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Abstract

The problem of recovering information from single component linear translation invariant
systems is inherently ill-posed. However, ill-posedness may be circumvented in a multichan-
nel system if the components of the system satisfy the strongly coprime condition. The
signal may be completely recovered from a strongly coprime system by filtering the output
of each channel with a deconvolver, and adding. This approach has been labeled multichannel
deconvolution.

We explore the state of the art for the multichannel theory. We then use sampling theory
to develop an alternative method for creating these systems. Modulation techniques are
then used to create a strongly coprime system, for which the corresponding deconvolvers are
developed. We close by discussing several applications of the theory.



1 Introduction

Linear, translation invariant systems (e.g., sensors, linear filters) are modeled by the con-
volution equation s = f % u, where f is the input signal, u is the system impulse response
function (or, more generally, impulse response distribution), and s is the output signal. We
refer to u as a convolver. In many applications, the output s is an inadequate approximation
of f, which motivates solving the convolution equation for f, i.e., deconvolving f from p. If
the function p is time-limited (compactly supported) and non-singular, we have shown that
this deconvolution problem is ill-posed in the sense of Hadamard (see [16]).

A theory of solving such equations has been developed. It circumvents ill-posedness
by using a multichannel system. If we overdetermine the signal f by using a system of
convolution equations,

si=f*u;,i=1,...,n, (1)

the problem of solving for f is well-posed if the set of convolvers {x;} satisfies the condi-
tion of being what we call strongly coprime. In this case, there exist compactly supported
distributions (deconvolvers)

vi,it=1,...,n
such that
ity Uy =1, (2)
Transforming, we get
prxvy 4 .ot Pk =46, (3)
which in turn gives
S1kU+ ...+ Sk =f. (4)

The theory of deconvolution presented in this paper is contained in a larger group of
results in the theory of residues of analytic functions and their generalities, for example,
intersection varieties. These results have appeared in a series of papers by Berenstein, Gay,
Taylor, Yger et al. (see [2] — [17]), and can be interpreted as results in division problems,
interpolation of analytic functions, analytic continuation, digital to analog conversion, and
complexity theory. For deconvolution and other applications to signal and image processing,
the theory focuses on solving the analytic Bezout equation, i.e., for given holomorphic f; and
¢ satisfying certain growth conditions, solving for holomorphic g; satisfying the same growth
conditions such that

f1'91+-~~+fn'gn:¢~ (5)

For our purposes, we want growth conditions given by the Paley-Wiener-Schwartz Theorem
and ¢ = ¢y, with ¢y — 1 as A — oo (¢, is the transform of an approximate identity).
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Solutions to Bezout equations have yielded results in deconvolution, complexity theory, so-
lutions to systems of PDE’s, theorems about interpolation and continuation of analytic
functions, and results in number theory (see [2] - [17]).

We describe in section 2.1 the strongly coprime condition, and we give examples of sets
of strongly coprime system response functions and their deconvolutions for functions in one
and several variables. In the language of applications, the set of convolvers {y;} models a
linear translation invariant multichannel system consisting of an array of sensors or filters.
The system is created so that no information contained in the input signal f is lost. The
signal f is gathered by this system as {s; = f * u;}. The signals s; are then filtered by the
v; (which have been created digitally, optically, etc., in coordination with the creation of the
system and possibly tailored to be optimized under some constraint) and added, resulting in
the reconstruction of f. We discuss the various classes of impulse response functions modeled
by the theory.

Section 2.2 gives the development of a real-variable method of solving Bezout in a specific
case. Using Shannon sampling in the frequency domain, this development utilizes the zero
sets of the {fi;} as two different sampling rates. Section 3 contains a new method for
creating strongly coprime systems. In particular, a given fixed convolver is modulated a
certain amount, resulting in a strongly coprime pair. The deconvolvers associated with this
system are then created. This approach gives a new technique for constructing multichannel
systems. Section 3.2 gives a development of these deconvolvers using sampling.

We close in section 4 with a discussion of applications of the multichannel theory to
signal and image processing. In a system designed to do signal or image processing, the
deconvolvers could act as preliminary image or signal enhancement operators, restoring high
frequency information. These operators can work simultaneously with other operators which
analyze the image or signal, for example, wavelet operators (see [16]). The work with wavelet
analysis in image processing looks particularly promising. Deconvolution will restore the high
frequency, fine-detail of the image. Wavelet methods can then be used for image compression
and analysis, e.g., for edge detection, motion detection, feature extraction, etc.

We need some background information. For an integrable function f, we define the

-~

Fourier transform f(w) as
Flw) = / f(t) e 2t gt

for t € R” (time), w € R~ (frequency)!. Given an integrable function g on ]I@, the inverse
transform is .
3() = [ g(w) ™ du.
Rn

If f(t) is a compactly supported function, 1 (w) is an analytic function. Moreover, i (w)
analytically continues to all of n-dimensional complex Euclidean space C*. This continuation
gives the Fourier-Laplace transform of f, which is defined by

fQ= | f@e D, cec.

!We define the Fourier transform in this way so that ||f]l. = ||f||z Some “standard formulae”, e.g.,
Shannon sampling as presented in [28], have been appropriately adjusted.
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(See [19], [24], [28], [29] for further reference.)
The process of deconvolution uses some of the basic theory of distributions. Let N denote
the natural numbers, and let Z denote the integers. We define three sets of test functions,

D(R") = C3°(R*) = {¢ € C®°(R™) with compact support},

S(R") = {¢ € C®(R") with lim
-

o0

k
t"%gb(t)l =0}, foralln,k € N, and

E(R") = C*(R").
Each of these has an associated space of distributions, denoted £'(R*), §'(R"), and D'(R").
The action of a distribution 7" on a test function ¢ is denoted by (T'; ¢). The more restrictive
the notion of convergence on the space of test functions, the broader the class of distributions.
We have that
gcscr.

The Fourier-Laplace transform is defined on S’ and &', the classes of tempered and compactly
supported distributions, respectively. The sets of transforms are denoted by &' and &'. For

A € &', the Fourier transform continues as an analytic function to all of C*. This continuation
defines the Fourier-Laplace transform on &', which is given by

X — <)\’ e-—27ri(t,()> )
Properties of the function \ are given in the following.

Theorem 1.1 (Paley-Wiener-Schwartz (PWS)[1]) a.) The Fourier-Laplace transform
of an infinitely differentiable function f with compact support C {|t| < A} C R® is an entire
function f(C) in C* which satisfies the following property:

(P1) For every integer N > 0 we can find a positive constant C = C(N) such that

FQO] < 1 +1¢)™Ne %4 for all ¢ € C™. (6)

Conversely, every entire function in C* satisfying property (P1) is the Fourier-Laplace
transform of a C® function with compact support C {|t| < A} in R™.

b.) The Fourier-Laplace transform of a distribution A with compact support C {[t| <
A} CR" is an entire function A(C) in C* which satisfies the following property:

(Py) There is a positive constant C and an integer N > 0 such that

A(Q)| < C+[¢))Ner 1% for all ¢ € C™. (7)

Conversely, every entire function in C* satisfying property (P2) is the Fourier-Laplace
transform of a distribution X with compact support C {|t| < A} in R".

(See [1], [24] for further reference.)



2 Deconvolution from a System of Convolution Equa-
tions

2.1 An Overview of the Theory

We begin by giving a framework of realistic deconvolution problems. For these problems,
our input data is p and f % u, and our proposed solution is f. For a fixed u, we have
an associated convolution operator C,(f) = f % p. If C, is injective, then the inverse, or
deconvolution operator, is D,(f * u) = f. The deconvolution problems we consider are
for convolvers p which are realistic mathematical models of the impulse response functions
of linear translation invariant systems. Therefore, we exclude distributions which are not
compactly supported (since one would have to integrate for all time to get any information
from such a system), distributions of order k > 1 (since one would have to impose smoothness
conditions on any input functions), and any measures that are singular with respect to
Lebesgue measure (since such a system is impossible to build). If 4 is realizable, then the
mapping C,: L(R*) — R, C L*(R"*), where R, is the range of C,, is continuous and
linear. The most general convolver we will consider is a “well-behaved” measure as defined
below.

