, a self-consistent solution to both the dynamical

equations that govern the particle trajectories and the number flux equation that

accounts for the creation and destruction of particles in every histogram bin.

There have been several recent papers on kinetic treatments of collisions in

debris disks (e.g. Krivov et al., 2006; Wyatt et al., 2007) including the Kuiper Belt

(Krivov et al., 2005). Some of these models involve more detailed collision physics

than our simulations, e.g., time evolution and fragmentation. But our simulations
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have the unique capability to explore the interaction between the dynamical effects

of planets, e.g. resonances, secular forcing, etc., and grain-grain collisions. These

pheneomena turn out out be crucial for understanding the distribution of dust in

debris disks, even in the presence of collisions, as we will show.

To create the seed model for our study, we integrated the equations of motion

for a particle subject to gravity from the Sun, Jupiter, Saturn, Uranus, and Nep-

tune plus radiation pressure, Poynting-Robertson (PR) drag and solar wind drag

(see Stark & Kuchner, 2008). We used a customized hybrid symplectic integra-

tor, described in Stark & Kuchner (2008), modified to include drag forces. The

integrations all used a symplectic time step of 0.1747 years, equal to ∼ 1/20th of

the orbital period at 2.5 AU. We ran the integrations on NASA’s Discover clus-

ter (http://www.nccs.nasa.gov/discover front.html). We recorded the seed model

in the frame rotating with the mean motion of Neptune, to capture any resonant

structures associated with that frame (see Kuchner & Holman, 2003, for a discussion

of which structures are associated with which frame).

We integrated the orbits of all particles for 5 × 108 years, a few times the

maximum collision time for the simulation with lowest optical depth we considered.

We removed particles once they reached a semi-major axis a < 2.5 AU, or a > 300

AU, or suffered a collision with a planet, assuming realistic planet radii. The time

between records was chosen individually for each particle size bin, such that each

size bin contributed roughly 4×106 records for each of the three source populations

(see below). We accumulated the particle records in a histogram of 512 × 512 × 128

bins, each with size 0.5 × 0.5 × 0.3 AU. We ran the collisional grooming algorithm
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for as many iterations as it took until none of the weighting factors varied by more

than 10% from one iteration to the next. This part of the simulation took only a

couple of hours on a single processor, but required 20 gigabytes of of RAM.

Moro-Mart́ın & Malhotra (2002) pointed out that with too few particles, it

is possible that 1) the MMRs may not be populated accurately, and that 2) a

few unusually long-lived grains can dominate the simulations. We overcome these

sources of noise as we did in Stark & Kuchner (2008) and Stark & Kuchner (2009).

We ensure the MMRs are populated accurately by using a total of 75,000 particles;

Moro-Mart́ın & Malhotra (2002) had called for ∼ 105. We handle long-lived particles

using the collisional grooming algorithm, which includes the effects of collisions in

removing these particles.

We added a new piece of physics to our simulations since Stark & Kuchner

(2009). In our new models, when two dust grains collide, they only destroy each

other when the energy of the collision measured in the center of mass frame exceeds

the estimated binding energy of the particles, Qmt, where mt is the mass of the

target grain. Otherwise, the particles continue unaltered. We use an estimate for

the specific binding energy described in Krivov et al. (2006), the “strength” regime

of Equation 22 in that paper:

Q = As

( s

1 m

)bs

(5.1)

The radius of the dust grain is s. We take As = 2× 105 erg g−1 and bs = −0.24, the

values Krivov et al. (2006) used for “icy” grains. Throughout this paper, we assume

spherical particles with a density of ρ = 1 g cm−3.
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For the sake of numerical simplicity in this first generation of 3-D multi-grain-

size collisional models, we do not explicitly follow any fragments produced in the

collisions; we assume that all dust production arises in the source populations, de-

scribed below. In any case, samples of cometary particles directly returned from

the Stardust mission (Brownlee et al., 2006; Zolensky et al., 2006) and observations

of cometary ejecta during the Deep Impact mission (A’Hearn et al., 2005) reveal

that the majority of observed cometary particles are loosely bound aggregates of

submicron-sized grains, which can easily be shattered into unbound β-meteoroids.

These samples seem likely to represent KB particles too.

5.3 Source populations

In the models described here, there are two kinds of bodies: the dust grains,

and the source bodies. The dust grains have orbits that evolve via drag and radiation

pressure; they can be destroyed in collisions with each other. The source bodies have

fixed orbits, and steadily produce the dust grains; they model bodies too large to be

destroyed in collisions, but which nonetheless release dust, e.g., via collisions that

are not part of the bookkeeping.

The dust grains contribute most of the optical depth, so we focus mostly on

their dynamics. The large bodies are incorporated into the simulations as the initial

conditions of the grains in the seed model. The models ultimately depict a steady-

state flow of grains; “initial” here refers only to where the individual grains are

launched in the seed model.
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The size of a grain is approximately parametrized by β, the force on the grain

from radiation pressure divided by the force from stellar gravity, given by Equation

1.3. Liou & Zook (1999) used four different β values and a total of 350 particles.

Moro-Mart́ın & Malhotra (2002) used five different β values and a total of 500–

700 particles, for each of four different models. We used 25 different β values and

a total of 75,000 particles. The 25 β values range from 0.00046 to 0.43355; the

spacing between them is logarithmic. Since we assume perfectly absorbing spherical

particles with a density of ρ = 1 g cm−3, β = 0.57 µm/s, whre s is the dust grain

radius. With this assumption, the range of sizes in our initial conditions corresponds

to 1239 to 1.3 µm.

The grains were launched with a size distribution dN/ds = s−3.5, where s is the

radius of the grain. This distribution is the “crushing law” telling us the relative

production rate of grains of various sizes. We discuss how collisional processing

alters this size distribution below.

