
Practical Parallel Algorithms for Dynamic DataRedistribution, Median Finding, and Selection(Preliminary Draft)David A. Bader�dbader@eng.umd.edu Joseph J�aJ�ayjoseph@umiacs.umd.eduInstitute for Advanced Computer Studies, andDepartment of Electrical Engineering,University of Maryland, College Park, MD 20742July 14, 1995AbstractA common statistical problem is that of �nding the median element in a set of data. This paperpresents a fast and portable parallel algorithm for �nding the median given a set of elements distributedacross a parallel machine. In fact, our algorithm solves the general selection problem that requires thedetermination of the element of rank i, for an arbitrarily given integer i. Practical algorithms neededby our selection algorithm for the dynamic redistribution of data are also discussed. Our generalframework is a single-address space, distributed memory programming model that is enhanced by aset of communication primitives. We use e�cient techniques for distributing, coalescing, and loadbalancing data as well as e�cient combinations of task and data parallelism. The algorithms havebeen coded in Split-C and run on a variety of platforms, including the Thinking Machines CM-5, IBM SP-1 and SP-2, Cray Research T3D, Meiko Scienti�c CS-2, Intel Paragon, and workstationclusters. Our experimental results illustrate the scalability and e�ciency of our algorithms acrossdi�erent platforms and improve upon all the related experimental results known to the authors. Moree�cient implementations of the communication primitives will likely result in even faster executiontimes.Keywords: Parallel Algorithms, Communication Primitives, Median Finding, Selection, LoadBalancing, Data Redistribution, Parallel Performance.1 Problem OverviewConsider the problem of �nding the median of a set of n elements that are spread across a p-processordistributed memory machine, where n � p2. The median is typically de�ned as the element that is the�The support by NASA Graduate Student Researcher Fellowship No. NGT-50951 is gratefully acknowledged.ySupported in part by NSF grant No. CCR-9103135 and NSF HPCC/GCAG grant No. BIR-9318183.1



50th quantile of a set, or the element of rank dn2 e after the data has been sorted in ascending order. Amore general problem is that of selection; namely, we have to �nd the element of rank i, for a givenparameter i, 1 � i � n. Parallel sorting trivially solves the selection problem, but sorting is known tobe computationally harder than selection.Previous parallel algorithms for selection ([9], [23], [31], [25]) and data redistribution ([28], [34])tend to be network dependent or assume the PRAM model, and thus, are not e�cient or portableto current parallel machines. In this paper, we present algorithms that are shown to be scalable ande�cient across a number of di�erent platforms.The organization of this paper is as follows. Section 2 addresses the Block Distributed Memorymodel for analyzing shared memory style parallel algorithms. The Communication Library Primitiveoperations which are fundamental to the design of high-level algorithms are introduced in Section 3.A practical algorithm for the dynamic redistribution of data derived from these primitives is givenin Section 4. A parallel selection algorithm is described and analyzed in Section 5, together withexperimental results on a number of platforms.2 The Block Distributed Memory ModelWe use the Block Distributed Memory (BDM)Model ([26], [27]) as a computation model for developingand analyzing our parallel algorithms on distributed memory machines. This model allows the designof algorithms using a single address space and does not assume any particular interconnection topology.The model captures performance by incorporating a cost measure for interprocessor communicationinduced by remote memory accesses. The cost measure includes parameters reecting memory latency,communication bandwidth, and spatial locality. This model allows the initial placement of data andprefetching.The complexity of parallel algorithms will be evaluated in terms of two measures: the computa-tion time Tcomp(n; p), and the communication time Tcomm(n; p). The measure Tcomp(n; p) refers to themaximum of the local computations performed on any processor as measured on the standard sequen-tial model. The communication time Tcomm(n; p) refers to the total amount of communications timespent by the overall algorithm in accessing remote data. Using the BDM model, an access operationto a remote location takes � + 1 time, and l prefetch read operations can be executed in � + l time,where � is the normalized maximum latency of any message sent in the communications network. Noprocessor can send or receive more than one word at a time.We present several useful communication primitives in [3] and [4] for the transpose (also known as\index" or \all-to-all personalized" communication) and the broadcast data movements. Since thesewill be important primitives for analyzing our parallel algorithms, a summary of these communicationprimitives follows. 2



