Digital Repository at the University of Maryland (DRUM)  >
Theses and Dissertations from UMD  >
UMD Theses and Dissertations 

Please use this identifier to cite or link to this item: http://hdl.handle.net/1903/12703

Title: Long Term Stability and Implications for Performance of High Strength Fibers Used in Body Armor
Authors: Forster, Amanda Lattam
Advisors: Al-Sheikhly, Mohamad
Department/Program: Material Science and Engineering
Type: Dissertation
Sponsors: Digital Repository at the University of Maryland
University of Maryland (College Park, Md.)
Subjects: Materials Science
Keywords: aramid
copolymer aramid fiber
high strength fiber
long term stability
polybenzoxazole
structure property relationships
Issue Date: 2012
Abstract: The objective of this work is to examine the relationship between structure (both molecular and morphological structure) and properties of high strength fibers. The superior performance of the high strength fibers is predicated on the development of a highly aligned molecular structure that allows the polymer to exhibit a superior strength in the axial direction of the fiber. Armor manufacturers have exploited the inherent strength of these materials to develop body armor that continues to defeat ever-increasing threats. However, even an ideal molecular structure will be subjected to a potentially hydrolytic or oxidative environment during use, which can reduce the high strength of these fibers, and impact their ability to protect the wearer. The effect of the wear environment on the molecular structure, which is responsible for the high strength of these fibers, has not been well understood by the scientific community. In this work, the chemical mechanisms of degradation were investigated at the molecular level to understand the effect of the environmental conditions on crystallinity, orientation, and molecular weight. The chemical mechanism and kinetics elucidated from these measurements are used to understand the reduction in strength of these materials after degradation. Hydrolysis was found to be the predominant mechanism of degradation for polybenzobisoxazole and goes to irreversible chain scission. Hydrolysis is also the primary mechanism of degradation for aramid fibers. Ultra-high molecular weight polyethylene (UHMWPE) fibers undergo an oxidative mechanism of degradation, and the activation energy for this mechanism was calculated. Additionally, the release of acids from aramid copolymer fibers, and the performance of these fibers in hydrolytic and thermooxidative environments were studied to determine that hydrolytic degradation is the predominant degradation mechanism for these fibers. Exploratory research was also performed in an effort to improve the stability of UHMWPE fibers by using radiation to crosslink the UHMWPE fibers and increase the temperature of their alpha relaxation. However, this radiation treatment was still found to reduce the overall tensile strength of these fibers. In summary, the wear environment and vulnerabilities of a material to degradation are essential when selecting materials or developing new materials for use in body armor.
URI: http://hdl.handle.net/1903/12703
Appears in Collections:UMD Theses and Dissertations
Materials Science & Engineering Theses and Dissertations

Files in This Item:

File Description SizeFormatNo. of Downloads
Forster_umd_0117E_13099.pdf10.97 MBAdobe PDF951View/Open

All items in DRUM are protected by copyright, with all rights reserved.

 

DRUM is brought to you by the University of Maryland Libraries
University of Maryland, College Park, MD 20742-7011 (301)314-1328.
Please send us your comments