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The goal of this thesis is to develop a statistical procedure for selecting per-

tinent predictors among a number of covariates to accurately predict the survival

time of a patient. There are available many variable selection procedures in the

literature. This thesis is focused on a more recently developed “regularized vari-

able selection procedure”. This procedure, based on a penalized likelihood, can

simultaneously address the problem of variable selection and variable estimation

which previous procedures lack. Specifically, this thesis studies regularized variable

selection procedure in the proportional hazards model for censored survival data.

Implementation of the procedure requires judicious determination of the amount

of penalty, a regularization parameter λ, on the likelihood and the development of

computational intensive algorithms. In this thesis, a new criterion of determining

λ using the notion of “the area under the receiver operating characteristic curve

(AUC)” is proposed. The conventional generalized cross-validation criterion (GCV)

is based on the likelihood and its second derivative. Unlike GCV, the AUC criterion



is based on the performance of disease classification in terms of patients’ survival

times. Simulations show that performance of the AUC and the GCV criteria are

similar. But the AUC criterion gives a better interpretation of the survival data.

We also establish the consistency and asymptotic normality of the regularized

estimators of parameters in the partial likelihood of proportional hazards model.

Some oracle properties of the regularized estimators are discussed under certain

sparsity conditions. An algorithm for selecting λ and computing regularized esti-

mates, β̂, is developed. The developed procedure is then illustrated with an ap-

plication to the survival data of patients who have cancers in head and neck. The

results show that the proposed method is comparable with the conventional one.
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ŵj = 1/|β̃j|2 (d) the HARD and (e) the SCAD with a = 1.85. . . . . 13

4.1 An ROC curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 ROC curves. Curve A is a perfect curve. Curve B is better than
curves C, D, E and F. Curve E is non-informative. Curve F is the
worst among these six curves. . . . . . . . . . . . . . . . . . . . . . . 48

viii



Chapter 1

Introduction

1.1 Background

In recent years there has been growing interest in the study of regularization

for simultaneously carrying out variable selection and coefficient estimation in linear

or non-linear regression models. The case under study in this thesis is that among

a large member of variables (regressors) available to us, we wish to select a rela-

tively small subset of significant variables to construct a model for analysis. The

approach of many traditional variable selection techniques, such as forward selec-

tion, backward elimination and subset selection, is to select an “estimated model”

of significant variables from a number of candidate models. To be concrete, take

the multiple linear regression model

Y = Xβ + ε

as an example, assume that there are k unknown regression coefficients denoted

by β = (β1, . . . , βk)
T . Unlike these traditional selection methods, the regularized

method will simultaneously perform variable selection by setting some estimated

coefficients (in β) zero and estimate other coefficients using shrinkage method in

the sense of ridge regression. Those variables X with coefficients estimated to be

zero are considered as insignificant variables.
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The regularized estimates β̂ are the constrained minimizers of the sum of

squared residuals:

‖Y − Xβ‖2 subject to P (β) ≤ c, (1.1)

where c is a specified constant. P (β) is called a penalty function of β. When

P (β) =
k∑

j=1

|βj|, (1.2)

one obtains the well-known least absolute shrinkage selection operator (Lasso) penalty

(Tibshirani, 1996). The Lasso penalization approach is also called basis pursuit in

signal processing (Chen, Donoho and Saunders, 2001).

For investigations and computations, it is convenient to express (1.1) in terms

of the Lagrange multiplier λ. The optimizer from (1.1) is equivalent to

β̂ = argmin
β

{
‖Y − Xβ‖2 + λP (β)

}
. (1.3)

The parameter λ is determined by c of (1.1) and vice versa, and is usually called a

tuning parameter or a regularization parameter. The choice of an appropriate tuning

parameter is related to how much prediction accuracy we pursue. There are several

criteria used in the literature for selecting λ, for example, Akaike’s information

criterion (AIC), Bayesian information criterion (BIC), Cp criterion (Efron, Hastie,

Johnstone and Tibshirani, 2004) and the general cross-validation (GCV) criterion

(Tibshirani, 1996). In this thesis, we focus on the GCV and a new criterion called

the AUC criterion.

Regularized methods in linear models have been modified and extended in

recent years. These and their theoretical investigations can be found, e.g. in Fan
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and Li (2001), Frank and Friedman (1993), Shen and Ye (2002) and Zou (2006).

In particular, when the design matrix X is orthonormal, a closed form of regular-

ized estimator β̂ can be written as a thresholding function of the ordinary least

squares (OSL) estimator, in the terminology of wavelet theory (Donoho and John-

stone,1994). Knight and Fu (2000) considered the asymptotic behavior of the Lp

estimator. Fan and Li (2001) discussed the oracle properties of the regularized

estimator. Yuan and Lin (2005) connected the Lasso estimator with a particular

hierarchical Bayesian framework.

The regularization method has been applied to the proportional hazards model

in which the regularized estimator β̂ is obtained by maximizing the log partial

likelihood ℓ(β, t) subject to a constraint. In terms of the Lagrange multiplier λ, the

maximizer is given by

β̂ = argmin
β

{ℓ(β, t) − λP (β)} . (1.4)

Compared with the linear models, there are fewer articles discussing the regulariza-

tion in the proportional hazards model (Tibshirani, 1997; Fan and Li, 2002; Gui and

Li, 2005). This motivated us to focus on the development of regularized methods in

proportional hazards model with a goal of giving accurate prediction of a patient’s

survival time.

1.2 Organization of the Dissertation

In Chapter 2, we discuss the regularization in the linear regression model and

define the regularized estimator β̂. We review several estimators β̂ studied in the

3



literature that were obtained by different types of regularization including the Lp, the

HARD and the SCAD. The Lp regularization includes the Lasso, the adaptive Lasso

and the ridge regression estimator as special cases. An explicit form is available for

each β̂ a graphical comparison of these estimates are made. These graphs show that

the tuning parameter λ affects the size of the shrinkage. To emphasize the role of

λ, we denote the estimate β̂ by β̂λ. A popular criterion to determine the value of

λ is the GCV. We review the GCV and show how it is used to determine β̂ in the

linear regression model.

In Chapter 3, we set out to develop a good method of predicting survival times,

where the survival time is modeled by the proportional hazards model with param-

eter β. We study the regularization in the proportional hazards model in which

the estimator β̂λ is the maximizer of the regularized log partial likelihood function

(see (1.4)). Under certain conditions, the consistency and asymptotic normality of

β̂λ with a fixed tuning parameter λ are proved and the oracle properties of β̂λn

with n-dependent nonrandom λ are discussed. The tuning parameter λ affects the

shrinkage of β̂λ in the proportional hazards model as well, but the GCV used in the

linear model may not be an appropriate criterion for selecting λ.

In Chapter 4, a new criterion for selecting λ is proposed. This criterion, based

on the receiver operating characteristic (ROC) curve, takes into consideration the

maximum diagnostic performance of the model. The diagnostic performance is

measured by AUC which stands for the area under the ROC curve. In predicting

a patient’s survival time, we generalize AUC to make it dependent on the survival

time u. A time-dependent AUC(u) is used to develop a method of selecting the

4



tuning parameter λ. The regularized estimator β̂λ is selected by the maximum of

the estimated AUC(u) value. Both parametric and nonparametric estimations are

discussed.

In Chapter 5, we develop an algorithm for computing the regularized estima-

tor β̂λ in the proportional hazards model. The algorithm allows the use of either

the AUC or the GCV criteria to select the tuning parameter λ. We compare nu-

merically the performance of the Lasso estimators β̂λ in three different scenarios

using simulated data. Comparison is also made of different selecting methods. All

programming codes for this chapter are written in the R language and are given

in Appendix B. These codes include calculating the first two derivatives of the log

partial likelihood function for a given β, estimating of the Lasso estimator β̂λ, cal-

culating the GCV value with a given tuning parameter λ and the AUC(u) value

with a given λ and a time u, and generating censored survival data.

Chapter 6 studies a real data set of survival times of patients who have squa-

mous cell carcinoma. Some observations are right censored. We give a description

of the data including how they are collected, what medical indexes in the data mean

and a summary of patients’ information. We then carry out the data analysis using

the method and the algorithm developed in this thesis. The Lasso estimator of β is

computed using both the AUC and the GCV criteria to select significant predicting

variables.

Conclusions are given in Chapter 7.
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Chapter 2

Regularization in Linear Regression

2.1 Definitions

Consider the multiple linear regression

y = β1x1 + . . . + βkxk + e, (2.1)

where y is an observable random variable, xi are known nonrandom regressors, βi

are unknown parameters for i = 1, . . . , k, and e is a random error with mean 0 and

finite variance σ2.

Suppose we have a random sample of n independent observations (yi, xi1, xi2, . . . , xik)

from model (2.1). That is,

yi =
k∑

j=1

xijβj + ei i = 1, . . . , n.

In vector form, we denote the random sample and the regression model by

Y = Xβ + ε

where

Y =




y1

...

yn




, X =




x11 x12 . . . x1k

x21 x22 . . . x2k

...
...

. . .
...

xn1 xn2 . . . xnk




, β =




β1

...

βk




, ε =




e1

...

en




,
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are respectively, an n-dimensional random vector, an n × k design matrix, a vector

of unknown parameters, and a random error vector. It is assumed that XT X is a

k × k non-singular matrix, and that ε has mean 0 and covariance σ2I, where 0 is

an n × 1 zero vector and I is an n × n identity matrix.

Let P (β) denote a continuous function of β which serves as a penalty (or

regularization) function in the estimation of β. The function P (β) is differentiable

and takes positive values at all nonzero points. At the origin, β = 0, P (β) is zero

and may be non-differentiable.

The regularized estimator β̂ of β is defined as the constrained minimizer of

the sum of squared residuals (RSS):

‖Y − Xβ‖2 subject to P (β) ≤ c, (2.2)

where ‖ · ‖ is the L2-norm, and c is a specified nonnegative constant. The constraint

restricts the value of the estimator to the set {β : P (β) ≤ c}.

For investigations and computations, it is convenient to express (2.2) in terms

of the Lagrange multiplier λ. Then minimizing (2.2) is equivalent to that of mini-

mizing the so called penalized (or regularized) RSS with respect to β,

‖Y − Xβ‖2 + λP (β), (2.3)

where given c, there exists a λ which can be solved as a function of c and vice versa.

This will be made precise when we consider specific penalty functions.

Throughout this chapter, we will use the ordinary least squares (OLS) estima-

tor β̃ in establishing properties for the regularized estimator β̂. The OLS estimator

7



β̃ = (XT X)−1XTY is obtained by minimizing ‖Y − Xβ‖2 without imposing any

constraint.

The following lemma proves that λ must be nonnegative.

Lemma 2.1 In view of equation (2.3), for a nonzero OLS estimator β̃, we have

(a) if the penalty P (β̃) ≤ c, then λ = 0; (b) if P (β̃) > c, then λ > 0.

Proof: (a) It is obvious that P (β̃) ≤ c if and only if β̂ = β̃. This implies that

∂
∂β

‖Y − Xβ‖2|β=β̂ = ∂
∂β

‖Y − Xβ‖2|β=β̃ = 0. Since ∂
∂β

(‖Y − Xβ‖2 + λP (β))|β=β̂ =

0, we have either λ = 0 or ∂
∂β

P (β)|β=β̂ = 0. By the definition of P (β), 0 is the

minimum. Therefore we have λ = 0 because β̂ = β̃ is nonzero.

(b) If λ < 0, then λP (β̃) < λc ≤ λP (β̂). Since ‖Y −Xβ̃‖2 ≤ ‖Y −Xβ‖2 for

all β, we have ‖Y−Xβ̃‖2 + λP (β̃) < ‖Y−Xβ̂‖2 + λP (β̂) lead to a contradiction.

2

By Lemma 2.1, the tuning parameter λ ≥ 0. Therefore ‖Y − Xβ‖2 + λP (β)

tends to infinity as ‖β‖ → ∞. This implies the minimizing solution β̂ of (2.3) exists.

If P (β) is a strictly convex function in β, then β̂ is unique because ‖Y − Xβ‖2 is

strictly convex as well. If P (β) is not strictly convex, there is no guarantee that

the unique global minimum exists. But under the special condition of orthonormal

design matrix X, we shall, in the next section, present unique solutions of some

regularized estimators for several (convex or non-convex) penalty functions.

The following are two examples of regularized estimators.

Example 2.1 (Lasso). Let P (β) =
∑k

j=1 |βj| where β = (β1, . . . , βk)
T . The mini-

8



mizer of (2.3),

β̂ = argmin
β



‖Y − Xβ‖2 + λ

k∑

j=1

|βj|


 ,

is called the Lasso estimator of β (Tibshirani, 1996).

Example 2.2 (Ridge regression). Let P (β) = ‖β‖2 =
∑k

j=1 β2
j . Let I be a k × k

identity matrix. The minimizer of (2.3),

β̂ = (XTX + λI)−1XTY,

is the well-studied ridge regression estimator (Frank and Friedman, 1993).

2.2 Penalty Functions

In this section we shall present various penalty functions P (β) and the asso-

ciated regularized estimators β̂ discussed in the literature. The literature on this

subject is huge. Particularly relevant to our investigation are papers by Fan and

Li (2001), Frank and Friedman (1993), Fu (1998), Knight and Fu (2000), Tibshi-

rani (1996) and Zou (2006). In the following, we consider a more general form

of the penalty Pλ(β) than the product λP (β); that is, we discuss the problem of

minimizing

‖Y − Xβ‖2 + Pλ(β) (2.4)

instead of (2.3). This assumption accommodates some of the literature in which the

penalized function is not the product of λ and P (β) but a function of λ and β, for

example, the HARD penalty in Section 2.2.2 and the SCAD penalty (Fan and Li,

2001) in Section 2.2.3.

9



Write (2.4) in the form of

‖Y − Xβ̃‖2 + (β − β̃)T XT X(β − β̃) + Pλ(β), (2.5)

where β̃ is the OLS estimator. If k columns of the design matrix X are orthonormal;

that is, XT X equals an identity matrix I, then minimizing (2.5) is equivalent to that

of minimizing

(β − β̃)T (β − β̃) + Pλ(β). (2.6)

Orthonormalization simplifies the calculation and make it easier to design a penalty

function for obtaining a shrinkage estimator β̂. For instance, in Example 2.2, if

XT X = I, we obtain an explicit form for β̂:

β̂ =
β̃

1 + λ
.

It is easily seen the amount of shrinkage of β̃ in β̂ for λ > 0. We will show more

shrinkage forms later in this chapter.

A popular choice in the literature is to let the penalty function be of an additive

form

Pλ(β) =
k∑

j=1

pλ(βj), (2.7)

where β = (β1, . . . , βk)
T . For each λ ≥ 0, pλ(βj) is continuous on the real line,

differentiable at nonzero values of βj , and the values of pλ(βj) are positive for all

nonzero βj and zero otherwise. Under this additive assumption and orthonomal of

X, (2.6) can be written as

k∑

j=1

[
(βj − β̃j)

2 + pλ(βj)
]

10



which simplifies the computation to the extent that the minimization can be carried

out component-wise. In other words, we only need to consider the problem of

minimizing a single component

(βj − β̃j)
2 + pλ(βj). (2.8)

The minimizer β̂j of (2.8) is also called a thresholding function of β̃j since it takes

value zero within some set of β̃j and has value less or equal to β̃j otherwise.