3 Communication Library PrimitivesThe following are our communication library primitives which are useful for routing most data move-ments. Our algorithms will be described as shared-memory programs that make use of these primitivesand do not make any assumptions of how these primitives are actually implemented. In our analysis,we use the BDM model and the results of [26] and [27].The basic data transport is a read or write operation. The remote read and write typically haveboth blocking and non-blocking versions. Also, when reading or writing more than one element, bulkdata transports are provided with corresponding bulk read and bulk write primitives. The �rsthierarchy of collective communication primitives are similar to those for the IBM POWERparallelmachines [8], the Cray MPP systems [15], standard message passing [29], and communication librariesfor shared memory languages on distributed memory machines, such as Split-C [16], and include thefollowing: bcast, reduce, combine, scatter, gather, concat, transpose, and pre�x. A higherlevel primitive redist is described later for dynamic data redistribution.Note that shared arrays are held in distributed memory across a set of processors. A typicalarray, A[r : s] contains s�r+1 elements, each assigned to a location in a unique processor. Collectivecommunications are de�ned on process groups, namely, the subset of processors which hold elementsfrom array A. For example, the process group is de�ned to have p = s�r+1 processors, logically andconsecutively ranked from 0 to p � 1. In general, nothing is known about the physical layout of A,which is assumed to be arbitrary, i.e. A[r] and A[r+1] might reside on Pa and Pb, for any a 6= b. Forease of describing the primitives below, we normalize A[r : s] by relabeling it as A0[0 : p� 1], where pis de�ned as s � r + 1. Note that this is just a change of variable to simplify the discussion, and nota physical remapping of the data.3.1 Communication Primitive: READ(A[r][x : x+ q � 1])Given a shared k�pmatrix on a p processor partition, theREAD primitive is an operation that allowsan arbitrary processor to request and receive q elements (1 � q � k) from a remote location on Pr.Note that many parallel platforms contain both blocking (one-phase) and non-blocking (two-phase)read function calls. In the BDM model, its complexity is de�ned to be( Tcomm(n; p) � � + q;Tcomp(n; p) = O(1): (1)3.2 Communication Primitive: WRITE(A[r][x : x + q � 1])The complementary data movement, the WRITE primitive, is called when an arbitrary processorwrites q elements (1 � q � k) from a local array to a remote location. Again, many parallel platforms3



contain both blocking and non-blocking write function calls. The BDM complexity is again given inEq. (1).3.3 Communication Primitive: CONCAT(A[0 : p � 1])Given a shared input array A[0 : p � 1] on a p processor partition, distributed with one element perprocessor, the CONCAT Communication Library Primitive returns a p � p array consisting of therearrangement of data such that each processor holds a local copy of the 1� p array A. In the BDMmodel, this CONCAT communication algorithm has the following complexity:( Tcomm(n; p) � � + p� 1;Tcomp(n; p) = O(1): (2)3.4 Communication Primitive: TRANSPOSE(A[0 : p� 1][0 : q � 1])Given a q�pmatrix on a p processor partition, where p divides q, the TRANSPOSE CommunicationLibrary Primitive consists of rearranging the data in the q�p array such that the �rst qp rows of elementsare moved to the �rst processor, the second qp rows to the second processor, and so on, with the last qprows of the matrix moved to the last processor. This primitive is also known as the index operation([8], [11]). The BDM algorithm and analysis for the TRANSPOSE data movement is given in [3]and is similar to that of the LogP model [17]. This TRANSPOSE communication algorithm hasthe following complexity: ( Tcomm(n; p) � � + �q � qp� ;Tcomp(n; p) = O(q): (3)3.5 Communication Primitive: BCAST(A[r][x : x + q � 1])Another useful data movement primitive is BCAST broadcasting primitive. An e�cient BDM algo-rithm is given ([3], [26]) which takes q elements (q � p) on a single processor and broadcasts them tothe other p� 1 processors using just two TRANSPOSE Communication Primitives.An e�cient algorithm for broadcasting no greater than p elements from one processor (Pr) to theremaining p�1 processors is to perform theCONCAT communication primitive, such that processorsonly prefetch data when it is from processor r. This algorithm is identical in complexity to Eq. (2).On the other hand, this problem can be solved using k-ary balanced tree algorithm [26], in which casethe communication would be Tcomm(n; p) � 2 (2� logk p+ p).For larger q, a more e�cient algorithm to broadcast the q elements from a single processor top processors is based on the TRANSPOSE primitive. Processor r holds the q elements to bebroadcast in the �rst column of matrix A. We perform the TRANSPOSE(A) primitive, thus, givingevery processor qp elements. Each processor then locally rearranges the data so that an additional4



TRANSPOSE data movement will result in each processor holding a copy of all the q elements inits column of A [26].The analysis of thisBCAST algorithm is simple. Since this algorithm just performs twoTRANS-POSE Communication Primitives, the complexities of the BCAST Primitive are( Tcomm(n; p) � 2 �� + �q � qp�� ;Tcomp(n; p) = O(q): (4)See [3] and [4] for algorithmic details, performance analysis, and empirical results for these com-munication primitives.3.6 Communication Primitive: PREFIX(A[0 : p � 1];�)Given an associative operator � (e.g. +, �, min, max, etc.) and a shared input array A[0 : p � 1]on a p processor partition, distributed with one element per processor, the PREFIX CommunicationLibrary Primitive coalesces the data such that each processor k contains a single element PS[k] =A[0] � A[1] � : : : � A[k]. Parallel computers can handle this e�ciently when the element PS[k] isassumed to reside on processor k [10], and Split-C implements this as a primitive library function.An analysis for this operation on the BDM model is given in [4]. Since these rounds can be realizedwith an CONCAT primitive operation followed by O(p) local computation of the pre�x-sums, theresulting complexity is ( Tcomm(n; p) � � + p� 1;Tcomp(n; p) = O(p): (5)Note that our algorithm can perform a stronger operation for the same complexity; namely, all ppre�x-sums values can be made available as local elements on all processors. Thus, each processork contains PS[i] = A[0] � A[1] � : : : � A[i], for all 0 � i � p � 1. This is equivalent to callingCONCAT(PREFIX(A[0 : p� 1])).3.7 Communication Primitive: REDUCE(A[0 : p� 1];�)The REDUCE Communication Primitive takes a shared input array A[0 : p� 1] and an associativeoperator �, and on a single processor, returns the value of Pp�1i=0 A[i], where P uses the associativeoperation �. We implement this primitive by calling PREFIX with the array A and the operation �.Instead of using all p pre�x-sums, only the value of PS[p�1] is returned. The BDM model complexityanalysis is identical to Eq. (5).3.8 Communication Primitive: COMBINE(A[0 : p� 1];�)As with REDUCE, the COMBINE Communication Primitive again takes a shared input arrayA[0 : p � 1] and an associative operator �, and returns another 1 � p shared array, consisting of p5



