
Secure AgentsPiero A. Bonatti� Sarit Krausy V.S. SubrahmanianzAbstractWith the rapid proliferation of software agents, there comes an increased needfor agents to ensure that they do not provide data and/or services to unauthorizedusers. We �rst develop an abstract de�nition of what it means for an agent to preservedata/action security. Most often, this requires an agent to have knowledge that is im-possible to acquire | hence, we then develop approximate security checks that takeinto account, the fact that an agent usually has incomplete/approximate beliefs aboutother agents. We develop two types of security checks | static ones that can be checkedprior to deploying the agent, and dynamic ones that are executed at run time. We provethat a number of these problems are undecidable, but under certain conditions, theyare decidable and (our de�nition of) security can be guaranteed. Finally, we proposea language within which the developer of an agent can specify her security needs, andpresent provably correct algorithms for static/dynamic security veri�cation.�Dipartimento di Informatica, Universit�a di Milano, Via Bramante 65, I-26013 Crema, Italy. Email:bonatti@crema.unimi.ityDept. of Mathematics and Computer Science, Bar-Ilan University, Ramat Gan, 52900 Israel, andInstitute for Advanced Computer Studies, University of Maryland, College Park, MD 20742 E-Mail:sarit@cs.biu.ac.ilzInstitute for Advanced Computer Studies, Institute for Systems Research and Department of ComputerScience, University of Maryland, College Park, Maryland 20742. E-mail: vs@cs.umd.edu
1

Contents1 Introduction 42 Motivating Example 53 Preliminaries: IMPACT Agents 54 Abstract Agents 84.1 Abstract Behavior: Histories . 84.2 Logical Agent States . 104.3 Agent Consequence Relation . 115 Security of Abstract Agents 125.1 Security Speci�cations . 125.2 Secure Histories . 135.3 Degrees of Cooperation . 186 Approximating Agent Security 186.1 The Basic Idea . 196.2 Approximating Possible Histories . 206.3 Approximating Languages . 216.4 Approximating States . 236.5 Approximate Secrets . 256.6 Approximate Consequences . 266.7 Approximate Data Security Check . 276.8 Compact Approximations . 306.9 Static Approximations . 337 Undecidability Results 358 Security Speci�cation Languages 378.1 The History Component Hista . 378.2 Agent Approximation Languages . 398.2.1 History Approximation . 398.2.2 State Approximation Language . 438.2.3 Consequence Approximation Language 468.2.4 Approximate Secrets Language . 478.2.5 Agent Approximation Program . 482

9 Algorithms for Security Maintenance 489.1 Dynamic Security Veri�cation Algorithm . 519.2 Static/Combined Security Veri�cation Algorithm 5210 Related Work 5611 Conclusions 60

3

1 IntroductionOver the last few years, there has been intense work in the area of intelligent agents [27, 61].Applications of such agent technology have ranged from intelligent news and mail �lteringprograms [38], to agents that monitor the state of the stock market and detect trends instock prices, to intelligent web search agents [18], to the digital battle�eld where agenttechnology closely monitors and merges information gathered from multiple heterogeneousinformation sources [1, 32, 33, 50, 59]. More recently, we have seen an increase in the numberof agents that automatically interact with one another. Such agents can negotiate with eachother, participate in auctions, make group consensus decisions, and the like [31, 58, 44, 29].In previous work [2, 17, 16], Eiter et. al. have developed a framework for building agentson top of specialized data structures and/or legacy code bases. Each such agent has a\state" and provides a set of services to other agents. Such services include data retrievalservices (answering database queries, retrievals from geographic information systems, etc.)as well as computational services (e.g. creating a plan, recognizing features in imagery,�nding a route, etc.). However, an agent a may store a vast quantity of data only some ofwhich it is willing to disclose to another agent b | for example, a tank agent may discloseits location only to certain other agents, not all. Likewise, a military route planning agentmay create routes only for authorized clients, not for others. In commercial applications,agents may provide data and services only to customers who have paid an appropriate fee.Thus, agent designers need to have a framework within which they can describe what dataand what services should be provided by their agent to other agents/clients.Most existing work on agent security has focused on two aspects | protecting hostcomputers from mobile agents (or applets) [22], and the converse problem of protectingagents from the hosts [45]. Our work complements these two approaches, because (i) we donot restrict interest to mobile agents only but consider the broader class of agents, mobileand otherwise, in multiagent AI environments [40], and (ii) we develop techniques by whichan agent can provide services and release data to other agents while maintaining security.The main contributions and organization of this paper may be summarized as follows.� In Section 2, we provide a small motivating multiagent example for our security frame-work.� In Section 3, we describe a framework called IMPACT (Interactive Maryland Platformfor Agents Collaborating Together) in which a (very general) concept of agent isintroduced [17, 16].� In Section 4, we provide an abstract concept of an agent that is not dependent uponIMPACT, but is applicable to other agent systems as well.� In Section 5, we introduce two concepts used for de�ning aspects of agent security| histories of what the agent did in the past, and consequence relations used by anagent to draw inferences. Intuitively, to prevent agent b from inferring a secret, agenta must somehow ensure that agent b's \true" state of knowledge of the world (whichis shaped by agent b's \true" history and agent b's \true" consequence relation) doesnot entail the secret. Similar de�nitions are needed to ensure that agent b does notutilize services it is not cleared to use. We also formally de�ne what it means foran agent a to maintain \true" security" in terms of the above concepts. Speci�cally,4

we show that a naive de�nition of security called \surface security" is not enough formaintain true security and our notion of data security alleviates this problem. We dolikewise for \true" action security.� It is usually impossible in practice for agent a to have correct and complete informationabout agent b's state, consequence relation and history. Hence, maintaining \true"security is infeasible in practice. To alleviate this problem, we de�ne, in Section 6,what it means for agent a to approximate b's state, consequence relation and history.Based on these concepts, we de�ne an approximation of true data security and trueaction security and show that under certain conditions, approximate security impliestrue security, i.e. the approximation is \good enough" to maintain true security.� In Section 7, we show that the general problem of maintaining data and actionsecurity for agents is undecidable. It does not matter whether these agents are builtin IMPACT or in Aglets [52] or in Java[42]. However, this undecidability is also truefor approximate data and action security of general agents.� As a consequence, in Section 8, we provide a (family of) languages through whichagent designers can express the security needs of their agents. Using this language,designers of an agent a can express how agent a approximates the history, state,consequence relation, etc., of another arbitrary agent b. We show that this languageis decidable, and thus provides a polynomially implementable fragment of the generalagent security theory proposed in this paper.� In Section 10, we describe related work on agent security, and assess the strengthsand weaknesses of our approach.2 Motivating ExampleConsider a small multiagent application involving two tanks tank1 and tank2, a commandcenter com c, and a tracking agent.The two tanks are both engaged in some operational mission, and are continuously awareof their geo-location, bearing, and speed. They are tasked to perform actions by the com-mand center. The command center is authorized to know all information about the tanks.In contrast, the tracking agent may ask the tanks for information on their supply state(e.g. how many rounds of �re/fuel they have, whether any parts need repair, etc.). Thetracking agent is not authorized to know the precise location of the tank| it is important tonote that this does not mean that the tank cannot reveal its bearing/speed to the trackingagent. In fact, it may even be able to reveal on old position without compromising security.The tracking agent may task the tanks to take appropriate repair actions, but has noauthority to change their route, etc.We will use these agents as a running example throughout this paper.3 Preliminaries: IMPACT AgentsIn IMPACT, each agent a is built on top of a body of software code (built in any pro-gramming language) that supports a well de�ned application programmer interface (either5

part of the code itself, or developed to augment the code). In general, we will assumethat the piece of software Sa associated with an agent a 2 A is represented by a tripleSa =def (T aS ;FaS ; CaS):De�nition 3.1 (Software Code) We may characterize the code on top of which an agentis built as a triple S =def (TS ;FS; CS) where:1. TS is the set of all data types managed by S,2. FS is a set of prede�ned functions which makes access to the data objects managed bythe agent available to external processes, and3. CS is a set of type composition operations. A type composition operator is a partialn-ary function c which takes as input types �1; : : : ; �n and yields as a result a typec(�1; : : : ; �n). As c is a partial function, c may only be de�ned for certain arguments�1; : : : ; �n, i.e., c is not necessarily applicable on arbitrary types.When we are referring to the code associated with a �xed agent a, we will often dropthe superscript a above. Intuitively, TS is the set of all data types that are managed bythe agent. FS intuitively represents the set of all function calls supported by the packageS's application programmer interface (API). CS the set of ways of creating new data typesfrom existing data types. This characterization of a piece of software code is a well acceptedand widely used speci�cation. For example, the Object Data Management Group's ODMGstandard [12] and the CORBA framework [47] are existing industry standards consistentwith this speci�cation.Each agent also has a message box having a well de�ned set of associated code calls thatcan be invoked by external programs.Example 3.1 Let us assume that the two tank agents each have function calls called:� speed() which returns as output, the current speed (non-negative integer) of the tank;� bearing() which returns as output, the current bearing (integer between 0 and 360)describing the angular bearing of the tank;� location(T) which returns as output, the pair (x; y) de�ning the location of the tankat time T relative to some �xed map;� region(T) which returns as output, a quadruple (`; r; b; t) describing the region f(x0; y0)j` �x0 � r& b � y0 � tg such that location(T) 2 region(T).Likewise, the command center agent may support the following function calls:� find � friendly(`; r; b; t) which returns as output, the set of all triples containing afriendly tank and its location in the speci�ed region.� find � enemy(`; r; b; t) which returns as output, the set of all triples containing aenemy tank and its location in the speci�ed region.� distance(x; y; x0; y0) returns as output, the distance between two points.6

The state of an agent, at any given point t in time, consists of the set of all instantiateddata objects of types contained in T aS :De�nition 3.2 (State of an Agent) At any given point t in time, the state of an agentwill refer to a set OS(t) of objects from the types TS , managed by its internal softwarecode. An agent may change its state by taking an action|either triggered internally, or byprocessing a message received from another agent. Throughout this paper we will assumethat except for appending messages to an agent a's mailbox, another agent b cannot directlychange a's state. However, it might do so indirectly by shipping the other agent a messageissuing a change request.Queries and/or conditions may be evaluated against an agent state using the notion of acode call atom and a code call condition de�ned below.De�nition 3.3 (Code Call/Code Call Atom) If S is the name of a software package,f is a function de�ned in this package, and (d1; : : : ; dn) is a tuple of arguments of the rightinput types of f , then S : f (d1; : : : ; dn) is called a code call.If cc is a code call, and X is either a variable symbol, or an object of the output type ofcc, then in(X; cc) is called a code call atom.De�nition 3.4 (Code Call Condition) A code call condition � is de�ned as follows:1. Every code call atom is a code call condition.2. If s; t are either variables or objects, then s = t is a code call condition.3. If s; t are either integers/real valued objects, or are variables over the integers/reals,then s < t; s > t; s � t; s � t are code call conditions.4. If �1; �2 are code call conditions, then �1&�2 is a code call condition.A code call condition satisfying any of the �rst three criteria above is an atomic code callcondition.Example 3.2 Let us return to the case of example 3.1. Here are some example code callconditions.1. in(X; tank1 : speed())&X � 20.This code call condition succeeds i� the speed of tank1 exceeds 20 units.2. in(X; tank1 : speed())& in(Y; tank2 : speed())&X > Y:This code call condition succeeds i� the speed of tank1 exceeds that of tank2.3. in(V; com� c :�nd � friendly(10; 20; 10;20))& in(V0; com� c :�nd � enemy(10; 20; 10; 20))&in(D; com� c : distance(V:x; V:y; V0:x; V0:y))&D < 5:This code call condition �nds all pairs of friendly-enemy tanks which are within 5units of distance of each other. 7

Each agent has an action-base consisting of a description of the various actions that theagent is capable of executing. Actions change the state of the agent and perhaps the state ofother agents' msgboxes. Such actions comprise the services that other agents might request.An agent also has an associated notion of concurrency which takes a set of actions and theagent state as input, and merges the actions into a single \uni�ed" action that is executedin lieu of the set of individual actions. [17] provide several alternative implementations ofsuch notions of concurrency { the agent developer selects or de�nes one that is appropriatefor his agent.Each agent has an associated set of integrity constraints|only states that satisfy theseconstraints are considered to be valid or legal states. Each agent has an associated setof action constraints that de�ne the circumstances under which certain actions may beconcurrently executed. As at any given point t in time, many sets of actions may beconcurrently executable, each agent has an Agent Program that determines what actionsthe agent can take, what actions the agent cannot take, and what actions the agent musttake. The agent program is de�ned as follows.De�nition 3.5 (Status Atom/Status Set) If �(~t) is an action, and Op 2 fP;F;W;Do ;Og,then Op�(~t) is called a status atom. A status set is a �nite set of status atoms.De�nition 3.6 (Agent Program) An agent program P is a �nite set of rules of the formA �& � A1& : : :& �Anwhere � is a code call condition and A1; : : : ; An are status atoms.The semantics of agent programs are well described in [17, 16]. Due to space reasons, wedo not explicitly recapitulate them here. Table 1 lists the notation used in this paper, andthe section in which each is �rst de�ned.4 Abstract AgentsAs described in the Introduction, each agent has a \true" history (describing its past inter-actions with other agents), and a \true" consequence relation. In addition, a logical notionof state built on top of the previous de�nition will be useful. These three concepts jointlyde�ne what an agent knows at a given instant of time. Intuitively, to preserve security, weneed to ensure that no secret is known to the agent.4.1 Abstract Behavior: HistoriesThere are two types of events that may determine an agent a's behavior. An action eventh�(~t); bi describes an action that a has taken in response to a request by an agent b. Ifb = a, then �(~t) is a \spontaneous" action, executed to achieve some of a's own goals. Amessage event is represented as a triple of the form hsender ; receiver ; bodyi, where senderand receiver are agents, sender 6= receiver, and body is either a service request % or ananswer, that is, a set of ground code call atoms.8

Notation Location DescriptionS Def. 3.1 Software codeOS(t) Def. 3.2 Agent stateS : f (d1; : : : ; dn) Def. 3.3 Code callin(X; S : f (d1; : : : ; dn)) Def. 3.3 Code call atom� Def. 3.4 Code call condition�(~t) Section 3 ActionLa Section 4.2 beginning fact language of agent ah Def. 4.1 HistoryposHa Def. 4.2 Possible histories of aCna Def. 4.4 Consequence relation of a`a Section 4.3 after Def. 4.4 provability relationSeca Def. 5.1 Agent secrets functionASeca Def. 5.2 Agent action security functionh1 ab ! h2 Def. 5.4 Compatible historiesOb(hb) 4.3 b's state at hbViolatedab(hb) Def. 5.5 Violated secretsposHab Def. 6.1 Possible histories approximation;h Def. 6.2 History correspondence relationAppH b(h) Def. 6.3 Approximate current historyAppLb Def. 6.4 Approximate fact language;f Def. 6.5 Fact correspondence relation;c Def. 6.7 Condition correspondence relationAppOb Def. 6.8 Approximate state functionAppSec(b) Def. 6.10 Approximate secretsAppCnb Def. 6.12 Approximate consequence relationOViolb Def. 6.17 Overestimate of violated secretsUViolb Def. 6.18 Underestimate of violated secretsG0 �!�R Gm Def. 8.7 Pseudo-derivationTable 1: Summary of notation
9

