Digital Repository at the University of Maryland (DRUM)  >
Theses and Dissertations from UMD  >
UMD Theses and Dissertations 

Please use this identifier to cite or link to this item: http://hdl.handle.net/1903/13068

Title: Aerodynamic Design Optimization of Proprotors for Convertible-Rotor Concepts
Authors: Stahlhut, Conor
Advisors: Leishman, J. Gordon
Department/Program: Aerospace Engineering
Type: Thesis
Sponsors: Digital Repository at the University of Maryland
University of Maryland (College Park, Md.)
Subjects: Aerospace engineering
Keywords: bemt
optimization
propeller
proprotor
tiltrotor
Issue Date: 2012
Abstract: Trades in the aerodynamic design of proprotors that could be used to power convertible-rotor aircraft have been examined. The key design challenge is to maximize overall aerodynamic efficiency of the proprotor in both hover and forward flight, while preserving adequate stall margins for maneuvering flight and compressibility margins for high speed flight. To better assess proprotor performance, a new formulation of the blade element momentum theory for high-speed propellers and proprotors was developed. This approach uses an efficient and robust numerical method to solve simultaneously for the axial and swirl induced velocity components in the wake of the proprotor. The efficacy of the approach was validated against measurements of the performance of two NACA high-speed propellers at advance ratios up to 2.5 and tip Mach numbers up to supersonic conditions. The importance of calculating accurately the swirl component of the induced velocity is emphasized. Parametric studies and design optimization studies were performed for different convertible-rotor aircraft platforms with the goal of developing a better understanding of the tradeoffs that would be needed for the development of advanced proprotors to power such convertible-rotor aircraft. The effects that solidity, diameter, rotational speed, blade twist and taper, number of blades, tip sweep, and airfoil characteristics have on proprotor performance were all explored. Particular importance was given to proprotors that may have variable tip speed, and assessing the relative advantages of variable diameter versus variable rotational shaft speed concepts. Proprotors with variable blade twist were also considered. It was found that significant improvements in proprotor performance may only be practically realized by varying one or more of diameter, shaft speed, or blade twist during flight.
URI: http://hdl.handle.net/1903/13068
Appears in Collections:UMD Theses and Dissertations
Aerospace Engineering Theses and Dissertations

Files in This Item:

File Description SizeFormatNo. of Downloads
Stahlhut_umd_0117N_13486.pdf41.96 MBAdobe PDF760View/Open

All items in DRUM are protected by copyright, with all rights reserved.

 

DRUM is brought to you by the University of Maryland Libraries
University of Maryland, College Park, MD 20742-7011 (301)314-1328.
Please send us your comments