One-Dimensional Analytical Model Development of a Plasma-Based Actuator

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2014

Citation

DRUM DOI

Abstract

This dissertation provides a method for modeling the complex, multi-physics, multi-dimensional processes associated with a plasma-based flow control actuator, also known as the SparkJet, by using a one-dimensional analytical model derived from the Euler and thermodynamic equations, under varying assumptions. This model is compared to CFD simulations and experimental data to verify and/or modify the model where simplifying assumptions poorly represent the real actuator. The model was exercised to explore high-frequency actuation and methods of improving actuator performance. Using peak jet momentum as a performance metric, the model shows that a typical SparkJet design (1 mm orifice diameter, 84.8 mm3 cavity volume, and 0.5 J energy input) operated over a range of frequencies from 1 Hz to 10 kHz shows a decrease in peak momentum corresponding to an actuation cutoff frequency of 800 Hz. The model results show that the cutoff frequency is primarily a function of orifice diameter and cavity volume.

To further verify model accuracy, experimental testing was performed involving time-dependent, cavity pressure and arc power measurements as a function of orifice diameter, cavity volume, input energy, and electrode gap. The cavity pressure measurements showed that pressure-based efficiency ranges from 20% to 40%. The arc power measurements exposed the deficiency in assuming instantaneous energy deposition and a calorically perfect gas and also showed that arc efficiency was approximately 80%. Additional comparisons between the pressure-based modeling and experimental results show that the model captures the actuator dependence on orifice diameter, cavity volume, and input energy but over-estimates the duration of the jet flow during Stage 2. The likely cause of the disagreement is an inaccurate representation of thermal heat transfer related to convective heat transfer or heat loss to the electrodes.

Notes

Rights