De�nition 4.1 (Histories) A history is a possibly in�nite sequence of events, such ashe1; e2; : : :i . We say that a history h is a history for a if each action in h can be executedby a, and for all messages hs; r;mi in h, either s = a or r = a .The concatenation of two histories h1 and h2 will be denoted by h1 � h2 . With a slightabuse of notation, we shall sometimes write h � e, where e is an event, as an abbreviationfor the concatenation h � hei .A history for a keeps track of a set of messages that a has exchanged with other agents,and a set of actions that a has performed.The notion of history for a captures histories that are syntactically correct. However,not every history for a describes a possible behavior of a. For instance, some histories areimpossible because a's code will never lead to that sequence of events. Some others areimpossible because they contain messages coming from agents that will never want to talkto a. This leads to the notion of \possible histories" below.De�nition 4.2 (Possible Histories) Every agent a has an associated set of histories,posHa, called the possible histories of agent a.For example, a history where agent a sends mail to agent b without a prior request maynot constitute a possible history for agent b.Example 4.1 A possible history for tank1 agent may have the form h: : :e1; e2; e3; e4 : : : i,where: e1 = hcom� c; tank1; set:speed(new speed)i;e2 = hset speed(55kmh); com� ci;e3 = hcom� c; tank1; location(Xnow)i;e4 = htank1; com� c; fin((50; 20; 40); tank1 :location(Xnow))gi :Here e1; e3 are request messages, e2 is an action event, and e4 is an answer message.Intuitively, the command center asks tank1 to change its speed, then asks for the newposition. Events e2 and e4 model tank1's reactions to those requests.4.2 Logical Agent StatesThe state of an agent may be represented as the set of all ground code call atoms in(o; S : f (a1; : : : ; an))which are true in the state, where S is the name of a data structure manipulated by theagent, and f is one of the functions de�ned on this data structure. Each of these groundcode call atoms may be thought of as a logical atom. For any given agent a, the set ofground code call atoms that can be used by a will be denoted by La , and will be called thefact language of a .Example 4.2 Returning to example 3.2, the state of the tank1 agent may consist of theground code call atoms:in((5; 5); tank1 : location(Xnow)): 10

in(25; tank1 : speed()):in(120; tank1 : bearing()):Clearly, the state of a at a given point in time is determined by the history of a up tothat point. Therefore, it is natural to model a's state changes as a function from historiesto states. This is done in the next de�nition.De�nition 4.3 (Agent State at h: Oa(h)) For all agents a and all histories h for a, wedenote by Oa(h), the state of a immediately after the sequence of events h. The initial stateof a (i.e. the state of a when it was initially deployed) is denoted by Oa(hi) .4.3 Agent Consequence RelationIn principle, \intelligent" agents can derive new facts from the information explicitly storedin their state. Di�erent agents have di�erent reasoning capabilities. Some agents may per-form no reasoning on the data they store, some may derive new information using numericcalculations, while others may have sophisticated inference procedures.De�nition 4.4 (Agent Consequence Relation) We assume that each agent a has anassociated consequence relation Cna, that takes as input, a set of ground code call atoms,and returns as output, a set of ground code call atoms. Cna(F) returns as output, all groundcode call atoms implied by the input set F , according to the notion of consequence adoptedby a. Cna is required to satisfy the following general axioms:1. Cna(X) � X ;2. Cna(Cna(X)) = Cna(X) .Our de�nition of agent consequence builds upon the classical notion of an abstract con-sequence relation, originally proposed by [54]. Almost all standard provability relations, `,for di�erent proof systems ranging from classical logic to modal logics to multivalued logics,induce a function Cn` as follows:Cn`(X) =def f j X ` g :Conversely, each abstract consequence relation Cna induces a provability relationS `a if, by de�nition, 8X : S � X � La; 2 Cna(X) :Note a subtle di�erence between `a and Cna: in S `a �, S is treated as a partial descriptionof a state X , while the argument X of Cna is taken as a complete description of a's state.It is also important to note that agent consequence relations are not required to be soundwith respect to classical logic. This is because some agents may make decisions on thebasis of conditions that normally or plausibly hold; the consequence relation of such agentsis in general not a subset of classical inferences. Moreover, drawing conclusions requires11

resources; some agents may want to infer all valid conclusions from their state, while othersmay only draw inferences obtainable through a bounded number of inferences. This explainswhy agent consequence relations are not required to be complete w.r.t. classical inference(i.e. agent consequence relations may not include all classical inferences).Example 4.3 Returning to example 4.2 where tank1's state can be viewed as a set of �rst-order formulas (the code call conditions which are true in the state). Then, tank1 may beable to infer from these �rst-order formulas (some) logical consequences, using the standardinferences of �rst-order logic.5 Security of Abstract AgentsIn this section, we show how we may build a notion of security on top of the abstractde�nition of agents given earlier.� First, in Section 5.1 we will describe, for each agent a, what data and actions itwishes to protect from another agent b. When handling a service request, agent amust ensure that such data is not disclosed to agent b, and such actions are notexecuted on behalf of agent b.� In Section 5.2, we will de�ne what it means for an agent to preserve security, withrespect to the security speci�cations introduced in Section 5.1.� Finally, in Section 5.3,maximally cooperative histories will be introduced. The under-lying idea is that in many cases, we want security-preserving agent services to be asclose as possible to the unrestricted (non-security-preserving) services, i.e. a's behaviorshould be distorted as little as possible when attempting to maintain security.5.1 Security Speci�cationsIn this section, we de�ne what kinds of data an agent would like to protect from anotheragent, and also what kinds of actions an agent would like to avoid executing for otheragents.De�nition 5.1 (Agent Secrets Function Seca) Suppose a is an agent. Seca is a func-tion which associates with any other agent b 6= a, a set of ground code call atoms which awould like to keep secret from b.Intuitively, a would like to prevent b from inferring the ground code call atoms in Seca(b).Example 5.1 In the scenario of the tanks we assumed that the track agent is not allowedto know the tanks' locations. Thus, tank1 agent should have an associated secrets func-tion Sectank1 such that all the facts in(x ; tank1 : location(Xnow)) should be contained inSectank1(track).The concept of an agent action security function describes what actions an agent may ormay not perform for another agent. 12

De�nition 5.2 (Agent Action Security Function ASeca) An agent action security func-tion associated with agent a is a function ASeca that associates with any other agent b 6= a,a set consisting of (i) outgoing request messages of the form ha; c; %i (c 6= b), and (ii) se-quences of ground action names.Roughly speaking, ASeca(b) contains a set of forbidden action sequences that a does notwant to execute upon b's requests. It also includes requests that a is not willing to issueon behalf of b.Example 5.2 As mentioned in Section 2, the tracking agent may task the tanks to takeappropriate repair actions, but has no authority to change their route, etc.Thus, ASectank1(track) should contain (among other sequences) all the simple sequenceshset speed(x)i ... hmove to(y)i ... etc.In some cases, the set ASeca(b) may be closed under action equivalence. For example,suppose there exist two actions printf(s) and fprintf(stdout,s) that execute the Cfunctions associated with these names. These two actions are equivalent, and hence if�1; �2; : : : ; �9 is a forbidden action sequence and �2 = printf(s), then the action sequence�1; fprintf(stdout;s); �3; : : : ; �9 should also be forbidden.One may therefore wonder whether we should insist that if an action sequence is inASeca(b), then every action sequence equivalent to it should also be in ASeca(b). Usingthe real world operation of computer systems as a guide, the answer seems to be \no."To see why, consider simple email. A user may write on another user's mailbox �le onlythrough certi�ed e-mail programs. No sequence of individual open, close, read and writeoperations is admitted on another user's mailbox, although some of these sequences up-date the mailbox exactly as the e-mail program would. Accordingly, ASeca(b) need notnecessarily be closed under action equivalence.5.2 Secure HistoriesWhat does it mean for an agent to preserve security? A full answer to this question mustdeal both with the protection of agents' data, and with restrictions on the actions thatagents may execute in response to incoming requests.Let us consider data protection �rst. Standard approaches require systems (be theyagents, databases or other packages) to include no secrets in their answers. This is de�nitelya reasonable security requirement, that we call surface security.Recall that posHa denotes the set of all possible histories for an agent a (i.e. the possiblebehaviors of a).De�nition 5.3 (Surface Security) A history ha 2 posHa is surface secure w.r.t. b if forall messages ha; b; Ansi in ha,Ans \ Seca(b) = ; :If all histories ha 2 posHa are surface secure w.r.t. b then we say that agent a is surfacesecure w.r.t. b. 13

Example 5.3 In the scenario of the tanks, we assumed that the track agent is not allowedto know the tanks' locations. Thus, a history in which tank1 does not explicitly tell thetrack agent its location will be surface secure. However, the track agent may still deducethe location. For example, if it knows that tank1 has been moving at a constant speed d,along a given bearing b for the last 30 minutes, it can derive the current position of the tankfrom its location at time t = now � 30 . Note, that in this example, the tank's position 30minutes ago|although not a secret in itself|su�ces to let the track agent infer a secret(the current position of the tank).In another example, the track agent may be able to deduce tank1's location from knowingthat it is low in fuel.1 In this example, the tank1's being low in fuel may lead to violatingof a secret even though it is not a secret in itself.Although this somewhat minimal form of security may be satisfactory against simpleclient agents, it doesn't guarantee data protection from smart agents because such agentscan derive new information through their consequence relation; surface security does notverify that no secret be derived through the consequence relation.A naive approach to this problem consists of stating that an agent a is data secure ifits client agents can never deduce any secret. However, this de�nition does not take intoaccount the fact that security breaches might be caused by some other agent c 6= a . Theproblem is that b might come to know some secret s because it was told this by c. Clearly,agent a has in no way caused security to be violated in this situation. Under the naivede�nition, a would not be data-secure simply because c disclosed s. This would happeneven in the extreme case where a never answers incoming requests and maintains perfectsilence !This paradoxical situation can be avoided by adopting a more realistic notion of security.The underlying intuition is that agents are responsible only for their own answers. Roughlyspeaking, an agent can be said to be secure if its answers never increase the set of secretsknown by other agents. With respect to the previous example, a should be regarded asdata secure as long as b cannot derive new secrets using a's answers. To state this formally,we need a couple of intermediate de�nitions.De�nition 5.4 (Compatible Histories h1 ab ! h2) Let a and b be agents. We say thattwo histories h1 and h2 are ab-compatible, denoted h1 ab ! h2, if the subsequences of h1 andh2 obtained by removing all events but the messages of the form ha; b; : : :i and hb;a; : : :icoincide. Furthermore, if h1 ab ! h2 and the last events of h1 and h2 coincide, then wewrite h1 ab() h2, and say that h1; h2 are strongly ab-compatible.Intuitively, histories h1 and h2 are ab-compatible i� the two histories are identical as faras messages between the agents a; b are concerned. Therefore, h1 and h2 might be a's andb's view (respectively) of the same global sequence of events. Note that h1 and h2 maydi�er on interactions involving agents other than a; b, but they are considered to be a; bcompatible if they coincide on events involving a; b.1In real scenarios the track agent will need more information, e.g., the region where tank1 is located, toconclude tank1's location. However, we make this assumption to simplify the discussion.14

Example 5.4 Consider the two histories h1; h2 given below.h1 = hb;a; %1i; ha; c; %2i; hc; b; %3i; ha; b; ans1i:h2 = hb;a; %1i; ha; c; %4i; hc; b; %3i; ha; b; ans1i:It is easy to see that histories h1; h2 are ab-compatible and bc-compatible, but they arenot ac-compatible. Furthermore, h1 and h2 are strongly ab-compatible and strongly bc-compatible, as the last events of these two histories are identical.In addition to the notion of compatible histories, we need a concise notation for the setof secrets of a that can be violated (i.e. inferred) by b at some point in time, correspondingto history hb . Recall that we use Ob(hb) to denote b's state at hb, and that Cnb(Ob(hb))is the set of facts that can be derived by b from that state.De�nition 5.5 (Violated Secrets) Violatedab(hb) = Cnb(Ob(hb))\ Seca(b) :Example 5.5 In the scenario of the tanks we assumed that the track agent is not allowedto know the tanks' locations. A possible history htrack for the track agent may have theform h: : :e1; e2; : : :i, where:e1 = htrack; tank1; fuel level()i;e2 = htank1; track; fin(low; tank1 :fuel level(Xnow))gi :Suppose that after htrack, the track agent's state (with respect to tank1) only includes thefuel level of tank1, and suppose that the track agent cannot deduce anything new from thisfact. Then, Violatedtank1track (htrack) is empty.However, if from knowing that the fuel level of tank1 is low, the track agent can concludethat tank1 is in the support center, e.g., given that the location of the support center is(50; 20; 40) it may conclude that in((50; 20; 40); tank1 :location(Xnow)) and if this is theactual location of tank1, thenViolatedtank1track (htrack) = fin((50; 20; 40); tank1 :location(Xnow))gWe are now ready to formalize the important concept of data security, which says that foran agent to be data secure, it must guarantee that it will never increase the set of secretsviolated by another agent.De�nition 5.6 (Data Security) A history ha 2 posHa is data secure w.r.t. b if for allinitial segments h �e of ha such that e is an answer message ha; b; Ansi, and for all historieshb � e 2 posHb such that hb � e ab() h � e,Violatedab(hb) � Violatedab(hb � e) :If all histories ha 2 posHa are data secure w.r.t. b then we say that a is data secure w.r.t.b. 15

To understand this de�nition, recall that the conditions hb � e 2 posHb and hb � e ab() h � e,state that hb � e is a possible history for b when a's answer reaches b. The inclusion inDe�nition 5.6 says that the set of violated secrets (of b) does not increase after receiving a'sanswer. By quantifying over all possible histories hb � e with the aforementioned properties,we require data to be protected no matter what actions b may take before getting theanswer, possibly including sending requests to other agents and getting their answers.Example 5.6 We return to the the scenario of Example 5.5 and consider the historyhtank1 = h: : : e1; e2; : : :i where e1 and e2 are as in Example 5.5. Suppose further thatall the histories in posHtrack that includes e1 and e2 includes the additional evente0 = hcom� c; track; fin((50; 20; 40); tank1 :location(Xnow))giwhich occured before e1. Even though, as in the previous example, Violatedtank1track (htrack) =fin((50; 20; 40); tank1 :location(Xnow))g, htank1 is data secure. Intuitively, even thoughthe track agent can conclude the location of tank1 from tank1's answer, since, this infor-mation has been originally revealed to the track agent by the com� c agent and tank1'sanswer does not lead to the revelation of new secrets.Interestingly enough, the above de�nition encompasses the case (corresponding to strictinclusion) in which a convinces b that some previously violated secret does not hold|although in practice this may be just as hard to do as it is desirable.In general, the notions of surface security and data security are incomparable, in the sensethat neither of them implies the other. For example, as we have already pointed out, surfacesecurity does not prevent client agents from inferring secrets, so surface security does notimply data security. Conversely, data security does not always entail surface security. Forexample, if a sends b secrets only when b already knows them (a game well-known bydouble-crossers), then data security is enforced, while surface security is violated. However,as stated in the following theorem, in some cases, surface security entails data security.Theorem 5.1 Suppose the consequence relation of b, Cnb, is the identity function, andsuppose that for all histories hb � e such that e = ha; b; Ansi, the new state of b isOb(hb � e) =def Ob(hb) [Ans :Then, each surface secure history ha for a is data secure w.r.t. b.Proof: Suppose not. Then for some pre�x h0 � e of some surface secure history ha s.t.e = ha; b; Ansi, for some history hb � e ab() h0 � e and for some secret f 2 Seca(b), we havef 2 Violatedab(hb � e) n Violatedab(hb) :Moreover, by de�nition of Violatedab and by the hypothesis on Cnb,olab(hb � e) n Violatedab(hb) = (Ob(hb � e) \ Seca(b)) n (Oab(hb) \ Seca(b)) :From the other hypothesis, it follows that(Ob(hb � e) \ Seca(b)) n (Oab(hb) \ Seca(b)) � Ans \ Seca(b) :16

We conclude that f 2 Ans \ Seca(b). This implies that ha is not surface secure; a contra-diction.Moreover, if we further assume that the client agent b does not store any answer comingfrom agents other than a, then surface security and data security coincide. The followingis a formal statement of a particular instance of this fact, which will be needed in severalproofs in the rest of the paper.Proposition 5.2 (Data Security vs. Surface Security) There exist multi-agent systemswhere surface security coincides with data security.Proof: Consider a simple multi-agent system consisting of two agents a and b. Let a'sand b's possible histories have the formhn = hq1; a1; : : : ; qn; ani;where each qi is a request message from b to a, and each ai is a's answer to qi , i.e. a messageof the form ha; b; Ansii. Let Ob(hi) =def ;, andOb(hn) =def n[i=1Ansi :Finally, let Cnb be the identity function over b's states. Then Violatedab(hi) = ;, andhn is data securei� Violatedab(hi) � Violatedab(h1) � Violatedab(h2) � : : :� Violatedab(hn)Moreover, Violatedab(hn) = Sni=1Ansi \ Seca(b) , by de�nition of Ob and Cnb; thereforea is data secure i� 8n > 0; Ansi \ Seca(b) = ; :But this is equivalent to saying that a is data secure i� a is surface secure.The notion of data security above may be extended to the case of action security as shownbelow.De�nition 5.7 (Action Security) Let ha 2 posHa and let act(ha; b) be the subsequenceof ha consisting of all the actions h�; bi done for b. We say that ha is action secure w.r.t.b if act(ha; b) contains no sequence from ASeca(b).If all histories ha 2 posHa are action secure w.r.t. b, then we say that a is action securew.r.t. b.Example 5.7 Suppose the track agent has no authority to change tank1's speed. In thiscase, the following possible history htank1 for tank1 is not action secure w.r.t. track:htank1h: : :e1; e2; : : :i, where:e1 = htrack; tank1; set:speed(new speed)i;e2 = hset speed(55kmh); tracki :17

5.3 Degrees of CooperationThere are many di�erent ways in which an agent can make its services secure. One of theseways is to provide no information or to take no action at all, which is a very uncooperativemode of behavior. For example, when the tank1 agent is asked its current speed by thetrack agent, it may choose to protect security by providing no answer at all, even thoughit is authorized to disclose this information to the track agent. Likewise, when the com� cagent is requested by the tank1 agent to provide a safe route to a new location, the com� cagent may respond by merely sending one waypoint to the intended destination instead ofa full route, even though it is authorized to disclose a full route. The right balance betweensecurity and cooperation depends on a number of application dependent factors.Independently of exactly what these factors are, there is some notion of nearness or degreeof distortion of an answer or a service. This will be modeled by a partial order on historiesas de�ned below.De�nition 5.8 (More Cooperative History) For any agent a, we use �coopa to denotea partial order on the set of all histories for a. Intuitively, h �coopa h0 means that h0 is morecooperative than h.Example 5.8 Consider the following two histories for our tank1 agent. htank1 = h: : :e1; e2; : : :i,where: e1 = hcom� c; tank1; status()i;e2 = htank1; com� c; fin(low; tank1 :fuel level(Xnow));in(low; tank1 :fuel level(Xnow));in((50; 20; 40); tank1 : location(Xnow))giandh0tank1 = h: : :e01; e02; : : :i, where:e01 = hcom� c; tank1; status()ie02 = htank1; com� c; fin((50; 20; 40); tank1 :location(Xnow))gi :It seems that in the �rst history tank1 is more cooperative by providing more informationabout its location. Thus, it may be desired to assert that: h0tank1 �cooptank1 htank1.6 Approximating Agent SecurityIn the preceding section, we have assumed that any agent b has an associated \true" history,\true" consequence relation, \true" state, etc. However, when an agent a wants to protectsome of its data and/or services from agent b, it needs to know what agent b's \true" history,consequence relation and state are. In general, this is very di�cult to accomplish. Hence,in this section, we introduce the notion of approximations that agent a may use aboutanother agent b, and we de�ne what it means for such an approximation to be correctw.r.t. the corresponding \true" notion. We show that under appropriate conditions, these18

approximations guarantee that true data/action security will be preserved. Agent a doesnot need to model agent b's history, consequence relation and state in order to maintainaction security. Therefore, in this section we will discuss these approximations in the contextof data security.The organization of this section is as follows.� First, we de�ne what it means for agent a to approximate agent b's history .� Then, we describe how agent a approximates agent b's language (after all, if agenta knows nothing about agent b's language, then it cannot say much about agent b'sbeliefs).� Then, we show how these two notions allow us to de�ne how agent a approximatesagent b's state, given its approximation of agent b's history and language.� We then introduce a notion of how agent a can approximate agent b's inferencemechanism/consequence relation so that it can infer an approximation of agent b'sbeliefs.� Based on these approximations, we show that to preserve security, agent a mustoverestimate what (it thinks) agent b will know after it responds to a given request,and it must underestimate what (it thinks) agent b knew before giving the answer.� Though some of these approximations are space-consuming, we show that all approx-imations can be compacted, but such compactions diminish the level of cooperationagent a gives to agent b.6.1 The Basic IdeaThe intuition underlying approximate security checks is relatively simple: take the worstpossible case and decide what to do on the basis of that worst-case scenario. In our de�nitionof security, we wish to ensure that the set of violated secrets after agent a provides an answeris a subset of the set of violated secrets before a gives as answer. Thus, to be safe, we mustunderestimate the set of secrets violated by b prior to giving an answer, and overestimatethe set of secrets violated by b after giving the answer. By underestimating the secretsviolated by b prior to giving an answer, and overestimating the set of secrets violated by bafter giving the answer, we are assuming (as we should in a worst case situation) that theanswer causes a maximal set of secrets to be disclosed to the user. The following exampleillustrates this situation.Example 6.1 Consider the scenario described in Example 5.5 in which the com� c agentmay tell the track agent tank1's location (event e0), and then tank1 may tell the trackagent that it is low in fuel (event e2), from which the tack can also infer tank1's location.Before event e2, underestimating the track agent's set of violated secrets will lead, forexample, to not including tank1's location in it. On the other hand, if track agent's setof violated secrets after e2 is overestimated, it may include tank1's location (inferred fromthe answer that tank1 is low in fuel). These underestimation and overestimation will leadtank1 to the conclusion that it cannot tell the track agent that it is low in fuel. Thisguarantees data security (but not maximal cooperativeness).19

