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Abstract

Model checking is a powerful technique for analyzing large� �nite�state systems� In an

in�nite�state system� however� many basic properties are undecidable� In this paper� we present

a new symbolic model checker which conservatively evaluates safety and liveness properties

on in�nite�state programs� We use Presburger formulas to symbolically encode a program�s

transition system� as well as its model�checking computations� All �xpoint calculations are

executed symbolically� and their convergence is guaranteed by using approximation techniques�

We demonstrate the promise of this technology on some well�known in�nite�state concurrency

problems�

� Introduction

In recent years� there has been a surge of progress in the area of automated analysis for �nite�

state systems� Several reasons for this success are� ��	 the development of powerful techniques

such as model�checking �e�g�� 
�� �
	� which can e�ciently verify safety and liveness properties� ��	

innovative new data structures that symbolically encode large sets of states in compact formats �e�g��


�� �� ��
	� and ��	 new ways of carrying out compositional and local analysis� to assuage the �state

explosion� usually associated with concurrency �e�g�� 
�� ��� ��
	� But when transition systems are

not restricted to be �nite� most of these techniques are no longer applicable� as they inherently

depend on all underlying types being bounded� Also� general safety and liveness properties become

undecidable for in�nite transition systems�

We have developed a symbolic model checker to attack this problem� which is based on the

following key concepts�

� Symbolically encoding transition relations and sets of states using a�ne constraints on integer

variables� logical connectives and quanti�ers �i�e�� Presburger formulas	�

�Preliminary results from this paper appeared as an extended abstract in the Proceedings of the �th Conference

on Computer Aided Veri�cation �CAV �����
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Figure �� Overview of the Analysis Tool�

� E�ciently manipulating these formulas �via a fast Presburger solver called the Omega li�

brary 
��� ��
	 to derive truth sets of temporal logic formulas and their �xpoint computations�

� Using conservative approximation techniques in analysis of in�nite state programs� which

guarantee convergence by allowing false negatives�

In any computer system variables are eventually mapped to �nite representations� Thus� it might

be argued that integer variables can be given a �nite range� and programs can then be analyzed

as �nite�state machines � for example� using BDD�s 
�� ��
� For several reasons� however� this may

not always be the best way to proceed� First� mapping integer variables and operations to their

binary implementations may lead to highly ine�cient static analysis� More importantly� one may

wish to analyze an algorithm as an abstraction� and prove its correctness in a general sense for any

implementation of integers�

Given a �nite but very large transition system� an analysis technique which has a worst case

complexity proportional to the size of the input transition system will run out of resources �i�e��

memory	 when the worst case is realized� Complexity analysis of model checking for all interesting

temporal logics shows that worst case complexity is at least linear in the size of the input transition

system� I�e�� although model checking �nite state systems is decidable �as opposed to in�nite state

systems	 for very large systems it can be intractable� Hence� from a practical stand point� our

techniques for analyzing in�nite state systems can be viewed as techniques for analyzing very large

�nite state systems which do not rely on the �niteness of the state space�

In this paper we demonstrate our model checker�s e�ectiveness on some classical in�nite�state

programs taken from the concurrency literature 
�� ��
� While relatively small� they possess some

interesting subtleties� especially in the tricky way their in�nite�state variables in�uence control

�ow�

A summary of our approach is shown in Figure �� and it depicts how we structure the three

main phases� translation� partitioning and analysis�

In the translation phase� the system accepts as input a program written in a simple event

action language� then it produces the corresponding set of Presburger relations� These Presburger
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relations are just a symbolic encoding of the program�s underlying transition relation�

In the partitioning phase� the program�s states and transitions are segregated into a set of

partition classes� with the objective of reducing the complexity of veri�cation� The motivation here

is easy to understand� Consider treating a complex program as a single relation� which might contain

multiple if�then�else branches and loops� Then consider pushing through a nontrivial weakest�

precondition transform � say� to automatically derive a loop�invariant� In most cases� the result

will explode into an unmanageable �potentially in�nite	 number of constraints� It is true that

the general form of our veri�cation problem is undecidable� hence� we cannot eliminate this issue

entirely� However� partitioning lets us damp some of its e�ects � and more importantly� it increases

the precision of our conservative techniques� The �default� partitioning strategies are�

� DNF Partitioning� This method decomposes the program�s transition relation into a

disjunctive�normal�form� then pre� and post�condition transforms are carried out for each

disjunct� one at a time�

� Control�Point Partitioning� This method symbolically decomposes the state�space into par�

tition classes� based on valuations of selected variables �we call these control�points	�

� Event�Domain Partitioning� This method is a �ner�grained version of Control�Point Parti�

tioning� It forms its partition classes based on the enabling conditions of events so that in

each partition class an event is either enabled for all states or disabled for all states�

We describe these strategies in the following sections� However� we stress two points here� �a	 they

are used to segregate the program �and its states	 into large regions� which distinguish the truth

or falsity of crucial temporal properties� and �b	 these decompositions do not alter the underlying

transition relation of the original program� hence� they preserve all temporal properties�

In the analysis phase� veri�cation procedures are applied to help prove �or disprove	 properties

of interest� Many of these are inter�dependent� i�e�� they automatically �call� each other as �sub�

routines� to obtain the original goal� Nonetheless� many high�level strategy decisions are left to

the user� In the sequel� we demonstrate situations in which human input can help� speci�cally� we

show a set of programs �and requirements	 which helped reveal the relative strengths and weak�

nesses of each approach� While some programs were easily veri�ed with certain strategies� the same

strategies diverged when used on other programs� We note� however� that the user need not be a

model�checking �expert� per se� rather� the type of experience we consider useful is more like that

a programmer draws on when setting compiler�optimization levels�

As for the techniques� all of the �top�level� techniques we report are at least conservative� and

several are exact� Some programs can� in fact� be quickly veri�ed using exact symbolic model�

checking algorithms� similar to those presented in 
��
 for BDDs� In our domain� the analogue of

a CTL �atomic proposition� is postulated over the Presburger logic� and is propagated through
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the program as such� We supply both backward and forward procedures for exact analysis� �The

backward version starts with the desired goal� and performs recursive pre�condition transforms to

get back to the initial states� the forward procedure works in the opposite fashion�	 Additionally�

we export conservative variants of the backward and forward techniques� which can obtain lower

and upper approximations to the exact �xpoint� Two of the methods use a generalized form

of �widening� technique discussed in 
��
 for abstract interpretation� We demonstrate how the

approximate methods work together �with minimal user intervention	� i�e�� how our driver program

integrates lower and upper bounds for sub�formulas� and then derives a conservative result for the

high�level goal�

Finally� we describe two procedures which can be run as a pre�processing step before model�

checking� These will often accelerate convergence for all of the �xpoint techniques� both approxi�

mate and exact� One technique derives an upper bound for the program�s reachable state space�

the other is a related function which approximates the transitive closure of the transition relation�

Both methods are guaranteed to converge� and both are used for the following purposes� ��	 to

reduce the sizes of the Presburger formulas generated during model�checking� and ��	 to increase

the precision of approximate analysis�

The remainder of the paper is organized as follows� In the following section we overview some

related work in the �eld� Then� we present the syntax and semantics for concurrent programs

and their properties� After introducing the Presburger encodings and partitioning techniques� we

describe our symbolic model checker� and show how it exploits the Presburger representation� After

formally de�ning conservative approximations� we discuss the speci�c approximation techniques for

computing upper and lower bounds of �xpoints� Then� we present a variety of di�erent example

programs� and show how the various methods performed on them� Finally� we conclude with some

discussion on our results�

� Related Work

Other methods have been proposed to deal with in�nite�state concurrent programs� and we note

some of them here� In 
�
� Clarke et al� present a conservative model checking technique� by

producing a �nite abstraction of the program �e�g�� via a congruence relation modulo a suitable

integer	� and then checking the property of interest on the abstraction� In 
��
� Dingel and Filkorn

extend this method using �assumption�commitment� style reasoning and theorem proving� While

these techniques require the user to �nd the appropriate abstractions � and hence are not completely

automatable � we see them as being orthogonal to our approach� There may be cases where

abstraction methods can vastly reduce the state space without achieving a �nite representation� In

these cases our model checker can be used on the in�nite abstract models�

Another approach is to use symbolic execution technique 
��� ��
� which symbolically generates
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a program�s execution paths� In practice� this method may end up generating an in�nite number

of nodes� and thus never terminate� This limitation can be overcome by having the user specify

assertions about a process�s behavior� which can be veri�ed locally� Then the local proofs can

be checked for cooperation 
��
� Although this method has the bene�t of incrementally proving

correctness �as opposed to generating all possible interleavings	� it relies on users to come up with

the correct assertions�

Our work has some historical antecedents� Cooper 
��
 developed a technique which encodes

transition relations as sets of Presburger formulas� and then converts queries about a program�s

properties to validity checks in Presburger arithmetic� The decision procedure used by Cooper

was computationally very expensive which made the validity checks intractable� Also proving

correctness as a single Presburger decision problem is not a method that can scale very well� We

have found it more bene�cial to use model checking as our primary technology� and use a Presburger

solver for some subservient set�theoretic computations�

Our work was also in�uenced by known techniques from abstract interpretation 
��� ��
� specif�

ically� we use some approximation methods �rst developed for that domain� Most reachability

properties can be formulated as least �xpoints over sets of a program�s states� if the state space is

in�nite� these �xpoints may not be computable� Abstract interpretation provides a way of approxi�

mating these �xpoints via a technique known as �widening� � which can compute a least �xpoint�s

upper bound in �nite time� Since our basic temporal operators require similar computations� we

were able to successfully use this method in conjunction with the Omega library�

Our recursive approximation technique for temporal properties with nested temporal operators

is similar to the one used by Kelb et al� in 
��
� In 
��
 a temporal property expressed in mu�

calculus is computed conservatively using two abstractions of the same program� One abstraction

over estimates the behavior of the program and used for computing universal properties� Another

abstraction underestimates the behavior of the program and is used for computing existential prop�

erties� Together they can be used to conservatively approximate any mu�calculus property� Similar

methods are also used in 
��� ��
 where an approximation for a temporal formula expressed in mu�

calculus is computed using lower or upper approximations of its subformulas� Our approximation

techniques are based on approximating the �xpoint computations instead of approximating the

program as a whole using abstractions� It is possible to use both of these techniques together�

Finally� our encoding of program states is similar to that used by Alur et al� in verifying hybrid

systems 
�� �
� A hybrid system is a discrete control automaton� which interacts with continuously�

changing� external parameters� Like us� Alur et al� used an application of widening to help solve

veri�cation queries over linear hybrid automata � in which transition relations are de�ned in terms

of a�ne constraints over the variables of the system�

A fundamental di�erence between our work and the work of Alur et al� is that we encode sets

of integers � as opposed to the real numbers used in hybrid systems � thus� we can use Presburger
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Program� Unbounded Bu�er

Data Variables� p� c� q�� q�� positive integer

Control Variables� pc � fIdle�Sendg

Initial Condition� p � c � q� � q� � 	

Events�

eIS enabled� pc � Idle

action� pc� � Send

eS enabled� pc � Send

action� p� � p� 
 � �q�� � q� � 
 � q�� � q� � 
�

eSI enabled� pc � Send

action� pc� � Idle

eR enabled� q� � 	 � q� � 	

action� �q� � 	 � q�� � q� � 
 � c� � c� 
��

�q� � 	 � q�� � q� � 
 � c� � c� 
�

Figure �� Example �UB	 � Indexing for Two Unbounded Bu�ers�

formulas as our symbolic representation� This enables us to express and prove properties such as

�x is even�� using quanti�cation� In general� satis�ability problems over constraints with integer

variables are signi�cantly harder to deal with� For example� checking to see if there exists an integer

solution to a set of linear constraints is NP�hard� while the analogous real�valued problem can be

solved in polynomial time�

� Programs and Properties

We use the event�action language from 
��
 as our syntax for concurrent programs� with a semantics

de�ned in terms of in�nite transition systems� A concurrent program C � �V� I� E	 is represented

by ��	 a �nite set of data and control variables V � ��	 an initial condition I � which speci�es the

starting states of the program� and ��	 a �nite set of events E� where each event is considered

atomic 
��
� The state of a program is determined by the values of its data and control variables�

We assume that the domain of each variable is a countable set� Each event is represented with an

enabling condition and an action� where the enabling condition constrains the states in which the

event can occur� and the action de�nes a transformation on the variables of the program�

Consider the concurrent program �UB	 shown in Figure �� which handles the counters for two

unbounded bu�ers� Note that there is a single control variable pc which is used to attenuate the

producer � and it can either be idle �i�e�� pc � Idle	 or ready�to�send �i�e�� pc � Send	� Alternatively�

the consumer has only one event �eR	� which can execute whenever outstanding data is sitting in

either of the bu�ers�

Four data variables are used to keep track of the the data items� from the perspective of
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the producer� the consumer and the two bu�ers� The total number of items produced �over the

program�s lifetime	 is kept in the integer p� similarly� the number of items consumed is counted in

variable c� The other two variables � q� and q� � keep track of the outstanding items in the bu�ers�

Note that all the data variables can increase without bound� i�e�� this program is not a �nite�state

program�

In our event�action language� if a variable v is used in an event� then the symbol v� denotes the

new value of v after the action� �If v is not mentioned in the action of an event� then we assume

that its value is not altered by that event�	

Three properties of interest are as follows�

� �UB�	 The total number of items produced is equal to the number of items consumed� plus

the number of items sitting in the two bu�ers�

� �UB�	 If the sender is idle� the total number of items in the bu�ers monotonically decreases�

� �UB�	 The number of items consumed never exceeds the number produced�

Given scale of the program� one need not possess extraordinary skills to understand that the

properties are indeed true� Yet� while we may know that this program is correct� its in�nite state

space will overcome most contemporary automated analysis engines� Hence� it is easy to see how a

larger� more complex program would� in fact� be inaccessible to a both a programmer�s �informal	

�what�if� checks� and to an automated �nite�state analyzer�

Given a program C � �V� I� E	 in the above language� we model it as an in�nite transition

system M � �S� I�X� L	� where S is the set of states� I is the set of initial states� X � S � S

is the transition relation �derived from the set of events E	� and L � S � SF � fTrue� Falseg is

the valuation function for state formulas over the program�s variables� �We de�ne the set of state

formulas SF below�	 The set of states S is obtained by taking the Cartesian product of domains of

all program variables� i�e�� given a program with n variables V � fv�� v�� � � � � vng� each state s � S

corresponds to a valuation of all the variables of the program

s �
n�
i��

vi � xi

where xi � domain�vi	�

Every event e � E de�nes a binary relation on the program�s states� Xe � S � S� interpreted

as follows� If �s� s�	 � Xe� then s and s� denote program�s states before and after the execution of

event e� respectively� We de�ne the domain and range of an event e as�

domain�e	 � f s j ��s� s�	 � �s� s�	 � Xeg range�e	 � f s� j ��s� s�	 � �s� s�	 � Xeg

The global transition relation is X �
W
e�E Xe� Note that we use an interleaving model� where each

transition represents execution of a single event� i�e�� only one event can occur at a time�
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Presburger Formulas� Recall requirement �UB�	 above� which asserts that the following prop�

erty stays invariant over all executions� p � c� We call this type of assertion a state formula� And

in general� we de�ne the set of state formulas SF for a program C as the Presburger formulas

generated by the following grammar�

f ��� t 	 t j �f	 j f 
 f j �f j � intvar �f	 t ��� �t	 j t� t j intvar j intcons

Here� the terminals intcons and intvar represent integer constants and variables� respectively�

Using this base language� we can easily represent formulas including �� �� �� 
� as well as multipli�

cation by a constant� The set of closed formulas de�ned by the above grammar forms the theory of

integers with addition� called Presburger arithmetic� An important property of Presburger arith�

metic is that validity is decidable� Hence� given a state formula f � SF and a program state s we

can decide if s j� f by substituting the values of program variables in state s to corresponding open

variables in formula f and using a Presburger decision procedure �this is equivalent to checking if

s 
 f is satis�able	�

In general� the worst�case time bound for determining validity in Presburger arithmetic is

prohibitive� with a deterministic upper bound of ��
�pn

�for some constant p � �	 
��
� and a

nondeterministic lower bound of ��
cn

�for some constant c � �	 
��
� where n denotes the length

of the formula� Yet we have found that the Omega library 
��� ��
 is quite e�cient at solving the

problems that arise in our analysis� which typically possess a small number of constraints� and do

not contain multiple levels of alternating quanti�ers� The Omega library uses extensions of Fourier

variable elimination to solve integer programming problems� along with a set of transformation

functions and heuristics to help convert real�valued approximations into discrete�valued solutions�

Temporal Properties� We use the temporal logic called Computation Tree Logic �CTL	 
�
 to

specify properties of programs� Four CTL operators form the basis of our logic� quanti�ed�next�

state operators �� and 
�� and quanti�ed�until operators �U and 
U � Thus� the logic we use to

reason about a program is generated over the set

f f � SF � �� � 
� � �U � 
U � 
 � � � � g�

As usual� quanti�ed�eventuality ��� and 
�	 and quanti�ed�invariant ��� and 
�	 operators can

be represented as follows�

��f � True �U f ��f � ��True 
U �f	


�f � True 
U f 
�f � ��True �U f	

We de�ne the semantics of our CTL temporal operators on the paths of a program�s transition

system� M � �S� I�X�L	� A path �s�� s�� s�� � � �	 is a �nite or in�nite sequence of states� such that

for each successive pair of states �si� si��	 � X � Unlike Clarke et al� 
�
� we do not require the
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s j� f i� L	s� f
 � True� where f � SF

s j� �f i� s �j� f

s j� f � g i� s j� f and s j� g

s j� f � g i� s j� f or s j� g

s� j� �� f i� for some maximal path 	s�� s�� s�� � � �
� with length 	 �� s� j� f

s� j� 
� f i� for all maximal paths 	s�� s�� s�� � � �
� with length 	 �� s� j� f

s� j� f �U g i� for some maximal path 	s�� s�� s�� � � �
� there exists an i� si j� g�

and for all j � i� sj j� f �

s� j� f 
U g i� for all maximal paths 	s�� s�� s�� � � �
� there exists an i� si j� g�

and for all j � i� sj j� f �

Table �� Semantics of our temporal logic�

transition relation X to be total� Rather� the semantics is de�ned using maximal paths 
�
 �as

opposed to in�nite paths	� A maximal path is one which is either in�nite� or ends with a state that

has no successors� The semantics of the temporal operators can then be de�ned on a program�s

transition system M � �S� I�X�L	� as shown in Table ��

If all the initial states of a program satisfy a temporal property� then we say that the program

itself satis�es the temporal property� Formally� given a temporal formula f and a transition system

