University of Maryland DRUM  
University of Maryland Digital Repository at the University of Maryland

Digital Repository at the University of Maryland (DRUM) >
Theses and Dissertations from UMD >
UMD Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1903/9960

Title: Algorithmic issues in visual object recognition
Authors: Hussein, Mohamed Elsayed Ahmed
Advisors: Davis, Larry
Department/Program: Computer Science
Type: Dissertation
Sponsors: Digital Repository at the University of Maryland
University of Maryland (College Park, Md.)
Subjects: Computer Science
Keywords: Cascade Classifiers
GPU
Graph Cut
Human Detection
Kernel Methods
Object Recognition
Issue Date: 2009
Abstract: This thesis is divided into two parts covering two aspects of research in the area of visual object recognition. Part I is about human detection in still images. Human detection is a challenging computer vision task due to the wide variability in human visual appearances and body poses. In this part, we present several enhancements to human detection algorithms. First, we present an extension to the integral images framework to allow for constant time computation of non-uniformly weighted summations over rectangular regions using a bundle of integral images. Such computational element is commonly used in constructing gradient-based feature descriptors, which are the most successful in shape-based human detection. Second, we introduce deformable features as an alternative to the conventional static features used in classifiers based on boosted ensembles. Deformable features can enhance the accuracy of human detection by adapting to pose changes that can be described as translations of body features. Third, we present a comprehensive evaluation framework for cascade-based human detectors. The presented framework facilitates comparison between cascade-based detection algorithms, provides a confidence measure for result, and deploys a practical evaluation scenario. Part II explores the possibilities of enhancing the speed of core algorithms used in visual object recognition using the computing capabilities of Graphics Processing Units (GPUs). First, we present an implementation of Graph Cut on GPUs, which achieves up to 4x speedup against compared to a CPU implementation. The Graph Cut algorithm has many applications related to visual object recognition such as segmentation and 3D point matching. Second, we present an efficient sparse approximation of kernel matrices for GPUs that can significantly speed up kernel based learning algorithms, which are widely used in object detection and recognition. We present an implementation of the Affinity Propagation clustering algorithm based on this representation, which is about 6 times faster than another GPU implementation based on a conventional sparse matrix representation.
URI: http://hdl.handle.net/1903/9960
Appears in Collections:UMD Theses and Dissertations
Computer Science Theses and Dissertations

Files in This Item:

File Description SizeFormatNo. of Downloads
Hussein_umd_0117E_10924.pdf4 MBAdobe PDF1037View/Open

All items in DRUM are protected by copyright, with all rights reserved.

 

DRUM is brought to you by the University of Maryland Libraries
University of Maryland, College Park, MD 20742-7011 (301)314-1328.
Please send us your comments