Diversity in Catalytic Reactions of Propargylic Diazoesters

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2016

Citation

Abstract

Abstract

Title of Document: Diversity in Catalytic Reactions of Propargylic Diazoesters

Huang Qiu, Doctor of Philosophy, 2016

Directed By: Professor Michael P. Doyle, Department of Chemistry and Biochemistry

Propargylic aryldiazoesters, which possess multiple reactive functional groups in a single molecule, were expected to undergo divergent reaction pathways as a function of catalysts. A variety of transition metal complexes including rhodium(II), palladium(II), silver(I), mercury(II), copper(I and II), and cationic gold (I) complexes have been examined to be effective in the catalytic domino reactions of propargylic aryldiazoesters. An unexpected Lewis acid catalyzed pathway was also discovered by using FeCl3 as the catalyst.

Under the catalysis of selected gold catalysts, propargylic aryldiazoesters exist in equilibrium with 1-aryl-1,2-dien-1-yl diazoacetate allenes that are rapidly formed at room temperature through 1,3-acyloxy migration. The newly formed allenes further undergo a metal-free rearrangement in which the terminal nitrogen of the diazo functional group adds to the central carbon of the allene initiating a sequence of bond forming reactions resulting in the production of 1,5-dihydro-4H-pyrazol-4-ones in good yields. These 1,5-dihydro-4H-pyrazol-4-ones undergo intramolecular 1,3-acyl migration to form an equilibrium mixture or quantitatively transfer the acyl group to an external nucleophile with formation of 4-hydroxypyrazoles.

In the presence of a pyridine-N-oxide, both E- and Z-1,3-dienyl aryldiazoacetates are formed in high combined yields by Au(I)-catalyzed rearrangement of propargyl arylyldiazoacetates at short reaction times. Under thermal reactions the E-isomers form the products from intramolecular [4+2]-cycloaddition with H‡298 = 15.6 kcal/mol and S‡298= -27.3 cal/ (mol•degree). The Z-isomer is inert to [4+2]-cycloaddition under these conditions. The Hammett relationships from aryl-substituted diazo esters ( = +0.89) and aryl-substituted dienes ( = -1.65) are consistent with the dipolar nature of this transformation.

An unexpected reaction for the synthesis of seven-membered conjugated 1,4-diketones from propargylic diazoesters with unsaturated imines was disclosed. To undergo this process vinyl gold carbene intermediates generated by 1,2-acyloxy migration of propargylic aryldiazoesters undergo a formal [4+3]-cycloaddition, and the resulting aryldiazoesters tethered dihydroazepines undergo an intricate metal-free process to form observed seven-membered conjugated 1,4-diketones with moderate to high yields.

Notes

Rights