Locally Recoverable Codes From Algebraic Curves

Loading...
Thumbnail Image

Publication or External Link

Date

2018

Citation

Abstract

Locally recoverable (LRC) codes have the property that erased coordinates can be recovered by retrieving a small amount of the information contained in the entire codeword. An LRC code achieves this by making each coordinate a function of a small number of other coordinates. Since some algebraic constructions of LRC codes require that $n \leq q$, where $n$ is the length and $q$ is the size of the field, it is natural to ask whether we can generate codes over a small field from a code over an extension. Trace codes achieve this by taking the field trace of every coordinate of a code. In this thesis, we give necessary and sufficient conditions for when the local recoverability property is retained when taking the trace of certain LRC codes.

This thesis also explores a subfamily of LRC codes with hierarchical locality (H-LRC) which have tiers of recoverability. We provide a general construction of codes with 2 levels of hierarchy from maps between algebraic curves and present several families from quotients of curves by a subgroup of automorphisms. We consider specific examples from rational, elliptic, Kummer, and Artin-Schrier curves and examples of asymptotically good families of H-LRC codes from curves related to the Garcia-Stichtenoth tower.

Notes

Rights