copies of the value ofPp�1i=0 A[i], whereP uses the associative operation �. A simple implementation ofthis primitive calls BCAST(p�1, REDUCE(A[0 : p�1];�)). Another implementation follows fromthe stronger PREFIX primitive. Instead of returning all p pre�x-sums, only the value of PS[p� 1]is returned on each processor. Thus, the BDM model complexity analysis is identical to Eq. (5).3.9 Communication Primitive: GATHER(A[0 : p � 1][0 : s � 1])(SCATTER(A[r][0 : n� 1]))Given an s � p matrix distributed across a p processor partition, where q = sp, the GATHERPrimitive converts the data layout such that the entire sp elements are held in a q � 1 array local toa single processor. A simple algorithm consists of logically replicating the input data such that thereare p copies in contiguous memory, and then calling the TRANSPOSE Communication Primitive.Note that the inverse operation to this primitive is that of SCATTER, where a single column of qelements of data on one processor is divided into p equal-sized chunks and transposed to �ll a qp � pdistributed layout. The analysis for these two primitives is given in Eq. (3).3.10 Implementation IssuesThe implementation of the communication primitives presented in this section can be achieved bylibrary code which need use only the basicREAD andWRITE primitives. However, parallel machinevendors, realizing the importance of fast primitives ([8], [11], [29], and [15]), provide their own librarycalls which bene�t from knowledge of and access to lower level machine speci�cs and optimizations.Communication primitives are considered to be a black box, where the implementation is unim-portant from the user's perspective, as long as the primitives produce the correct results. Figure 1provides an example using the TRANSPOSE and BROADCAST primitives on the IBM SP-2.Note that the \Vendor" primitive library corresponds to a primitive function implemented directlyon top of the respective collective communication library function provided by IBM. The \Generic"primitive library uses our generic (and portable) implementation which call only the READ andWRITE primitives. Note that for both implementation methods, and for both primitives, executiontime is similar, and making use of a vendor's library can improve performance.4 Dynamic Redistribution of DataThe technique of dynamically redistributing data such that all processors have a uniform workload is anessential primitive to many irregular problems, such as computational adaptive graph (grid) problems([30], [19], [13]) including �nite element calculations, molecular dynamics [24], particle dynamics [18],plasma particle-in-cell [20], raytraced volume rendering [22], region growing and computer vision[33], and statistical physics [7], and, as we will show, the selection problem. The running time of6



TRANSPOSE BROADCASTFigure 1: Performance of Communication Primitivesthese parallel algorithms is categorized by the maximum running time of any of the p processors'subproblems. Equalizing the amount of work assigned to each processor is an attempt at minimizingthe maximum single processor running time, and thus, reducing the overall execution time. Here, theinput is distributed across p processors with a distribution that is irregular and not known a priori.We present two methods for the dynamic redistribution of data which remap the data such that noprocessor contains more than the average number of data elements. The �rst method is similar to amethod presented in ([26], [27]), and only a brief sketch will be given. The second method, which isshown to be superior, will be presented in greater detail.4.1 Dynamic Data Redistribution: Method AA simple method for dynamic data redistribution ranks each element in order across the p processors,and assigns each set of q consecutively labeled elements to a processor, where q = lnpm. Note thatwhen p does not divide n evenly, the last processor will receive less than q elements. We refer to thisas Method A.Figure 2 shows a dynamic data redistribution example for Method A. This is a simple examplefor 8 processors and 63 elements, with an arbitrary initial distribution of N = [10; 3; 2; 20; 0; 14; 6; 8].Here, qj = l638 m = 8, for 0 � j � 6, while q7 = 7, since P7 receives the remainder of elements when pdoes not divide the total number of elements evenly.An algorithm forMethod A �rst calls the CONCAT(N [0 : p�1]) communication primitive and7



P7

P6

P5

P6

P4

P3

P2

P1P1

P1

P0

P4
P1

P6

10

3
2

20

0

14

6

8

P0 P1 P2 P3 P4 P5 P6 P7Figure 2: Example of Dynamic Data Redistribution (Method A) with p = 8 and n = 63assigns it to array N 0, a p� p shared array. Another p � p shared array of pre�x-sums of the valuesfrom N , say PS, is derived from N 0 by simple local running sum calculations. Thus, every processorcontains local copies of all pre�x-sums. Suppose elements are logically ranked in consecutive orderfrom 1 to n. In the �nal layout, processor i will hold elements ranked from qi+1 to q(i+1), inclusively.Using the pre�x-sum information, each processor easily determines where these elements are locatedand issues READ primitives for the respective remote locations to �ll the lnp m� p distributed outputarray.The analysis for the dynamic data redistribution algorithm using the BDM model is as follows.The CONCAT primitive requires communication Tcomm(n; p) � � + p � 1 and Tcomp(n; p) = O(1)(Eq. (2)). The local pre�x-sum calculation requires O(p). Determining the location of elements tobe read using the pre�x-sums has computational complexity of Tcomp(n; p) = log p. Assume thatthe maximum number of elements initially on a processor is m, i.e., m = maxifN [i]g. The READprimitive for actually issuing the remote read requests uses Tcomm(n; p) � � + maxnnp + 1; mo andTcomp(n; p) = O�np +m� since each processor fetches at most lnp m elements, but in the worst case, aprocessor is the source of m fetched elements. Since these requests are pipelined, only a single latency8



