DRUM Community: College of Computer, Mathematical & Natural Sciences
http://hdl.handle.net/1903/1586
Tue, 30 Sep 2014 13:46:56 GMT2014-09-30T13:46:56ZUse of a Torsion Pendulum Balance to Detect and Characterize What May Be a Human Bioenergy Field
http://hdl.handle.net/1903/15607
Title: Use of a Torsion Pendulum Balance to Detect and Characterize What May Be a Human Bioenergy Field
Authors: Hansen, J. Norman; Lieberman, Joshua A.
Abstract: Whereas the concept of bioenergy fields is thousands of years old, their existence has never been verified by scientific experiments designed to detect and measure them; so bioenergy fields have no scientific credibility. The instruments used for those experiments typically detect components of the electromagnetic spectrum. The experiments presented here utilize a detector that instead is sensitive to actual “pushing” forces that are capable of altering the momentum of a physical object such as a simple torsion pendulum balance that is suspended above a seated human subject. The experimental design includes a video camera connected to a computer that can detect and measure the pendulum movements with high precision, and store this information in a data file for later analysis. Experiments show that the pendulum detects and measures substantial forces that drastically alter the motions of the pendulum when a subject is seated under it. The following effects are consistently observed with every subject in every experiment performed up to now: 1) Substantial shifts of the center of oscillation of the pendulum; shifts as large as 2.2 cm (7 deg) requiring a force that is equivalent to 45 mg are observed, 2) Many new frequencies of oscillation of the pendulum are introduced when a subject is present, 3) Dramatic changes in the amplitudes of oscillation of the pendulum are observed throughout the experiment; increasing, decreasing, and increasing again, in patterns that resemble chemical relaxation processes, 4) These shifts of the center of oscillation, the new frequencies of oscillation, and the changes in amplitudes all persist for 30–60 min after the subject has left the pendulum. This is inconsistent with the physics of a simple harmonic oscillator such as a torsion pendulum, which should return to simple harmonic oscillation immediately after any exterior disturbances are discontinued. After conducting control experiments to rule out effects of air currents and other artifacts, it is concluded that the effects are exerted by some kind of force field that is generated by the subject seated under the pendulum. We know of no force, such as one within the electromagnetic spectrum that can account for these results. It may be that a conventional explanation for these surprising results will be discovered, but it is possible that we have observed a phenomenon that will require the development of new theoretical concepts. For now, it is important that other investigators repeat and extend our observations.Sat, 01 Jun 2013 00:00:00 GMThttp://hdl.handle.net/1903/156072013-06-01T00:00:00ZAutomating Efficient RAM-Model Secure Computation
http://hdl.handle.net/1903/15552
Title: Automating Efficient RAM-Model Secure Computation
Authors: Liu, Chang; Huang, Yan; Shi, Elaine; Katz, Jonathan; Hicks, Michael
Abstract: RAM-model secure computation addresses the inherent limitations of
circuit-model secure computation considered in almost all previous work.
Here, we describe the first automated approach for RAM-model secure
computation in the semi-honest model. We define an intermediate
representation called SCVM and a corresponding type system suited for
RAM-model secure computation. Leveraging compile-time optimizations, our
approach achieves order-of-magnitude speedups compared to both
circuit-model secure computation and the state-of-art RAM-model secure
computation.Thu, 13 Mar 2014 00:00:00 GMThttp://hdl.handle.net/1903/155522014-03-13T00:00:00ZA Stochastic Approach to Uncertainty in the Equations of MHD Kinematics
http://hdl.handle.net/1903/15523
Title: A Stochastic Approach to Uncertainty in the Equations of MHD Kinematics
Authors: Phillips, Edward G.; Elman, Howard C.
Abstract: The magnetohydodynamic (MHD) kinematics model describes the
electromagnetic behavior of an electrically conducting fluid when its
hydrodynamic properties are assumed to be known. In particular, the MHD
kinematics equations can be used to simulate the magnetic field induced
by a given velocity field. While prescribing the velocity field leads to
a simpler model than the fully coupled MHD system, this may introduce
some epistemic uncertainty into the model. If the velocity of a physical
system is not known with certainty, the magnetic field obtained from the
model may not be reflective of the magnetic field seen in experiments.
Additionally, uncertainty in physical parameters such as the magnetic
resistivity may affect the reliability of predictions obtained from this
model. By modeling the velocity and the resistivity as random variables
in the MHD kinematics model, we seek to quantify the effects of
uncertainty in these fields on the induced magnetic field. We develop
stochastic expressions for these quantities and investigate their impact
within a finite element discretization of the kinematics equations. We
obtain mean and variance data through Monte-Carlo simulation for several
test problems. Toward this end, we develop and test an efficient block
preconditioner for the linear systems arising from the discretized
equations.Thu, 10 Jul 2014 00:00:00 GMThttp://hdl.handle.net/1903/155232014-07-10T00:00:00ZLarge Area All-Elastomer Tactile Arrays for Robotic Skins
http://hdl.handle.net/1903/15490
Title: Large Area All-Elastomer Tactile Arrays for Robotic Skins
Authors: Block, Peter
Abstract: This work demonstrates the first low cost, all-elastomer capacitive tactile arrays compatible with roll-to-roll manufacturing. A new manufacturing process has been developed in which elastomer sheets are covered with a stencil, spray coated with conductive elastomer on one or both sides, and stacked to create the sensor array. These arrays are highly flexible and can withstand large strains. Sensor costs are below $0.12/sensor in small quantities. Some variants in the fabrication process result in a slightly curved sensor so the change in capacitance is highly nonlinear at low pressures, but approaches theoretical sensitivities at higher pressures. The sensors have been determined to be highly sensitive, with a sensor resolution of 0.5 Pa and reveal a repeatable response from 1 kPa up to 120 kPa. A variety of materials ranging in modulus, thickness and texture were investigated for static, dynamic, and spatial location testing.Wed, 01 Jan 2014 00:00:00 GMThttp://hdl.handle.net/1903/154902014-01-01T00:00:00Z