In the following Sections 2.2.1, 2.2.2 and 2.2.3, we will present several penalty

functions studied in the literature. The corresponding regularized estimators will

be given below in equations (2.10), (2.11), (2.12), (2.14) and (2.16).

2.2.1 The Lp Penalty

A widely used penalty function is the Lp-penalty with p > 0, also known as

the Lasso-type penalty, given by

Pλ(β) =
k∑

j=1

pλ(βj) =
k∑

j=1

λ|βj|p. (2.9)

This includes the Lasso penalty (Tibshirani, 1996) when p = 1, and the ridge

regression penalty (Frank and Friedman, 1993) when p = 2 (see Example 2.1 and

Example 2.2). When p → 0, the limiting case of the Lp penalty can be viewed as

penalization by the number of nonzero parameters, yielding the AIC and the BIC

criteria (Burnham and Anderson, 2002), since

lim
p→0

k∑

j=1

|βj |p =
k∑

j=1

I(βj 6= 0).

11



For the Lasso penalty, pλ(βj) = λ|βj|, the minimizer of (2.8) is given by

β̂j = sign(β̃j)

(
|β̃j | −

λ

2

)

+

(2.10)

where

sign(x) =





1 if x > 0

0 if x = 0

−1 if x < 0

and (x)+ =





x if x ≥ 0

0 otherwise.

Figure 2.1(a) shows the Lasso estimators (2.10) with λ = 0, 2 and 4. If λ = 0,

then β̂j = β̃j and no changes happen. When λ > 0, shrinkage occurs. It is seen

that estimator β̂j is zero for β̃j ∈ [−λ/2, λ/2], and the magnitude of the estimator is

shrunk to (|β̃j| − λ/2) for β̃j outside the interval [−λ/2, λ/2]. The Lasso estimator

β̂j is a continuous function of β̃j and follows a either “shrink” or “kill” regulation.

This is called a soft thresholding rule (Donoho and Johnstone, 1994) in the wavelet

shrinkage literature.

For a ridge regression penalty, the corresponding estimator is given by

β̂j =
β̃j

1 + λ
. (2.11)

A graph of β̂j with λ = 0, 2 and 4 is shown in Figure 2.1(b). The absolute value of

the estimator β̂j is a shrinkage of |β̃j|. However, β̂j is zero only if β̃j is, which may

not be helpful for variable selection. The reason is that β̃j is rarely zero. Thus the

ridge regression estimator will not be zero. Note that a zero value for the estimator

β̂j is the criterion in regularization method for eliminating βj from the model. This

property is laking in the ridge regression estimation.

Zou (2006) considered the case where the tuning parameter λ in (2.9) varies

12
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Figure 2.1: The dotted lines (λ = 0), solid lines (λ = 2) and dash lines

(λ = 4) are plots of the minimizer β̂j of (2.8) versus the OLS estimator

β̃j for (a) the Lasso (b) the ridge regression (c) the adaptive Lasso with

ŵj = 1/|β̃j|2 (d) the HARD and (e) the SCAD with a = 1.85.
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with the sample size n to be denoted by λn. Suppose β0 = (β01, . . . , β0k)
T is the true

parameter in the linear regression model (2.1). Let A = {j : β0j 6= 0, j = 1, . . . , k},

and assume that |A| = k0 < k. So that the true model depends only on a subset of

regressors and (k − k0) components of β0 are zero. Let β̂
(n)

= (β̂
(n)
1 , . . . , β̂

(n)
k )T be

the Lasso estimator of β which minimizes

‖Y − Xβ‖2 +
k∑

j=1

λn|βj|.

Let An = {j : β̂
(n)
j 6= 0, j = 1, . . . , k}. By example, Zou showed that

lim
n→∞

P (An = A) 6= 1.

In other words, the Lasso estimation procedure is not consistent in variable selection.

Zou, therefore, proposed an adaptive Lasso estimator β̂
∗(n)

which is the mini-

mizer of

‖Y − Xβ‖2 +
k∑

j=1

λnŵj|βj|,

where the weight is a function of the OLS estimator: ŵj = 1/|β̃j|γ and γ > 0. Let

A∗
n = {j : β̂

∗(n)
j 6= 0, j = 1, . . . , k}. Suppose that λn/

√
n → 0 and λnn(γ−1)/2 → ∞.

Then the adaptive Lasso satisfies the oracle properties:

1. lim
n→∞

P (A∗
n = A) = 1;

2.
√

n(β̂
∗(n)

A −β0A) converges to a normal distribution asymptotically, where β0A

is the vector of those k0 nonzero components in β0 and β̂
∗(n)

A is an adaptive

Lasso estimator of β0A.

This means that asymptotically the procedure performs as well as if the true model

were known in advance.
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The minimizer of (2.8) with the adaptive Lasso penalty,
∑k

j=1 λnŵj|βj|, be-

comes

β̂j = sign(β̃j)

(
|β̃j| −

λn

2
ŵj

)

+

. (2.12)

See Figure 2.1(c) for (2.12) with λn = 0, 2 or 4 and ŵj = 1/|β̃j|2. We observe that

the gaps between the dotted line and solid line and between the dotted line and

dashed line are smaller in Figure 2.1(c) as compared with the corresponding ones in

Figure 2.1(a). This indicates that the bias of the estimator β̂j is smaller in (c) than

in (a).

2.2.2 The HARD Penalty

Fan (1997) proposed the HARD (thresholding) penalty function

Pλ(β) =
k∑

j=1

pλ(βj) =
k∑

j=1

[
(
λ

2
)2 − (|βj| −

λ

2
)21

(
|βj| <

λ

2

)]
, (2.13)

where 1(·) is an indicator function of the set {|βj| < λ/2}. Note that unlike the

Lp-penalty (2.9), the HARD penalty is no longer a product of a constant λ and

a function βj. The name hard threshold is adapted from Donoho and Johnstone

(1994) who obtained the minimizer of (2.8),

β̂j = β̃j1

(
|β̃j| >

λ

2

)
. (2.14)

Figure 2.1(d) shows the estimator β̂j with λ = 0, 2 and 4. Donoho and John-

stone’s rule of “keep” or “kill” is to keep the estimator β̂j at the value of β̃j if

β̃j /∈ [−λ/2, λ/2], and to set (or kill) β̂j to zero otherwise. The estimator β̂j (2.14)

in Figure 2.1 (d) looks better than the Lasso estimator (2.10) in Figure 2.1 (a) be-

cause there are no gaps between the dotted line and others when β̃j /∈ [−λ/2, λ/2].
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However, there is a drawback in (2.14). It is discontinuous at |λ/2|. Discontinuity

induces instability in model selection in that a small change in the data can result

in very different regressors being selected and hence reduces prediction accuracy.

2.2.3 The SCAD Penalty

In order to improve the discontinuity problem in HARD, Fan and Li (2001)

proposed the Smoothly Clipped Absolute Deviation (SCAD) penalty function

Pλ(β) =
k∑

j=1

pλ(βj) =
k∑

j=1

∫ |βj |

0

[
1

(
x ≤ λ

2

)
+

2(aλ − x)+

(2a − 1)λ
1

(
x >

λ

2

)]
dx (2.15)

for some a > 1. The estimator β̂j is continuous in β̃j and given by

β̂j =





sign(β̃j)
(
|β̃j| − λ/2

)
+

|β̃j| ≤ λ

[
(2a − 1)β̃j − aλsign(β̃j)

]
/ [2(a − 1)] λ < |β̃j| ≤ aλ

β̃j |β̃j| > aλ.

(2.16)

See Figure 2.1(e) with λ = 0, 2 and 4 and a = 1.85. Beside λ, however, one more

tuning parameter a needs to be chosen. Fan and Li (1999) recommended a = 1.85

based on a Bayesian argument.

A good penalty function should have properties of unbiasedness, sparsity so-

lution and continuity. Unbiasedness will ensure no penalization for large coefficients

thus avoiding unnecessary modeling bias. Sparsity solution refers to estimating

insignificant regression coefficients by zero. Thus it reduces model complexity. Con-

tinuity provides stability in model prediction. That is, small change in the data will

not result in a drastic change of variable selection. From Figure 2.1, we see that

Lasso satisfies sparsity and continuity but not unbiasedness, ridge regression satisfies
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only continuity, and HARD satisfies unbiasedness and sparsity but not continuity.

SCAD and adaptive Lasso penalties satisfy all three properties. But they require

the determination of two tuning parameters, λ and a, while other penalties require

the determination of only one parameter λ.

Moreover, we notice that different values of λ result in different sizes of shrink-

age in β. However, shrinking too many variables may reduce prediction accuracy of

the model. Model selection, therefore, is a necessary process of attaining regularized

estimators.

In the next section, we shall turn our attention to the determination of the

tuning parameter λ in (2.4). A conventional way to select the tuning parameter λ

in the linear regression model is the generalized cross-validation (GCV) criterion.

2.3 Generalized Cross-Validation Criterion for Determining λ

The idea behind the cross-validation is to break up the data into several groups

and use one group of the data to predict the rest of the data, and then to find the

tuning parameter λ which gives the smallest prediction error. When the original data

is partitioned into n groups, we call the cross-validation the n-fold cross-validation.

The GCV is a modified form of n-fold cross-validation. Let us first discuss n-fold

cross-validation.
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2.3.1 n-Fold Cross-Validation

Consider n independent random variables y1, . . . ,yn. Suppose we set yi aside

for some arbitrarily fixed i, and yi will be used for validation. We shall use the

remaining (n − 1) observations as training data. Let the training data be denoted

by Y−i = (y1, . . . ,yi−1,yi+1, . . . ,yn)T . Let ŷ−i
λ be the predictor of yi, computed

from a procedure Mλ based on the data Y−i and depending on the parameter λ.

For example, in the linear regression model (2.1), we have

ŷ−i
λ = xiβ̂

−i

λ ,

where xi = (xi1, . . . , xik) and β̂
−i

λ = argmin
β

{∑
j 6=i(yj − xjβ)2 + Pλ(β)

}
obtained

by minimizing (2.4).

For a given λ, we repeat the procedure Mλ n times until each observation

in Y = (y1, . . . ,yn)T is used once for validation. The ordinary cross-validation

(OCV) function is defined as the average of squared discrepancies between yi and

its estimator ŷ−i
λ :

OCV(λ) =
1

n

n∑

i=1

(yi − ŷ−i
λ )2. (2.17)

The minimizer of (2.17) with respect to λ is the desired value of λ̂ which gives the

smallest average prediction error.

To compute OCV for each λ, we need to repeat the procedure Mλ n times.

This is usually computationally intensive. A generalized cross-validation criterion

is introduced to ease the computation.
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2.3.2 Generalized Cross-Validation

The idea of generalized cross-validation is to find a more easily computed

variable to substitute for ŷ−i
λ in (2.17). This was proposed by Craven and Wahba

(1979). The following description of GCV is adapted from Wang (2004) which is

more suitable for our purpose.

Let Ŷ = (ŷ1, . . . , ŷn)T be the vector estimated from the procedure Mλ based

on the complete data Y. Assume that there exists an n × n matrix Aλ = (aij)n×n

depending on λ such that Ŷ can be represented as a linear function of Y,

Ŷ = AλY. (2.18)

For example, in the ridge regression (Example 2.2), given a λ,

Ŷ = Xβ̂λ = X(XTX + λI)−1XTY.

We choose Aλ = X(XT X + λI)−1XT . For the same λ, let

Y̊−i = (y1, . . . ,yi−1, ŷ
−i
λ ,yi+1, . . . ,yn)T

be our data with yi replaced by ŷ−i
λ . Using the data Y̊−i, we compute another esti-

mator of yi, ẙ−i
λ , which is obtained the same way as that of ŷ−i

λ from the procedure

Mλ. We shall prove in Lemma 2.2 that for ŷ−i
λ computed with regularized RSS

(2.4),

ŷ−i
λ = ẙ−i

λ for i = 1, . . . , n. (2.19)

Since Wang (2004) did not provide a proof of (2.19), we will give it in the following.
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Lemma 2.2 Let Y−i, Y̊−i and xi be defined as above, and let β̂
−i

λ and β̊
−i

λ be

obtained from minimizing the regularized RSS (2.4) using respectively the data Y−i

and Y̊−i. Let ŷ−i
λ = xiβ̂

−i

λ and ẙ−i
λ = xiβ̊

−i

λ be the estimators of yi. Then ŷ−i
λ = ẙ−i

λ

for i = 1, . . . , n.

Proof: Note that β̂
−i

λ is the minimizer of
{∑

j 6=i(yj − xjβ)2 + Pλ(β)
}

and β̊
−i

λ is

the minimizer of h(β) =
{∑

j 6=i(yj − xjβ)2 + (ŷ−i
λ − xiβ)2 + Pλ(β)

}
. Substituting

β̂
−i

λ for β in h gives

h(β̂
−i

λ ) =
∑

j 6=i

(yj − xjβ̂
−i

λ )2 + (ŷ−i
λ − xiβ̂

−i

λ )2 + Pλ(β̂
−i

λ )

=
∑

j 6=i

(yj − xjβ̂
−i

λ )2 + Pλ(β̂
−i

λ )

≤
∑

j 6=i

(yj − xjβ)2 + Pλ(β) for all β

≤ h(β) for all β.

Hence β̂
−i

λ = β̊
−i

λ which entails ŷ−i
λ = ẙ−i

λ . 2

Remark: Although our proof of Lemma 2.2 follows the approach of Craven

and Wahba (1979), our method is different from theirs. They consider the spline

smoothing model

y = f(x) + e, x ∈ [0, 1], (2.20)

where e is a random error with mean 0 and finite variance σ2, and f is a function

in the Sobolev space W m
2 [0, 1] for a given finite m. A function f in W m

2 [0, 1] if the

(m− 1)-th derivative of f is absolutely continuous in the interval [0, 1] and its m-th

derivative, f (m), is finite in L2[0, 1]. Consider a random sample of n independent

observations (yi, xi) from (2.20). The smoothing spline estimator f̂ of f is the
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minimizer in W m
2 [0, 1] of

1

n

n∑

j=1

(yj − f(xj))
2 + λ

∫ 1

0
(f (m)(x))2dx.

Craven and Wahba (1979) considered two estimators of f , f̂−i
λ and f̊−i

λ . f̂−i
λ is

obtained by minimizing

1

n

∑

j 6=i

(yj − f(xj))
2 + λ

∫ 1

0
(f (m)(x))2dx, (2.21)

while f̊−i
λ is obtained by minimizing

1

n


(f̂−i

λ (xi) − f(xi))
2 +

∑

j 6=i

(yj − f(xj))
2


+ λ

∫ 1

0
(f (m)(x))2dx. (2.22)

In their Lemma 3.1, it is shown that f̂−i
λ (x) = f̊−i

λ (x) for all x ∈ [0, 1].

However, since f̂−i
λ uses (n − 1) observations, (2.21) should be modified as

1

n − 1

∑

j 6=i

(yj − f(xj))
2 + λ

∫ 1

0
(f (m)(x))2dx. (2.23)

If so, (2.22) and (2.23) fail to imply f̂−i
λ = f̊−i

λ as claimed in their Lemma 3.1. This

is corrected in our Lemma 2.2 for the regularized RSS. 2

By the assumptions of (2.18) and definitions of ŷ−i
λ , we have

ŷi =
n∑

j=1

aijyj

ŷ−i
λ = ẙ−i

λ =
∑

j 6=i

aijyj + aiiŷ
−i
λ

for all i. Then

yi − ŷi = (1 − aii)(yi − ŷ−i
λ ). (2.24)

Assume that 1 − aii 6= 0. By (2.24), the OCV function (2.17) can be written as

OCV(λ) =
1

n

n∑

i=1

(
yi − ŷi

1 − aii

)2

. (2.25)
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Now replace aii by the average of the trace of Aλ (2.18),
∑n

i=1 aii/n = tr(Aλ)/n.