Definition 2.1 The distribution y is a realizable convolver if u is a compactly supported
finite Borel measure which is absolutely continuous with respect to Lebesgue measure on R™.

The Radon-Nikodym Theorem gives us that all realizable deconvolvers act as compactly
supported L' functions. The set of realizable convolvers also includes the set of non-singular
probability measures of compact support 7. Given such a measure, the Radon-Nikodym
derivative is the probability density function of =.

We have shown the following.

Theorem 2.1 ([16]) Let u(t) be a realizable convolver. Then for f € C(R"), the con-
volution operator C,(f) = f * p is not injective. Therefore, the deconvolution problem of
recovering f from f x u is ill-posed in the sense of Hadamard.

Remark : The method of proof for the theorem above gives an indication of the “degree of
ill-posedness” for inverting a given convolution operator. The procedure involves examining
the set of all linear combinations of functions g such that supp(g) C 2Z,, where Z, is the
variety defined by the zero set of [i, the Fourier-Laplace transform of p. If u is realizable, Z,
is not empty. Functions g as above will be in the kernel of the operator. The signals modeled
by these functions will all be undetectable by the sensor modeled by u. For example, in one
variable, given any {y = wy + iy € 2, —(y € 2, and so g(t) = e"2™0 cos(2nwyt) , h(t) =
e=2™0t 5in(2nrwyt) are functions such that supp(g(¢)) and supp(R(¢)) are contained in Z,.
Moreover, as there are infinitely many pairs {¢, —(} of zeros in 2, there are infinitely many
such functions (see [16]).

If f € L%R"), we have that C,: L*(R") — R, C L*(R") is injective with ||f * ulj» <
| f||2]|z]]. We have shown that the deconvolution operator D,: R, — L*(R"), defined by
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D,(f *p) = f, is discontinuous. We do this by building a sequence {f,} of L2(R") functions
such that || fu|lo — 00 as n — o0, but || f,, * p||2 — 0 as n — oo, for any fixed realizable
convolver u. Thus, this deconvolution problem violates the third condition of well-posedness.

Theorem 2.2 ([16]) Let p be a realizable convolver. Then for f € L*(R™), the deconvo-
lution operator D,(f * p) = f is an unbounded and therefore discontinuous linear opera-

tor. Thus, the deconvolution problem of recovering f from f * p is ill-posed in the sense of
Hadamard.

These theorems generalize in the following way. If u is realizable, and f € L?(R"), then
the deconvolution operator D, (f*u) = f is an unbounded and therefore discontinuous linear
operator.

We have constructed solutions to the deconvolution problem for various classes of com-
pactly supported convolvers. We have assumed only that our input or initial functions f
are of finite energy. Ill-posedness is circumvented by creating a multichannel system. Each
channel in the system is a convolver, and the system overdetermines the input function with
all of the convolvers in an array chosen so that any information lost by one convolver is
retained by another. The theory of deconvolution discussed in the following paragraphs has
its roots in the work of Wiener [35] and Hormander [25], and has been developed into a
working theory by Berenstein, Taylor, Gay, Yger, et al. [2] — [17]. These methods are both
linear (convolution with deconvolvers) and realizable (the support of the deconvolvers being
contained in the bounded support of the kernels of the convolution equations). Thus, de-
convolution at a point ¢ € R® depends only on data near t. The theory assumes no a priori
information about the input signals. Moreover, the theory can be used to develop a stable
system for complete signal recovery.

The theory starts with the following existence theorem of Hormander.

Theorem 2.3 (Hormander [25]) For the compactly supported distributions {u;}i=, on
R", there exist compactly supported distributions {v;}, such that

R i s o T S V)

if and only if there exist positive constants A and B and a positive integer N such that

(i |m(<)|2)7 > Ae—21rBISC|(1 + KI)—N, CeCr. (8)
=1

Definition 2.2 A set of convolvers {u;}7, that satisfy the inequality in the theorem is said
to be strongly coprime.

We note that the only way a single compactly supported convolver can be strongly
coprime is for it to be a translate of the identity convolver; that is, for it to be the Dirac
delta or a translation thereof. This result is one way to state the general ill-posedness of
single convolution equations under the constraints imposed by the conditions of the theorem.



Definition 2.3 Let {F;}1, be a given set of functions in E'(R*). A solution to the analytic
Bezout equation

> F(Gi(¢) =1 (9)

is a set {G;}, in E(R) that satisfies the equation.

By PW .S and basic properties of the Fourier-Laplace transform, a solution to the analytic
Bezout equation is equivalent to solving for a set {¥;} in & such that i xv; =9, for a
given set {y;} in £'. By Hérmander’s theorem, a strongly coprime set {y;} is precisely a
set for which the analytic Bezout equation has a solution. The strongly coprime condition
guarantees not only that the transforms of the convolvers have no common zeros, but also
that these zeros do not cluster too quickly as |(| — oo. Thus, if a given signal f is
overdetermined by a strongly coprime system of convolution equations,

3i=f*ui? z':l,...,n,

then the problem of solving for f is well-posed. We solve for a set {7;(¢)} of deconvolvers
which satisfy the analytic Bezout equation

> v =1.
i
Taking inverse transforms of both sides of Bezout gives
Z Mi * Vy = 4.
i

The fact that the strongly coprime condition is the inversion of the PWS growth bound
allows us to solve for deconvolvers that are compactly supported. This in turn yields

S1*VL+ ...+ 8, xUy,
= (frp)xvi+... 4 (f*pn) %y
Fo(u*vn) 4+ oo+ fx (g xv)
Fr(purxv + .o+ g *vy)
f*6
f.

Thus, the deconvolution problem can be solved by constructing the Dirac § for a given class
of convolvers. This construction begins with a solution to the analytic Bezout equation. The
inverse transforms of these solutions are compactly supported distributions.

To construct compactly supported deconvolving functions, we _begin by solving a more
general analytic Bezout equation, i.e., for given analytic Iz; and 1 satisfying PWS growth
conditions, solving for analytic 7; satisfying PW S growth conditions such that

IO+ ...+0Tn=1.
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Moreover, we want {E = 121;\, with {ﬁj\ —rlas A — > (;pj\ is the transform of an approximate
identity). This gives us deconvolving functions, i.e., deconvolvers {v; ,} such that p; * vy 4 +
«vo T Ui * Vpy = 1, which in turn give

(frpm) g+ .+ (Fxpn)xvmy=Ffxp=fy.

Then, as ¢ — 4, f, — f in the sense of distributions. The deconvolvers in these imple-
mentable formulae are periodic functions expressed in their Fourier series expansions.
We give an example. Let £ € R, p be a prime number, and let

p1(t) = Xjc,(t) 5 pa(t) = X—yp,vm ()

model the impulse response of the channels of a two-channel system. Thus

(0 = ) | () = TR,

(3], [25) re

denote the zero sets of [1({), h2((), respectively. An examination of the Fourier-Laplace
transforms 1;(¢), i = 1,2, gives that {y;} is strongly coprime (see [6]). We choose an
arbitrarily close approximation 1 of the Dirac ¢ based on certain criteria, i.e., 1 in C* with
support in (—(1+ /p), (1 + +/p)). Then 19(2)| < 7=ter (1+| e forze 21U 2, The smoothness
and the size of the support of 1) guarantee that the deconvolvers are compactly supported.

Theorem 2.4 ([16]) The set

pa(t) = X(-1, (1), po(t) = X[—f,\/p?](t)

is a strongly coprime pair of convolvers. Let f € L*(R) and let ¢ be a C* function with
support in (—(1 + /p), (1 + /D)) such that ¢ > 0 and [, %(t)dt = 1. The deconvolvers
Vi Such that

frp=(f%p)xviy+ (f* ) *x vy
are gien by the formulae

(z) l 2miz(t+/P) _
aslt) = T =i (C (P = ) 3 (0), (10)
(Z) L/ omia(t+1
Iz EZZI = z)d%lh(z) <; (e (t+1) _ 1) X[—l,l](t)> . (11)

The function f x 1 is an arbitrarily close approximation of f which converges to f in the
sense of distributions as supp(y) — {0}.




