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The nature and scope of available documents are changing significantly in

many areas of document analysis and retrieval as complex, heterogeneous collec-

tions become accessible to virtually everyone via the web. The increasing level of

diversity presents a great challenge for document image content categorization, in-

dexing, and retrieval. Meanwhile, the processing of documents with unconstrained

layouts and complex formatting often requires effective leveraging of broad contex-

tual knowledge.

In this dissertation, we first present a novel approach for document image

content categorization, using a lexicon of shape features. Each lexical word corre-

sponds to a scale and rotation invariant local shape feature that is generic enough

to be detected repeatably and is segmentation free. A concise, structurally indexed

shape lexicon is learned by clustering and partitioning feature types through graph

cuts. Our idea finds successful application in several challenging tasks, including

content recognition of diverse web images and language identification on documents

composed of mixed machine printed text and handwriting.



Second, we address two fundamental problems in signature-based document

image retrieval. Facing continually increasing volumes of documents, detecting and

recognizing unique, evidentiary visual entities (e.g ., signatures and logos) provides

a practical and reliable supplement to the OCR recognition of printed text. We

propose a novel multi-scale framework to detect and segment signatures jointly from

document images, based on the structural saliency under a signature production

model. We formulate the problem of signature retrieval in the unconstrained setting

of geometry-invariant deformable shape matching and demonstrate state-of-the-art

performance in signature matching and verification.

Third, we present a model-based approach for extracting relevant named enti-

ties from unstructured documents. In a wide range of applications that require struc-

tured information from diverse, unstructured document images, processing OCR

text does not give satisfactory results due to the absence of linguistic context. Our

approach enables learning of inference rules collectively based on contextual infor-

mation from both page layout and text features.

Finally, we demonstrate the importance of mining general web user behavior

data for improving document ranking and other web search experience. The context

of web user activities reveals their preferences and intents, and we emphasize the

analysis of individual user sessions for creating aggregate models. We introduce a

novel algorithm for estimating web page and web site importance, and discuss its

theoretical foundation based on an intentional surfer model. We demonstrate that

our approach significantly improves large-scale document retrieval performance.
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Chapter 1

Introduction

The extent of document analysis has broadened significantly over recent years.

The explosive growth of the web has enabled access to much larger and more di-

verse collections of documents. While the primary purpose of a document remains

unaltered – to facilitate the transfer of information [1] – it can be presented in a

much larger variety of contexts and formats to readers. The increasing level of di-

versity and complexity presents numerous challenges for the analysis and retrieval

of documents, both in hard copy and electronic form.

In many areas of document image analysis, assumptions based on structured,

narrow-domain documents are no longer valid in the presence of complex, heteroge-

neous content. Interpretations of the content type, language, and genre associated

with a document image become essential tasks. A document image processing work

flow, as shown in Figure 1.1, would require image content category recognition, in-

dexing, and search capabilities that can be generalized to semi- or unstructured,

broad-domain image collections. The goal is no longer limited to the conversion

of text to electronic form, but can now extend semantic analysis toward broader

content.

For the retrieval of electronic documents, ranking continues to be of utmost

importance. The quality of documents presented to web users has significant impact
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Figure 1.1: Key challenges facing document image analysis and retrieval systems
that process diverse document collections.

on their daily lives, yet people have extremely limited spans of attention and have

difficulty dealing with the massive quantity of pages on the web. Experiments on

users’ interaction with the list of ranked results returned by web search engines have

shown that a user seldom looks for documents beyond the first page of results [2].

This dissertation presents work in four main areas related to the analysis and

retrieval of document images and semi-structured electronic documents. In the

following sub-sections, we motivate these problems and present an overview of our

approaches.

1.1 Document Content Category Recognition

Many computer vision and image analysis problems begin by obtaining high-

level content type interpretation for an image. As shown in Figure 1.1, information

2



about the content category largely determines how we process the image in ensuing

tasks. Having recognized text content and the language, a document analysis system

can process and index images containing predominantly machine printed text.

We focus on two image content category recognition problems central to het-

erogeneous document image collections. The first problem lies in the categorization

of a general image into different content classes. The second problem arises from

language identification for documents that are composed of mixed machine printed

text and handwriting, which has been an open research problem. For systems that

process diverse multilingual document images, the performance of language identi-

fication is crucial for a broad range of tasks — from determining the correct optical

character recognition (OCR) engine for text extraction to document indexing, trans-

lation, and search. In character recognition, for instance, almost all existing work

requires knowledge of the script and/or language of the processed document [3].

In this dissertation, we propose a novel approach for document image content

categorization using image descriptors constructed from a lexicon of shape features.

We encode local text structures using scale and rotation invariant lexical words, each

representing a segmentation-free shape feature that is generic enough to be detected

repeatably. We learn a concise, structurally indexed shape lexicon by clustering and

partitioning similar feature types through graph cuts. Our approach is extensible

and does not require skew correction, scale normalization, or segmentation. We

demonstrate our approach on two challenging document image content recognition

problems: 1) The classification of 4,500 web images from Google Image Search

into three content categories — pure image, image with text, and document image,

3



and 2) Language identification of eight languages (Arabic, Chinese, English, Hindi,

Japanese, Korean, Russian, and Thai) on a 1,512 complex document image database

composed of mixed machine printed text and handwriting.

1.2 Content-based Document Image Analysis and Retrieval

Visual content, such as signatures [4], logos [5], and stamps [6], present con-

vincing evidence of document source and provide an important form of indexing

for document image processing and retrieval. Detecting, segmenting, and matching

these free-form objects from clustered background pose unique challenges. Signature

detection, for example, is an open document analysis problem [7].

In this dissertation, we study two fundamental problems in signature-based

document image retrieval. First, we propose a novel multi-scale approach to jointly

detecting and segmenting signatures from document images. Rather than focusing

on local features that typically have large variations, our approach captures the

structural saliency using a signature production model and computes the dynamic

curvature of 2-D contour fragments over multiple scales. This detection framework

is general and computationally tractable. Second, we treat the problem of signature

retrieval in the unconstrained setting of translation, scale, and rotation invariant

deformable shape matching. We propose two novel measures of shape dissimilarity

based on anisotropic scaling and registration residual error, and we present a su-

pervised learning framework for combining complementary shape information from

different dissimilarity metrics using linear discriminant analysis (LDA). We quan-
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titatively study state-of-the-art shape representations, shape matching algorithms,

measures of dissimilarity, and the use of multiple instances as query in document

image retrieval. We further compare our matching approach to the state of the art

in the task of off-line signature verification.

1.3 Processing Unstructured Document Images

Hard copy documents have been the most common form of information-conveying

vehicle over centuries, and people have developed an exceptional capability to extract

information from diverse paper sources. Once hard copy documents are captured

electronically as scanned images, however, the automated processing of documents

with unconstrained layouts and diverse formatting becomes more difficult. In many

applications that require such capability, applying traditional language modeling

techniques to the stream of OCR text does not produce satisfactory results due

to the absence of linguistic context. Extracting structured information, such as

named entities, from unstructured document images remains an unsolved research

challenge.

In this dissertation, we present a model-based approach for extracting relevant

named entities from unstructured document images by combining rich page layout

features in the image space with OCR text. We demonstrate our named entity ex-

traction approach in an expense reimbursement system and evaluate its performance

on large collections of degraded, real-world receipt images.
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1.4 Improving Document Search Ranking

User browsing information, particularly their non-search related activity, re-

veals important contextual information on the preferences and the intents of web

users. A document retrieval system may improve both search ranking performance

and user experience by effective leveraging of contextual knowledge gained from

general web user behavior data.

In this dissertation, we demonstrate the importance of mining general web

user behavior data for improving document ranking and other web search experi-

ence, with an emphasis on analyzing individual user sessions to create aggregate

models. In this context, we introduce ClickRank, an efficient, scalable algorithm for

estimating web page and web site importance from general web user behavior data.

We lay out the theoretical foundation of ClickRank based on an intentional surfer

model and discuss its properties. We quantitatively evaluate its effectiveness for

the problem of web search ranking, showing how it contributes significantly to re-

trieval performance as a novel web search feature. We demonstrate that the results

produced by ClickRank for web search ranking are highly competitive with those

produced by other approaches, yet achieved with better scalability and substantially

lower computational costs. Finally, we discuss novel applications of ClickRank in

providing enriched user web search experience, highlighting the usefulness of our

approach for non-ranking tasks.
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1.5 Outline of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 describes

our approach to document image content category recognition using a lexicon that

is composed of a wide variety of local shape features. We demonstrate its appli-

cation in two challenging tasks – the categorization of diverse web images and the

language identification of document images involving a blend of machine printed

text and handwriting. Chapter 3 presents our approaches to signature detection,

segmentation, and matching for document image retrieval. Chapter 4 describes our

approach to extracting relevant named entities from unstructured document im-

ages. We present its successful application in an automated expense reimbursement

system. Chapter 5 studies the problem of using contextual information from gen-

eral user behavior data online to improve web search ranking. The main ideas and

contributions of the dissertation are summarized in Chapter 6.
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Chapter 2

Image Content Category Recognition

2.1 Introduction

Image content categorization has become a pressing problem in computer vi-

sion as we face a phenomenal increase in the diversity of visual content. Content

category recognition aims to reduce the semantic gap for ensuing tasks by providing

usage-oriented content description that can be utilized in individual applications.

For vision systems involving high-volume, complex, and heterogeneous image data,

effective high-level content interpretation is essential prior to object detection or

object category recognition at a finer level.

In this chapter, we focus on the most pervasive content within documents —

text. Once text content and the language are recognized, images containing text

can be processed by an optical character recognition (OCR) system and indexed.

Toward this end, however, many unsolved challenges to image content category

recognition still exist.

First, we consider the recognition of an image’s primary content as one of three

content categories — pure image (e.g ., natural image and human photos), image

with text (see examples in Figure 2.1), or document image. This sort of automated

content categorization has broad impact in image search, and content-based image

indexing and retrieval.
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Figure 2.1: Examples of images returned by Google Image Search using the keyword
“CD cover”.

Second, we study the problem of recognizing the primary language of a doc-

ument image in an unconstrained setting. This presents a fundamental research

challenge for those systems that need to process diverse multilingual document im-

ages automatically, such as Google Book Search [8] or an automated global expense

reimbursement application [9]. Almost all work to date on OCR requires that the

script and/or language of the processed document be known [3]. The performance

of language identification is crucial for the success of a wide range of tasks — from

determining the correct OCR engine for text extraction to document indexing, trans-

lation, and search [10].

Progress in the field of language identification has focused almost exclusively

on machine printed text. Document collections, as shown in Figure 2.2, often contain

a diverse and complex mixture of machine printed and unconstrained handwritten

content, and vary tremendously in font and style. Language identification on docu-

ment images involving diverse content types, including unconstrained handwriting,

is still an open research area [7] and, to our best knowledge, no reasonable solutions

have been presented in the literature.
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Figure 2.2: Examples from the Maryland multilingual database [11] and the IAM
handwriting DB3.0 database [12]. Languages in the top row are Arabic, Chinese,
English, and Hindi. In the lower row are Japanese, Korean, Russian, and Thai.

The problem of language identification for handwriting also highlights several

common challenges facing category recognition of diverse content. First, handwrit-

ing exhibits much larger variability compared to machine printed text. Handwriting

variations due to style, cultural, and personalized differences are typical [13], which

significantly increase the diversity of shapes found. Text lines in handwriting are

curvilinear and the gaps between neighboring words and lines are far from uni-

form. No well-defined baselines exist for handwritten text lines, even by linear or

piecewise-linear approximation [14]. Second, automatic processing of off-line doc-

ument image content should be robust in the presence of unconstrained document

layouts, formatting, and image degradations.
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Our approach takes the view that the intricate differences between text can be

effectively captured using segmentation-free shape features and structurally indexed

shape descriptors. Low-level local shape features serve well for this purpose because

they can be detected robustly in practice, without detection or segmentation of

high-level entities, such as text lines or words. As shown in Figure 2.3, visual differ-

ences between handwriting samples across languages are captured well by different

configurations of neighboring line segments, which provide rich description of local

text structures.

We propose a novel approach for document image content recognition, using

image descriptors built from a lexicon of generic low-level shape features that are

translation, scale, and rotation invariant. To construct a structural index among

large number of diverse features, we dynamically partition the space of shape prim-

itives by clustering similar feature types. We formulate feature partitioning as a

graph cuts problem with the objective of obtaining a concise and globally balanced

lexicon index by sampling the training data. Each cluster in the lexicon is repre-

sented by an exemplary lexical word, making association of feature type efficient.

We obtain competitive document image content categorization performance using a

multi-class SVM classifier.

This chapter is structured as follows. Section 2.2 reviews related work. In

Section 2.3, we describe our algorithm for learning the shape lexicon and present a

document image content recognition approach using the shape lexicon. We discuss

experimental results in Section 2.4, and conclude in Section 2.5.
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2.2 Related Work

We first present a comprehensive overview of existing approaches on whole-

image categorization and script/language identification, respectively. We then high-

light work related to our approach on contour-based learning.

2.2.1 Image Content Categorization

Little literature has directly addressed the problem of content recognition for

heterogeneous image repositories. However, several approaches based on different

motivations have demonstrated good performance in tasks that involve diverse ob-

jects. Oliva and Torralba [15] developed a holistic image representation for scene

recognition called spatial envelope, which characterizes the dominant spatial struc-

ture of a scene using a set of discriminative energy spectrum templates. Another

fairly intuitive approach treats blocks of text as texture [16]. One widely used rota-

tion invariant feature for texture analysis is the local binary patterns (LBP) proposed

by Ojala et al . [17]. LBP captures spatial structure of local image texture in circular

neighborhoods across angular space and resolution, and has demonstrated state-of-

the-art results in a wide range of whole-image categorization problems involving

diverse data [18, 19].

2.2.2 Language Identification

Prior literature on script and language identification has largely focused on

the domain of machine printed documents. These works can be broadly classified
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into three categories — statistical analysis of text lines [20, 21, 22, 23, 24], texture

analysis [16, 25], and template matching [26].

Statistical analysis using discriminating features extracted from text lines, in-

cluding distribution of concavities [20, 22], horizontal projection profile [21, 23], and

vertical cuts of connected components [24], has proven effective on homogeneous

collection of machine printed documents. These approaches, however, do have ma-

jor limitations for handwriting. First, they assume uniformity among printed text,

and require precise baseline alignment and word segmentation. Freestyle handwrit-

ten text lines are curvilinear, and, in general, have no well-defined baselines, even

by linear or piecewise-linear approximation [14]. Second, it is difficult to extend

these methods to a new language, because they employ a combination of hand-

picked and trainable features and a variety of decision rules. In fact, most of these

approaches require effective script identification to discriminate between selected

subset of languages, and use different feature sets for script and language identifi-

cation, respectively.

Script identification using rotation invariant texture features, including multi-

channel Gabor filters [16] and wavelet log co-occurrence features [25], were demon-

strated on small blocks of printed text with similar characteristics. However, no

results were reported on full-page documents that involve variations in layouts and

fonts. Script identification for printed words was explored in [27, 28] using texture

features between a small number of scripts.

Template matching approach computes the most likely script by probabilis-

tic voting on matched templates, where each template pattern is of fixed size and
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rescaled from a cluster of connected components. The script and language identifi-

cation system developed by Hochberg et al . [26] at Los Alamos National Laboratory

based on template matching can process 13 machine printed scripts without explicit

assumptions of distinguishing characteristics for a selected subset of languages. Tem-

plate matching is intuitive and delivers state-of-the-art performance when the con-

tent is constrained (i.e., printed text in similar fonts). However, templates are not

sufficiently flexible to generalize across large variations in fonts or handwriting styles

typical to diverse datasets [26]. From a practical view, the system needs to learn

the discriminability of each template through labor-intensive training, the extent to

which requires tremendous amounts of supervision and further limits applicability.

There exists minimal literature on language identification for handwriting. To

the best of our knowledge, the experiments of Hochberg et al . [13] on script and

language identification of handwritten document images offers the only reference on

this topic in the literature. They used linear discriminant analysis based on five

simple features of a connected component, including relative centroid location and

aspect ratio. The approach is demonstrated to be sensitive to large variations across

writers and diverse document content [13]. In their experiments, irregularities in the

document, including machine printed text, illustrations, markings, and handwriting

in different orientation from main body, were removed manually by image editing

from their evaluation dataset.
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2.2.3 Contour-based Learning

Learning contour features is an important aspect in many computer vision

problems. Ferrari et al . [29] proposed scale-invariant adjacent segments (kAS) fea-

tures extracted from the contour segment network of image tiles, and used them in a

sliding window scheme for object detection. By explicitly encoding both geometric

and spatial arrangement among the segments, kAS descriptor demonstrates state-

of-the-art performance in shape-based object detection, and outperforms descriptors

based on interest points and histograms of gradient orientations [30]. However, kAS

descriptor is not rotation invariant, because segments are rigidly ordered from left

to right. This limits the repeatability of high-order kAS, and the best performance

in [29] is reported when using 2AS.

In handwriting recognition literature, one interesting work, also motivated by

the idea of learning a feature codebook, is the study on writer identification by

Schomaker et al . [31]. Writer identification assumes that the language is known

beforehand and aims to distinguish between writers based on specific characteristics

of handwriting. Schomaker et al . used closed-contour features of ink blobs directly,

without any shape descriptor. The difference between contour features is computed

using Hamming distance. The low-dimensional codebook representation presented

in [31] is based on Kohonen self-organizing map (SOM) [32]. Their approach de-

mands good segmentation and is not scale or rotation invariant. To account for

size variations, for instance, SOMs need to be computed at multiple scales, which

requires large training data and is computationally expensive.
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2.3 Recognizing Image Content Using Shape Lexicon

Recognition of diverse visual content needs to account for large variations,

because content appears in many forms and contexts. The scope of the problem

is intuitively in favor of low-level shape primitives that can be detected repeatably.

Rather than focusing on selection of class-specific features, our approach aims to

distinguish intricate differences between content types collectively using the statis-

tics of a large variety of generic, geometrically invariant feature types (lexical words)

that are structurally indexed. Our emphasis on the generic nature of lexical words

provides a different perspective to recognition, which has traditionally focused on

finding sophisticated features or visual selection models. This may limit generaliza-

tion performance.

We explore the kAS contour feature recently introduced by Ferrari et al . [29],

which consists of a chain of k roughly straight, connected contour segments. Specifi-

cally, we focus on the case of triple contour segments, which strike a balance between

lower-order contour features that are not properly discriminative and higher-order

ones that are less likely to be detected robustly.