Note that both ŷi and Aλ depend on λ. The generalized cross-validation function

is a modified OCV function (2.25) defined by

GCV(λ) =
1

n

n∑

i=1

(
yi − ŷi

1 − tr(Aλ)/n

)2

=
‖Y − Ŷ‖2

n[1 − tr(Aλ)/n]2
. (2.26)

In GCV, it is not necessary to compute ŷ−i
λ . We only need to compute the

trace of Aλ (see (2.18)) and compute Ŷ once with the complete data Y for each

given λ. Then an optimal value of λ is obtained by minimizing GCV(λ) over λ.

The following two examples illustrate the use of GCV functions in selecting

the tuning parameter λ in linear regressions.

Example 2.3 (Lasso). The L1 penalty P (β) =
∑k

j=1 |βj| is not differentiable at

the origin. To carry out the Newton-Raphson, Tibshirani (1996) argued that P (β)

can be approximated by
∑k

j=1 β2
j /|β̃j| = β′Wβ, where β̃j is the OLS estimator of βj

and W is a diagonal matrix with entries (1/|β̃1|, . . . , 1/|β̃k|) if β̃j 6= 0. This device

has been widely used in the literature. Then Xβ̂λ ≈ X(XTX +λW)−1XTY = Al
λY

and

GCV(λ) =
‖Y − Xβ̂λ‖2

n[1 − tr(Al
λ)/n]2

.

Example 2.4 (Ridge regression). The L2 penalty is P (β) = ‖β‖2. Then we have

Xβ̂λ = X(XT X + λI)−1XTY = Ar
λY and

GCV(λ) =
‖Y − Xβ̂λ‖2

n[1 − tr(Ar
λ)/n]2

.
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In summary, the regularization in linear regression is to estimate coefficients

β by minimizing the regularized RSS {‖Y − Xβ‖2 + Pλ(β)}. For each given value

of the tuning parameter λ, we can compute β̂λ, the estimate of β, and calculate its

corresponding GCV(λ). Then the λ which yields the smallest value of GCV is our

best choice.

In the following chapter, we shall extend the regularized method to the pro-

portional hazards model for censored survival data.
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Chapter 3

Regularization in Proportional Hazards Regression

3.1 Definition

Let T be a nonnegative random variable denoting the survival time of an

individual in the study population. Let C be a nonnegative random variable in-

dependent of T . The observation of T is subject to right censoring by C in the

sense that T is observable up to T̃ where T̃ = min(T, C). Let δ = I[T ≤ C] be the

censoring indicator of the event [T ≤ C].

Let Z = (Z1, . . . , Zk)
T denote the k-dimensional covariate of T . The hazard

function of T conditioning on the covariate Z = z is defined by

h(t|z) = lim
x→0

1

x
P (t ≤ T < t + x|T ≥ t, z), for t ≥ 0.

If an arbitrary distribution function H0(t) possesses a density, its hazard function

is given by

h0(t) = − d

dt
log [1 − H0(t)] , for t ≥ 0.

The proportional hazards model, also known as the Cox regression model (Cox,

1975), is the product

h(t|Z = z) = h0(t) exp(βTz), (3.1)

where β = (β1, . . . , βk)
T is a k-dimensional column vector of unknown regression

coefficients.
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Assume that we have a sample of n independent and identically distributed

(i.i.d.) random vectors (T̃i, δi,Zi), i = 1, . . . , n, from a given population. Estimation

of regression coefficients, β, can be performed by using the partial likelihood method.

Let Ri = {j : T̃j ≥ T̃i} denote the risk set at time T̃i. That is, Ri contains all of

those individuals in the sample that are alive and not censored at time T̃i. The

partial likelihood function of β is defined by

n∏

i=1

[
exp(βTZi)∑

j∈Ri
exp(βTZj)

]δi

. (3.2)

It is well-known that the maximizer β̃ of the partial likelihood (3.2) is an asymp-

totically normal and efficient estimator of β. The estimation of β using (3.2) does

not depend on the unknown nuisance hazard function h0(t).

A popular approach to study the properties of β̃ is to formulate the problem

in terms of counting processes. Consider two counting processes N = {N(t) : t ≥ 0}

and Y = {Y(t) : t ≥ 0}, where

N(t) = I[T ≤ t, T ≤ C], (3.3)

Y(t) = I[T ≥ t, C ≥ t]. (3.4)

These two processes monitor the survival and possible censoring time of an individual

over time t. The sample, {(T̃i, δi,Zi), i = 1, . . . , n}, gives rise to a family of counting

processes {Ni,Yi, i = 1, . . . , n}, where Ni and Yi are defined as N and Y with T

and C replaced by Ti and Ci. Let ∆N(t) = N(t)−N(t−) denote the jump of N at

time t. For any fixed t, we consider all (T̃i, δi,Zi) that are observed by time t. The
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partial likelihood (3.2) at time t can be expressed as

L(β, t) =
n∏

i=1

∏

0≤u≤t

[
Yi(u) exp(βTZi)∑n

j=1 Yj(u) exp(βTZj)

]∆Ni(u)

(3.5)

with L(β,∞) equal to (3.2). The logarithm of (3.5) is

ℓ(β, t) =
n∑

i=1

∫ t

0



βTZi − log




n∑

j=1

Yj(u) exp(βTZj)





 dNi(u). (3.6)

Note that Zi is a random covariate vector of the i-th individual:

Zi =




Zi1

...

Zik




.

We assume that Zi’s are not time dependent. It can be shown that if not all of

the observations are censored, the log partial likelihood, ℓ(β, t), is a strictly concave

function of β, and the maximum partial likelihood estimator exists uniquely.

Similar to the approach in the linear regression of Section 2.1, a regularized

estimator β̂ of β based on ℓ(β, t) is obtained as

β̂ = argmax
β

ℓ(β, t) subject to the constraint P (β) ≤ c, (3.7)

where P (β) is a penalty function of β and c is some known nonnegative constant.

As in Section 2.1, the function P (β) is assumed to be zero at the origin. It is positive

and differentiable for β 6= 0. In terms of the Lagrange multiplier λ ≥ 0, (3.7) is

equivalent to

β̂ = argmax
β

{ℓ(β, t) − λP (β)} .

Note that β̂ here is a maximizer instead of a minimizer as we have used in Section

2.1. Therefore we use the minus sign “−” in the penalized term in order to keep the

tuning parameter λ nonnegative as in Section 2.1.
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In the following, we shall use a more general form of penalty Pλ(β) instead of

λP (β) as discussed in the previous chapter. In this chapter we have censored data

and the log partial likelihood ℓ(β, t) is nonlinear in β which differ from the linear

regression Xβ and uncensored data studied in Chapter 2.

3.2 Asymptotic Properties of Estimators

Assume that β̂ is a local maximizer of the regularized log partial likelihood,

Q(β, t) = ℓ(β, t) − Pλ(β), (3.8)

in a neighborhood B of the true β0, where ℓ(β, t) is given by (3.6). We shall prove

that given the covariate Z = z, β̂ is conditionally consistent and asymptotically

normal as the sample size n goes to infinity.

To our knowledge, there is little work in the literature on the asymptotic

properties of β̂ with a nonnegative constant λ. Oracle properties of β̂ under the

sparsity model and in the case of λ depending on n have been studied by Fan and Li

(2002) and Zhang and Lu (2007) among others. Therefore, in the following Sections

3.2.2, 3.2.3 and 3.2.4, we shall establish consistency and asymptotic normality of

the estimator β̂ for both constant λ in Theorem 3.1 and 3.2 and for λ depending on

n in Theorem 3.3 and 3.4. Section 3.2.1 shows preliminaries to the above theorems.

Finally, in Section 3.2.5, we shall present the oracle properties of β̂ and the theorem

of Fan and Li (2002) in Theorem 3.5.
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3.2.1 Preliminaries for Establishing Asymptotic Properties of Esti-

mators

Under some regularity conditions on the model, the asymptotic properties of

the estimators can be obtained by investigating the asymptotic behavior of the first

two partial derivatives of Q(β, t) (in (3.8)). Consider the partial derivative of Q,

∂Q(β, t)

∂β
=

∂ℓ(β, t)

∂β
− ∂Pλ(β)

∂β
. (3.9)

The first term on the right hand side is the score vector of the log partial likelihood

function (3.6) which can be written in terms of the counting processes Ni = I[Ti ≤

t, Ti ≤ Ci] (see (3.3)), for i = 1, . . . , n, as follows

∂ℓ(β, t)

∂β
=

n∑

i=1

∫ t

0

[
Zi −

S(1)(β, u)

S(0)(β, u)

]
dNi(u), (3.10)

where

S(0)(β, t) =
1

n

n∑

i=1

Yi(t) exp(βTZi), (3.11)

S(1)(β, t) =
1

n

n∑

i=1

ZiYi(t) exp(βTZi). (3.12)

Recall that Yi(t) = I[Ti ≥ t, Ci ≥ t] (see (3.4)). We shall also need the second

partial derivatives of S(0)(β, t):

S(2)(β, t) =
1

n

n∑

i=1

ZiZ
T
i Yi(t) exp(βTZi). (3.13)

Note that S(0) is a one-dimensional random variable, S(1) is a k-dimensional column

random vector and S(2) is a k × k random matrix. These are notations used in

Andersen and Gill (1982).
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Andersen and Gill (1982) established the asymptotic consistency and normal-

ity of the maximum partial likelihood estimator of β. We shall use their method

of proof to establish asymptotic properties for the regularized estimator β̂ from the

penalized likelihood Q(β, t).

Throughout this thesis, the notation
a.s.−→ denotes convergence almost surely,

P−→ denotes convergence in probability, and
D−→ denotes convergence in distribution.

These limits are taken as n → ∞ unless stated otherwise.

The following four conditions are used to establish the asymptotic results.

A. (Finite interval). Let τ be such that
∫ τ
0 h0(t)dt < ∞.

B. (Asymptotic stability). For S(0),S(1) and S(2), there exists a neighborhood B

of the true parameter β0 and non random scalar, vector and matrix functions

s(0), s(1) and s(2) defined on B × [0, τ ] such that for j = 0, 1, 2,

sup
t∈[0,τ ],β∈B

‖S(j)(β, t) − s(j)(β, t)‖ P−→ 0.

C. (Lindeberg condition). There exists γ > 0 such that

n−1/2 sup
1≤i≤n,0≤t≤τ

|Zi|Yi(t)I{βT
0 Zi > −γ|Zi|} P−→ 0.

D. (Asymptotic regularity conditions). Let B, s(0), s(1) and s(2) be as defined in

Condition B. For all β ∈ B and t ∈ [0, τ ]:

(1) The derivatives s(1)(β, t) = ∂s(0)(β, t)/∂β and s(2)(β, t) = ∂s(1)(β, t)/∂β

exist.

(2) s(j) are bounded on B × [0, τ ] for j = 0, 1, 2, and s(0) is away from zero.
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(3) The family of functions s(j)(·, t) is equicontinuous at β0 for j = 0, 1, 2.

That is, given ε > 0, there is a neighborhood B of β0 such that

sup
β∈B

‖s(j)(β, t) − s(j)(β0, t)‖ < ε for all t.

(4) The matrix

Σ(β0, t) =
∫ t

0
v(β0, u)s(0)(β0, u)h0(u)du (3.14)

is positive definite, where v = (s(2)/s(0)) − (s(1)/s(0))(s(1)/s(0))T .

Remark: These are the conditions used in Andersen and Gill (1982). They

are a variant of standard conditions used in asymptotic investigations known as local

asymptotic normal conditions introduced by Le Cam (1960) (LAN). See Le Cam and

Yang (2000). Condition B permits the replacement of β by a random vector used

the proof of convergence of the information matrix I(β, t). (See equations (3.23)

and (3.27) below.) 2

We shall use the following three lemmas. Lemma 3.1 and Lemma 3.2 are given

by Andersen and Gill (1982). Lemma 3.3 is similar to Corollary II.2. of Andersen

and Gill (1982), but they omit its proof. We shall give a proof of Lemma 3.3 below.

Let

f(β, β0, t) =
∫ t

0

{
(β − β0)

T s(1)(β0, u) − log

[
s(0)(β, u)

s(0)(β0, u)

]
s(0)(β0, u)

}
h0(u)du.

(3.15)

For all t ∈ [0, τ ], the function f(β, β0, t) is nonrandom. It can be shown that

f(β, β0, t) has a unique maximum at β0.
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Lemma 3.1 For any t ∈ [0, τ ] and β ∈ B, the neighborhood of β0 defined in

Condition B, under Conditions A–C and when the true parameter is β0,

1

n
[ℓ(β, t) − ℓ(β0, t)]

P−→ f(β, β0, t) as n → ∞.

Lemma 3.2 (Preservation of Concavity). Let E be an open convex set in Rk. Let

F1, F2, . . . , be a sequence of random concave functions on E such that, for every

x ∈ E, Fn(x)
P−→ F (x) as n → ∞, where F is a real-valued function on E. Then

F is also concave and for all compact A ⊂ E

sup
x∈A

|Fn(x) − F (x)| P−→ 0 as n → ∞.

Lemma 3.3 Let E be an open convex set in Rk. Let F, F1, F2, . . . , be random

continuous functions on E such that for all compact A ⊂ E, sup
x∈A

|Fn(x)−F (x)| P−→ 0

as n → ∞. Suppose that F has a unique maximum at x̂ ∈ E, and for any compact

set A containing x̂, there exists an x̂n ∈ A maximizing Fn. Then x̂n
P−→ x̂ as

n → ∞.

Note that Fn is assumed to be concave in Lemma 3.2 while it is only assumed

to be continuous in Lemma 3.3.

Proof of Lemma 3.3: By hypothesis, considering any compact set A ⊂ E,

for every subsequence {nm}, there exists a further subsequence {nmk
} ⊂ {nm} such

that sup
x∈A

|Fnmk
(x) − F (x)| a.s.−→ 0 as k → ∞. We first show that along the sub-

subsequence {nmk
}, Lemma 3.3 is true. Then we extend the result to the original

sequence {n}.
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Consider any compact set A containing x̂ in E. Then, for every fixed nm, the

continuous function Fnm
has a maximum x̂nm

∈ A. By compactness of A, for every

{x̂nm
}, there exists a subsequence {x̂nmk

} ⊂ {x̂nm
} such that x̂nmk

a.s.−→ ŷ ∈ A.

We will show that F (ŷ) ≥ F (y) for every y ∈ A. Note that

Fnmk
(x̂nmk

) ≥ Fnmk
(y) ∀y ∈ A. (3.16)

For every ε > 0 and k sufficiently large, we have

|Fnmk
(x̂nmk

) − F (ŷ)| ≤ |Fnmk
(x̂nmk

) − F (x̂nmk
)| + |F (x̂nmk

) − F (ŷ)| < 2ε.

|Fnmk
(x̂nmk

) − F (x̂nmk
)| < ε follows by the convergence hypothesis and |F (x̂nmk

) −

F (ŷ)| < ε by continuity and our selected sequence {x̂nmk
}.