The deconvolvers in Theorem 2.4 were developed by using the Jacobi interpolation for-
mula and the Cauchy residue calculus in the complex plane (see [16]). It is also possible
to use real-variable methods, in particular Shannon sampling, to create the Viy(t). This is
done in section 2.2.

This development works for other classes of convolvers and filters. The current stock
of convolvers and their associated deconvolvers includes characteristic functions of squares
and (hyper)cubes (see [3], [13], [16]), and characteristic functions of disks and n-dimensional
balls (see [4], [5]). The theory has been expanded in one variable to more general convolvers,
including convolvers modeled by linear combinations of characteristic functions, linear com-
binations of n-fold convolutions of characteristic functions with equally space knots (cardinal
splines), and truncated sinc, cosine, and Gaussian functions (see [17]). We have shown the
conditions for a strongly coprime set of convolvers {yu;} for each of these types of functions,
which, as in the example above, is a condition on the zero sets of the Fourier-Laplace trans-
forms {fz;}. We then have solved for deconvolvers {v; , } such that pi*v1 g +. ..+ pn*Vny = ¥,
where 9 is an approximate convolution identity, by solving the modified Bezout equation
Bi-Vig+ ... [ Upy =P,

In several variables, the formulae for the deconvolvers is simplified by not only solving for
an approximation to the §, but also by strengthening the strongly coprime condition. Let

Z={2€C":i(z) =...=m(2) =0} .
We say that Z is almost real if there exits a constant oz > 0 such that
Z2C{zeC |2 <alog(2+|2])} .
An almost real set is discrete (see [3]). Let B, = {|z| < r}. Define the counting function
n(Z,r) =card{ZN B,} .
Also define the distance function
d(z,2) =min(l,min{|z — {| : ( € Z}).
Let H,(#) denote the supporting function of the convex hull of Usupp w, i.e., for § € R,
Hy = max; max {(z,6) : z € supp ;} .

Definition 2.4 ([3]) A family of m distributions of compact support in R* is well behaved
if there exist positive constants A, B, N, k and a supporting function Hy with 0 < Hy < H,
such that Z is almost real,

n(Z,r) = 0(r),
and

1
2

(i lm(of) > Bd(z, 2)¢™ (1 + [¢])V. (12)



Definition 2.5 ([3]) A well behaved system {u;}, is called very well behaved if there
exist positive constants § and M such that for every z € Z, we have

[J(2)] = B+ =)™, (13)
where |J(2)| = ldet [g%” .

For a very well behaved system, the zeros of the fi; are simple. For convolvers in n-
dimensional Euclidean space R", we have that a very well behaved system needs only n + 1
elements.

Theorem 2.5 ([3]) Given a very well behaved system {u; Y5 and v a C* function with
compact support in R™, there exist compactly supported functions {v;}73 such that for all

(e

) D¢, z) ... DRV, 2)

=2 | i

/w(C)._-SE; J(2)inr1(2) | 94(¢,2) oo DR 2) | "
me) o Q)

where

~F — //J'; (Ch' .. )Ck>zk+17' ‘- ,Zn) — ﬁ;(clw . aCk—l)zk,- .- )zn)
Vi (C) Z) - _ .
(Ch — 1)
The function v can be an arbitrarily close approzimation of the § which converges to the é
in the sense of distributions as supp(y) — {0}.

The formula given in the theorem above gives a solution to a generalization of the Bezout
equation for a very well behaved family. The function % can be chosen arbitrarily close to
the . Again, the formulae for the deconvolvers are functions expanded in Fourier series, not
distributions.

This formula gives the solution to the deconvolution problem when the convolvers are
(hyper)rectangular regions in R”. It has a variety of other applications, including producing
a more explicit version of the Ehrenpreis Fundamental Principle, i.e., the representation of all
the solutions of a system of linear partial differential equations with constant coefficients [12],
characterizations of interpolation varieties, and new versions of gap theorems for Dirichlet
series [12].

Certain problems on deconvolution can be phrased as Pompeiu problems. We give the
following example. Let X;, X, be the characteristic functions of the disks B(0,r1), B(0,7),
and let E be the collection of positive quotients of zeros of the Bessel function J;.

Theorem 2.6 ([4]) Let f be a continuous function in the plane. If there exists an o > 0
such that |7 — §| > Ly~ for all &, € E with £&,n > 0, then the mapping P: f —»
(X1 % f,Xo % f) is injective. Moreover, there erist vy, Ve such that

vk (Xyx f)+vax(Xox f)=f. (15)



In [4], this theorem was also extended to the local problem of reconstructing f in some
disk B(0, R), R > ry + 1o, from its averages on B(0,71), B(0,rs).

The result fits in the larger context of Pompeiu problems. Let Es,..., E,, be compact
sets of positive measure in R", let C(R") denote the space of continuous functions, and
let M(n) be the group of Euclidean motions in R®. Then, the (global) Pompeiu trans-
form associated to the sets Ey,..., E, is the mapping P: C(R*) — C(M(n))™ given by
(Pf)(g) = (ng1 fdz,...., g, fd:c) . The problem is then to give conditions on the sets
Ey, ..., E, to guarantee that the mapping P is injective. The problem also has a local
formulation (see [5]). We can construct the inverse mapping by constructing deconvolvers
which recover the function f, as in the theorem above.

The application of the theory from Pompeiu problems to deconvolution is powerful. These
techniques will allow us to create strongly coprime systems by varying a single element. We
explore this idea further in Section 3.

2.2 Multichannel Deconvolution and Sampling

We now give a construction of the deconvolvers in Theorem 2.4 using the Shannon Sampling
Theorem in the frequency domain. First recall the Shannon Sampling Theorem.

Theorem 2.7 (Shannon [31]) Let f be a function of finite energy on R (f € L*(R)) with

o~

Fourier transform f(w) =0 for all |w| > Q, i.e., f(t) is Q-band-limited.
a.) If T <1/2Q, then for allt € R,

& sin(Z(t —nT))

fO=T 3 feT) =T

(16)

b.) If T <1/2Q and f(nT) =0 for alln € Z, then f = 0.

Functions in L2(R) that are Q-band-limited are the transforms of analytic functions of
finite energy which satisfy Paley-Wiener growth estimates. Such functions are said to belong
to the set PWq(R). The Shannon Sampling Theorem has a dual, in that a given {)-time-
limited function can be sampled in frequency and reconstructed (see [28]).

To give our alternate formulae for the approximate deconvolvers vy y, vy, We use the
Jacobi interpolation formula to get a solution to the modified Bezout equation. We then show
that these deconvolvers satisfy certain PW growth estimates. This in turn allows us to apply
sampling. We use the zero sets of the transforms of the convolvers to give us the sampling

rates. More general modifications of this construction do not use Jacobi interpolation (see
[32, 33]).

Theorem 2.8 Let pu1(t) = X—1,3(t), pa(t) = X 5,ym(t), for p prime. Let f € L*(R) and
let 1 be an even C* function with support in (—(1 + /D), (1 + /D)) such that ¥ > 0 and
22 (t)dt = 1. The deconvolvers v;y such that

Frp=(fxm)xviy+ (f*p2) * vy
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are also given by the formulae

v — L J 1{5(‘7/2\/1_)) 1 (n/z\/—) m(n/ )t
wlt) = (wﬁ,%(“” TR B R ) e

nplt) = (é P TOREDD %) X1y ()

Proof : Let w € R. Since ¢ is even, 9(w) is real. Consider first vy 4. The formula for vy
will follow similarly. Recall that

m tk
2, = Z = { —
b {2}’2 {Zﬁ}’keN

denote the zero sets of 1(¢), Ha((), respectively. By equation (1) from Theorem 3.3 in [16],
we have R ) v
Y(z (ﬁE(C))
V1711) = -~ —~ (t) ¢
zezz:z Nl(z)d%ﬂz(z) (==

(A similar development is given in Section 3 - see equations (21), (22).) We claim that
D1y € PW 5(R). To see this, first note that

b(2)

P EEE]