2.3.1 Extraction of Contour Feature

We perform computation locally, which means our approach detects features

in a highly efficient manner. First, we compute edges using the Canny edge de-

tector [33], which consistently demonstrates good performance on text content and

gives precise localization and unique response. Second, we group contour segments
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by connected components and fit them locally into line segments. Then, within

each connected component, we extract every triplet of connected line segments that

starts from the current segment. Figure 2.3 provides visualization of the quality of

detected contour features by our approach using random colors.

Our feature detection scheme requires only linear time and space in the number

of contour fragments n, and is highly parallelizable. It proves much more efficient

and stable than [29], which requires construction of contour segment network and

depth first search from each segment, leading to O(n log(n)) time on average and

O(n2) in the worst case.

We encode object contours in a translation, scale, and rotation invariant fash-

ion by computing orientations and lengths with reference to the first detected line

segment. A contour feature C can be compactly represented by an ordered set of

lengths and orientations of ci for i ∈ {1, 2, 3}, where ci denotes line segment i in C.

This is distinct from the motivation of kAS descriptor that attempts to enumerate

spatial arrangements of contours within local regions. Furthermore, kAS descriptor

does not take rotation invariance into account.

2.3.2 Measure of Dissimilarity

The overall dissimilarity between two contour features can be quantified by

the weighted sum of the distances in lengths and orientations. We use the following

generalized measure of dissimilarity between two contour features Ca and Cb

d(Ca, Cb, λ) = λT
lengthdlength + λT

orientdorient, (2.1)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3: Shape differences are captured locally by a large variety of neighboring
contour features. (a)-(d) Examples of handwriting from four different languages.
(e)-(h) Detected contour features by our approach, each shown in a random color.

where vectors dlength and dorient are composed of the distances between contour

lengths and orientations, respectively. λlength and λorient are their corresponding

weight vectors, providing sensitivity control over the tolerance of line fitting. One

natural measure of dissimilarity in lengths between two contour segments is their

log ratio. We compute orientation difference between two segments by normalizing

their absolute value of angle difference to π. In our experiments, we use a larger

weighting factor for orientation to de-emphasize the difference in the lengths because

they may be less accurate due to line fitting.
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2.3.3 Learning the Shape Lexicon

We extract a large number of lexical words by sampling from training images,

and construct an indexed shape lexicon by clustering and partitioning the lexical

words. A lexicon provides a concise structural organization for associating large

varieties of low-level features, and is efficient because it enables comparison to far

fewer feature types.

2.3.3.1 Clustering Lexical Words

Prior to clustering, we compute the distance between each pair of lexical words

and construct a weighted undirected graph G = (V, E), in which each node on the

graph represents a word. The weight on an edge connecting two nodes Ca and Cb

is defined as a function of their distance

w(Ca, Cb) = exp

(
−d(Ca, Cb)

2

σ2
d

)
, (2.2)

where we set parameter σd to 20 percent of the maximum distance among all pairs

of nodes.

We pose feature clustering as a spectral graph partitioning problem, for which

we seek to group the set of vertices V into disjoint sets {V1, V2, . . . , VK}, such that

by the measure defined in (2.1) the dissimilarity among the vertices in a set is low,

and that between different sets is high.

More concretely, let the N ×N symmetric weight matrix for all the vertices

be W , where N = |V |. We define the degree matrix D as an N ×N diagonal

matrix, and i-th element d(i) along the diagonal satisfies d(i) =
∑

j w(i, j). We
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use an N ×K matrix X to represent a graph partition, i.e., X = [X1, X2, . . . , XK ],

where each element of matrix X is either 0 or 1. We can show that the feature

clustering formulation that seeks globally balanced graph partitions is equivalent to

the normalized cuts criterion [34], and can be written as

maximize ε(X) =
1

K

K∑
l=1

XT
l WXl

XT
l DXl

, (2.3)

subject to X ∈ {0, 1}N×K , and
∑

j

X(i, j) = 1. (2.4)

Minimizing normalized cuts exactly is NP-complete. We use a fast algorithm

[35] for finding its discrete near-global optimum, which is robust to random initial-

ization and converges faster than other clustering methods.

2.3.3.2 Organizing Features in the Lexicon

For each cluster, we select the feature instance closest to the cluster’s center as

the exemplary lexical word. This ensures that an exemplary word has the smallest

sum of squared distance to the other features within the cluster. In addition, each

exemplary word is associated with a cluster radius, which is defined as the maximum

distance from the cluster center to all the other features within the cluster. The

constructed shape lexicon L is composed of all exemplary lexical words.

Figure 2.4 shows the 25 most frequent exemplary lexical words for Arabic,

Chinese, English, and Hindi, learned from 10 documents of each language. Dis-

tinguishing features between languages, including cursive style in Arabic, 45 and

90-degree transitions in Chinese, and various configurations due to long horizontal

lines in Hindi, are learned automatically. Each row in Figure 2.4(e)-(h) lists exam-
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(e) (f) (g) (h)

Figure 2.4: The 25 most frequent exemplary lexical words in (a) Arabic, (b) Chinese,
(c) English, and (d) Hindi document images capture the distinct features of different
languages. (e)-(h) show lexical words in the same cluster as the top 5 exemplary
lexical words for each language, ordered by ascending distances to the center of their
clusters. Scaled and rotated versions of feature types are clustered together.

ples of lexical words in the same cluster, ordered by ascending distances to the center

of their associated clusters. By clustering, translated, scaled and rotated versions

of feature types are grouped.

Since each lexical word represents a generic local shape feature, a majority

of lexical words should intuitively appear in images across content categories, even

though their frequencies of occurrence deviate significantly. In our experiments, we

find that 95.1% and 92.6% of lexical words in natural images also appear in images

with text and document images, respectively. In addition, 86.3% of lexical word

instances appear in document images across all eight languages.
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2.3.4 Constructing the Image Descriptor

We construct a shape descriptor for each image, which provides statistics of

the frequency at which each feature type occurs. For each detected lexical word

W from the test image, we compute the nearest exemplary word Ck in the shape

lexicon. We increment the descriptor entry corresponding to Ck only if

d(W, Ck) < rk, (2.5)

where rk is the cluster radius associated with the exemplary lexicon word Ck. This

quantization step ensures that unseen features that deviate considerably from train-

ing features are not used for image description. In our experiments, we found that

only less than 2% of the contour features cannot be found in the shape lexicon

learned from the training data.

2.4 Experimental Results

2.4.1 Image Content Category Recognition

2.4.1.1 Dataset

To evaluate our approach for image content category recognition, we construct

a 4,500-image dataset by crawling web images from the Google Image search engine

using a wide variety of keywords. Figure 2.1 shows some examples of images with

text returned by using the text keyword “CD cover”. All the images are automat-

ically downloaded by a script. Duplicate and junk images are manually inspected

and removed to reduce the proportion of unrelated images.
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(a) Mean diagonal = 78.9% (b) Mean diagonal = 77.6% (c) Mean diagonal = 83.3% (d) Mean diagonal = 89.6%

Figure 2.5: Confusion tables for image content category recognition using (a) Spatial
envelope [15], (b) LBP [17], (c) kAS [29], (d) Our approach. (P: Pure image, T:
Image with text, D: Document image)

2.4.1.2 Overview of the Experiments

We compare our approach with spatial envelope [15], local binary patterns

(LBP) [17], and the state-of-the-art kAS descriptor [29], which are well-known ap-

proaches based on different views of whole-image characterization. Spatial envelope

uses a holistic image representation without attempting to exploit localized infor-

mation such as shape, whereas LBP is based on rotation-invariant texture analysis.

Since 2AS gives the best performance among different kAS [29], we use it as the

benchmark for kAS.

We train a multi-class SVM classifier [36] on only 100 randomly selected images

from each category and use it to test the rest of the images in the collection. For

easy comparison, we set the dimensions of the image descriptor to 90 for both kAS

and our approach in the following experiments.

2.4.1.3 Results and Discussions

The confusion tables for spatial envelope, LBP, kAS, and our approach ap-

pear in Figure 2.5. Spatial envelope demonstrates performs well in recognizing pure
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images, but is not very effective for text content. Texture-based LBP produces

balanced results for all three content types. Our approach obtains the best per-

formances for recognizing each content class, with a respectable mean diagonal of

89.6%. The only notable confusion occurs when distinguishing between image with

text and pure image.

2.4.2 Language Identification

2.4.2.1 Dataset

We use 1,512 document images of eight languages (Arabic, Chinese, English,

Hindi, Japanese, Korean, Russian, and Thai) from the University of Maryland multi-

lingual database [11] and the IAM handwriting database DB3.0 [12] (see Figure 2.2)

for evaluation on language identification. Both databases are large public real-world

collections, containing the source identity of each image in the ground truth. This

enables us to construct a diverse dataset that closely mirrors the true complexities

of heterogeneous document image repositories in practice.

2.4.2.2 Overview of the Experiments

We compare our approach with the state-of-the-art language identification sys-

tem [26], which is based on template matching. We also include LBP and kAS in

this experiment since they have demonstrated reasonable performance on diverse

text contents. For effective comparison, we used multi-class SVM classifiers trained

on the same pool of randomly selected handwritten document images from each

24



(a) Mean diagonal = 55.1% (b) Mean diagonal = 68.1% (c) Mean diagonal = 88.2% (d) Mean diagonal = 95.6%

Figure 2.6: Confusion tables for language identification using (a) LBP [17], (b)
Template matching [26], (c) kAS [29], (d) Our approach. (A: Arabic, C: Chinese,
E: English, H: Hindi, J: Japanese, K: Korean, R: Russian, T: Thai, U: Unknown)

language class in the following experiments, for LBP, kAS, and our approach, re-

spectively. We further evaluated the generalization performance of our approach as

the size of training data varied.

2.4.2.3 Results and Discussions

The confusion tables for LBP, template matching, kAS, and our approach ap-

pear in Figure 2.6. Our approach demonstrates excellent results on all the eight

languages, with a mean diagonal of 95.6% and a standard deviation of 4.5%. Ta-

ble 2.1 lists all entries in the confusion table of our approach for the eight languages.

kAS, with a mean diagonal of 88.2%, is also effective. Neither kAS nor our approach

has difficulty generalizing across large variations, such as font types or handwrit-

ing styles, as evident from their relatively small standard deviations along diagonal

entries in the confusion tables shown in Figure 2.7.

The performance of template matching varies significantly across languages,

with 68.1% mean diagonal and 20.5% standard deviation along diagonal. One big
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Table 2.1: Confusion table of our approach for the 8 languages.

A C E H J K R T

A 99.7 0.3 0 0 0 0 0 0
C 1.4 85.0 4.0 1.0 6.7 1.0 0.7 0.2
E 1.6 0 95.9 0.2 0 1.1 0.6 0.6
H 0.2 0.2 0 98.8 0.8 0 0 0
J 0 1.3 1.0 0.2 96.2 1.3 0 0
K 0 0.8 0.1 1.9 0.5 96.0 0.5 0.1
R 0.5 0 2.0 0 0 0 97.1 0.4
T 0 0.3 1.6 0.9 0.6 0.3 0 96.3

Figure 2.7: Comparison of language identification performances.

confusion of template matching occurs between Japanese and Chinese, given a docu-

ment in Japanese may contain varying number of Kanji (Chinese characters). Tem-

plates are not flexible for identifying discriminative partial features, and the bias

in voting decision toward the dominant candidate causes less frequently matched

templates to be ignored. Another performance lowering source of error comes from

undetermined cases (see the unknown column in Figure 2.6(b)), where probabilistic

voting cannot decide between languages with roughly equal votes.

Texture-based LBP could not effectively recognize differences between lan-

guages on a diverse dataset because distinctive layouts and unconstrained hand-
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Figure 2.8: Examples of error cases in Chinese handwritten documents.

writing exhibit irregularities that are difficult to capture using texture, and its mean

diagonal is only 55.1%.

Figure 2.7 quantitatively compares the overall language identification perfor-

mances of different approaches by the means and standard derivations of diagonal

entries in their confusion tables. Shape-based approaches, including our approach

and kAS, show higher recognition rates and smaller performance derivations, com-

pared to those based on models of textures and templates.

Analysis of the language identification errors made by our approach provides

further insights. Among all eight languages, recognition of Chinese handwriting

proved the most challenging task. As shown in Figure 2.7, the Chinese language

identification performances for all four approaches were significantly lower compared

to the other languages. We show several typical error cases in Figure 2.8, where Chi-

nese handwritten documents are recognized incorrectly. These error cases include

document images with severe degradations, second-generation documents captured

from low-resolution source copies (e.g ., photocopy of a fax document), and docu-

ments containing a significant amount of other content.
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Figure 2.9: Recognition rates of our approach for different languages as the size
of training data varies. Our approach achieves excellent performance even using a
small number of document images per language for training.

Good generalization helps determine the success of document analysis systems

that need to process diverse, unconstrained data. Figure 2.9 shows the recognition

rates of our approach as the size of training set varies. We observe highly competi-

tive language identification performance on this challenging dataset even when using

a small amount of training data per language class. This demonstrates the effective-

ness of generic low-level shape features when mid or high-level vision representations

may not be generalized or flexible enough for the task.

Our results on language identification are encouraging, as the training requires

considerably less supervision. Our approach needs only the class label of each train-

ing image, and does not require prior skew correction, scale normalization, or seg-

mentation.
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2.5 Summary

In this chapter, we proposed a novel approach for document image content

categorization using a lexicon composed of a wide variety of local shape features.

Each lexical word represents a characteristic structure generic enough to be detected

repeatably and segmentation free. The lexicon provides a principled approach to

structurally indexing and associating a vast number of feature types, and is learned

from training data with little supervision. Our approach is extensible and does

not require constructing explicit content models. In two challenging real world

document image content recognition problems involving large-scale, highly variable

image collections, our approach demonstrated excellent results and outperformed

other state-of-the-art techniques. Our future work will be directed toward refin-

ing and evaluating the approach by further incorporating spatial co-occurrences of

lexical words using a secondary lexicon.
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Chapter 3

Signature Detection and Matching

3.1 Introduction

Searching for relevant documents from large complex document image repos-

itories presents a central problem in document image analysis and retrieval. One

approach recognizes text in the image using an OCR system, and applies text in-

dexing and query. This solution is primarily restricted to machine printed text

content because state-of-the-art handwriting recognition is error prone and limited

to applications with a small vocabulary, such as postal address recognition and

bank check reading [7]. In broader, unconstrained domains, including searching

historic manuscripts [37] and processing languages where character recognition is

difficult [38], image retrieval has demonstrated better results.

As unique and evidentiary entities in a wide range of business and forensic ap-

plications, signatures provide an important form of indexing that enables effective

exploration of large heterogeneous document image collections. Given an abun-

dance of documents, searching for a specific signature is a highly effective way of

retrieving documents authorized or authored by an individual [39]. In this context,

handwriting recognition is suboptimal, because of its prohibitively low recognition

rates and the fact that the character sequence of a signature is often unrelated to the

personal identity it represents. More importantly, as a number of studies [40, 41]
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(d) (e) (f)

Figure 3.1: The prominence of a signature is perceived across scales whereas back-
ground text merges into blobs at coarser scales. (a) A document image example. (b)
and (c) are edges computed at the scale of 1.0 and 2.0, respectively. (d) Detected
signature region without segmentation. (e) and (f) are detected and segmented
signatures by our approach at the two scales.

demonstrated, signatures are highly stylistic in nature and are best described by

their graphic style.

Detecting, segmenting, and matching deformable objects such as signatures

are important and challenging problems in computer vision. In the following sub-

sections, we address detection, segmentation, and matching in the context of signature-

based document image retrieval and present an overview of our approach.

3.1.1 Signature Detection and Segmentation

Detecting free-form objects is challenging in a number of aspects. First, detec-

tion needs to be robust in the presence of large intra-class variations and cluttered

backgrounds. Second, the contours of these complex objects are fragmented 2-D
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signals in real off-line images, for which reliably recovering the order of points in

handwriting is generally difficult [42]. Moreover, recognition and retrieval techniques

require well segmented objects to minimize the effects of outliers during matching.

Detecting signatures from documents offers one such example that further involves

diverse layout structures and complex mixture of machine printed text, handwrit-

ing, diagrams, and other elements. Signature detection and segmentation remains

an open research problem [43].

Prior research on off-line signatures has focused almost exclusively on signature

verification and identification to perform authentication [44, 45, 40, 41, 46, 47, 48]

in the context of biometrics. For signature verification, the problem lies in deciding

whether a sample signature is genuine by comparing it with stored reference signa-

tures. Signature identification is essentially a writer identification problem, which

has an objective to find the signer of a sample given a database of signature exem-

plars from different signers. Most studies published to date assume the availability

of good detection and segmentation [7].

The problem of signature detection and segmentation pivots on solving signature-

based document indexing and retrieval. Equally important, a solution will benefit

off-line signature verification and identification in a range of domains. In addition,

the ability to detect signatures robustly and extract them intact from volumes of

documents is highly desirable for many business and government applications.

We propose a new multi-scale approach to detect and extract signatures jointly

from document images. Rather than focusing on local features, we treat signatures

as symbols that exhibit characteristic structural saliency in our multi-scale detection
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framework. We employ a novel saliency measure based on a signature production

model, which captures the dynamic curvature in a signature without recovering its

temporal information. The signature detection approach can also be applied to

on-line handwritten notes, where the trajectories of the pen are readily available.

Our detection framework is general and has the advantage of not embeding

explicit assumptions on local features of signatures, such as the granulometric size

distributions [44] or stroke-level features [40]. Therefore, it performs robustly against

many forms of variations in shape-based object detection problems, and is generally

applicable despite language differences.

3.1.2 Signature Matching for Document Image Retrieval

Detection and segmentation produce a set of 2-D contour fragments for each

detected signature. Given a few available query signature instances and a large

database of detected signatures, signature matching needs to find the most similar

signature samples from the database. By constructing the list of best matching

signatures, we effectively retrieve the set of documents authorized or authored by

the same person.

We treat a signature as a non-rigid shape, and represent it by a discrete set

of 2-D points sampled from the internal or external contours on the object. A 2-

D point feature offers several competitive advantages compared to other compact

geometrical entities used in shape representation. It relaxes the strong assumption

that the topology and the temporal order need to be preserved under structural
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Figure 3.2: Shape contexts [55] and local neighborhood graphs [56] constructed from
detected and segmented signatures. First column: Examples of signatures. Second
column: Shape contexts descriptors constructed at a point, which provides a large-
scale shape description. Third column: Local neighborhood graphs capture local
structures for non-rigid shape matching.

variations or clustered background. For instance, two strokes in one signature sam-

ple may touch each other, but remain well separated in another. These structural

changes, as well as outliers and noise, are generally challenging for shock-graph based

approaches [49, 50], which explicitly use the connection between points. In earlier

studies [51, 52, 53, 54], a shape is represented as an ordered sequence of points.

