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An Iterative Methodfor SolvingLinear InequalitiesG. W. Stewart�abstractThis paper describes and analyzes a method for �nding nontriv-ial solutions of the inequality Ax � 0, where A is anm�n matrixof rank n. The method is based on the observation that a certainfunction f has a unique minimum if and only if the inequalityfails to have a nontrivial solution. Moreover, if there is a solution,an attempt to minimize f will produce a sequence that will di-verge in a direction that converges to a solution of the inequality.The technique can also be used to solve inhomogeneous inequali-ties and hence linear programming problems, although no claimsare made about competitiveness with existing methods.1 IntroductionIn this paper we will describe an iterative method for �nding nontrivialsolutions of the homogeneous inequalityAx � 0; (1:1)where A is an m � n matrix of rank n. The underlying idea is simple.Consider the function f(x) = 1T exp(�Ax); (1:2)where 1 = (1 1 . . . 1)T and for any vector yexp(y) = (ey1 ; ey2 ; . . . ; eym)T:We shall show that one of two things must happen if f is minimized iter-atively. If (1.1) has no nontrivial solution, then f has a unique minimum,to which the iteration must converge. On the other hand, if (1.1) has a�Department of Computer Science and Institute for Physical Science and Technology,University of Maryland, College Park, MD 20742. This work was supported in part bythe Air Force O�ce of Sponsored Research under grant AFOSR-82-0078.



Linear Inequalities 2nontrivial solution, then the iterates will grow unboundedly in such a waythat a solution can be computed from them.Unfortunately, in at least one application it is not enough to compute justany solution. Speci�cally, any linear programming problem can be reducedto a sequence of inhomogeneous inequalities of the formAx � b: (1:3)This inequality has a solution if and only if the homogeneous inequality A �b0 1 ! y� ! � 0 (1:4)has a solution with � > 0. If we apply the technique sketched in the lastparagraph to (1.4), there is a possibility that it might return a solution with� = 0, in which case we cannot say whether (1.3) has a solution or not. Thusif one wants to apply our method to linear programming, it is necessary toshow that it not only computes a solution of (1.1) but that it computesone for which as many components of Ax as possible are positive. It is thisnecessity that accounts for most of the technical detail in the paper.In 1952, Motzkin [3] proposed �nding solutions of (1.1) by minimizing(1.2). The author [5] rediscovered the method independently in connectionwith problems in the statistical analysis of categorical data (for the connec-tion see [1, Ch.2]), and the algorithm has actually been incorporate into aset of programs for solving such problems.In the next section we shall introduce some preliminary notation andde�nitions. In x3 we will show that if f does not have a minimum, anydiverging sequence that drives f to its in�mum will produce the requiredsolution. The problem then reduces to �nding an iterative method thatdiverges properly, and we will show in x4 that one such is Newton's methodwith line searches. The paper concludes with some general observations.2 PreliminariesSince we must maximize the number of positive components of Ax, let usintroduce the following notation. Let A be partitioned by rows in the form0BBBB@ aT1aT2...aTm 1CCCCA ;



Linear Inequalities 3and for any vector x set P(x) = fi : aTi x > 0g;Z(x) = fi : aTi x = 0g;N (x) = fi : aTi x < 0g:Thus P , Z , and N comprise the indices for which the components Ax arepositive, zero, and negative.If x is a solution of (1.1), then N (x) = ;. If x1 and x2 are solutions,then x1 + x2 is a solution andP(x1 + x2) = P(x1) [ P(x2);Z(x1 + x2) = Z(x1) \ Z(x2):From this it follows that there is a solution x� of (1.1) for which the cardinal-ity of P(x�) is greatest. We will call this a maximally positive (mp) solution.mp solutions are not unique, but they all have the same sets P� = P(x�)and Z� = Z(x�).A transformed version of the inequality will be needed in the sequel. Letx� be a mp solution of (1.1). Without loss of generality we may assume thatthe rows indexed by Z� are the last rows of A; i.e.,A =  A1A2 ! ; (2:1)where A1x� > 0 and A2x� = 0. Let V = (V1 V2) be an orthogonal matrixwith the columns of V1 spanning the null space of A2.1 If we setBij = AiVjand ui = V Ti x; (2:2)then the inequality (1.1) becomesBu �  B11 B120 B22 ! u1u2 ! � 0: (2:3)Here both B11 and B22 have full column rank. Moreover, the mp solutionu� corresponding to x� satis�es B11u�1 > 0 (2:4)and u�2 = 0:1If P� = ;, both A1 and V1 will be void matrices.