2E€29

Now, for each z € 25 and | — z| > n > 0 with n < 1/2,/p,

@) 1~ C orypis
LacAS 24 B gl < VP
2 < om0l <
since i € PW\/,z(]IAR). If | — 2| <7, then
fiz(¢)
—>21 < su
O < sup [ 27(0) < el
Therefore, there exists C' > 0 such that
llz(C) < Ce 2m /BIS¢|
(—=z
independently of z € Z,. Thus,
- £2(¢) )(2) 2 /A1
Dyl < sup < CemVPISU
2€2,|C — 2 zéz Ml(z)d—d(llz( z)

11



Note that for each z € 2,,
B[

/R % < /| ¢—2f>n|( — 2 +/|c —z|<n

< o [ IBOF -+ nl 5l

O
(—=z

m(¢)|"
(—=z

d¢

which is bounded independently of z. Therefore,

a (Z _v0)

B
- Z€EZy ,Ul(Z)d—CﬁE(Z)

/Rlﬁl,w(C)lde < Zseuéz/IR c

2
) <

Now, since Z, = {-i—\/_} k € N, and since for n, m € Z\ {0},

Bm/2m) g
(m/2,/P) — (n/2/F) ’

we have that for n € Z \ {0},

Py(=) = %(n/2,/p)
YeB’ T m(n/2/p)

and

z {/;(.7/2\/5) ﬁ2(0) — Z(_l)j+1 1:5(]/2\/]3)
570 (i/2P) 5 Ba(/2y/P) (-1/2VB) 1% mn(i/2yp)

Therefore, by Shannon’s sampling formula we may write

Dip(C) = (Z(_1)1+1 @(3/2\/1_’) ) sin(27r\/5() + Z(—l)""‘l ,Z(n/g\/l—,) Sinﬂ(%/ﬁ( —n) |

D14(0) =

§#0 B/ 2\/1_’) /D¢ n£0 pi(n/ 2\/5) 7r(2\/;5( —-n)
Taking inverse Fourier transforms and simplifying gives

_ (1 i 1$(j/2\/ﬁ) 1 ("/ ‘/—) Gmiln] V)t
nelt) = (mZH)* O T R ) el

Jj#0

Letting p = 1 in the above arguments gives

v (t) = (%B il L5 Sely vl ) X O

j#0 2 270 fia(n

Figures 1 and 2 [20] give simulations of this result.
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Figure 1. C'° Function (¥) Approximate Deconvolver System.

1.a.) Channel 1 Deconvolver v;.

1.b.) Channel 2 Deconvolver vs,.

l.c.) W x py % vy,

1.d.) U x py* vy,

l.e.) U =0« p1 * V1 + W g x 1y, the resulting approximate delta.

1.f.) The Fourier transform, or frequency response, of this system.

Figure 2. Transfer Response for the System.

2.a.) The response of each channel, in the two channel system of Figure 1, to two adjacent
Gaussian pulses (denoted as input signal f).

(g * f —solid , po * f — dotted)

2.b.) Transfer response for the system given in Figure 1. Here the dotted line represents the
input function while the solid line shows the system response.
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Fig 1. The C (¥) Approximate Decomvolver System.
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1f. P=y* m*vi+¥* u, *v,, the resulting approximate delta functional (frequency domain).

Fig 1. The C” (¥) Approximate Decomvolver System.
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2a. The response of each channel, in the two channel system of Fig. 1, to two Gaussian
pulses (denoted as the input signal, f).
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2b. System transfer response, for the two channel system of Fig. 1, when the input function is the
sum of two time shifted Gaussian pulses. The dotted line is the input function, the solid line is the
deconvolved function.

Fig 2. Transfer response for the C* system shown in Figure 1.



To reconcile the apparent differences between (10), (11) and (17), (18), we compute as
follows. Let r1 =1 and ry = \/P- Then

9 — 2sin(nm(r;/r;))
N'l( /2 ]) ('I’Lﬂ'/'f‘j) ’
d __ \ _ 2rjcos(nm)  2ry(=1)"

P M) = ey = Tnfany)
Thus,

Vi (t)

= 'l,’b\(Z) 1 wiz(t+r;
N ;::5 W (_z: (62 (i) — 1) X[-Tjﬂ‘j](t))

_ Z ’lﬁ n/2r] (n/ZT’]) (( 1 ) (627r'i(n/27'j)(t+7'j) _ 1) X[—-rj,rj](t))

n#0 i (n/zrj) 2T] Ccos (’nﬂ') n/27'j
1 (n/2r;) w (( mivn i(n/r)t
- = Ton e 1) X,
%émW%(”ﬂ“e D = 1) Xy (1)

)
- b I (s o) ).

The formula for v, is given by a permutation of the indices.
We can simplify these formulae by noting that

71(0)71(0) + [53(0)73(0) = %(0) . (19)
Since
lim 7 (C) = 24,
(19) will also hold if

7(0) =52,

This gives
1 B(n/2r;)) o
vi o (t .7 m(n/r])t Xi_w. (1) .
zﬂﬁ( ) 2 4,,,1 nZ#O Nz(n/zrj) [ TJ’T]]( )

Again, the formula for v, is given by a permutation of the indices. However, if 7;(0) = 3%(7—(:1,
the deconvolvers are not continuous at =£r;. There is a subtlety in this development. The
two lattices Z; and 25 overlap at z = 0. To uniquely determine the v; ,, we must have either
continuity at the endpoints or must specify 7 4(0) and 7' (0) (see [33]). The deconvolvers
given by (17) and (18) are continuous.
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3 Creating a System Using Modulation

We can use modulation to create a strongly coprime system. This new technique for creating
these systems allows for a greater flexibility in the development of actual systems. The system
is created by making two identical copies of a given sensor, splitting the signal into two the
two separate channels, and appropriate modulation of both the input and output of one
of the channels. These two outputs are then convolved with the appropriate deconvolving
filters and added, resulting in the reconstruction of the input signal.

Let p1 model the impulse response of a given system. Let E;, = e?t We will refer
to E¢, as a modulating function in the time domain. In the engineering literature, multi-
plication by E, is called “Quadrature Amplitude Shift Keying” or “Quadrature Amplitude
Modulation” (see, for example, [26]). “Quadrature” refers to the fact that the real and
imaginary parts of the modulating function are I out of phase with each other.

Lemma 3.1 If f € L? and p is realizable, then
f 5 Bg=Boy [Bqof %1 (20)
Proof : We have that
[*Epp = /o:o F(r)e¥ o=yt — 7)dr
= g2mitot / * g=2midor Fr)u(t — 1) dr

-0

= BB qfxpl. O

Remarks :

1. Thus, to modulate a channel, we modulate the incoming signal before it goes in and
after it comes out of the channel.

2. The lemma holds for more general classes of signals and convolvers.

3.1 Developing a Specific System

We now apply Lemma 3.1 to create a multichannel system for a system with impulse response

w(t) = X-1,y(t) -

The Fourier-Laplace transform of p(t) is

. _ sin(27()
ul((:) - ’/TC .
This has zeros "
le{igkeN} .




Let

Then

and

Theorem 3.1 The functions pi(t), us(t) form a strongly coprime pair of convolvers.

Proof : We want to show that there exist positive constants A and B and a positive integer
N such that

(Z |ﬁi<<>|2) "> AL 4 ¢ forall € € C.
i=1

We need the following.

Proposition 3.1 If |S(¢)| > 1 log(2), then |sin(¢)]| > 2e~3©).

Proof : We have that

|sin(¢)[* = % [ew«) + 7290 2COS(2§R(C))] .