This 1-D representation is well-suited for signatures collected online using a PDA or

Tablet PC. For unconstrained off-line handwriting, however, it is generally difficult

to recover their temporal information from real images due to large structural vari-

ations [42]. Represented by a 2-D point distribution, a shape is more robust under

structural variations while carrying general shape information. As shown in Fig-

ure 3.2, the signature’s shape is captured by a finite set P = {P1, . . . , Pn}, Pi ∈ R2,

of n points, which are sampled from edge pixels computed by an edge detector.

We use two state-of-the-art non-rigid shape matching algorithms for signature
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matching. The first method is based on the representation of shape contexts, in-

troduced by Belongie et al . [55]. In this approach, a spatial histogram defined as

shape context is computed for each point, which describes the distribution of the

relative positions of all remaining points. Prior to matching, the correspondences

between points are first solved through weighted bipartite graph matching. Our sec-

ond method uses the non-rigid shape matching algorithm proposed by Zheng and

Doermann [56], which formulates shape matching as an optimization problem that

preserves local neighborhood structure. This approach contains an intuitive graph

matching interpretation, where each point represents a vertex. Two vertices are con-

sidered connected in the graph if they are neighbors. So, finding the optimal match

between shapes is equivalent to maximizing the number of matched edges between

their corresponding graphs under a one-to-one matching constraint. Computation-

ally, [56] employs an iterative framework for estimating the correspondences and

the transformation. In each iteration, graph matching is initialized using the shape

context distance, and subsequently is updated through relaxation labeling [57] for

more globally consistent results.

Treating an input pattern as a generic 2-D point distribution broadens the

space of dissimilarity metrics and enables effective shape discrimination using the

correspondences and the underlying transformations [58]. We propose two novel

shape dissimilarity metrics that quantitatively measure anisotropic scaling and reg-

istration residual error, and present a supervised training framework for effectively

combining complementary shape information from different dissimilarity measures

by linear discriminant analysis (LDA).
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The contributions of this dissertation are twofold:

1. We propose a novel multi-scale approach to detect and segment signatures

jointly from documents with diverse layouts and complex backgrounds. We

treat a signature generally as an unknown grouping of 2-D contour fragments,

and solve for the two unknowns — identification of the most salient struc-

ture and its grouping, using a signature production model that captures the

dynamic curvature of 2-D contour fragments without recovering the temporal

information.

2. We treat signature recognition and retrieval in the unconstrained setting of

non-rigid shape matching, and propose two new measures of shape dissim-

ilarity that correspond to i) the amount of anisotropic scaling, and ii) the

registration residual error. We demonstrate robust signature-based document

image retrieval, and comprehensively evaluate different shape representations,

shape matching algorithms, measures of dissimilarity, and the use of multiple

signature instances in overall retrieval accuracy.

We structure this chapter as follows: The next section reviews related work.

In Section 3.3, we present our multi-scale structural saliency approach to signature

detection and segmentation in detail. Section 3.4 introduces a structural saliency

measure for capturing the dynamic curvature under a signature production model.

In Section 3.5, we describe our signature matching approach and present methods

to combine different measures of shape dissimilarity and multiple query instances

for effective retrieval with limited supervised training. We discuss experimental
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results on real English and Arabic document datasets in Section 3.6, and conclude

in Section 3.7.

3.2 Related work

3.2.1 Structural Saliency and Contour Grouping

Detecting salient structures from images is an important task in many seg-

mentation and recognition problems. The saliency network proposed by Sha’ashua

and Ullman [59] offers a well-known approach to extracting salient curves by jointly

solving the two aspects of this problem iteratively, i.e., identifying salient struc-

tures and grouping contours. The saliency function defined in [59] monotonically

increases with the length and decreases with the total squared curvature of the eval-

uated curve. To reduce the exponential search space, the saliency network assumed

that an optimal solution has a recurrent structure, which they called extensibility, so

that searching by dynamic programming in the exponential space of possible curves

takes polynomial time. However, greedily reducing the solution space by such a re-

current formulation involves hard decisions at each step, and theoretically, a single

mistake can result in the convergence to a wrong solution.

Alter and Basri [60] presented a comprehensive analysis of the saliency network

and derived its O(k2N2) time complexity, where N is the total number of pixels and

k is the number of neighboring elements considered in forming a locally connected

network. They demonstrated that the salient network has a few serious problems

due to the extensibility assumption, and the convergence rates vary significantly de-
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pending on the object structure. These limitations are difficult to overcome without

fundamentally changing the computation.

A body of literature exists on contour grouping and contour-based learning in

computer vision. Here we highlight the work more closely related to ours, which

includes Parent and Zucker’s [61] work using relaxation methods, and Guy and

Medioni’s [62] work using voting patterns. Elder and Zucker [63] developed a method

for finding closed contours using chains of tangent vectors. Williams and Jacobs [64]

and Williams and Thornber [65] discussed contour closure using stochastic comple-

tion fields. Shotton et al . [66] demonstrated a learning-based method for object

detection using local contour-based features extracted from a single image scale.

Such an approach, however, is inherently restricted to closed contour shapes, which

have an explicit ordering of points.

3.2.2 Shape Matching

Rigid shape matching has been approached in a number of ways with intent

to obtain a discriminative global shape description. Approaches using silhouette

features include Fourier descriptors [67, 68], geometric hashing [69], dynamic pro-

gramming [70, 52], and skeletons derived using Blum’s medial axis transform [71].

Although silhouettes are simple and efficient to compare, they have limits as shape

descriptors because they ignore internal contours and are difficult to extract from

real images [72]. Other approaches, such as chamfer matching [73] and the Haus-

dorff distance [74], treat the shape as a discrete set of points extracted using an
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edge detector. Unlike approaches that compute correspondences, these methods do

not enforce pairing of points between the two sets. While they work well under se-

lected subset of rigid transformations, they cannot be extended to handle non-rigid

transformations. [75, 76] present a general survey on classic rigid shape matching

techniques.

Matching for non-rigid shapes needs to consider unknown transformations that

are both linear (e.g ., translation, rotation, scaling, and shear) and non-linear. One

comprehensive framework for shape matching in this setting is to estimate iteratively

the correspondence and the transformation. The iterative closest point (ICP) algo-

rithm introduced by Besl and McKay [77] and its extensions [78, 79, 80] provide a

simple heuristic approach. Assuming two shapes align roughly, the nearest-neighbor

in the other shape is assigned as the estimated correspondence at each step. This

estimate of the correspondence is then used to refine the estimated affine or piece-

wise-affine mapping, and vice versa. While ICP is fast and guaranteed to converge to

a local minimum, its performance degenerates quickly in the presence of large non-

rigid deformation or a significant amount of outliers [81]. Chui and Rangarajan [82]

developed an iterative optimization algorithm to estimate the correspondences and

the transformation jointly, using thin plate splines as a generic parameterization of

a non-rigid transformation. Joint estimation of correspondences and transformation

leads to highly non-convex optimization, which is solved using the softassign and

deterministic annealing.
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3.2.3 Document Image Retrieval

Rath et al . [83] demonstrated retrieval of handwritten historical manuscripts

by using images of handwritten words to query un-labeled document images. The

system compares word images based on Fourier descriptors computed from a collec-

tion of shape features, including the projection profile and the contours extracted

from the segmented word. Srihari et al . [84] developed a signature matching and

retrieval approach by computing correlation of gradient, structural, and concavity

features extracted from fixed-size image patches. It achieved 76.3% precision us-

ing a collection of 447 manually cropped signature images from the Tobacco-800

database [85, 86]. These approaches are not translation, scale or rotation invariant.

3.3 Multi-scale structural saliency

3.3.1 Theoretical framework

We consider the identification of salient structure and the grouping of its struc-

tural components separately. There are clear motivations for decoupling these two

unknowns, as opposed to solving them jointly. First, we have a broader set of

functions to use as measures of saliency. For object detection, saliency measures

that fit high-level knowledge of the object give more globally consistent results than

jointly optimizing a fixed set of low-level vision constraints. Having identified the

salient structures, the problem of grouping becomes simpler based on constraints

such as proximity and good continuation. Second, we can effectively formulate struc-
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tural saliency across image scales, as opposed to single-scale approaches such as the

saliency network. Multi-scale detection is important for non-rigid objects like signa-

tures, whose contours can be severely broken due to poor ink condition and image

degradations. Last, multi-scale saliency computation generates detection hypotheses

at the natural scale where grouping among a set of connected components becomes

structurally obvious. These provide a unified framework for object detection and

segmentation that produces meaningful representation for object recognition and

retrieval.

From a computational point of view, computing saliency using connected com-

ponents makes the computation tractable and highly parallelizable. Our serial im-

plementation runs in O(N), where N is the total number of edge points. This is

significantly faster than the saliency network approach that has O(k2N2) time com-

plexity. We also explore document context to improve detection. The idea is to

estimate the length and inter-line spacing of text lines and use the information to

locate the bottom or end of a document, where signatures are more likely to appear.

In our evaluation, we show results of signature detection on whole documents, as

well as by exploration of document context.

3.3.2 Signature detection and segmentation

In this section, we describe a structural saliency approach to signature detec-

tion by searching a range of scales S = σ1, σ2, · · ·, σn. We select the initial scale

σ1 based on the resolution of the input image. We define the multi-scale structural
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saliency for a curve Γ as

Φ(Γ) = max
σi∈S

f(Φσi
(Γσi

), σi), (3.1)

where f : R2 → R is a function that normalizes the saliency over its scale, and Γσi
is

the corresponding curve computed at the scale σi. Using multiple scales for detection

relaxes the requirement that the curve Γ be well connected at a specific scale.

Detection at a particular scale σi proceeds in three steps. First, we convolve

the image with a Gaussian kernel Gσi
, re-sample it using the Lanczos filter [87]

at the factor dσi
, and compute its edges using the Canny edge detector [33]. This

effectively computes a coarse representation of the original image in which small

gaps in the curve are bridged by smoothing followed by re-sampling (see Figure 3.1

on page 31). Second, we form connected components on the edge image at the scale

σi, and compute the saliency of each component using the measure presented in

Section 3.4, which characterizes its dynamic curvature. We define the saliency of a

connected component Γk
σi

as the sum of saliency values computed from all its pairs of

edges. Third, we identify the most salient curves and use a grouping strategy based

on proximity and curvilinear constraints to obtain the rest of the signature parts

within their neighborhood. Our joint detection and segmentation approach considers

identifying the most cursive structure and grouping it with neighboring elements in

two steps. By locating the most salient signature component, we effectively focus

our attention on its neighborhood. Subsequently, a complete signature is segmented

from background by grouping salient neighboring structures.
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Figure 3.3: Among the large number of geometric curves passing the two random
end points E1 and E2 on a signature, few are realistic (solid curves). An example
of unrealistic curve is shown in dotted line.

3.4 Measure of saliency for signatures

In this section, we consider the problem of recognizing the structural saliency

of a 2-D off-line signature segment using a signature production model. As shown in

Figure 3.3, among the infinite number of geometric curves that pass two given end

points E1 and E2 on a signature, minimal are realistic. The author’s wrist is highly

constrained in the degrees of freedom while signing the document. Furthermore, a

signature segment rarely fits locally to a high-order polynomial, as shown by the

dotted curve in Figure 3.3.

We propose a signature production model that incorporates two degrees of

freedom in the Cartesian coordinates. We assume that the pen moves in a cycloidal

fashion with reference to a sequence of shifting baselines when signing. The lo-

cal baseline changes as the author’s wrist adjusts its position with respect to the

document. Within a short curve segment, we assume that the baseline remains un-

changed. In addition, the locus of the pen maintains a proportional distance from

the local center point (focus) to the local baseline (directrix ), which imposes an

additional constraint that limits the group of second-order curves to ellipses. A sig-

nature fragment thus can be equivalently viewed as concatenations of small elliptic

43



(a) (b) (c)

Figure 3.4: (a) Curtate cycloid, (b) cycloid, and (c) prolate cycloid curves generated
when the speeds of writing in the horizontal baseline and the vertical direction both
vary sinusoidally.

segments. In a similar spirit, Saint-Marc et al . [88] have used piece-wise quadratic

B-splines to approximate complex-shaped contours for symmetry detection.

Our hypothesis on cycloidal writing is motivated by Hollerbach’s [89] oscil-

lation theory of handwriting, who discovered that embedded oscillations coupled

along the horizontal and vertical directions produce letter forms that closely resem-

ble handwriting samples. In fact, when the signature baseline aligns to the x axis,

velocities in the x and y directions are

vx = a sin(ωxt + φx) + c

vy = b sin(ωyt + φy)

(3.2)

where a and b are horizontal and vertical velocity amplitudes, ωx and ωy are the

horizontal and vertical frequencies, φx and φy are the horizontal and vertical phases,

t is the time variable, and constant c is the average speed of horizontal movement.

Without loss of generality, consider the case of a = b, ωx = ωy and φx − φy = π/2.

We can show that for different values of a and c, the resulting curves are curtate

cycloid, cycloid, and prolate cycloid, as shown in Figure 3.4, respectively.

We model piecewise segments of a signature by a family of second-order curves

that satisfy constraints imposed by the signature production. In addition, we use the
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local gradient directions approximated at the two end points, which can be viewed

as soft constraints on the segment of the curve imposed by the global structure of

the signature instance. In Cartesian coordinates, the family of a quadratic equation

in two variables x and y is always a conic section. Figure 3.5 demonstrates that the

directionst of the gradients at the two edge points greatly limit the inference on local

curve segment to a family of conics, under the second-order signature production

model.

We can formalize this intuition geometrically. For a pair of edge points E1

at (x1, y1) and E2 at (x2, y2), we obtain estimates of their local gradients N1(p1, q1)

and N2(p2, q2) through edge detection. For definiteness, we suppose both E1 and E2

point into the angular section between the tangent lines, as shown in Figure 3.5.

p1(x2 − x1) + q1(y2 − y1) > 0 and (3.3a)

p2(x2 − x1) + q2(y2 − y1) < 0 (3.3b)

The two tangent lines at E1 and E2 are normal to their local gradients and are given

by

t1(x, y) ≡ p1(x− x1) + q1(y − y1) = 0 (3.4)

and

t2(x, y) ≡ p2(x− x2) + q2(y − y2) = 0. (3.5)

The straight line l(x, y) that passes through E1 and E2 can be written as

l(x, y) ≡

∣∣∣∣∣∣∣∣∣∣∣∣

x y 1

x1 y1 1

x2 y2 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.6)
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Figure 3.5: Conic sections inferred by a pair of edge points.

Note that t1(x, y), t2(x, y) and l(x, y) are all first-order linear functions in

x and y. The family of second-order curves bounded within the angular section

between t1(x, y) and t2(x, y) can be expressed as

C(x, y) ≡ l2(x, y)− λt1(x, y)t2(x, y) = 0. (3.7)

In the canonical form, that is

ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, (3.8)

where parameters a, b, c, f , g, h are first-order linear functions in λ, and the

parameter set (x1, y1), (x2, y2), (p1, q1), (p2, q2).

Given a parameter set (x1, y1), (x2, y2), (p1, q1), (p2, q2), which is equiv-

alent to fixing the set of three straight lines t1(x, y), t2(x, y) and l(x, y), we can

theoretically analyze how parameter λ for λ ∈ [0, +∞) affects the curvature of the

bounded quadratic curve defined by (3.7). When λ = 0, Equation (3.7) degener-

ates into the straight line l(x, y), and the total squared curvature of the bounded

segment is strictly zero. When λ monotonically increases from 0 within certain

range (0 < λ < λ0), the curve segment bounded by E1 and E2 exhibits increasingly

more curvature. This happens because the second-order curves governed by (3.7)
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for λ ∈ [0, λ0) are ellipses with monotonically increasing eccentricities. As λ → λ0,

the center of the ellipse recedes to infinity, so that the ellipse tends to a parabola

at λ = λ0. When λ > λ0, the conic of (3.7) becomes a hyperbola. Eventually as

λ → +∞, the hyperbola degenerates into the two intersected straight lines t1(x, y)

and t2(x, y). We prove in Appendix A that λ0 is given by

λ0 =
4[p1(x2 − x1) + q1(y2 − y1)]

(p1q2 − p2q1)
× [p2(x1 − x2) + q2(y1 − y2)]

(p1q2 − p2q1)
. (3.9)

Equation (3.9) provides a theoretical second-order upper bound of the dynamic

curvature, given the parameter set (x1, y1), (x2, y2), (p1, q1), (p2, q2) that fits the

signature production model. We use λ0 as the saliency value Λσi
(Ei, Ej) for a pair of

points at scale σi. When a = |OE1| = |OE2|, it is straightforward to show that the

right hand side of (3.9) is 4a2. This result allows us to normalize saliency over scale,

whereas the scale interpretation of most published saliency measures surveyed in

[65] are largely unclear. Obviously, our saliency measure is translation and rotation

invariant as it only uses local gradient directions.

The saliency of a curve Γk
σi

at scale σi is defined as the sum of saliency values

computed from all pairs of points on it and is written as

Φσi
(Γk

σi
) =

∑
Ei,Ej∈Γk

σi

Λσi
(Ei, Ej). (3.10)

It measures the likelihood of elliptic segment fitting given a set of 2-D points, and

the computation does not require the temporal order among points.

The analysis so far applies only to the continuous case. To account for the

discretization effect, we impose two additional conditions. First, the absolute values

of the two functions on the left hand side of Equation (3.3a-b) must be strictly larger
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than ε. Second, the denominator term in (3.9) must be strictly large than ε. In our

experiments, we use ε = 0.1. For robustness, we weight the saliency contribution by

the gradient magnitude of the weaker edge.

Separating saliency detection from grouping significantly reduces the level of

complexity. Let the total number of edge points be N and the average length of

connected components be Lc. Saliency computation for each component in Equation

(3.10) requires O(L2
c) time on average. Therefore, the overall computation is of

order (N/Lc)× L2
c = NLc. Since Lc is effectively upper bounded by prior estimate

of signature dimensions and the range of searched scales n is limited, they can be

considered as constants. The complexity in saliency computation is linear in N .

Gaussian smoothing and connected component analysis both require O(N) time.

The total complexity in the signature detection algorithm is therefore O(N).