M � �S� I�X�L	�M j� f only if 
s � I � s j� f �

Based on the temporal logic de�ned above� we can specify the properties of the unbounded�

bu�er program as follows�

� �UB�	 
��p � c � q� � q�	 � The total number of items produced is equal to the number of

items consumed� plus the number of items sitting in the two bu�ers�

� �UB�	 
���pc � Idle 
 q� � q� � i	� 
� �q� � q� 	 i		 � If the sender is idle� the number

of items in the bu�ers monotonically decreases�

� �UB�	 
��p � c	 � The number of items consumed never exceeds the number produced�

Note that the variable i in �UB�	 is not a program variable� rather� it is an open integer variable�

This points out one of the strengths of our approach � since i can be treated as a symbolic constant

within a temporal expression� The interpretation is that i is bound by a universal quanti�er �and

our Presburger solver treats it as such	�

� Symbolic Representations

Presburger formulas � and their corresponding set�theoretic interpretations � give us a convenient�

compact way to symbolically encode large sets of program states and transitions� For our purposes�
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the bene�t of the Presburger encoding is often realized via the arithmetic inequality operators

� which we use to implicitly describe large� nontrivial portions of a program�s state space� For

example� consider the following formula�

p� c 	 q� � q� 	 p 
 p� c� q�� q� � �

In geometric terms� the constraints represent all points in an unbounded� ��dimensional polytope�

Yet in terms of our example� the shape corresponds to all of the program�s reachable states �minus

the program�counter	�

Similar gains are realized for transitions� Recall that events are described in terms of a�ne

constraints� �This prevents us from using multiplication in a single event� and ensures that single�

step image computations are decidable�	 Hence� for a given event e� the transition relation of event

e� Xe� is representable as a Presburger formula� So using jEj Presburger formulas� one for each

event� we can symbolically encode the transition relation X as

X �
�
e�E

Xe�

The fundamental challenge in the Presburger formula encoding is to keep the sizes of the

formulas small during the �xpoint computations� Our symbolic manipulator stores Presburger

formulas in a disjunctive form where each disjunct corresponds to a convex region in the program�s

state space� Since each �xpoint iteration is essentially a pre� or post�condition computation� the

number of convex regions may increase very quickly in the presence of if�then�else branches and

loops�

Given a Presburger formula in a disjunctive form� our minimization procedures try to merge

the disjuncts �i�e�� convex regions	 to reduce the size of the Presburger representation� Assume

that we represent each �xpoint iterate using one Presburger formula� After a couple of �xpoint

iterations such a representation would generate a Presburger formula with a large number of convex

regions� Trying to merge each pair of convex regions one by one would be computationally very

expensive� Instead� we use partitioning heuristics� We partition the state space of the program so

that the states with similar properties are placed to the same partition class� Then� we represent

each �xpoint iterate using one Presburger formula per partition class� This reduces the complexity

of the minimization procedures by segregating convex regions which are unlikely to be merged�

We also use approximation techniques to limit the growth of �xpoint iterates� Since the temporal

properties we analyze are undecidable� the �xpoint iterations are not guaranteed the converge�

Using conservative approximation techniques� we increase the convergence rate of the �xpoint

computations� Partitioning heuristics can increase the precision of these approximation techniques�

For example one approximation technique could be to merge two convex regions approximately

using an upper or a lower bound� Such a technique is more likely to succeed if the merged regions

contain states with similar characteristics�
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Below we describe our partitioning heuristics� First we describe transition relation partitioning

which enables us to compute �xpoint iterations incrementally using one partition class at a time�

Then we present our state�space partitioning strategies�

��� Transition Relation Partitioning

The most obvious partitioning of the transition relation� X � comes immediately from the event

syntax� That is� we can simply perform all transition computations using one event at a time�

akin to the way a program�s control�points are used in data �ow analysis� However� when events

contain multiple disjuncts �e�g�� from if�then�else constructs	� this method proves insu�cient for

our purposes � since it still generates too many constraints when we carry out automated analysis�

In these cases we require a �ner�grained technique�

DNF Decomposition� Given two programs C� � �V� I�E�	 and C� � �V� I�E�	� with the same

variables and initial states� assume the following equivalence holds�
�
e�E�

Xe �
�

e�E�

Xe

Then C� and C� are semantically equivalent� since they satisfy exactly the same set of temporal

formulas� However� due to their structural di�erences �and to the methods used in model�checking	�

one programmay be signi�cantly more computationally expensive to analyze than the other� Hence�

it often makes sense to transform E� into some type of normal�form E� � especially when the

normal�form has� on average� demonstrated more e�cient analysis results�

Such is the case for disjunctive normal form �DNF	� i�e�� where

X �
�
e�E

Xe� Xe �
�
i

cei

and where each cei is a single a�ne constraint over primed and unprimed program variables in V �

I�e�� each Xe corresponds to a convex polytope in S � S�

Clearly� any transition relation X can be so represented � it is simply a matter of converting

X into DNF� and then considering each disjunct as a separate event� For example� Figure � shows

the DNF decomposition of our running program from Figure �� where for the sake of conciseness�

we do not di�erentiate between an event�s �enabled part� and its �action part� �since this is given

implicitly by the primed and unprimed variables	� Note that the transformation simply split the

separate disjuncts from the original events eS and eR� and renamed them as separate events�

��� State Space Partitioning

Let P be a partitioning of a program�s state�space S� where

P � fS�� S�� � � � � Spg� S �
p�

i��

Si� i �� j � Si 
 Sj � ��

��



eIS � pc � Idle � pc� � Send

eS� � pc � Send � p� � p
 � � q�� � q� 
 �

eS� � pc � Send � p� � p
 � � q�� � q� 
 �

eSI � pc � Send � pc� � Idle

eR� � q� � � � q�� � q� � � � c� � c
 �

eR� � q� � � � q�� � q� � � � c� � c
 �

Figure �� DNF Event�Decomposition�

Then if Q � S is a subset of program states� we can decompose Q via our partitioning P of S�

Q �
p�

i��

qi� where qi � Q 
 Si�

This technique will only prove worthwhile where each Si unites states with common characteristics

�that is� when key formulas are true either for all the states in Si or none of the states in Si	� and

when P distinguishes between large regions of S possessing di�erent characteristics�

Below we present two techniques which can often create such a partitioning� and which are two

of the �default options� in our model�checker�

Control�Point Partitioning� Given a program C � �V� I� E	� assume we partition the variables

into two classes�

V � V� � V� s�t� V� � V� � ��

The valuations for V� �or V�	 induce a natural partitioning of S� Letting V� � fv��� � � � � v�mg�

equivalence classes are de�ned simply as�

S�x��� ���� x�m� �
m�
j��

v�j � x�j s�t� x�j � domain�v�j	�

Of course� if V� contains many variables� or if their domains are large� we may end up with a huge

number of classes� hence the partition variables have to be chosen with care�

Fortunately� many programs yield a natural choice for V� � the control points � the number of

which are usually far fewer than state valuations� To enable this type of partitioning� our event

language makes a syntactic distinction between control and data variables �while semantically� they

are considered the same	� When our preprocessor translates event�action language code into events�

the control variables are isolated as such� which then allows a default partitioning according to their

values�

When applied to the program in Figure �� this strategy yields V� � fpcg and the following two

partition classes �shown pictorially in Figure �	�

SIdle � pc � Idle SSend � pc � Send

��



eReS

SSend � pc � SendSIdle � pc � Idle

eR

eIS

eSI

Figure �� Control�Point Partitioning�

eS eR

eR

S�IS�R� S�IS�

S�S�SI�
eS

S�S�SI�R�

eR

eR

eIS eSI eIS eSI

Figure �� Event�Domain Partitioning�

and so� our partitioning is P � fSIdle� SSendg� Now consider a formula Q � p � c� representing

all states in which more items were produced than consumed� The formula is partitioned as

PQ � fQIdle� QSendg� where�

QIdle � pc � Idle
 p � c QSend � pc � Send
 p � c

with Q � QIdle �QSend�

Event�Domain Partitioning� The method above can also be generalized to the �implicit con�

trol points� inherent in the raw events themselves� In essence� an event�s natural control point is

just its enabling condition� And� using the enabling conditions as partitioning criterion can yield a

much �ner�grained decomposition� �This is obviously true when no control variables are isolated in

a program�	 In this partitioning� each class denotes a region of S in which a speci�c set of events

are enabled to �re� So� given C � �V� I� E	� we de�ne its event�domain partitioning P as�

P � f Si j 
e � E � �Si 
 domain�e		 � Si � �Si 
 �domain�e		 � Si g

While this technique yields potentially �jEj partition classes� note that most of these partition

classes will probably be empty� The reason is that most of the events will typically have mutually

exclusive enabling conditions�

��



Symbolic Omega Operations

F �G � symbolic intersection

F �G � symbolic union

�F � symbolic complement

F�� � symbolic inverse of relation F

F �G� � restrict domain of relation F to constraint G

and return the range of the result

hull	F 
 � convex hull of F

Figure �� Symbolic Omega Functions�

This is certainly the case when we apply the technique to our running example from Figure ��

Event�domain partitioning yields only � feasible partition classes �shown pictorially in Figure �	�

which is signi�cantly less than �jEj � �� � ��� These � partition classes are as follows �where each

partition class is indexed by the events enabled in the class	�

S�IS�R� � pc � Idle 
 �q� � � � q� � �	 S�S�SI� � pc � Send 
 q� � � 
 q� � �

S�S�SI�R� � pc � Send 
 �q� � �� q� � �	 S�IS� � pc � Idle
 q� � � 
 q� � �

Note that if we have had used the DNF event partitioning �rst �from Figure �	� we would have

produced a �ner partitioning with more classes�

� Symbolic Model�Checker

After generating our symbolic representations in terms of Presburger formulas� we use the Omega

library 
��
 to help symbolically compute the truth sets for the temporal properties at hand� The

Omega library includes a large collection of object classes to e�ciently manipulate Presburger for�

mulas� to date it has mainly been used in high�performance compilers� speci�cally for dependence

analysis� program transformations� and detecting redundant synchronization 
��� ��� ��
� The

particular Omega functions we use are shown in Figure �� These functions take symbolic represen�

tations of sets or relations as inputs �i�e�� a Presburger formula representing a set or a relation	�

and return the symbolic form of a set or a relation as output�

To symbolically compute the temporal operators� we de�ne a function pre � �S � �S � called

the precondition function� which� given a set of states� returns all the states that can reach this set

in one step �i�e� after execution of a single event	�

pre�Q	
def
� f s j �s� � s� � Q 
 �s� s�	 � Xg�

Using the Omega operator in Figure � we have pre�Q	 � X��
Q
� Moreover� we can symbolically

compute pre with respect to our program�s partitioning� and maintain a formula for each partition

��



class� as follows�

pre�Q	 � pre�
�

Si�P
�Q 
 Si		 �

�
Si�P

pre�Q 
 Si	 �
�

Si�P�e�E
X��

e 
Q 
 Si


By performing this computation individually for each partition class� we exploit the fact that many

formulas inherently involve only small parts of the program�s state space� For example� consider

the unbounded bu�er example � and speci�cally� the states where producer is Idle and bu�ers are

empty�

Q � pc � Idle
 q� � � 
 q� � ��

Using control point partitioning� we have

pre�Q	 �
�

e�fer �es�g
X��

e 
Q 
 SIdle


� pc � Idle
 �q� � � 
 q� � �� q� � � 
 q� � �	 � pc � Send 
 q� � � 
 q� � �

Now� given a symbolic representation for a set f � we can symbolically compute � � f and 
 � f

using pre� as follows�

�� f � pre�f	 and 
� f � �pre��f	�

As for �U and 
U � consider the following functionals�

Ff��Uf� � �y � f� � �f� 
 � � y	 and Ff��Uf� � �y � f� � �f� 
 
� y 
 � � y	�

The least �xpoints of Ff��Uf� and Ff��Uf� are equal to f� �U f� and f� 
U f�� respectively� We

have the following result from elementary lattice theory�

Property � For all transition systems� for all n � Z�

f� �U f� �
n�
i��

��y � f� � �f� 
 � � y		i�False	 �
n�
i��

F i
f��Uf��False	

f� 
U f� �
n�
i��

��y � f� � �f� 
 
 � y 
 �� y		i�False	 �
n�
i��

F i
f��Uf��False	

where� given a functional F � F i�f	 is de�ned as�

F i�f	
def
� F�F�� � �F�� �z �

i times

f		 � � �	�

By the monotonicity of Ff��Uf� and Ff��Uf� � we get

n�
i��

F i
f��Uf���	 � Fn

f��Uf���	 and
n�
i��

F i
f��Uf���	 � Fn

f��Uf���	�

��



Procedure Check	f


Case

f � SF � Return	f


f � �f� � Return	�f�


f � f� � f� � Return	f� � f�


f � f� � f� � Return	f� � f�


f � �� f� � Return	pre	f�



f � 
� f� � Return	�pre	�f�



f � f� �U f� � Q� � f� Qi�� � Qi � 	f� � pre	Qi



Return	Qn
 when Qn � Qn��

f � f� 
U f� � Q� � f� Qi�� � Qi � 	f� � pre	Qi
 � 	�pre	�Qi




Return	Qn
 when Qn � Qn��

Figure �� Symbolic Model Checker�

Then using Property �� it can be shown that every element in the sequence False � �� Ff��Uf���	�

F�
f��Uf���	� F

	
f��Uf���	� � � �� is a subset of the least �xpoint of Ff��Uf� � similarly� every element in

the sequence False � �� Ff��Uf���	� F�
f��Uf���	� F

	
f��Uf���	� � � �� is a subset of the least �xpoint of

Ff��Uf�� Since Ff��Uf� and Ff��Uf� are both monotonic� and since we start the sequence with

�� these sequences are non�decreasing� When these monotonically increasing sequences reach a

�xpoint� we know that it is the least �xpoint 
��
�

These methods lead directly to the model checking procedure shown in Figure � �subformulas

are computed recursively	� Given a program and a temporal logic formula� the model checker will

�attempt to	 symbolically compute the set of program states that satisfy the input formula � and the

procedure will yield an exact answer if it converges� Note that this procedure is a partial�function�

i�e�� it is not guaranteed to terminate�

We analyzed the running example given in Figure � using control point partitioning and the

exact model checking procedure given in Figure �� Recall that one of the requirements for this

program was 
��p � c� q� � q�	 which is equivalent to� ��True �U �p �� c� q� � q�		 or ����p ��

c�q��q�	� �Although our basic temporal operators are �U and AU � when possible we will use their

�� and 
� equivalents for clarity of presentation	� To compute the least �xpoint ���p �� c�q��q�	�

the model checker initialized the �rst iterate to Q� � p �� c � q� � q�� The �xpoint computation

trivially converged after one iteration to Q� where Q is partitioned as follows�

QIdle � pc � Idle
 p �� c� q� � q� QSend � pc � Send 
 p �� c� q� � q�

Our top�level formula is ����p �� c� q� � q�	� hence� the model checker computes �Q� This yields

the set of states which can never reach a violation of the assertion p � c� q� � q�� Since the initial

condition for the program is I � p � �
c � �
q� � �
q� � �� it is easy to see that I � �Q �i�e�� all

��



of the initial states satisfy the safety property	� Hence� the model checker reports that the property

is proved �for a total computation time of ���� seconds on a Sun SPARCstation �	� The exact model

checker also successfully proved the property 
���pcs � Idle
 q�� q� � i	� 
� �q�� q� 	 i		 in

���� seconds�

� Approximation Techniques

Since we have a Turing�computable language� our exact model�checker in Figure � may keep iterat�

ing forever without reaching a �xpoint� Thus� we also need a conservative approximation method�

which will always converge� We de�ne a conservative analyzer as one which always terminates and

never yields a spurious result� but may not be able to produce a de�nite answer in certain cases�

Indeed� our exact analyzer diverged when we fed the unbounded�bu�er program� along with

its other requirement� 
��p � c	� When the exact analyzer went to work on this property� it

attempted to symbolically enumerate ways that p could be less than c� Since c is unbounded� this

method failed to converge� But as we show in the sequel� the same property was easily proved using

a conservative approximation�

��� Conservative Analysis

If we cannot directly compute a property f for a program C� the next best thing is to generate a

lower�bound for f � denoted f�� such that f� � f � Then if we determine that I � f�� we have also

achieved our objective � that I � f � �i�e�� we proved that C j� f	� However� if I �� f�� we cannot

conclude anything because it can be a false negative� In that case we can compute a lower bound

for the negated property� ��f	�� If we can �nd a state s such that s � I � ��f	�� then we can

generate a counter example which would be a true negative� If both cases fail� i�e�� both I �� f�

and I � ��f	� � �� then the analyzer can not report a de�nite answer�

Since we seek to carry out our analysis in a recursive manner �as in the exact analyzer in

Figure �	� we have to compute an approximation to a formula by �rst computing approximations

for its subformulas� Hence� to compute a lower bound to a property like g � �h� we �rst need to

compute an upper approximation h� for the subformula h� and then let g� � S � h�� This follows

directly from set theory� since ��f	� � ��f�	 and ��f	� � ��f�	� Thus� we need algorithms to

compute both lower and upper bounds of temporal formulas�

When analyzing a negation�free formula� the compositionality of an approximation follows

directly from the fact that all operators other than ��� are monotonic� This means that any

lower�upper approximation for a negation free formula can be computed using the corresponding

lower�upper approximation for its subformulas� As for handling arbitrary levels of negation� we

can easily generalize the above mentioned method for outermost negation operators� That is� to