It follows that

F (ŷ) ≥ Fnmk
(x̂nmk

) − 2ε,

F (ŷ) ≥ Fnmk
(y) − 2ε, by (3.16)

F (ŷ) ≥ F (y) − 2ε, by taking limit as k → ∞.

This inequality is true for every ε > 0. Hence

F (ŷ) ≥ F (y) ∀y ∈ A.

We have shown that the subsequence {x̂nmk
} converges almost surely to the

limit ŷ, and that ŷ maximizes F on A. By hypothesis, F has a unique maximum,

so we conclude ŷ = x̂. Then x̂nmk

a.s.−→ x̂ as k → ∞.

Since for every subsequence {nm}, there exists a further subsequence {nmk
}

such that x̂nmk

a.s.−→ x̂, we have x̂n
P−→ x̂ as n → ∞. 2
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3.2.2 Consistency of β̂ with a nonnegative constant λ

We now establish the consistency of β̂, a local maximizer of the regularized

log partial likelihood

Q(β, t) = ℓ(β, t) − Pλ(β), (3.17)

where ℓ(β, t) is given by (3.6).

Theorem 3.1 (Consistency of β̂ with a nonnegative constant λ). Assume that

Conditions A–D hold. Let B denote a neighborhood of the true parameter β0 satis-

fying Condition B. Assume that β̂ is the local maximizer of Q(β, t) in B for a given

nonnegative tuning parameter λ. Then under the true parameter β0,

β̂
P−→ β0 as n → ∞.

Proof: Consider the difference of the regularized log partial likelihoods at β and

β0 in (3.17):

Q(β, t) − Q(β0, t) = [ℓ(β, t) − ℓ(β0, t)] − [Pλ(β) − Pλ(β0)]. (3.18)

For any compact set A containing β0 in B,

sup
β∈A

|[Q(β, t) − Q(β0, t)]/n − f(β, β0, t)|

≤ sup
β∈A

|[ℓ(β, t) − ℓ(β0, t)]/n − f(β, β0, t)| + sup
β∈A

|Pλ(β) − Pλ(β0)|/n, (3.19)

where f(β, β0, t) is defined in (3.15). By Lemma 3.1 and Lemma 3.2, the first term

of (3.19) converges in probability to zero since [ℓ(β, t) − ℓ(β0, t)]/n is a concave

function of β. The second term converges to zero since sup
β∈A

|Pλ(β) − Pλ(β0)| is
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bounded on A. Let Fn(β) = [ℓ(β, t) − ℓ(β0, t)]/n and F (β) = f(β, β0, t). Since

f(β, β0, t) has a unique maximum at β0, it follows by Lemma 3.3 that β̂
P−→ β0. 2

Remark: The proof shows that our penalty function Pλ(β) does not play a

significant role in determining the consistency of β̂.

Example 3.1 Let β̂ be a Lp regularized estimator with p ≥ 1, that is, Pλ(β) =

λ
∑k

j=1 |βj |p. Then β̂ is consistent.

3.2.3 Asymptotic Normality of β̂ with a nonnegative constant λ

The first order Taylor expansion of ∂Q(β, t)/∂β at the true value β0 yields

∂

∂β
Q(β, t) =

∂

∂β
Q(β0, t) +

∂2

∂β∂βT
Q(β∗, t)(β − β0), (3.20)

where β∗ is on the line segment between β0 and β. Note that

Q(β, t) = ℓ(β, t) − Pλ(β) (3.21)

(see (3.17)). Recall that the score vector process of ℓ(β, t) (see (3.10)) is defined as

∂

∂β
ℓ(β, t) =

n∑

i=1

∫ t

0

[
Zi −

S(1)(β, u)

S(0)(β, u)

]
dNi(u) (3.22)

≡ U(β, t).

The negative partial derivative of U(β, t) gives the so-called “observed” information

matrix (although it depends on the unknown β):

I(β, t) = − ∂

∂β
U(β, t) =

n∑

i=1

∫ t

0
V(β, u)dNi(u), (3.23)

where

V = (S(2)/S(0)) − (S(1)/S(0))(S(1)/S(0))T ,
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and S(0), S(1) and S(2) are defined in (3.11), (3.12) and (3.13), respectively.

Put

Bλ(β) =

(
∂

∂β1

Pλ(β), . . . ,
∂

∂βk

Pλ(β)

)T

. (3.24)

If the first partial derivative of Pλ(β) does not exist at βi = 0, i = 1, . . . , k, we set

Bλ(β) equal to zero. Let

Hλ(β) = −




∂2

∂β2

1

Pλ(β) · · · ∂2

∂β2

1

Pλ(β)

...
. . .

...

∂2

∂β2

k

Pλ(β) · · · ∂2

∂β2

k

Pλ(β)




. (3.25)

If the second partial derivative of Pλ(β) does not exist at βi = 0 or βj = 0, i, j =

1, . . . , k, we set it equal to zero.

Then from (3.20) and (3.21), we have

∂

∂β
Q(β, t) = U(β0, t) − Bλ(β0) − [I(β∗, t) − Hλ(β

∗)] (β − β0). (3.26)

Since ∂Q(β̂, t)/∂β = 0, (3.26) can be written as

1√
n

[U(β0, t) −Bλ(β0)] =
1

n
[I(β∗, t) − Hλ(β

∗)]
√

n(β̂ − β0), (3.27)

where β∗ is on the line segment between β̂ and β0. Therefore
√

n(β̂ − β0) con-

verges to multivariate normal if the left hand side of (3.27) converges in distribution

to a multivariate normal and [I(β∗, t) − Hλ(β
∗)] /n converges in probability to a

nonsingular nonrandom matrix.

Theorem 3.2 (Asymptotic Normality of β̂ with a nonnegative constant λ). Let the

assumptions in Theorem 3.1 hold. Assume that Σ(β0, t), defined by (3.14), satisfies
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Condition D(4) and that each entry of Hλ(β) is a continuous function of β. Then

√
n
(
β̂ − β0

)
D−→ N(0, Σ(β0, t)

−1) as n → ∞. (3.28)

Proof: By (3.27),

1√
n

[U(β0, t) − Bλ(β0)] =
1

n
[I(β∗, t) − Hλ(β

∗)]
√

n(β̂ − β0).

By Theorem 3.2 of Andersen and Gill (1982), under Conditions A–D, U(β0, t)/
√

n
D−→

N(0, Σ(β0, t)) and I(β∗, t)/n
P−→ Σ(β0, t) as n → ∞. Because β∗ is on the line

segment between β̂ and β0, and β̂
P−→ β0 as n → ∞ (see Theorem 3.1), for any

ε > 0 and any δ > 0, there exists a value N such that

P (‖β∗ − β0‖ > δ) ≤ P (‖β̂ − β0‖ > δ) < ε,

for all n ≥ N . Therefore, β∗ P−→ β0. Then Hλ(β
∗)

P−→ Hλ(β0) as n → ∞.

Since Bλ(β0) and Hλ(β0) are constants, Bλ(β0)/
√

n
P−→ 0 and Hλ(β

∗)/n
P−→ 0 as

n → ∞. Then (3.28) holds by Slutsky’s theorem. 2

3.2.4 Consistency and Asymptotic Normality of β̂ with λn

We modify our theorems of consistency (Theorem 3.1) and asymptotic nor-

mality (Theorem 3.2) for the tuning parameter λ depending on n, to be denoted by

λn. Then three examples of regularized estimators satisfying the consistency and

asymptotic normality properties are given.

Theorem 3.3 (Consistency of β̂ with λn). Assume that Conditions A–D are sat-

isfied. Assume that β̂ is a local maximizer of Q(β, t) = ℓ(β, t) − n
∑k

j=1 pλn
(βj)
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in a neighborhood B of the true parameter β0 satisfying Condition B, and λn is a

nonnegative value depending on the sample size n. If pλn
(βj) = o(1) as n → ∞

uniformly in B for all j = 1, . . . , k, then

β̂
p−→β0 as n → ∞.

Proof: Under the assumptions on the penalty function Pλ(β) = n
∑k

j=1 pλn
(βj),

with λ depending on n, it is sufficient to show that sup
β∈A

|Pλ(β)−Pλ(β0)|/n in (3.19)

converges to zero for any compact set A ⊂ B. For any compact subset A of B, we

have

sup
β∈A

∣∣∣∣∣∣
n

k∑

j=1

pλn
(βj) − n

k∑

j=1

pλn
(βj0)

∣∣∣∣∣∣
/n ≤

k∑

j=1

[
sup
β∈A

|pλn
(βj)| + |pλn

(βj0)|
]
−→ 0

as n → ∞. The convergence to zero follows from the hypothesis that pλn
(βj) = o(1)

uniformly in B for all j = 1, . . . , k. Then following a proof similar to that of Theorem

3.1, we conclude that β̂ is consistent. 2

Theorem 3.4 (Asymptotic Normality of β̂ with λn). Let the assumptions in The-

orem 3.3 hold. Suppose that Σ(β0, t) satisfies Condition D(4). Then

√
n
[
Σ(β0, t) −

1

n
Hλn

(β0)
]{

(β̂ − β0) +
[
Σ(β0, t) −

1

n
Hλn

(β0)
]−1 [1

n
Bλn

(β0)
]}

(3.29)

converges to a normal distribution N(0, Σ(β0, t)) as n → ∞, where Bλn
and Hλn

are defined as in (3.24) and (3.25) with λ replaced by λn.

If Bλn
(β)/

√
n converges to a vector of k functions b(β) and −Hλn

(β)/n con-

verges to a k × k matrix Σλ(β) componentwise as n → ∞, then

√
n(β̂ − β0)

D−→ N(µ(β0), Σ
∗(β0, t)) as n → ∞, (3.30)
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where

µ(β0) = − [Σ(β0, t) + Σλ(β0)]
−1 b(β0),

Σ∗(β0, t) = [Σ(β0, t) + Σλ(β0)]
−1 Σ(β0, t) [Σ(β0, t) + Σλ(β0)]

−1 .

Proof: From (3.27), U(β0, t)/
√

n is equal to

√
n
[
1

n
I(β∗, t) − 1

n
Hλn

(β∗)
]{

(β̂ − β0) +
[
1

n
I(β∗, t) − 1

n
Hλn

(β∗)
]−1 [ 1

n
Bλn

(β0)
]}

.

(3.31)

By Andersen and Gill (1982) and Theorem 3.3, U(β0, t)/
√

n
D−→ N(0, Σ(β0, t)),

I(β∗, t)/n
P−→ Σ(β0, t) and Hλn

(β∗)
P−→ Hλn

(β0). Therefore (3.29) converges to

N(0, Σ(β0, t)) by Slutsky’s theorem.

Moreover, (3.29) is equivalent to

√
n
[
Σ(β0, t) −

1

n
Hλn

(β0)
]
(β̂ − β0) +

1√
n
Bλn

(β0).

Since −Hλn
(β0)/n → Σλ(β0) pointwise and Bλn

(β0)/
√

n → b(β0) pointwise, we

have (3.30) by Slutsky’s theorem. 2

The following are examples of regularized estimators with their consistency

and asymptotic normality properties.

Example 3.2 (Lasso). Suppose Pλ(β) = nλn
∑k

j=1 |βj|. If λn → 0, then β̂ is

consistent, Bλn
(β) = nλnsign(β) and Hλn

(β) = 0k×k. If
√

nλn converges to a

constant C, then
√

n
(
β̂ − β0

)
converges to a multivariate normal distribution with

mean −CΣ(β0, t)
−1sign(β0) and covariance matrix Σ(β0, t)

−1.

Example 3.3 (Adaptive Lasso). Suppose Pλ(β) = nλn
∑k

j=1 |βj |/β̃2
j , where β̃j is

the OLS estimator of βj. If λn → 0, then β̂
P−→ β0 as n → ∞, Bλn

(β) =
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nλnsign(β)diag(1/β̃2
1, . . . , 1/β̃

2
k) and Hλn

(β) = 0k×k. If
√

nλn converges to a con-

stant C, then
√

n
(
β̂ − β0

)
converges to a multivariate normal distribution with

mean −CΣ(β0, t)
−1sign(β0)diag(1/β

2
10, . . . , 1/β

2
k0) and covariance matrix Σ(β0, t)

−1.

Example 3.4 (Ridge). Suppose Pλ(β) = nλn
∑k

j=1 β2
j . If λn → 0, then β̂ is con-

sistent, Bλn
(β) = 2nλnβ and Hλ(β) = −2nλnIk×k. If

√
nλn converges to a con-

stant C, then Bλn
(β)/

√
n → 2Cβ and −Hλn

(β)/n = 2λnIk×k → 0k×k. Hence,

√
n
(
β̂ − β0

)
converges to a normal distribution with mean −2CΣ(β0, t)

−1β0 and

covariance matrix Σ(β0, t)
−1.

3.2.5 Oracle Properties of β̂ with λn

In variable selection and estimation, oracle properties of estimators in the reg-

ularized regression model are studied in the literature. See Zou (2006) and references

therein. Oracle properties are some asymptotically optimal properties which can be

conveniently described as follows. Suppose we know a priori that s components (for

s < k) of the true parameter β0 are nonzero while the remaining (k−s) components

are zero. Rearrange these components so that

β0 =




β10

β20


 , (3.32)

where β10 = (β10, . . . , βs0)
T with βi0 6= 0 for i = 1, . . . , s, and β20 = (β(s+1)0, . . . , βk0)

T

with βj0 = 0 for j = s + 1, . . . , k. That is, the true model depends only on a rel-

atively small subset of the components of β0 while the other components are zero.

This is called a sparsity condition. Sparsity also refers to, with probability tending
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to one, the estimator for β20 is zero. We shall consider the case where the tuning

parameter depends on n, to be denoted by λn, and the penalty function is

Pλn
(β) = n

k∑

j=1

pλn
(βj), (3.33)

where pλn
(0) = 0 and pλn

(βj) ≥ 0 for all j. Under conditions on λn to be specified

later, the regularized estimator

β̂ =




β̂1

β̂2




of β =




β1

β2


 has oracle properties.

Following Fan and Li (2002), we say an estimation procedure ∆ that produces

the estimator β̂(∆) has oracle properties if it is a consistent variable selection, that

is,

(a) With probability tending to one, the procedure ∆ gives correct identification

of β20, i.e. β̂2 = 0,

and β10 can be estimated as well as if the correct sub-model were known in advance.

In the present case, it means β̂1 has an optimal estimation rate, in the sense of

(b) Asymptotic normality, i.e. the distribution of
√

n(β̂1 − β10) converges to a

normal distribution with mean zero and covariance matrix I−1
1 (β10, 0), where

I1(β10, 0) is the Fisher information for β1, knowing β20 = 0.

We begin with the presentation of the results of Fan and Li (Theorem 3.2, 2002)

who established oracle properties of the local maximizer β̂ under certain conditions
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and with a proper choice of regularization parameter λn. Their theorem is restated

in this thesis as Theorem 3.5.