Summarizing, suppose a wishes to protect its data from b. Then, in order to performapproximate security checks, a needs the following items:� an estimate of b' possible states;� an upper bound on the set of secrets that can be derived by b using a's answer ;� a lower bound on the set of secrets that can be derived by b (from the old state).In turn, to approximate b's states, a needs some approximation of b's fact language (i.e.of its data structures) and of its history (which in
uences the actual contents of b's state).All of these approximate notions are formalized in the succeeding sections.6.2 Approximating Possible HistoriesIn this section, we specify what an approximate history is. In order to represent (approx-imately) b's history, a (and its developers) need some language, modeled by the followingset.De�nition 6.1 (Possible Histories Approximation) The set of approximate historyrepresentations for b used by a is a decidable set posHab .In this de�nition, the set posHab is deliberately generic; there can be many ways to representb's histories, and the most appropriate approach will, in general, be application dependent.In particular, the members of posHab may be histories of some sort (as in the followingexample), or even constraints (as in Section 8) that constitute a partial description of b'shistories. For instance, such constraints may state that b's history contains a messagefrom c at some point, and leave the rest of the history unspeci�ed. The need for partialdescriptions arises because a will typically be unable to see all the messages exchangedbetween b and other agents. Similarly, a will be unable to observe all the actions executedby b. An example of an approximate history is given below.Example 6.2 Agent tank1 may use its own history htank1 as a partial description of thetrack agent's history htrack . In fact, the messages between tank1 and the track agentshould be the same in htank1 and htrack. Therefore, if htank1 = h: : :e1; e2; e3; e4; : : : i,where e1 = hcom� c; tank1; set:speed(new speed)i;e2 = hset speed(55kmh); com� ci;e3 = htrack; tank1; fuel level()i;e4 = htank1; track; fin(low; tank1 :fuel level(Xnow))gi :then htrack can be any possible history of the formh1 � he3; e4; i � h2; (1)where h1 and h2 contain no message from/to tank1 |that is, htrack can be any possiblehistory which is tank1track-compatible with htank1 (see De�nition 5.4).20

The correspondence between approximate and actual histories is application-dependentand, in general, non-trivial. This correspondence is formalized as follows.De�nition 6.2 (History Correspondence Relation ;h) For all agents a and b, thereis an associated correspondence relation ;h� posHab � posHb .The subscript h will often be omitted to improve readability. Intuitively, if some historyhb 2 posHb matches an approximate description h 2 posHab , then we write h ; hb . Inthe above example, posHab coincides with posHa (the set of all possible histories for a),and ; coincides with the compatibility relation ab !. Moreover, agent a maintains anapproximation of b's current history . This notion is formalized below.De�nition 6.3 (Approximate Current History AppH b(:), correctness) Let h 2 posHabe the current history of a. The approximation of b's current history at h, is an approximatehistory representation AppH b(h) 2 posHab .We say that AppH b is correct if for all h 2 posHa, and for all hb 2 posHb such thath ab ! hb it is the case that AppH b(h); hb .Intuitively, an approximate current history is correct if it matches (at least) all possiblehistories for b that are compatible with a's history. An example of a correct approximatehistory is given below.Example 6.3 Suppose, as in Example 6.2, that tank1 uses its own histories as a partialdescription of track's possible histories. That is, posHtank1track includes the projection of thehistories in posHtank1 on the interactions with agent track. In addition, ; coincides withthe compatibility relation tank1track ! , and for h 2 posHtank1, AppH track(h) is the projectionof h to the interactions with track. Then, AppH track is correct.6.3 Approximating LanguagesThe �rst di�culty in approximating b's state is that a may have imprecise knowledge ofb's fact language (i.e. of the data structures and function calls used by b). a is forced touse some ground code calls, and hope that these code calls mimic the operations that bactually has in its repertoire.2De�nition 6.4 (Approximate Fact Language AppLb) The approximate fact languageof b used by a is a denumerable set AppLb .The relationship between the approximate fact language used by a and the actual factlanguage used by b is formalized by the following fact correspondence relation, that relatesapproximate facts to the actual data structures of b that match the approximate description.De�nition 6.5 (Fact Correspondence Relation ;f) For all agents a and b, there isan associated fact correspondence relation ;f� AppLb � Lb .2In the following de�nitions, when the approximating agent, a, is clear from the context, we will omit itfrom the notation. For example, we will write AppLb instead of AppLab.21

We drop the subscript f whenever the context allows us to distinguish ;h from ;fIntuitively, we write f ; fb if fb is one of the possible instantiated data structures for bthat match the approximate description f used by a.Some approximate facts f may have no counterpart in Lb (e.g. a may think that b canuse a code call p : g() when in fact this is not the case). In such cases, we write:f 6; if, by de�nition, 6 9f 0: f ; f 0 :Analogously, some facts of Lb may have no approximate counterpart (e.g. when a does notknow that b may use some code call p : h()). In this case we write:6; f if, by de�nition, 6 9f 0: f 0 ; f :Ground code call conditions are approximated by sets of approximate facts. Approximateconditions are matched against sets of facts from Lb by means of a correspondence relationderived from the correspondence relation for individual facts, ;f .De�nition 6.6 (Approximate Conditions) An approximate condition is a set C � AppLb .De�nition 6.7 (Condition Correspondence Relation) We say that an approximatecondition C � AppLb corresponds to a set of facts Cb � Lb, denoted C ;c Cb, if both thefollowing conditions hold:1. if f 2 C then either f 6; or 9fb 2 Cb : f ; fb .2. if fb 2 Cb then either 6; fb or 9f 2 C : f ; fb .The �rst requirement above says that all elements, f , of the approximate condition mustcorrespond to some fact fb in the actual state unless f has no counterpart in the languageLb (in which case, f is ignored). Similarly, the second requirement says that each memberof Cb must have a counterpart in C, with the exception of those facts fb that are notexpressible in the approximate language AppLb . The following example describes howstates are approximated in the Tank example.Example 6.4 Suppose the code calls in Ltrack include:in(P; tank1 :location()); in(F; tank1 :fuel level());in(S; tank1 : soldiers()); in(D; track :distance(A1; A2));in(Y; track :repair needed(A)) :Agent tank1 may think that the functions location and fuel level used by track haveone argument, e.g., T. It may not know that in(D; track :distance(A1; A2)) is used by thetrack agent and may think that it uses status(A) instead of repair needed(A). In addi-tion, tank1 may think that the track also uses in(R; track :region(T)). Thus, AppLtank1trackmay include:in(P; tank1 :location(T)); in(L; tank1 : fuel level(T));in(S; tank1 : soldiers()); in(Z; tank1 :region(T));in(Y; track :status(A)) : 22

where, for example,in(Y; track :status(A)) ;f in(Y; track :repair needed(A));in(Z; region :T()) 6;f6;f in(D; track :distance(A1; A2)) :For example, if the condition fin(true; track :repair needed(tank1)), in(north east; tank1 :region(Xnow))gis in track1's approximation, it may correspond tofin(need repair; track : status(tank1)), in(5; track :distance(tank1; track))g:6.4 Approximating StatesThe approximation of a state Ob should tell us the following things:� which facts are surely true in Ob ; this is needed by a to underestimate the inferencesof b (inferences can be part of a correct underestimation only if they follow fromconditions that are guaranteed to be true in Ob);� which facts may possibly be true in Ob ; this is needed by a to overestimate the infer-ences of b (inferences that depend on facts that might be in Ob should be consideredby the overestimation);� which facts are new ; this is needed to identify the inferences that really depend onthe last answer; intuitively, a new secret is violated only when it is derived from somenew fact.Accordingly, approximate states are described using three sets of approximate conditions.De�nition 6.8 (Approximate States AppOb = hNec;Poss;Newi) An approximate stateof b used by a is a triple AppOb = hNec;Poss;Newi, whose elements are sets of approximateconditions (i.e. AppOb 2 }(AppLb) � }(AppLb) � }(AppLb)). The three elements of anapproximate state AppOb will be denoted by AppOb:Nec, AppOb:Poss, and AppOb:New,respectively. AppOb is required to satisfy the following inclusions:1. AppOb:Nec � AppOb:Poss ;2. AppOb:New � AppOb:Poss .The �rst inclusion says that a condition C cannot be necessarily true if it is not possiblytrue. The second inclusion says that all new facts must be possible.Agent a maintains an approximation of b's current state. This is formalized via thefollowing de�nition.De�nition 6.9 (Approximate State Function AppOb, correctness) The approximatestate function AppOb is a mapping which maps approximate histories from posHab onto ap-proximate states of b used by a. We say that AppOb is correct if for all approximatehistories h 2 posHab, the following conditions hold:23

1. if C 2 AppOb(h):Nec, then for all hb such that h ; hb there exists Cb � Ob(hb)such that C ; Cb ;2. for all Cb � Ob(hb) such that h; hb, if C ; Cb then C 2 AppOb(h):Poss ;3. for all possible non-empty histories hb � e 2 posHb such that h ; hb � e, and for allCb � Ob(hb � e) such that Cb 6� Ob(hb), if C ; Cb then C 2 AppOb(h):New .Intuitively, the above correctness conditions state that: (i) each condition C in Nec shouldcorrespond to some condition Cb which is actually true in the current state of b, whateverit may be (note the universal quanti�cation over hb); thus, in case of doubt, in order toachieve correctness it is better to underestimate Nec; (ii) the approximations C of each setof facts Cb that might be part of b's current state should be included in Poss (in case ofdoubt, it is better to overestimate Poss to achieve correctness); (iii) if a set of facts is newin b's current state (because Cb � Ob(hb � e) and Cb 6� Ob(hb)), then its counterparts Cshould be included in New (that should be overestimated in case of doubt). An example ofan approximate state function that is correct is shown below.Example 6.5 Consider the scenario depicted in Example 6.4. Suppose the approximatelanguage AppLtrack contains only the code calls in(L; tank1 :fuel level(T)), in(P; tank1 :location(T))and in(S; tank1 :soldiers()) where P is tank1's current position at time T and S is thelist of tank1's soldiers. Suppose htank1 is a history of tank1 in which it didn't send anyanswers to the track agent. Consider the scenario in which the track agent didn't receiveany answers from other agents (including tank1) and tank1 also believes it. That is, inAppH track(htank1) = h there is no answers sent to the track agent from tank1, In thiscase one should set:AppOtrack(h):Nec = ; ;AppOtrack(h):Poss = ffin(L; tank1 :fuel leve(T))g;fin(S; tank1 : soldiers())g;fin(P; tank1 :location(T))g 0fin(L; tank1 :fuel leve(T)) ; in(S; tank1 : soldiers())gfin(P; tank1 :location(T);)in(L; tank1 : fuel leve(T))g ;fin(P; tank1 :location(T)); in(S; tank1 : soldiers())gfin(L; tank1 :fuel leve(T)) ; in(S; tank1 : soldiers());in(P; tank1 : location(T))g ;g :In other words, nothing is necessary, everything is possible. If track1 sent the track agentan answer message e = htank1; track; fin(low; tank1 :fuel leve(Xnow))gi, then one might24

set: AppOtrack(h � e):Nec = ffin(low; tank1 : fuel level(Xnow))gg ;AppOtrack(h � e):Poss = AppOtrack(h):PossAppOtrack(h � e):New = ffin(low; tank1 :fuel leve(Xnow))g;fin(low; tank1 : fuel leve(Xnow)) ; in(S; tank1 : soldiers())g;fin(low; tank1 : fuel leve(Xnow)) ; in(P; tank1 :location(T))g;fin(low; tank1 : fuel leve(Xnow)) ; in(S; tank1 : soldiers())g;in(P; tank1 : location(T))gg :Note that in this example in(low; tank1 : fuel leve(Xnow)) becomes necessarily true (insome other cases, track might disbelieve tank1, and AppOtrack(h � e):Nec would remainempty). The set of possible new conditions that become true due to e is set to all the setsof facts that contain the answer in(low; tank1 :fuel leve(Xnow)). Only secrets that arerevealed from new facts are due to security violation of tank1.Consider a third variation of this scenario where the com � c agent has told the trackagent the list of soldiers of tank1 and suppose that tank1 believes that this happened (asapproximated by h0) and that the track agent does not forget such lists. Assume further,that e0 = htank1; track; in(S; tank1 : soldgiers())i. In this caseAppOtrack(h0):Nec = ff in(S; tank1 : soldiers())g;AppOtrack(h0 � e0):New = ff in(S; tank1 : soldiers())g;fin(low; tank1 : fuel leve(Xnow)) ; in(S; tank1 : soldiers())g;fin(S; tank1 : soldiers()); in(P; tank1 : location(T))gfin(S; tank1 : soldiers()); in(low; tank1 :fuel leve(Xnow));in(P; tank1 :location(T))gg :6.5 Approximate SecretsIn the framework of exact security checks, when agent a describes the set of secrets Seca(b)it wishes to prevent b from inferring, the members of Seca(b) are drawn from Lb. As thislanguage itself may only be partially known to agent a, a must use some approximation ofits secrets function.De�nition 6.10 (Approximate Secrets AppSec(b)) The set of approximate secrets ofagent a w.r.t. agent b, denoted by AppSec(b), is some subset of AppLb.Clearly, the fact correspondence relation ;f applies to approximate secrets. If f 2AppSec(b) approximates f 0 2 Seca(b), then we write f ; f 0 . What is means for a set ofapproximate secrets to be correct is de�ned below.De�nition 6.11 (Approximate Secrets, Correctness) The set AppSec(b) is correctw.r.t. Seca(b) if it satis�es the following conditions:25

1. for all fb 2 Seca(b) there exists f 2 AppSec(b) such that f ; fb ;2. if f ; fb and fb 2 Seca(b), then f 2 AppSec(b).Condition 1 says that each secret should be expressible in the approximate language AppLb(otherwise, some violation might go unnoticed). Condition (2) above states the conservativeprinciple that if a fact f may correspond to a secret, then it should be treated like a secret.We now revisit the Tank Example and illustrate the de�nition of a correct set of approximatesecrets.6.6 Approximate ConsequencesIn this section, we de�ne what it means for an agent a to correctly approximate agent b'sconsequence relation.De�nition 6.12 (Approximate Consequence Relation) An approximate consequencerelation of b used by a is a mapping AppCnb : }(AppLb)! }(AppLb) .Recall that when providing an answer to agent b, agent a should underestimate what isknown to b prior to providing the answer, and should overestimate what is known to b afterproviding the answer. This may be done by using approximate consequence functions thatunderestimate and overestimate b's actual consequence function.De�nition 6.13 (Correct Underestimate) An approximate consequence relation UCnbis a correct underestimate of Cnb if, for all abstract conditions C and abstract facts f , iff 2 UCnb(C) then for all Cb and fb such that C ; Cb and f ; fb, it holds that Cb `b fb .In other words, UCnb is a correct underestimate of Cnb if what can be inferred using UCnbis also derivable using `b (and hence Cnb). Here we use `b instead of Cnb because Cb isonly a partial description of the contents of b's state (cf. the discussion in Section 4.3).The following example provides a correct underestimate in the case of the Tank example.Example 6.6 Consider the tank example. The identity function is a correct underestimateof the track agent's consequence relation. That is, 8C � AppLtrack;UCntank1track (C) = CBefore proceeding to the de�nition of correct overestimates, we need a de�nition thatintuitively captures the causal dependencies between a set Cb of facts and the facts fb thatcan be derived from Cb . This is needed to focus on the secrets that are violated because ofa's answer as demonstrated in the following example.Example 6.7 Consider the scenario of Example 6.5 and suppose that tank1 would like toprotect its soldiers' list from the track agent. It is clear that giving the answer on its fuellevel, as in event e, has nothing to do with the soldiers list. However, the setfin(low; tank1 :fuel leve(Xnow)) ; in(S; tank1 : soldiers())gthat is in AppOtrack(h � e):New does entail in(S; tank1 : soldiers()), i.e., the secret. Includ-ing the answer in(low; tank1 :fuel leve(Xnow)) in every set of New does not help. Forthis, we will need the notion of \causality." 26