� is incurred. Since m � np , the dynamic data redistribution algorithm has the following complexity:( Tcomm(n; p) � 2� + maxifN [i]g+ p;Tcomp(n; p) = O(maxifN [i]g): (6)Note that the input distribution N for dynamic data redistribution can range from already balanceddata (N [i] = m; 8i) to the case where all data is located on a single processor (N [i] = N; i = i0;N [i] =0; 8i 6= i0). For a large class of irregular problems such that data are distributed with a certainclass of distributions, it has been shown that the distribution is typically closer to the �rst scenario,(N [i] � m; 8i) [28].4.2 Dynamic Data Redistribution: Method B

D: +1-2+6-8+12-6-5+2

Sinks:     P1, P2, P4, P6

Sources: P0, P3, P5, P7

P4

P4

P6

P6
P2

P1

10

3
2

20

0

14

6

8

P0 P1 P2 P3 P4 P5 P6 P7

P7

P1

P0
P6

P5P3

P2
P1Figure 3: Example of Dynamic Data Redistribution (Method B) with p = 8 and n = 63A more e�cient dynamic data redistribution algorithm, here referred to as Method B, makes use ofthe fact that a processor initially �lled with at least q elements should not need to receive any moreelements, but instead, should send its excess to other processors with less than q elements. Thereare pathological cases for which Method A essentially moves all the data, whereas Method B onlymoves a small fraction. For example, if P0 contains no elements, and P1 through Pp�2 each have qelements, with the remaining 2q elements held by the last processor, Method A will left shift all9



the data by one processor. However, Method B substantially reduces the communication tra�c bytaking only the q extra elements from Pp�1 and sending them to P0.Dynamic data redistribution Method B calculates the di�erential Dj of the number of elementson processor Pj to the balanced level of q. If Dj is positive, Pj becomes a source; and conversely, ifDj is negative, Pj becomes a sink. The group of processors labeled as sources will have their excesselements ranked consecutively, while the processors labeled as sinks similarly will have their holesranked. Since the number of elements above the threshold of q equals the number of holes belowthe threshold, there is a one-to-one mapping of data which is used to send data from a source to therespective holes held by sinks.In addition to reduced communication, Method B performs data remapping in-place, withoutthe need for a secondary array of elements used to receive data, as in Method A. Thus, Method Balso has reduced memory requirements.Figure 3 shows the same data redistribution example for Method B. The heavy line drawnhorizontally across the elements represents the threshold q below which sinks have holes and sourcescontain excess elements. Note that Pp�1 again holds the remainder of elements when p does not dividethe total number of elements evenly.The SPMD algorithm for Method B is described below. The following is run on processor j:Algorithm 1 Parallel Dynamic Data Redistribution Algorithm - Method BShared Memory Model Algorithm.Input:f j g is my processor number;f p g is the total number of processors, labeled from 0 to p� 1;f A g is the M � p input array of elements;f N g is the 1� p input array of nj 's;begin1. N 0 = CONCAT(N);2. Locally calculate the sum n =Pp�1i=0 N 0[j][i];3. Set qk, the equalized number of elements on Pk, equal to lnpm, for 0 � k � p� 2;Set qp�1 = n� (q0 � (p� 1)); Pp�1 receives the remainder of elements when p does not evenlydivide n;4. Set D[k] = N 0[j][k]� qk , for 0 � k � p� 1; This is the di�erential of elements on Pk ;5. If D[k] > 0 then SRC[k] = 1 else SRC[k] = 0, for 0 � k � p� 1;6. If D[k] < 0 then SNK[k] = 1 else SNK[k] = 0, for 0 � k � p� 1;7. For all fkjSRC[k]g,Set SRC RANK[k] equal to the pre�x sum of the corresponding D[k] values;This ranks the excess elements;8. For all fkjSNK[k]g,Set SNK RANK[k] equal to the pre�x sum of the corresponding �D[k] values;This ranks the holes for elements; 10