Theorem 3.5 (Oracle properties, Fan and Li 2002). Assume that Conditions A–

D of Section 3.2 are satisfied. Let the sparsity condition (3.32) hold. Consider

the penalty function Pλn
(β) = n

∑k
j=1 pλn

(βj) given in (3.33). Let p′λn
and p′′λn

denote the first and the second derivatives of pλn
with respect to βj. Assume that

an = max{|p′λn
(|βj0|)| : j = 1, . . . , s} = O(1/

√
n) and bn = max{|p′′λn

(|βj0|)| : j =

1, . . . , s} = o(1) as n → ∞. Suppose (a) λn → 0, (b)
√

nλn → ∞ as n → ∞, and

(c) lim inf
n→∞

lim inf
θ→0+

p′λn
(θ)/λn > 0.

Let β̂ =




β̂1

β̂2


 be the local maximizer of Q(β, t) = ℓ(β, t) − Pλn

(β) in

the neighborhood B(β0, C/
√

n), where C is a given positive constant. Then with

probability tending to one,

(i) β̂2 = 0,

(ii)

√
n [Σ1(β0, t) + Σλn

]
{
β̂1 − β10 + [Σ1(β0, t) + Σλn

]−1 bλn

}
(3.34)

converges to a normal distribution N(0, Σ1(β0, t)) as n → ∞, where Σ1(β0, t)

is the principal s × s submatrix of Σ(β0, t) defined in (3.14),

Σλn
= diag

(
p′′λn

(|β10|), . . . , p′′λn
(|βs0|

)
,

and

bλn
=
(
p′λn

(|β10|)sign(β10), . . . , p
′
λn

(|βs0|)sign(βs0)
)
.
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Remark: We find the proof given in Fan and Li (2002) is not transparent.

The repeated use of bounded in probability Op(‖β − β0‖/
√

n), where ‖β − β0‖ is

nonrandom, adds to the confusion.

3.3 Generalized Cross-Validation Criterion

We have shown how to estimate the tuning parameter λ in the regularized

linear regression by using the GCV criterion in Section 2.3.2. Recall that the GCV

function is given by

GCV(λ) =

∑n
i=1(yi − ŷi)

2

n[1 − tr(A)/n]2
. (3.35)

However, the GCV is not an easily implementable tool for the proportional hazards

model. In the linear regression model (2.1) of Chapter 2, the random variable yi is

explicitly modeled by

yi =
k∑

j=1

xijβj + ei i = 1, . . . , n.

Once the estimator β̂
−i

λ is calculated, the estimate ŷi = Xiβ̂
−i

λ of yi can be deter-

mined immediately as it is needed in GCV(λ) (see (3.35)). On the contrary, in the

proportional hazards model, we model the survival probability or equivalently the

hazard rate of a patient, but not the actual survival time (T ) of a patient which

is the required input variable in GCV(λ) with Ti taking the role of yi. In theory,

we could obtain an estimate T̂i of Ti by sampling from an estimated survival time

distribution of the proportional hazards model. However, such a task would intro-

duce additional sampling error and computational inefficiency. Moreover, the linear

assumption (2.18) is not satisfied. These problems exist even if we assume that all
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survival data are uncensored. The other reason is that the linear assumption (2.18)

is not satisfied. In other words, we can estimate the hazard rate that a patient will

die at time t, so that we can compute
∑n

i=1(h(t)i − ĥ(t)i)
2 while considering the

hazard rate h(t)i as yi, but unfortunately there is no evidence that there exists an

n × n matrix A such that (ĥ(t)1, . . . , ĥ(t)n)T = A(h(t)1, . . . , h(t)n)T .

A traditional way to apply the GCV criterion to the regularized proportional

hazards model is to replace the sum of squares errors by minus log partial likelihood,

that is,

GCV(λ) =
−ℓ(β̂, t)

n[1 − tr(A)/n]2
. (3.36)

Tibshirani (1997) assumed that the proportional hazards model can be simplified as

a generalized linear model and proposed that β̂ ≈ (ZTDZ + λW)−1ZTDZβ, where

D is a diagonal matrix with the same diagonal elements as −∇2ℓ(β̂, t) and W is

the diagonal matrix of |β̂|−1 for the Lasso penalty. Therefore,

A1(λ) = Z(ZTDZ + λW)−1ZTD. (3.37)

Fan and Li (2002) claimed that an approximate linear relationship between β̂ and

β can be derived from the iterative Newton-Raphson algorithm and defined

A2(λ) =
[
∇2ℓ(β̂, t) + Σλ(β̂)

]−1 ∇2ℓ(β̂, t) (3.38)

where Σλ(β̂) = diag
(
∂Pλ(|β̂|)/∂|β|

)
W, Pλ(·) is the penalty function and W is

defined as in (3.37).

The purpose of introducing the GCV criterion is to reduce the intensive com-

putation of cross-validation. Its success in the linear regression model depends
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critically on a linear relationship between the true parameter and its estimator. In

the proportional hazards model, however, the necessary linear relationship can only

be obtained by an approximation since the log partial likelihood ℓ(β, t) or the regu-

larized estimator β̂ is not a linear function of β at all. Different approximations can

result in different linear relations like (3.37) and (3.38), and then make the GCV

score vary.

Therefore, to avoid the linear assumption between β̂ and β is a strong motiva-

tion for us to propose a nonparametric method called AUC criterion in the following

chapter.
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Chapter 4

Area under Receiver Operating Characteristic Curve Criterion

In this chapter, we present the receiver operating characteristic (ROC) curve,

define the area under a ROC curve (AUC) as a measure of diagnostic performance

of the estimated proportional hazards model. We propose a method of selecting the

tuning parameter λ by maximizing the AUC.

4.1 The ROC and AUC

Consider a population Ω of individuals and a particular disease that affects

some of the individuals in the population, for example, individuals with a certain

type of cancer. There are a variety of clinical tests for diagnosis of the disease. The

ROC is a widely used method for evaluating the performance of a diagnostic test. A

good test would have high probability of true positive diagnosis and low probability

of false positive. In this thesis, we shall use the ROC in a different way. Here the

ROC will be used to determine the tuning parameter λ in selecting variables (or

covariates) that are most relevant to the disease under study.

We shall begin with the definition of ROC. Let D denote the true disease status

of an individual in the population with D = 1 indicating the presence of the disease

and D = 0, the absence of the disease. Consider a particular diagnostic test and let

W represent the measurement used in the diagnostic test. We assume that W is a
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real-valued random variable with a continuous distribution. Specifying a threshold

value w, the event [W > w] indicates that the diagnostic test is positive while the

event [W ≤ w] indicates that the test is negative. For any specified threshold w,

define the true positive probability and the false positive probability, respectively,

by

TP(w) = P (W > w|D = 1), (4.1)

FP(w) = P (W > w|D = 0). (4.2)

The ROC curve (see Figure 4.1) is defined as the path in the first quadrant obtained

by connecting all the pairs (FP(w), TP(w)) as w runs through the entire range of

the threshold.

Conceptually, let us divide the population Ω into two subsets Ω1 and Ω0 of in-

dividuals with and without the said disease. We introduce two independent random

variables W1 and W0 that carry the conditional distributions (4.1) and (4.2) respec-

tively. Then W1 is the diagnostic measurement of a randomly selected individual

from Ω1, and W0 is the measurement on an individual randomly selected from Ω0.

Therefore, the diagnostic measurement W of a randomly selected individual from Ω

has the following probability distribution

P (W > w) = P (W > w|D = 1)P (D = 1) + P (W > w|D = 0)P (D = 0)

= P (W1 > w)P (D = 1) + P (W0 > w)P (D = 0).

Let S1 and S0 denote the survival functions of W1 and W0, respectively, that is,

S1(w) = P (W1 > w) = P (W > w|D = 1),

S0(w) = P (W0 > w) = P (W > w|D = 0).
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Figure 4.1: An ROC curve.

We change variable from w to x by putting x = S0(w) and consider the inverse

function of S0 defined by

S−1
0 (x) = inf{w : S0(w) ≥ x}.

Then the ROC curve is

ROC(x) = S1(S
−1
0 (x)), x ∈ [0, 1]. (4.3)

Because S−1
0 (x) is nonincreasing in x, ROC(x) is a nondecreasing function of x. See

the illustration in Figure 4.1.

The ROC curve is a fundamental statistical tool for measuring the diagnostic

accuracy of a clinical test. Figure 4.2 gives an illustration of the use of ROC. If, for
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some threshold w∗, TP(w∗) = 1 and FP(w∗) = 0, then we have a perfect test which

can distinguish a diseased individual from a healthy one. Thus TP(w) = 1 for all

w ≤ w∗, and FP(w) = 0 for all w ≥ w∗. The corresponding ROC curve is the left

and upper borders of the unit square in the first quadrant, the curve A in Figure 4.2.

Various tests (with different measurements W ) can be compared visually by using

their corresponding ROC curves because regardless of the scales of different W ’s

(say blood sugar or blood pressure), the W ’s have been converted to X = S0(W ).
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Figure 4.2: ROC curves. Curve A is a perfect curve. Curve B is better
than curves C, D, E and F. Curve E is non-informative. Curve F is the
worst among these six curves.

Better curves are closer to the upper left hand corner. For example, curve A

is the best. Curve B is the second best. Curves C and D cannot be ordered because
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they cross each other, but both of them are better than curves E and F. Curve E

has a 50% chance of giving false and true positive result. We say this diagnosis is

uninformative. Any curve lying below the non-informative curve is a bad diagnostic

test because for any threshold value w, the probability that a false positive is larger

than a true positive. Therefore curve F is the worst among all the curves.

It is possible for two ROC curves to cross each one another, like curves C and

D, which shows that neither of the two diagnostic tests is necessarily better then

the other. Because of this problem, in order to rank the performance of various

diagnostic tests, sometimes the area under the ROC curve (AUC) is used.

The AUC is defined by

AUC =
∫ 1

0
ROC(x)dx. (4.4)

Obviously, because W1 and W0 are independent,

AUC =
∫ −∞

∞
S1(w)dS0(w)

=
∫ ∞

−∞
P (W1 > w)dP (W0 ≤ w)

= P (W1 > W0).

The value of AUC has been used to compare the performance of diagnostic tests.

The larger the AUC, the better the diagnostic test. See Figure 4.2. The AUC value

of curve A is one, the AUC of curve E is one-half, the AUCs of curves above E is

between one-half and one, and the AUCs of curves below E are less than one-half.

Thus if the AUC value of curve C is larger than the one of curve D, we say that test

C is better than test D.
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4.2 ROC and AUC for Proportional Hazards Model

In this section, we give the definition of the ROC and the AUC in terms of the

proportional hazards model. We then study estimation problems using the AUC.

In particular, an AUC criterion will be used for selecting the tuning parameter λ in

the regularized log partial likelihood (3.8).

4.2.1 Definition

Let T be the survival time of an individual. For a fixed time u, let the indicator

I[T ≤ u] play the role of our binary outcome D. That is, using the terminology

in Section 4.1, we refer to individuals whose survival times are less or equal to u

as “diseased” and those who survive longer than u as “healthy” ones or “disease-

free”. With a judicious choice of u, we divide the population into two groups: those

who died by time u as Ω1 and those who survived beyond u as Ω0. An example of

this is the standard practice of using the five-year survival time as a measure of an

individual’s success with a cancer treatment. Thus D = 1 if a patient dies within

five years and D = 0 if s/he lives beyond five years. Given a known covariate vector

Z, we use a linear combination of regression coefficients β and the covariate, βTZ,

as the measurement W of a diagnostic test.

The proportional hazards model gives the survival probability of an individual:

P (T > u) = exp
{
−
∫ u

0
h0(t)dt exp(βTZ)

}
. (4.5)

In this thesis, the proposed variable selection criterion for the proportional hazards

model will be applied to patients with squamous cell cancer in the head and neck
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region. There are many potential covariates Z for this disease (see Table F.1). A

goal of this thesis is to use our proposed statistical method to look for a subset of

covariates as good predictors of the survival time T .

In the application of the ROC and the AUC, we take W = βTZ as the measure-

ment of the diagnostic test. Then the true positive and false positive probabilities

of (4.1) and (4.2) are given, respectively, by

TP(w, u) = P (βTZ > w|T ≤ u), (4.6)

FP(w, u) = P (βTZ > w|T > u). (4.7)

Now TP and FP are functions of w and u. According to (4.3), the ROC function is

ROC(x, u) = TP(FP−1(x, u), u) (4.8)

for all x ∈ [0, 1] and u ∈ [0,∞), where FP−1(x, u) = inf{w : FP(w, u) ≥ x}. The

AUC is a function of u:

AUC(u) =
∫ 1

0
ROC(x, u)dx. (4.9)

Suppose that Z1 is the covariate vector of a randomly selected individual

from the population Ω1 of patients who have died by time u, and Z0 is that of

a randomly selected individual from the population Ω0 of patients whose survival

times are longer than u. By Equation (4.9),

AUC(u) = P (βTZ1 > βTZ0). (4.10)

As an example, the value of AUC(u) = 0.9 means that there is a 90% probability

that a randomly selected individual from population Ω0 will have a value of βT Z

larger than that of a randomly selected individual from population Ω1.
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4.2.2 Estimation

Let (T̃i, δi,Zi), i = 1, . . . , n, be an i.i.d. sample of n random vectors, where

T̃i is the observed survival time of the i-th individual whose censoring indicator

and covariate vector are denoted by δi and Zi as defined in Section 3.1. The first

step of the estimation problem is to select an optimal regularized parameter, λ, for

the regularized log partial likelihood (3.8). To use our proposed AUC criterion for

determining λ, it is necessary to estimate the true and the false positive probabilities

(TP and FP). From these estimates of TP and FP, estimates of the ROC and AUC

will be derived.

The problems of estimating TP, FP, ROC and AUC have been studied in

the literature; see, for example, Heagerty and Zheng (2005) and references therein.

Their linear predictor W = βTZ as the diagnostic measurement is the same as the

one used in this thesis. Their true positive probability is given by

TP = P (βTZ ≥ w|T < t). (4.11)

If T follows the proportional hazard distribution with the same βTZ in the hazard,

then except for the nuisance hazard h0(t), the diagnostic measurement βTZ has no

ability to distinguish a diseased individual from a disease-free individual. This may

be the reason for Heagerty and Zheng to introduce an additional parameter γ in the

proportional hazard model as

h(t) = h0(t) exp(γβTZ) (4.12)

However, introducing the additional parameter γ would make the parameter β non-

identifiable in the estimation.
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Our purpose of estimating TP, FP, ROC and AUC is to determine λ. In

Appendix A, we use simulation to illustrate the problem of using (4.11) with T hav-

ing the proportional hazard distribution. Simulation shows that the AUC criterion

using the ÂUC(u, λ) (A.4) has no power of discrimination. This means that the

regularized estimator β̂ selected by the AUC was always the same as the MLE β̃

obtained by maximizing the log partial likelihood without a penalty function (i.e.

λ = 0).

The procedure we use is the following. Given a time u, divide the sample as

follows. Consider the subset of samples {i : T̃i ≤ u, δi = 1} from the “diseased”

population Ω1, and the subset {i : T̃i > u} from the “healthy” population Ω0. As

for the set {i : T̃i ≤ u, δi = 0}, there is no information as to which population it

belongs.