The mapping Cnb is not completely adequate for de�ning and overestimating the conse-quence relation because in general, when fb 2 Cnb(Cb), Cb may contain facts that are notrelevant to the proof of fb . Rather, we should say that fb is caused by the presence of Cbwhen fb 2 Cnb(Cb) and Cb is minimal, i.e. if we dropped even one fact from Cb, then fbwould not be derivable anymore.De�nition 6.14 (Causal Dependencies) We say that Cb causes fb, denoted Causes(Cb; fb),if Cb `b fb and for all C � Cb, C 6`b fb .We are now ready to give a formal de�nition of correct overestimates. From the standpointof security, it is not necessary that a correct overestimate of b's consequence relation containall inferences that b can draw. Rather, we only require that the overestimate include allpossible secrets that b may infer. This is captured by the following de�nition.De�nition 6.15 (Correct Overestimate) An approximate consequence relation OCnbis a correct overestimate of Cnb if for all Cb and fb such that Cb causes fb and fb 2 Seca(b),there exist C; f such that C ; Cb and f ; fb such that f 2 OCnb(C) .The following example shows a simple correct overestimate in the context of the TankExample.Example 6.8 We return to Example 6.5 and assume that that the track agent can infertank1's location from its being low in fuel, and otherwise has the identity consequencerelation.If the only consequences that tank1 includes in its overestimation of track's consequencerelation are the following, then it is a correct overestimation.OCntank1track (fin(S; tank1 : soldiers())g) = fin(S; tank1 : soldiers())g;OCntank1track (fin(S; tank1 : location(T))g) = fin(S; tank1 : location(T))g;OCntank1track (fin(L; tank1 : fuel level(T))g) = fin(P; tank1 :location(T));in(L; tank1 :fuel level(T))g :However, for example,in(S; tank1 : soldiers()) 62 OCntank1track (fin(S; tank1 : soldiers()); in(L; tank1 : fuel level(T))g) :6.7 Approximate Data Security CheckIn this section, we have de�ned what it means for an approximate history to be correct, anapproximate consequence relation to be a correct under/over estimate of another agent'sconsequence relation, etc. In short, agent a approximates b's behavior via the functionsAppH b, AppOb, OCnb and UCnb . The secrets in Seca(b) are approximated by AppSec(b) .Together, these functions constitute a's approximate view of b.27

De�nition 6.16 (Agent Approximation, correctness) The approximation of b usedby a (based on the approximate languages posHab and AppLb, and on the correspondencefunctions ;h and ;f) is a quintupleApp(b) = hAppH b; AppOb; AppSec(b); OCnb; UCnbi;whose members are, respectively, a current history approximation , a current state approx-imation, a set of approximate secrets and two approximate consequence relations.We say that App(b) is correct if AppH b, AppOb and AppSec(b) are correct, OCnb isa correct overestimate of Cnb, and UCnb is a correct underestimate of Cnb .This de�nition builds upon de�nitions of what it means for the individual components ofApp(b) to be correct|something we have de�ned in preceding sections of this paper.Using these concepts, we wish to specify what it means for a history to be approximatelydata secure. If we can compute an overestimate of the set of secrets violated by agent bafter agent a provides an answer to its request, and we compute an underestimate of theset of secrets violated by agent b before agent a provides an answer, and if we can showthat the latter is a superset of the former, then we would be able to safely guarantee datasecurity. We �rst de�ne these over/under estimates below, and then use those de�nitionsto de�ne what it means for a history to be approximately data secure.De�nition 6.17 (Overestimate of Violated Secrets) For all approximate histories h 2posHab letOViolb(h) =def [fOCnb(C) j C 2 AppOb(h):Newg \AppSec(b) :Informally, OViolb(h) is the overestimated set of secrets that can be derived because of somenew facts (the reason why only the consequences of new facts are considered is illustratedearlier via Example 6.7.)De�nition 6.18 (Underestimate of Violated Secrets) For all approximate historiesh 2 posHab, letUViolb(h) =def [fUCnb(C) j C 2 AppOb(h):Necg \AppSec(b) :In other words, UViolb(h) is the underestimated set of secrets that can be derived fromfacts which are estimated to be necessarily true. The following example illustrates thenotions of over/underestimates of violated secrets.Example 6.9 We return to Example 6.5 and assume that UCntank1track is the identity functionand OCntank1track is as de�ned in Example 6.8 and that tank1 would like to protect its currentlocation and its soldiers list.Consider the second scenario of Example 6.5 where there is no interaction between thetrack agent and the other agents in h. As AppOtrack(h):Nec is empty, UVioltrack(h) isalso empty. However, OVioltrack(h � e) = fin((50; 20; 40); tank1 : location(Xnow))g becauseone of the sets in New causes it and it is a secret.In the third scenario of Example 6.5, UVioltrack(h0) = fin(S; tank1 : soldiers())g and inaddition, OVioltrack(h0 � e0) = fin(S; tank1 : soldiers())g.28

We may now de�ne the approximate counterpart of data security .De�nition 6.19 (Approximate Data Security) A history ha 2 posHa is approximatelydata secure w.r.t. App(b) if for all initial segments h0 � e of ha such that e is an answermessage ha; b; Ansi,UViolb(AppH b(h0)) � OViolb(AppH b(h0 � e)) :If all histories ha 2 posHa are approximately data secure w.r.t. App(b), then we say thata is approximately data secure w.r.t. App(b).We reiterate that we are comparing an overestimate of the secrets violated by b due toa's answer e (right-hand side of the above inclusion), with an underestimate of the secretsviolated by b before the answer (left-hand side of the inclusion). The following exampleshows an approximately data secure history.Example 6.10 In the second scenario speci�ed in Examples 6.5 and 6.9, it is clear thathtank1 � e is not approximately data secure w.r.t the approximations we described in theprevious examples as AppH track(htank1) = h, UVioltrack(h) is empty and when e is theevent in which tank1 tells the track agent that it is low in fuel,OVioltrack(h � e) = fin((50; 20; 40); tank1 :location(Xnow))g :Thus, UVioltrack(h) 6� OVioltrack(h � e).However, when AppH track(htank1) = h0 in which the track agent received the soldierslist from com� c, and e0 is the event in which tank1 gives the track agent its soldiers list,then htank1 � e0 is approximately data secure, while htank1 � e is not.The approximate data security check works well if the approximation App(b) is correct.The theorem below shows that, under this assumption, the approximate security checkcorrectly enforces the \true" notion of data security. As a consequence, if the designer ofagent a can ensure that the approximation of agent b is correct, then \true" data securityis guaranteed by the approximation, even though the agent a doesn't precisely know thehistory, state, consequence relation, etc. used by agent b.Theorem 6.1 (Correct Approximate Data Security Implies Data Security) If hais approximately data secure w.r.t. App(b) and App(b) is correct, then ha is data securew.r.t. b.Proof: We prove the contrapositive, which is equivalent. Suppose ha is not data securew.r.t. b. Then, for some pre�x h0 � e of ha, where e = ha; b; Ansi, and for some historyhb � e 2 posHb, it holds that hb � e ab() h0 � e andViolatedab(hb) 6� Violatedab(hb � e) :Consequently, there exists f0 2 Seca(b) such that(a) f0 2 Violatedab(hb � e) and 29

(b) f0 62 Violatedab(hb) .Claim 1: there exists f1 such that f1 ; f0 and f1 2 OViolb(AppH b(h0 � e)) .This claim can be proved via the following steps:(c) f0 2 Cnb(Ob(hb � e)) (by (a) and the def. of OViolb);(d) 9C0 such that C0 � Ob(hb � e) and Causes(C0; f0) ;(e) 9f1; C1 such that f1 ; f0, C1 ; C0 and f1 2 OCnb(C1) (by (d) and correctness ofOCnb);(f) C0 6� Ob(hb) (otherwise f0 2 Violatedab(hb), contradicting (b));(g) C1 2 AppOb(AppH b(h0 � e)):New (by (d), (e), (f) and the correctness of AppOb andAppH b);(h) f1 2 AppSec(b) (f1 ; f0+ correctness of AppSec(b));(i) f1 2 OViolb(AppH b(h0 � e)) .Claim 1 immediately follows.Claim 2: f1 62 UViolb(AppH b(h0)).Suppose f1 2 UViolb(AppH b(h0)). We derive the following steps:(j) 9C2 2 AppOb(AppH b(h0)):Nec such that f1 2 UCnb(C2) (by def. of UViolb);(k) 8fb such that f1 ; fb, fb 2 Cnb(Ob(hb)) (by (j) and correctness of UCnb andAppOb);(l) f0 2 Cnb(Ob(hb)) (from (k), since f1 ; f0);(m) f0 2 Violatedab(hb) (from (l), since f0 is a secret).But (m) contradicts (b), so Claim 2 holds. From the above claims it follows immediatelythat ha is not approximately data secure. This completes the proof.6.8 Compact ApproximationsIn many applications (especially those where security checks are performed at runtime), theoverhead caused by maintaining two approximate states for each client agent and computingtwo approximations of its consequence relation is unacceptable. Hence, we introduce acompact version of the approximate security check, where only the state after the answerand the overestimate of b's consequences need to be computed.This has two advantages: �rst, the space needed to store the underestimate of b's con-sequences is saved, and second, the time needed to compute the underestimate of b's con-sequences as well as the time required to check if the secrets in the overestimate of b'sconsequences after the answer is a subset of the underestimate before the answer is saved.However, there is a price to pay, namely a decrease in the cooperativeness of the answerprovided by agent a. 30

De�nition 6.20 (Compact Approximation) An approximationApp(b) = hAppH b; AppOb;AppSec(b); OCnb; UCnbi based on the languages posHab and AppLb is compact if thefollowing two conditions hold:1. for all approximate histories h 2 posHab, AppOb(h):Nec = ; ;2. for all C � AppLb, UCnb(C) = ; .The following example shows a compact approximation of an agent b.Example 6.11 We return to Example 6.5. Suppose tank1 believes that it is possible thatthe track agent didn't know anything that can be expressed by AppLtank1track when it wasdeployed and that the track agent does not believe anything it is told. Furthermore, it cannotinfer anything from facts in AppLtank1track . In such a case, to underestimate the states and theconsequence relations of the track agent, it uses the following: (1) for all h 2 posHtank1track ,AppOtrack(h):Nec = ; ; (2) for all C � AppLtank1track , UCntank1track (C) = ; .Note that tank1's belief may be wrong and tank1 may know that there is a possibilitythat track knows more. As this possibility exists, for tank1's approximation to be correct,it must be as described above.Note that in compact approximations, the underestimate of violated secrets prior toproviding an answer is taken to be the empty set, and hence, the inclusion of Def. 6.19 isequivalent to:OViolb(AppH b(h0 � e)) = ; :As expected, this security condition depends only on one approximation of b's inferences,and only on the approximation of b's state after a's answer e.The above equation immediately implies that compact approximations strengthen thenotion of data security by requiring that no secret be derivable using a's answer. At �rstglance, this approach may appear similar to the naive security de�nition that requires b toderive no secret, no matter where it comes from (see Section 5.2). However, the paradoxicalsituation in which a's behavior is labeled non-secure because some other agent c has dis-closed a secret is avoided by compact approximations. In fact, as OViolb only approximatesonly the inferences that are caused by a's answer, the secrets revealed by another agent,e.g. c, would not be included in OViolb . The de�nition of correct overestimate (based onCauses) and the use of the �eld New in the de�nition of OViolb play a fundamental role inpreserving this important property.A nice property of compact approximations is that every correct approximation can beturned into a compact approximation which is correct ! This is done via the following\compaction" operation.De�nition 6.21 (Compact Version) The compact version of App(b) = hAppH b; AppOb; AppSec(b);OCnb; UCnbi is the compact approximationCompact(App(b)) = hAppH b; \AppOb; AppSec(b); OCnb; (�X:;)i31

where �X:; is the constant function that always returns ;, and for all h 2 posHab,\AppOb(h) =def h;; AppOb(h):Poss; AppOb(h):Newi :The following result veri�es that the compaction operator Compact preserves correctness.Theorem 6.2 (Correctness Preservation) IfApp(b) is correct, thenCompact(App(b))is correct.Proof: By de�nition, Compact(Appa(b)) is correct if each of its components are correct.The correctness of AppH b, AppSec(b) and OCnb follows directly from the assumptionthat Appa(b) is correct, since these components are shared by Compact(Appa(b)) andAppa(b). The function �X:; satis�es trivially the correctness condition for underestimatedconsequence relations. Finally, the correctness of \AppOb depends on conditions 1-3 ofDe�nition 6.9. Clearly, condition 1 is satis�ed because \AppOb(h):Nec = ; (by de�nition ofCompact). Conditions 2 and 3 are satis�ed because Appa(b) is correct. This completesthe proof.Replacing App(b) by Compact(App(b)) may signi�cantly improve performance. Theprice to be paid for this is a potential loss of cooperation. The following theorem saysthat whenever an agent a is approximately data secure w.r.t. a compact approximationof an agent b, then it is also approximately data secure w.r.t. the (perhaps uncompact)approximation of b.Theorem 6.3 (Compact Approx. Security Implies Approx. Security) If ha is ap-proximately data secure w.r.t. Compact(App(b)), then ha is approximately data securew.r.t. App(b).Proof: Suppose ha is approximately data secure w.r.t. Compact(Appa(b)) and let h0 � ebe an arbitrary pre�x of ha such that e = ha; b; Ansi. Then, from the de�nition of datasecure histories and compact histories it follows that:OViolb(AppH b(h0 � e)) = ;;where OViolb is de�ned w.r.t. Compact(Appa(b)). Note also that Appa(b) yields thesame overestimation OViolb as Compact(Appa(b)), because the components on whichOViolb is based are the same in the two approximations. It follows that also under Appa(b)UViolb(AppH b(h0)) � OViolb(AppH b(h0 � e)) = ;:The above inclusion holds for arbitrary pre�xes of ha; this implies that ha is approximatelydata secure w.r.t. Appa(b).As a consequence of this theorem, we know that to check whether a history ha is approx-imately data secure w.r.t. App(b), it is su�cient to check whether ha is approximatelydata secure w.r.t. Compact(App(b)).Corollary 6.4 For each history ha which is approximately data secure w.r.t. Compact(App(b)),there exists a history h0a which is approximately data secure w.r.t. App(b) and h �coopa h0.32

The converse of Theorem 6.3 (and Corollary 6.4) does not hold, in general, and thereforechoosing to use Compact(App(b)) in place of App(b) may lead to a decrease in cooper-ation. This is demonstrated via the following example.Example 6.12 Consider the scenarios and approximations speci�ed in examples 6.10, 6.9,6.7 and 6.5. As discussed in Example 6.10 in the scenario in which the track agent receivedthe soldier list from com� c, and e0 is the event in which tank1 gives the track agent itssoldier list, htank1 � e0 is approximately data secure asUVioltrack(h0) = OVioltrack(h0 � e0) = fin(S; tank1 : soldiers())g :However, suppose we consider the compact version of the approximation described inExample 6.10. That is, the approximation described in Example 6.11 where: (1) for allh 2 posHtank1track , AppOtrack(h):Nec = ; ; (2) for all C � AppLtank1track , UCntank1track (C) = ; .Using this compact approximation,UVioltrack(h0) = ;and OVioltrack(h0 � e0) = fin(S; tank1 : soldiers())g :Thus, h0 � e0 is not approximately data secure using the compact approximation. To makeh0 � e0 approximately secure in this case, tank1 should be less cooperative and not give thetrack agent its soldier list.6.9 Static ApproximationsA static security check is one that checks upfront that an agent a is secure irrespective ofwhat sequences of events may ensue (as long as those events are in accordance with thebehavior of agent a's speci�cation via its agent program, etc.). Unfortunately, the set ofpossible histories for a{ in general { is undecidable, as a can be as powerful as an arbitraryTuring machine (this is proved in the next section). Thus, static security checks can onlybe based on approximate estimates of a's possible future behaviors.For this reason, the designer of agent a must overestimate the set of possible historiesthat agent a may indulge in so as to cover at least all the possible interactions between aand an arbitrary agent b. If each such history in the overestimated set of possible historiesis guaranteed to be secure at the time the agent is deployed, then security of a is guaranteedupfront. The following de�nition says that a static agent approximation is one that takesinto account such an overestimate of agent a's possible space of histories.De�nition 6.22 (Static Agent Approximation, restriction, correctness) A static ap-proximationStaticApp(b) is an approximation of b used by a such that the domain of AppH b isextended to a set, posH+a , of histories for a such that posH+a � posHa . The set posH+a willbe referred to as the approximation of a's possible histories.The dynamic restriction of StaticApp(b) is the agent approximation App(b) obtainedfrom StaticApp(b) by restricting the domain of AppH b to posHa.33

We say that StaticApp(b) is correct if all its components are correct. The correctnessof AppH b is obtained by extending the correctness condition of Def. 6.3 to all h 2 posH+a .The de�nition of correctness for the other components is unchanged.In the above de�nition, posH+a is the \expanded" set of histories being considered in orderto ensure (upfront) that agent a is secure. The formal de�nition of static data security isgiven below.De�nition 6.23 (Static Data Security) We say that the approximation posH+a of a'spossible behaviors is statically data secure w.r.t. StaticApp(b) if for all h 2 posH+a , h isapproximately data secure w.r.t. StaticApp(b).Informally speaking, the following theorem guarantees that any agent known to be staticallydata secure is also data secure.Theorem 6.5 (Static Security Preservation) Let StaticApp(b) be a correct static ap-proximation of b used by a. If posH+a is statically data secure w.r.t. StaticApp(b), thena is data secure w.r.t. b.Proof: First note that since StaticApp(b) is correct, then its dynamic restrictionAppa(b) is also correct (straightforward from the de�nition). Now we prove the contra-positive of the theorem, which is equivalent. Suppose a is not data secure w.r.t. b. Then,by Theorem 6.1, it is not approximately data secure w.r.t. Appa(b). Consequently, somehistory ha 2 posHa is not data secure w.r.t. Appa(b), and hence, for some of its pre�xesh0 � e such that e = ha; b; Ansi,UViolb(AppH b(h0)) 6� OViolb(AppH b(h0 � e)) : (�)By de�nition of static approximation, posH+a � posHa, so ha 2 posH+a . It follows (by (*))that posH+a is not statically data secure w.r.t. StaticApp(b).The following theorem says that static security implies data security w.r.t. a's dynamicrestriction. It also proves that static checks are stricter, i.e., some agents are approximatelydata secure but not statically data secure.Theorem 6.6 (Static vs. Dynamic Veri�cation)1. Under the hypotheses of the above theorem, if posH+a is statically data secure, then ais approximately data secure w.r.t. StaticApp(b)'s dynamic restriction.2. There exists an agent a and a correct static approximation StaticApp(b) based ona's history approximation posH+a , such that a is approximately data secure w.r.t.StaticApp(b)'s dynamic restriction, but posH+a is not statically data secure w.r.t.StaticApp(b).Proof: The proof of part 1 is contained in the proof of Theorem 6.5 (there we proved thatif some ha is not approximately data secure w.r.t. the dynamic approximation Appa(b),then posH+a is not statically data secure w.r.t. StaticApp(b)).34