9. If SRC[j] then9.1 Set lj = SRC RANK[j] - D[j] + 1; the rank of my �rst element;9.2 Set rj = SRC RANK[j]; the rank of my last element;9.3 Set sj = min f�jSNK[�] ^ (lj � SNK RANK[�])g;the label of the processor holding the hole with rank lj ;9.4 WRITE min(SNK RANK[sj ]; rj) excess elements from Pj to Psj ,o�set in A[sj ][?] by N 0[j][sj] + (lj � (SNK RANK[sj ] +D[sj ] + 1));9.5 If Pj still contains excess elements then9.5.1 Set tj = min f�jSNK[�] ^ (rj � SNK RANK[�])g;the label of the processor holding element with rank rj;9.5.2 If tj > sj + 1, then WRITE excess elements to all holes in A inprocessors sj + 1; : : : ; tj � 1;9.5.3WRITE the remaining excess elements to Ptj , o�set in A[tj ][?] by N 0[j][tj].10. Update N [j].endThe analysis for Method B of the parallel dynamic data redistribution algorithm is identicalto that of Method A, and is given in Eq. (6). Note that both methods have theoretically similarcomplexity results, but Method B is superior for the reasons stated earlier.Figure 4 shows the running time ofMethod B for dynamic data redistribution. The top left-handplate contains results from the CM-5, the top right-hand from the SP-2. The bottom plate containsresults from the Cray T3D. In the �ve experiments, on the 32 processors CM-5, the total numberof elements n is is 32K. On the SP-2, the 8 node partition has n = 32K elements, while the 16node partition has results using both n = 32K and 64K elements. The T3D experiment also uses16 nodes and a total number of elements n = 32K and 64K. Let j represent the processor label, for0 � j � p� 1. Then the �ve input distributions are de�ned as� Balanced: Each processor initially holds np elements and hence m = np ;� Linear: Each processor initially holds j 2np(p�1) elements and hence m = 2np ;� Normal: Elements are distributed in a Gaussian curve 1 and hence m � 2:4np for p � 8;� Exponential: Pj contains n2j+1 elements, for j 6= p � 1, and Pp�1 contains n2p�1 elements andhence m = n2 ;� All-on-one: An arbitrary processor contains all n elements and hence m = n.The complexity stated in Eq. (6) indicates that the amount of local computation depends onlyon m (linearly) while the amount of communication increases with both parameters m and p. Inparticular, for �xed p and a speci�c machine, we expect the total execution time to increase linearlywith m. The results shown in Figure 4 con�rm this latter observation.1We sample a mean zero, s.d. one, Gaussian curve at the center of p intervals equally spaced along [�3; 3]. The samplevalues are normalized to sum to n by multiplying each by nsum of the p samples. The value of m can be veri�ed empirically.11



TMC CM-5 IBM SP-2
Cray T3DFigure 4: Dynamic Data Redistribution Algorithms - Method B. The complexity of our algorithm isessentially linear in m = maxifN [i]g 12



Note that for the All-on-one input distribution, the dynamic data redistribution results in thesame loading as would calling a scatter primitive. In Figure 5 we compare the dynamic data redistri-bution algorithm performance with that of directly calling a scatter IBM communication primitiveon the IBM SP-2, and calling SHMEM primitives on the Cray T3D. In this example, we have usedfrom 2 to 64 wide nodes of the SP-2 and 4 to 128 nodes of the T3D. Note that the performance ofour portable redistribution code is close to the low-level vendor supplied communication primitivefor the scatter operation. As anticipated by the complexity of our algorithm stated in Eq. (6), thecommunication overhead increases with p.Using this dynamic data redistribution algorithm, which we call REDIST, we can now describethe parallel selection algorithm.
IBM SP-2 Cray T3DFigure 5: Comparison of REDIST vs. Scatter Primitives5 Parallel Selection - OverviewThe selection algorithm makes no initial assumptions about the number of elements held by eachprocessor, nor the distribution of values on a single processor or across the p processors. We de�ne njto be the number of elements initially on processor j, for 0 � j � p� 1, and hence the total numbern of elements is n =Pp�1j=0 nj .The input is a shared memory array of elements A[0 : p � 1][0 : M � 1], and N [0 : p � 1], whereN [j] represents nj , the number of elements stored in A[j][?], and the selection index i. Note thatthe median �nding algorithm is a special case of the selection problem where i is equal to dn2e. The13



output is the element from A with rank i.The parallel selection algorithm is motivated by similar sequential ([14], [32]) and parallel ([1], [25])algorithms. We use recursion, where at each stage, a \good" element from the collection is chosen tosplit the input into two partitions, one consisting of all elements less than or equal to the splitter andthe second consisting of the remaining elements. Suppose there are t elements in the lower partition.If the value of the selection index i is less than or equal to t, we recurse on that lower partition withthe same index. Otherwise, we recurse on the higher partition looking for index i0 = i� t.The choice of a good splitter is as follows. Each processor �nds the median of its local elements,and the median of these p medians is chosen.Since no assumptions are made about the initial distribution of counts or values of elements beforecalling the parallel selection algorithm, the input data can be heavily skewed among the processors.We use a dynamic redistribution technique which tries to equalize the amount of work assigned toeach processor.5.1 Parallel Selection - Implementation and AnalysisThe parallel algorithm for selection can now be presented, and makes use of the Dynamic DataRedistribution algorithm given in Section 4. The following is run on processor j:Algorithm 2 Parallel Selection AlgorithmShared Memory Model Algorithm.Input:f j g is my processor number;f p g is the total number of processors, labeled from 0 to p� 1;f A g is the M � p input array of elements;f N g is the 1� p input array of nj 's;begin1. If n < p2 thenf1.1 A0 = GATHER(A);1.2 Processor 0 calls a sequential selection algorithm to �nd x, the ith value of A0.1.3 Result = BCAST(x).g2. REDIST (A, N, p);3. Radixsort local elements A[j][0 : N [j]� 1], and �nd the local median;4. B = GATHER of the p median elements, distributed one per processor;5. Processor 0 calculates the median of the medians m, and5.1 x = BCAST(m);6. Each processor j �nds the position k, where k = maxfljA[l; j]� xg,using the binary search technique, and sets T [j] = k;7. t = COMBINE(T;+); 14