3.5 Matching and Retrieval

3.5.1 Measures of Shape Dissimilarity

Before we introduce two new measures of dissimilarity for general shape match-

ing and retrieval, we first discuss existing shape distance metrics. Each of these

dissimilarity measures captures certain shape information for effective discrimina-

tion. In the next sub-section, we describe how to combine these individual measures

effectively with limited supervised training, and present our evaluation framework.

Several measures of shape dissimilarity have demonstrated success in object

recognition and retrieval, including the thin-plate spline bending energy Dbe and
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the shape context distance Dsc. As a conventional tool for interpolating coordinate

mappings from R2 to R2 based on point constraints, the thin-plate spline (TPS)

is commonly used as a representation of non-rigid transformation [90]. The TPS

interpolant f(x, y) minimizes the bending energy

∫ ∫
R2

[
(
∂2f

∂x2
)2 + 2(

∂2f

∂x∂y
)2 + (

∂2f

∂y2
)2

]
dx dy (3.11)

over the class of functions that satisfy the given point constraints. Equation (3.11)

imposes smoothness constraints to discourage non-rigidities that are too arbitrary.

The bending energy Dbe [82] measures the amount of non-linear deformation to

warp the shapes into alignment and provides physical interpretation. However, Dbe

measures only the deformation beyond an affine transformation, and its functional

in (3.11) is zero if the undergoing transformation is purely affine.

The shape context distance Dsc between a template shape T composed of m

points and a deformed shape D of n points is defined in [55] as

Dsc(T ,D) =
1

m

∑
t∈T

arg min
d∈D

C(T (t), d) +
1

n

∑
d∈D

arg min
t∈T

C(T (t), d), (3.12)

where T (.) denotes the estimated TPS transformation and C(., .) is the cost func-

tion for assigning correspondence between any two points. Given two points, t in

shape T and d in shape D, with associated shape contexts ht(k) and hd(k), for

k = 1, 2, . . . , K, respectively, C(t, d) is defined by χ2 statistic as

C(t, d) ≡ 1

2

K∑
k=1

[ht(k)− hd(k)]2

ht(k) + hd(k)
. (3.13)

We introduce a new measure of dissimilarity Das that characterizes the amount

of anisotropic scaling between shapes. Anisotropic scaling is a form of affine trans-
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Anisotropic scaling and registration quality effectively capture shape
differences. (a) Signature regions without segmentation. The first two signatures
are from the same person, whereas the third is from someone else. (b) Detected and
segmented signatures by our approach. Second row: matching results of first two
signatures using (c) shape contexts and (d) local neighborhood graph, respectively.
Last row: matching results of first and third signatures using (e) shape contexts
and (f) local neighborhood graph, respectively. Corresponding points identified by
shape matching are linked and unmatched points are shown in green. The computed
affine maps are shown in the figure legends.

formation that involves change to the relative directional scaling. As shown in

Figure 3.6, the stretching or squeezing of the scaling in the computed affine map

effectively captures global mismatch in shape dimensions among registered points,

even in the presence of large intra-class variation.

We compute the anisotropic scaling between two shapes by estimating the

ratio of the two scaling factors Sx and Sy in the x and y directions, respectively.

A TPS transformation can decompose into a linear part corresponding to a global
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affine alignment, together with the superposition of independent, affine-free defor-

mations (or principal warps) of progressively smaller scales [90]. We ignore the

non-affine terms in the TPS interpolant when estimating Sx and Sy. The 2-D affine

transformation is represented as a 2× 2 linear transformation matrix A and a 2× 1

translation vector T  u

v

 = A

 x

y

+ T, (3.14)

where we can compute Sx and Sy by singular value decomposition on matrix A.

We define Das as

Das = log
max (Sx, Sy)

min (Sx, Sy)
. (3.15)

Note that we have Das = 0 when merely isotropic scaling is involved (i.e., Sx = Sy).

We propose another distance measure Dre based on the registration residual

errors under the estimated non-rigid transformation. To minimize the effect of

outliers, we compute the registration residual error from the subset of points that

has been assigned correspondence during matching, and ignore points matched to

the dummy point nil. Let function M : Z+ → Z+ define the matching between two

point sets of size n representing the template shape T and the deformed shape D.

Suppose ti and dM(i) for i = 1, 2, . . . , n denote pairs of matched points in shape T

and shape D, respectively. We define Dre as

Dre =

∑
i:M(i) 6=nil ||T (ti)− dM(i)||∑

i:M(i) 6=nil 1
, (3.16)

where T (.) is the estimated TPS transformation and ||.|| is the Euclidean norm.
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3.5.2 Shape Distance

After matching, we compute the overall shape distance for retrieval as the

weighted sum of individual distances given by all the measures: shape context dis-

tance, TPS bending energy, anisotropic scaling, and registration residual errors.

D = wscDsc + wbeDbe + wasDas + wreDre. (3.17)

The weights in (3.17) are optimized by LDA, using only a small amount of training

data.

The retrieval performance of a single query instance may depend largely on the

instance used for the query [91]. In practice, it is often possible to obtain multiple

signature samples from the same person. So, we can use them as an equivalence

class to achieve better retrieval performance. When multiple instances q1, q2, . . . , qk

from the same class Q are used as queries, we combine their individual distances

D1, D2, . . . , Dk into one shape distance as

D = min(D1, D2, . . . , Dk). (3.18)

3.5.3 Evaluation Methodology

We use two commonly cited measures, average precision and R-precision, to

evaluate the performance of each ranked retrieval. First, we make precise the intu-

itions of these evaluation metrics, which emphasize the retrieval ranking differently.

Given a ranked list of documents returned in response to a query, average precision

(AP) is defined as the average of the precisions at each relevant hit. It rewards re-

trieval systems that rank relevant documents higher and at the same time penalizes
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Figure 3.7: A signature query example. Among the total of nine relevant signatures,
eight appear in the top nine of the returned ranked list, giving average precision
of 96.0%, and R-precision of 88.9%. The irrelevant signature is highlighted with
a bounding box. Left: signature regions in the document. Right: detected and
segmented signatures used in retrieval.

those that rank irrelevant ones higher. AP effectively combines the precision, recall,

and relevance ranking, and is considered a stable and discriminating measure of the

quality of retrieval engines [91]. R-precision (RP) for a query i is the precision at

the rank R(i), where R(i) is the number of documents relevant to query i. It de-

emphasizes the exact ranking among the retrieved relevant documents and is more

useful given a large number of relevant documents.

Figure 3.7 shows a query example, in which eight of the nine total relevant

signatures are among the top nine and one relevant signature is ranked 12. For this

query, AP = (1+1+1+1+1+1+1+8/9+9/12)/9 = 96.0%, and RP = 8/9 = 88.9%.

53



Figure 3.8: Examples from the Tobacco-800 database [85, 86] (left) and the Mary-
land Arabic database [11] (right).

3.6 Experiments

3.6.1 Datasets

To evaluate detection and matching in signature-based document image re-

trieval, we used two large collections of real world documents—the Tobacco-800

database [86] and the University of Maryland Arabic database [11]. Tobacco-800 is

a public subset of the complex document image processing (CDIP) collection [85]

and has been used in TREC 2006 and 2007 evaluations. It was constructed from

42 million pages of English documents (in 7 million multi-page TIFF images) re-

leased by tobacco companies, and was originally hosted at UCSF [92]. Tobacco-800

is a realistic dataset for document analysis and retrieval as these documents were

collected and scanned using a wide variety of equipments over time. The Mary-

land Arabic dataset consists of 166, 071 Arabic handwritten business documents.
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Table 3.1: Summary of the English and Arabic evaluation datasets.

Tobacco-800 Maryland Arabic

Document Types Printed/handwritten Mostly handwritten

Total Pages 1290 169

Resolution (in DPI) 150–300 200

Labeled Signatures 900 149

Number of Signers 66 21

Figure 3.8 shows some examples from the two datasets.

We tested our approach using all the 66 and 21 signature classes in Tobacco-

800 and Maryland Arabic datasets, respectively, among which the number of sig-

natures per person varies from 6 to 11. The overall performance across all queries

is computed quantitatively in mean average precision (MAP) and mean R-precision

(MRP), respectively.

3.6.2 Multi-scale Signature Detection

We organize our experiments on signature detection as follows. First, we

use the detection probability PD and the false-alarm probability PF as evaluation

metrics. PD and PF represent the two degrees of freedom in a binary hypothesis

test, and they do not involve a priori probabilities of the hypothesis. To factor in

the “quality” of detection, we consider a signature correctly detected and complete

if the detected region overlaps with more than 75% of the labeled signature region.

We declare a false alarm if the detected region does not overlap with more than

25% of any labeled signature. Since the number of signatures varies significantly
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Figure 3.9: Signature detection ROC curves for the Tobacco-800 database (left) and
the Maryland Arabic database (right).

across the documents in practice, we assume no prior knowledge on the distribution

of signatures per document.

Figure 3.9 shows the receiver operating characteristic (ROC) curves for the

Tobacco-800 and Maryland Arabic datasets. A Fisher classifier using size, aspect

ratio, and spatial density features serves as a baseline for comparison, with all other

procedures remaining the same in the experiment. We use two scale levels in multi-

scale detection experiments. Parameters involved in obtaining the ROC curves,

including the detection threshold in saliency and estimates of signature dimensions,

are tuned on 10 documents. We use the following approach to compute each op-

erating point on an ROC curve, and sort the list of detected candidates from the

entire test set by their saliencies. To plot a new point, we move down the ranked

list by one and look at the portion of the ranked list from the top to the current

rank, which is equivalent to lowering the decision threshold gradually. The entire

sets of ROC curves computed using this scheme, as shown in Figure 3.9, are densely

packed and include every operating point.
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Figure 3.10: Examples of detected signatures from the Tobacco-800 database, to-
gether with their saliency maps. The top three most salient parts are shown in red,
green, and blue, respectively.

The multi-scale saliency approach obtains the best overall detection perfor-

mance on both English and Arabic datasets. Using document context, our multi-

scale signature detector achieves 92.8% and 86.6% detection rates for the Tobacco-

800 and Maryland Arabic datasets, at 0.3 false-positives per image (FPPI). Explor-

ing context is more effective on machine printed documents, given the uniformity

of geometric relationships among text lines. The operating point of 0.1 FPPI offers

an example. Context alone gives an average increase of 13.6% in detection accuracy

on Tobacco-800, compared to only 5.1% on the Maryland Arabic database. The

improvements by using multi-scale are 5.8% and 4.0% on the Tobacco-800 and the

Maryland Arabic datasets, respectively. This demonstrates the advantage of multi-

scale approach on datasets that capture more diversity, such as the Tobacco-800

database.

Second, we test our saliency measure’s ability to discriminate signatures from

other handwriting. The handwritten Maryland Arabic dataset serves better, be-

cause local features become clearly less discriminative as evident from the poor

performance of the Fisher classifier.
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Figure 3.11: Examples of detected signatures from the Maryland Arabic database,
together with their saliency maps. The top three most salient parts are shown in
red, green, and blue, respectively.

Figures 3.10 and 3.11 show samples of detected signatures from Tobacco-800

and Maryland Arabic datasets, with their saliency maps. We delineate the top three

most salient parts in red, green, and blue, respectively. In our experiment, a cursive

structure is normally more than an order of magnitude more salient than printed text

of the same dimensions. However, we did find rare instances of printed text among

false positives as shown in Figure 3.12(a), with comparable saliencies to signatures

because of their highly cursive font styles. A limitation of our proposed method

derives from when the detected and segmented signature contain a few touching

printed characters.

For better interpretation of the overall detection performance, we summarize

key evaluation results. On Tobacco-800, 848 signatures of 900 labeled signatures

are detected by the multi-scale saliency approach using document context. Among

detected signatures, 83.3% are complete. The mean percentage area overlap with

the groundtruth is 86.8%, with a standard deviation of 11.5%. As shown in Fig-

ures 3.10 and 3.11, using connected components for detection gives structurally and

perceptually meaningful output quality. Furthermore, it does not necessarily limit
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(a)

(b)

Figure 3.12: Examples of (a) false alarms and (b) missed signatures from the
Tobacco-800 database.

the detection probability when used in a multi-scale framework. In fact, these fig-

ures approximate the word segmentation performance for machine printed text of a

leading commercial OCR product [93] on Tobacco-800 documents. The results on

the Maryland Arabic dataset are also encouraging, as the collection consists mainly

of unconstrained handwriting in complex layouts and backgrounds. In addition, we

have conducted field tests of using an ARDA-sponsored dataset composed of 32,706

document pages in 9,630 multi-page images. Among the top 1,000 detections, 880

are real signatures.

3.6.3 Discussion on Signature Detection

On the saliency maps, an edge detector generates two parallel contour lines

from a stroke as both are local maxima in gradient magnitude. A ridge detector can

generate more compact segmentation output since it produces only one thin curve

in response. However, a ridge detector [94] performs significantly worse in signature

detection in our experiments. The Canny edge detector provides good localization

that guarantees accurate estimation of local gradient directions, and performs more

robustly under structural variations.
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Examples of false positives from the Tobacco-800 database are shown in Fig-

ure 3.12(a), which include handwriting. The classification between signature and

handwriting is sometimes not well posed by studying shape alone. Highly cursive

handwriting may not have any obvious visual differences from signatures, as shown

in Figure 3.12(a). Using geometric information cannot effectively resolve such in-

tricacies in real documents because these handwritings are primarily annotations

created in an ad hoc manner. Semantics and content layer information is required

to solve the ambiguity in this case.

Figure 3.12(b) gives examples of false negatives. These missed signatures are

severely broken, and a step edge operator like Canny could not detect contours,

even on a coarse scale. As shown on most signatures, however, using multiple scales

for detection partially overcomes the limitations of a connected-components-based

approach by relaxing the requirement that the contour fragment be well connected

at a particular scale. This improvement is more evident on the Tobacco-800 dataset,

which contains a considerable number of highly degraded images at low resolutions.

3.6.4 Signature Matching for Document Image Retrieval

3.6.4.1 Shape Representation

We compare shape representations computed using different segmentation

strategies in the context of document image retrieval. In particular, we consider

skeleton and contour, which are widely used mid-level features in computer vision

and can be extracted with relative robustness.
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Figure 3.13: Skeletons and contours computed from signatures. The first column
are labeled signature regions in the groundtruth. The second column are signature
layers extracted from labeled signature regions by the baseline approach [95]. The
third and fourth columns are skeletons computed by Dyer and Rosenfeld [96] and
Zhang and Suen [97], respectively. The last column are salient contours of actual
detected and segmented signatures from documents by our approach.

For comparison, we developed a baseline signature segmentation approach

by removing machine printed text and noise from labeled signature regions in the

groundtruth using a Fisher classifier [95]. To improve classification, the baseline

approach models the local contexts among printed text using Markov Random Field

(MRF). We implemented two classical algorithms—one by Dyer and Rosenfeld [96]

and the other by Zhang and Suen [97], which compute skeletons from the signature

layer extracted by the baseline approach. Figure 3.13 shows layer subtraction and

skeleton extraction results by the baseline, as compared to the salient contours of

detected and segmented signatures from documents.

In this experiment, we sample 200 points along the extracted skeleton and

salient contour representations of each signature. We use the faster shape context

matching algorithm to solve for correspondences between points on the two shapes

and compute all the four shape distances using Dsc, Dbe, Das, and Dre. To remove

any bias in all retrieval experiments, each query signature is removed from the test

set in that query.
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Figure 3.14: Document image retrieval performances using different shape represen-
tations on the two datasets measured by mean average precision (MAP) and mean
R-precision (MRP).

Document image retrieval performance using different shape representations is

shown in Figure 3.14. Salient contours computed by our detection and segmentation

approach outperform the skeletons that are extracted directly from labeled signa-

ture regions on both datasets. As illustrated by the third and fourth columns in

Figure 3.13, thinning algorithms are sensitive to structural variations among neigh-

boring strokes and noise. In contrast, salient contours provide a globally consistent

representation by weighting the more structurally important shape features. This

advantage in retrieval performance shows clearly on the Maryland Arabic dataset,

in which signatures and background handwriting are closely spaced.

3.6.4.2 Shape Matching Algorithms

We developed signature matching approaches using two non-rigid shape match-

ing algorithms—shape contexts and local neighborhood graph, and evaluated their

retrieval performances on salient contours. We use all four measures of dissimilarity
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Figure 3.15: Document image retrieval using single signature instance as query using
shape contexts [55] (left) and local neighborhood graph [56] (right). The weights
for different shape distances computed by the four measures of dissimilarity can be
optimized by LDA using a small amount of training data.

Dsc, Dbe, Das, and Dre in this experiment. The weights of different shape distances

are optimized by linear discriminant analysis, using randomly selected subset of sig-

nature samples as training data. Figure 3.15 shows retrieval performances measured

in MAP for both methods as the size of training set varies. A special case in Fig-

ure 3.15 occurs when no training data is used. In this case, we simply normalize

each shape distance by the standard deviation computed from all instances in that

query, effectively weighting every shape distance equally.

A significant increase in retrieval performance is observed with a fairly small

amount of training data. Both shape matching methods are effective with no sig-

nificant difference. In addition, the performances of both methods measured in

MAP deviates less than 2.55% and 1.83%, respectively, when different training sets

are randomly selected. These demonstrate the generalization performance of rep-

resenting signatures by non-rigid shapes and counteracting large variations among

unconstrained handwriting through geometrically invariant matching.
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Table 3.2: Retrieval performance using different measure of shape dissimilarity on
the Tobacco-800 database.

Measure of Dissimilarity MAP MRP

Dsc 66.9% 62.8%

Das 61.3% 57.0%

Dbe 59.8% 55.6%

Dre 52.5% 48.3%

Dsc + Dbe 78.7% 74.3%

Dsc + Das + Dbe + Dre 90.5% 86.8%

3.6.4.3 Measures of Shape Dissimilarity

Table 3.2 summarizes the retrieval performance using different measures of

shape dissimilarity on the larger Tobacco-800 database. The results are based on the

shape context matching algorithm, as it demonstrates smaller performance deviation

in previous experiment. We randomly select 20% of signature instances as training

data and use the rest for test.

The most powerful single measure of dissimilarity for signature retrieval is the

shape context distance (Dsc), followed by the affine transformation based measure

(Das), the TPS bending energy (Dbe), and the registration residual error (Dre). By

incorporating rich global shape information, shape contexts can discriminate even

under large variations. Moreover, the experiment shows that measures based on

transformations (affine for linear and TPS for non-linear transformation) are also

effective. The two proposed measures of shape dissimilarity Dsc and Dbe improve

the retrieval performance considerably, increasing MAP from 78.7% to 90.5%. This

demonstrates that we can significantly improve the retrieval quality by combining
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Table 3.3: Retrieval performance using multiple signature instances on the Tobacco-
800 database.