Our study benefits from the recent explosion in KBO surveys. Our simulations

incorporated three different populations of source bodies, representing three different

populations of KBOs. We relied on the models of Kavelaars et al. (2008) and

Kavelaars et al. (2009) to disentangle these populations in the face of the many

observational biases that affect measurements of KBO populations (see also Brown,

2001; Trujillo & Brown, 2001). The source populations we assume are as follows:

• Cold. This source population represents the cold classical Kuiper Belt (Brown,

2001). The semi-major axes, a, for this population were distributed uniformly
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between 42.5 and 45 AU. The eccentricities, e, were distributed uniformly

between 0 and 0.1. The inclinations, i, were distributed with distribution

P (i) ∝ exp(−0.5(i/σC)2) where σC = 1.5◦. The longitudes of ascending nodes

and arguments of perihelia were distributed uniformly over [0, 2π). This com-

ponent makes up 16.3 % of the total source population.

• Hot. This population represents both the hot population of the classical

KBOs and the scattered/detatched Kuiper Belt. The semi-major axes are

distributed uniformly between 35 and 50 AU, and the eccentricities are dis-

tributed such that P (e) ∝ e, subject to the additional criterion that a(1−e) >

35 AU. Because of this additional criterion, the semi-major axis distribu-

tion ends up weighted toward 50 AU. The inclinations are distributed with

P (i) ∝ exp(−0.5(i/σH)2) where σH = 13◦. The longitudes of ascending nodes

and arguments of perihelia were distributed uniformly over [0, 2π). The domi-

nance of this category of object in the KB has only recently become apparent;

we assume it makes up 79.7 % of the total source population.

• Plutinos. To represent these bodies, we chose the orbits for the source bodies

from a list of orbits for actual KBOs on the Minor Planet Center’s web site

with 39.1 < a < 39.7 AU. We assume that this population makes up 4% of

the total source population.

Figure 5.1 illustrates these three assumed source populations. We assigned

25,000 particles to each of them. For comparison, Liou & Zook (1999) assumed that

all of their source bodies were in orbits with semi-major axes 45 or 50 AU. Moro-

133



35 40 45 50
a (AU)

0.0

0.1

0.2

0.3

0.4

e

35 40 45 50
a (AU)

0.0

0.1

0.2

0.3

0.4

e

Figure 5.1: Semi-major axis and eccentricity distributions for the as-

sumed source particles.

Mart́ın & Malhotra (2002) assumed all source bodies had orbits with semi-major

axes equal to 45 AU, or that the source body semi-major axes were distributed

uniformly from 35–50 AU. Holmes et al. (2003) assumed all their source bodies had

approximately Pluto-like orbits.

When the grains in our models are released, they instantly jump to new orbits

because of radiation pressure, conserving their velocity at release (see Moro-Mart́ın

& Malhotra, 2002; Holmes et al., 2003). Moreover creation of particles through

collisions generates some velocity dispersion (e.g. Cellino et al, 1999), though we

do not attempt to explicitly model this effect. Many of the source particles have
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resonant orbits, by happenstance, but except for the plutinos, we do not go out of

our way to capture the detailed resonant dynamics of the KB in our source bodies

(see Chiang et al., 2003). The two effects described above that instantly change

the orbits of the particles on release will often wash out the resonant behavior of

the source particles anyway; see Holmes et al. (2003). The KB’s detailed resonant

structure might serve to enhance the resonant populations of dust beyond what

our models show; we leave an investigation of this effect for a future date when we

understand this phenomenon better observationally.

For our basic KB model, we chose a total dust production rate of 3.6 × 106

g s−1 to make the face-on geometrical optical depth in the ring ∼ 10−7. This rate

is consistent with estimates based on the dust fluxes measured by Pioneer 10 and

11 beyond 10 AU from the Sun (Landgraf et al., 2002; Moro-Martin & Malhotra,

2003). We refer to this model as “KB×1”. When we scale the KB up for our models

referred to as KB×10, KB×100, and KB×1000, we scale the dust production rate

so it increases the average optical depth in the cold component ring by 10, 100 and

1000 times.

Table 5.1 lists the typical optical depths and dust production rates, summed

over all grain sizes in the model, corresponding to each of the three dust levels.

The dust production rate depends on the size range of grains considered—especially

the size of the largest grains considered. So the table quotes both the total dust

production rate and the rate of production of grains with s < 10 µm, for ease

of comparison with other calculations. For example, Yamamoto & Mukai (1998)

estimated that the total dust production rate for particles smaller than 10 µm is
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(0.37-2.4) ×106 g s−1 if the objects have hard icy surfaces, or (0.85-3.1) ×107 g s−1 if

the objects are covered with icy particles smaller than interstellar grains. The hard

icy surfaces case would correspond roughly to our KB×10 model, while the small

icy particles case would be somewhere between that and our KB×100 model.

Table 5.1: Optical Depth

Model Optical Total Dust Pro- Dust < 10 µm Pro- Critical Grain
Depth duction Rate (g s−1) duction Rate (g s−1) Size, sc, (µm)a

1× ∼ 10−7 3.6 × 106 2.2 × 105 17
10× ∼ 10−6 7.5 × 107 4.6 × 106 6
100× ∼ 10−5 2.4 × 109 1.5 × 108 3
1000× ∼ 10−4 1.2 × 1011 7.3 × 109 ∼ 1

aGrain size where 〈tcoll〉 = 〈tPR〉.

5.4 Results

5.4.1 Collisionless simulations

Figure 5.2 illustrates the seed model we used: a histogram representing the

steady-state distribution of KB dust grains in the absence of collisions. It also

shows the contributions to this seed model from each of the three source populations

described above. The figure shows only a 2-D projection of the cloud density; the

full seed model is a 3-D histogram, which also contains the 3-D velocity distribution

at each point in the histogram. The grains of different sizes were combined together

weighted to simulate a dust production rate of dN/dsdt ∝ s−3.5.
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Figure 5.2: Collisionless simulations of the Kuiper Belt dust: the ge-

ometrical optical depth for each source population and for the total.

Neptune is located at x=30.0696, y=0 AU.
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This figure can be compared to other collisionless models of the KB dust,

like those described in Liou & Zook (1999) and Moro-Mart́ın & Malhotra (2002).