This returns the sum t = Pp�1j=0 T [j], i.e. the number of elements on the low side of thepartition;8. If i � t, then N [j] = k and the selection algorithm is called recursivelyon the �rst k elements held in A on each processor.Otherwise, i > t, and selection is called recursively on the last N [j]� k elements held in Aon each processor with the selection index i� k.endThe analysis of the parallel selection algorithm is as follows. For n < p2, in step 1, we solve theproblem sequentially in linear time. For larger n, dynamic data redistribution algorithm is called instep 2 to ensure that there are dnpe elements on processors 0 through p� 2, and processor p� 1 holdsthe remaining n � (p� 1)dnp e elements. At least half of the medians found in step 3 are less than orequal to the splitter. Thus, at least half of the p groups contribute at least d n2pe elements that are lessthan the splitter, except for the last group and the group containing the splitter element. Therefore,the total number of elements less than or equal to the splitter is at least� n2p���12p�� 2� � n4 � npSimilarly, the number of elements that are greater than the splitter is at least n4 � np . Thus, in theworst case, the selection algorithm is called recursively on at mostn� �n4 � np � = 34n+ npelements.Using the complexity of the communication primitives as stated in Section 3, it is easy to to derivethe recurrence equations for the parallel complexity of our algorithm. Solving these recurrences yieldsthe following complexity:8<: Tcomm(n; p) � O�(� + p) log np2 +m�; n � p2;Tcomp(n; p) = O�np +m�; (7)where m is de�ned in Eq. (6) to be maxjfN [j]g, the maximum number of elements initially on anyof the processors. For �xed p, the communication time increases linearly with m and logarithmicallywith n, while the computation time grows linearly with both m and n.The running time of the median algorithm on the TMC CM-5 using both methods of dynamicdata redistribution is given in Figure 6. Similar results are given in Figure 7 for the IBM SP-2. In alldata sets, initial data is balanced.5.2 Data SetsThe input sets are de�ned as follows. If the set's tag ends with 8, 16, 32, 64, or 128, there are initially8192, 16384, 32768, 65536, or 131072 elements per processor, respectively. The values of these elements15



Figure 6: Performance of Median Algorithmare chosen by the method represented by the �rst letter. If the total number of elements per processoris q, and the processor is labeled j, for 0 � j � p� 1, then� D: Duplicate. Each processor holds values [0; q� 1];� U: Unique. Each processor holds values [jq; (j+ 1)q � 1];� R: Random. Each processor holds uniformly random values in the range [0; 231� 1].The last two input sets correspond to an intermediate problem set from a computer vision algorithmfor segmenting images [4]. Set L512 (derived from band 5 of a 512� 512 Landsat TM image) containsa total of 218 elements, which is the same size as the input sets ending with tag 8 on a 32 processormachine. Set L1024, with a total of 220 elements, is derived from a similar 1024� 1024 image, andhas the same number of elements as an input set ending with tag 32 on a 32 processor machine.On the SP-2, results given in Figure 7 are only for Method B, with each timing bar broken intotwo partitions showing the portion of the total running time spent performing data redistributionversus the remaining selection time. As these empirical data show, dynamic data redistribution isonly a small fraction of the total running time, which implies that the data is fairly balanced aftereach iteration. Also, in every case, Method B outperforms Method A.We benchmark our selection algorithm in Table I. The input for this problem, taken from theNAS Parallel Benchmark for Integer Sorting [5], is 223 integers in the range [0; 219), spread out evenlyacross the processors. Each key is the average of four consecutive uniformly distributed pseudo-randomnumbers generated by the following recurrence:xk+1 = axk(mod246)16



Figure 7: Performance of Median Algorithm on the SP-2where a = 513 and the seed x0 = 314159265. Thus, the distribution of the key values is Gaussian. Ona p-processor machine, the �rst np generated keys are assigned to P0, the next np to P1, and so forth,until each processor has np keys.The empirical results presented in Table I clearly show that the selection algorithm is scalablewith respect to machine size, since doubling the number of processors solves the problem in abouthalf the time. This is consistent with the BDM analysis given in Eq. (7). For n = 223 and machinesizes typically in the order of tens or hundreds of processors, computation dominates the selectionalgorithm, and execution time scales as 1p . (For veri�cation, the median of the NAS input set is262198.) Our code for selection, written in the high-level parallel language of Split-C, is ported tothe parallel machines with absolutely no modi�cations to the source code. Even without machine-speci�c (low-level) code optimizations that are typically needed for superior parallel performance, wehave an algorithm which performs extremely well across a variety of current parallel machines such asthe Cray T3D, IBM SP-2, TMC CM-5, and Meiko CS-2.Next we compare our selection algorithm to that of the trivial method of selection by parallelinteger sorting on the TMC CM-5. As shown in Table II, our high-level selection algorithm beats the17