Linear Inequalities 43 Diverging to a solutionIn this section we shall investigate the relation of the function f de�ned by(1.2) to the homogeneous inequality (1.1). Speci�cally, we will show thatif (1.1) has a nontrivial solution then the members of any sequence fxkgsatisfying limk!1 f(xk) = inf f(x)must ultimately provide an mp solution.We begin by stating some elementary facts about the function f . Clearlyf is bounded below by zero. Its gradient and Hessian are given byf 0(x) = �AT exp(�Ax) (3:1)and f 00(x) = ATD(x)A; (3:2)where D(x) = diag(e�aT1 x; e�aT2 x; . . . ; e�aTmx):Since D(x) is positive de�nite and A is of full column rank, f 00(x) is positivede�nite. If follows that f is strictly convex and can have at most one localminimum, which, when it exists, is also a global minimum. Necessary andsu�cient conditions for the existence of a minimum are contained in thefollowing theorem.Theorem 1 The function f has a minimum if and only if the inequality(1.1) has a nontrivial solution.Proof. First suppose that (1.1) does not have a nontrivial solution. Toshow that f has a minimum, it is su�cient to show [4, x4.3.3] that for anynorm2 limkxk!1 f(x) = +1. For any x with kxk = 1 set�(x) = minfaTi x : i 2 N (x)g:Since (1.1) has no solution, N (x) is nonempty and �(x) < 0. Clearly � iscontinuous. Hence ' = supkxk=1�(x) < 0:2Throughout this paper, k �k will stand for both a vector norm and a submultiplicativematrix norm.



Linear Inequalities 5Now for any x 6= 0, f(x) � Xi2N (x)e�aTi x � e�'kxk;which establishes the �rst part of the theorem.Next suppose that (1.1) has a nontrivial solution x�. Partition A as in(2.1) so that A1x� > 0 and A2x� = 0. Then for any point x,lim�!1 f(x+ �x�) = lim�!1 1T exp(�A1x� �A1x�) + 1T exp(�A2x� �A2x�)= 1Te�A2x < f(x);which shows that x cannot be a minimum of f .Theorem 3.1 shows that if we apply a globally convergent minimizationalgorithm to f it will converge whenever (1.1) does not have a nontrivialsolution. The proof of the theorem also suggests that when (1.1) does havea unique solution the iterates may diverge along a direction that is itselfa solution. In the next section we will show that this is actually true ofNewton's method with line searches. However, since our goal is to �nd mpsolutions, we must �rst establish the conditions under which a divergingsequence furnishes an mp solution.For the rest of this section we assume that (1.1) has a mp solution x�with a corresponding partition (2.1) of A. The problem is best approachedthrough the transformed inequality (2.3). If we de�ne u by (2.2) and setg(u) = 1T exp(�Bu)= 1T exp(�B11u1 � B12u2) + 1T exp(�B22u2)� g1(u) + g2(u2); (3:3)then g(u) = f(x), so that g serves the same role in the transformed inequality(2.3) as does f in (1.1).Lemma 2 The system B22u2 � 0 (3:4)has no nontrivial solution. Hence g2 has a unique minimum
 = g2(u02): (3:5)