To prove part 2, suppose b is the agent de�ned in the proof of Theorem 5.2, and letAppa(b) be any correct approximation of b with AppSec(b) 6= ; (we can choose AppSec(b)arbitrarily). Let posHa be the set of histories hn illustrated in the proof of Theorem 5.2,with the further requirement that Ansi = ; for all i > 0, so that a is trivially data secure.Now let f be any secret in Seca(b) . De�ne posH+a = posHa [fhha; b; ffgiig . Note thatAppa(b) is the dynamic restriction of StaticApp(b) . Clearly, posH+a is not staticallydata secure w.r.t. StaticApp(b) (b believes the secret f and stores it in its state). Thiscompletes the proof.7 Undecidability ResultsAs stated above, the developer of an agent may be interested in two types of securityveri�cation methods.Static security veri�cation: In this mode of security veri�cation, the agent developerwould like to be sure, when deploying an agent, that the agent will always be secure.Such security veri�cation can be performed once and for all at the time the agent isdeployed, and leads to no run-time security veri�cation. Thus, once an agent is knownto be statically secure, no run-time security checks are needed.Dynamic security veri�cation: In this mode of security veri�cation, no security checksare made at the time the agent is deployed. Rather, every time the agent receives arequest, a run-time security check is made.As mentioned in the preceding section, we will show that it is impossible to decide staticallywhether an agent is approximately data secure. The �rst result below states that even therelatively simple notion of surface security is undecidable.Theorem 7.1 (Undecidability of Surface Security) The problem of deciding staticallywhether an arbitrary IMPACT agent is surface secure is undecidable.Proof: We prove this theorem by uniformly reducing the halting problem for arbitrarydeterministic Turing machines M to a surface security veri�cation problem. For this pur-pose, we simulate M with a suitable agent a that outputs a secret f when a �nal state ofM is reached.Recall that M 's con�guration consists of the tape contents plus the current state of M 's�nite control, which in turn is a set of 5-tuples of the formhs; v; v0; s0; miwhere s is the current state, v is the symbol under M 's head, v0 is the symbol to beoverwritten on v, s0 is the next state and m 2 fleft; rightg speci�es the head's movement.We assumeM 's con�guration is encoded by means of a suitable packageTMC (which standsfor Turing Machine Con�guration), which provides code calls for updatingM 's con�guration35

and two code calls TMC : current symbol() and TMC : current state() to read the symbolpointed to by the machine's head and the machine's current state, respectively.3We also assume the agent has an action move(v0; s0; m) (implemented with TMC's codecalls for updating M 's con�guration), that simulates one move, i.e. it sets the current tapesymbol to v0, it sets the current state to s0 and moves the head as speci�ed by m. The �nitecontrol of M will be modeled through a suitable agent program the speci�es under whatconditions the move action has to be executed.For each 5-tuple hs; v; v0; s0; mi in the �nite control there is a corresponding agent programrule R like the following:Omove(v 0; s 0;m) in(s;TMC : current state()) &in(v;TMC : current symbol()) :Intuitively, this rule causes replacement of the current con�guration ofM with the new onespeci�ed by v0, s0 and m.Finally, for each �nal state s of M , a's agent program contains a ruleO send(b; f) in(s;TMC : current state()) :where f is a secret and send(b; f) is an action that sends the answer ffg to b.Clearly, by construction, a outputs a secret f (thereby violating surface security) if andonly if M terminates. This completes the proof.Remark 7.1 All that is needed to simulate a Turing machine is a package with a dynamicdata structure (i.e. a data structure whose size is not known at compile time). In [51],we encode the Turing machine con�guration with a standard IMPACT package originallydesigned to encode meta-knowledge about other agents. Turing machine con�gurations couldalso be encoded using a DBMS package.An immediate consequence of the above result is that checking data security is undecid-able.Corollary 7.2 The problems of deciding statically whether an arbitrary IMPACT agent isdata secure or approximately data secure, are undecidable.Proof: Immediate from theorems 5.2 and 7.1.The previous undecidability results also may be easily extended to show that actionsecurity is undecidable.Theorem 7.3 (Undecidability of Action Security) The problem of deciding staticallywhether an arbitrary IMPACT agent is action secure is not decidable.3Note that such a package can be easily implemented in any modern programming language, by maintain-ing two variables that encode the current tape symbol and the current state, and two linked lists of symbolsthat encode the used portions of the tape on the left and on the right of M 's head, respectively. Clearly,IMPACT agents are expected to use packages of this sort, as well as much more complicated packages.36

Proof: Similar to the proof of Theorem 7.1. An arbitrary Turing machine M can beencoded into an IMPACT agent as shown in the proof of Theorem 7.1. However, the rulesthat output a secret when a �nal state of M is reached are replaced by rules that do aforbidden action. Then the halting problem is reduced to action security veri�cation.The above results show that given an arbitrary agent and its security needs as input,statically ensuring that the agent is secure is undecidable. As we will show later in Section8, all is not lost. Two important facts are not ruled out by the above (seemingly depressing)undecidability results.1. First, it will be possible to �nd su�cient conditions that can be checked staticallyon an agent and its security needs. If these conditions are satis�ed, then the agentis approximately data secure secure. Note that the converse is not true | there maybe agents that are approximately data secure and do not satisfy these (su�cient)conditions.2. Second, it will turn out that dynamic security veri�cation is in fact decidable, thoughthe run-time cost of checking dynamic security can adversely a�ect system perfor-mance. Actually, the main reason for the undecidability results is that it is impossibleto predict a's behavior; run-time checks, on the contrary, need no prediction { theyonly have to inspect the outgoing messages, as they are generated by a.In the rest of this paper, we will describe mechanisms through which the designer of anagent may articulate how his agent approximates other agents, and then we will show howthese articulations may be checked for static/dynamic security.8 Security Speci�cation LanguagesIn this section, we will provide a \tight" language within which the developer of an agenta can express the approximations that a must use. This language consists of three compo-nents:History component Hista. This component is used to record and maintain a's history,ha .Agent approximation program AAPab. This is a set of rules that encode a's approxi-mation of b, denoted by App(b) in the abstract approximation framework (cf. De�-nition 6.16).Once these languages are de�ned, in Section 9, we will de�ne a package called SecPa thatmay be used to maintain, compile and execute the programs that perform static, dynamicand combined security checks. We now discuss each of these components below.8.1 The History Component HistaThe developer of an agent a needs to answer the following questions pertaining to thehistory maintained by her agent: 37

� Which events should be stored in the historical archive? In general, an agent a maychoose to store only certain types of events. This may increase the e�ciency of historymanipulation, but may decrease the quality of the approximations of other agents'histories, which are based on a's own history (see the examples in Section 6.2).� Which attributes of these events should be stored? Possible attributes of an answermessage which an agent developer might wish to store are the requested service, thereceiver, the answer, the time at which the answer was sent.The history component may be viewed as a software package (cf. Section 3) which storesa totally ordered list of time-stamped events, that can be queried and updated by meansof the following functions.� retrieve reqs(Sender,Receiver,Request,When): Retrieve all stored request mes-sages sent by Sender to Receiver at time When, and which match Request. ParameterWhen has the form Op <time>, where Op is one of <;�;=; 6=;�; >. The above param-eters may be left unspeci�ed, in part or entirely, using the wildcard ` '. For example,the invocation retrieve reqs(b, , ,> 20:jan:95:1900) retrieves all stored requestmessages sent by b after the speci�ed time.� retrieve answ(Sender,Receiver,Fact,When): Retrieve all stored answer messagessent by Sender to Receiver at time When, and such that the answer contains a factf which matches Fact. The variables of Fact are instantiated with f . When can bespeci�ed as explained above; wildcards may be used.� retrieve actn(Act,When): Retrieve all stored actions that match Act, and executedat the time speci�ed by When. The action name and/or its arguments may be leftunspeci�ed using the wildcard ` '.The history package is completed by the history update actions described below.� insert reqs(Sender,Receiver,Req,When), insert answ(Sender,Receiver,Ans,When),insert actn(Act,When): These actions append a new event to a's history.� delete(Event): Deletes Event from the history .Note that the history component of an IMPACT agent may be viewed as just another datastructure together with the above set of associated functions. Hence, the concepts of codecall and code call conditions apply directly to the history component .De�nition 8.1 (History Conditions) Suppose RF is one of the above three retrievalfunctions, and args is a list of arguments for RF of the appropriate type. We may in-ductively de�ne history conditions as follows.� in(X; Hista :RF (args)) is a history condition.� If Op is any of <;�;=; 6=;�; >, and T1; T2 are variables or objects, then T1 Op T2 isa history condition.� If �1; �2 are history conditions then (�1&�2) is a history condition.38

The syntactic restrictions obeyed by history conditions will be needed in Section 8.2. Ingeneral, Hista's functions may occur side by side with arbitrary conditions. The followingexample presents some history conditions that an agent in the Tank Example might use.Example 8.1 The following are history conditions which can be used by tank1.in(Event1; Hista :retrieve reqs(track,tank1, ,> 20:june:1995)())&in(Event2; Hista : retrieve reqs(com� c,tank1, ,> 20:june:1995)())&Event1:req = Event2:reqThe above history condition retrieves all the requests that were sent both by the trackagents and the com � c agent after June, 20th 1995.8.2 Agent Approximation LanguagesWe are now ready to explain how the designer of agent a approximates other agents. Todo so, the designer of a writes one set of rules for each component of a's approximation ofb. Speci�cally,1. He �rst writes a set of rules called history approximation rules through which hespeci�es how his agent approximates the history of another agent;2. Then, he writes a set of state approximation rules which speci�es how his agentapproximates the state of another agent;3. Then, he writes a set of consequence approximation rules through which he speci�eshow his agent captures the approximate consequence relation of another agent;4. Finally, he writes a set of secrets approximation rules specifying the set of approximatesecrets.8.2.1 History ApproximationWe now discuss how history approximations may be expressed by an agent developer inIMPACT. This is done through a construct called a history constraint that is de�ned viatwo simpler construct de�ned below.De�nition 8.2 (Pure History Constraint) requested(Sender; Receiver;Request;Time),told(Sender; Receiver;Answer;Time), and done(Agent; ActionName;Time) are called purehistory constraints.Pure history constraints correspond to the three possible event types | request messages,answer messages and action events. The argument Time is a number which denotes thetime at which the event happened. The other kind of history constraint is a comparisonconstraint.De�nition 8.3 (Comparison Constraint) If T1; T2 are either objects or variables, andOp is one of the comparison operators <;�;=; 6=;�; >, then T1 Op T2 is called a comparisonconstraint. 39

We are now ready to de�ne history constraints.De�nition 8.4 (History Constraint) A history constraint is either a comparison con-straint or a pure history constraint.The reader is cautioned that history constraints and history conditions (de�ned earlier)are two di�erent concepts ! We are now ready to provide examples of history constraintsassociated with the Tank Example.Example 8.2 The following expressions are pure history constraints:requested(com� c; tank1; set:speed(new speed); 20 : june : 1999);requested(track; tank1; fuel level(); Xnow � 60);told(tank1; track; in(low; tank1 :fuel leve(Xnow)); Xnow);done(tank1; set speed(55kmh); 15 : 00 : 20 : june : 1999) :The following expressions are comparison constraints: T1 < Xnow � 5, T1 = T2, andT3 6= 15 : 00 : 20 : june : 1999.De�nition 8.5 (History Approximation Program) A history approximation program(used by agent a for agent b) is a set. Rhis, of rules of the formPHC �hist;where PHC is a pure history constraint and �hist is a history condition (not a historyconstraint!).When the developer of agent a wishes to approximate the history of agent b, he explicitlyspeci�es a history approximation program, Rhis, which implicitly speci�es a set of historiesthat \satisfy" the rules in Rhis, and this set of histories re
ects agent a's approximation ofthe histories of agent b.De�nition 8.6 (History Satisfaction) Let hb = he1; e2; : : : ; ei; : : :i be a history for b.hb satis�es a conjunction of history constraints, HC, if there is a ground instance HC� ofHC such that:� each comparison constraint in HC� is true;� each pure history constraint c 2 HC� matches some event e in hb of the correspond-ing type, in the sense that the �elds Sender, Receiver, Request and Answer of ccoincide with the corresponding elements of e;� the parameters Time correctly re
ect the ordering of the events; formally, for allpure history constraints c0 and c00 in HC�, whose last parameters are Time0 andTime00, respectively, and such that c0 and c00 correspond to events ej and ek of hb,(respectively), it holds that Time0 � Time00 , j � k .40

The following example shows some histories in the Tank example and some history con-straints that are satis�ed.Example 8.3 A history htrack for track of the formh: : :htrack; tank1; location(Xnow)i : : :htank1; track; in((50; 20; 40); tank1 :location(Xnow))gi : : :i(containing a service request and the corresponding answer) satis�es the history constraints:requested(track; tank1; location(Xnow); T1);told(tank1; track; in((50; 20; 40); tank1 :location(T2))); T1 � T2 :Given a history approximation program, Rhis, used by agent a to approximate the historyof agent b, the abstract approximation of agent b's history may now be stated intuitivelyas follows:1. Find all pairs (HC; �hist) where HC is a conjunction of history constraints such thatrepeatedly unfolding (i.e. replacing the pure history constraints in HC by the bodiesof rules whose heads unify with the pure history constraint) HC against the rules inRhis yields the history condition �hist.2. For each such pair (HC; �hist), let � be the composition of all the unifying substitutionsinvolved in the previous step.3. For each substitution � such that �hist� is true in the current state of the historycomponent, HC�� is possibly satis�ed by a history of agent b.4. Any history that satis�es HC�� is considered to be a possible history of b by a.The following formal de�nitions formalize this point.De�nition 8.7 (Resolvent, Derivation) Let G be a conjunction of atoms A1& : : : &An,and let r = (H B) be a rule whose head can be uni�ed with some Ai (1 � i � n),with a substitution �. The resolvent of G and r w.r.t. � (with selected literal Ai) is(A1& : : :&Ai�1&B&Ai+1& : : :&An)� .A standardized apart member of a set of rules R is a variant of a rule r 2 R, obtainedby uniformly renaming R's variables with fresh variables, never used before.A derivation from a set of rules R with substitutions �1 : : : �m is a sequence G0; : : : ; Gmsuch that for all i = 1 : : :n, Gi is a resolvent of Gi�1 and some standardized apart memberri of R, w.r.t. �i. If G0; : : : ; Gm is a derivation from R with substitutions �1 : : : �m, and �is the composition of �1 : : : �m, then we writeG0 �!�R Gm :If the �is are all most general uni�ers, then we write G0 mg�!�R Gm .41

The reader is warned that �! does not denote logical implication, but rather goal-rewriting. In fact, G0 �!�R Gm means that by repeatedly applying the rules of R to theinitial goal G0 in a top-down (or backward-chaining) fashion, Gm can be obtained at somepoint. The relation between �! and logical implication is the following: if G0 �!�R Gmholds, then Gm and R imply G0� (in symbols: G0� Gm ^VR).Thus, in particular, G0 �!�R Gm might hold, but G0&G00 �!�0R Gm might not becausethe fact that we can eliminate all pure history constraints in G0 to obtain Gm does notmean that we can eliminate all pure history constraints in G0&G00 and still obtain Gm!Using this concept, we may now precisely specify the approximate histories of b used byagent a as follows.AppH b(ha) =def fHC�� j HC �!�Rhis �hist and � 2 Sol(�hist)g: (2)The following example uses the Tank Example to illustrate how an agent a might approxi-mate the history of agent b.Example 8.4 Let us consider the approximation of the history of the track agent by tank1in the Tank Example. tank1 does not have a lot of information on the interactions of thetrack agent with other agents and its actions. Even the set of agents contacted by the trackagent is not known. Some of them might know tank1's region or its fuel level at di�erenttimes and disclose it to the track agent. This may be expressed via the following historyapproximation rules. They say that for all X 6= tank1 and T � T1, track's history maycontain messages from X to track, specifying tank1's region or fuel level, or both.(r1) told(X; track; in(R; tank1 : region(T)); T1) X 6= tank1 & T � T1 :(r2) told(X; track; in(L; tank1 :fuel level(T)); T2) X 6= tank1 & T � T2 :The only assumption we make here is that the agents involved in this scenario do not talkabout the future. Only old or current region information and fuel levels are communicated.This is expressed by T � T1 and T � T2.We assume that in some cases, tank1 itself may disclose its old fuel levels to the trackagent. We also assume that tank1 keeps all its answers in Histtank1 for only one hour,then deletes them. Then, a recent answer can be in track's history only if a correspondingmessage is stored in Histtank1, while older messages may be in the track agent's historyregardless of Histtank1's contents. This can be expressed via the following rules.(r3) told(tank1; track; in(L; tank1 : fuel level(T)); T3) in(Ev; Histtank1 : retrieve answ(tank1; track; in(L; tank1 : fuel level(T));)) &T3 � Ev:time :(r4) told(tank1; track; in(L; tank1 : fuel level(T)); T4) T � T4 &T4 � now� 60 :Rule (r3) states that an answer message from tank1 may be in track's history if there isa corresponding message Ev in tank1's history (second line). Message delivery might notbe instantaneous; there may be a delay before the answer is received by track (third line).42