linear scale log scaleFigure 8: Number of candidates per iterationfastest sorting results for the NAS input that are known to the authors. Note that the algorithm in[6] is machine-speci�c and does not actually result in a sorted list.Figure 8 shows that the parallel selection algorithm for R8, R16, and R32, reduces the candidateelements by approximately one-half during each successive iteration. In this plot, p = 32; thus, whenthe data sets shrinks to a size less than p2, i.e. smaller than 1024, a sequential algorithm is employedto solve the corresponding selection problem.6 AcknowledgementsWe would like to thank the CASTLE/Split-C group at UC Berkeley, especially the help and encour-agement from David Culler, Arvind Krishnamurthy, and Lok Tin Liu. Computational support on UCBerkeley's 64-processor TMC CM-5 was provided by NSF Infrastructure Grant number CDA-8722788.We also thank Toby Harness and the Numerical Aerodynamic Simulation Systems Division of NASA'sAmes Research Center for use of their 160-node IBM SP-2-WN.Also, Klaus Schauser, Oscar Ibarra, and David Probert of the University of California, SantaBarbara, provided access to the UCSB 64-node Meiko CS-2. The Meiko CS-2 Computing Facilitywas acquired through NSF CISE Infrastructure Grant number CDA-9218202, with support from theCollege of Engineering and the UCSB O�ce of Research, for research in parallel computing.Arvind Krishnamurthy provided additional help with his port of Split-C to the Cray Research T3D[2]. The Jet Propulsion Lab/Caltech 256-node Cray T3D Supercomputer used in this investigationwas provided by funding from the NASA O�ces of Mission to Planet Earth, Aeronautics, and SpaceScience. Use of the University of Alaska - Arctic Region Supercomputing Center's 128-node CrayT3D was supported by a grant from the Strategic Environmental Research and Development Programunder the sponsorship of the U.S. Army Corps of Engineers, Waterways Experiment Station. The18



Machine PE's BDM Selection AlgorithmIBM-SP2-TN2 4 4.888 2.4016 1.17IBM-SP2-WN 4 4.058 1.9816 1.0132 0.57164 0.367Cray T3D 4 7.058 3.5516 1.8132 0.92964 0.483128 0.275Meiko CS-2 16 3.0332 1.55TMC CM-5 16 5.5732 2.7764 1.68Table I: Execution Times for the High-Level BDM Selection (in seconds) on the NAS IS input setResearchers Time (in seconds) NotesBader & J�aJ�a 2.77 BDM SelectionDusseau [21] 7.67 Radix SortTMC [6] 4.31 Ranking without permuting the dataTable II: Execution Time for Selection on a 32-processor CM-5 on the NAS IS input setcontent of this paper does not necessarily reect the position or the policy of the government and noo�cial endorsement should be inferred.We also acknowledge William Carlson and Jesse Draper from the Center for Computing Science(formerly Supercomputing Research Center) for writing the parallel compiler AC (version 2.6) [12] onwhich the T3D port of Split-C has been based.We would like to acknowledge the use of a 16-node IBM SP-2-TN2, which was provided by an IBMShared University award and an NSF Research Infrastructure Initiative Grant No. CDA9401151.The discussions with David Helman and Simon Hawkin proved helpful, and we greatly appreciatetheir suggestions which improved this research.Please see http://www.umiacs.umd.edu/~dbader for additional performance information.19



References[1] S.G. Akl. The Design and Analysis of Parallel Algorithms. Prentice-Hall, Inc., Englewood Cli�s,NJ, 1989.[2] R.H. Arpaci, D.E. Culler, A. Krishnamurthy, S.G. Steinberg, and K. Yelick. Empirical Evaluationof the CRAY-T3D: A Compiler Perspective. In ACM Press, editor, Proceedings of the 22ndAnnual International Symposium on Computer Architecture, pages 320{331, Santa MargheritaLigure, Italy, June 1995.[3] D. A. Bader and J. J�aJ�a. Parallel Algorithms for Image Histogramming and Connected Com-ponents with an Experimental Study. Technical Report CS-TR-3384 and UMIACS-TR-94-133,UMIACS and Electrical Engineering, University of Maryland, College Park, MD, December 1994.To be presented at the Fifth ACM SIGPLAN Symposium of Principles and Practice of ParallelProgramming, Santa Barbara, CA, July 1995.[4] D. A. Bader, J. J�aJ�a, D. Harwood, and L.S. Davis. Parallel Algorithms for Image Enhancementand Segmentation by Region Growing with an Experimental Study. Technical Report CS-TR-3449 and UMIACS-TR-95-44, Institute for Advanced Computer Studies (UMIACS), Universityof Maryland, College Park, MD, May 1995. Submitted to Journal of Supercomputing.[5] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg,P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga.The NAS Parallel Benchmarks. Technical Report RNR-94-007, Numerical Aerodynamic Simula-tion Facility, NASA Ames Research Center, Mo�ett Field, CA, March 1994.[6] D.H. Bailey, E. Barszcz, L. Dagum, and H.D. Simon. NAS Parallel Benchmark Results 10-94.Report NAS-94-001, Numerical Aerodynamic Simulation Facility, NASA Ames Research Center,Mo�ett Field, CA, October 1994.[7] C.F. Baillie and P.D. Coddington. Cluster Identi�cation Algorithms for Spin Models - Sequentialand Parallel. Concurrency: Practice and Experience, 3(2):129{144, 1991.[8] V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C.-T. Ho, S. Kipnis, and M. Snir. CCL: APortable and Tunable Collective Communication Library for Scalable Parallel Computers. IEEETransactions on Parallel and Distributed Systems, 6:154{164, 1995.[9] P. Berthom�e, A. Ferreira, B.M. Maggs, S. Perennes, and C.G. Plaxton. Sorting-Based SelectionAlgorithms for Hypercubic Networks. In Proceedings of the 7th International Parallel ProcessingSymposium, pages 89{95, Newport Beach, CA, April 1993. IEEE Computer Society Press.[10] G.E. Blelloch. Pre�x sums and their applications. Technical Report CMU-CS-90-190, School ofComputer Science, Carnegie Mellon University, November 1990.20



