University of Maryland DRUM  
University of Maryland Digital Repository at the University of Maryland

Digital Repository at the University of Maryland (DRUM) >
Theses and Dissertations from UMD >
UMD Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1903/13016

Title: Enzymatic Activity Preservation through Entrapment within Degradable Hydrogel Networks
Authors: Mariani, Angela Marie
Advisors: Kofinas, Peter
Department/Program: Bioengineering
Type: Dissertation
Sponsors: Digital Repository at the University of Maryland
University of Maryland (College Park, Md.)
Subjects: Biology
Engineering
Materials Science
Keywords: Enzyme
Hydrogel
Issue Date: 2012
Abstract: This dissertation aimed to design and develop a "biogel;" a reproducible, abiotic, and biocompatible polymer hydrogel matrix, that prolongs enzymatic stability allowing for rapid production of biomolecules. The researched entrapment method preserves enzyme activity within an amicable environment while resisting activity reduction in the presence of increased pH environmental challenges. These biogels can be used in a number of applications including repeated production of small molecules and in biosensors. Five main objectives were accomplished: 1) Biogels capable of maintaining enzymatic functionality post-entrapment procedures were fabricated; 2) Biogel activity dependence on crosslinker type and crosslink density was determined; 3) Biogel composition effects on sustained activity after storage were compared; 4) Biogel activity dependence on charged monomer moieties was evaluated, and 5) Combined optimization knowledge gained from the first four objectives was utilized to determine the protection of enzymes within hydrogels when challenged with an increased pH above 8. Biogels were fabricated by entrapping beta-galactosidase (lactase) enzyme within acrylamide (ACR) gels crosslinked with poly(ethylene glycol) diacrylate (PEGDA, degradable through hydrolysis) or N,N'-methylenebisacrylamide (BIS, non-degradable). Initial hydrogel entrapment reduced activity to 40% in ACR/PEGDA gels, compared to a 75% reduction in initial activity of ACR/BIS biogels. Once entrapped, these enzymes resist activity reduction in the presence of environmental challenges, such as altering the pH from 7 to above 8. When biogels were challenged at a pH of 8, activity retention positively correlated to PEGDA crosslinker density; increasing from 48% to 91% retention in 30 to 40 mole % PEGDA biogels as compared to solution based control which retained only 23%. Retention of activity when perturbed from pH 7 is advantageous for biogel applications including the repeated production of desired small molecules and biosensors. Biogels with positive or negative monomer moiety functionalities were also investigated to increase enzyme-matrix interactions and enzyme stability. The researched entrapment method illustrates the potential to sterically hinder and diffusively impede enzymes from performing their function, potentially enabling the reactivation of the enzyme at a site and time dictated by the user by degrading the crosslinks of the network.
URI: http://hdl.handle.net/1903/13016
Appears in Collections:Fischell Department of Bioengineering Theses and Dissertations
UMD Theses and Dissertations

Files in This Item:

File Description SizeFormatNo. of Downloads
Mariani_umd_0117E_13353.pdf22.48 MBAdobe PDF172View/Open

All items in DRUM are protected by copyright, with all rights reserved.

 

DRUM is brought to you by the University of Maryland Libraries
University of Maryland, College Park, MD 20742-7011 (301)314-1328.
Please send us your comments