Measure of Dissimilarity MAP MRP

One 90.5% 86.8%

Two 92.6% 88.2%

Three 93.2% 89.5%

effective complementary measures of shape dissimilarity through limited supervised

training.

3.6.4.4 Multiple Instances as Query

Table 3.3 summarizes the retrieval performances using multiple signature in-

stances as an equivalent class in each query on the Tobacco-800 database. The

queries consist of all the combinations of multiple signature instances from the same

person, giving even larger query sets. In each query, we generate a single ranked list

of retrieved document images using the final shape distance between each equivalent

class of query signatures and each searched instance defined in Equation (3.17). As

shown in Table 3.3, using multiple instances steadily improves the performance in

terms of both MAP and MRP. The best results on Tobacco-800 is 93.2% MAP and

89.5% MRP, when three instances are used for each query.

3.6.5 Off-line Signature Verification

We quantitatively compare our signature matching approach with several

state-of–the-art off-line signature verification approaches [44, 40, 48] on the Sabourin
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Figure 3.16: Our approach robustly discriminates genuine signatures (red cross)
from forgeries (blue dots) across all signature classes in the Sabourin signature
verification database [44].

off-line signature database [44], which has been used in [98, 99, 44, 40]. This database

of 800 signature images contains genuine and random forged signatures of 20 classes,

with 40 signatures per class. Historically, results on the Sabourin signature database

are reported in terms of false rejection rate (FRR) of genuine signatures, and false

acceptance rate (FAR) of forged signatures, with parameters trained to minimize

total errors. We follow the same evaluation protocol as in [44, 40], where the first

20 signatures in each class are used for training and the remaining 20 signatures for

test.

Our approach exceeded the state-of-the-art performance on off-line signature

verification on the Sabourin database without any explicit assumption of local fea-

tures, such as granulometric size distributions in [44] and sets of stroke-level features
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Table 3.4: Signature verification results on the Sabourin off-line signature
database [44].

Approach FRR FAR

Sabourin et al . [44] 1.64% 0.10%

Guo et al . [40] 1.66% 1.10%

Shanker and Rajagopalan [48] 8.75% 3.26%

Our approach 0.50% 0.21%

in [40]. The 0.50% FRR and 0.21% FAR is the best published off-line signature veri-

fication result on this database using the standard experimental protocol. As shown

in Figure 3.16, our approach effectively separates genuine signatures and forgeries

across all the 20 signature classes. The performance of [44] in Table 3.4 occurs

by combining four classifiers using multiple classification schemes. The best sin-

gle classifier reported in [44] gives 1.55% FRR and 0.15% FAR at 25 iterations.

This experiment also demonstrates the significant difference in performance be-

tween our approach and [48], which employs an improved dynamic time warping

algorithm on 1-D projection profile. Projection profile feature provides a limited

ability to discriminate shape and has demonstrated sensitivity to changes in the

baseline direction. Heuristic alignment, such as finding the orientation which gives

the minimum length horizontal projection [48], is not robust under large structural

variations in off-line signatures. Treating signatures in the unconstrained setting of

a 2-D deformable shape, our approach is more robust to large intra-class variations

and provides better generalization performance.
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3.7 Summary

In this chapter, we proposed a novel signature detection and segmentation

approach based on the view that object detection can be a process that aims to

capture the characteristic structural saliency of the object across image scales. This

differs from the common object detection framework that focuses on sets of local

properties. The results on signature detection using multi-language document image

collections show that our approach is effective in the presence of large variations

and clustered backgrounds. In one advantage of using multi-scale saliency for joint

detection and segmentation, it provides a general framework for which detection

and segmentation degrades gracefully as the problem becomes more challenging. In

addition, detected and segmented outputs are both structurally and perceptually

meaningful for matching and recognition.

To handle large structural variations robustly, we treated the signature in the

general setting of a non-rigid shape and demonstrated document image retrieval

using state-of-the-art shape representations, measures of shape dissimilarity, shape

matching algorithms, and multiple instances as query. We quantitatively evaluated

these techniques in challenging retrieval tests, each composed of a large number

of classes but a relatively small numbers of signature instances per class. We also

demonstrated our matching techniques in off-line signature verification and achieved

competitive results.
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Chapter 4

Learning Document Context

4.1 Introduction

Obtaining structured information from unstructured image sources presents a

grand document analysis challenge. In a wide range of applications requiring such

capability, traditional language modeling techniques does not produce satisfactory

results on the stream of OCR text, despite the character recognition performance

on quality machine printed documents has improved steadily [100, 3].

Processing of receipts offers a classic example, where the unstructured nature

of the document images present critical challenges in several aspects. First, text

on receipt documents consists predominantly of terse streams of nouns. The lack

of linguistic context, such as punctuation and language constructs, makes both

syntactic and semantic analysis diffcult. Second, the output text from OCR systems

does not contain useful page layout information, such as spatial block region and

font type, which is readily available in the source image. Third, the text often

contains high error rates (typically more than 6% at the character level) because

receipts are often generated by low-resolution printers (e.g. dot matrix printers) and

are kept in less than ideal physical conditions. These source image degradations are

challenging to recover and have significant impact on the performance of character

recognition and downstream tasks.
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We present a model-based approach for extracting relevant named entities

from unstructured document images, which enables learning of inference rules col-

lectively based on contextual information from both page layout features in the im-

age space and OCR text. We demonstrate the named entity extraction approach in

an automated expense reimbursement system [9], which consists of (1) an electronic

submission infrastructure that provides multi-channel image capture, transport, and

storage of documents; (2) an document image analysis engine that extracts relevant

named entities from unstructured document images; and (3) automation of auditing

procedures.

Our contributions in this work include (1) a model-based approach to solving

the named entity extraction and question answering aspects of the problem jointly;

(2) a formal framework for efficient probabilistic inference by learning contextual

dependencies using both page layout and text features; and (3) a demonstration of

the effectiveness of integrating rich feature sets available in the image space, when

OCR text reveals limited structural information.

The remainder of this chapter is organized as follows: The next section pro-

vides background information on the emerging application of automated expense

reimbursement. Section 4.3 presents an overview of the system architecture and

components. Section 4.4 describes our approach to extracting relevant named enti-

ties from diverse, unstructured document images. Section 4.5 discusses experimental

results on collections of real-world receipts. We review related work in Section 4.6,

and conclude in Section 4.7.
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Figure 4.1: System architecture of our automated expense reimbursement system.

4.2 Motivations and Background

Expense reimbursement is a time consuming and labor intensive process for

organizations of all sizes. Even though policies and regulations defining the process

vary across organizations and industries, corporate expense reimbursement faces

a set of common challenges. The solution requires technical innovations in the

following three key areas.

(1) A generalized paper-free framework for capturing, transporting, and storing

paper documents in digital image form

In spite of progress made with electronic tools, paper consumption in the office

is growing, and paper continues to inhibit business process innovation. Expense re-

porting provides an example where paper receipts continue to generate unnecessary

costs and delays even though the organization has access to web-based applications.

The problem arises from the requirements to hold receipts to prove the validity

of submitted reimbursement claims. Currently, without any pervasive mechanism
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for electronic submission, paper receipts are mailed for centralized processing, with

printed cover sheets. To protect against the risk of loss in the mail, the package is

often copied, which still creates more paper. Even worse than handling the expand-

ing amount of paper, time to reimbursement remains at the speed of mailed package

and manual processing rather than at the speed of electronic transaction.

A fast technology shift in the printing industry from analog copiers to consol-

idated high-resolution digital multi-function devices (MFDs) enables us to close the

paper-digital gap by using these image capturing and transporting channels. In our

system, submission of paper paper receipts requires a few easy steps: walking to

the office MFD, authenticating yourself with your intranet password, selecting the

appropriate menu option on the touch screen, and hitting the “big green button” to

scan, and submitting receipts singly.

(2) Extraction of relevant named entities from diverse receipt images with un-

constrained layouts and formatting

It is important to distinguish between the standard named entity recognition

(NER) problem [101, 102, 103] and the one present in this situation. In our task, the

query to the relevant named entity in each category equals a question. We look to

find the unique answer that best answers the question using the presented context.

For instance, given a receipt document, we can ask for the name of the merchant. If

more than one merchant entity exists, the system needs to resolve such ambiguity

and return most relevant answer using all available cues collectively.

Effective solution to both the entity extraction and question answering (QA)

requires integrating interdependent mixture of features from page layout and lan-
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guage content. This is a research area has relatively little work in the literature.

In addition, we prefer a formal model-based approach that can be trained on new

data.

(3) Automation of auditing procedures that enables an organization to perform

expense validation with minimum human interaction

Many organizations have a limited ability to audit volumes of expense re-

ports, as it requires dedicated auditors to examine incoming receipts manually and

judge their accuracy from the associated report. This labor-intensive approach often

causes an organization to downgrade their internal requirements for the percentage

of submissions audited. For some organizations with have a high percentage of em-

ployees requiring travel, controlling costs in expense processing generally requires a

lower rate of oversight than would be desired.

4.3 System Overview

In this following sub-sections, we give an overview of the expense reimburse-

ment system and describe each component in its client-server architecture, as shown

in Figure 4.1. The system’s client may be any computer, multi-function device

(MFD), fax machine, or other electronic device, which has built-in capability to

transmit native image files. The application server running an IBM Intelligent Doc-

ument Gateway (IDG) server directly interacts with the centralized document image

repository, the named entity extraction engine (EntityFinder), the dynamic business

rule engine server, and back-end business processes.
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4.3.1 Electronic Submission

Our system provides multi-channel image capture, transport, and storage of

paper documents. On the client side, users have several options to submit paper

receipts or scanned receipt images securely to the document server:

1. Multi-function devices (MFDs): The touch screen displays a customized user

interface for directions of how to scan and submit paper receipts, once the user

successfully authenticate by providing passwords.

2. Web-based client: The user uploads document image files directly from their

computer to the server through a light-weight client. This web-based appli-

cation allows the user to provide additional information associated with the

submitted receipt document, including its language set and personal remain-

der.

3. Desktop print-job: This option allows the user to submit receipt documents

in native image format through their computer’s printer queue.

The meta-data transmitted along with a submitted image file includes the type

of the document and an identifier that links the submitted receipt document to the

corresponding expense claim. The receipt image and its associated meta-data are

encrypted prior to transmission to the document gateway server via the corporate

or pubic networks.
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Figure 4.2: Architecture of the document image analysis module – EntityFinder.

4.3.2 Named Entity Extraction

The capability to extract relevant named entities from documents is integrated

into a document image analysis module called EntityFinder, as shown in Figure 4.2.

At the lower level, EntityFinder handles images at their native formats (e.g. multi-

page TIFF images) and provides support for higher-level functions, including docu-

ment layout analysis and feature extraction, through interfaces with the OCR engine

libraries. We present our approach to relevant named entity extraction in Section

4.4.

4.3.3 Automated Auditing

Extracting relevant named entities from unstructured document images opens

many possibilities for business process automation. Our system uses a business

rules engine to analyze the extracted data for relevancy within the context of au-

tomated expense auditing, and it activates actions based on the result of the rule

execution. The set of business rules are defined in XML and are dynamically con-
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figurable in the live system. The auditing actions include verification of extracted

entities from receipts with reference to their corresponding entries in the expense

reimbursement claim, flagging instances of potential fraud, adherence to prescribed

organizational policies (e.g ., meal limit). Automation of these routine procedures

enables a significantly higher rate of auditing and a much shorter processing time

between submission and compensation, bringing tangible productivity gain and cost

savings to the organization.

4.3.4 Document Archival

Once all business rules for automated auditing have been executed and the

resulting external business processes have been initiated, the set of extracted named

entities, along with the source document, are stored in centralized repositories. The

task aims to conform to business and legal requirements for document retention,

for future data analysis needs of the organization, and for auditing control purpose.

Document archival is governed by a configuration file associated with the document

process. This includes the type of repository adapter to use, a link to the server,

associated authentication data, and the descriptive information, including table and

column information for database access. The design allows multiple repositories as

required by a given process, and can be flexibly adapted to organization-specific

archival requirements.
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4.4 Extraction of Relevant Named Entities

4.4.1 Task

We consider the task of extracting transaction-related named entities (NEs)

from receipt documents. Different levels of complexities are involved in extracting

NEs of diverse natures. The limited variation in NEs like transaction amount, date,

credit card number, and merchant phone number can be handled effectively using

regular expressions, in combination with rules. In this chapter, we focus on the

task of finding the set of NEs with arbitrarily large variation (e.g ., the merchant)

and present an approach to extracting these challenging NEs by exploiting context

collectively from the page layout in the source image and its OCR text.

The application imposes three major requirements:

1. Handle document images effectively, given unconstrained layouts and format-

ting, since the system must be able to process all kinds of receipts.

2. Provide the most likely answer to each NE as inferred collectively from the

document’s context.

3. Should not rely on large external dictionaries, as it is not economical to create

and maintain such dictionaries. Furthermore, NEs on receipts commonly ap-

pear in various abbreviated forms that are difficult to enumerate. In fact, even

with this constraint lifted, the NE extraction task is not trivial, but presents

a different set of problems. The challenges involved in improving NER perfor-

mance using external dictionaries are discussed in [104].
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4.4.2 Our Approach

The structural information derived collectively from page layout and language

features is important to the NER task on unstructured documents like receipts,

where OCR text stream may not be sufficient. Figure 4.3 shows a receipt from a

Union 76 gas station. The string “76” itself is most likely to be a number when

it appears without context. However, people can determine that its reference to a

merchant by examining the document layout and linguistic elements collectively.

A receipt document with unconstrained page layout and formatting still con-

veys structural information in two aspects:

• Many semantically related entities are placed geometrically within spatial

proximities, even if their structure within the region does not seem obvious.

• The sequence of decomposed regions and the combination of layout and lin-

guistic features within the regions reveals important contextual information.

Our approach to extracting relevant NEs involves (1) decomposing the docu-

ment image spatially into regions by page segmentation; and (2) learning the infer-

ence rules collectively in a discriminative conditional framework using the contextual

information from page layout and text features.

4.4.2.1 Page Segmentation

Two page segmentation strategies can be employed to divide a general doc-

ument image into homogeneous regions. In one strategy, a page segmentation al-

gorithm is used. Representative page segmentation approaches from the document
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Figure 4.3: Page and word segmentation results of a receipt image.

image analysis community include the Docstrum algorithm by O’Gorman [105] and

the Voronoi diagram-based algorithm by Kise et al. [106]. Another approach uses

the OCR engine through low-level function calls. Figure 4.4 shows the page seg-

mentation results by the Docstrum algorithm1 and the OCR engine, respectively.

Each segmented region is plotted using a red bounding box. For better visualization

of content within each segmented region, we show the word segmentation results in

the right sub-figure of Figure 4.4 using blue bounding boxes.

Using the OCR engine to segment a document page directly has a few practical

advantages, as opposed to a stand-alone algorithm. First, it makes region-level at-

tributes easily accessible. Most leading commercial OCR packages offer region-level

classification capabilities on machine-printed documents, which allow regions con-

1Docstrum is a bottom-up page segmentation algorithm that can work on document images

with non-Manhattan layout and arbitrary skew angles. It has limited capability to handle non-

text regions and text zones with irregular font sizes and spacing, and it tends to fragment them.
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Figure 4.4: Page segmentation results by the Docstrum algorithm [105] (left) and
by the OCR engine [93] (right).

taining text, tables, and graphics to be identified and processed accordingly. Second,

it facilitates feature extraction from the segmented regions, including character-level

attributes such as the coordinates of character borders on the image grid, font in-

formation, and recognition confidence. Last, using OCR for page segmentation

removes the tedious step of training the free parameters involved in a stand-alone

algorithm. Packaged OCR products provide a convenient black-box solution, in

which the engine parameters have been tuned for performance over large collections

of documents. At the post-processing stage, the OCR engine can use preliminary

recognition results to improve page segmentation in an iterative fashion. Additional

information, including consistency in the font style and spatial alignment of seg-

mented regions, helps improve overall page segmentation performance, and tends

to produce more structurally meaningful results, even for a highly degraded input
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image. Past empirical studies [107] also observe this, where representative page

segmentation algorithms are evaluated against built-in page segmentation functions

provided by several OCR products.

4.4.2.2 Learning From Document Context

We use conditional random fields (CRFs) as the framework for learning infer-

ence rules based on features at multiple levels of granularity and multiple modali-

ties. Clear motivations exist for using a discriminative model, such as CRFs. First,

CRFs relax the strict conditional independence assumptions of observations in gen-

erative models like hidden Markov models (HMMs) for ensuring tractable infer-

ence [108]. This allows CRFs more flexibility to integrate complex, overlapping

and non-independent feature sets that operate at multiple levels of granularity and

multiple modalities. Second, modeling of conditional probabilities devotes model re-

sources directly to the relevant task of label inference. It generally requires fewer la-

beled observation sequences, which leads to better generalization performance given

limited training data. In addition, CRFs avoid the label bias problem exhibited

by maximum entropy Markov models (MEMMs) and other discriminative Markov

models based on directed graphical models [109]. A few studies have shown that

CRFs outperform both MEMMs and HMMs on a number of real-world language

related sequence labeling tasks [109, 110, 111, 112].
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4.4.3 Feature Selection

4.4.3.1 Practical Constrains

Optical character recognition on machine-printed characters has emerged as

an industrial-strength technology since its phenomenal advances from early 1990s.

However, OCR accuracy still lacks in comparison to a second-grade child [3]. It is

important to place the strength and weakness of OCR technology in perspective,

and understand the factors involved that significantly affect performance. These

insights provide useful guidelines for selecting feature sets that can be extracted

relatively reliably given the practical constraints imposed by a targeted application.

The most successful application domain of OCR technology occurs with machine-

printed characters. During the last decade, the acceptance rates of form readers on

hand-printed digits and constrained alphanumeric fields have risen significantly. The

relatively low recognition errors in these constrained domains reflect the complexi-

ties involved in classifying a novel pattern under such a limited variation in the data

set [113]. In contrast, recognition of unconstrained off-line human handwriting and

multi-lingual recognition among a variety of scripts are more challenging problems,

and they remain active research frontiers.