Linear Inequalities 6Proof. Suppose u2 is a nontrivial solution of (3.4). Because B22 is of fullrank, B22u2 is nonzero and hence has at least one positive component. From(2.4) it follows that there is a � > 0 such that�B11u�1 +B12u2 > 0:Hence the vector ~u =  �u�1u2 !is a solution of (2.3) with P(u�) a proper subset of P(~u), which contradictsthe fact that u� is an mp solution. The existence of a unique minimum nowfollows from Theorem 3.1.Since g1 and g2 are both positive, the number 
 de�ned by (3.5) is astrict lower bound on g(u). In the next theorem we will show that it isactually the in�mum of g(u). Moreover, any sequence of points that drivesg(u) to 
 must have properties that enable us to extract an mp solution.Theorem 3 The function g satis�esg(u) > inf g(v) = 
: (3:6)Moreover, if fukg is any sequence with g(uk) ! 
, then with u02 de�ned by(3.5) uk2 ! u02 (3:7)and B11uk1 > Of� ln[g(uk)� 
]g: (3:8)Proof. We have already noted that 
 is a lower bound for the values of g.If we set u� =  �u�1u02 ! ;then lim�!1 g(u�) = lim�!1 g1(u�) + g2(u02)= 0 + 
 = 
;which establishes (3.6).Now let fukg be any sequence with g(uk)! 
. Then by (3.3) we musthave g2(uk2)! 
, which in view of Lemma 3.2 establishes (3.7).



Linear Inequalities 7Finally, since g1(uk) � g(uk)� 
, it follows thatexp(�B12uk2)� exp(�B11uk1) � g(uk)� 
;where � denotes component-wise multiplication. Henceexp(�B11uk1) � [g(uk)� 
] exp(B12uk2);or B11uk1 � � ln[g(uk)� 
]1�B12uk2:Since uk2 is converging, this is equivalent to (3.8).Let us reinterpret this theorem in terms of the original inequality. Sup-pose we are given a sequence fxkg with the property that lim f(xk) =inf f(x). Then one of two things must happen. Either the xk remainbounded, in which case they must converge to a local minimum of f , and byTheorem 3.1 the inequality (1.1) has no nontrivial solution. Or the xk growunboundedly. In this case, theorem 3.3 then says that the components ofAxk divide into two classes: those which converge and those which grow un-boundedly. The indices of the former make up the set Z�, while the indicesof the latter make up the set P�. Once these sets have been recognized wemay compute the transformation V to the u-coordinate system and hencetrial solutions �xk = V1V T1 xk = V1uk1(i.e., the vectors obtained by setting uk2 = 0 so that A2�xk = 0). Initially the�xk may fail to be solutions, owing to the suppression of the terms B12uk2 ; but(3.8) insures that ultimately A1�xk > 0, and at that point �xk is a solution.The above procedure gives no problems when (1.1) either has no solutionor when it has a solution with Z� = ;. In the former case the sequence xkconverges; in the latter it ultimately exhibits a solution. When there is asolution with Z� 6= ;, we are faced with the problem of determining which ofthe components of Axk are converging and which are diverging, a decisionwhich must be based on tolerances that are to some extent arbitrary. Itshould be stressed that this is not a failing of the method; the problemitself is intrinsically di�cult, since a small perturbation of the matrix A cancause Z� to become zero, on the one hand, or cause there to be no nontrivialsolution on the other. How such a case should be treated will depend on theapplication.