Based on the known “diseased” and “healthy” subsets, {i : T̃i ≤ u, δi = 1}

and {i : T̃i > u}, we estimate the true positive probability (4.6) and false positive

probability (4.7), respectively, by their empirical distribution functions:

T̂P(w, u) =
n∑

i=1

δiI[βTZi ≥ w, T̃i ≤ u]/n1, (4.13)

F̂P(w, u) =
n∑

i=1

I[βTZi ≥ w, T̃i > u]/n2, (4.14)

where n1 =
∑n

i=1 δiI[T̃i ≤ u] and n2 =
∑n

i=1 I[T̃i > u]. The ROC function (4.8) can

be estimated by

R̂OC(x, u) = T̂P(F̂P
−1

(x, u), u), (4.15)

where F̂P
−1

(x, u) = inf{w : F̂P(w, u) ≥ x}. The estimator of the AUC function
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(4.9) is given by

ÂUC(u) =
∫ 1

0
R̂OC(x, u)dx. (4.16)

If β is known, then ÂUC(u) can be written as a U statistic of the form

n∑

j=1

∑

i6=j

δi

{
I[βTZi > βTZj , T̃i ≤ u, T̃j > u] +

1

2
I[βTZi = βTZj , T̃i ≤ u, T̃j > u]

}
/n1n2.

(4.17)

In our case, the unknown β’s in (4.13), (4.14) and (4.17) are replaced by the regu-

larized estimator β̂λ’s with a fixed tuning parameter λ. To emphasize the role of λ,

we shall use the notation ÂUC(u, λ) instead of ÂUC(u) to indicate it is a function

of u and λ.

The next section describes an AUC criterion for selecting the tuning parameter

λ in the regularized proportional hazards model.

4.3 AUC Criterion for Determining λ

Suppose Θλ is a set of possible tuning parameters λ. Given a λ, we can obtain

an estimator β̂λ by maximizing the regularized log partial likelihood {ℓ(β, t) −

Pλ(β)} in Equation (3.8). We carry out the regulation estimation for each λ ∈ Θλ

and compute the estimated AUC value (4.17) for the estimator β̂λ. If there exists a

λ∗ that maximizes (4.17), we say β̂λ∗ is the best regularized estimator by the AUC

criterion. That is, given a specific time u and a fixed domain Θλ of λ, we consider

β̂λ∗ as the selected regularized estimator by the AUC criterion if

λ∗ = argmax
λ∈Θλ

ÂUC(u, λ).
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The choice of u depends on the survival time we are interested in. For example,

“five years” is a popular choice for measuring the success of a cancer treatment. Note

that u cannot be so small or so large that the diseased population Ω1 or the healthy

population Ω0 are empty sets.

One may take Θλ = {λ : λ ≥ 0} as the set of all possible choices of λ, but that

would demand intensive computations. Often due to different research purposes, it is

possible to limit Θλ to a subset of {λ : λ ≥ 0}. For example, let β̂λ = (β̂λ,1, . . . , β̂λ,k).

We may choose Θκ
λ = {λ ≥ 0 :

∑k
j=1 I[β̂λ,j 6= 0] ≤ κ} ⊂ {λ : λ ≥ 0}. This would

guarantee that the dimension of selected estimator β̂λ∗

κ
is at most κ, where λ∗

κ =

argmax
λ∈Θκ

λ

ÂUC(u, λ). We can also choose the subset Θα
λ = {λ ≥ 0 : AUC(u, λ) > α}.

Then the selected β̂λ∗

α
guarantees its resulting AUC value larger than α, where

λ∗
α = argmax

λ∈Θα
λ

ÂUC(u, λ).
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Chapter 5

Computational Study

In this chapter, we develop a computational algorithm based on the R software

to find the regularized estimator β̂. Using simulated data, we compare the AUC

criterion with the GCV criterion in three scenarios.

5.1 The Algorithm

The k-dimensional regularized estimator β̂ is obtained by maximizing the reg-

ularized log partial likelihood

Q(β, t) = ℓ(β, t) − Pλ(β), (5.1)

where ℓ(β, t) is the log partial likelihood given in (3.6). The Newton-Raphson

method is used for solving β̂ iteratively.

Taylor’s expansion of ℓ(β, t) at the true value β0 = (β01, . . . , β0k)
T with a

linear quadratic approximation of Pλ(β) yields

Q̂(β, t|β0) =
[
ℓ(β0, t) + (β − β0)

T∇ℓ(β0, t)

+
1

2
(β − β0)

T∇2ℓ(β0, t)(β − β0)
]
− βT Dλ(β0)β, (5.2)

where ∇ℓ(β0, t) = ∂ℓ(β0, t)/∂β is a gradient vector, ∇2ℓ(β0, t) = ∂2ℓ(β0, t)/∂ββT

is a Hessian matrix, and Dλ(β0) is a k×k matrix such that βT Dλ(β0)β is a quadratic

approximation of Pλ(β). For example, if Pλ(β) is a Lasso penalty function (Equation
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(2.9) with p = 1), we take Dλ(β0) as a diagonal matrix whose j-th main diagonal

entry is λ/|β0j| if β0j 6= 0 and zero if otherwise. This is obtained by approximating

Pλ(β) = λ
k∑

j=1

|βj | ≈ λ
k∑

j=1

β2
j /|β0j| for βj ≈ β0j .

This application was used by Tibshirani (1997), and followed by many others to

reduce the computational burden. There are other quadratic approximations, see

e.g. Fan and Li (2002).

Let β
(0)
λ denote the selected initial value. Then β

(1)
λ = argmax

β
Q̂(β, t|β(0)

λ ).

The optimization of (5.1) can be updated by iteration, for i ≥ 1,

β
(i+1)
λ = argmax

β
Q̂(β, t|β(i)

λ )

= argmax
β

{
βT

[
∇ℓ(β

(i)
λ , t) −∇2ℓ(β

(i)
λ , t)β

(i)
λ

]

+
1

2
βT

[
∇2ℓ(β

(i)
λ , t) − 2Dλ(β

(i)
λ )
]
β
}

= −
[
∇2ℓ(β

(i)
λ , t) − 2Dλ(β

(i)
λ )
]−1 [

∇ℓ(β
(i)
λ , t) −∇2ℓ(β

(i)
λ , t)

]
. (5.3)

We set the stopping criterion as

‖β(i+1)
λ − β

(i)
λ ‖ < 10−7. (5.4)

That is, when (5.4) is satisfied, we set β̂λ = β
(i+1)
λ . See detailed R programming

codes in Appendix B.1 and B.2.

Our next task is to select the “best” tuning parameter λ̂ and set β̂λ̂ as our

optimal regularized estimator of β. We shall use the AUC criterion discussed in

Section 4.3 and also a commonly used criterion based on GCV given in Equation

(3.36) of Section 3.3. The results for λ̂ will be compared for both criteria. Equation
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(3.36) is

ĜCV(λ) =
−ℓ(β̂λ, t)

n[1 − tr(Â)/n]2
, (5.5)

where Â = [∇2ℓ(β̂λ, t)+Dλ(β̂λ)]
−1∇2ℓ(β̂λ, t) (see Equation (3.38)). Given a domain

Θλ of the tuning parameter λ, the “best” selected regularized estimator by the GCV

criterion is β̂λ̂GCV
where

λ̂GCV = argmin
λ∈Θλ

ĜCV(λ). (5.6)

For our AUC criterion introduced in Section 4.3, the “best” selected regularized

estimator will be β̂λ̂AUC
where

λ̂AUC = argmin
λ∈Θλ

ÂUC(u, λ) (5.7)

and u is a specified time. Detailed R programming codes for calculating the AUC

and the GCV are given in Appendix B.3 and B.4, respectively.

The iterative procedures are conducted in the following steps:

1. Choose a λ from its domain Θλ. If Θλ is an interval, for example, λ ∈ [0, 10],

choose λj , j = 1, . . . , J , where 0 = λ1 < λ2 < . . . < λJ = 10, and J is a large

number.

2. Let the initial vector β
(0)
λ be a zero vector (0, . . . , 0)T , and initially set i = 0.

3. Compute ∇ℓ(β
(i)
λ , t), ∇2ℓ(β

(i)
λ , t) and Dλ(β

(i)
λ ) based on β

(i)
λ .

4. Solve (5.3). Its solution is β
(i+1)
λ . Let β

(i+1)
λ be the new β

(i)
λ in step 3.

5. Repeat steps 3 and 4 until (5.4) is achieved. Let the result β
(i+1)
λ be the

estimator β̂λ.
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6. Use β̂λ in step 5 to compute (a) ÂUC(u, λ) for a specific time u (4.9) or (b)

ĜCV(λ) (5.5).

7. Repeat step 1 through 6 until all possible λ values are used.

8. Obtain (a) β̂λ̂AUC
(5.7) and (b) β̂λ̂GCV

(5.6).

In the following we use simulated data to calculate the Lasso estimator β̂λ̂

with both the AUC and the GCV criteria, and to compare these two criteria.

5.2 Comparison of the AUC and GCV Criteria

Three different scenarios are used to simulate censored survival data from the

proportional hazards model

h(t|Z = z) = exp(βT
0 z). (5.8)

Note that this is the model (3.1) with h0(t) = 1. Appendix C gives details of

how simulated censored survival data are obtained. Appendix B.5 gives the R

programming codes. The Lasso penalty

Pλ(β) = λ
k∑

j=1

|βj|

is used in the regularized log partial likelihood (5.1).

Using simulated data and the algorithm of Section 5.1, we calculate the regu-

larized estimator β̂λ̂ = (β̂1, . . . , β̂k)
T based on either the AUC or the GCV criteria.

In the AUC criterion, we set the specific time u of ÂUC(u, λ) to be the median of

simulated survival times, um.
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Scenario I: The true parameter is β0 = (2, 0, 3, 0, 0, 0, 0, 1)T with dimension

k = 8. The covariate vector Z in (5.8) follows a multivariate standard normal

distribution with mean µZ k×1 zero vector and covariance matrix ΣZ k×k identity

matrix.

In this scenario, we generate 500 data sets (r = 500) of 100 observations

(n = 100), each exactly according to the above specifications. All samples use the

same covariate vectors, Z1, . . . ,Zn. The estimator β̂λ̂ = (β̂1, . . . , β̂8)
T is calculated

for each data set according to two different criteria, AUC and GCV, and two different

censoring proportions, 10% censoring and 30% censoring.

Table 5.1 shows the sample mean of 500 regularized estimators β̂j’s,

¯̂
βj =

1

r

r∑

m=1

β̂jm, j = 1, . . . , k, (5.9)

rounded to one decimal place, where r = 500, k = 8 and β̂jm is the j-th component

of the regularized estimator from the m-th simulated data set. Note that the sample

means,
¯̂
βj , j = 2, 4, 5, 6, 7, turned out to be equal to the true parameter value (i.e.

β02, β04, β05, β06, β07) of zero. In the case of nonzero true parameters (i.e. β01,

β03, β08), the
¯̂
βj, j = 1, 3, 8, are smaller than their corresponding true values (2,3,1),

which indicate the shrinkage effect. Both the AUC and the GCV criteria select the

nonzero parameters correctly. However, the sample means determined by AUC are

closer to the true parameter values than those determined by GCV.

Table 5.1 also provides the sample standard deviation of the estimated regres-

sion coefficient,

sj(β̂j) =

√√√√ 1

r − 1

r∑

m=1

(β̂jm − ¯̂
βj)

2, j = 1, . . . , k, (5.10)
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Table 5.1: The sample means (
¯̂
βj , j = 1, . . . , 8) of 500 β̂j ’s selected by the AUC or

the GCV criteria with 10% and 30% censored survival data under scenario I. The

numbers in parentheses are sample standard deviations (sj).

10% Censoring 30% Censoring

β0 (True value) AUC GCV AUC GCV

β01 = 2 1.8 (0.31) 1.7 (0.25) 1.8 (0.35) 1.7 (0.27)

β02 = 0 0.0 (0.09) 0.0 (0.08) 0.0 (0.12) 0.0 (0.10)

β03 = 3 2.7 (0.43) 2.6 (0.35) 2.7 (0.48) 2.6 (0.37)

β04 = 0 0.0 (0.12) 0.0 (0.09) 0.0 (0.12) 0.0 (0.08)

β05 = 0 0.0 (0.10) 0.0 (0.07) 0.0 (0.11) 0.0 (0.09)

β06 = 0 0.0 (0.11) 0.0 (0.09) 0.0 (0.12) 0.0 (0.09)

β07 = 0 0.0 (0.11) 0.0 (0.08) 0.0 (0.12) 0.0 (0.09)

β08 = 1 0.9 (0.21) 0.8 (0.17) 0.9 (0.24) 0.8 (0.20)

Table 5.2: The estimated coefficient of variation of β̂j ’s with nonzero sample means

in Table 5.1.

10% Censoring 30% Censoring

AUC GCV AUC GCV

β̂1 0.010 0.009 0.012 0.009

β̂3 0.011 0.010 0.013 0.010

β̂8 0.010 0.009 0.011 0.010
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which are rounded to two decimal places. Note that all of the sj ’s of β̂j’s selected

by the AUC are larger than the sj’s of β̂j ’s selected by the GCV.

As a measure of the relative variability of the estimator, we look at the esti-

mated coefficient of variation,

SE(
¯̂
βj)

¯̂
βj

=

√
s2

j/r

¯̂
βj

, for
¯̂
βj 6= 0. (5.11)

The estimated coefficients of variation (5.11) for nonzero
¯̂
βj , j = 1, 3, 8, are given

in Table 5.2. It shows that in both 10% and 30% censored data, the β̂j’s selected

by AUC have larger relative variability than those selected by GCV. However, their

differences are small (≤ 0.3%).

In the following, we consider two other scenarios:

Scenario II: Same design as scenario I except that the covariance matrix ΣZ of

the covariate vector Z in (5.8) is given by Cov(Zi, Zj) = 0.5|i−j| for all i, j = 1, . . . , k,

so that the covariates are dependent. The sample size is n = 100, and the number

of data sets is r = 500.

Scenario III: Same design as scenario I except that the true parameter is

β0 = (0, . . . , 0︸ ︷︷ ︸
5

, 1, . . . , 1︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
5

, 1, . . . , 1︸ ︷︷ ︸
5

)T with dimension k = 20. The sample size

and the number of data sets are the same as in scenario II (n = 100 and r = 500).

The sample means
¯̂
βj’s and the sample standard deviations sj ’s obtained from

scenario II and III are given in Table 5.3 and Table 5.4, respectively. The estimated

coefficients of variation (5.11) for nonzero
¯̂
βj’s in Table 5.3 and Table 5.4 are shown

in Table 5.5 and Table 5.6.

Regardless of the dependence of covariates and the increase of dimension of
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the true paramenter, we obtained similar results to those obtained in scenario I:

(1) When the true coefficient β0j is zero, the sample mean of the regularized

estimator,
¯̂
βj , is zero. When the true coefficient β0j is not zero, the

¯̂
βj is not,

either. That is, the regularized estimator can eliminate insignificant variables

but contain the significant ones.

(2) When the true coefficient β0j is not zero,
¯̂
βj is smaller than the true value,

which gives a shrinkage of significant variable. Under two different criteria, the

¯̂
βj obtained by AUC is closer to the true coefficient value than that obtained

by GCV.

(3) Although the sample standard deviation sj’s of β̂j’s selected by the AUC are

larger than the sj’s of β̂j’s selected by the GCV, the difference of the relative

variability of the regularized estimator selected by these two criteria is less or

equal to 0.4% when the size of data set is 500.
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Table 5.3: The sample means (
¯̂
βj , j = 1, . . . , 8) of 500 β̂j ’s selected by the AUC or

the GCV criteria with 10% and 30% censored survival data under scenario II. The

numbers in parentheses are sample standard deviations (sj).