Overall, the seed model morphology is a wide circumsolar ring with a gap at the

location of Neptune, not dissimilar from that predicted by those authors. It also

resembles the Type I resonant ring described by Kuchner & Holman (2003), the

case of the low-mass planet on a circular orbit.

In this collisionless stage of the simulation, particles of all sizes participate

strongly in resonant trapping, especially in the lowest-order resonances. The signa-

ture of the plutino dust is a ring of dust trapped in the 3:2 MMR with Neptune—like

the plutinos themselves. Dust produced by the cold population of source bodies

shows heavy signatures of several MMRs with Neptune: 3:2, 7:4, 8:5, etc., but not

the 2:1, because it is released substantially interior to the 2:1. Dust produced by

the hot population also participates in the MMRs, though less than the other pop-

ulations because of the reduced trapping probabilities associated with higher e and

i.

5.4.2 Simulations with collisions

Figure 5.3 shows the geometrical optical depth of the total KB dust population

after the full collisional grooming algorithm has been applied, as described above,

at four different dust levels. As the optical depth increases, collisions remove grains

from the center of the disk. As Stark & Kuchner (2009) showed, the highest grain-

grain collision rates occur in MMRs, so the collisions also tend to reshape and erase
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the resonant structure. At the highest optical depth, the pattern mostly resembles

a narrow ring, coincident with the cold classical Kuiper Belt.

The hot population still always dominates the total optical depth and semi-

major axis distribution—except that the birth ring of the cold population begins to

poke through at 40-45 AU as the total optical depth of the simulation is increased.

The plutinos make a negligible contribution, except to the distribution of large

grains.

Figures 5.4 and 5.5 show the semi-major axis distributions of the grains in

the three collisional simulations, broken down into three size bins (it would be

impractical to show all 25 size bins). It also shows the distributions summed over

all grain sizes. To calculate the “optical depth” shown in in these figures, we took

the number of grains within a certain range of semi-major axis, ∆a, multiplied

by the grain cross section, and divided by 2πa∆a. The grey lines show how the

distributions break down by source population. The black lines show the total in

each size bin.

One phenomenon that these figures show is that small grains penetrate interior

to Neptune’s orbit more frequently than large grains. The result is a disk with large

grains on the outside and small grains on the inside, like the disk around Fomalhaut,

according to data from Spitzer (Stapelfeldt et al., 2004) and VLTI/VINCI (Absil et

al., 2009). This phenomenon occurs even for a disk with optical depth ∼ 10−7.

Next, let us look at which grain sizes dominate the optical depth throughout

the disk. At low collision rates (KB×1) the 4.7–19.7 µm particles dominate the

semi-major axis distribution interior to about 50 AU. At KB×10, it’s a tie between
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Figure 5.3: The total optical depth in our simulations of the KB dust,

with grain-grain collisions. Neptune is located at x=30.0696, y=0 AU.
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141



10 20 30 40 50 60 70
a (AU)

10−7

10−6

10−5

10−4

G
eo

m
et

ric
 o

pt
ic

al
 d

ep
th

19.7 − 1430 µm

10 20 30 40 50 60 70
a (AU)

 

 

 

 

All grain sizes

       
10−7

10−6

10−5

10−4

G
eo

m
et

ric
 o

pt
ic

al
 d

ep
th

1.0 − 4.7 µm

Total

Hot

Cold

Plutinos

       
 

 

 

 

4.7 − 19.7 µm

Figure 5.5: Semi-major axis distribution of particles in the KB×1000.
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that bin and the smallest grains (1–4.7 µm) at a < 50 AU. At KB×1000, the

smallest grains dominate everywhere but 35–50 AU, where the largest grains make

a comparable contribution (Figure 5.5). At this high optical depth, the 4.7-19.7 µm

grains make a negligible contribution.

The many fine peaks in the semi-major axis distributions of the dust grains

arise mainly from dust trapped in MMRs. To read these peaks, it is helpful to

remember that the mean semi-major axis in a MMR is shifted inward for dust grains

by a factor of (1 − β)1/3 because radiation pressure counteracts stellar gravity. For

the 5 µm grains in our simulations, the inward shift amounts to about 1 AU in the

KB. Over the range of 1–5 µm, the shift ranges over a factor of several AU; this

probably accounts for the many fine peaks in the semi-major axis distribution of

the 1–4.7 µm grains. Duplicate or split peaks in the 1–4.7 µm grain semi-major

axis distributions are an artifact of the quantized grain size distribution used in the

simulations.

Nonetheless, notice how the texture of the curves changes at about 30 AU.

Interior to ∼ 30 AU, the curves in Figure 5.4 are relatively smooth. Exterior to this

semi-major axis, the curves become ragged and bumpy. This texture reveals the

presence and population of many Neptune MMRs, both low order (like 3:2 and 4:5)

and higher order (like 8:5, 7:5, and 7:4). The opposite effect occurs in Figure 5.5.

In this figure, the ragged texture, indicating MMRs, exists only interior to about

30 AU. The typical uncertainty associated with Poisson noise in these figures is less

than the thickness of the line.

In the low-optical depth simulations, several MMRs stand out as having par-

143



ticularly strong peaks. On the left side of Figure 5.4, the small grains show a strong

peak near the 3:2 MMRs with Saturn (∼ 12 AU) and a secondary peak near the 2:1

(16 AU). Very few grains of any size make it interior to 10 AU; they are scattered

out of the Solar System by Saturn.

A series of exterior MMRs with Neptune shows strong peaks at all grain sizes

in the KB×1 model: 4:3, 3:2, 7:4, 2:1, etc. (∼36, 39, 44, and 48 AU). Dashed lines

show these and a few other MMRs in Figure 5.4. Some of these peaks also survive in

the total semi-major axis distribution. They appear in all three source populations,

though they are strongest in the cold classical population. Figure 5.3 shows that

at this dust level (KB×1), the resonant structure looks like a ring at Neptune’s

orbit with a gap, not too dissimilar from that found by Liou & Zook (1999) and

Moro-Mart́ın & Malhotra (2002).