Rule (r4) is needed because events older than 60 minutes are deleted from Histtank1.Therefore, if T4 � now� 60, then an answer message from tank1 may be in track's historywhile the corresponding event has been deleted from Histtank1. Condition T � T4 says thatL refers to a time point earlier than the answer delivery time. This condition is useless in(r3), because tank1 cannot return a future fuel level, and hence, T � Ev:time � T3.If Rhis consists of the rules (r1)-(r4) above, andHC = told(X; track; in(L; tank1 : fuel level(T)); T0) &told(Y; track; in(R; tank1 : region(T)); T00)then there exist three derivations HC �!�iRhis �ihist (i = 1; 2; 3).The �rst one applies (r1) and (r2), and yields:�1hist = X 6= tank1 & T � T0 & Y 6= tank1 & T � T00;HC�1 = HC :This means that (it is estimated that) the track agent's history may contain two eventsmatching HC, provided that �1hist holds.The other derivations use (r1) and one of (r3) and (r4), yielding:�2hist = in(Ev1; Histtank1 : retrieve answ(tank1; track; in(L; tank1 :fuel level(T));)) &T0 � Ev1:time &Y 6= tank1 & T < T00;HC�2 = told(tank1; track; in(L; tank1 : fuel level(T)); T0) &told(Y; track; in(R; tank1 : region(T)); T00) ;�3hist = T � T0 & T0 � now� 60 & Y 6= tank1 & T < T00;HC�3 = HC�2 :Again, this means that the track agent's history may contain two events that match HC�iif the corresponding condition �ihist is satis�ed. For i = 2, checking such condition involvesinspecting tank1's history Histtank1. This can be done either dynamically (at run time) orstatically, by estimating how the history condition will be evaluated in the future as discussedbelow.8.2.2 State Approximation LanguageWe are now ready to de�ne how an agent a approximates the state of another agent b.Such an approximation has three �elds, Nec, Poss and New , that capture (respectively) theconditions which are deemed to be necessarily true, possibly true, possibly true and causedby the last event in b's history. We will only consider compact approximations where Necis empty. In order to express the set Poss, the agent developer writes a set of rules calledthe state approximation program. 43

De�nition 8.8 (State approximation program) The state approximation program usedby a to approximate the state of agent b is a �nite set of rules of the formBa(b; f) HC ;where f is a fact from the approximate fact language AppLb and HC is a set of historyconstraints.Intuitively, the above rule says that if b's history satis�es HC , then f might be in b's state.By analogy with the implementation of history approximations, the relation between theabstract notion of state approximation and the corresponding program rules is given by thefollowing two equations.AppOb(H):Poss =def fB�� j B �!�Rsta HC and HC� 2 Hg : (3)This is perfectly analogous to equation (2). The de�nition of the \.New" �eld is slightlymore complex:AppOb(AppH b(ha)):New =deffB�� j B �!�Rsta[Rhis �hist; � 2 Sol(�hist); somein(E ; Hista : retrieve answ(a; b; : : :)) belongs to �hist� (4)and E is the last event of Histag :(Recall that the \Nec" �eld is not needed for compact approximations.)The di�erence between the above two de�nitions can be explained as follows: possibly\New" facts are identi�ed by extending the derivations down to code call conditions �hist,using Rhis; if such code call conditions refer to the last event E stored in Hista, then thegiven fact B might have been caused by such E, and for this reason, B might be a new fact.Conversely, if B does never need event E to be derived, then clearly B cannot be causedby E (according to our approximate knowledge) and hence it cannot be new.Given a state approximation program Rsta, the approximate state of agent b speci�ed byagent a is given by the following proposition.Proposition 8.1 AppOb(AppH b(ha)):Poss = fB�� j B �!�Rsta[Rhis �hist and � 2 Sol(�hist)g,where �hist ranges over history code call conditions.Proof: First we prove the left-to-right inclusion. Assume thatB0 2 AppOb(AppH b(ha)):Poss .By (3), this means that B0 has the form B�� and for some history constraints HC, thereis a derivation B �!�Rsta HC where HC� 2 AppH b(ha) .This membership, by (2), implies thatHC� has the formHC0�0�0 and there is a derivationHC0 �!�0Rhis �hist for some set of history constraints �histwith �0 2 Sol(�hist) .By combining the ground instances of the two derivations we obtain a derivation B0 �!�1RstaHC� �!�2Rhis �hist�0; and hence, by setting �00 = �1 � �2, �00hist = �hist�0 and �00 = �, where �denotes the empty substitution, we obtain:B0 �!�00Rsta[Rhis �00hist ; 44

where �00 2 Sol(�00hist) . As a consequence,B0 2 fB�� j B �!�Rsta[Rhis �hist and � 2 Sol(�hist)g :Since B0 is an arbitrary member of AppOb(AppH b(ha)): poss, this proves thatAppOb(AppH b(ha)):Poss � fB�� j B �!�Rsta[Rhis �hist and � 2 Sol(�hist)g :We need to show the reverse inclusion. For this purpose, suppose B0 belongs to the right-hand-side of the above inclusion, that is, B0 has the form B��, B �!�Rsta[Rhis �hist and� 2 Sol(�hist) .This derivation can be reordered by postponing the application of Rhis's rules, and canbe split into two segments, for some HC; �1 and �2 , as follows:B �!�1Rsta HC �!�2Rhis �hist ;where � = �1 � �2 . This reordering is possible for two reasons:1. By a well-known result in logic programming theory, called independence from theselection rule, we can invert the application of two rules in a derivation, provided thatnone of the two rules rewrites an atom introduced by the other rule.2. The atoms in the body of Rhis's rules, by de�nition, never match the head of any rulein Rsta. So Rhis's rules can be delayed until all the necessary rules of Rsta have beenapplied.Now the reader can easily verify (with (2) and (3)) that HC�2� belongs to AppH b(ha),and hence B�� (that equals B0) belongs to AppOb(AppH b(ha)):Poss . This completes theproof.The following example uses the Tank Example to illustrate how states may be approxi-mated.Example 8.5 As very little is known about track, the following possibilities must be takeninto account:� The track agent may store in its state any data obtained from other agents (thisdoesn't mean that track actually stores all such data);� The track agent may keep data in its state for unbounded amounts of time (i.e., itcannot be said a priori whether a particular piece of data will be removed or replacedat some point).This means that the track agent's state may possibly contain any fact received from otheragents. This can be expressed via the following rule:(r5) Btank1(b; F) told(X; track; F; T) :Clearly, if more information about track is available, the body of the above rule might beenriched with further constraints. For example, by adding T � now� 30 one could say that45

track does not keep facts for more than 30 minutes. By adding X 6= c one could say thatc's messages are not stored by track.If Rhis consists of rules (r1)-(r4), and Rsta contains only (r5), then the conditionB = Btank1(track; in(L; tank1 :fuel level(T))) & Btank1(track; in(R; tank1 : region(T)))has three derivations B �!�iRsta[Rhis �ihist (i = 1; 2; 3), where �ihist and �i are as in Exam-ple 8.4 (the �rst two steps of these derivations apply (r5) twice, and transform B into theconstraints HC of Example 8.4; the rest of the derivations coincide with those of Exam-ple 8.4).The intuitive meaning of these derivations is: two facts approximated by in(L; tank1 :fuel level(T))and in(R; tank1 :region(T)) may be simultaneously stored in the track agent's current statewhen any of the conditions �ihist is satis�ed. For instance, �1hist is satis�ed whenever thereexist X; Y; T0; T00, such thatX 6= tank1 & T � T0 & Y 6= tank1 & T � T00 :This is always possible, whenever there exists an agent di�erent from tank1 and track; un-der this assumption, our rules say that the facts (corresponding to) in(L; tank1 : fuel level(T))and in(R; tank1 :region(T)) may be part of the track agent's current state.8.2.3 Consequence Approximation LanguageIn this section, we show how the agent developer may specify how agent a overestimatesagent b's consequence relation. He does so by writing an consequence approximation pro-gram de�ned below.De�nition 8.9 (Consequence Approximation Program) A consequence approxima-tion program used by agent a to overestimate agent b's consequence relation is a �nite setof rules of the formBa(b; f) B1& : : :&Bn;where each Bi is either a \belief atom" of the form Ba(b; : : :) or a comparison constraintT1 Op T2 .When the developer of agent a writes a consequence approximation program Rcon, then heimplicitly speci�es a consequence relation as shown below:OCnb(C) =def ffacts(B��) j B �!�Rcon C0; � 2 Sol(comc(C 0)) and facts(C 0)� � Cg :(5)where comc(C0) is the set of comparison constraints in C 0 and facts(C0) is the set of factsoccurring within the belief atoms of C0.The following example uses the Tank example to illustrate the concept of a consequenceapproximation program. 46

Example 8.6 Let us make an additional assumption about the track agent. Suppose wecannot excluded the possibility that the track agent may derive the current location, Pnow, oftank1, from recent information about tank1's low fuel levels and from the region in whichtank1 is located. This is based on the assumption that if tank1 is low in fuel, it must beat the support system located in its region and will stay there for a very short time period(e.g., less than 10 minutes). Hence if t < now� 10, then we can safely assume that trackcannot derive Pnow from the region and from tank1's being low in fuel. Then. Rcon consistsof the following rule:(r6) Btank1(track; in(Pnow; tank1 :location(now))) Btank1(track; in(L; tank1 :fuel level(T))) &Btank1(track; in(R; tank1 :region(T))) &T � now� 10 & L = low :Let C 0 = Btank1(track; in(L; tank1 :fuel level(T))) & Btank1(track; in(R; tank1 :region(T))) &T � now� 10 & L = low and Rcon = fr6g. Intuitively, C 0 means that tank1 believes thatthe region it is in and its being low in fuel at time T � now� 10 may be stored in track'sstate at some point. Under this assumption, it is estimated that the track agent may de-rive in(Pnow; tank1 :location(now)), (i.e. tank1's current location), due to the followingpoints:� Btank1(track; in(Pnow; tank1 :location(now))) �!�Rcon C0, where � is the empty sub-stitution (the derivation consists of one application of (r6));� comc(C0) = fT � now� 10; L = lowg ;� let t0 be any number such that t0 � now� 10 ; let � =def [t0=T; low=L] ; note that� 2 Sol(comc(C 0)) ;� facts(Btank1(track; in(Pnow; tank1 :location(now)))) = in(Pnow; tank1 :location(now)),and� facts(C 0) = fin(L; tank1 : fuel level(T)); in(R; tank1 :region(T))gand hence: in(Pnow; tank1 :location(now)) 2OCntank1track (fin(low; tank1 :fuel level(t0)); in(R; tank1 :region(t0))g) :8.2.4 Approximate Secrets LanguageAs in the previous cases, for the developer of agent a to approximate the secrets to be keptfrom agent b, he writes a set of rules as described in the following de�nition.De�nition 8.10 (Approximate Secrets Program) An approximate secrets program usedby agent a to specify secrets to be kept from b is a �nite set of rules of the formsecreta(b; f) �cmp; 47

where f is an approximate fact from AppLb, and �cmp is a set of comparison constraintsT1 Op T2 .Intuitively, the above rule means that f should be kept secret from b if �cmp is true.Every approximate secrets program, Rsec, implicitly speci�es an abstract secrets functionAppSec(b) as follows:AppSec(b) =def ff� j (secreta(b; f) �cmp) 2 Rsec and � 2 Sol(�cmp)g : (6)The Tank example may be used to illustrate the concept of an approximate secrets pro-gram.Example 8.7 In the Tank example, there is one secret, declared by the following rule:(r7) secrettank1(track; in(P; tank1 :location(T))) T = now :8.2.5 Agent Approximation ProgramThus, the approximation of b used by agent a consists of a set of approximation programsas de�ned above that we collectively call the agent approximation program of b used by a.De�nition 8.11 (Agent Approximation Program, AAPab) The agent approximationprogram AAPab is a set of rules with the following possible forms:history approximation rules PHC �hist ;state approximation rules Ba(b; f) HC ;consequence approximation rules Ba(b; f) B1& : : :&Bn ;secrets approximation rules secreta(b; f) �cmp ;where f 2 AppLb, PHC is a pure history constraint , �hist is a history code call condition,HC is a set of history constraints , each Bi is either a belief atom of the form Ba(b; : : :)or a comparison constraint T1 Op T2, and �cmp is a set of comparison constraints.9 Algorithms for Security MaintenanceIn this section, we will de�ne algorithms to compile agent approximation programs, andwe will also provide algorithms to perform static security checks, as well as dynamic se-curity checks. We will focus on algorithms for maintaining data security. Techniques formaintaining action security in IMPACT can be found in [8] and [51, Section 10.5.4].Before proceeding any further, however, we present a result below that shows that if thecurrent history of agent a (which a surely knows!) is ha, then the set of secrets violated byagent b given that history ha has occurred can be precisely characterized in terms of thederivations from AAPab. 48

Theorem 9.1 (Violated Secrets As Computations From AAPab) Let �hist range overhistory conditions. ThenOViolb(ha) = ff�� j (secreta(b; f) �cmp) 2 AAPab;Ba(b; f) &�cmp �!�AAPab �hist; � 2 Sol(�hist);some in(E ; Hista : retrieve answ(a; b; : : :)) belongs to �hist� andE is the last event of Histag :Proof: Let f0 2 AppLb be an arbitrary approximate fact. By de�nition, f0 2 OViolb(ha)i� f0 2 SfOCnb(C) j C 2 AppOb(AppH b(ha)):Newg and f0 2 AppSec(b).By analogy with the proof of Proposition 8.1, the reader may easily verify (using equations(5) and (4)) that f0 belongs to some of the above sets OCnb(C) i� f0 has the form f�� and1. Ba(b; f) �!�Rcon[Rsta[Rhis �hist with � 2 Sol(�hist);2. there exists a code call condition in(E ; Hista : retrieve answ(a; b; : : :)) in �hist� suchthat E is the last event of Hista.Moreover, by (6), f0 belongs to AppSec(b) i� f0 has the form f 0�0 and Rsec contains a rulesecreta(b; f) �cmpsuch that �0 2 Sol(�cmp) . As a consequence of 1) and 2), we obtain the two points below:a) Assume f0 2 OViolb. Then, since AAPab � Rcon [Rsta [Rhis , the derivationin 1) is also a derivation Ba(b; f) �!�AAPab �hist�. Consider a ground instanceBa(b; f0) �!�AAPab �hist� of the above derivation. It can be immediately extendedto Ba(b; f0) & �cmp�0 �!�AAPab �hist� & �cmp�0, by appending & �cmp�0 to eachgoal. Now, note that the empty substitution � is in Sol(�hist� & �cmp�0), and that�hist� & �cmp�0 contains a code call condition in(E ; Hista : retrieve answ(a; b; : : :))such that E is the last event of Hista.By a standard logic programming result ([35, Lifting Lemma]), this derivation can be\lifted" to a derivation Ba(b; f) & �cmp �!�0AAPab �0hist. Clearly, �0hist has a solution�00 such that �0hist�00 contains a code call condition in(E ; Hista : retrieve answ(a; b; : : :))where E is the last event of Hista. This proves that f0 belongs to the right-hand-sideof the equation in this theorem's statement.b) Conversely, suppose that f0 belongs to the right-hand-side of the equation in thetheorem's statement. Then we have Ba(b; f) &�cmp �!�AAPab �hist, � 2 Sol(�hist),and for some call in(E ; Hista : retrieve answ(a; b; : : :)) in �hist�, E is the last event ofHista. From this derivation, by dropping the part corresponding to �cmp from eachgoal, we obtain a derivation Ba(b; f) �!�AAPab �0hist, where �0hist� still contains theabove code call condition (the part removed from �hist consists only of pure comparisonconstraints). The above derivation cannot use rules from Rsec (which match neitherthe initial goal nor the bodies of AAPab � Rsec); therefore, it is also a derivationBa(b; f) �!�Rcon[Rsta[Rhis �0hist. 49

It follows by 1) and 2) that f0 2 SfOCnb(C) j C 2 AppOb(AppH b(ha)):Newg.Moreover, note that �hist contains �cmp� and � is a solution of �hist, so �� is a solutionto �cmp. It follows, by (6), that f�� { that is, f0 { is in AppSec(b).We may conclude that f0 2 OViolb(ha).From a) and b) we immediately derive that f0 belongs to the left-hand-side of the equationin the theorem's statement i� it belongs to the right-hand-side. This completes the proof.The following example shows how this theorem may be used to determine which secretsare violated by a given agent b w.r.t. a given history.Example 9.1 In our example, AAPtank1track consists of rules (r1)-(r7). The unique secretis speci�ed by (r7), thus the security check is only concerned with derivations starting fromthe corresponding condition G0 = Btank1(track; in(P; tank1 :location(T))) & T = now .Only one such derivation reaches a history condition �hist that mentions Histtank1. Thisderivation uses rules (r6),(r5),(r5),(r3),(r1), and yields a condition of the form�hist = in(Ev4; Histtank1 : retrieve answ(tank1; track; in(L1; tank1 :fuel level(T1));)) &L1 = low &T34 � Ev4:time &Y5 6= track & T1 < T25 &T1 � now� 10 &T = now :After evaluating the above code call to Histtank1, one can always set T34 := Ev4:time,L1 = low, Y5 := c, T25 := T1 + 1, and T := now. Subsequently, the only constraint thatmight not be satis�ed is T1 � now� 10. Therefore, �hist has a solution if and only ifthe code call retrieve ans �nds an answer message from tank1 to track containing a factin(low; tank1 :fuel level(T)) where T1 � now� 10.Data security, however, is violated only if the answer message found by retrieve answ isthe last message of Histtank1.Intuitively, all this means is that if tank1 tries to send the track agent informationabout its being low on fuel during the last 10 minutes, then a security violation is detected.A closer examination of the rules used in the derivation reveals that AAPtank1track \discovers"that track might combine the fact that tank1 is low in fuel with its region coming fromanother agent Y5 6= tank1, and derive tank1's current position.The following function compiles AAPab into a set of tuples of the formhb; f; �histiwhere b is an agent name, f is an approximate fact from AppLb, and �hist is a historycondition. The intended meaning of the above tuple is that for all � 2 Sol(�hist), f�belongs to OViolb(ha). We use the notation OVT to denote this set of tuples and callthe table, the overestimated violation table. The following de�nition provides a method tocompile the above table. 50