10% Censoring 30% Censoring

β0 (True value) AUC GCV AUC GCV

β01 = 2 1.8 (0.34) 1.7 (0.24) 1.8 (0.38) 1.7 (0.25)

β02 = 0 0.0 (0.16) 0.0 (0.11) 0.0 (0.17) 0.0 (0.11)

β03 = 3 2.8 (0.48) 2.6 (0.33) 2.8 (0.54) 2.6 (0.35)

β04 = 0 0.0 (0.13) 0.0 (0.09) 0.0 (0.16) 0.0 (0.10)

β05 = 0 0.0 (0.14) 0.0 (0.09) 0.0 (0.14) 0.0 (0.08)

β06 = 0 0.0 (0.15) 0.0 (0.10) 0.0 (0.17) 0.0 (0.09)

β07 = 0 0.0 (0.15) 0.0 (0.10) 0.0 (0.16) 0.0 (0.10)

β08 = 1 0.9 (0.23) 0.8 (0.16) 0.9 (0.24) 0.8 (0.19)
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Table 5.4: The sample means (
¯̂
βj, j = 1, . . . , 20) of 500 β̂j ’s selected by the AUC or

the GCV criteria with 10% and 30% censored survival data under scenario III. The

numbers in parentheses are sample standard deviations (sj).

10% Censoring 30% Censoring

β0 (True value) AUC GCV AUC GCV

β0,1 = 0 0.0 (0.13) 0.0 (0.09) 0.0 (0.13) 0.0 (0.09)

β0,2 = 0 0.0 (0.12) 0.0 (0.08) 0.0 (0.14) 0.0 (0.09)

β0,3 = 0 0.0 (0.13) 0.0 (0.08) 0.0 (0.13) 0.0 (0.09)

β0,4 = 0 0.0 (0.11) 0.0 (0.08) 0.0 (0.13) 0.0 (0.09)

β0,5 = 0 0.0 (0.13) 0.0 (0.10) 0.0 (0.14) 0.0 (0.09)

β0,6 = 1 0.9 (0.27) 0.8 (0.19) 0.9 (0.29) 0.8 (0.20)

β0,7 = 1 0.9 (0.25) 0.8 (0.18) 0.9 (0.29) 0.8 (0.20)

β0,8 = 1 0.9 (0.27) 0.8 (0.18) 0.9 (0.28) 0.8 (0.20)

β0,9 = 1 0.9 (0.27) 0.8 (0.20) 0.9 (0.30) 0.8 (0.23)

β0,10 = 1 0.9 (0.27) 0.8 (0.20) 0.9 (0.31) 0.8 (0.22)

β0,11 = 0 0.0 (0.12) 0.0 (0.09) 0.0 (0.14) 0.0 (0.10)

β0,12 = 0 0.0 (0.12) 0.0 (0.08) 0.0 (0.14) 0.0 (0.09)

β0,13 = 0 0.0 (0.12) 0.0 (0.08) 0.0 (0.14) 0.0 (0.10)

β0,14 = 0 0.0 (0.13) 0.0 (0.09) 0.0 (0.13) 0.0 (0.10)

β0,15 = 0 0.0 (0.13) 0.0 (0.09) 0.0 (0.13) 0.0 (0.09)

β0,16 = 1 0.9 (0.26) 0.8 (0.19) 0.9 (0.29) 0.8 (0.22)

β0,17 = 1 0.9 (0.28) 0.8 (0.19) 0.9 (0.29) 0.8 (0.21)

β0,18 = 1 0.9 (0.25) 0.8 (0.19) 0.9 (0.31) 0.8 (0.23)

β0,19 = 1 0.9 (0.27) 0.8 (0.20) 0.9 (0.29) 0.8 (0.21)

β0,20 = 1 0.9 (0.26) 0.8 (0.19) 0.9 (0.30) 0.8 (0.22)
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Table 5.5: The estimated coefficient of variation of β̂j ’s with nonzero sample means

in Table 5.3.

10% Censoring 30% Censoring

AUC GCV AUC GCV

β̂1 0.011 0.008 0.013 0.009

β̂3 0.013 0.009 0.014 0.010

β̂8 0.011 0.008 0.011 0.010

Table 5.6: The estimated coefficient of variation of β̂j ’s with nonzero sample means

in Table 5.4.

10% Censoring 30% Censoring

AUC GCV AUC GCV

β̂6 0.013 0.010 0.014 0.010

β̂7 0.012 0.009 0.014 0.010

β̂8 0.013 0.009 0.013 0.010

β̂9 0.013 0.010 0.014 0.012

β̂10 0.013 0.010 0.015 0.011

β̂16 0.012 0.010 0.014 0.011

β̂17 0.013 0.010 0.014 0.011

β̂18 0.012 0.010 0.015 0.012

β̂19 0.013 0.010 0.014 0.011

β̂20 0.012 0.010 0.014 0.011
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Chapter 6

Application

6.1 Data: Survival Times of Squamous Cell Carcinoma

We acquired the clinical data from trial 9501 of the Radiation Therapy Oncol-

ogy Group (RTOG) tumor bank. Between September, 1995, and April, 2000, 459

patients who had resectable squamous cell carcinoma of the head and neck region

were enrolled in a randomized trial. Of these, 142 patients had tissue biopsy avail-

able for immunohistochemistry (IHC) by pathologists at the University of Maryland

Greenebaum Cancer Center. Discarding missing or incomplete observations, there

are 122 patients left for the study.

Basic information on patients was collected before they received the treat-

ment. It indicates age, gender, primary tumor site, Karnofsky performance status

(KPS), TN staging of tumor and smoking history. Patients younger than eighteen

were excluded from entering the trial. The age of the 122 patients ranges from 31

to 79 with sample mean 55.48 and sample standard deviation 9.79. There were

106 males and 16 females. Six different primary tumor sites were identified: oral

cavity, oropharynx, hypopharynx, supraglottic larynx, glottic larynx and subglottic

larynx. KPS is a medical index for classifying patients’ functional impairment. It

is a measure to determine whether a patient can receive chemotherapy and dose

adjustment. The KPS ranges from 0 to 100 with 0 indicating the death status
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and 100 indicating the normal status. Patients whose KPS is larger than 60 were

eligible to participate in the clinical trial. The T and N stages are descriptors of

how much the cancer has spread, where T takes into account the size of a primary

tumor and N represents regional lymph node involvement, following the American

Joint Commission (AJC) staging system. Detailed classifications of KPS, T stage

and N stage are shown in Appendix D and E. The smoking history of a patient was

dichotomized: whether the patient has ever used cigarettes and whether the patient

is currently using cigarettes within 6 months.

The 122 patients who entered into the trial were assigned at random to one of

two treatments within eight weeks after their surgery had been performed. Treat-

ment one is radiation treatment (RT) alone, once a day, five days a week for six

weeks. Treatment two is chemotherapy (CT) of the drug cisplatin given to a pa-

tient every three weeks on days 1, 22 and 43 concurrent with radiotherapy following

the same protocol as in treatment one. The follow-up assessments were reported

starting at the third week after the end of six-week treatment, then every three

months during the first year following treatment, then every six months for the next

two years, and annually after the third year. Among the 122 cases, progression-free

survival times, the length of time during and after treatment in which a patient

does not get worse, were observed from 0.01 to 9.19 years with mean 2.71 years and

median 1.40 years, and 41 (34%) cases were censored which occurred throughout

the follow-up.

After surgery, patients’ tumor biopsy samples were stored in the RTOG tumor

bank for further examination. For each patient in our study, four genetic markers

68



were given scores ranging from 0 to 3 through IHC staining, a technique for visually

identifying antigens or proteins in tissue sections by means of antigen-antibody

interactions. These genetic markers were B-cell lymphoma 2 (Bcl2), glutathione S-

transferase π (GSTπ), protein 53 (p53) and thymidylate synthase (TS). Appendix

F lists the detailed information of 122 patients, and Table 6.1 gives a summary.

Table 6.1: A summary of patients’ information of head

and neck cancer data. (Total number of patients is 122.)

Variable Number of patients (%)

1 Age

31-40 9 (07%)

41-50 28 (23%)

51-60 45 (37%)

61-70 34 (28%)

71-79 6 (05%)

2 Gender

Female 16 (13%)

Male 106 (87%)

3 Treatment

Only RT 56 (46%)

RT + CT 66 (54%)

4 Primary tumor site

Oral cavity 25 (20%)

Oropharynx 55 (45%)

Hypopharynx 16 (13%)

Supraglottic larynx 20 (16%)

Glottic larynx 4 (03%)

Subglottic larynx 2 (02%)

Continued. . .
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Variable Number of patients (%)

5 KPS

60 1 (01%)

70 21 (17%)

80 31 (25%)

90 52 (43%)

100 17 (14%)

6 T stage

T1 15 (12%)

T2 30 (25%)

T3 37 (30%)

T4 40 (33%)

7 N stage

N0 2 (02%)

N1 1 (01%)

N2a 8 (07%)

N2b 88 (72%)

N2c 22 (18%)

N3 1 (01%)

Whether ever smoked

No 5 (04%)

Yes 117 (96%)

8 Whether smoking in

the recent 6 months

No 45 (37%)

Yes 77 (63%)

Four genetic markers Mean (Standard deviation)

9 Bcl2 1.10 (0.87)

10 GSTπ 1.94 (0.88)

11 p53 1.50 (1.18)

12 TS 1.46 (0.62)
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Based on the method developed, we select significant variables that influence

patients’ progression-free survival time. Before doing the analysis, it is necessary

to make some adjustment for sparse data. Note that, in the categories of primary

tumor site, only 3% of sites are in the glottic larynx and 2% in the subglottic larynx.

In anatomy, since supraglottic, glottic and subglottic larynx are subdivisions of the

larynx, we decided to combine the data from these three subdivisions and call the

combined category “larynx”. The combination increased the number of patients

to twenty six which would help to reduce the sample error in analysis. Also, in

the smoking category, all but 5 patients have smoked in the past. Because fewer

than 5% never smoked and in an effort to maintain reasonable sample sizes in each

category, we decided not to consider the variable “whether patients ever smoked”.

Otherwise, the sample sizes would be too small for analysis which may result in

unstable estimation.

6.2 The Lasso Analysis

In this section, we use the regularized log partial likelihood of the proportional

hazards model,

Q(β, t) = ℓ(β, t) − Pλ(β), (6.1)

to analyze the head and neck cancer data presented in Section 6.1. The goal is to

study the effect of explanatory variables (regressors) on patients’ progression-free

survival time and to find significant explanatory variables that affect the survival
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time. We use the Lasso penalty function,

Pλ(β) = λ
k∑

j=1

|βj|.

The regularized parameter λ is selected by both the AUC and the GCV criteria.

Each criterion yields a set of estimates, β̂j ’s. In using the AUC criterion, we con-

sider three different times, 1.4 years (the sample median of patients’ progression-free

survival times), 2.71 years (the sample mean of patients’ progression-free survival

times) and 5 years (a popular choice of progression-free survival times for measuring

the success of a cancer treatment). These chosen times (u) are used to separate

patients into two groups. The group of patients who survival beyond time u corre-

sponds to the “healthy” group with D = 0, while the group that died before time

u corresponds to D = 1 (a “diseased” patient). This is discussed in Section 4.2.1.

For easy reference, we call the three AUC criteria “criterion 1”, “criterion 2” and

“criterion 3” for u = 1.4, 2.71 and 5 years, respectively. The GCV criterion will be

called “criterion 4”.

In the data set, the primary site can be one of four categories, oral cavity,

oropharynx, hypopharynx and larynx. We use a dummy variable P1 with values

1 and 0 to indicate if a patient’s primary tumor had been found in oral cavity or

not. Similarly, P2 and P3 are dummy variables indicating the presence or absence

of the primary tumors in oropharynx and hypopharynx, respectively. If P1, P2 and

P3 are all zero, then the primary tumor is in larynx. Therefore, the total number

of explanatory variables in the proportional hazards model is fourteen (i.e. k = 14).

The Lasso estimators of the coefficients β’s with the corresponding standard errors

72



are given in Table 6.2.

Table 6.2: The results of Lasso estimation for the head and neck cancer data.

Estimated coefficient AUC(u) criterion GCV criterion

u=1.4 yrs u=2.71 yrs u=5 yrs

(Criterion 1) (Criterion 2) (Criterion 3) (Criterion 4)

β̂1 (Age) 0.00 0.00 0.00 0.00

β̂2 (Gender) -0.15 -0.02 -0.04 -0.14

β̂3 (Treatment) -0.01 -0.14 -0.01 -0.15

β̂4 (P1) 0.01 0.00 0.00 0.00

β̂5 (P2) 0.00 -0.02 -0.01 -0.17

β̂6 (P3) 0.00 0.00 0.07 0.00

β̂7 (KPS) -0.03 -0.03 -0.03 -0.03

β̂8 (T stage) 0.07 0.03 0.06 0.03

β̂9 (N stage) 0.04 0.01 0.03 0.01

β̂10 (Smoking) 0.24 0.02 0.18 0.01

β̂11 (Bcl2) -0.29 -0.24 -0.27 -0.22

β̂12 (GSTπ) 0.25 0.17 0.22 0.14

β̂13 (p53) -0.02 -0.01 -0.01 -0.01

β̂14 (TS) -0.34 -0.18 -0.30 -0.16

Any estimate β̂j with |β̂j| ≤ 0.05 is regarded insignificant. That is, β̂j’s influ-

ence in predicting patients’ survival time in the model will be ignored. According

to this definition, five explanatory variables, age, P1, KPS, N stage and p53 are

regarded as insignificant ones while the three genetic markers, Bcl2, GSTπ and TS,

are classified as significant explanatory variables for all four criteria. There is no
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uniformity by these criteria in the gender, T stage, P2 and smoking. Gender, T

stage, smoking are significant in criterion 1, but become insignificant in criterion

2. P3, T stage, Smoking, are significant in criterion 3 while gender, treatment, P2

are significant in criterion 4. The choice of |β̂j| ≤ 0.05 is arbitrary. The discussion

above would be somewhat different if a different criterion were used.

Comparing the AUC and the GCV criteria, we see a reasonable consistency in

the values of the estimates and the signs of the estimates. The signs are identical in

all criteria. The performance of the both criteria is about the same. One advantage

of the AUC criterion is its time-dependence. One can trace the changes in these

explanatory variables over time. A remarkable result is that these explanatory

variables do not change significantly over time. It is also interesting to note that

age has no effect in predicting a patient’s survival time.

Because of the shrinkage effect as discussed in Section 5.2, it is possible that

the regularized estimators, β̂j , deemed significant explanatory variables may under-

estimate their true values βj . To study the effect of shrinkage, we carried out the

estimation of these significant βj’s by maximizing the log partial likelihood (6.1)

without a penalty function (i.e. Pλ(β) = 0). The results are given in Table 6.3

which shows that only the estimate of P2 in criterion 4 has its value less than that

in Table 6.2. All other estimates are larger than the corresponding estimates in

Table 6.2. From Table 6.3, we can calculate the increasing (or decreasing) hazard

for each one unit increases in the variable and predict the probability of patients’

progression-free survival times.
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Table 6.3: Estimates of significant predictors, β̂j ’s, obtained by maximizing the

log partial likelihood without penalty. Standard errors are given in parentheses.

Significant βj’s are determined in Table 6.2. Dash – indicates the insignificance of

βj .