The accumulated imaging degradations have a significant effect on OCR per-

formance. Typical imaging defects in the printing process include blotchy characters

caused by dot-matrix printer ribbons, and faint impressions resulting from worn

ribbons and printer cartridges. The scanning process also introduces various imper-

fections. Digital scanning involves sampling both horizontally and vertically on the
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image grid. Desirable sampling rates by OCR are beyond 300 dots per inch (dpi).

Although commercial packages can work at as low as 150 dpi by interpolating a

low-resolution image to the preferred dpi, this generally leads to significant increase

in recognition errors. Significant image degradation also occurs when storing an

image in binary format by applying thresholds to separate foreground content. Us-

ing gray-scale and color scans of the image captures more detailed information for

pattern recognition and reduces the error rate. Most high-end MFDs provide these

functions.

4.4.3.2 Feature Set

We use a rich combination of page layout and text features for NE extraction.

The feature extraction process can be viewed as a set of binary-valued functions

defined on the appropriate feature space that output either 1 or 0 based on the

presence or absence of the corresponding feature. The conditional nature of CRFs

enables effective learning from these discrete-valued, interdependent features, which

may have extremely complex joint probabilities.

Page Layout Features As shown in Figure 4.4, noise speckles and graphic el-

ements in the document, including logos, lines, and region borders, may not be

reliably classified and segmented, and thus be given to the machine-printed text

recognizer in error. We simply discard those segmented text regions, where the

majority of text is un-recognizable or suspicious. We use the following collection of

page layout features extracted from each segmented region:
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• Variation of font size and font face within the region

• Presence of the largest font on the entire page

• Presence of bold font face in the region

• Whether the text block is horizontally aligned to the center

• Whether the text block horizontally aligned to the left

Text Features Word tokens that are logically or semantically related to a NE are

useful and relatively robust features for extracting the NE. In fact, current OCR

systems commonly use the technique for character-level error correction that makes

explicit use of context at word level, by choosing a common letter n-gram over a rare

one [3]. This allows for improvement in recognition performance at word level, even

if the quality of the image remains poor. We organize word tokens into equivalent

groups. For example, “Inc.” and “Companies” are grouped together. The following

text features are also used:

• Capitalization of words

• Mixed cases

• Frequent appearance of digit characters (0-9)

• Presence of special characters (/, –, #, -, *, $, £)

• Presence of special patterns (’s)
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Named Entity Features The orthogonality between NEs can be effective fea-

tures for probabilistic inference. A region of text containing a credit card number

is less likely to contain the name of the merchant. We use the set of orthogonally

related NEs as features. These include addresses, phone numbers, credit card num-

bers, dates, and monetary amounts.

4.4.3.3 Region Labels

We use a compact set of labels to categorize the ordered list of regions ob-

tained by page segmentation. This is based on our observation that context change

along the sequence of regions is frequent, making the inference of label more effec-

tive among neighboring regions. For extracting the merchant, we use three labels of

regions, NON DATA, MERCHANT DATA, and TRANS DATA. NON DATA rep-

resents a region that does not contain details of a transaction or any association with

a merchant. The MERCHANT DATA denotes a region that contains a merchant.

TRANS DATA region includes details of a transaction.

4.4.4 Relevant NE Extraction with CRFs

A conditional random field can be viewed as an undirected graphical model,

and be used to compute the conditional probability of labels on designated output

nodes Y, when globally conditioned on X, the random variable representing obser-

vation sequences. We construct a conditional model p(y|x) from paired observation

and labeled sequences, and do not explicitly model the marginal p(x).
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We use CRFs with a linear chain structure. Given an instance of observed

input sequence x, the probability of a label sequence y is defined in [109] as

p(y|x) ∝ exp

(
T∑

t=1

(∑
k

λkfk(yt−1, yt,x, t) +
∑

k

µkgk(yt,x, t)

))
, (4.1)

where fk(yt−1, yt,x, t) is a transition feature function of the entire observation se-

quence and labels at positions t and t− 1; gk(yt,x, t) is a state feature function of the

label at position t and the observation sequence. More compactly, the probability

of a label sequence y given the observation sequence x is given by

p(y|x) =
1

Z(x)
exp

(
T∑

t=1

∑
k

λkFk(yt−1, yt,x, t)

)
, (4.2)

where Z(x) is a normalization factor and

Z(x) =
∑
s∈ST

exp

(
T∑

t=1

∑
k

λkFk(yt−1, yt,x, t)

)
. (4.3)

Assuming the training data D = {xi,yi}N
i=1 are independent identically dis-

tributed, the product of Equation (4.2) over all training sequences as a function of

the parameters λ is the likelihood function. Maximum likelihood training chooses

parameters values so that the log-likelihood is maximized. For a CRF, the log-

likelihood is a concave function, guaranteeing convergence to the global maximum.

L =
N∑

i=1

log p(yi|xi). (4.4)

Likelihood maximization can be performed efficiently using a quasi-Newton

method, such as L-BFGS [114], which approximates the second derivative of the

likelihood by keeping a running, finite window of previous first-derivatives. L-BFGS

can be treated as a black-box optimization procedure, requiring only the first deriva-

tive of the function to be optimized.
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Table 4.1: Summary of the two real-world receipt image collections.

Collection 1 Collection 2

Total images 145 283
Number of characters 71, 316 522, 320
Character error rate 6.03% 9.48%
Image resolution 200-300 dpi 150-200 dpi
Country of origin US UK

Let yi be the state path up to position T on instance i of the labeled training

sequence. The first-derivative of the log-likelihood function is given by

δL

δλk

=
N∑

i=1

T∑
t=1

Fk(y
i
t, y

i
t−1,x

i
t)−

N∑
i=1

T∑
t=1

∑
y,y′

Fk(y, y′,xi
t)p(y, y′|xi). (4.5)

Intuitively, when the state paths chosen by the CRF parameters match the

state paths from the labeled sequence, the derivative given in Equation (4.5) becomes

zero.

4.5 Results and Discussion

4.5.1 Datasets

We used two large real-world receipt collections provided by IBM World Wide

Reimbursement Center for training and testing, which contain binary scanned re-

ceipt images from IBM internal business units and IBM Global Services customers.

These two collections provide realistic examples because the paper receipts were

gathered and scanned over time, using a variety of equipment. Characteristics of

the two datasets are summarized in Table 4.1.
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We used the first two fifths from each dataset for training and the rest for

test. Groundtruth labels were created by first running a rule-based heuristic on

the sequence of segmented regions. Human judgment was then employed to correct

mistakes in the heuristic labeling.

4.5.2 Evaluation and Discussion

We evaluate performance with the widely used precision-recall metrics. Through-

out our evaluation, we define recall as the ratio of the number of NEs correctly ex-

tracted to the number of NEs that are physically present in the collection. Precision

is the ratio of the number of NEs correctly extracted divided by the total number

of NEs extracted in the category. The F-Measure (or F1 Measure) is computed by

(2 × Precision × Recall)/(Precision + Recall) [115].

Table 4.2 summarizes the overall NE extraction performances on the two col-

lections of receipt images, respectively. On both datasets, using CRF to extract

the merchant significantly outperformed rule-based heuristic approach. This is en-

couraging because improvements on a rule-based system require constant changes

to the code base, while improvements on the CRF system generally require only

defining new features and retraining the model. In fact, we observe improvement in

performance after modifying the word token sets to reflect locale difference of the

two databases.

The impact of recognition errors on rule-based NE extraction approaches is

evident. Almost all the errors made by the heuristic on simple NEs were caused
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Table 4.2: Named entity extraction performances on the two databases.

Collection 1 Collection 2
Entity Precision Recall F-Measure Precision Recall F-Measure

Date 100.0 85.2 92.0 96.3 78.2 86.3
Credit card # 98.8 76.5 86.2 92.4 69.5 79.3
Expense total 100.0 97.7 98.8 89.1 91.7 90.4
Phone # 95.3 78.1 85.8 84.8 66.1 74.3
Address 95.4 82.7 88.6 82.3 58.6 68.5
Merchant (by heuristic) 63.2 56.8 59.8 58.5 49.7 53.7
Merchant (by CRF) 73.8 70.5 72.1 67.2 62.9 65.0
Merchant (improvement) 10.6 13.8 12.3 8.7 13.2 11.3

by text errors. Image scan on a higher-resolution device or a device that supports

gray-scale or color format can minimize this problem by effectively containing the

recognition errors. In addition, a paper document undergoes the image capturing

(scanning) process only once in our system, in contrast to some receipts in the

evaluation datasets that are second-generation copies (e.g ., a scanned image of a

previously faxed document). The figures in Table 4.2 provide a realistic estimate of

the practical performance, given improvements in digital printing technologies.

Extracting relevant NEs using CRF proves more robust to character recog-

nition errors because it leverages collective information from presented document

context. For instance, the 9.48% character error rate on Collection 2 translates to a

39.2% word level error rate for a five-letter word. Nevertheless, we achieved 65.0%

F-score on merchants using CRF on the dataset.
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4.6 Related Work

Named entity recognition (NER) is an essential task in deriving structured

information from un-structured sources. Historically, it has been defined on un-

structured text due to its roots in Message Understanding Conferences [101]. NER

capabilities have been demonstrated using un-structured text corpora from a wide

range of domains, including identifying personal names and company names in

newswire text [102], identifying titles and authors in on-line publications [103, 116],

and identifying gene and protein names in biomedical publications [117, 118]. More

recently, unsupervised NER results are reported on a massive corpus of domain-

independent text from the web [119].

The vast majority of NER systems employ rule-based or machine-learning-

based approaches. Examples of rule-based systems in the literature include [120,

121]. Machine-learning-based approaches can be further divided into two main cat-

egories: classifier-based and Markov-model-based. Common choices of classifiers

include decision trees, naive Bayes, and support vector machines (SVMs). In addi-

tion, studies in [122] and [123] have used classifier combination techniques in NER

tasks. Markov-based models, including hidden Markov models (HMMs) [124], max-

imum entropy Markov models (MEMMs) [125], and Conditional Random Fields

(CRFs) [109], are well suited to problems that involve sequential analysis. More re-

cently, CRFs have also been extended to computer vision problems, including region

classification [126] and human motion recognition [127].
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4.7 Summary

In this chapter, we proposed a model-based approach for extracting relevant

named entities from unstructured documents, which enables learning about inference

rules collectively based on contextual information from both page layout and text

features. We applied our approach to the processing of diverse real-world receipt

documents in an expense reimbursement system, and demonstrated that it brought

significant improvement to named entity extraction. Our approach delivers better

generalization performance and is shown to be more robust to recognition errors

than approaches that rely solely on linguistic features. These results demonstrate

the importance of jointly interpreting the context of the document when text itself

reveals limited structural information.
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Chapter 5

Mining Session Context

5.1 Introduction

The understanding of users’ behavior presents a major challenge in improving

the ranking performance and the usability of a document retrieval system. One

common solution used by search engines is to record and analyze user activities

on search result pages or within query sessions. These search-related logs provide

indication of relevance judgement and can be useful as training data to improve

numerous search capabilities [128], including query refinement and suggestion [129,

130, 131], learning ranking functions [132, 133, 134, 135], image search [136], and

targeted advertising [137].

Analysis of search-centric user behavior data sources has several inherent lim-

itations. First, search-oriented activity represents a minimal fraction (less than 5%)

of a user’s behavior online [138], even taking into account their post-query browsing

trails. This may significantly affect the document coverage. Second, typical search

engine logs contain user activities only within the scope of interactions with search

result pages [139], despite the fact that the use of contextual information can im-

prove the user’s search experience. Third, user activities on search result pages or

within search sessions introduce a strong bias toward dated documents with a high

ranking [140], since users seldom search beyond the first page [2]. Consequently, the
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learned ranking will not converge to an optimal ranking because documents that

are fairly recent or initially ranked low will rarely be presented to users.

By effectively incorporating information on all web user activities, search en-

gines gain insights into user preferences and intents, and improve both retrieval

performance and user experience. First, analysis of all user actions provides a more

robust estimate of a user’s perceived importance associated with web pages and

sites [141]. Second, search engines face the challenge of prioritizing and adapting

their computing resources under practical constraints in crawling, indexing, and

query processing [142]. In this context, the relative attention a web page receives

from all users provides an intuitive and user-centric optimization criterion, and re-

sponds to evolving user behaviors. As a large amount of web content emerges and

refreshes within a shorter time interval than a typical crawling and indexing cycle of

a search engine [143], discovering popular content and adapting crawling schedules

based on the degree of usage may prove an effective and agile policy. Finally, an-

other challenging area for search engines is the access to the deep (or invisible) web

– the fraction of the web that is dynamically generated and not directly accessible

to automated crawlers [144]. Their coverage can substantially improve by leveraging

large-scale user browsing history, which collectively reveals hidden URLs, providing

gateways to their contents.

As a logical unit of user web experience, a web session contains rich information

on the user’s preferences and intents within an actionable time frame [138]. Web

session representation and interpretation is a particularly important subject for the

web community because it applies across all activities.
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In this dissertation, we focus on using the large amount of knowledge gained

from computational analysis of general user browsing behavior by: (1) leveraging

information on all browsing actions; and (2) developing models that incorporate rich

contextual information within web sessions. Our main contribution is ClickRank, a

novel algorithm we propose for estimating web page and web site importance, which

is based on these two key notions. ClickRank first estimates a local importance value

for every page or site in each user browsing session, based on the implicit preference

judgments of the user in the session context. It then aggregates these local values

over all sessions of interest to construct a global ranking.

We evaluate ClickRank in three important areas of web search. Our first

experiment tests the traditional task of web site ranking, where we show that re-

sults from ClickRank are competitive against state-of-the-art approaches, including

PageRank [145] and the recently proposed BrowseRank [141], and are obtained at

significantly lower computational costs. In the second experiment, we demonstrate

the novelty and effectiveness of ClickRank in web page ranking with several hundred

state-of-the-art web search features, including those computed from page visit counts

and the link structure of the web graph. In this large-scale test, we formulate the

task of learning the optimal ranking model as an additive regression problem using

gradient-boosted decision trees, and quantify the variable importance of ClickRank

in direct comparison with other quality features. Finally, we demonstrate ClickRank

in a system that mines and presents recent, popular pages to web search users as

dynamic quicklinks in search result summaries.
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We structure the remainder of this chapter as follows. Section 5.2 reviews

related work. In Section 5.3, we present important characteristics of general web

sessions, and describe in details our approach to session mining by incorporating

contextual information in session representation. In Section 5.4, we introduce the

ClickRank algorithm, and describe how we combine it with other useful web search

signals to improve web search by learning an optimal ranking model. We compre-

hensively evaluate ClickRank in three web search applications in Section 5.5, and

conclude in Section 5.6.

5.2 Related Work

PageRank [145], HITS [146], and TrustRank [147] are representative link anal-

ysis algorithms for computing authoritative sources, using the link structure of the

web graph, and have been widely used as measures of relative importance of web

pages. The well-known PageRank algorithm, for instance, considers a link from a

source page to another as an explicit endorsement of the destination page in per-

ceived page quality, and uses only the static link structure of the web as input.

Based on the assumption of a random surfer model and the first-order Markov pro-

cess, PageRank computes the stationary probability distribution for the web link

graph iteratively, resulting in the world’s largest matrix computation [148].

A number of problems are commonly associated with link analysis algorithms.

First, intent drives user browsing behaviors, which significantly deviate from the

random surfer model upon which PageRank is based. A recent study on real net-
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work traffic [149] demonstrated that user visitation patterns differ considerably from

that approximated by the uniform surfing behavior model used in PageRank. Sec-

ond, static modeling of the link structure favors old pages, because a recent page

is less likely to be linked within a short period of time, even if the page is of good

quality. Third, link structures are prone to manipulation as adversarial links can

be generated to inflate ranking artificially compared to good links that typically

originate in manual editing. Last, as the web grows at an explosive speed1, com-

puting page importance at the web scale by link analysis becomes computationally

expensive [151], even through various optimization schemes [152, 153].

Minimal study has been accomplished on general non-search browsing data.

Prior literature related to sessions [154, 131, 155, 156, 157] focuses almost exclusively

on search trails within query sessions. However, as we will present in Section 5.3,

search-related activities account for less than 5% of overall user activity online.

Analysis of web sessions in a general setting broadens the user behavior models

with richer contextual information from the entire spectrum of actions, and the

analysis is key to new web search applications that aim to provide enriched user

search experience centered around users’ interests.

A new page importance ranking algorithm called BrowseRank [141] has re-

cently been proposed, and it makes two significant contributions. First, it uses the

more reliable input of user behavior data, computing a user browsing graph, rather

than a web link graph. Second, BrowseRank models the random walk on the user

1While the first Google index in 1998 had 26 million pages, this number officially reached 1

trillion mark as of July 25, 2008 [150].
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browsing graph by a continuous-time Markov process. BrowseRank has shown bet-

ter ranking performance compared with link analysis algorithms at the expense of

higher computational costs.

Study on search trails within query sessions is the subject of a few recent

works. Dramatic differences in user interaction behaviors with a search engine are

reported in [154]. The idea of using popular end points in search trails as query-

dependent feature is studied in [131] to improve web search interaction. A recent

study [155] shows improved retrieval quality using post-search browsing activities

over alternative data sources that contain only the end points of search trails or

clickthrough logs. Also, the study suggests that post-search browsing behavior logs

provide strong signal for inferring document relevance for future queries.

5.3 Mining Web Sessions

We define a web session as a logical unit of time-ordered user browsing activi-

ties, representing a single span of user interactions with a web browser. The concept

of session in our study is generalized to all categories of web activities, while studies

related to search log or search clickthrough data consider a session simply as a set

of search queries and largely ignore all other activity.

5.3.1 Session Identification

A user’s browsing history is commonly accessible from several sources, such

as the ISP or other gateway to the web [149] or clients installed on the user’s
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environment [154]. In this study, we use information logged by the Yahoo! Toolbar,

a browser add-on that assists users with quick access to various web tasks. The

toolbar logs user activities for a subset of users who opted for this data collection

during installation.

Each log entry is a tuple of {cookie, timestamp, URL, referral URL, event

attribute list}. The cookie serves as a unique, anonymous client identifier that

expires and refreshes after a pre-defined time period. The URL identifies the page

being accessed, and the referral URL is the URL from which the user access the

current URL. The event attribute list comprises various metadata associated with

the activity. For the experiments in this dissertation, the browsing data consists

of more than 30 billion anonymous events, across millions of unique Yahoo! users,

collected over six months in 2008.