Linear Inequalities 84 The divergence of Newton's methodTo complete our algorithm for solving the inequality (1.1), we must generatea sequence of vectors fxkg such that lim xk = inf f(x). In this section we willshow that Newton's method with line search will produce such a sequence.This method generates an iterate xk+1 from a previous iterate xk as follows.1. Set dk = �f 00(xk)�1f 0(xk).2. Determine �k so that the function 'k(�) = f(xk + �dk) isminimized.3. Set xk+1 = xk + �kdk.There are two reasons why Newton's method with line search is par-ticularly well suited for this application. First, if f has a minimum, thesequence fxkg converges to it, ultimately quadratically. Second, the form off makes it cheap to determine �k. For if we precompute yk = exp(�Axk)and zk = Adk, then 'k(�) = mXi=1 yki e��zki ;a very simple function to work with.The proof that Newton's method with line search forces f to its in�mumdepends on two results which are of independent interest. The �rst getsus started by showing that the method diverges when f does not have aminimum.Theorem 4 Let f : Rn ! R be thrice continuously di�erentiable. Let Dbe any compact set with the property that f 0(x) 6= 0 and f 00(x) is positivede�nite for all x 2 D. Then there are positive constants � < 1=4, �, and �,such that if x 2 D and d = �f 00(x)�1f(x) + e; (4:1)where kek � �, then f(x+ �d) � f(x)� �:Proof. By Taylor's theoremf(x+ �d) = f(x) + �f 0(x)Td+ �22 dTf 00(x)d+ r(x); (4:2)



Linear Inequalities 9where for some �xed M � 0 jr(x)j �M�3kdk3:Substituting the de�nition (4.1) of d into (4.2), we getf(x+ �d) = f(x)�  �� �22 ! f 0(x)Tf 00(x)f 0(x) +(�� 2�2)f 0(x)Te+ �22 eTf 00(x)e+ r(x):Since f 0(x) is nonzero and f 00(x) is positive de�nite on the compact set D,the quantity f 0(x)Tf 00(x)f 0(x) is positive and uniformly bounded below onD, say f 0(x)Tf 00(x)f 0(x) � � > 0:The norms of the terms f 0(x) and f 00(x) are bounded above on D, and if westipulate that � < 1, so is the norm of d. Hence we may choose � < 1=4 sothat M�3kdk3 � �22 �on D. For this value of �, we may choose � < 1 so that�����(�� 2�2)f 0(x)Te+ �22 eTf 00(x)e����� � �2�on D. It follows that for all x 2 Df(x+ �d) � f(x)� ��2 � �2��;which establishes the theorem with � = (�2 � �2)�.In application to our problem, Theorem 4.1 (with e = 0) shows that if fdoes not have a minimum, then the iterates generated by Newton's methodwith line search cannot remain in a compact set; for within that set eachiteration must reduce f by at least �. Consequently, the iterates xk mustdiverge. However, the divergent sequence could possibly approach a contourthat is greater than the in�mum of f . Before we can prove that this doesnot happen, we need another technical result.From (3.1) and (3.2), we see that the Newton step is given by[ATD(xk)A]�1ATD(xk)1:



Linear Inequalities 10Although at �rst glance this formula seems uncomplicated, in our appli-cation the diagonal elements of D are the numbers e�aTi x, some of whichare converging to zero while others remain �nite. This means that the ma-trices ATD(xk)A will become increasingly ill conditioned. Fortunately, al-though [ATD(xk)A]�1 can become unbounded, the weighted pseudo-inverse[ATD(xk)A]�1ATD(xk) remains bounded, no matter what happens toD(xk).Speci�cally, we have the following surprising theorem.3Theorem 5 Let A be an m � n of rank n, and let D+ denote the space ofdiagonal matrices with positive diagonal elements. ThensupD2D+ k(ATDA)�1ATDk <1: (4:3)Proof. The proof is by induction on m, assuming that the result holdsfor all matrices of full column rank having fewer than m rows. To start theinduction, we observe that for an m�mmatrix, the weighted pseudo inversereduces to A�1, whose norm is clearly independent of D.For the induction step, let us �x D and suppose that the smallest diago-nal element ofD is the ith element �i. Let Di be the matrix obtained fromDby deleting its ith row and column, and let Ai be the matrix obtained fromA by deleting its ith row. There are two cases to consider: rank(Ai) = nand rank(Ai) = n � 1.First assume rank(Ai) = n. Then by the induction hypothesisk(ATi DiAi)�1ATi Dik � �i;where �i is independent of Di. Now the norm we seek to bound is� = k(�iaiaTi + ATi DiAi)�1(�iai ATi Di)k= 



�I + �i(ATi DiAi)�1aiaTi ��1 (ATi DiAi)�1(�iai ATi Di)



� 



�I + �i(ATi DiAi)�1aiaTi ��1



�k�i(ATi DiAi)�1aik+ �i� : (4:4)Let 
�1i = infkxk=1 kAixk:3The same kind of systems come up in connection with Karmarkar's algorithm forlinear programming [2].



