Show simple item record

dc.contributor.authorStewart, G. W.en_US
dc.date.accessioned2004-05-31T22:31:16Z
dc.date.available2004-05-31T22:31:16Z
dc.date.created1995-03en_US
dc.date.issued1998-10-15en_US
dc.identifier.urihttp://hdl.handle.net/1903/712
dc.description.abstractQueues of M/G/1 type give rise to infinite embedded Markov chains whose transition matrices are upper block Hessenberg. The traditional algorithms for solving these queues have involved the computation of an intermediate matrix G. Recently a recursive descent method for solving block Hessenberg systems has been proposed. In this paper we explore the interrelations of the two methods. (Also cross-referenced as UMIACS-TR-95-37)en_US
dc.format.extent167256 bytes
dc.format.mimetypeapplication/postscript
dc.language.isoen_US
dc.relation.ispartofseriesUM Computer Science Department; CS-TR-3440en_US
dc.relation.ispartofseriesUMIACS; UMIACS-TR-95-37en_US
dc.titleNumerical Methods for M/G/1 Type Queuesen_US
dc.typeTechnical Reporten_US
dc.relation.isAvailableAtDigital Repository at the University of Marylanden_US
dc.relation.isAvailableAtUniversity of Maryland (College Park, Md.)en_US
dc.relation.isAvailableAtTech Reports in Computer Science and Engineeringen_US
dc.relation.isAvailableAtUMIACS Technical Reportsen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record