ANTICANCER MECHANISM OF TOLFENAMIC ACID IN COLORECTAL CANCER

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2016

Citation

Abstract

Colorectal cancer (CRC) is the third leading cause of cancer-related death in the United States. Chemopreventive therapies could be effective way to treat CRC. Tolfenamic acid, one of the NSAIDs, shows anti-cancer activities in several types of cancer. Aberrant Wnt/β-catenin regulation pathway is a major mechanism of colon tumorigenesis. Here, we sought to better define the mechanism by which tolfenamic acid suppresses colorectal tumorigenesis focusing on regulation of β-catenin pathway. Treatment of tolfenamic acid led to a down-regulation of β-catenin expression in dose dependent manner in human colon cancer cell lines without changing mRNA. MG132 inhibited tolfenamic acid-induced downregulation of β-catenin and exogenously overexpression β-catenin was stabilized in the presence of tolfenamic acid. Tolfenamic acid induced an ubiquitin-mediated proteasomal degradation of β-catenin. In addition, tolfenamic acid treatment decreased transcriptional activity of β-catenin and expression of Smad2 and Smad3 while overexpression of Smad 2 inhibited tolfenamic acid-stimulated transcriptional activity of β-catenin. Moreover, tolfenamic acid decreased β-catenin target gene such as vascular endothelial growth factor (VEGF) and cyclin D1. In summary, tolfenamic acid is a promising therapeutic drug targeting Smad 2-mediated downregulation of β-catenin in CRC.

Notes

Rights