De�nition 9.1 (Compilation) Function SecPa :CompileAAP(AAPab) sets OVT to theset of all tuples hb; f; �histi such that:1. (secreta(b; f) �cmp) 2 AAPab ;2. (Ba(b; f) &�cmp) mg�!�AAPab �hist and �hist is a history condition;3. the set of comparison constraints in �hist is satis�able.The following example uses the Tank example to illustrate the compilation procedure.Example 9.2 In the Tanks example OVTnow would contain the tuplehtrack; in(P; tank1 :location(now)); �histi, where �hist is the history condition described in Example 9.1. The set of comparison con-straints in �hist can be satis�ed by setting: T34 := Ev4:time, L1 = low, Y5 := c, T25 := T1 + 1,T := now, and T1 := now� 9.Before continuing to the next section, we note that Step (2) of CompileAAP may beperformed in polynomial time data complexity by using standard table based resolutionmethods such as those implemented in the well known Stonybrook XSB system.9.1 Dynamic Security Veri�cation AlgorithmOnce the table OVT is constructed, security may be veri�ed dynamically via a functionSecPa :DynOViol(b; Ans), that computes OViolb(ha � e) where e is an event correspondingto a's current answer Ans to b. The dynamic security check algorithm is given below.It is important to note that the dynamic security check algorithm does not modify Hista| it merely checks whether some secret would be violated if Ans were returned to b. Thefollowing theorem states that the above algorithm is correct.Theorem 9.2 (Correctness of Dynamic Security Check) Let OVT be the table con-structed bySecPa :CompileAAP(AAPab), and let e be an answer message from a to b with answerAns. ThenOViolb(ha � e) = SecPa :DynOViol(b; Ans) :Proof: By Theorem 9.1 and De�nition 9.1, an approximate fact f0 is in OViolb(ha) i�there exist a triple hb; f; �histi in OVTand a substitution � 2 Sol(�hist) such that1. f� = f0 ;2. �hist� contains some code call condition in(E ; Hista : retrieve answ(a; b; : : :)) whereE is the last event of Hista. 51

Algorithm 9.1 (Dynamic Security Check) SecPa :DynOViol(b : AgentName; Ans : Answer)(? output: an overestimation OVTnow of the set of secrets ?)(? that would be violated if Ans were returned to b ?)OVTnow := ;;(? Hista is temporarily extended with answer message e ?)e := new(AnswerMessage) ;e:sender := a ;e:receiver := b ;e:answer := Ans ;e:SendTime := now ;execute insert answ(e);(? OVT's tuples are evaluated against the extended history ?)for all tuples hb; f; �histi in OVT dofor all � in Sol(�hist) dofor all in(V ; Hista : retrieve answ(: : :)) in �hist� doif V = e then OVTnow := OVTnow [ff�g ;(? Hista is restored ?)execute delete(e);return(OVTnow);end.Now, Algorithm 9.1 clearly returns all and only the f� satisfying the above properties. Thetheorem follows immediately.We say that OVT is bounded i� there is an integer k such that for every triple hb; f; �histiin OVT, �hist contains at most k variables in it. When OVT is bounded, it is now easy tosee that the dynamic security check algorithm above is polynomial in the size of the historyand the size of OVT. Boundedness is a condition satis�ed in most practical applications |after all we rarely need to execute code call conditions with more than (say) 100 variablesin it.9.2 Static/Combined Security Veri�cation AlgorithmThe dynamic security veri�cation algorithm de�ned in the preceding section performs apolynomial run time test that agent a must execute whenever another agent b makes arequest. In contrast, static security veri�cation tries to ensure prior to deploying an agent,that the agent's way of answering queries is secure independently of the histories thatactually arise over time. In order to implement static security, the developer of an agenta must specify an overestimate posH+a of histories that a may participate in in the future.This can be done via a set of rules that the agent developer must write.De�nition 9.2 (Self approximation Program) Agent a's self approximation programis a �nite set Rslf of rules having the formin(e; Hista : fun(args)) �cmp; 52

where fun is one of the functions of package Hista, args is a suitable list of arguments, and�cmp is a comparison constraint.Intuitively, the rules of Rslf are used jointly with the rules in the agent approximationprogram AAPab to derive a set of comparison constraints �cmp by iteratively performingderivations. If any such �cmp is satis�able, then a security violation may occur. Before pro-ceeding to de�ne the static security veri�cation algorithm, we �rst present an intermediatede�nition.De�nition 9.3 (extnow(�hist; �0)) Suppose �hist is a set of history conditions, and�0 = in(e 0; Hista : retrieve answ(args)) :Then we use extnow(�hist; �0) to denote the set of history conditions obtained from �hist byadding the constraints:� e:time � now for each code call of the form in(e; Hista : fun(: : : ;w)) in �hist,� if w has the form Opt, then e:time Op t is added to �hist where in(e; Hista : fun(: : : ;w))is in �hist, e:time = now to �hist,� e:time = now is added to �hist for a selected code call condition of the formin(e 0; Hista : retrieve answ(args)) in �hist.Note that the last condition above will be true i� e0 is the last event in Hista. It isimportant to note that depending upon which �0 = in(e 0; Hista : retrieve answ(args)) isselected from �hist, the de�nition of extnow(�hist; �0) changes | hence, we use the no-tation EXTnow(�hist) to denote the set of all extnow(�hist; �0) for �0 in �hist having theform in(e 0; Hista : retrieve answ(args)). The following example shows the construction ofEXTnow(�hist).Example 9.3 Consider the �hist of the only tuple in the OVTnow computed in Example 9.2.It contains one call to Histtank1, namely,�0 =def in(Ev4;Histtank1 : retrieve answ(tank1; track; in(L1; tank1 :fuel level(T1));))Thus, the extended condition in this example is:extnow(�hist; �0) = �hist & Ev4:time � now & Ev4:time = now :If the last parameter of retrieve answ were|say|\> T9", then extnow(�hist; �0) would con-tain also a constraint Ev4:time > T9.We are now ready to specify the algorithm for static security checks. As mentioned earlier,this function extends the derivations from AAPab with derivations from Rslf , until a set ofcomparison constraints �cmp is obtained. If �cmp is satis�able, then a security violationmay occur. In practice, the algorithm uses the precomputed derivations stored in OVT,and computes only the derivations from Rslf . It returns a modi�ed violation table OVToptcorresponding to possible security violations.53

Algorithm 9.2 (Static Security Check) SecPa : StaticOViol(b : AgentName)(? output: a modi�ed table OVTopt ?)OVTopt := ;;(? OVT's tuples are evaluated using Rslf ?)for all tuples hb; f; �histi in OVT dofor all �0hist 2 EXTnow(�hist) dofor all deriv. �0hist mg�!�Rslf �cmp such that �cmp is a comparison constraintdo if Sol(�cmp) 6= ; then OVTopt := OVTopt [fhb; f; �histig ;return(OVTopt);end.The intuition is that if a tuple of the form hb; f; �histi is in OVTopt, then �hist mightbecome true at some future point in time (according to Rslf), and in that case, b mightviolate f . In other words, the static security check coincides with ensuring thatSecPa :StaticOViol(b) = ; :The following example revisits the Tank Example and illustrates the use of the static securityalgorithm.Example 9.4 Consider two possible cases. In the �rst case, the tank1 agent does notprovide information on its fuel level in the last 10 minutes to the track agent. In this casewe will show that tank1 is statically secure. In the second scenario tank1 may tell thetrack agent its fuel level in the last 7 minutes. We will show that in this case tank1 mayindirectly disclose a secret.Case 1 In this implementation, all answers of the form in(L; tank1 :fuel level(T)) sat-isfy T � now� 11. This can be expressed by the following self-approximation rule:(r8) in(E; Histtank1 : retrieve answ(tank1; track; in(L; tank1 :fuel level(T)); W)) T � now� 11 :Returning to the �hist of the only tuple in OVTnow of tank1. The extended conditionextnow(�hist; �0) (see Example 9.3) can be evaluated using (r8), which yields the set of con-straints �cmp = T1 � now� 11 &T34 � Ev4:time &Y5 6= tank1 & T1 < T25 &T1 � now� 10 &L1 = low &T = now &Ev4:time � now &Ev4:time = now : 54

The �rst row comes from (r8), while the others were already in extnow(�hist; �0). This setof constraints is not satis�able because it contains the mutually incompatible constraintsT1 � now� 11 and T1 � now� 10. Thus, our static security check proves that providing thefuel level service is secure as far as track is concerned. We recall the main assumptions(encoded in the approximation rules) that support this result:� agent track may get all sorts of information from agents di�erent from tank1;� The track's state may contain any subset (possibly all) of the data obtained from otheragents;� The track may derive tank1's current position from its region and its being low infuel in the last 10 minutes.The security check certi�es that under the above conditions, the track agent will never vi-olate tank1's current position due to tank1's answers. That is, the derivation involvingHisttank1 leads (with (r8)) to an unsatis�able conjunction of comparison constraints �cmp.In this case, Sol(�cmp) = ; and hence no tuple is added to OVTopt (see the above algo-rithm). The other derivations never mention Histtank1; this implies that EXTnow(�hist) = ;;therefore, no tuples of OVTopt are obtained from such derivations. It follows thatSecPtank1 :StaticOViol(track) = ;;and hence, tank1 is statically secure.Case 2 Suppose Rslf is extended with a corresponding rule(r80) in(E; Histtank1 : retrieve answ(tank1; track; in(L; tank1 :fuel level(T)); W)) T � now� 7 :Now there would be another derivation �hist �!�Rslf �0cmp (where �hist is de�ned as in theprevious case), such that�0cmp = T1 � now� 7 &T34 � Ev4:time &L = low &Y5 6= tank1 & T1 < T25 &T1 � now� 10 &T = now &Ev4:time � now &Ev4:time = now :These comparison constraints are satis�able with any T1 such that now� 10 � T1 � now� 7,and henceSecPtank1 :StaticOViol(track) = fhtrack; in(P; tank1 :location(now)); �histig :This means that tank1 may indirectly disclose the secret if condition �hist becomes true atsome point. 55

In fact, we can combine static and dynamic security veri�cation by: (i) removing allentries from OVT whose history conditions will never be satis�ed (according to the self-approximation rules Rslf). Now, if Rslf is correct, then we may replace the table OVT byOVTopt in the Dynamic Security check algorithm given earlier in the paper. Doing so hasthe following obvious advantages:� dynamic security veri�cation becomes more e�cient, because less entries have to beconsidered;� the resulting histories are in general more cooperative than statically secure histories,because those services which are not guaranteed to be secure at compile time (giventhe necessarily imprecise predictions about a's future histories) are given anotherchoice at run-time, instead of being restricted a priori.The following example revisits the Tank Example and illustrates the working of combinedsecurity veri�cation.Example 9.5 In the scenario of the �rst case of Example 9.4, the combined check wouldreturn an empty table OVTopt; this would automatically turn o� run-time veri�cation.The second case of Example 9.4 is less fortunate: there, OVTopt coincides with OVT,and no advantage is obtained at run-time. It is possible to �nd intermediate cases where; � OVTopt � OVT.10 Related WorkMost research on agent security deals with issues related to the usage of agents on theWeb. Attempts have been made to answer questions such as, \Is it safe to click on a givenhyperlink"? or \If I send this program out into the Web to �nd some bargain CD's, will itget cheated?" (e.g., [13, 14]). Others try to develop methods for �nding intruders who areexecuting programs not normally executed by \honest" users or agents [15]. In contrast, inthis paper, we focus on data security and action security in multi-agent environments.A signi�cant body of work has also gone into ensuring that agents neither crash theirhost nor abuse its resources. Most mobile-agent systems protect the hosts by [22]: (1)cryptographically verifying the identity of the agent's owner, (2) assigning access restrictionsto the agent based on the owner's identity, and (3) allowing the agent to execute in a secureexecution environment that can enforce these restrictions [57]. Java agent security reliesmainly on the idea of that an applet's actions are restricted to its \sandbox," an area of theweb browser dedicated to that applet [21]. Java developers claim that their Java 2 platformprovides both system security and information security [26].An interesting approach for safe execution of untrusted code is the Proof-Carrying Code(PCC) technique [41]. In a typical instance of PCC, a code receiver establishes a setof safety rules that guarantee safe behavior of programs, and the code producer creates aformal safety proof that proves, for the untrusted code, adherence to the safety rules. Then,the receiver is able to use a simple and fast proof validator to check, with certainty, thatthe proof is valid and hence the untrusted code is safe to execute. An important advantageof this technique is that although there might be a large amount of e�ort in establishing56

and formally proving the safety of the untrusted code, almost the entire burden of doingthis is on the code producer. The code consumer, on the other hand, has only to performa fast, simple, and easy-to-trust proof-checking process.Campbell and Qian [10] address security issues in a mobile computing environment usinga mobile agent based security architecture. This security architecture is capable of support-ing dynamic application speci�c security customization and adaptation. In essence the ideais to embed security functions in mobile agents to enable runtime composition of mobilesecurity systems. The implementation is based on OMG's CORBA distributed object ori-entation technology and Java-based distributed programming environment. Gray Campbelland Qian [10] address security issues in a mobile computing environment using a mobileagent based security architecture. This security architecture is capable of supporting dy-namic application speci�c security customization and adaptation. In essence the idea is toembed security functions in mobile agents to enable runtime composition of mobile securitysystems. The implementation is based on OMG's CORBA distributed object orientationtechnology and Java-based distributed programming environment. Gray et al. consider aproblem of protecting a group of machines which do not belong to the same administrativecontrol. They propose a market-based approach in which agents pay for their resources.Less attention has been devoted to the opposite problem, that is, protecting mobile agentsfrom their hosts [45]. An example of how to protect Java mobile agents is given in [42].Hohl [25] proposed to protecting mobile agents from attackers by not giving the attackerenough time to manipulate the data and code of the agent. He proposed that this can beachieved by a combination of a code mess up and limited lifetime of code and data whichhe describes. Farmer et al. [19] use a state appraisal mechanism which checks if someinvariants of the agent's state hold (e.g., relationships among variables) when an agentreaches a new execution environment. Vigna [56] presents a mechanism to detect possibleillegal modi�cation of a mobile agent which is based on post-mortem analysis of data{calledtraces|that are collected during agent execution. The traces are used for checking the agentprogram against a supposed history of execution.At the same level of abstraction, it is necessary to deal with issues of identity veri�cationand message exchange protection [55]. For example, Thirunavukkarasu et al. proposedan architecture for KQML which is based on cryptographic techniques. It allows agents toverify the identity of other agents, detect message integrity violations, protect the privacy ofmessages and ensure non-repudiation of message origin. The techniques and methodologieswhich we presented in this paper rely on the assumption that the above problems and othernetwork security problems [46] are dealt with correctly by the underlying implementation.Zapf et al. [63] consider security threats to both hosts and agents in electronic mar-kets. They describe the preliminary security facilities implemented in their agent systemAMETAS. They do not provide a formal model or an experimental results to evaluate theirsystem.Agent data security has many analogies with security in databases. This �eld has beenstudied intensively, e.g. [5, 6, 9, 11, 28, 39, 60]. While this work is signi�cant, none ofit has focused on agents. We attempt to build on top of existing approaches. However,data security in autonomous agents environments raises new problems. In particular, nocentral authority can maintain security, but rather participants in the environment shouldbe responsible for maintaining it. 57

Problems of authentication and authorization arise when databases operate in an openenvironment [7]. Bina et al. propose a framework for solving these problems using WWWinformation servers and a modi�ed version of the NCSA Mosaic. Berkovits et al. [4] considerthis problem in mobile agent systems by modeling the trust relation between the principalsof the mobile agents. We do not consider the authentication problem in our work, butrather assume that methods such as developed in [7] are available. Usually these methodsused cryptography and electronic signatures techniques. A tutorial text on such techniquescan be found in [49].Formal models for verifying security of protocols for authentication, key distribution, orinformation sharing may have some similarities with our formal model. Heintze and Tygar[24] present a simple model which includes the notions of traces (similar to our histories),agent states and beliefs. Our notions are more general than theirs. For example, the internalstate of each agent in their model consists of three components: (1) the set of messagesand keys known to the agent; (2) the set of messages and keys believed by the agent to besecret (and with whom the secrets are shared); and (3) the set of nonces recently generatedby the agent. We do not make any restrictions on the agents' states and we assume thatan agent can infer new information from its beliefs.We also de�ne the notion of approximating agent security and provide a language withinwhich the developer of an agent can express the approximations that its agent must use.Their system is used to verify the security of cryptographic protocols. They present aninteresting result concerning a composition of two secure protocols. They state su�cientconditions on two secure protocols A and B such that they may be combined to form a newsecure protocol C.In some systems agents are used to maintain security. For example, in the architecturepresented in [3] of Java-based agents for information retrieval, there are two security agents:Message Security Agent (MSA) and Controller Security Agents (CSA). The MSA deals withservices relating to the exchange of messages. The CSA provides services to check adequateuse of resources by detecting anomalies. We do not consider the basic security problemsprovided by the security agents of [3]. We propose that the higher-level security issuesconsidered in this paper will be dealt with by the IMPACT agents themselves, and notdelegated to separate servers.Security agents are also used in Distributed Object Kernel (DOK) project [53] for enforc-ing security policies in distributed and heterogeneous environments. There are three levelsof agents. Top level agents are aware of all the activities that are happening in the system(or have already happened) . Based on this information the agents of the top layer delegatefunctions to the appropriate agents. In the environments which we consider, agents cannothave information on all the activities that are happening and each agent should maintainsits data and action security.He et al. [23] proposed to implement the authorities of authentication veri�cation servicesystems as autonomous software agents, called security agents, instead of building a staticmonolithic hierarchy as in the traditional Public Key Infrastructure (PKI) implementations.One of the open questions they present is: \How to de�ne a suitable language for users todescribe their security policy and security protocols so that the agent delegates of a usercan safely transact electronic business on his behalf?" We believe that the language andframework presented in this paper can be used for such purpose, in addition to the originalpurpose of programming individual agents to maintain their data and action security.58