In the semi-major axis distribution for the KB×10 simulation (not shown),

the 2:1, 3:2, 7:4, and 4:3 peaks clearly stand out in the 4.7-19.7 µm population.

But those peaks become hard to pick out in the total distribution, except for 2:1

and maybe the 3:2. However, despite the fact that the first order MMRs show little

contribution to the semi-major-axis distribution, the map of the optical depth at

this dust level (Figure 5.3) looks again like a ring with a gap, but narrower. This

pattern indicates that there still are MMRs near Neptune populated with dust. This

trend continues in the KB×100 simulation; the MMR peaks become still weaker,

and the ring becomes more azimuthally-symmetric.

Figure 5.5 shows that the peaks in the MMRs vanish beyond ∼ 30 AU; grain-

grain collisions have removed almost all of the grains from Neptune’s resonances.
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The resonant signatures that persist in the Kuiper Belt region are only the initial

conditions of the plutinos. The small grains in the interior of the disk also appear

to be trapped in MMRs with Saturn.

5.4.3 Grain size distributions

Figure 5.6 shows the steady-state size distributions of particles, dN/ds, in our

Kuiper Belt simulations, integrated over the whole cloud. Black curves show the

size distributions for simulations of 1×, 10×, 100×, and 1000× the Kuiper Belt. A

grey line shows a power law of s−3.5, representing both the crushing law we used,

and the Dohnanyi (1969) collisional equilibrium power law. Another grey line shows

a simulation with no collisions, scaled to yield an optical depth in the Kuiper Belt

similar to that of the KB×1000 collisional simulation.

Moro-Mart́ın & Malhotra (2002) and Stark & Kuchner (2008) weighted the

contributions from grains of different sizes to match prescribed power law distribu-

tions in their models. The collisional grooming algorithm does not require any such

tuning. The grains are released according to a crushing law, mentioned above, and

the collisional grooming algorithm calculates, self-consistently, the size distribution

of the particles in every histogram bin. The only free parameter is the relative

number of grains of each size that is released by the particle sources.

Figure 5.6 shows that in the absence of collisional processing, the slope of

the steady-state size distribution becomes shallower than the s−3.5 crushing law we

assumed. This shallower slope represents two effects, described in Stark & Kuchner
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lines show the collisionless simulation (×1000) and a power law of s−3.5

(Dohnanyi, 1969) for comparison. Circles indicate the critical grain size,

sc, for each simulation, as listed in Table 5.1.
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(2008). First of all, the PR time is proportional to s, so in the absence of planets or

collisions, the size distribution would become s−2.5. Second, larger grains are more

likely to be trapped in MMRs with planets, which prolong their lifetimes.

When the collisions are turned on, however, the size distribution relaxes to

something closer to s−3.5. The average slope of the size distributions for the colli-

sional models is −3.5, as you can tell from looking at the endpoints of the black

curves. The curves for the collisional models also contain dips in the mid-sized grain

populations. The dips become deeper as the optical depth increases.

5.4.4 A critical grain size and a crossover optical depth

Stark & Kuchner (2008) hypothesized that in the absence of a resonant source

population, grains with a PR time, tPR, equal to their collision time, tcoll, would

dominate the optical depth of a resonant ring. Our new simulations seem to roughly

confirm this hypothesis. We let sc identify the critical grain size at which tPR = tcoll.

Table 5.1 shows sc in each simulation, averaged over the KB.

We can estimate sc if we approximate the collision time using Equation 1.5

and the PR time using Equation 1.4. Setting tPR = tcoll, we find that

sc ≈ 3L⋆QPR/(8πc2ρτG1/2M1/2
⋆ a1/2) (5.2)

= 1145 µm QPR

(

ρ

1 g cm−1

)−1 (

L⋆

LJ

) (

M⋆

MJ

)−1/2
( a

1 AU

)−1/2 ( τ

10−7

)−1

.(5.3)

In our simulations of the KB, this expression seems to overestimate sc by a factor

of 1–10, as you can tell from Table 5.1, mostly because the collision time is shorter

for grains in MMRs. The degree of overestimation is highest at low optical depths,
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where resonant trapping is the strongest.

Overall, the semi-major axis distributions of the grains reveal three kinds of

behavior among the various grain sizes. The smallest grains participate relatively

little in the resonant trapping; their radial distribution tends to resemble the so-

lutions to the one-dimensional mass flux equation in Wyatt (2005). The largest

grains have such large PR times that they tend to be destroyed by collisions before

they evolve far from the source particle orbits where they are released. Grains of

intermediate sizes, where the PR time, tPR, is comparable to the collision time, tcoll,

dominate the resonant peaks in Figure 5.4.

In our collisional grooming calculations we tend to find two different extremes

of disk structure: disks dominated by rings of dust transported by PR drag and

temporarily trapped in resonances (e.g. KB×1), and disks whose appearance is

dominated by the distribution of source particles (e.g. KB×1000). In our sim-

ulations using a single particle size (Stark & Kuchner, 2009), we found that the

transition between these regimes occurred when the collision time became roughly

equal to the PR time, i.e. s ∼ sc. In these new simulations where the particles span

a wide range of sizes, we find that the PR-drag dominated regime persists at some

level as long as there are any particles in the size spectrum with s ∼ sc.

So our new simulations prompt us to write down a new criterion for when the

resonant rings start to dominate: a crossover optical depth. For τ . τr, PR-drag

and resonant trapping of small grains dominates the geometrical optical depth of the

disk; for τ & τr, the source population dominates. The source population may be

resonant as well—but it is not trapped into resonances by PR drag. The crossover
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optical depth, τr, is set by the criterion that all particles must survive both collisions

and radiation pressure blowout.

To find τr, we can set β = 1/2 in Equation 1.3 to find the blowout size, sblowout:

sblowout =
3L⋆QPR

8πGM⋆cρ
. (5.4)

Then, we set sc = sblowout, when τ = τr. We find that τr is simply the orbital velocity

divided by the speed of light:

τr ≈ v/c. (5.5)

This result suggests that in a given disk, the birth ring will dominate the optical

depth in the outskirts of the disk. E.g., the Kuiper Belt τr ∼ 10−6. Resonant

structures are apt to dominate the optical depth in the center of a disk, e.g., the

habitable zone, where τr ∼ 10−4.