If $(¢) > Llog(2) > 0, then €2%¢) > €236 = 2, and so
30 4 =230 _2¢c0s(2R(()) > 2(1 — cos(2R(C))) + e~ ) > =20 = 2SN
If $(¢) < Zlog(2) < 0, then e=2%) > 2318 = 2, and so
€250 4 7250 — 2cos(2R(C)) > 2 (1 — cos(2R(C))) + 2@ > 29O = =2

Thus, [sin(¢)|? > Le=2%(). Taking square roots proves the proposition. [J

1
1

Proposition 3.2 For any € such that 0 < € < |(()|, there exists c. > 0 such that |sin(¢)| >
=S(¢)
cce™ S,

Proof : We have that

lsin(¢)[* = -i; €250 + €720 — 2cos(2R(())] = %[cosh(Z%(()) — cos(2R())] -

2Not to be confused with the zero set in Section 2.
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Now, cosh(t) is continuous and cosh(t) > 1 for all ¢ € R with equality if and only if ¢ = 0.
Therefore, we have that |sin({)| is bounded below by some constant A, > 0 for all € such
that 0 < e < |¥(¢)|. Combining this observation with the proposition above, we get

1e=S@ if |3(¢)] > Llog(2)
. 2 = 2
[sin(C)] = { 46750 if 0 < e< |S(C)] < blog(2). O

Therefore, if |S(¢)] > 1log(2), [sin(27¢)| > 12 and ‘sin(27r(( - l))l > 17290,
Thus, for |(¢)| > 3 log(2),
q

. 2 . 2 1
ilﬁz‘(()ﬁ _ iz |s1n(27;§)[ N ‘sm( w((l 24))
i=1 ¢l Ty

m 1

r- 2 l2
> L €] ;r|4_142 ]6_4"9(0
dr? | |CIP1¢ - 4
1 2
S 1 (5log(2)) + 1% e—2273()
= | (|

So, let A = 5= [\/(%log(2))2 + 1—16J, B=1,and N = 1. Also, for 0 < e < |S(¢)| < 11og(2),
SIROP 2 &[]0,

R R Rk
So, let A =42, B =1, and N = 1. Finally, for |$({)| < ¢, [sin(27¢)| > 2|1 — cos(4nR(())!.
Thus,

2 4 1 1
~ (V]2 2 2
; > ——[1—COS4W§RC + |1 — cos(4n(R(¢) — = ”
2O 2 — [(HKI)Q | 4r RO + | (4m(R(C) — )
Now, in this last term, the cosines are %-periodic and are exactly % out of phase with each

2
other. Therefore, this term is > (%) = % Thus,

S P 4[]

So, let A = -\7/r—§, B be arbitrary, and N = 1. Note, all estimates are independent of w = R(.
Combining, we let B =N =1 and

&= if0<e< ()|
A‘{fé 0 < |S(0)] < e.

This proves the theorem. [l
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The next step is for us to construct deconvolvers v; 4 such that for an approximate identity
function 1, we have

Pk Vg + flo % Vo = 1.
We will need some computations. We know that

5(C) = sin(27() B(0) = sin(2m(¢ — 1)

¢ m(C-3)

k 1,k

=

These have zeros

Now,
d__ .. 2cos(2n() 1 __

Thus, for z € 2,

a2

" Tl
Also, for z € 25,

mE) =

ul - 7{'|Z| N

Symmetric relationships hold for i3 and its derivative.
Let Kk € N, and let « = k + 3, where 0 < § < 1. We define the Holder space C* of
exponent « as

{f € C*: There exists M > 0 such that |f(’°)(t) - f(k)('r)| <Ml|t—- Tlﬂ} .
We also define the related class D® as
{F: Flw) @ +wl)* € L=},
for w in frequency space. We have that
D*t c C°.
If f has compact support, then
feC*= fe D™

Choose 9 to be in the Holder space C3*7, 5 > 0, with support in (—2, 2) such that ¢ > 0 and
22, ¥(t) dt = 1. We refer to ¢ as the auziliary function of the construction. The conditions
that we impose on 9 make it an approximate identity function. Its smoothness and the size
of its support guarantee that the deconvolvers are compactly supported. For the compactly
supported function 1, we have that if n > 0 and 1 € C3*", then

~ d

|¢(z)| < 1+ |z|)3+"

17



for z € 2, U 2,.

We will assume, for technical reasons, that f € C® N L?(R). We will use a density
argument at the end of this section to extend the result to all of L2. Let

(5.8) = [ 109 dt

be the L? inner product of f and 1, and let

vi9) = [ p(®)vit)dt

denote the dual product between ¢ € £ and v € £'.
We want to show that there exist a sequence of concentric circles I',, with centers at the
origin and radii p, such that lim,_,,, p, = 00 and such that there exists ¢ > 0 with

|sin(27¢)| > ce?™(©)

and

1
sin(2m(¢ — Z))‘ > ce?©)

for all ( € T',,. The choice of such T, is obvious. Let

rn={<;|g|=2”+1 neN}.

8 ?
(This is exactly half-way between the zeros of i1 and fi3.) For € Ty, we have that

¢ { I IS(0)] > Flog(2)
5 ISl < 3log(2)

We choose ¢ = 3?—, which is independent of n.
Theorem 3.2 The set

pa(t) = Xi—y(®) 5 pe(t) = E1X-1,y()

is a strongly coprime pair of convolvers. The deconvolvers vy such that

(£,0) = (v1s f % 1) + (vap; £ * pa)

are given by the formulae

_ b(z) (B8O

nsl = ¥ =t (F9) o, @
@ (mEQY

ot = %z () o 22



Also,

¥(t) — & as supp(y) — {0}
and

%(¢) — 1 as supp(v)) — {0}

in the sense of distributions.

Remark : The formulae for the v; are a type of Lagrange interpolation, where the analytic
functions 7;(¢) were constructed from known values on a discrete set of data. The Cauchy
residue theory is used to convert these discrete values to analytic functions, in the same
fashion as sampling formulae convert discrete functions to analog functions. The formulae
are also related to classical Shannon sampling, with the functions

1 (ﬁ:(o)v ©

hi(2) \( -2

acting as interpolators.

Proof : We have that

sin(2n¢) __ . sin(27(¢ — 1))
mC ) N2(C) - 7T( _ i_)

d__
d_Cluz(z) # 0)

(€)=

I

and

|13
2]

d_gm(z)

for z € Z;. R
Since () is entire, we may represent ¢ by the Cauchy integral formula, i.e.,

S P(z)
'/’(C)—% Fnz_cd'z‘

Lemma 3.2 For ¢ € {¢:|¢| < pn},

vE) = mEO) X

2€2Zy m(z)d_(ﬁ;(z)

_ bz) (B
+ B2(C) l%;} 2 (2) £ 1 (2) (( z)
+ R.(0),

where R,({) — 0 as n — oo.
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Proof :

W0 = o f M
_ Ly BEREEE - TORORC) ,
it (-0 GEEE)
+ 3 OR0 §, s ds

1 () [HER)E) - FC
2mi Jr,, (z = ¢) (B (2)2(2

1 ¥(2)
+ 2_7”’”1(()“2(() fi;n (Z — (l/l/\l(z)ﬁ\z(z)) dz.

Now, for z € 2, or z € 2Z,, (fi1(2)f2(2)) = 0, but EdE (11 (2)2(2)) # 0. Thus, the function
W) (2 (=)= Qi Q)]

1 .
(m) has simple poles at z € Z; U Z,. Therefore, =0 (a7 (2) has simple
poles in Z; U 25, and so by the Cauchy Residue Theorem,
I FEBE - ROBEE)
Ta (2 = Q) (I (2)2(2))
)

o 0 (@O
= 1O 2 o LmnE (c—z>

|l|<Pn
— )(2) (m«))
+ uz(C)IZ% SOiE@ \C—2)°
Let ~
Fal0) = 50RO §, gty

To finish, we need to show that R,({) — 0 as n — oco. We were able to choose I',, such
that for z € T,

|sin(27z)| > \/_ 29l
1
sin(27(z — Z))’ > ?e%lgz'.

By the Paley-Wiener-Schwartz Theorem, there exist positive constants C and A, with A < 2
and C = C(N), such that for any positive integer N and any z € C,

|B(2)] < Q1+ 2]y,

20



Therefore, for ¢ fixed and any fixed N > 0,

-~

RO < BOBO5r| $. | oy |
< BRI 53 5 |t 20

< [ (Q)me(C)] sup
z€ly

C(L+ |2) =" pue®r A1 Izll
(ll2l = 1¢Il) (zetmie)

(e C(1+p:)Np} 27r(A—2)pn:|
mOmE) | e .