[11] J. Bruck, C.-T. Ho, S. Kipnis, and D. Weathersby. E�cient Algorithms for All-to-All Commu-nications in Multi-Port Message-Passing Systems. In 6th Annual ACM Symposium on ParallelAlgorithms and Architectures, volume 6, pages 298{309, Cape May, NJ, June 1994. ACM Press.[12] W.W. Carlson and J.M. Draper. AC for the T3D. Technical Report SRC-TR-95-141, Supercom-puting Research Center, Bowie, MD, February 1995.[13] A. Choudhary, G. Fox, S. Ranka, S. Hiranandani, K. Kennedy, C. Koelbel, and J. Saltz. SoftwareSupport for Irregular and Loosely Synchronous Problems. International Journal of ComputingSystems in Engineering, 3(1-4), 1992.[14] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press, Cam-bridge, MA, 1990.[15] Cray Research, Inc. SHMEM Technical Note for C, October 1994. Revision 2.3.[16] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy, S. Lumetta, S. Luna, T. von Eicken,and K. Yelick. Introduction to Split-C. Computer Science Division - EECS, University of Cali-fornia, Berkeley, version 1.0 edition, March 6, 1994.[17] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian,and T. von Eicken. LogP: Towards a Realistic Model of Parallel Computation. In Fourth ACMSIGPLAN Symposium on Principles and Practice of Parallel Programming, May 1993.[18] L. Dagum. Three-Dimensional Direct Particle Simulation on the Connection Machine. RNRTechnical Report RNR-91-022, NASA Ames, NAS Division, August 1991.[19] J. De Keyser and D. Roose. Load Balacing Data Parallel Programs on Distributed MemoryComputers. Parallel Computing, 19:1199{1219, 1993.[20] K. Dincer. Particle-in-cell simulation codes in High Performance Fortran. Report SCCS-663,Northeast Parallel Architectures Center, Syracuse University, Syracuse, NY, November 1994.[21] A.C. Dusseau. Modeling Parallel Sorts with LogP on the CM-5. Technical Report UCB//CSD-94-829, Computer Science Division, University of California, Berkeley, 1994.[22] S. Goil and S. Ranka. Dynamic Load Balancing for Raytraced Volume Rendering on DistributedMemory Machines. Report SCCS-693, Northeast Parallel Architectures Center, Syracuse Uni-versity, Syracuse, NY, February 1995.[23] E. Hao, P.D. MacLenzie, and Q.F. Stout. Selection on the Recon�gurable Mesh. In Proceedingsof the 4th Symposium on the Frontiers of Massively Parallel Computation, pages 38{45, McLean,VA, October 1992. IEEE Computer Society Press.[24] Y.-S. Hwang, R. Das, J. Saltz, B. Brooks, and M. Hodoscek. Parallelizing Molecular DynamicsPrograms for Distributed Memory Machines: An Application of the CHAOS Runtime Support21



Library. Technical Report CS-TR-3374 and UMIACS-TR-94-125, Department of Computer Sci-ence and UMIACS, Univ. of Maryland, 1994.[25] J. J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley Publishing Company, NewYork, 1992.[26] J. J�aJ�a and K.W. Ryu. The Block Distributed Memory Model. Technical Report CS-TR-3207,Computer Science Department, University of Maryland, College Park, January 1994.[27] J.F. J�aJ�a and K.W. Ryu. The Block Distributed Memory Model for Shared Memory Multipro-cessors. In Proceedings of the 8th International Parallel Processing Symposium, pages 752{756,Canc�un, Mexico, April 1994. (Extended Abstract).[28] K. Mehrotra, S. Ranka, and J.-C. Wang. A Probabilistic Analysis of a Locality Maintaining LoadBalancing Algorithm. In Proceedings of the 7th International Parallel Processing Symposium,pages 369{373, Newport Beach, CA, April 1993. IEEE Computer Society Press.[29] Message Passing Interface Forum. A Message Passing Interface Standard. Technical ReportCS-94-230, University of Tennessee, Knoxville, TN, May 1994.[30] C.-W. Ou and S. Ranka. Parallel Remapping Algorithms for Adaptive Problems. In Proceedings ofthe 5th Symposium on the Frontiers of Massively Parallel Computation, pages 367{374, McLean,VA, February 1995. IEEE Computer Society Press.[31] R. Sarnath and X. He. E�cient parallel algorithms for selection and searching on sorted matrices.In Proceedings of the 6th International Parallel Processing Symposium, pages 108{111, BeverlyHills, CA, March 1992. IEEE Computer Society Press.[32] R. Sedgewick. Algorithms. Addison-Wesley, Reading, MA, 1988.[33] C. Weems, E. Riseman, A. Hanson, and A. Rosenfeld. The DARPA Image Understanding Bench-mark for Parallel Computers. Journal of Parallel and Distributed Computing, 11:1{24, 1991.[34] J. Woo and S. Sahni. Load Balancing on a Hypercube. In Proceedings of the 5th InternationalParallel Processing Symposium, pages 525{530, Anaheim, CA, April 1991. IEEE Computer So-ciety Press.
22