��



approximate a temporal formula f � the following procedure determines which of f �s subformulas

require an upper bound� and which require a lower bound�

�� Mark the root of the parse tree for formula f with a minus sign ����	 if a lower bound is

desired� and with a plus sign ����	 if an upper bound is desired�

�� Using a preorder tree traversal� visit each node in the tree� mark each node with the mark of

its parent� unless its parent is a � operator� In that case� mark the node with the opposite

bound�

��� Computing Upper Bounds with Widening Technique

When the algorithms in Figure � attempt to compute �xpoints for �U and 
U � they may generate

sequences of increasing lower bounds which never converge� From elementary �xpoint theory� we

know that a least �xpoint exists � but it may simply not be computable� Hence� our job is to

accelerate the computation� and �leap�frog� over multiple members of the chain � perhaps at the

risk of over�shooting the exact least �xpoint� As long as the result is larger than the exact �xpoint�

we have an upper approximation�

The way we go about this is as follows� If the exact iteration sequence is Q�� Q�� Q�� � � �� then

we �nd a majorizing sequence  Q��  Q��  Q�� � � �� such that ��	 for each i� Qi �  Qi� and ��	 the  Qi

sequence reaches a �xpoint after �nitely many iterates� Thus the �xpoint of the  Qi�s is an upper

approximation to the least �xpoint of the Qi�s�

To generate the  Qi�s� we currently adopt a method developed by Cousot and Cousot� within the

framework of abstract interpretation 
��
� That is� we de�ne an operator called widening� or ����

which majorizes the union computation as follows� For any pair of sets P� P �� P � P � � P � P ��

Using a suitable widening operator� we can compute an upper bound for f� �U f� as�

 Qi �

��
�

Qi if � 	 i 	 s

 Qi��� �  Qi�� � �f� 
 pre�  Qi��			 if i � s

�f� �U f�	
� �  Qn when  Qn �  Qn��

where Q�� Q�� Q�� � � �� is the sequence generated by the procedure for f� �U f� in Figure �� and s is

the seed of the widening sequence� From the monotonicity of the pre operator� one can easily show

by induction that iterates of this sequence do indeed majorize the Qi�s computed in Figure �� And

when this sequence terminates� the �nal iterate is an upper bound for f� �U f�� For the f� 
U f�

we can generate a similar majorizing sequence as�

 Qi �

��
�

Qi if � 	 i 	 s

 Qi��� �  Qi�� � �f� 
 pre�  Qi��	 
 ��pre��  Qi��				 if i � s

�f� 
U f�	
� �  Qn when  Qn �  Qn��

��
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a� 


a

x

y

a

Q�
Q�

Q�

Q� Q�Q� Q� b�Q�

Q� b�Q�

Figure �� A simple example demonstrating how the widening operator b� works�

where Q�� Q�� Q�� � � �� is the sequence generated by the procedure for f� 
U f� in Figure ��

Our goal is to �nd a widening operator which ��	 yields a suitable �i�e�� reasonably tight	 upper

bound for union� and ��	 forces the  Qi sequences to converge� In de�ning our widening operator�

we generalized a technique used by Cousot and Halbwachs in 
��
� The idea is to �guess� the

direction of growth in the model�checker�s Qi iterates� and to extend the successive iterates in these

directions� Cousot and Halbwachs� widening operator b� does this for convex polyhedra � i�e��

regions formed by a conjunction of a�ne constraints� If both P and P � are convex� then P b�P � is

de�ned by the constraints in P which are also satis�ed by P �� For example�

�x� � 	 y 	 x	 b� �x� � 	 y 	 x	 � y 	 x

Intuitively� if a constraint of P is not satis�ed by P � this means that the iterates are increasing

in that direction� By removing that constraint we extend the iterates in the direction of growth

as much as possible without violating other constraints� Since P b�P � is built by simply removing

constraints from P and since we cannot remove in�nitely many constraints� the �niteness property

is satis�ed�

We will demonstrate how widening can be used in the context of our event�action language and

with Presburger sets� Consider the following program� which consists of only one event�

Data Variables� x� y� positive integer

Events�

e enabled� x � �

action� x� � x� � � y� � y 
 �

Assume that we wish to check the property 
��y �� a	� where a is a positive constant� Our

symbolic model checker will convert this property to ��True �U �y � a		� and �rst try to compute

an exact �xpoint for True �U �y � a	� Figure � shows the regions Q�� Q�� Q� generated by the

�rst iterations of the exact algorithm� At this point� we can see that the sequence will diverge�

��



If we use a widening sequence with seed s � �� then  Q� � Q� and  Q� � Q�� and then note that

Q� �  Q� � �True 
 pre�  Q�		� We then obtain  Q� by computing Q�
b�Q��

Q�
b�Q� � �a 	 x � y 
 a� � 	 y 	 a	 b� �a 	 x� y 
 a� � 	 y 	 a	

� �a 	 x � y 
 y 	 a	

The iterations converge� since this formula is also generated for  Q	� When we negate the result�

we get x � y � a � a � y� In other words� if our initialization of x and y satis�es this condition�

then the invariant will indeed hold�

There are several points that should be clari�ed� First� note that the widening operator works

on the syntax of the formula� Hence� di�erent representations of the same formula may give di�erent

results when fed into the widening operator� In the simple example discussed above� if we start

with s � �� we end up computing  Q� via Q�
b�Q�� where

Q� � y � a and Q� � a 	 x� y 
 a � � 	 y 	 a�

Then the result will be Q�
b�Q� � True� And indeed� in our experiments� we found that most

widening sequences require higher seeds to get started� By using a higher seed� we gain more

exact information about the program before taking any approximations � and hence� loop growth

directions can be �roughly	 predicted�

Another way to prevent over approximations is to avoid using the widening operator when two

polytopes have di�erent dimensions� Note that for the example given above Q� is a line �i�e�� a

one�dimensional polytope	 whereas Q� is a plane �i�e�� a two�dimensional polytope	�

In our implementation� we start with a low seed �between s � � and s � �	� If the approximation

is too coarse� we gradually ratchet up seed�s value� and generate a new widening sequence� In this

way� successively tighter approximations can be obtained� We also allow selective bounding of the

seed � since� after all� there may be cases where a property cannot be proved or disproved�

The widening operator b� is su�cient if we always have convex sets� However� a program�s

state space is not always convex� in fact� most �exact	 �xpoint computations are composed of a

potentially large number of disjuncts� each de�ning a convex polytope� Since the widening operator

b� folds all arguments into a single convex region� a direct application of this method failed to work�

The reason is that on all of our examples to date� all �xpoint computations were composed of a

potentially large number of disjuncts� each de�ning a convex polytope� To accommodate this we

generalized b� to handle multiple polyhedra� Assume that we have two Presburger sets Q and R�

where Q � R� Then Q and R can be represented as�

Q � q� � q� � � � � � qm and R � r� � r� � � � � � rm � � � � � rn

where all the qi�s and ri�s are convex polytopes� In Figure � we present how our multi�polyhedra

widening operator is computed with such an input� The until loop �lines � to �	 reduces the number
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Algorithm for Multi�Polyhedra Widening

Input Q �
Wm

j�� qj � R �
Wn

i�� ri s�t� qj � ri are all convex polytopes� and Q � R

Output P � Q�R


 Repeat


 R� � False� marked�
��n�� False� deleted� 	�

� For 
 	 i � j 	 n Do

� If marked�i� �marked�j� � False � hull�ri� rj� � ri � rj

� Then R� � R� � hull�ri� rj�� marked�i��marked�j�� True� deleted� deleted� 
�

� For 
 	 i 	 n Do

� If marked�i� � False Then R� � R� � ri�

� R� R�� n� n� deleted�

� Until deleted � 	


	 P � False� marked�
��n�� False�



 For 
 	 i 	 n � 
 	 j 	m Do



 If qj � ri Then P � P � qj b�ri � marked�i�� True�


� For 
 	 i 	 n Do


� If marked�i� � False Then P � P � ri�


� Return P

Figure �� Multi�Polyhedra Widening�

of disjuncts in R by merging adjacent convex polytopes� Two convex polytopes are replaced by

their hull if their hull is equal to their union� We continue doing this until no reduction is possible�

Note that the resulting representation of R depends on the order of execution of the �rst for loop

�lines � to �	� Traversing the list of polytopes in di�erent order may lead to di�erent results�

After minimizing R� we look for convex polytopes �i�e�� disjuncts	 in Q and R such that qj � ri�

When we �nd such a pair� we use Cousot and Halbwachs� widening operator to compute qj b�ri� This
new convex polytope is appended to the output Presburger set P � Finally we copy the disjuncts

from R which are not widened to P � and return P as the result� Note that the order of the for loop

in lines �� to �� can again e�ect the result�

The �nal result may include too many disjuncts� To ensure convergence� we also assign an

upper bound to the number of disjoint convex regions we wish to represent� When we reach this

bound we force�merge disjoint regions by replacing them with their convex hull � even if that loses

precision �which is valid since we are computing upper bounds	� In the experiments we conducted

so far we never had to resort to this technique�
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��� Computing Lower Bounds

Recall that each iteration of an exact �xpoint computation will yield a lower a bound for f� �U f�

and f� 
U f�� So to obtain a lower approximation for the purposes of analysis� we need only

stop after a �nite number of iterations� in this manner we are guaranteed to have a conservative

approximation� Of course the question is� when do we stop!