Linear Inequalities 11Then infkxk=1 kD 12i Aixk � 
�1i kD� 12i k�1:Since �ikD�1i k � 1, it follows thatk�i(ATi DiAi)�1k � 
2i : (4:5)Moreover�I + �i(ATi DiAi)�1aiaTi ��1 = I � �i(ATi DiAi)�1aiaTi1 + �iaTi (ATi DiAi)�1ai :Hence if �i = kaik, then



�I + �i(ATi DiAi)�1aiaTi ��1



 � 1 + �2i 
2i : (4:6)It then follows from (4.4), (4.5), and (4.6) that� � (�i + �i
2i )(1 + �2i 
2i ): (4:7)In the second case, where rank(Ai) = n� 1, we may assume that n > 1;for if n = 1, then Ai = 0 and the result follows by direct computation. LetW = (w1 W2) be an orthogonal matrix such that Aiw1 = 0. Set aTiAi ! (w1 W2) =  �i yTi0 Y Ti ! : (4:8)Since postmultiplication by orthogonal transformations does not a�ect thenorm of the weighted pseudo-inverse, we can equivalently bound the norm ofthe weighted pseudo-inverse of the right-hand side of (4.8), which by directcalculation is seen to beZ =  ��1i ���1i yTi (Y Ti DiYi)�1Y Ti Di0 (Y Ti DiYi)�1Y Ti Di ! :Now (Y Ti DiYi)�1Y Ti Di is a weighted pseudo-inverse of the (m � 1) �(n� 1) matrix Yi. Hence by the induction hypothesis, there is a constant ��iindependent of Di such thatk(Y Ti DiYi)�1Y Ti Dik � ��i:



Linear Inequalities 12Hence if we set ��i = kyik and �
i = j��1i j, then� = kZk � ��i + (1 + ��i ��i)�
i: (4:9)The theorem now follows from the observation that the bounds (4.7) and(4.9) depend only on the row index i and not on D. Maximizing over i givesthe required bound.It is natural to ask if the theorem remains true when D is replaced byan arbitrary positive de�nite matrix. The following example shows that itdoes not. Let A be the vector (0 1)T and letD =  1 ��� 1 ! 1 00 � ! 1 ��� 1 ! :Then it is easily veri�ed by direct computation thatlim�!0 k(ATDA)�1ATDk = (��1 1)which becomes unbounded as � ! 0. It is probably signi�cant that in thisexample the nearer D is to a diagonal matrix the larger k(ATDA)�1ATDk.We are now in a position to establish the main result of this section.Theorem 6 Let Newton's method with line search be applied to the functionf producing a sequence of iterates fxkg. Thenf(xk)! inf f(xk):Proof. If f has a local minimum, then the theorem follows from the globalconvergence of Newton's method with line searches. Hence we may assumethat f has no global minimum. By Theorem 4.1, the vectors xk grow un-boundedly.Let us look at the components of Axk . Some of these must remainbounded; otherwise, f(xk) will approach zero, which is a lower bound on fand hence its in�mum. By passing to a subsequence fykg we may dividethe components of Ayk into to sets: those that remain bounded and thosethat approach +1. Let us assume that the latter are grouped at the top ofA, which we then partition as in (2.1).We claim that A2 has a nontrivial null space. Indeed, since A2yk re-mains bounded while kykk ! 1, any accumulation point of the sequence