To segment web activities into sessions, we first use the referral URL→ current

URL structure to reconstruct the entire chain of browsing activities per user. This

scheme ensures that, for users who are multitasking (e.g ., those having multiple

browser windows or tabs open), we group activities associated with different tasks

into separate sessions rather than interleaving them together. Next, we partition

the time-ordered user events using two boundary conditions. First, we start a new

session from the current event if more than 30 minutes of inactivity occured between

the current event and its immediately preceding event. Second, a new session starts

if the current event entry does not have a referral URL. This typically happens when

the user launches a new web browser, or clicks on a link in a non-browser source

(e.g ., in a text file).
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Figure 5.1: Distribution of session lengths (left) and session durations (right) in
general web user behavior logs.

Our session segmentation approach requires only one-pass scanning over the

data. This may seem a simple mechanism. However, a recent study on finding

logical sessions from query logs [156] has shown that in the vast majority (92%)

of cases, a session segmentation method based on timeout threshold gives identical

scores to an advanced and computationally expensive algorithm [156], when both

are compared with human judged sessions using the objective Rand index [158]. For

the small fraction of remaining sessions that are difficult for the advanced algorithm,

the timeout-based method performs at a merely marginal degradation of 1.4%.

5.3.2 Session Characteristics

Table 5.1 summarizes the key characteristics of general web sessions. Fig-

ure 5.1 shows the probability distributions of the number of events in a session and

session duration, respectively. The number of events in a web session approximately

follows a power law distribution. Its mean and standard derivation are 9.1 and 24.5,
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Table 5.1: Key characteristics of general web sessions.

Average events per session 9.1

Standard deviation of events per session 24.5

Average session duration (seconds) 420.3

Standard deviation of session duration (seconds) 1068.0

Sessions per user per day 15.5

Percentage of search sessions 4.85%

respectively, demonstrating that a general web session contains significantly richer

activity context and diversity than a search session, which reportedly consists of

an average of five events [155]. In addition, search sessions (those containing at

least one query sent to one of the major web search engines) constituted 4.85% of

overall sessions, signaling that focusing on them may lead to a biased view in down-

stream analysis [159]. The session duration graph in Figure 5.1 shows two different

power law behaviors across the timeout threshold of 1,800 seconds. On average,

a web session lasts 420.3 seconds, with the standard deviation of 1,068 seconds,

demonstrating its short-to-medium time range coverage of user activities.

5.3.3 Session Clustering

Mining user sessions at the web scale is particularly important for learning and

recognizing user behavior patterns associated with structured intents. We employ

several clustering approaches to discover web sessions driven by different intents

and to learn their statistical characteristics. Due to space constraint, we focus our

discussion on one representative clustering effort.
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In this experiment, we mapped each interpretable URL to one of five intents

categories—search, email, information/reference, rich content (e.g ., social network-

ing and multimedia), and shopping. We computed the histogram representation of

a session by the distribution of number of events over these intent categories. While

certain temporal information is clearly discarded, we will see in the next section

that this histogram representation preserves adequate discriminating power for the

clustering purpose and remains compact for the large amount of data.

To associate a visit reliably to each URL with an intent type, we used human

categorizations of the top 1,200 most popular web sites. While the coverage achieved

this way was reasonable at 41% for all events, we augmented these categorizations

using heuristics that map from URLs to likely intents. For example, URLs of the

format shopping.*.com/* were mapped to shopping intent, and so on.

Within each session, a browsing event was labeled either as unknown, or as-

signed to one of these five intent categories described above. We then computed the

distribution of events over the six intent labels (i.e., including the unknown class),

and discarded those sessions that contained more than 80% of unknown events, as

they could not be reliably clustered. Finally, we smoothed each normalized intent

histogram by evenly distributing the weight associated with the unknown class to

the other five histogram bins.

The final session histogram is a seven dimensional feature vector. The first five

dimensions correspond to the normalized intent histogram, with their sum equal to

100. The last two dimensions correspond to the number of events in the session and

the session duration in seconds, respectively.
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Figure 5.2: Visualization of session histograms in 3D by dimensionality reduction
using principle component analysis.

To gain further insights on the spread in session histograms, we used principle

component analysis (PCA) to reduce the dimensionality. PCA seeks projections

onto a low-dimensional linear subspace that best preserves the data scatter in a

least-squares sense [113]. The 3D view of session histogram shown in Figure 5.2

demonstrates the heterogeneity as the histogram data covers a broad continuum of

activity space. Among the first six significant eigenvalues, the first eigenvalue is

dominant.

5.3.4 Session Interpretation

A meaningful interpretation to sessions offers the key to understanding the

context of activities on general, unconstrained user behavior data. Table 5.2 summa-

rizes the unsupervised session histogram clustering results, using k-means algorithm

with k = 10. These clusters are ordered according to the cluster size. Significant

features that clearly indicate cluster attributes in Table 5.2 are highlighted.
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Table 5.2: Unsupervised clustering of session histograms reveals web user browsing
patterns. Significant features associated with each cluster are highlighted in bold.

Feature Entire Data 1 2 3 4 5 6 7 8 9 10
Dimension Mean / Std. Dev. 29.8% 16.6% 14.3% 11.9% 11.0% 4.7% 4.6% 3.5% 2.1% 1.5%

Search 23.63 / 37.71 0.35 98.43 1.19 2.35 2.33 56.18 41.52 52.23 6.46 0.09

Mail 16.81 / 34.98 0.07 0.66 97.25 0.39 0.42 1.29 51.79 0.70 9.79 0.07

Information 12.26 / 30.85 0.04 0.27 0.39 1.03 96.50 24.58 2.65 0.50 5.97 0.02

Content 34.31 / 45.69 99.42 0.37 0.64 0.45 0.36 0.64 0.95 45.25 60.51 99.54

Shopping 12.85 / 31.60 0.08 0.24 0.41 95.67 0.29 16.92 2.60 0.86 16.84 0.06

Events 9.06 / 24.53 11.14 2.89 5.66 6.25 5.33 4.24 5.38 4.26 7.84 151.68

Duration 420.30 / 1067.99 532.49 261.4 303.85 235.78 298.91 228.40 455.58 218.01 439.78 4237.65

Various intent-driven web browsing patterns emerge from clusters’ statistical

properties. The top five clusters correspond to coherent sessions of rich content

browsing, search, email, shopping, and information, respectively. For instance, the

center of cluster 1, with 29.8% of entire data, contains 99.42% rich content browsing.

Typically, these are user interactions with social networking sites such as Facebook

and MySpace. Its cluster-wise standard deviation of 2.82% along this feature di-

mension is significantly smaller than the standard deviation of 45.69% for the entire

data.

Clusters revealing more sophisticated user behaviors are also evident in Ta-

ble 5.2. These interesting patterns include browsing web search results without a

click (cluster 2), collecting information during shopping (cluster 6), visits to rich

content web site through navigational queries (cluster 8), and prolonged activities

in social networking sites (cluster 10, note the average session duration).

These observations demonstrate that even a simple approach to session rep-

resentation — as distributions over high-level event categories — can provide the
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search engine with valuable information, such as the distribution over the types of

content that users are likely to access (useful for crawling scheduling as well as for

ranking purposes). If we apply a filter to the entire set of sessions and preserve

only those containing search queries, we can further observe which queries lead to a

particular session type (e.g., a shopping session) and optimize the user experience

accordingly.

5.4 Using Browsing Information for Web Search

In this section we present a novel web search ranking algorithm, ClickRank,

that combines different notions of user preferences mined from browsing sessions.

The ClickRank algorithm provides a robust estimate of the importance of web pages

and web sites without explicitly constructing a web graph. Its relatively low com-

putational cost makes it particularly useful for web search ranking purposes. We

also describe how ClickRank can be incorporated with a large set of other ranking

features for learning a ranking model.

5.4.1 ClickRank

A web session contains several contextual indicators of user preferences among

the visited web pages. Intuitively, users tend to browse content that they perceive

as important in the context of their informational need. This makes the dwell time

on a web page an important endorsement of the user’s interest level. The click order

within a general trail of user activities is also important: accessing one web page
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before another in the session may be interpreted as the user’s preference signal.

ClickRank aims to combine these signals to determine a local importance value

for each page within a session, and then aggregate the importance values over all

sessions of interest.

We start by computing local importance values within each session. The Click-

Rank of a web page pi in a given web session sj is a function of several indicators

within the session context—the dwell time on the page, the page load time, the rank

of pi in the ordered set of all visited URLs, and the frequency of occurrence in the

session. We define the local ClickRank function as

ClickRank(pi, sj) =
∑
pi∈sj

wr(i, sj)wt(p, sj)I(p = pi), (5.1)

where wr(i, sj) is a weight function induced on the rank of the event i in session

sj, and wt(p, sj) is a weight function computed from the set of temporal attributes

associated with the browsing of page pi. I() denotes the indicator function.

We define the weight function wr() for an event i in rank r(i) of a session sj

with a total of nj events as

wr(i, sj) =
2 (nj + 1− r(i))

nj(nj + 1)
, (5.2)

where r(i) ∈ {1, . . . , nj} and wr(i, sj) is a monotonically decreasing function w.r.t.

the rank of the event within a session i. The function choice for wr() is motivated

by measurements of implicit user preference judgements through eye tracking ex-

periments [2], which show decreasing relative attention devoted to ordered clicks in

navigational and informational tasks.
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Lemma 5.1. The weight function wr() has the following properties:

(a) wr(i, s) is a monotonically decreasing function w.r.t. the rank r(i) (1 ≤ r(i) ≤ n)

of the event in session s, and wr(i− 1, s)− wr(i, s) = wr(i, s)− wr(i + 1, s),

(b)
∑n

i=1 wr(i, s) = 1, where n is the number of events in session s.

For a set of web sessions S = (s1, . . . , sk) across users and over a period of

time, we aggregate the ClickRank values as

ClickRank(p,S) = AGGRs∈S [ClickRank(p, s)], (5.3)

where ClickRank(p, s) is the local ClickRank function defined in (5.1) given an

instance of observed sessions, and AGGR denotes an aggregation function, such as

summation or averaging, over all sessions of interest. In the following experiments,

we use summation as the aggregation function.

Finally, the ClickRank of a web site w for a set of sessions S is simply the sum of

the ClickRank values of all pages in S that are part of the site: ClickRank(w,S) =∑
p∈w ClickRank(p,S). Note that using a sum implicitly models both the impor-

tance (as evidenced by ClickRank values of individual pages) and the size of the

web site – the amount of pages it comprises.

5.4.2 Theoretical Analysis

The formulation of ClickRank has a theoretical interpretation based on an

intentional surfer model. A web session can be viewed as a logical sequence of hops

through the hyperlink structure of the web. At each step, a user selects what she
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judges as most relevant as the next click, based on a variety of features such as the

attractiveness of content in the context of the user’s activity and her prior knowl-

edge. The user further indicates her interest through various temporal attributes,

such as the time devoted to the page or whether it was visited multiple times.

This process continues throughout the duration of the session, until the user starts

another journey on the web.

More concretely, the local ClickRank function defines a random variable Xj : Ω → R+
0

associated with the web page pj in the event of a logical sequence of web clicks. The

mean and variance of the random variable Xj are non-negative and finite.

Lemma 5.2. For any bounded, non-negative weight function wt(), E(Xj) < ∞ and

var(Xj) < ∞.

Proof. Let wt() be bounded by a non-negative constant A. Then,

E(Xj) =
∑
pj∈s

wr(i, s)wt(p, s)P (p = pj, s)

=
∑
pj∈s

wr(i, sj)wt(p, s)P (s)P (p = pj|s)

=
∑
pj∈s

wr(i, sj)wt(p, s)P (s)

≤
∑
pj∈s

wr(i, sj)A

≤ A
∑
pj∈s

wr(i, sj)

≤ A

by part (b) of Lemma 5.1. Similarly, we can show that var(Xj) ≤ A2.

The following convergence property of ClickRank defines its asymptotic behav-

ior over increasing volume of empirical data. Furthermore, we can establish bounds
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on a ClickRank-induced function in a probabilistic setting by Markov’s inequality

and its corollaries [160].

Theorem 5.1 (Convergence property). Let {X1
j , X2

j , . . ., Xk
j } be the sequence

of random variables associated with the web page pj over observed sessions S =

(s1, . . . , sk), and assume they are independent and identically distributed. Then

1

k

k∑
i=1

X i
j → E(Xj) almost surely, as k →∞.

Proof. X i
j are non-negative, independent identically distributed random variables

with finite means. The result follows directly from the strong law of large num-

bers [161].

Theorem 5.2 (Markov’s inequality). Let f : R → [0, +∞) be a non-negative func-

tion, then

P[f(X) ≥ a] ≤ E(f(X))

a
for all a > 0.

Corollary 5.3. If f : R → [0, +∞) is a non-negative function taking values bounded

by some number M , then

P[f(X) ≥ a] ≥ E(f(X))− a

M − a
whenever 0 ≤ a < M.

Corollary 5.4 (Chebyshev’s inequality). Let X be a random variable with expected

value µ and finite variance σ2, then

P[|X − µ| ≥ a] ≤ σ2

a2
if a > 0.

Simply put, as the volume of the web browsing sessions analyzed by ClickRank

reaches a sizable sample of the entire web traffic, the rank computed by ClickRank

for each page converges to its true rank according to a usage criterion.
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5.4.3 Application to Web Search Ranking

As a query-independent feature, ClickRank can be incorporated into a doc-

ument ranking process in several ways [162]. One particular framework that has

recently become prominent is the learning to rank approach to information retrieval,

which aims to apply machine-learning algorithms to derive a ranking function from

data. In a machine-learned ranking framework, a large variety of features are used

to model a query and a document. Query features can be its length or frequency

in a search log, and document features can be term statistics or, in the case of web

documents, the number of incoming HTML links. Machine-learned ranking provides

a convenient approach for quantitatively evaluating the effectiveness of ClickRank

as a novel feature in addition to a large collection of existing ranking features.

We formulate the task of learning the ranking model for web search as an

optimization problem. Our goal is to find a ranking function f ∗(x) that maps a set

of input random variables corresponding to features x = {x1, . . . , xn} to an output

random variable y representing the relevance score, such that the expected value of

the loss function Ψ(y, f(x)) is minimized over the joint distribution of (y,x)

f ∗(x) ≡ arg min
f(x)

Ey,xΨ(y, f(x)) (5.4)

= arg min
f(x)

Ex[Ey(Ψ(y, f(x)))|x]. (5.5)

We compute the optimal ranking model using the numerical optimization

framework of gradient boosting [163], since analytical solution cannot be derived

generally for f(x) and Ψ in Equation 5.4. Gradient boosting employs functional

regression that expresses the solution to the ranking function as additive expansion
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of M parameterized functions

f ∗(x) =
M∑
i=0

fm(x) ≡
M∑
i=0

βmh(x; am), (5.6)

where f0(x) is an initial guess, and [fm(x)]M1 are incremental functions (or ”boosts”).

In Equation(5.6), each incremental function fm(x) can be further factored as the

product of a base learner h(x; am) and corresponding coefficient βm.

In parameter estimation, gradient boosting sequentially fits a parameterized

function to current residuals by least-squares criterion at each iteration

yim = −
[
∂Ψ(yi, f(xi))

∂Ψ(f(xi))

]
f(x)=fm−1(x)

(5.7)

and

am = arg min
a,β

N∑
i=1

[yim − βh(xi; a)2], (5.8)

where N is the number of training samples. The optimal coefficient βm is computed

by line search

βm = arg min
β

N∑
i=1

Ψ (yi, fm−1(xi) + βh(xi; am)) . (5.9)

We use a decision trees as the base learner h(x; am) in (5.6), where it is param-

eterized by the splitting variables and corresponding split points. At each iteration

m, a decision tree partitions the entire feature space into disjoint regions [Rlm]Ll=1

and predicts according to the region that contains the observed feature vector x as

h(x; [Rlm]L1 ) =
L∑

i=1

ylmI(x ∈ Rlm). (5.10)

Since a decision tree predicts a constant value ylm within each region Rlm, we
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Algorithm 5.1 Gradient Tree Boosting

1: f0(x) = arg minγ

∑M
i=1 Ψ(yi, γ)

2: for m = 1 to M do

3: yim = −
[

∂Ψ(yi,f(xi))
∂Ψ(f(xi))

]
f(x)=fm−1(x)

, i = 1, N

4: {Rlm}L
1 = L-terminal node tree

(
{yim,xi}N

1

)
5: γlm = arg minγ

∑
xi∈Rlm

Ψ (yi, fm−1(xi) + γ)

6: fm(x) = fm−1(x) + ν ·
∑L

l=1 γlmI(x ∈ Rlm)

7: end for

can rewrite (5.9) as

γlm = arg min
γ

∑
xi∈Rlm

Ψ (yi, fm−1(xi) + γ) . (5.11)

We add a regularization term, the shrinkage parameter 0 < ν < 1 to control the

learning rate of the update procedure

fm(x) = fm−1(x) + ν · γlmI(x ∈ Rlm). (5.12)

We use Algorithm 5.1 to estimate ranking model parameters for decision trees

with L-terminal nodes. Gradient boosted decision trees (GDBT) produce compet-

itive, highly robust, interpretable procedures in regression and classification [163],

and are particularly useful for settings with large amounts of data and a dense

feature space.

5.4.4 Relation to Graph-based Models

ClickRank has a number of advantages compared to approaches that estimate

the web page authority from explicit graph formulations, such as PageRank and

BrowseRank. First, ClickRank is data driven and does not embed assumptions on
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the traversing scheme over the web. Second, it is significantly more computationally

efficient: local ClickRank values are inexpensive to calculate and can be derived

independently for each session. This makes ClickRank well-suited to distributed

computing (e.g ., the MapReduce framework [164] that we used to implement the

experiments in this dissertation). It is also memory friendly. Furthermore, addition

of new data requires only incremental computation of local ClickRank values on the

newly logged web sessions and combination with those from existing sessions, rather

than re-computation of the entire model (such as would be needed by PageRank and

BrowseRank). This is particularly important for the processing of web-scale user

browsing information, which changes constantly.

5.5 Experiments

We demonstrate the effectiveness of ClickRank algorithm in three core aspects

of web search—site ranking, page ranking, and mining new, popular web pages. In

our experiments, we assume that the dwell time on a page and the page load time

are two independent random processes and define the temporal weight function in

(5.1) as

wt(p, s) = (1− e−λ1td)e−λ2tlI (t(p) ∈ T ) , (5.13)

where td and tl are the normalized dwell time on the page, and page load time w.r.t.

the entire session. t(p) is the timestamp of the event, and T denotes the time range.