Our veri�er uses the following rules� if it is handling the outermost formula� then after each

iteration it checks whether the initial states are included in the current lower bound� If so� it stops�

since the property is proved� if not� it keeps going� Obviously� there will be cases where this method

fails to converge� and if this happens the tool will not be able to prove or disprove the property�

However� the user is able to interact with the analyzer� and periodically monitor its progress� thus�

the user can optionally �pull the plug� on waiting for a response�

If the �xpoint we are computing is a subformula of another computation� the analyzer sets a

user speci�ed time limit to stop generating an approximation � after which it is used in the next�

higher formula� But if the analyzer is unable to prove or disprove the outermost formula� the user

may optionally return and improve the lower bound by continuing the �xpoint sequence�

Approximate Analysis of the Running Example� We analyzed the running example given in

Figure � and its requirement 
��p � c	� Using the negation�labeling algorithm� the requirement

is rendered as ������p � c	�	�	�� The temporal operator �� is marked with ��� which means

that we need an upper bound for the set of states violating the requirement� The symbolic model

checker computes the upper bound using the multi�polyhedra widening technique� and it converges

after � iterations� The result is the set  Q which is partitioned as

 QIdle � pcs � Idle 
 p � c� q� � q�  QSend � pcs � Send 
 p � c� q� � q�

However� since we are actually computing ����p � c	� the model checker computes �  Q� which

gives a lower approximation for the states which satisfy the property 
��p � c	� Recall that the

set of initial states of the running example is I � p � � 
 c � �
 q� � � 
 q� � �� and observe that

I � �  Q� Hence� the model checker reports that the property is proved �with a CPU time of ����

seconds	�

� Reachability Analysis

In the previous section we discussed state�based approximations for general model�checking deci�

sion problems� where we have to verify a general CTL formula over in�nite state�spaces� How�

ever� we also make use of two special�purpose techniques� which fall into the generic category of

reachability�analysis� One variant of this is state�based� and it computes an upper bound for the

program�s reachable state�space� The other method is transition�based� it produces approximations

��



for the transitive closure of the transition system itself� Both of these techniques have proved

most successful when used in conjunction with our symbolic model�checker � both for exact and

conservative analysis�

��� State�Based Reachability Analysis

The �xpoint algorithms described thus far are backward techniques� in that they start with a

property f � and then use pre to determine which states can reach f � The last step is to determine

whether the initial condition I is included in the derived set� Alternatively� it may be useful to

start with I � compute an upper approximation RS� to the reachable state�space RS� and then use

RS� to help in the model�checking process� We can accomplish practically this by altering the

symbolic model checker to restrict its computations to states in RS��

To generate the upper bound RS�� we de�ne a function post � �S � �S � called the postcondition

function� which� given a set of states� returns the states reachable from this set in one step� i�e��

post�Q	
def
� f s j �s� � s� � Q 
 �s�� s	 � Xg� In particular� note that this is the �forward

analogue� to the pre function� We claim that the �exact	 reachable state space of a program is the

least �xpoint of the functional

�y � I � post�y	

and which can be computed using the techniques we previously developed for �U and 
U � Moreover�

we can use the widening method to compute an upper bound for RS as well�

After computing RS�� we restrict the result of every operation in the model checker �Figure �	

to RS�� For example� when a �xpoint iterate Qi is produced� it is replaced by Qi 
 RS�� Most

importantly� we also can use this technique when we compute approximate �xpoints� as de�ned

above�

��� Transition�Based Reachability Analysis

We also developed a transition�based reachability analysis technique� in which multiple execution

paths get collapsed into single relations� We achieve this by adding new events to the original

program� these events summarize repeated executions of self�loops� while preserving the underlying

state�space� These transformations make the �xpoint computations for reachability properties

converge faster without changing their truth sets�

Given a program C � �V� I� E	� we de�ne a set of programs T �C	 as follows�

T �C	 � f �V� I� E�	 j
�
e�E

Xe �
�
e�E�

Xe � �
�
e�E

Xe	
� � X�g

where X� denotes the transitive closure of the transition relation X �

The programs in T �C	 have the following property�

��



Property � If C� � T �C	� then ��� it includes at least all the single step executions in C� and �	�

for every 
nite execution path in C� there exists a 
nite execution path in C such that the 
rst and

the last states of the two execution paths are the same�

Using de�nition of T �C	 and Property � we can show the following�

Property � If C� � T �C	 then

�� Truth sets of state formulas f � SF for C and C� are identical�

	� The set of reachable states RS for C and C� are identical�

�� If the truth set of the formula f for C� and C are the same then the truth sets of formulas

��f and 
�f are the same for C� and C�

�� If the truth sets of the formulas f and g for C� are supersets of the truth sets of the corre�

sponding formulas for C� then the truth sets of formulas f �U g and �� f for C� give upper

bounds for the truth sets of the corresponding formulas for C�


� If truth sets of the formulas f and g for C� are subsets of the truth sets of the corresponding

formulas for C� then the truth sets of formulas f 
U g and 
 � f for C� give lower bounds

for the truth sets of the corresponding formulas for C�

Theoretically� if we could compute X� exactly� we would have a single relation which would

summarize all reachable executions of the original program� That is� X� would take any initial

program state s as input� and instantly produce all states reachable from s� Likewise� �X�	��

could handle any reverse reachable�state query� In other words� we could compute ��f and RS

in a single step� In general� though� constructing transitive closure of a Presburger relation is not

computable�

However� akin to our state�based techniques� there are approximation techniques for obtaining

upper and lower bounds for X� 
��� ��
� In turn� these can be used to compute our desired lower

and upper bounds for RS and ��f � However� there�s a fundamental trade�o� involved in this�

On one hand� if X is a simple convex relation in a few dimensions� it may be easy to compute

X� exactly� or a reasonable approximation thereof� Yet for such simple programs� we rarely need

automated analysis� On the other hand� if a transition relation X is relatively complex �i�e�� with

many variables and concavities	� the only tractable upper bound for X� may be a trivial one � e�g��

S � S� Similarly� the computed lower bound may just turn out to be the identity relation�

Hence� we use these approximation techniques on selected parts of X � and never on the whole

program at once� Speci�cally� we compute transitive closures on selected self loops� which are stable

with respect to our partition classes�

��



S�IS�R� S�IS�

S�S�SI�
eR

S�S�SI�R�

eR

eR

l�S

eIS eSI eIS eSI

l�R��

l�R��

Figure ��� Running example with event�domain partitions and loop closures�

We apply this strategy automatically as follows� Given a program C � �V� I�E	� with a state

space partitioning P � fS�� S�� � � �Spg� we compute the maximal set of self loops� where each loop

le�i is nonempty� and satis�es the following property�

le�i � f �s� s�	 j �s� s�	 � Xe 
 s � Si 
 s� � Sig

In other words� the loop le�i represents stability � when it starts on a state in partition class Si� it

returns to the partition class Si�

Next� for all such loops� we attempt to compute their transitive closures l�e�i� If obtaining the

exact l�e�i proves impossible� our analyzer gets a lower�bound approximation� �Note that this is

often su�cient�	 Then we generate a new program C� � �V� I� E�	� by adding all events l�e�i �or their

lower bounds	 to E� and deleting redundant transitions� Since

�
e�E

X�
e � �

�
e�E

Xe	
� and

�
e�E�

Xe �
�
e�E

X�
e we have

�
e�E

Xe �
�
e�E�

Xe � �
�
e�E

Xe	
��

Therefore� C� � T �C	 and satis�es Property � and Property �

If we apply this technique to our unbounded bu�er example from Figure �� along with the

event�domain partitioning� we get the program shown in Figure �� where the three new events l�R���

l�R�� and l�S are self loop closures which are computed as explained above�

l�R�� � 	pc � Idle � pc� � Idle
 � 	c� � q� 
 q� 
 c� q�� � q��
 � 	� 
 q�� 
 q�
 � 	� 
 q�� 
 q�


� 		� 
 q��
 � 	� 
 q��



l�R�� � 	pc � Send � pc� � Send
 � 	c� � q� 
 q� 
 c� q�� � q��
 � 	� 
 q�� 
 q�
 � 	� 
 q�� 
 q�


� 		� 
 q��
 � 	� 
 q��



l�S � 	pc � Send � pc� � Send
 � 	p� � p� q� � q� 
 q�� 
 q��
 � 	� 
 q� 
 q��
 � 	� 
 q� 
 q��


