Development of a Bio-Inspired Magnetostrictive Flow and Tactile Sensor

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2012

Citation

DRUM DOI

Abstract

A magnetostrictive sensor was designed, constructed, and evaluated for use as flow or tactile sensor. Vibrissa-like beams (whiskers) were cut from sheets of the magnetostrictive iron-gallium alloy, Galfenol. These beams were cantilevered, with the fixed end of the whisker attached to a permanent magnet to provide the whisker with a magnetic bias. The free portion of the whisker was quasi-statically loaded, causing the whisker-like sensor to bend. The bending-induced strain caused the magnetization of the whisker to change, resulting in a changing magnetic field in the area surrounding the whisker. The change in magnetic field was detected by a giant magnetoresistance (GMR) sensor placed in proximity to the whisker. Therefore, the electrical resistance change of the GMR sensor was a function of the bending in the whisker due to external forces. Prototype design was aided using a bidirectionally coupled magnetoelastic model for computer simulation. The prototype was tested and evaluated under tactile loading and low speed flow conditions.

Notes

Rights