Since A < 2, this last quantity — 0 as n —» 00. This completes the proof of the lemma.
O

To finish the proof of the theorem, we need to show that the series expressions in the
previous lemma converge in the sense of £, that is, as analytic functions which satisfy the
PW S growth estimate.

Lemma 3.3 The series
)(2) m«)) - .
— o~ y L,i=1,2,0#]
gz:,. 155 (2) g i (2) (C—Z Y

lz|<pn

converge i &'.

Proof : If i;(z) = 0, then

d 2
Lm0 ==, i=1,2
‘dc“( =1
Also, if Ti;(2) =0,
— |
Iiu](z)| - 7F|Z| y 1 #J

The functions 7z;(¢) are entire. Therefore, on every compact subset K of C, there exists
a constant c¢(K) such that |G;(¢)| < ¢(K) for all ¢ € K. The function 9(t) is C**" for n > 0,
and therefore its transform will decay on the real axis. In particular, for z € Z; U 25, by
PW S there exists a constant d = d(3 + n) such that

~ d
|¢’(Z)‘ < A
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Therefore,

2= m)
l/,’l} 2) g i(= ‘ )| 1€ — 2]

< md 122 c(K)
= AT K-
c(K)md 1 . o,
— L] = 172) tFJ-
A" T =12 7

In particular, for { fixed,

9] @)l _ (constan),
mEgmE[C-A T T

Thus, by the Weierstrass M-test, the series

(2) me)| .. .
Z ‘ d ‘ :gi( )I Z,]=1,2,275j
i@ k)

both converge uniformly on compact subsets of C, and therefore represent entire functions.
Now, for each z € Z; and | — z| > € > 0 with € < 1/2, there exists a constant q;

EQ)
(—=z

1 __ a;
< ImQ] < e

If |¢ — 2| < ¢, then

Q)| -
-z~
Therefore, there exists x; > 0 such that
Bi(€)
(—z

sup
[¢—2|<e

d__
d—cui(4)|-

< et

independently of z € Z;.
From the estimates above, we have that the series

()
55 (2) &7 (2)|

D

z2€Z;
lz|<pn
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is bounded by some B. Therefore,

ZEZ;

2 |m()gm@)| 1< - 4

< Bre?m¥,

Thus, the series converges in £'. This completes the proof of the lemma and the theorem.
O

We now give explicit formulae for the deconvolvers without using inverse transforms.

Lemma 3.4 If i(#) = 0, then
(9]

-5 e

where

(T(B); ) = —2ni /R ( /0 ’ ¢(t)e2ﬂﬂ(t—w>dt) u(z) da.
Proof : Since T € &',
T = (T;e7%)
= =271 / * ( /0 : e'z"it(e2"w(t“m)dt) u(zx) dz

o [T A [T —2mitic-B) —oming
= —2mi /_oo (/0 e dt) p(x)e dz
00 —2mixd ,2wizf __
_ /oo ( 2m,e e(C ﬂﬁ) 1 M(x)e—zﬂmﬁ dr
B u( —2ma:( B ,LL iU 27rw:ﬂ
Y S vy b S
_ B - B(B)
(C B)
A
(K

since f(f) = 0. O
Lemma 3.5 For u; as above and z € 2;, i, = 1,2,

B¢) =
-2~ T;(¢)s
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where 1
t) — ; (62m’z(t+1) _ 1) X[—l,l](t) ’

s

(ezm'(z—%)(tﬂ) - 1) e(”/2)itx[_1,1] (t)-

Proof : For z € Z,,

o0

(Ti;9) = —2mi /_ - ( /Ox@b(t)emz(t_m) dt) X-1,(x) dz

1 T ,
= —omi [ 1 ( /0 b(t)e2r2) dt) do

0 ¢
— . 2miz(t—zx)
2mi /_1 (w(t) /_16 dx) dt
1 1
_ : 2riz(t—x)
+—2mi /0 (v,b(t) [e dx) dt

t

1, ..
— <_ (627I'12(t+1) — 1) X[—l,l](t); 'l/)> .

z

For z € 2,
o0 T . ;.
Tiwy = —2mi [ ([T at) o in_ @) de
1 T , ;
= —2mi / 1 ( / W (t)ermiett=o) dt) e /D g
-1 \Jo
0 . i . 1
= 27m'/1 <¢(t)e2’”zt/16_2’”((2_3):”) d:v) dt
1 . t .
. 271_1/0 <1/)(t)62mzt /_1 6—27"((z_%)$) da;) dt
1 i(z—1 i
_ <m <627r1,(z—4)(t+1) _ 1) 6(’lr/2) tX[—l,l](t);¢> . O

Z—y

These last two lemmas give us explicit formulae for the v; in the time domain. We add
that the estimates given in the proof of the previous theorem give us that 1 only needs to
be a compactly supported C3*" function for > 0, because this is sufficient to guarantee
that the series representations for the v; converge to compactly supported functions.

Theorem 3.3 Let f € C°NL*(R), and forn > 0 let ¢ be a function with support in (—2,2)
in the Holder space C3%" such that v > 0 and [%, ¥(t)dt = 1. Given

pa(t) = Xi—,(t) , pe(t) = e%itx[—l,l](t),

the deconvolvers vy such that
Frp=(F*m)*viy+ (f*p) %oy
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are given by the formulae

Vl,'cb(t) — Z A(;/)(zg\(z) (( 1 1) (e2ﬂ'i(z—%)(t+1) _ 1) e(ﬂ/2)itx[_1,1](t)) ’ (23)

ZE€EZy Hi d_d(NZ 7 — 3
¥ (2) 1/ omizers
I/2,1,b(t)= :—A(_ emz+)_1 X_’ t), 24
zezz‘?l N2(Z)d—'2u1(2) Z ( ) -1,1(t) (24)

The function f % is an arbitrarily close approximation of f which converges to [ in the
sense of distributions as supp(y) — {0}.

To finish this section, we need to show that the deconvolution procedure given in Theorem
3.3 works for general L? functions. We first note that C*°NL2(R) is dense in L?. We also note
that the functions v; 4 are compactly supported and continuous. Therefore, since f*u; € L?,
[rpuixviy € L? with

1f * pi * viglla < [1f * pallll vl
Similarly,

1f * lla < £ ll2ll ]l

Define the operator
D: L*(R) — L*(R)

by
D(f)y=f*—(frp g+ f*puokvay).

The operator D is clearly linear. The estimates above give us that D is bounded, and
therefore continuous. Since D = 0 on C*® N L?(R) and is continuous, D = 0 on L?(R). Thus,
the deconvolution procedure works for general functions of finite energy.

Remark : Thus, given a fixed system, it is possible to modify the system via some easily
performed transform to create a strongly coprime system, and consequently recover the
complete input function. This modulation technique works for creating strongly coprime
systems for B-spline systems. In a similar vein, given X[_1,1jx[-1,1], & strongly coprime system
is created by rotating the square by § and % (see [13]).

Remark : The deconvolvers are not unique. For example, given two deconvolvers 14 and
Vs, A € R, and a compactly supported function 7, the pair
W=+ A*lUg, Ug =Vs— A%y

is also a set of deconvolvers. The non-uniqueness of the deconvolvers allows one to de-
velop deconvolvers that are optimal with respect to a given condition. In [13], deconvolvers
that optimize the signal to noise ratio of the signal relative to white Gaussian noise were
constructed. Other types of noise could be dealt with in similar fashion.

Remark : We can also use a family of zero-mean Gaussians for our auxiliary function . If

1 2 /1022
£ = et/
Pa(t) Y
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Figure 3. Gaussian Function G Approximate Deconvolver System.

3.a.) Channel 1 Deconvolver v;.
3.b.) Channel 2 Deconvolver v,.
3.c.) Gx*py xvy.

3.d.) G * Mo * Vs.
3.e.) G =G« Uy * v + G * U * vy, the resulting approximate delta.

3.f.) The Fourier transform, or frequency response, of this system.

Figure 4. Transfer Response for the System.

4.a.) The response of each channel, in the two channel system of Figure 3, to two adjacent
Gaussian pulses (denoted as input signal f).

