ENERGY-POSITIVE METHODS OF WASTEWATER TREATMENT-- AN EXAMINATION OF ANAEROBIC DIGESTION & BIO-ELECTROCHEMICAL TECHNOLOGY

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2013

Citation

DRUM DOI

Abstract

The results presented here demonstrate plausibility of a hybrid Anaerobic Digester-Microbial Fuel Cell (AD-MFC) system for anaerobic primary (AD) and secondary (MFC) treatment and resource recovery from high-strength wastewater. We empirically determine the treatment efficiencies and energy densities achieved by the AD and MFC processes, both separately and when integrated as primary and secondary unit operations. On the basis of current production, undigested wastewater yielded an stable anodic current of 131 A/m3 when continuously fed to triplicate MFCs (chronoamperometry, Ean, -0.200V vs. Ag/AgCl). Substrate limitations in digested sludge reduced anodic current--36 A/m3, 17 A/m3, and 9 A/m3 were achieved from 6d, 13d, and 21d digestate, respectively. Cathodic limitations severely limited power/energy production by the MFC, with maximum power output of 11 W/m3 (69 mW/m2). Presumably, this was due to mass transport of oxygen reduction intermediates.

When AD and MFC processes are de-coupled (i.e. each fed with undigested wastewater), the energy realized from AD (as biogas) was, on average, 29.6 kJ per m3 wastewater treated (8.2 Wh/m3), whereas the MFC produced, on average, 2.1 kJ per m3 wastewater treated (0.58 Wh/m3). On the basis of COD removal, AD separately generated 9,110 kJ per kg COD removed (2,530 Wh/kg COD) whereas MFC separately generated 0.18 kJ per kg COD removed (0.05 Wh/kg COD). When combined as primary and secondary unit processes with a 6-d digestion period (reaction period which yielded the highest net energy production), the energy output from AD (as biogas) was 23.9 kJ per m3 wastewater; the energy output from MFC (as electrical power) was 2.1 kJ per m3 wastewater.

MFC treatment rates exceeded 90% COD removal, 80% VS removal and 80% TS removal, likely owing to the upflow, baffled reactor design that maximized interaction between wastewater and the anodic biofilm. Results indicate an inverse logarithmic relationship between digester retention time and subsequent MFC current production, i.e. maximal MFC current production is achieved with undigested waste, and an inverse linear relationship between digester retention time and subsequent COD/VS removal in MFCs. Breakthroughs must be made to address cathodic limitations of MFCs, before scaling is practically or economically viable.

Notes

Rights