Linear Inequalities 13fyk=kykkg is a null vector. Thus as in x2, we may transform the matrix Ato the form  B11 B120 B22 !by an orthogonal change of variables u = V Tx. Let wk denote the subse-quence of the uk = V Txk corresponding to the subsequence yk. Finally, letg, g1, and g2 be the functions de�ned by (3.3).The idea of the proof is the following. Since B11wk1 + B12wk2 growsunboundedly, we must have g1(wk) ! 0. Thus the only way the sequenceg(wk) can fail to approach its in�mum is for g2(wk) to fail to approach itsin�mum. Let sk denote the Newton step corresponding to wk and partitionit in the form sk =  sk1sk2 !We shall show asymptotically sk2 approaches the Newton step for g2 at uk2 andthat sk1 has negligible e�ect on the value of g. Thus as far as g2 is concerned,we are taking Newton steps, and Theorem 4.1 will yield a contradiction ifg2 does not achieve a minimum.Let us write Dk = diag(Dk1; Dk2) for D(yk). Then limDk1 = 0, while bothkDk2k and k(Dk2)�1k are bounded. Now the Newton equations for sk are BT11Dk1B11 BT11Dk1B12BT12Dk1B11 BT22Dk2B22 + BT12Dk1B22 ! sk1sk2 ! =  BT11Dk11BT22Dk21+ BT12Dk11 !or I (BT11Dk1B11)�1BT11Dk1B12(BT22Dk2B22)�1BT12Dk1B11 I + (BT22Dk2B22)�1BT12Dk1B22 ! sk1sk2 ! = (BT11Dk1B11)�1BT11Dk11(BT22Dk2B22)�1BT22Dk21 + (BT22Dk2B22)�1BT12Dk11 ! :By Theorem 4.2, the matrices (BT11Dk1B11)�1BT11Dk1 remain bounded. More-over, the matrices (BT22Dk2B22)�1BT12Dk1 approach zero. Consequently, if wede�ne �sk1 and �sk2 as the solution of I (BT11Dk1B11)�1BT11Dk1B120 I ! �sk1�sk2 ! =  (BT11Dk1B11)�1BT11Dk11(BT22Dk2B22)�1BT22Dk21 ! :



Linear Inequalities 14then sk1 ! �sk1 and sk2 ! �sk2 . From this we see that sk2 approaches the Newtonstep for g2 and is uniformly bounded in k. Hence sk1 and sk are also uniformlybounded.The result now follows from Theorem 4.1 as follows. Suppose thatlim g(wk) = 
 0 > inf g(u). Let the Newton steps satisfy kskk � �. LetD be a compact set that includes the wk2 and excludes the minimum of g2,if it has one. Let � < 1=4, �, and � be the positive constants from Theorem4.1. Choose k so large that1. ksk2 � �sk2k � �,2. g(wk) � 
 0 + �=3,3. supfg1(u) : ku� wkk � �g � �=3.Then since � < 1=4,g(wk + �sk) = g1(wk + �sk) + g2(wk2 + �sk2)� supfg1(u) : ku� ykk � �g+ g2(wk2)� �� �=3 + (
 0 + �=3)� �= 
 0 � �=3:Thus the iterate following wk gives g a value less than 
 0|which is a con-tradiction.5 ConclusionsAs was mentioned in the introduction, the algorithm proposed here is beingused in the statistical analysis of categorical data, where it performs quitewell. What makes it a particularly attractive choice is that the underlyingproblem is to maximize a convex function, so that an optimizer is alreadyat hand. However, the problems are of low dimension.Although we have given a complete mathematical analysis of the algo-rithm, there are still open questions. For example, scaling the rows of Adoes not a�ect the existence of a solution; but it can be expected to havea profound e�ect on the behavior of the algorithm, since exponentials aresuch rapidly varying functions. More generally, the exponentials could bereplaced by any su�ciently smooth function with the property that theyincrease monotonically from 0 at �1 to 1 at +1. What e�ect this willhave on the algorithm is unclear.
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