(u1 * f —solid , us * f — dotted)

4.b.) Transfer response for the system given in Figure 3. Here the dotted line represents the
input function while the solid line shows the system response.
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Figure 3. The Gaussian (G) approximate deconvolver system.
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Figure 4. Transfer response for the system of Figure 3.



then
w}\ (C) _2,"2A2<'2
We restrict A > 4, and so twice the standard deviation is < 2. As A — oo 1p,\ — 1 in the
sense of convergence in S (15,\ is the transform of an approximate identity).
Convergence estimates must now be in terms of &' and &'. The deconvolvers developed
by using 1,(t) are not compactly supported. However, from a numerical viewpoint, they
are “essentially compactly supported,” in that for ¢ > 4\, the numerical values of the de-

convolvers essentially equal zero. Figures 3 and 4 repeat the simulation of Figures 1 and 2
using a Gaussian auxiliary function.

3.2 Sampling Revisited

We first need to recall the following theorem.

Theorem 3.4 ([32]) Let F be a function of finite energy on [T, T] (F € L?[-T,T]). Then

F(t 2T %F n/2T) 2m(n/2T)tX[ TT]( )
ne

Moreover, given any sequence {antnez C C with 3, |an|> < 00 (i.e., {an} € £2), then there
exists a function F € L?[-T,T] such that

F(n/2T) = ay

for alln € Z. In fact,

F(t QT %F ’I’L/2T) 2m(n/2T)tX[ T]( )
ne

Also,

nez nEZ

where the sums converge in L*[-T,T].

Let £k € N. The zeros of 1;(¢) = Eﬂﬂﬂl are 2; = {:i:%}, while for ps(t) = Eyn =

¢
e2®uy (t), ma(¢) = %"(ﬁg_—i and so Z, = {% + %} Thus, for n € Z,

soz= () fol}

Now, the construction of the deconvolvers in the previous section assumed that the auxiliary
function v had support C (—2,2). A construction of 1 via Shannon sampling in frequency
is possible. The Nyquist rate is % - exactly the same rate as Z;|J Z;. These observations
yield the following.
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Theorem 3.5 Let f € L*(R), and for n > 0 let 1 be a function with support in (=2,2) in
the Holder space C*t" such that ¥ > 0 and [ 4(t)dt = 1. Given

pi(t) = Xoay(t) 5 pe(t) = €3 X1y (2),
the deconwolvers v;y such that

Fxp=(f*m)*vig+ (f * ) * oy

are given by the formulae

1 1/) ) (n/z)) mnt 2zt
el =3 Kt 2 R @+ ) ]e Ko, )
1/27¢( % [ X#%) "1[)2 mnt] X[—l,l](t)’ (26)
where (1/4) + (/2))
e s D((1/4) + (/2
= 2 VT R G+ )
ey B00/2)
K= L")

The function f %1 is an arbitrarily close approximation of f which converges to f in the
sense of distributions as supp(¢) — {0}.

Proof : By Theorem 3.1, y; and y, form a strongly coprime pair. Therefore, there exists a
positive constant C and a positive integer N such that for all w € R,

BW)|+ |Fw) 2 C A+ )™

Thus, since jiy (%) =0 and Jip (% + %) =0 foralln € Z\ {0},

(1 n -N
i I
ai(3+5)|zca+n

“2(2)1 >C 1+

for all n € Z \ {0}. Moreover, estimates developed in the proof of Lemma 3.3 give us that
N = 2. Now, since v is a function in the Holder space C3*7,

~ d
|¢(z)\ < A
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for z € Z: U 25, and so
P((1/4) + (n/2)) <50, 3 $((1/4) + (n/2))

2

%% Ai((1/4) + (n/2)) a0 | B((1/4) + (n/2)) <00,
$(n/2) d(n/2) [
Z|mem)| °°’n2¢0 B2y =

Hence, the sums in the definitions of v, 4, 5, converge absolutely and uniformly, and the
coefficients of the deconvolvers are in £2.
Now, for z € Z,|J 25,

A1(2) 73 (2) + a(2) g (2) = B(2), (27)

for if z € Z;, i(z) = 0 and 7j4(2) = ;%((%’ for i # 4, 14,5 =1,2. Also, for z =0 and z = 1/4,
the formulae agree. Thus

i (n/4) 73 (n/4) + Ba(n/4)75(n/4) = $(n/4) (28)
for all n € Z. Letting
F = o + ming — 9,
we have that F is continuous and satisfies the hypotheses of Theorem 3.4. Therefore, F' = 0,
which proves the result. [

We can again reconcile the apparent differences between the deconvolver formulae by
computation. We have for z € 2,

d __ 200s (27r (z - %))
d<u2 z (z ~ %) .
Thus,
V(1)
= "Z(Z) 1 1 27ri(z-—%)(t+1) _ (/2)i
zéz Ai(2) 4 (2) ((z -1 <6 1) e tX[—l,u(t)>

_ ‘Z(z) (z - %) 1 eQm’(z—%)(tH) _ 1) eln/2)it )
zezz:z /71(2) 2 cos (27r (z — %)) ((z - %) ( 1) X-1,1(t)
_ 1 1/4 +(n/2) ) .
- Ez, /AT 2y Y

—Z P((1/4) +(1/2) 4y
2 w70 B ((1/4) + ( n/2))

_ = Z#:o Z (11//i)+ ((2//22)))) ((_1)n+1 + em’nt) e IVX L (1)

e2mi(n/2)(t+1) _ ) 1) et/ 2)”X[_m] (t)

"
" (e

m nemint _ )6(77/2)itx[_1,1(t)
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Similarly, for z € 2Z;

d%[ﬁ(z) _ 2c0s(@2mz)
Thus,
va,y(t)
= '(/)(Z) L l 27r1.z(t+1)
- % neEae G 1) X-10(8)
= w ) Z l e2miz(t+1) _
N ZEZZ: //’2 ) (Z 1) X[—l,ll(t))
= 35 1/] 2mi(n/2)(t+1) _
- ge;)m ”/2 (e W~ 1) X (®)
— Z '(/I(n/2 ( Jrint _ 1) o "

)
1 (/) n+1 mint
= 5; (/)( )™ 4 ™) Xp_y,y(£) -

Remark : The development of the deconvolvers v; 4 via the Jacobi interpolation formula and
Cauchy residue theory is now a well-developed tool, given the theoretical base established
by Berenstein, Gay, Taylor, Yger, et al. It has a flexibility in the one-variable case that
allows for its use in not only general deconvolution problems, but also in the development of
filters, etc. The key to this is the flexibility of the Cauchy residue calculus in one-variable.
As is well-known, the story in several variables is different. Berenstein, Gay, Taylor, Yger,
et al. have given us working formulae for specific situations. There are no general formulae
in several variables for the computation of the needed residues.

Sampling lies juxtaposition these methods. It does not have the tremendous flexibility
of the complex methods in one variable, but it also does not carry with it comparable
computational difficulties in several variables.

Both methods will be used in further developments of the theory.

4 Discussion of Applications

We now give a brief discussion of the applications of these deconvolution techniques, and
refer to [13], [14], and [15]. We also mention [17]. The multichannel theory was extended
to a much broader class of convolvers in that paper, and was used to design filters in some
specific cases.

Deconvolution is applicable in any area of signal and image processing in which it is
desirable to know a high degree of detail from the input data. A multichannel system
consisting of an array of strongly coprime convolvers {4;} guarantees that any information
about the input function f lost by one convolver is retained by another in the array as
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s; = f * p; for some 3. The signals s; are then filtered by the v; and added, resulting in
the reconstruction of f. Again, the methods are both linear (convolution with deconvolvers)
and realizable (the support of the deconvolvers being contained in the bounded support
of the convolvers), with deconvolution at a point ¢ € R* depending only on data near ¢.
The theory assumes no a priori information about the input signals. The non-uniqueness
of the deconvolvers allows one to develop deconvolvers that are optimal with respect to a
given condition. We also have precise knowledge about digital versions of the deconvolvers,
although the sampling rate over those domains still depends on the bandwidth of the received
signals, which equal the bandwidth of the original signal. Additionally, we can combine this
linear procedure with other linear procedures which extract information about the signal,
e.g., discrete wavelet transforms (see [16]).