Foner [20] discusses security problems in a multi-agent matchmaker system named Yenta.IMPACT agents do not have access to other agents' data as Yenta's agents have. Eachagent is responsible for its own data security. We believe that this approach will lead tomore secure multi-agents systems.Soueina et al. [48] present a language for programming agents acting in multi-agentenvironments. It is possible to give an agent commands such as \lie(action())" indicatingthat lying may be needed when the action is performed, \zone(action*)" that can be usedto classify some agents as being hostile etc. Their work is based on �rst order logic and onconcepts from game theory, but no formal semantics is given.Other distributed object oriented systems provide some security services. CORBA [43],an object request broker framework, provides security services, such as identi�cation andauthentication of human users and objects, and security of communication between ob-jects. These services are not currently provided by IMPACT, and their implementationis left for future work. CORBA provides some simple authorization and access control.Our model allows the application of more sophisticated security policies using the ideas ofapproximations of agents beliefs, state and consequence relations.Zeng and Wang [64] proposed an Internet conceptual security model using Telos. Theytry to detect attacks based on monitoring and analyzing of audit information. In theirframework a designer can construct ontology of Internet security and then develops a setof rules for security maintenance. Their examples consider identifying security problems byanalyzing network transactions. It is not clear from the papers how their rules will be usedto preserve security and they do not consider data security problems.Concordia is a framework for development and management of network-e�cient mobileagent applications for accessing information anytime, anywhere and on any device support-ing Java. Agent protection in Concordia [30] refers to the process of protecting agent'scontents during transmission over the net. Prior to transmission an agent's byte-codes,member data and state information are encrypted through a combination of symmetric andpublic cryptography. In order to provide reliability, Concordia employs a persistent storeto periodically checkpoint an agent. But, this on-disk representation may impose securityrisks, hence Concordia also encrypts this on-disk representation of an agent.Concordia agents are mobile, they can execute anywhere on the network where they areauthorized. These host servers need to be protected. Server resource protection involves twoconcepts: agent identi�cation and resource permission. An agent's user identity uniquelyidenti�es the user who launched the agent. User identity consists of either an individualuser name, or a group name, plus the password which is always stored in a secure format.An agent roaming the network carries it identity. Resource permissions, which are built ontop of standard Java security classes, are used to allow of deny access to machine resources.IBM Aglets [52] provide a framework for development and management of mobile agents.An aglet is a Java object having mobility and persistence and its own thread of execution.Security services in Aglets [34] includes authentication of the user, the host, the code andthe agent, ensuring the integrity of the agent, protecting the con�dential information anagent may carry, auditing and non-repudiation, i.e., an agent or server cannot deny acommunication exchange if it already took place. Aglets provide an auditing service whichrecords all security related activities of an agent. An aglet has credentials to indicate theimplementer and also the person who launched it. A server can control and limit the59

behavior of aglets it receives through these credentials. The security model of Aglets [34]supports the de�nition of security policies and describes how these policies are enforced.The model includes principles which are entities whose identity can be authenticated. Theprinciples include the aglet, the aglet owner (the person who launched the aglet), the agletmanufacturer (the person who implemented the aglet), the context, the domain, and domainauthority. Contexts and servers are in charge of keeping the host operating system safe. Aserver de�nes a security policy to protect local machine resources. Contexts host visitingaglets and provide access to local resources. Domains identify a group of servers. Finally,a network domain authority keeps its network secure so that visiting aglets execute theirtasks safely.The security model of Aglets, [34] also includes permissions, which de�ne the capabilitiesof executing aglets by setting access restrictions on resource usage. [34] de�ne permissionsas a resource, such as a �le, together with appropriate actions such as reading and writing.Permissions include �le permissions (to control access the local �le system), network per-missions (to control access to the network), window system (to open a window), contextpermissions (to use services of the context), and aglet permissions (to control the methodsprovided by an aglet).Sloman, Lupu and their colleagues [36, 37, 62] developed a role-based security model fordistributed object systems in a large-scale, multi-organizational enterprise. In their modela role can be de�ned in terms of the authorization and obligation policies. Such policiesspecify what actions an agent or a person having this role is permitted or is obliged to doon a set of target objects. This permits an individuals to be assigned or removed frompositions without respecifying policies for the role. In particular, the authorization policiesare used for access control and the obligation policies de�ne actions to be performed byadministrators or security components when events such as security violations are detected,e.g., the security administrator must investigate all sequences of 5 login failures from thesame source.We also presented a language which enables a designer to specify the actions the agentobliged to take, actions that is forbidden to take, and actions which it is allowed to take.In addition, we presented a theory and mechanisms in which an agent's state, history andbeliefs dynamically e�ect the data it can access and the services available to it. On theother hand, we do not support role assignments and therefore \policies" should be speci�edfor each individual agent.11 ConclusionsAs more and more \agent" applications are being built and deployed on the Internet, andas many multiagent applications involve \teams" of cooperating agents that dynamicallyform coalitions, there is a growing realization that security could be a problem.In this paper, we have taken a set of �rst steps towards addressing how an agent developercan encode security mechanisms into an agent that she is building. Speci�cally, we havemade the following contributions:1. We have presented a (very) abstract de�nition of an agent and shown that for suchagents to maintain security, several types of mathematical structures (history, conse-60

quence relation, etc.) need to be maintained.2. As these structures often require an agent a to have information about arbitrary agentsb, and as this information may be hard to obtain in most practical applications, wehave developed the concept of an \approximation" of this information, which leadsto a notion of \approximate" security. We show that approximate security leads tosecurity (under appropriate conditions).3. We then provide a number of undecidability results showing that the general problemof maintaining data/action security is undecidable.4. Then we propose a rule based logical language within which an agent developer mayexpress approximations that his agent will use to approximate other agents.5. We present algorithms for static and dynamic security checking which may be usedonce the agent developer has speci�ed the approximation he wishes to use. We showthat these algorithms are sound and complete and that (under appropriate assump-tions) they have polynomial data complexity.AcknowledgmentsThis work was supported by the Army Research Laboratory under contract number DAAL01-97-K0135 and by an NSF Young Investigator award IRI-93-57756, IIS-9820657 and IIS-9907482.References[1] Y. Arens, C. Y. Chee, C.-N. Hsu, and C. Knoblock. Retrieving and Integrating DataFrom Multiple Information Sources. International Journal of Intelligent CooperativeInformation Systems, 2(2):127{158, 1993.[2] K. Arisha, F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and S. Kraus. IMPACT: APlatform for Collaborating Agents. IEEE Intelligent Systems, 14:64{72, March/April1999.[3] F. Bergadano, A. Pulia�to, S. Riccobene, and G. Ru�o. Java-based and secure learningagents for information retrieval in distributed systems. INFORMATION SCIENCES,113(1-2):55{84, January 1999.[4] S. Berkovits, J. Guttman, and V. Swarup. Authentication for Mobile Agents. InG. Vigna, editor,Mobile agents and security, volume 1419 of Lecture Notes in ComputerScience, pages 114{136. Springer-Verlag, New York, NY, 1998.[5] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. A Temporal Access Control Mech-anism for Database Systems. IEEE Transactions on Knowledge and Data Engineering,8(1):67{80, 1996.[6] E. Bertino, P. Samarati, and S. Jajodia. Authorizations in relational database man-agement systems. In Proceedings of the 1st ACM Conference on Computer and Com-munication Security, Fairfax, VA, November 1993.61

[7] E. J. Bina, R. M. McCool, V. E. Jones, and M. Winslett. Secure Access to Dataover the Internet. In Proceedings of the Third International Conference on Paralleland Distributed Information Systems (PDIS 94), pages 99{102, Austin, Texas, 1994.IEEE-CS Press.[8] P. Bonatti, S. Kraus, J. Salinas, and V. S. Subrahmanian. Data Security in Heteroge-nous Agent Systems. In M. Klusch, editor, Cooperative Information Agents, pages290{305. Springer-Verlag, 1998.[9] P. Bonatti, S. Kraus, and V. S. Subrahmanian. Foundations of Secure DeductiveDatabases. IEEE Transactions on Knowledge and Data Engineering, 7(3):406{422,June 1995.[10] R. Campbell and T. Qian. Dynamic Agent-based Security Architecture for MobileComputers. In The Second International Conference on Parallel and Distributed Com-puting and Networks (PDCN'98), Australia, December 1998.[11] S. Castano, M. G. Fugini, G. Martella, and P. Samarati. Database Security. AddisonWesley, 1995.[12] Cattell, R. G. G., editor. The Object Database Standard: ODMG-93. Morgan Kauf-mann, 1994.[13] D. M. Chess. Security in Agents Systems, 1996. http://www.av.ibm.com/InsideTheLab/Bookshelf/ScientificPapers/.[14] D. M. Chess. Security Issues in Mobile Code Systems. In G. Vigna, editor, Mobileagents and security, volume 1419 of Lecture Notes in Computer Science, pages 1{14.Springer-Verlag, New York, NY, 1998.[15] M. Crosbie and E. Spa�ord. Applying genetic programming to intrusion detection. InProceedings of the AAAI 1995 Fall Symposium series, November 1995.[16] T. Eiter and V. S. Subrahmanian. Heterogeneous Active Agents, II: Algorithms andComplexity. Arti�cial Intelligence, 108(1-2):257{307, 1999.[17] Thomas Eiter, V. S. Subrahmanian, and Georg Pick. Heterogeneous Active Agents, I:Semantics. Arti�cial Intelligence, 108(1-2):179{255, 1999.[18] O. Etzioni and D. Weld. A Softbot-Based Interface to the Internet. Communicationsof the ACM, 37(7):72{76, 1994.[19] W. M. Farmer, J. D. Guttag, and V. Swarup. Security for Mobile Agents: Authenti�-cation and State Appraisal. In E. Bertino, H. Kurth, G. Martella, and E. Montolivo,editors, Proceedings of the Fourth ESORICS, volume 1146 of Lecture Notes in Com-puter Science, pages 118{130. Springer-Verlag, Rome, Italy, September 1996.[20] L. N. Foner. A Security Architecture for Multi-Agent Matchmaking. In Second Inter-national Conference on Multi-Agent Systems (ICMAS96), Japan, 1996.[21] S. Fritzinger and M. Mueller. Java Security, 1996. http://java.sun.com/docs/white/index.html. 62

[22] R. Gray, D. Kotz, G. Cybenko, and D. Rus. D'Agents: Security in Multiple-language,Mobile-Agent System. In G. Vigna, editor, Mobile agents and security, volume 1419 ofLecture Notes in Computer Science, pages 154{187. Springer-Verlag, New York, NY,1998.[23] Q. He, K. P. Sycara, and T. W. Finin. Personal Security Agent: KQML-Based PKI.In K. P. Sycara and M. Wooldridge, editors, Proceedings of the 2nd InternationalConference on Autonomous Agents (AGENTS-98), pages 377{384, New York, May1998. ACM Press.[24] N. Heintze and JD. Tygar. A model for secure protocols and their compositions. IEEETransactions on Software Engineering, 22(1):16{30, January 1996.[25] F. Hohl. An Approach to Solve the Problem of Malicious Hosts in Mobile AgentSystems. http://inf.informatik.uni-stuttgart.de:80/ipvr/vs/mitarbeiter/hohlfz.en%gl.html, 1997.[26] M. Hughes. Application and enterprise security with the JAVATM 2 platform, 1998.http://java.sun.com/events/jbe/98/features/security.html.[27] M. Huhns and M. Singh, editors. Readings in Agents. Morgan Kaufmann, 1997.[28] S. Jajodia and R. Sandhu. Toward a Multilevel Relational Data Model. In Proceedingsof ACM SIGMOD Conference on Management of Data, Denver, Colorado, May 1991.[29] N. R. Jennings. Controlling Cooperative Problem Solving in Industrial Multi-AgentSystems Using Joint Intentions. Arti�cial Intelligence, 75(2):1{46, 1995.[30] R. Koblick. Concordia. Communications of the ACM, 42(3):96{97, March 1999.[31] S. Kraus. Negotiation and Cooperation in Multi-Agent Environments. Arti�cial Intel-ligence, Special Issue on Economic Principles of Multi-Agent Systems, 94(1-2):79{98,1997.[32] Y. Labrou and T. Finin. A Semantics Approach for KQML { A General PurposeCommunications Language for Software Agents. In Proceedings of the InternationalConference on Information and Knowledge Management, pages 447{455, 1994.[33] Y. Labrou and T. Finin. Semantics for an Agent Communication Language. In Inter-national Workshop on Agent Theories, Architectures, and Languages, pages 199{203,Providence, RI, 1997.[34] D. B. Lande and M. Osjima. Programming and Deploying Java Mobile Agents withAglets. Adison Wesley, Massachusetts, 1998.[35] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, Germany,1984, 1987.[36] E. Lupu and M. Sloman. Towards a Role-based Framework for Distributed SystemsManagement. Journal of Network and Systems Management, 5(1):5{30, 1997.[37] E. C. Lupu and M. S. Sloman. Reconciling Role Based Management and Role BasedAccess Control. In Second Role Based Access Control Workshop (RBAC'97), pages135{141, George Mason University, Virginia, 1997.63

[38] P. Maes. Agents that Reduce Work and Information Overload. Communications ofthe ACM, 37(7):31{40, 1994.[39] J. Millen and T. Lunt. Security for Object-Oriented Database Systems. In Proceedingsof the IEEE Symposium on Research in Security and Privacy, Oakland, CA, May 1992.[40] B. Moulin and B. Chaib-Draa. An Overview of Distributed Arti�cial Intelligence. InG. M. P. O'Hare and N. R. Jennings, editors, Foundations of Distributed Arti�cialIntelligence, pages 3{55. John Wiley & Sons, 1996.[41] G. C. Necula and P. Lee. Research on Proof-Carrying Code on Mobile-Code Security.In Proceedings of the Workshop on Foundations of Mobile Code Security, 1997. http://www.cs.cmu.edu/~necula/pcc.html.[42] T. Nishigaya. Design of Multi-Agent Programming Libraries for Java. http://www.fujitsu.co.jp/hypertext/free/kafka/paper, 1997.[43] OMG. CORBAServices: Common Services Speci�cation. Technical Report 98-12-09,OMG, December 1998. http://www.omg.org/.[44] J. S. Rosenschein and G. Zlotkin. Rules of Encounter: Designing Conventions forAutomated Negotiation Among Computers. MIT Press, Boston, 1994.[45] T. Sander and C. Tschudin. Protecting Mobile Agents Against Malicious Hosts. InG. Vigna, editor,Mobile agents and security, volume 1419 of Lecture Notes in ComputerScience, pages 44{60. Springer-Verlag, New York, NY, 1998.[46] H. J. Schumacher and S. Ghosh. A fundamental framework for network security.Journal of Network and Computer Applications, 20(3):305{322, July 1997.[47] J. Siegal. CORBA Fundementals and Programming. John Wiley & Sons, New York,1996.[48] S. O. Soueina, B. H. Far, T. Katsube, and Z. Koono. MALL: A multi-agent learninglanguage for competitive and uncertain environments. IEICE TRANSACTIONS ONINFORMATION AND SYSTEMS, 12:1339{1349, 1998.[49] W. Stallings. Title Network and Internetwork Security: Principles and Practice.Prentice-Hall, Englewood Cli�s, 1995.[50] V. S. Subrahmanian. Amalgamating Knowledge Bases. ACM Transactions on DatabaseSystems, 19(2):291{331, 1994.[51] V.S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan, and R. Ross.Heterogeneous Agent Systems: Theory and Implementation. MIT Press, 2000. (Toappear).[52] H. Tai and K. Kosaka. The Aglets Project. Communications of the ACM, 42(3):100{101, March 1999.[53] Z. Tari. Using agents for secure access to data in the Internet. IEEE CommunicationsMagazine, 35(6):136{140, June 1997.[54] A. Tarski. Logic, Semantics, Metamathematics. Hackett Pub Co, January 1981.64

[55] C. Thirunavukkarasu, T. Finin, and J. May�eld. Secret Agents { A Security Architec-ture for the KQML Agent Communication Language. In Intelligent Information AgentsWorkshop, held in conjunction with Fourth International Conference on Informationand Knowledge Management CIKM'95, Baltimore, MD, November 1995.[56] G. Vigna. Cryptographic Traces for Mobile Agents. In G. Vigna, editor, Mobileagents and security, volume 1419 of Lecture Notes in Computer Science, pages 137{153.Springer-Verlag, New York, NY, 1998.[57] G. Vigna, editor. Mobile agents and security. Springer-Verlag, New York, NY, 1998.Lecture Notes in Computer Science, Volume 1419.[58] M. Wellman. A Market-Oriented Programming Environment and its Application toDistributed Multicommodity Flow Problems. Journal of Arti�cial Intelligence Re-search, 1:1{23, 1993.[59] G.Wiederhold. Intelligent Integration of Information. In Proceedings of ACM SIGMODConference on Management of Data, pages 434{437, Washington, DC, 1993.[60] M. Winslett, K. Smith, and X. Qian. Formal Query Languages for Secure RelationalDatabases. ACM Transactions on Database Systems, 19(4):626{662, December 1994.[61] M.Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice. KnowledgeEngineering Reviews, 10(2), 1995.[62] N. Yialelis, E. Lupu, and M. Sloman. Role-Based Security for Distributed ObjectSystems. In IEEE WET-ICE, Stanford, 1996.[63] M. Zapf, H. Mueller, and K. Geihs. Security requirements for mobile agents in electronicmarkets. Lecture Notes in Computer Science, 1402:205{217, 1998.[64] L. Zeng and H. Wang. Towards a Multi-Agent Security System: A Conceptual Modelfor Internet Security. In Proceedings of Fourth AIS (Association for Information Sys-tems) Conference, Baltimore, Maryland, August 1998.
65

