Cytoskeletal Mechanics and Mobility in the Axons of Sensory Neurons

Loading...
Thumbnail Image

Files

Publication or External Link

Date

2011

Citation

DRUM DOI

Abstract

The axon is a long specialized signaling projection of neurons, whose cytoskeleton is composed of networks of microtubules and actin filaments. The dynamic nature of these networks and the action of their associated motor and cross-linking proteins drives axonal growth. Understanding the mechanisms that control these processes is vitally important to neuroregenerative medicine and in this dissertation, evidence will be presented to support a model of interconnectivity between actin and microtubules in the axons of rat sensory neurons. First, the movement of GFP-actin was evaluated during unimpeded axonal outgrowth and a novel transport mechanism was discovered. Most other cargoes in the axon are actively moved by kinesin and dynein motor proteins along stationary

microtubules, or are moved along actin filaments by myosin motor proteins. Actin, however, appears to be collected into short-lived bundles that are either actively carried as cargoes along other actin filaments, or are moved as passive cargoes on short mobile microtubules. Additionally, in response to an applied stretch, the axon does not behave as a uniform visco-elastic solid but rather exhibits local heterogeneity, both in the instantaneous response to

stretch and in the remodeling which follows. After stretch, heterogeneity was observed in both the realized strain and long term reorganization along the length of the axon suggesting local variation in the distribution and connectivity of the cytoskeleton. This supports a model of stretch response in which sliding filaments dynamically break and reform connections within and between the actin and microtubule networks. Taken together, these two studies provide evidence for the mechanical and functional connectivity between actin and microtubules in the axonal cytoskeleton and suggest a far more important role for actin in the development of the peripheral nervous system. Moreover this provides a biological framework for the exploration of future regenerative therapies.

Notes

Rights