For the simulations described in this paper, we chose τ in the KB region, and

allowed the simulation to determine how the dust flowed elsewhere. The result is that

the birth ring dominates the KB region for the KB×100 and KB×1000 simulations.

In these regions, τ & τr. But the region near Saturn remains at τ < 10−5 even

as we turn up the dust production rate. The critical optical depth near Saturn is

τr ∼ 3 × 10−5, so near Saturn, the resonant structure dominates.

5.4.5 Observable phenomena

We synthesized images from our multi-grain size collisional models at vari-

ous wavelengths to illustrate what they would look like to various telescopes. To

create these images, we illuminated the grains with solar flux appropriate to their
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distance from the star, and calculated the scattered light and thermal emission.

We assumed isotropic scattering, an albedo of unity, and simple generic emissivity

laws to account for the poor ability of grains to radiate and absorb photons with

wavelengths larger than the grain size: emissivity ǫ = 1 for wavelengths λ ≤ 2πs

and ǫ = (2πs/λ)2 for λ > 2πs (Backman & Paresce, 1993). We used the tools in

ZODIPIC (Moran et al., 2004) to self-consistently calculate the temperatures of the

grains, given solar radiation and the emissivities above. For the KB×1000 images,

and also for KB×100 scattered light image, we rebinned the simulations by a factor

of two in each direction, to average down the Poission noise in the histograms, which

increases for short collision times, as collisions remove the small grains. We did not

model the point spread function of any telescope.

Figure 5.7 shows images of the four collisional models in scattered light (0.6 µm).

Figure 5.8 shows the KB×1 and KB×1000 simulations as they would appear in the

submillimeter (800 µm). The optical images emphasize the center of the cloud,

which is better illuminated by sunlight. They also emphasize the small particles,

particularly those with tPR ∼ tcoll, which tend to participate most strongly in reso-

nances with planets.

The submillimeter images tell a different story. The submillimeter radiation

comes mostly from the large grains (& 100 µm in size), which do not venture far

from their initial conditions, even in the model with optical depth 10−7. The sub-

millimeter images mostly trace the distribution of source particles. Figure 5.8 shows

that an observer looking at the KB dust ×1000 from a nearby star at submillimeter

wavelengths would probably see a narrow ring of large grains at 42-45 AU. This ring
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consists of large grains > 100 µm in size associated mostly with the cold classical

Kuiper Belt.

An observer looking at the KB dust ×1000 in visible light would mostly see a

wide ring at 7-13 AU. We can see from Figure 5.5 that this ring consists mostly of

grains with s ≤ sc, trapped in the 2:1, 3:2, and other MMRs with Saturn, with an

optical depth of ∼ 10−6. There may be azimuthal structure associated with Saturn,

but since we recorded the data in the frame rotating with Neptune’s mean motion,

any such structure has been smeared into a ring.

Figure 5.7 shows that at lower dust production rates, the above features persist,

and a new component appears at optical wavelengths: a ring of dust in Neptune’s

orbit. This ring corresponds to the ring modeled by Liou & Zook (1999); it has a gap

at Neptune’s location—indicating the current position of the planet. We know from

Figures 5.4 and 5.5 that this dust consists of two size ranges: large grains originating

from plutino parent bodies in Neptune’s 3:2 MMR, and smaller grains with s ∼ sc,

released outside resonance, and then trapped in MMRs. The KB×100 and KB×1000

panels in Figure 5.7 illustrate the kind of morphological transformation that occurs

when τ ∼ τr (roughly at an optical depth of 10−6 in the Kuiper Belt).

Neptune’s azimuthally-asymmetric resonant ring never becomes visible at sub-

millimeter wavelengths, however, at any dust level. Except for the increased numer-

ical noise in the KB×1000 simulations, the two images in Figure 5.8 are identical.

The stark azimuthal symmetry of our KB shown in our simulations contradicts

suggestions by previous authors. Indeed, Figure 5.8 suggests that it would be im-

possible to recognize evidence of a Neptune-like planet in a dust cloud similar to
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the KB dust at submillimeter wavelengths.

Though the geometrical optical depth of the KB×1 ring may look similar to the

collisionless simulations, the submillimeter image of the KB×1 does not. The new

simulations show how collisions play an important role in determining the structure

of the dust in today’s Kuiper Belt; they determine the size range of particles that

will dominate the images.

5.5 Discussion

5.5.1 Resonant rings and clumps

Several authors have tried to understand exactly how important MMRs can

be in sculpting the shapes of disks. E.g., how clumpy can exozodiacal clouds be,

and how will this clumpiness impact searches for extrasolar Earth-like planets (e.g.

Roberge et al., 2009)? Do the clumps we see in millimeter and sumillimeter images

of debris disks necessarily point to planets (e.g. Wilner et al., 2002)? Our simulations

shine some light on this problem.

For example, Krivov et al. (2007) divided resonant effects in debris disk dust

into two categories: large grains released from source populations that are in MMRs,

and small grains that become trapped in MMRs. Our simulations reveal both of

these effects. Krivov et al. (2007) estimated that clumps created by small bodies in

resonance would persist only at optical depths . 10−4; at higher optical depths, they

would be replaced by a narrow symmetric ring. Our simulations roughly confirm

this prediction; the clumps created by small dust grains in our simulation fade into
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Figure 5.7: Images of the collisional dust models in optical wavelengths.

The dot indicates the location of Neptune. The four models show the

appearance of the Solar System assuming Kuiper Belt dust clouds with

optical depths of roughly 1×, 10×, 100×, and 1000× that of today’s

Kuiper Belt dust cloud. A transition occurs at the 100× model, where

τ ≈ v/c in the Kuiper Belt.
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Figure 5.8: Images of the collisional KB dust models, KB×1 and

KB×1000, at submillimeter wavelengths. The dot indicates the loca-

tion of Neptune.
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azimuthally-symmetric rings at an optical depth of τr (i.e., 10−4–10−6).