In the following experiments, we used the same six months of aggregate user

browsing logs collected from the Yahoo! toolbar. In total, the data comprises of
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Table 5.3: Top-ranked sites computed by different algorithms.

Rank PageRank BrowseRank ClickRank

1 adobe.com myspace.com yahoo.com
2 wordpress.com msn.com google.com
3 w3.org yahoo.com myspace.com
4 miibeian.gov.cn youtube.com live.com
5 statcounter.com live.com youtube.com
6 phpbb.com facebook.com facebook.com
7 baidu.com google.com msn.com
8 php.net ebay.com friendster.com
9 microsoft.com hi5.com pogo.com
10 mysql.com bebo.com aol.com
11 mapquest.com orkut.com microsoft.com
12 cnn.com aol.com wikipedia.org
13 google.com friendster.com ebay.com
14 blogger.com craigslist.org craigslist.org
15 paypal.com google.co.th hi5.com
16 macromedia.com microsoft.com go.com
17 jalbum.net comcast.net ask.com
18 nytimes.com wikipedia.org google.co.th
19 simplemachines.org pogo.com comcast.net
20 yahoo.com photobucket.com orkut.com

more than 3.3 billion web sessions. These sessions contain 16.3 million unique web

sites, and 3.1 billion unique web pages.

5.5.1 Site Ranking

We computed the ClickRank for each web site and ordered them by this value.

We list the top-ranking 20 sites computed with ClickRank and compare them to

those computed by PageRank2 and BrowseRank3. Results are listed in Table 5.3,

following the same convention used in [141].

On the task of site ranking, our results confirm the same finding reported in

[141], which states that link analysis algorithms like PageRank have a strong bias

2Using the web link graph as constructed by the Yahoo! crawler.

3This list is included from the reported list in [141] on a total of 5.6 million web sites.
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toward sites with higher degree of inlinks and do not necessarily reflect the degree

of actual usage. This is a fundamental limitation of the web link graph, from which

PageRank and other link-based authority estimation algorithms are derived.

The computed site ranked lists by both ClickRank and BrowseRank algorithms

are surprisingly similar, with a total of 18 overlapping entries among the top 20 sites.

Both ranked lists correlate better with web users’ informational need compared to

PageRank, as they are both computed with user behavior data. Some ranking

differences between BrowseRank and ClickRank in this table can be attributed to

their data source. BrowseRank is computed with a set of users who installed the

Live toolbar, and are presumably users of live.com and msn.com services; similarly,

ClickRank is computed with a set of Yahoo! users.

One key difference between the results produced by ClickRank and Browse-

Rank is that ClickRank consistently ranks the starting point of user’s web experience

higher. One of the major search engines, ask.com, does not even appear among top

20 sites produced by BrowseRank.

ClickRank has a significantly lower computational cost than PageRank or

BrowseRank. ClickRank requires only one pass through the data and does not re-

quire building intermediate graphs and solving stationary probability distributions.

This allows for rapid adaptation of ClickRank values to new content: as noted ear-

lier, new browsing information that is collected does not require recomputation over

the entire data. The overall running time of our implementation of ClickRank al-

gorithm in ranking of the 16.3 million web sites in this section and 3.1 billion web

pages for the page ranking test in the next section are 56 minutes and 1 hour 32
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Figure 5.3: Distribution of discretized ClickRank scores over a large collection of
judged documents.

minutes, respectively, using the map-reduce framework on 300 Hadoop [165] nodes.

To our best knowledge, these are the best published run times for page importance

ranking on a web scale.

In a realistic, production-grade search engine environment, it is important to

minimize the footprint of every relevance feature used by the ranking model so la-

tency and memory requirements are met. Often, float numeric values are compressed

or discretized into a small dynamic range that can be represented with as few bits as

possible. To this end, and to evaluate the ranking performance of ClickRank as de-

ployed in a production system, we quantize the computed ClickRank score for each

web page into an unsigned byte within the range of [0, . . . , 255]. The distribution of

these values are shown in Figure 5.3.

5.5.2 Page Ranking

5.5.2.1 Evaluation Methodology

We comprehensively evaluated the performance of ClickRank in conjunction

with several hundred features used in commercial search engines. To gain further
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insights, we quantified the search improvement from ClickRank with a state-of-the-

art baseline system, and measured its relative variable significance against this large

pool of ranking features. This evaluation scheme gives more realistic, quantitative

results, in contrast to common published evaluations, using limited feature set as

baseline. For instance, [141] employs the single feature of BM25 [166] as the rele-

vance baseline in their comparison.

We used discounted cumulative gain (DCG) and normalized discounted cu-

mulative gain (NDCG), two widely used search engine relevance measures [167], to

quantitatively evaluate ranking performances. Given a query and the ranked list of

returned documents, the DCG(K) score for the query is computed as

DCG(K) =
K∑

k=1

gk

log2(1 + k)
, (5.14)

where gk is the weight for the document at rank k. A five-grade score is assigned to

each document based on its degree of relevance.

We trained ranking models using gradient boosted decision trees on the base-

line system with all existing features, and on the alternative system that includes

one additional ClickRank feature, respectively. Training and test data is partitioned

through cross-validation. We used identical parameter settings in all the following

comparison experiments. Table 5.4 provides a high-level summary of this experi-

ment.

To quantify the relative importance Si of each ranking feature xi, we used the

following measure of variable importance for decision trees [168]

S2
i =

1

M

M∑
m=1

L−1∑
n=1

wlwr

wl + wr

(yl − yr)
2I(vt = i), (5.15)
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Table 5.4: Summary of the page ranking experiment.

Total number of queries 9.041

Number of affected queries 7,341

Total number of judged documents 429,985

Number of documents with ClickRank scores 268,929

Cross-validation split ratio 3

where vt is the splitting variable at the non-terminal node n, yl, yr are the means

of the regression responses in the left and right subtrees respectively, and wl, wr are

the corresponding sums of the weights.

5.5.2.2 Data Preparation

We used a set of 9,041 randomly sampled queries from a search log. For each

query, 5–20 web pages have been independently judged by a panel of editors and

assigned with one of the five relevance scores.

5.5.2.3 Results and Discussion

The usage of ClickRank as an additional relevance feature brings 1.02%, 0.97%,

1.11%, and 1.331% web search improvements in DCG(1), DCG(5), DCG(10), and

NDCG, respectively, on top of a state-of-the-art ranking model—a model already

incorporating hundreds of features derived from content (e.g ., anchor, title, body,

and section), from the link structure of the web, from search engine query logs, and

from other sources. The reported gains are statistically significant.

The gains in retrieval performance from ClickRank on top of a competitive
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Table 5.5: ClickRank delivers statistically significant improvements over a state-of-
the-art baseline.

Query Number of Affected Improvements in Significance Test
Length Queries Queries DCG(1) DCG(5) DCG(10) NDCG p-value

1 1484 1232 0.448% 0.713% 1.002% 0.378% 5.33× 10−2

2 2992 2450 0.560% 0.993% 1.121% 1.071% 4.65× 10−4

3 2153 1722 1.618% 1.076% 1.406% 2.177% 1.10× 10−4

4+ 2412 1937 0.918% 0.861% 0.784% 1.433% 1.61× 10−5

All 9041 7341 1.020% 0.966% 1.105% 1.331% 9.98× 10−5

search engine are summarized in Table 5.5. These are substantial improvements in

the context of commercial web search: our strong baseline incorporates a feature set

of several hundred signals tuned over a long period of time. In addition, 81.2% of

more than 9,000 queries are affected in the alternative experiment, demonstrating

the generality of ClickRank. Furthermore, we observe higher improvements on long

queries in Table 5.5, which are typically much more challenging for search engines.

We show search improvements across different query lengths in Table 5.5.

We experimented with several variants of ClickRank and observed that it

consistently ranks among the top features in variable significance as calculated by

Equation (5.15). For example, in the experiment shown in Table 5.5, the ClickRank

feature is ranked 25th in variable importance among several hundred other features,

significantly higher than the highest-ranking feature derived from page visit counts

(ranked 56th) and a feature based on a propagation of authority through the link

graph (ranked 108th). These results demonstrate the significance of session-based

web importance estimation and show that ClickRank captures novel user preference

knowledge not identified through other modeling techniques.
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(a) Quicklinks for August 10, 2008. (b) Quicklinks for August 16, 2008.

Figure 5.4: Dynamic quicklinks discovered using ClickRank by recency ranking.

5.5.3 Mining Dynamic Quicklinks

Many commercial web search engines supply a set of “quicklinks” – direct

access links to certain pages within the site, in addition to the search result itself.

Typically, these quicklinks are pointers to frequently visited destinations within the

host, mined from query or clickthrough logs. This method, however, has two major

limitations. First, query logs do not contain user activities beyond the scope of

interactions with search engines, which account for the vast majority (more than

95%, as shown earlier) of real web traffic. Second, results computed from query logs

have a strong bias toward old navigational links within the site since they receive

more clicks within the visibility range of search engines.
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We demonstrate a novel application of ClickRank for discovering and display-

ing dynamic quicklinks in web search results through recency ranking. The idea

is to adapt the time range for the indictor function in Equation (5.13) w.r.t. the

content refresh rate found by web crawlers. In addition to normal search results,

the system displays highly ranked web pages computed by ClickRank as quicklinks

to the user.

Figure 5.4 shows search results with discovered quicklinks by the system in

response to the query of “beijing olympic 2008” on two days during the summer

Olympic Games in 2008, using the time range of 24 hours. Quicklinks mined by

ClickRank are displayed alongside of the most frequently clicked navigational links.

The quicklinks effectively capture the event highlights, while the most frequently

clicked navigational links remain unchanged. The quicklink results by ClickRank

are more meaningful in suggesting content that are of potential interest to web users

than those that reflect the structural property of the web site.

5.6 Summary

In this chapter, we expanded the use of general web user browsing information

for discovering session models driven by structured user intents, and proposed user

preference models that incorporate rich session context for web search ranking. We

presented characteristics of general web sessions and revealed interesting user be-

havior patterns mined from sessions. We introduced ClickRank, an efficient, scalable

algorithm for estimating web page and web site importance based on user preference
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judgments mined from session context. ClickRank is based on a data-driven inten-

tional surfer model, and is empirically shown to be an effective and novel ranking

feature even on top of a highly competitive baseline system employing hundreds

of ranking features. We also discussed the advantages of ClickRank compared to

existing importance ranking approaches. ClickRank is efficient to compute, deliv-

ering highly competitive ranking results compared to the state-of-the-art models

based on web graphs. We also demonstrated a promising application that mines

dynamic quicklinks for enhancing web user experience. These promising results on

data-driven user behavior modeling highlight the prominent role of mining web user

behavior in the understanding of user intents and in next-generation web search.
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Chapter 6

Summary of Contributions

This dissertation has addressed two critical challenges in analysis and retrieval

of unstructured, broad-domain document collections—recognition of diverse content

and the use of broad contextual knowledge. Our key contributions include:

1. Obtaining high-level content interpretation for an image offers an important

starting point in many computer vision and image analysis problems. We

proposed a novel approach for document image content categorization, using

image descriptors constructed from a lexicon of shape features. We encoded lo-

cal text structures using scale and rotation invariant lexical words and learned

a concise, structurally indexed shape lexicon. Our approach is extensible and

does not require skew correction, scale normalization, or segmentation. In

two challenging problems—content category recognition of diverse web im-

ages and language identification of documents with mixed machine printed

text and handwriting—our approach’s performance exceeded the state of the

art.

2. We explored a new direction of detecting and matching evidentiary visual

content for document indexing and retrieval. Our study on signature-based

document image retrieval addressed two important problems. First, we pro-

posed a novel multi-scale approach to detect and segment signatures jointly
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from documents. Our approach captures the structural saliency using a signa-

ture production model and is computationally tractable. Second, we treated

the problem of signature retrieval in the unconstrained setting of translation,

scale, and rotation invariant deformable shape matching. We proposed two

novel measures of shape dissimilarity based on anisotropic scaling and reg-

istration residual error, and presented a supervised learning framework for

combining complementary shape information from different dissimilarity met-

rics. Our approach demonstrated state-of-the-art performance in the tasks of

signature matching and signature verification.

3. We presented a model-based approach for recognizing relevant named entities

from unstructured document images by combining rich page layout features in

the image space with OCR text. We demonstrated our named entity extraction

approach in an automated expense reimbursement system and evaluated its

performance on large collections of real receipt images.

4. We proposed a computational framework for incorporating contextual knowl-

edge gained from general web user behavior data for improving ranking and

other web search experience, with the objective of constructing aggregate mod-

els by analyzing individual user sessions. We introduced ClickRank, an effi-

cient, scalable algorithm for estimating web page and web site importance and

laid out its theoretical foundation. ClickRank is shown to contribute signifi-

cantly as a novel web search feature.
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6.1 Possible Extensions

Some suggested additional work has already been discussed at the end of

relevant chapters as extensions that follow naturally from the technical content. In

this section, we consider topics somewhat further afield from the specific topics in

this dissertation but are a continuation of the underlying ideas.

Content Categorization of Printed Text and Handwriting The approach

presented in Chapter 2 worked well in identifying the primary script or language of

a document in the presence of mixed printed text and handwriting. The abstraction

of shape by line segment features and the representation of geometrically invariant

descriptors were shown to be effective on diverse text content. In principle, our

shape lexicon approach can be naturally extended to the problem of categorizing

text and handwriting, given a region of text. We are collaborating with another

Ph.D. student on this topic and the preliminary results are promising. We have

found that the problem of identifying machine printed text and handwriting becomes

extremely challenging when the region contains minimal amount of text. The limited

features observed might be too sparse for reliable classification. It is useful to include

additional features, such as those derived from the uniformity among text. These

cases require further investigation.

Indexing Scheme for Visual Content A versatile indexing scheme for visual

content has been a fundamental challenge in content-based image retrieval. Because

image data is complex and high dimensional, obtaining finer semantic interpretation

124



for compact indexing often presents a difficult challenge. In Chapter 3, we used a

set of feature points extracted from signatures for matching and retrieval, which

is a simple form of indexing. From the retrieval point of view, it is helpful to

include a blend of other useful information in the index, including the text within

the context and image features (e.g ., dimensions, location, and color information).

A flexible engineering design for visual content indexing facilitates query processing

and contributes to the success of content-based image retrieval in practice.

Customized Web Search Using Context The experiments in Chapter 5 demon-

strated two important results. First, a high percentage of sessions are associated

with structured actions (e.g ., checking emails, looking for information, and shop-

ping). Second, using models learned from aggregate user behavior data significantly

improves search quality for a large number of queries. The natural extensions would

be 1) how to predict a structured intent in the current query, and 2) how to de-

velop models from user behavior data to improve customized search results for the

structured intent. The answers to both questions involve learning of models from

aggregate user behaviors (for coverage and freshness) and individual behavior his-

tory.
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Appendix A

Proof of Theorems

Theorem 3.1 Given two intersecting lines t1(x, y) and t2(x, y) in the forms of

p1(x− x1) + q1(y − y1) = 0 and p2(x− x2) + q2(y − y2) = 0, respectively. Let L(x, y)

be the straight line that passes through points (x1, y1) and (x2, y2). Then, the

quadratic equation C(x, y) ≡ l2(x, y)− λt1(x, y)t2(x, y) = 0 represents a conic sec-

tion and the range of λ for which C(x, y) is an ellipse is 0 < λ < λ0, where

λ0 =
4[p1(x2 − x1) + q1(y2 − y1)]

(p1q2 − p2q1)
× [p2(x1 − x2) + q2(y1 − y2)]

(p1q2 − p2q1)
.

Proof. A quadratic equation C(x, y) in two variables x and y can be written as

C(x, y) = ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, (A.1)

where a, b, c, f, g, h are linear functions in λ and the parameter set (x1, y1), (x2, y2),

(p1, q1), (p2, q2). We can rewrite equation (A.1) as

xTAx + 2fTx + c = 0, (A.2)

where x = (x, y)T , f = (g, f)T and the 2× 2 matrix A is

A =

 a h

h b

 . (A.3)

When C(x, y) is an ellipse with center x0 at (x0, y0)
T , (A.2) can be written as

(x− x0)
T A (x− x0) = d, (A.4)
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i.e.,

xTAx− 2xT
0 Ax + xT

0 Ax0 − d = 0. (A.5)

Comparing (A.2) with (A.8), we have that

Ax0 = −f,

giving

x0 = −A−1f , (A.6)

and

d = fTA−1f − c. (A.7)

Equation (A.5) represents a parabola if A is singular, since the center x0 is at infinity.

It represents an ellipse if A is positive definite. When λ = 0, the matrix A is singular.

As λ increases, A becomes positive definite first, and then becomes singular again at

certain positive value λ0. For λ larger than λ0, matrix A is indefinite, and equation

(A.5) becomes a hyperbola. Thus, the range of λ0 for which (A.5) is an ellipse is

the interval 0 < λ < λ0. We can find λ0 by solving

det(A) =

∣∣∣∣∣∣∣∣
a h

h b

∣∣∣∣∣∣∣∣ = 0, (A.8)

where

a(λ) = (y1 − y2)
2 − λp1p2, (A.9)

b(λ) = (x2 − x1)
2 − λq1q2, (A.10)

h(λ) = (y1 − y2)(x2 − x1)−
1

2
λ(p1q2 + p2q1). (A.11)
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One root of (A.8) is zero, and the other root is strictly positive. The positive root

is the required λ0 and is given by

λ0 =
4[p1(x2 − x1) + q1(y2 − y1)]

(p1q2 − p2q1)
× [p2(x1 − x2) + q2(y1 − y2)]

(p1q2 − p2q1)
.

Lemma 5.1 The weight function wr() has the following properties:

(a) wr(i, s) is a monotonically decreasing function w.r.t. the rank r(i) (1 ≤ r(i) ≤ n)

of the event in session s, and wr(i− 1, s)− wr(i, s) = wr(i, s)− wr(i + 1, s),

(b)
∑n

i=1 wr(i, s) = 1, where n is the number of events in session s.

Proof. (a) Clearly wr(i, s) is a monotonically decreasing function because r(i) is

strictly increasing, and for 2 ≤ i ≤ (n− 1)

wr(i− 1, s)− wr(i, s) = wr(i, s)− wr(i + 1, s) =
2

n(n + 1)
. (A.12)

(b)
n∑

i=1

wr(i, s) =
n∑

i=1

2(n + 1− r(i))

n(n + 1)

= n · 2(n + 1)

n(n + 1)
− 2

n(n + 1)

n∑
i=1

r(i)

= 2− 2

n(n + 1)

n(n + 1)

2

= 1.
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