Structure-Guided Engineering of a Multimeric Bacteriophage-Encoded Endolysin PlyC

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2019

Citation

Abstract

Emerging antibiotic resistance has become a global health threat. One alternative to antibiotics is bacteriophage-encoded endolysins. Endolysins are peptidoglycan hydrolases produced at the end of the bacteriophage replication cycle resulting in bacterial cell lysis and progeny bacteriophage release. Endolysins are also capable of destroying the Gram-positive bacterial peptidoglycan when applied externally as recombinant proteins. These enzymes typically consist of an enzymatically active domain (EAD) and a separate cell wall binding domain (CBD). Studies have shown therapeutic efficacy of endolysins in vitro and in vivo, with no resistance developed to date. An endolysin from the streptococcal C1 phage, known as PlyC, has the highest activity of any endolysin reported. It also has a unique multimeric structure consisting of one activity subunit (PlyCA) harboring two synergistically acting catalytic domains, GyH and CHAP, and eight identical binding subunits (PlyCB) forming an octameric ring. Groups A, C, and E streptococci as well as Streptococcus uberis are sensitive to the lytic activities of PlyC. In order to harness the potent activity of PlyC for use against other bacteria, we sought to change/extend the host range of PlyC by engineering PlyCB and PlyCA, respectively. We first used a structure-guided mutagenesis method to obtain the single PlyCB monomer subunit, PlyCBK40A E43A (PlyCBm), aiming to study the binding mechanism of PlyCB. Via fluorescence microscopy and binding assays, we determined that PlyCBm retained the host range of the octamer with a much lower binding affinity, which suggests the PlyCB octamer binds concurrently to a specific epitope on the bacterial surface resulting in a tight, stable interaction. Thus, it is not feasible to change/extend the PlyC host range via engineering PlyCB. Next, we proposed a novel design to engineer PlyCA. We successfully created two chimeric endolysins, ClyX-1 and ClyX-2, possessing the synergistic activity of the GyH and CHAP catalytic domains, but extended the host range to include, Streptococcus pneumoniae, Group B streptococci, Streptococcus mutans, and Enterococcus faecalis, all strains previously insensitive to PlyC. Finally, we tested a novel hypothesis that a positively charged catalytic domain could display lytic activity in a CBD-independent manner resulting in a broad host range. Using the PlyC CHAP domain as a model, we converted the net surface charge of the CHAP domain from negative three to positive one through positive seven. Notwithstanding the range of charges, our mutant CHAP domains did not show lytic activity in a CBD-independent manner, suggesting that other factors, like surface charge distribution, need to be considered in such a way of engineering.

Notes

Rights