Our simulations also reveal a phenomenon relatively unanticipated by previous

authors: the importance of higher-order resonances (n : n − 2, n : n − 3, etc.) in

sculpting a dusty disk. We find that even at low dust levels, the first order resonances

can become saturated, because, as Stark & Kuchner (2009) demonstrated, grain-

grain collision rates are higher both in and near MMRs. Also, the sources of the

grains in our simulations are located near the planet in our simulations, where the

MMRs are strong and dense; in many previous simulations, the grains were launched

from two or three times the planet’s semi-major axis. Having the sources located

near the planet as we do might promote trapping in higher order MMRs.

The higher-order resonances in the forest of MMRs near a planet are associated

with many different geometries. But all the geometries have a common feature: they

protect a particle from very close encounters with the planet. The result is that when

these resonances are populated, the ring they yield may extend inside and outside

the planet’s orbit, but the location of the planet is always some kind of relatively

dust-free gap.

As we mentioned above, the actual dust level in the KB has never been directly

measured. But our models suggest one way to measure the dust level: take images

of the KB dust, e.g., from a probe in the outer Solar System, and match them to

the morphology of our models. Use that data to search for a ring with the gap

located at Neptune; its presence and strength would indicate the degree to which

collisions remove small particles from resonances with Neptune. Looking for an

azimuthal asymmetry like this one might be easier than measuring the uniform dust
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background.

5.5.2 Limitations of the simulations

We have done our best to emphasize interpretations of our models that we

think will be robust. However, our models represent only one step toward under-

standing the effect of collisions on the morphology of the Kuiper Belt dust cloud. In

the next two subsections, we will discuss some of the limitations of our simulations

that should be kept in mind.

Though our simulations cover three orders of magnitude in grain size, they

neglect grains smaller than 1 µm. Most grains smaller than this size are ejected by

radiation pressure in one dynamical timescale. However, Strubbe & Chiang (2006)

showed that populations of these so-called β-meteoroids can contribute substantially

to the optical depth of a debris disk, especially the region exterior to the birth ring,

because they are generated in such large numbers. The absence of these small grains

is probably especially important for the KB×1000 model.

Some small grains (. 1 µm) in the Solar System originate in the interstellar

medium, and fly rapidly through the Solar System on hyperbolic orbits (Yamamoto

& Mukai, 1998). Collisions between KBOs and these interstellar grains can be an

important source of KB dust (Yamamoto & Mukai, 1998). Our simulations do

not explicitly model these high-velocity grains, which might also be important in

destroying KB grains.

Our models also contain only a simplified treatment of particles larger than
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about 1400 µm. We chose this cutoff because debris disks generally become too faint

to image long-ward of millimeter wavelengths. Modeling large bodies in debris disks

presents several complications. Their PR lifetimes may be longer than the lifetime of

the system. Collisions with these bodies can produce long-lived fragments, or even

enter the cratering regime. We leave this work to future simulations. We assume

that these large bodies are adequately modeled as our steady sources, and we trust

that smaller grains will dominate the Kuiper Belt dust images, as they dominate,

e.g., the zodiacal light.

A related issue is that our treatment of collisions contains no explicit treatment

of fragmentation; it assumes that all grain production is associated with the source

populations. All the the explicitly modeled collisions between grains yield either

complete vaporization or leave the particles unperturbed. Though we estimate that

typical collision velocities are high enough (∼ 0.5 km s−1) to make vaporization the

most common collision outcome for small icy grains, there will be some collisions

gentle enough, and some grains strong enough to lead to fragmentation. Those

fragments will often be β-meteoroids like those mentioned above. Fragmentation

will also be associated with some dissipation of orbital energy, a process we do not

model.

Our models also neglect drag from any interstellar gas. Gas drag can poten-

tially be important for grains in the very outskirts of debris disks (e.g. Debes et al.,

2009). We chose to neglect this force because we felt that adding too many new

ingredients at once to these simulations might make our results too complex to for

us to physically interpret. Moreover, the gas drag parameters range widely among
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various stars, so including gas drag might hinder the use of our model as a baseline

for comparison with other systems.

Finally, the dust cloud created by the KB may be more tenuous than current

estimates, but our models do not explicitly examine the distribution of dust in

disks with τ < 10−7. However, our results reveal several trends that allow us

to qualitatively predict the appearance of such disks. First, the longer collision

time associated with a more tenuous disk would allow larger grains to penetrate

farther into the inner regions of the disk, creating a disk with a more uniform radial

distribution of grain sizes interior to the birth ring. Fewer collisions would also

enhance the number of grains in MMRs relative to the background cloud, leading

to a disk with more well-defined resonant ring structures. The dip in the grain size

distribution would decrease in amplitude, more closely resembling the Dohnanyi

power law. Finally, the submillimeter images may start to show hints of structure

as the largest grains have time to become resonantly trapped before their collisional

destruction.

5.5.3 Input parameters and interpretation

Our models of the Kuiper Belt, scaled up in mass, move beyond simple linear

scalings, helping us compare the Kuiper Belt to extrasolar debris disks. But this

comparison remains far from perfect. Other debris disks, for example, are not the

same age as the Kuiper Belt; they could represent younger systems populated by

source bodies that will soon vanish via collisions and orbital instabilities. Or they
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could contain planets in the process of migration; this process could influence the

morphology of a debris cloud (Wyatt, 2003; Murray-Clay & Chiang, 2005). A few

debris disks might even represent a transient event, perhaps analogous to late heavy

bombardment in the Solar System (Booth et al., 2009).

Another important point is that the source distributions we chose might not

be a good representation of the actual distribution of dust sources in the Kuiper

Belt. First of all, the distribution of KBOs is not completely known. For example,

there is a strong bias toward detecting KBOs with small perihelion distances, so we

do not yet have a good inventory of dynamically-cold KBOs beyond about 46 AU.