� 		� 
 q�
 � 	� 
 q�



��



Data Variables� a� b� positive integer

Control Variables� pc� � fT��W�� C�g� pc� � fT��W�� C�g

Initial Condition� a � b � 	 � pc� � T� � pc� � T�

Events�

eT� enabled� pc� � T�

action� pc�� � W� � a� � b� 


eW�
enabled� pc� � W� � �a � b � b � 	�

action� pc�� � C�

eC�
enabled� pc� � C�

action� pc�� � T� � a� � 	

eT� enabled� pc� � T�

action� pc�� � W� � b� � a� 


eW�
enabled� pc� � W� � �b � a � a � 	�

action� pc�� � C�

eC�
enabled� pc� � C�

action� pc�� � T� � b� � 	

Figure ��� The bakery algorithm�

	 Example Concurrent Programs

In this section we will present several example concurrent programs and discuss how we analyzed

them using our symbolic model checker�

	�� Bakery Algorithm

Consider the concurrent program shown in Figure ��� which implements the bakery algorithm 
�


to achieve mutual exclusion between two processes� Here the control points for each process are

denoted T�W�C� which stand for thinking� waiting or in critical section� respectively�

When a process wants to enter the critical section� it �rst gets a ticket� which will be higher

than those of all other processes currently in the critical section or waiting for entry� In the above

system� variables a and b hold the ticket values for processes � and �� respectively� a process gets

its ticket by simply adding one to the highest outstanding ticket number� Note that variables a

and b can increase without bound �i�e�� this is not a �nite�state program	�

The bakery algorithm is known to preserve both mutual exclusion and starvation�freedom�

Based on our temporal logic� the bakery algorithm�s mutual�exclusion property can be expressed as


����pc� � C� 
 pc� � C�		� that is� the two processes never reach the critical section at the same

time� As for starvation�freedom� the property of interest is as follows� if a process starts waiting

for entry to the critical section� it eventually gets in� For the �rst process� this can be expressed

as� 
��pc� � W� � 
��pc� � C�		�

We analyzed the bakery algorithm using control point partitioning and the exact model check�

ing procedure given in Figure �� The mutual exclusion requirement for the bakery algorithm is

equivalent to� ����pc� � C�
 pc� � C�	� To compute the least �xpoint ���pc� � C� 
 pc� � C�	�

the model checker initialized the �rst iterate to Q� � �pc� � C�
 pc� � C�	� After � iterations� the

�xpoint computation converged to a set Q� where Q is partitioned as follows�
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Data Variables� a� b� t� s� integer

Control Variables� pc� � fT��W�� C�g� pc� � fT��W�� C�g

Initial Condition� t � s � pc� � T� � pc� � T�

Events�

eT� enabled� pc� � T�

action� pc�� � W��

a� � t � t� � t� 


eW�
enabled� pc� � W� � a 	 s

action� pc�� � C�

eC�
enabled� pc� � C�

action� pc�� � T� � s� � s� 


eT� enabled� pc� � T�

action� pc�� � W��

b� � t � t� � t� 


eW�
enabled� pc� � W� � b 	 s

action� pc�� � C�

eC�
enabled� pc� � C�

action� pc�� � T� � s� � s� 


Figure ��� The ticket mutual�exclusion algorithm�

Q�T� �T�� � pc� � T� � pc� � T� � False

Q�T� �W�� � pc� � T� � pc� � W� � b � 	

Q�T� �C�� � pc� � T� � pc� � C� � b � 	

Q�W��T�� � pc� �W� � pc� � T� � a � 	

Q�W��C�� � pc� � W� � pc� � C� � �b � 	 � a � b�

Q�C��T�� � pc� � C� � pc� � T� � a � 	

Q�C��W�� � pc� � C� � pc� � W� � �a � 	 � b � a�

Q�C��C�� � pc� � C� � pc� � C� � True

Q�W��W�� � pc� � W� � pc� �W� � �a � b � 	 � a � 	 � 
 	 b � b � 	 � 
 	 a�

Then to obtain ����pc� � C� 
 pc� � C�	� the model checker computes �Q� This yields the

set of states which can never reach a violation of the mutual exclusion property� The set of initial

states for the bakery algorithm is I � pc� � T�
pc� � T�
a � b � �� and we see that that I � �Q

�i�e�� all of the initial states satisfy the safety property	� Hence� the model checker reports that the

property is proved �for a total computation time of ���� seconds on a Sun SPARCstation �	�

The model checker in Figure � also proved the starvation freedom property� 
��pc� � W� �


��pc� � C�		� which is equivalent to ����pc� � W�
�
��pc� � C�		� The inner �
�	 and outer

���	 �xpoint computations converged in � and � iterations� respectively �with a total computation

time of ���� seconds	�

	�� Ticket Algorithm

In Figure ��� we present the ticket algorithm 
�
� In particular� note its similarity to the bakery

algorithm� The di�erence is that the value of the next available ticket is stored in the global variable

t� while another global variable s holds the highest ticket value served thus far� New tickets are

obtained by executing a fetch�and�add on t� A customer can enter the critical section when the

last�used ticket s catches up to its local ticket number�

Again� the mutual�exclusion property is ����pc� � C� 
 pc� � C�	� which asserts that two

processes can not be in the critical section at the same time� We �rst tried to check the mutual

exclusion property of the ticket algorithm with the exact analyzer using control point partitioning�

To compute the exact �xpoint� the analyzer started symbolically enumerating ways that both a and

��



b could be less than s� Since s and t are unbounded� this computation does not terminate� Next�

we applied our conservative approximation technique� Using the negation�labeling algorithm� the

mutual exclusion property of the ticket algorithm is rendered as ������pc� � C�
pc� � C�	
�	�	��

The temporal operator �� is marked with ��� which means that we need an upper bound for the

set of states violating mutual exclusion� The symbolic model checker computes the upper bound

using the multi�polyhedra widening technique� and it converges after � iterations� The result is the

set  Q which is partitioned as

�Q�T��T�� � pc� � T� � pc� � T� � t � s

�Q�T��W�� � pc� � T� � pc� �W� � t 	 s

�Q�T��C�� � pc� � T� � pc� � C� � t 	 s

�Q�W��T�� � pc� � W� � pc� � T� � t 	 s

�Q�C��T�� � pc� � C� � pc� � T� � t 	 s

�Q�C��C�� � pc� � C� � pc� � C� � True

�Q�W��C�� � pc� �W� � pc� � C� � �a 	 s � t 	 s� 
�

�Q�C��W�� � pc� � C� � pc� � W� � �b 	 s � t 	 s� 
�

�Q�W��W�� � pc� �W� � pc� � W� � �b 	 s � a 	 s � t 	 s� 
 � b 	 s � t 	 s� 
 � a 	 s�

However� since we are actually computing ����pc� � C� 
 pc� � C�	� the model checker

computes �  Q� which gives a lower approximation for the states which respect mutual exclusion�

Recall that the set of initial states of the ticket algorithm is I � pc� � T� 
 pc� � T� 
 t � s� and

observe that I � �  Q� Hence� the model checker reports that the property is proved �with a CPU

time of ���� seconds	�

We also wish to prove starvation�freedom� Negation�labeling converts process ��s relevant for�

mula to�

�������pc� � W�	
� 
 ���
��pc� � C�	

�	�	�	�	�	��

Note that because of the double negation� the inner �xpoint �
�	 is marked with ��� �i�e�� a

lower bound	� whereas the outer �xpoint ���	 is marked with ���� The checker computes the 
�

property exactly� in � �xpoint iterations� hence the lower bound turns out to be exact� Then it

computes an upper bound for the �� property in � iterations� by using the widening technique�

After the lower bound for the whole formula is computed� the model checker reports that all the

initial states do indeed satisfy the liveness property �for a total CPU time of ����� seconds	�

We also tried to verify the ticket algorithm using reachability analysis� The analyzer computed

the following upper bound for the set of reachable states RS� of the ticket algorithm �which turns

out to be exact	�

��



Program� Producer�Consumer

Data Variables� a� p�� p�� c�� c�� positive integer

Constants� s� integer� s 
 


Initial Condition� p� � p� � c� � c� � 	 � a � s

Events�

eP� enabled� a � 	

action� p�� � p� � 
 � a� � a� 


eP� enabled� a � 	

action� p�� � p� � 
 � a� � a� 


eC�
enabled� a � s

action� c�� � c� � 
 � a� � a� 


eC�
enabled� a � s

action� c�� � c� � 
 � a� � a� 


Figure ��� A bounded�bu�er producer�consumer program�

RS��T� �T��
� pc� � T� � pc� � T� � t � s

RS��T� �W��
� pc� � T� � pc� �W� � t � s� 
 � b � s

RS
�
�T� �C��

� pc� � T� � pc� � C� � t � s� 
 � b � s

RS
�
�W��T��

� pc� � W� � pc� � T� � t � s� 
 � a � s

RS��C� �T��
� pc� � C� � pc� � T� � t � s� 
 � a � s

RS�
�C� �C��

� pc� � C� � pc� � C� � False

RS��W��C��
� pc� � W� � pc� � C� � t � s� 
 � a � s� 
 � b � s

RS
�
�C� �W��

� pc� � C� � pc� �W� � b � s� 
 � a � s � t � s� 


RS��W��W��
� pc� � W� � pc� �W� � b� a � 
s� 
 � t � 
 � s � b� 
 	 s 	 b

When the state space of the ticket algorithm was restricted to this set the exact analyzer was able

to prove both the mutual exclusion and the starvation freedom properties of the ticket algorithm�

	�� Producer�Consumer

In Figure ��� we present a bounded�bu�er producer�consumer problem adapted from an example

in 
��
� This program implements an instance of the problem with two producers and two consumers�

We wish to prove that 
��� 	 p��p���c��c�	 	 s	 holds� i�e�� that the bounded bu�er properties

are satis�ed� When we translate this into existential form� we get ������� 	 p��p���c��c�	 	 s		�

The exact model checker diverged when we fed it the producer�consumer programwith this property�

But when we tried the widening technique� the model checker successfully veri�ed the property�

We were also able to prove the same property using reachability analysis in conjunction with exact

�xpoint computations�

	�� Circular Queue Program

The circular queue program �Figure ��	 consists of one producer component and one consumer

component� The producer and consumer execute concurrently� Figure �� shows some possible

con�gurations of the queue during the execution of the program�
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Program� Circular Queue

Data Variables� h� t� p� c� integer

Constants� s� integer� s 
 


Initial Condition� h � t � p � c � 	

Events�

eP enabled� �t � s� h � 	� � �t � s� t� 
 �� h�

action� ��t � s � t� � 	� � �t � s � t� � t� 
�� � p� � p� 


eC enabled� �t �� h�

action� ��h � s � h� � 	� � �h � s � h� � h� 
�� � c� � c� 


Figure ��� Circular queue program�
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s-1 s0 1 2 3
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t h
(f)

s-1 s0 1 2 3

(b)

(a)

Figure ��� Possible Con�gurations of the Bu�er During the Execution of the Circular Queue

Program� �Crossed locations indicate occupied cells� Note that� �a	 shows the initial con�guration

and �e	 shows a con�guration where the queue is full�	
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Program� Circular Queue

Data Variables� h� t� p� c� integer

Constants� s� integer� s 
 


Initial Condition� h � t � p � c � 	

Events�

eP� enabled� t � s � h � t � 


action� t� � t� 
 � p� � p � 


eP� enabled� t � s � h � t � 


action� t� � t� 
 � p� � p � 


eP� enabled� t � s � h � 	

action� t � 	 � p� � p� 


eC�
enabled� h � t

action� h� � h� 
 � c� � c� 


eC�
enabled� h � s � h � t

action� h� � h� 
 � c� � c� 


eC�
enabled� h � s � h � t

action� h� � 	 � c� � c� 


Figure ��� Circular queue program represented with DNF�Transformed events�

Variables h and t represent the head and the tail of the queue� respectively� h points to the

location of the item that will be consumed next �if the queue is not empty	� and t points to the

location where the next produced item will be placed �if the queue is not full	� Constant s denotes

the size of the queue� Although there are s� � locations in the queue� maximum number of items

that can be stored is s� Variables p and c show the number of items produced and consumed�

respectively�

There are several interesting properties we may want to prove about the circular queue program�


��h 	 s 
 t 	 s	� 
��� 	 p� c 	 s	�


��t � h� p� c � t� h	� 
��t � h� p� c � s� �h� t	 � �	�

When we decompose the events of the circular queue program to DNF�decomposed events� we

get a program with � events as shown in Figure ��� In this program the producer and the consumer

components are represented by three events each� We observe that at any time only one producer

event and one consumer event is enabled� The enabling conditions for events eP� � eP� and eP�

are mutually exclusive �i�e�� when one of them is enabled the rest are disabled	� This is also true

for the three consumer events� This means that there is some inherent sequential behavior in the

producer and consumer components of the program� Based on this new event set� the event�domain

partitioning algorithm generates a partitioning with �� classes which is signi�cantly less than the

worst case� and for each partition class there are at most two events enabled�

After computing the event�domain partitioning based on DNF decomposition� we computed

self�loop closures of the program� We �rst transform the program via a reachable�transition com�

putation� After this transformation� the symbolic model checker in Figure � successfully veri�ed

all the safety properties of the circular queue on the transformed program� Hence� we can conclude
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Program Property Label

Unbounded Bu�er 
��p � c� q� � q�� UB


Unbounded Bu�er 
���pcS � Idle � q� � q� � i�� 
� �q� � q� 	 i�� UB


Unbounded Bu�er 
��p 
 c� UB�

Bakery Algorithm 
����pc� � C� � pc� � C��� B


Bakery Algorithm 
��pc� � W� � 
��pc� � C��� B


Ticket Algorithm 
����pc� � C� � pc� � C��� T


Ticket Algorithm 
��pc� � W� � 
��pc� � C��� T


Producer Consumer 
��	 	 p� �c� � c�� 	 s� PC

Circular Queue 
��h 	 s � t 	 s� CQ


Circular Queue 
��t 
 h� p� c � t� h� CQ


Circular Queue 
��t � h� p� c � s� �h� t� � 
� CQ�

Circular Queue 
��	 	 p� c 	 s� CQ�

Figure ��� List of problem instances used in the experiments�

that the original program satis�ed all of the safety properties�

A summary of our experiments is shown in Figures �� and ��� We have used �ve programs and

several temporal properties to test our analyzer �properties are listed in Figure ��	� The results of

the tests are shown in Figure ���


 Conclusions

We have presented a new symbolic model checker for in�nite�state programs� which evaluates safety

and liveness properties� Some features of our symbolic model checker are as follows� ��	 it symbol�

ically encodes transition relations and state sets of programs using Presburger formulas� which can

be manipulated e�ciently using the Omega library� ��	 it partitions a program�s state�space via the

control variables or domains of events� and uses the partition classes as repositories for the model

checker�s symbolic computations� and ��	 it approximates the uncomputable �xpoint computations

with techniques that guarantee convergence in �nite time� We demonstrated our method using

�ve in�nite�state concurrent programs� which exploited the following analysis techniques� exact�

backward� exact�forward� approximate�backward� approximate�forward and reachability analysis�

While the programs do not contain many lines of code� they exhibit subtle interplay between the

in�nite�state variables and predicates controlling execution �ow� They are the sort of programs

usually analyzed in hand proofs�

There is much work remaining� Our current symbolic encoding treats every program variable

as an integer� This is obviously not an e�cient way to handle variables with small domains �e�g�

boolean variables	� We are currently working on integrating di�erent symbolic representations in

a single model checker so that every variable will be represented with a suitable symbolic represen�

��



Problem DNF Transition State Transition
Based State
Based Fixpoint Widening Execution

Instance Decomposition Partitioning Reachability Reachability Computations Seed Time

UB� Exact ���	 sec�

UB� Exact ��
� sec�

UB	 Exact �
UB	 Approximate � ��	� sec�

UB	
p

Exact � ���� sec�

B� Control Point Exact ���� sec�

B� Control Point Approximate � 	��� sec�

B� Control Point Exact ��
� sec�

B� Control Point Approximate � ���� sec�

T� Control Point Exact �
T� Control Point

p
Exact ���� sec�

T� Control Point Approximate � ��	� sec�

T� Control Point Exact �
T� Control Point

p
Exact ��	� sec�

T� Control Point Approximate � ����	 sec�

PC Exact �
PC Approximate � ��	� sec�

PC
p

Exact � ���� sec�

PC Event
Domain
p

Exact � 	���� sec�

CQ� Exact ���� sec�

CQ� Approximate � ��
 sec�

CQ�
p

Event
Domain
p

Exact ����� sec�

CQ� Exact �
CQ�

p
Event
Domain Exact �

CQ�
p

Event
Domain Approximate � ������ sec�

CQ�
p

Event
Domain
p

Exact ����� sec�

CQ	 Exact �
CQ	

p
Event
Domain Approximate � 	���
 sec�

CQ	
p

Event
Domain
p

Exact ����	 sec�

CQ� Exact �
CQ�

p
Event
Domain Approximate 	 �	���� sec�

CQ�
p

Event
Domain
p

Exact �
CQ�

p
Event
Domain

p
Exact ������ sec�

Figure ��� Summary of the Experiments �� denotes that the system diverged	�

��



tation� Hence� a set of states will be represented by a hybrid symbolic representation which may

consist of� for example� a BDD formula and a Presburger formula� Given the richness of di�erent

symbolic representations developed recently �e�g� BDDs� QDDs� real time model checkers	� we

think that this is a very promising direction� But it is also a an ambitious goal because of the

di�culty of manipulating and simplifying such a representation� We predict that even with some

very simple manipulations we can get useful results and extend the scope of current model checkers�

We are also working on developing better state partitioning techniques� For many reasons�

getting the right partitioning of the state space can be crucial when carrying out the analysis� for

example� it can greatly a�ect the performance of the widening technique� Our current partitioning

techniques depend on the source of the program� We are using the information expressed by the

programmer to partition the state space� Another direction is to use �xpoint computations on the

transition system to compute bisimulations� Since this is an undecidable problem� again� we have

to use approximation techniques�

We also plan to investigate compositional approaches� We currently form our state�partitions

over the Cartesian�product of all variable domains� When we scale to large numbers of processes

we will obviously need a more compositional approach� To this end� we believe we can use many

of the analogous methods developed for �nite�state systems�
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