4.1 Image Processing

Deconvolution will be very useful in image processing. In a system designed to perform
image analysis, the deconvolvers would act as an initial enhancing filter for the image. After
this process, algorithms such as edge detection, etc. would then be working with data arbi-
trarily close to the original data, instead of data in which the high frequency information
has been lost. Further, these various types of processing could possibly be combined with
deconvolution so as to produce the results in a single processing step.

The problem of getting an exact representation of a pixel image is addressed in [13] and
[14]. Here, an image is restored from the data gathered by a set of three photo-detectors.
Each photo-detector is modeled as the integrator over time of an image f in a compact region
of R2. Thus, the model for the image data is s = f * u, where u is the characteristic function
X of some bounded region in R?. The strongly coprime system is i1 = X[_1,1x[-1,1] » M2 =
Xy vax=vava > B8 = X 3,Bx(=vEVa):

To deconvolve, it is necessary to multiplex in time, i.e., the time interval used for inte-
gration will be subdivided and used to obtain finer spatial sampling in multiple channels.
Although no larger time interval is required, the use of the time interval for multiplex-
ing means that we are not deconvolving the time integration but rather depending upon
a relative time invariance of the signal over this interval. Two levels of multiplexing are
required for detector arrays: one multiplexing is to approximate a convolution, the second is
to obtain multiple convolutions. The deconvolvers used are two dimensional versions of the
deconvolvers described in Section 2. These deconvolvers are separable.

For these detector applications an important topic both for hardware development and for
models of vision is the design of multiplexed arrays. We want to know how to best arrange
in a single array a set of approximately strongly coprime detectors, how to best “scan,”
“dither,” or “sweep” the array in order to obtain the desired oversamples, and how to use
these measurements for deconvolution and signal estimation as well as for the determination
of information about the scene (source of the signal) from the signal. Associated with these
questions are the obvious ones of knowing or estimating temporal and spatial phase of sample
points in the array. Because of such considerations, the strongly coprime pair of convolvers
given by the characteristic functions of two disks with suitably different radii have nice
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properties as well as obvious analogs in biological retinas. The strongly coprime condition
is satisfied with only two disks of radii r1, ro, with r1/r2 = k € N. Moreover, two such disks
can be positioned concentrically, which eliminates one phasing problem. In addition, this
configuration may reflect the arrangements in biological retinas that are described by Marr
[27] as the “central surround” response used (presumably) for edge detection.

The results on deconvolution are for distributions with compact support. The transforms
of these distributions are entire functions and hence have at most isolated zeros. Further,
these results are about a set of these distributions such that no isolated zero is common to
all in the set. Obviously, these deconvolution results are not applicable to convolvers b that
are band-limited. They are, however, applicable to the compactly supported convolvers in
a system: if the u;, ¢ =1,...,n, are strongly coprime and each y; is the composition of all
of the compactly supported convolvers of the i** linear system, and if b is the composition
of the band-limited convolvers for each system, then, with deconvolvers v;, i = 1,...,n,

*_ 1 b=* p; % v; = b. That is, we can reconstruct up to the band-limited response.

A primary class of sensor components that are modeled by band-limited convolvers is the
class described by an aperture response function for electromagnetic or acoustic waves, such
as the point spread function of an optical lens. (The transform rather than the convolver
has compact support.) The band-limit is the diffraction limit. To apply the theory, we
would want compactly supported strongly coprime convolvers in a system, and construct up
to the band-limit. An example is given by an optical imaging system for incoherent light
(e.g., a telescope). The system can be modeled as the convolution I; = h x I, [23] , where
I is intensity, and the impulse response is determined by the pupil function of the system
(the modulus squared of the Fourier transform of the pupil function). In many cases, the
impulse response is radially symmetric and given by Bessel functions. For these systems, the
techniques used in solving the Pompeiu problem will have application.

To extend the knowledge of the image past the band-limit requires both an assumption
about the image and some other techniques in reconstruction. For systems in which the
impulse response is not compactly supported, to get information from the system at any
given point, one would have to assume that most of the information contained in the image
is contained in a compact region. (Otherwise, to know the system output anywhere requires
integration over all of R%.) If we assume that the image is compactly supported (certainly
a reasonable assumption for most imaging systems), the transform of the image or image
intensity is an entire function in two complex variables. The transform of the system gives
us that we know this analytic function inside some ball, determined by the system band-
width. Moreover, the function is corrupted by noise. To extend our knowledge of the image
past the system bandlimit, we could in theory analytically continue to a larger disk, and
transform back. We are examining the following technique for reconstructing the function,
which involves using the Bergman reproducing kernel. Since the image is L? and compactly
supported, its transform is L? and entire. The transform can therefore be expanded in terms
of the kernel - if t = u+iv, f(z) = [ [ f(t)K(2,t)dudv. The Bergman basis functions wy for
a ball are known explicitly. We can expand the original function in a ball larger than that
determined by the bandwidth. Computation of the Bergman representation is approximated
by expanding f in terms of these basis functions, i.e., f = Y i_; = (f,wk) wi. In this com-
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putation, the integration will have the effect of averaging the noise. Exact estimates need to
be computed.

4.2 Signal Processing

Multichannel deconvolution theory will be useful in radar and sonar. The sensor components
which are modeled by compactly supported convolvers include nearly all of the various pulses
used in radar and sonar. The convolvers describe the modulation of the transmitted carrier
frequency and the deconvolvers describe the filters used to process the demodulated return
signal. The deconvolution theorem says in this context that if a set of strongly coprime
pulses are transmitted and if each pulse of the set is separately processed, then the strongly
coprime pulses can be completely compressed, without sidelobes, in the case of zero (or
known) doppler shift. The types of pulses that can be used to make up a strongly coprime
set include any of the pulse types used in radar and sonar. Pairs of strongly coprime chirps
is one such example. This feature suggests that it is possible to consider the enhancement
of the range resolution performance of pulse types that perform optimally relative to some
other performance measure.

The discussion of band-limited convolvers given above is also applicable. The beam
pattern for acoustic transducers and for radar antennas, as well as for the real and synthetic
arrays of either, is a convolver whose Fourier transform is band-limited. To apply the theory,
one would want compactly supported strongly coprime convolvers in a system.

We can apply the deconvolution theory to the acoustic signals f(z,y,2,t). The output
signals s;(z,y, 2,t) = f(x,y, 2, t)*;(z, y, z) vary with both the position of the sensors and the
time at which the signal is received. The theory has to be suitably modified to take this prob-
lem into account. Ideally, we would like to have a Green’s function G(z,y, 2, t; Zo, Yo, 20, to)
for our model of the atmospheric effects. Then, f(z,y,z,t) is represented by an integral
equation with terms G, the initial signal information g and %‘tl = h, atmospheric inhomo-
geneity A, and boundary conditions - namely, f = % % g+ G *h+ [*G*x A+Dboundary terms.
If the boundary effects can be repressed, then

0G(z,y,z,1)
ot

¢
+ G(x,y,z,t)*h(x,y,z)+/G(x,y,z,r)*A(a:,y,z,T).

f(z,y,2,1) * g(z,y,2)

If f is overdetermined by a strongly coprime set of sensors {u;} as {s; = f * u;}, convolution
with the sensors is over the spatial variables z, ¥, z. Then for v; as above, and as convolution
is over z, 9, 2,

Zsi*’/i = Z<%*9+G*h+/tG*A)*ui*ui
= ot

i=1
oG ¢ =
= (W*g+G*h+/G*A)*Z(ui*yi)

1=1
¢
= %*f+G*h+/G*A.
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Finally, in [17], we explored the idea that by using duality and by solving a modified
Bezout equation, we may use filters in one class to create a filter in another, for example,
to create an ideal low-pass filter out of truncated sinc filters. If u; = X{—a;,e5] SINCqy;, for
@, = 1, oy = /p, p prime, then {y;, uo} form a strongly coprime pair. Therefore, in the
time domain, we can solve the modified Bezout equation

sine(C) = fi1 - 7+ iz - 7.

Transforming produces the filter X_g ).
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