Since, according to our simulations, the dynamically cold KBOs contribute most

of the particles trapped in MMRs, this lack of knowledge hampers our ability to

predict the population of dust in the 2:1 MMR with Neptune (∼ 48 AU), and any

MMRs exterior to that.

But, even if we knew the exact orbital distribution of KBOs, down to, say 1

km in size, this distribution would not correspond exactly to where the KB dust is

launched from, i.e., where recent KBO collisions have occurred. Some dust produc-

tion in the KB occurs when ISM grains hit KBOs (Yamamoto & Mukai, 1998); our

source populations probably represent this mechanism well. But if the KB is like

the asteroid belt, then some dust production is probably associated with collisional

families, perhaps like the Haumea family (Brown et al., 2007). Therefore, for the

time being, it seems appropriate that we content ourselves with simple parametric

source distributions, inspired by KBO observations, like those we used here.

159



5.6 Conclusions

We modeled the 3-D dust distribution in the Kuiper Belt taking into account

perturbations from Jupiter, Saturn, Uranus and Neptune, the simultaneous destruc-

tion of dust grains via collisions, and the interaction of these two phenomena, includ-

ing the enhanced destruction of grains in mean motion resonances. We demonstrated

the capabilities of the collisional grooming algorithm for approximately reproduc-

ing the Dohnanyi (1969) collisional equilibrium size distribution—though resonant

trapping tends to modify the size distribution in a resonant ring. The dust level in

the KB has never been directly measured; we suggested that one way to measure

the dust level would be matching images of the KB dust, e.g., from a probe in the

outer Solar System, to the morphology of our models. Searching for a ring with the

gap at Neptune in this manner might be easier than measuring the uniform dust

background.

Here are the primary conclusions we have drawn from our models, about the

Kuiper Belt dust population itself and about debris disks in general.

• An observer looking at the KB dust ×1000 in visible light from afar would

mostly see a wide ring at 7-13 AU with an optical depth of ∼ 10−5 (Figure 5.7).

This ring consists of grains with s ≤ sc, trapped in the 2:1, 3:2, and other

MMRs with Saturn. This secondary central ring of small dust grains may be

analogous to the hot central dust cloud seen around Fomalhaut (Stapelfeldt

et al., 2004; Absil et al., 2009).

• An observer looking at the KB dust from a nearby star at submillimeter wave-

160



lengths would probably see an azimuthally-symmetric ring of large grains at

42-45 AU. This ring consists of large grains, > 100 µm in size, associated with

the cold classical Kuiper Belt. This submillimeter morphology barely changes

as the optical depth is increased over a factor of 1000 (Figure 5.8).

• At lower optical depths, KB dust ×10 or KB dust ×1, the above features

persist, and a new component appears at optical wavelengths: a ring of dust

in Neptune’s orbit, trapped in MMRs with Neptune. This dust occupies two

size ranges: large grains originating from plutino parent bodies in Neptune’s

3:2 MMR, and and smaller grains with s ∼ sc, released outside resonance,

and then trapped in MMRs. This ring has a gap at Neptune’s location—

indicating the current position of the planet. It resembles two rings in optical

images because of the central illumination.

• Mean motion resonances can contribute strongly to the appearance of debris

disks, despite previous suggestions to the contrary. They contribute in two

major ways: 1) large bodies that dominate the submillimeter images remain

near their source, which may itself be resonant, like the Plutinos. 2) smaller

grains become trapped in MMRs as they spiral into the star. Though the

small-grain dust population of the first-order resonances can saturate in the

presence of collisions, these smaller particles also interact with a forest of

higher-order MMRs. The higher-order MMRs also serve to create a ring-like

structure near the orbit of the perturbing planet.

• At high optical depths, debris disk images are likely dominated by the birth
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ring, the source of the particles. But at optical depths below τr ∼ v/c, small

dust grains trapped in mean motion resonances can dominate the images. Here

v is the local Keplerian speed, and c is the speed of light.

• Dust released by plutinos makes a negligible contribution to the resonant struc-

ture in the Kuiper Belt cloud. There are two reasons for this new result: 1)

The population of plutinos is a smaller fraction of the dust cloud than previ-

ously realized (Hahn & Malhotra, 2005). 2) The grains that dominate optical

images tend to be near the critical size, and those grains lose memory of the

orbits of their source particles.

• Grain-grain collisions are important in shaping the Kuiper Belt dust cloud,

even at an optical depth of 10−7. For example, the interplay between collisions,

PR drag, and mean motion resonances sets the dominant grain size in the

Kuiper Belt.

Our simulations show us how an analog of the Solar System might appear at

a distance of 10 pc, depending on how much dust there actually is in the Kuiper

Belt. They illustrate how our changing picture of the KBO orbital distribution

has changed our picture of the KB dust. They represent the first self-consistent

3-D model of the Kuiper Belt dust morphology that incorporates both planet-dust

interactions and grain-grain collisions.

However, our models leave many potentially important questions unanswered.

How do β meteoroids, interstellar grains, and fragmentation of small grains affect

the appearance of the KB disk? How do collisional families and other transient
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phenomena influence the KB dust?

We expect that the next generation of models, together with more observations

of the Kuiper Belt and other debris disks, will help answer these questions and

refine our understanding of resonant structures in disks. Two observational goals

stand out that would especially help us take the next steps with our models: 1) we

would like to know the population of KBOs in the 2:1 MMR with Neptune at low

eccentricity, and 2) we would like to have more resolved images of debris disks with

low optical depth (. 10−5) where the collisional physics is relatively simple. We

expect that survey telescopes like the Large Synoptic Survey Telescope (LSST) may

help achieve the first goal, and that deep submillimeter and coronagraphic imaging

of debris disks, e.g. with the with the Atacama Large Millimeter Array (ALMA)

and the James Webb Space Telescope (JWST), should help attain the second.
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Chapter 6

Conclusions & discussion

To date, the majority of resolved debris disks show radial and/or azimuthal

structures. My investigations into the structure of debris disks reveal that structures

can arise from and be affected by a variety of mechanisms, including, but not limited

to, MMR trapping of dust grains or planetesimals, ejection of dust grains by massive

planets, radial size-sorting of dust grains by collisions, and the interplay between

collisions and dust trapped in MMRs.

Our spatially resolved KIN measurements of the debris disk around 51 Oph,

combined with VLTI-MIDI observations and a Spitzer IRS spectrum, reveal a dust

distribution with two components: a hot inner exozodiacal disk of large grains and

an outer cool disk of small silicate grains. Our preferred model of the 51 Oph

disk is consistent with an inner “birth” disk of continually colliding parent bodies

producing an extended envelope of ejected small grains. This picture resembles the

disks around Vega, AU Microscopii, and β Pictoris, supporting the idea that 51 Oph

may be a β Pictoris analog.

Will future missions be able to detect fine structure, like resonant rings, in exo-

zodiacal clouds similar to that around 51 Oph? My collisionless simulations showed

that terrestrial-mass planets can create resonant ring structures with contrasts ∼10:1

for grain sizes ∼100 µm. Although my collisional simulations demonstrate that col-
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lisions tend to remove grains in and near resonances, reduce the appearance of

asymmetries within the cloud, and prevent large grains from spiraling into regions

of resonance, there will likely be conditions under which these ring structures are

still highly contrasted and detectable. For example, the semi-major axes of parent

bodies’ orbits may be just exterior to a planet’s first order MMRs, or within them,

making for quick capture of the large grains. Parent bodies could also occupy orbits

with smaller inclinations and eccentricities, producing dynamically cold dust that

is trapped with greater probability. Future models of collisional exozodiacal clouds,

processed with simulators of proposed exoplanet-imaging missions, should answer

this question.

Exozodiacal resonant ring structures may even be detected by other means

prior to the launch of an exo-Earth-imaging mission. The dust in our zodiacal cloud

and other debris disks has proven to be fairly forward-scattering at visible wave-

lengths. For a disk viewed at moderate inclination, the disk-integrated scattered

light will change in amplitude as the clumpy, asymmetric resonant ring structure

rotates in lock with the perturbing planet; a resonant ring adds a variable signa-

ture to a star’s light curve with a period equal to the planet’s orbital period. My

preliminary collisionless simulations estimate this signal’s amplitude ∼ 10−7 for a

1 zodi dust cloud inclined 60◦ from face-on. Models of collisional exozodiacal disks

are necessary to determine whether more dense ring structures could create a signal

∼ 10−5, possibly detectable with the transit-detecting Kepler mission.

My analysis of resonant rings produced by terrestrial-mass planets in collision-

less disks shows that we may be able to use the morphology of ring structures to
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constrain the planet mass, planet semi-major axis, and dominant dust grain size,

even if the planet is not detectable. I provide simple analytic expressions to do so.

However, interpretation of these resonant rings will be hindered by a morphologi-

cal degeneracy for systems with similar ratios of
√

ap to β for the grain size that

dominates the optical depth of the resonant ring. Although the effects of collisions

may further complicate our interpretation of these structures, I showed that to first

order we can equate the PR time and collision time to estimate the dominant grain

size in a resonant ring, sc.

Will asymmetries in resonant ring structures obscure the detection of exo-

Earths? This question can only be answered by simulating the response of specific,

proposed exo-Earth imaging missions to collisional, multi-grain-size models of ex-

ozodiacal cloud structures. I am currently creating such models. I will synthesize

images of these disk models with proposed internal coronagraphs, like PIAA, and

external occulters, like NWO. I will investigate the degree to and conditions under

which the planet signal can become lost in the surrounding disk and look for meth-

ods by which we can separate the planet’s signal from the disk’s. We may be able

to exploit differences in color between the planet and disk to separate the signals.

However, as I showed in Figure 4.9, the resonant ring morphology changes with

grain size, and thus does not exhibit a uniform color.

We can apply the collisional models I have developed to currently-detectable

dust structures in the outer ∼100 AU of planetary systems, such as Fomalhaut and

ǫ Eridani. But what can we learn from our models about the architectures of these

systems? To answer this question I started with a system whose architecture we
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already know fairly well, the Solar System, and simulated the dust disk generated by

the Kuiper Belt. I found that the large grains dominate the submillimeter images

of the Kuiper Belt, which would appear as a uniform ring at 40–45 AU. Visible

wavelengths reveal a resonant ring structure in lock with Neptune. Neptune resides

in a gap within the resonant ring, a tell-tale signature of a planet.

From afar, a much more dense version of the Kuiper Belt dust cloud (scaled up

to 1000 times the current optical depth) would look morphologically similar to the

current Kuiper Belt at submillimeter wavelengths. However, at visible wavelengths

the KB ×1000 model no longer exhibits a resonant ring created by Neptune, which

is removed by grain-grain collisions almost entirely. Instead, optical images would

reveal two distinct rings: one at 7–13 AU and another at 40–45 AU. The outer

ring is dominated by large grains > 20 µm in size, mostly associated with the cold

classical Kuiper Belt. The inner ring consists of small dust grains . 5 µm in size in

MMRs with Saturn.

The KB ×1000 simulations demonstrate that even in disks with very dense

“birth” rings of dust, the smallest grains can quickly migrate inward and escape the

highly collisional birth ring. These small grains can continue to spiral inward in a

region of reduced collision rates and interact with interior planets, possibly forming

resonant ring structures. This process can form inner regions of warm dust that are

dynamically linked to the outer disk, and may help explain the hot inner dust disk

observed around Fomalhaut.

Collisional models of the outer regions of exoplanetary systems will be helpful

in understanding the architecture of currently observed debris disks and disks to be
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observed in the near future. However, the hot, cold, and plutino components of my

KB dust model show that the appearance of a dust cloud depends strongly on the

distribution of parent bodies. Before we can interpret the dust distribution in an

observed, highly-collisional debris disk with any degree of confidence, we need to

better understand the possible distributions of parent bodies and their affect on the

morphology of the dusty debris disk.
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