Estimated coefficient AUC(u) Selection GCV Selection

u=1.4 yrs u=2.71 yrs u=5 yrs

(Criterion 1) (Criterion 2) (Criterion 3) (Criterion 4)

β̂1 (Age) – – – –

β̂2 (Gender) -0.24 (0.34) – – -0.30 (0.34)

β̂3 (Treatment) – -0.14 (0.23) – -0.17 (0.23)

β̂4 (P1) – – – –

β̂5 (P2) – – – -0.13 (0.23)

β̂6 (P3) – – 0.07 (0.33) –

β̂7 (KPS) – – – –

β̂8 (T stage) 0.13 (0.12) – 0.13 (0.12) –

β̂9 (N stage) – – – –

β̂10 (Smoking) 0.55 (0.25) – 0.54 (0.45) –

β̂11 (Bcl2) -0.35 (0.14) -0.38 (0.15) -0.35 (0.15) -0.36 (0.15)

β̂12 (GSTπ) 0.27 (0.14) 0.25 (0.14) 0.25 (0.14) 0.27 (0.14)

β̂13 (p53) – – – –

β̂14 (TS) -0.43 (0.19) -0.29 (0.19) -0.41 (0.20) -0.29 (0.19)
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Chapter 7

Summary and Conclusion

The main goal of this thesis has been the development of a sound statistical

procedure for selecting significant variables that can accurately predict a patient’s

survival time. We developed such a statistical procedure and a computational al-

gorithm for the proportional hazards model and right-censored survival times. Our

procedure is built upon the regularized variable selection method, the Lasso, which

first introduced by Tibshirani (1996) for the linear regression model and later for

the proportional hazards model (Tibshirani, 1997). This regularization procedure is

computationally intensive. The success of this method depends on not only having

optimal statistical properties but also a good choice of the regularization parameter

λ or the tuning variable.

Chapters 2 and 3 contain mainly the literature review relevant to this thesis.

In the review, we proved a few lemmas that are not available to us in the literature.

The generalized cross-validation (GCV) criterion have been used in the literature

for selecting λ. In this thesis, a new method of determining λ, called the area under

the ROC curve (AUC) criterion, is proposed for the proportional hazards model.

This is given in Chapter 4. The application of Chapter 4 is provided in Chapter

5. The superiority of the AUC criterion over the GCV lies in its interpretation of

the survival data. The GCV criterion is at least computationally more suitable for
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linear regression model than for the proportional hazards model. This is due to the

fact that the linear regression model models the observation Y directly in a linear

form Xβ plus error while the proportional hazards models the hazards or survival

probability resulting in a non-linear structure. The comparison of the AUC and

the GCV criteria were carried out in Chapter 5. Using the Lasso penalty as an

example, our simulation results show that the performance of variable selection and

shrinkage of significant variables by AUC criterion is similar to that of the traditional

GCV criterion, but the magnitude of shrinkage is different. The AUC criterion is

a function of the survival time. Using the AUC criterion, variable selection can be

made time-dependent as it has been observed that some of the significant covariates

change over time. An iterative algorithm based on the Newton-Raphson method

was developed for computation in R.

In this thesis, we established the consistency and the asymptotic normality

of regularized estimator of the regression coefficient in the proportional hazards

model for a fixed λ. In variable selection, another kind of consistency needs to be

addressed, namely the variable selection consistency. It requires the procedure to

select the right subset of regression coefficients if in truth only this subset has all the

nonzero coefficients. This is a part of the oracle properties of a statistical procedure.

We have reviewed some of the literature on the oracle properties with the tuning

parameter depending on the sample size n. Fan and Li (2002) proved that that

“the oracle properties hold” with probability tending to one as n tends to infinity.

This is much weaker than requiring that the estimates of insignificant parameters

are zero. We will study this problem in the future. It is worth noting that in our
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simulations, both our AUC criterion and the traditional GCV criterion identified

the true zero regression coefficients which exhibit the oracle property. When the

true coefficients are not zero, then the AUC criterion produced estimates closer to

the true parameters than that of the GCV.

As an illustration, we applied the method developed in this thesis to a set of

survival data of patients who had squamous cell cancer of the head and neck. The

results show the three genetic markers, Bcl2, GSTπ and TS are significant variables

while the other variables, age, primary tumor site, Karnofsky performance status,

N stage and genetic marker p53 are insignificant.
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Appendix A

Parametric Estimation of TP, FP, ROC and AUC

Let (T̃i, δi,Zi), i = 1, . . . , n, be an i.i.d. sample of n survival data, where T̃i

is observed survival time of the i-th individual whose censoring indicator and the

covariate vector are denoted by δi and Zi as defined in Section 3.1. Let g(x) be

the probability density function (pdf) of βTZ. With some simple algebra, the true

positive probability (4.6) and the false positive probability (4.7) can be written,

respectively, as

TP(w, u) =

∫ ∞

w
P (T ≤ u|x)g(x) dx

∫ ∞

−∞
P (T ≤ u|x)g(x) dx

FP(w, u) =

∫ ∞

w
P (T > u|x)g(x) dx

∫ ∞

−∞
P (T > u|x)g(x) dx

.

In the proportional hazards model (3.1), the conditional survival function of T given

Z = z is

P (T > u|z) = exp
[
−H0(u) exp(βTz)

]
,

where H0(u) =
∫ t
0 h0(t)dt is the cumulative hazard of h0(u) as defined in Section 3.1.

Following Breslow (1972, 1974), we use Ĥ0(u) as the estimate of H0(u):

Ĥ0(u) =
∑

T̃i≤u

δi

∑
j∈Ri

exp(β̂
T

λZj)
,

where Ri is the risk set at time T̃i defined by Ri = {j : T̃j ≥ T̃i}, and β̂λ is

the regularized estimator of β obtained by maximizing the regularized log partial
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likelihood {ℓ(β, u)−Pλ(β)} with a fixed tuning parameter λ. Therefore, the survival

function P (T > u|βTZ = x) can be estimated by

Ŝ(u|βTZ = x) = exp
[
−Ĥ0(u) exp(x)

]
.

Besides, we consider the empirical function
∑n

i=1 I[βT Z ≤ x]/n as the estimator of

P (βT Z ≤ x). Since β is unknown, we replace β by its estimator β̂λ. Let

P̂ (βTZ ≤ x) =
1

n

n∑

i=1

I[β̂
T

λZ ≤ x].

Then the true positive and false positive probabilities can be estimated, respectively,

by

T̂P(w, u, λ) =

∫ ∞

w

[
1 − Ŝ(u|βTZ = x)

]
dP̂ (βTZ ≤ x)

∫ ∞

−∞

[
1 − Ŝ(u|βTZ = x)

]
dP̂ (βTZ ≤ x)

=

n∑

i=1

{
1 − exp

[
−Ĥ0(u) exp(β̂

T

λZi)
]}

I[β̂
T

λZi > w]

n∑

i=1

{
1 − exp

[
−Ĥ0(u) exp(β̂

T

λZi)
]} , (A.1)

and

F̂P(w, u, λ) =

∫ ∞

w
Ŝ(u|βTZ = x)dP̂ (βTZ ≤ x)

∫ ∞

−∞
Ŝ(u|βTZ = x)dP̂ (βTZ ≤ x)

=

n∑

i=1

exp
[
−Ĥ0(u) exp(β̂

T

λZi)
]
I[β̂

T

λZi > w]

n∑

i=1

exp
[
−Ĥ0(u) exp(β̂

T

λZi)
] . (A.2)

The ROC function (4.8) can be estimated by

R̂OC(x, u, λ) = T̂P(F̂P
−1

(x, u, λ), u, λ), (A.3)

where F̂P
−1

(x, u, λ) = inf{w : F̂P(w, u, λ) ≥ x}. Then the estimator of the AUC

function (4.9) is given by

ÂUC(u, λ) =
∫ 1

0
R̂OC(x, u, λ)dx. (A.4)
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Appendix B

R Programming Codes

B.1 Computation of ℓ(β, t), ∇ℓ(β, t) and ∇2ℓ(β, t)

# Input: y is an n-dimensional vector of observed survival times; Z is an n × k

# matrix of covariate variables; delta is an n vector of censoring status (1 for death;

# 0 for censored); beta is a k-dimensional vector of regression coefficients β.

# Output: l.like is the log partial likelihood ℓ(β, t); l.grad is the gradient vector

# ∇ℓ(β, t); l.hess is the Hessian matrix ∇2ℓ(β, t).

l.like <- function(y, Z, delta, beta){

l <- sum(delta * Z %*% beta)

for (i in 1:length(y)){

I <- I-delta[i] * log(sum(exp(Z[y>=y[i],] %*% beta)))

}

l

}
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l.grad <- function(y, Z, delta, beta){

l <- as.vector(delta %*% Z)

for (i in 1:length(y)){

X <- Z[y>=y[i],]

I <- I-delta[i] * t(exp(X %*% beta)) %*% X / sum(exp(X %*% beta))

}

l

}

l.hess <- function(y, Z, delta, beta){

D <-diag(as.vector(exp(Z %*% beta)))

temp <- matrix(rep(y,length(y)),ncol=length(y))

IR <- (t(temp)>=temp)

w <- IR %*% exp(Z %*% beta)

I <- 0

for(i in 1:length(y)){

A <- w[i]*D-exp(Z %*% beta) %*% t(exp(Z %*% beta))

X <- diag(IR[i,]) %*% Z

I <- I+(delta[i]/w[i]∧2) * t(X) %*% A %*% X

}

-I

}
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B.2 Estimation of β̂ with Lasso Penalty

# Input: Definitions of y, Z and delta are the same as above; lambda is a

# tuning parameter; tolerance is a tolerant value for convergence in iterations

# (the default is 10−7).

# Output: beta is the vector of estimated coefficients β̂.

Beta.lasso <- function(y,Z,delta,lambda,tolerance=10∧-7){

n <- dim(Z)[1]

k <- dim(Z)[2]

beta <- rep(0,k)

tol <- 1

while(tol>=tolerance){

old.beta <- beta

G <- l.grad(y,Z,delta,beta)

H <- l.hess(y,Z,delta,beta)

D <- lambda*diag(replace(beta, (1:k)[beta!=0], 1/abs(beta[beta!=0])))

beta <- as.vector(-solve(H-2*D, t(G)-H%*%beta))

tol <- sqrt(sum(beta-old.beta)∧2)

}

beta

}

83



B.3 Computation of ÂUC(u, λ)

# Input: Definitions of y, Z, delta and beta are the same as B.2. u is a

# fixed time to separate data into two groups.

# Output: ÂUC(u, λ).

AUC.fun <- function(y, Z, delta, beta, u){

temp <- order(y)

M <- as.numeric(Z %*% beta)

M.orderbyy <- M[temp]

delta.orderbyy <- delta[temp]

ind <- (delta.orderbyy==1 | sort(y)>u)

newy <- sort(y)[ind]

risky <- as.numeric(newy>u)

n1 <- sum(risky==0)

n <- length(newy)

newM <- M.orderbyy[ind]

mean.rank <- mean(rank(newM)[risky==0])

(mean.rank - (n1+1)/2)/(n-n1)

}
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B.4 Computation of ĜCV(λ)

# Input: Definitions of y, Z, delta, beta and lambda are the same as B.2.

# Output: GCV value for Lasso penalty based on Fan and Li (2002).

GCV.fun <- function(y, Z, delta, beta, lambda){

n <- length(y)

a <- replace(rep(0,n), [round(beta,4)!=0], 1/abs(round(beta,4)))

D <- lambda*diag(a)

H <- l.hess(y, Z, delta, beta)

e <- sum(diag(H %*% solve(H+D)))

-l.like(y, Z, delta, beta)/(n*(1-e/n)∧2)

}

B.5 Simulation of (T̃i, δi,Zi)

#Input: n is the sample size; beta is the vector of regression coefficients

#in the true model; mu and sigma are the mean vector and the covariance

#matrix of Z; r is a vector of given censoring rates.

#Output: a data frame of survival data with observed survival time T̃i,

#censoring status δi (1 for death; 0 for censored) and covariate vector Zi.

#Use the package “MASS”.
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library(MASS)

Z <- mvrnorm(n, mu, sigma)

Simu.SurvData.Z <- function(n,beta,Z,r){

T <- as.vector(-log(runif(n))/(exp(Z %*% beta)))

v <- r*exp(Z %*% beta)/(1-r)

C <- rexp(n,v)

status <- as.numeric(T<=C)

y <- status*T+(1-status)*C

if (n==1) Z <- t(Z)

data.frame(time=y, status, Z)

}
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Appendix C

Simulation of Censored Survival Data

In this thesis, we suppose that the hazard function of the survival time T is

given by

h(t|Z = z) = h0(t) exp(βT
0 z),

where h0(t) = 1, β0 is a given k-dimensional parameter, and Z is a k-dimensional

covariate vector randomly selected from a multivariate normal distribution with a

given k × 1 mean vector µZ and a given k × k covariance matrix ΣZ. Suppose that

the censoring time C follows an exponential distribution Exp(1/ν) with ν > 0, the

observed time is T̃ = min(T, C), and the censoring indicator is δ = I[T ≤ C]. Let

the censoring rate r = P (T > C|Z = z) is given. We generate a sample of size n

i.i.d. censored survival data (T̃i, δi,Zi), i = 1, . . . , n as follows.

Step 1: Generate covariate vectors Zi, i = 1, . . . , n, from a multivariate normal distri-

bution with mean µZ and covariance ΣZ.

Step 2: Generate Ui, i = 1, . . . , n, from a uniform distribution U [0, 1], and set the

survival time Ti as

H−1
0 [− log(Ui)/ exp(βT

0 Zi)] = − log(Ui)/ exp(βT
0 Zi),

since the survival function

S(t|z) = exp[−
∫ t

0
h(u|z)du] = exp[−H0(t) exp(βT

0 z)] (C.1)
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follows a standard uniform distribution and H0(t) =
∫ t
0 h0(u)du = t.

Step 3: Generate censoring times Ci, i = 1, . . . , n, from an exponential distribution

with the scale parameter ν = r exp(βT
0 Zi)/(1 − r) since we have

r = P (T > C|Z = z)

=
∫ ∞

0
P (T > t|Z = z)ν exp(−νt) dt

= ν
∫ ∞

0
exp[−t exp(βT

0 z)] exp(−νt) dt, by (C.1)

=
ν

ν + exp(βT
0 z)

.

Step 4: Set censoring indicators δi = 1 if Ti ≤ Ci, and δi = 0 otherwise, for all

i = 1, . . . , n.

Step 5: Set observable survival times T̃i = δiTi + (1 − δi)Ci, i = 1, . . . , n.

Appendix B.5 shows the R programming codes of simulating censored survival

data (T̃i, δi,Zi).
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Appendix D

Karnofsky Performance Status

100 Normal; no complaints; no evidence of disease.

90 Able to carry on normal activity; minor signs or symptoms of disease.

80 Normal activity with effort; some signs or symptoms of disease.

70 Cares for self; unable to carry on normal activity or to do work.

60 Requires occasional assistance from others but able to care for most needs.

50 Requires considerable assistance and frequent medical care.

40 Disabled; requires special care and assistance.

30 Severely disabled; hospitalization is indicated, although death not imminent.

20 Very sick; hospitalization necessary; active support treatment is necessary.

10 Moribund; fatal processes progressing rapidly.

0 Dead.
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Appendix E

American Joint Commission Staging, 4th Edition

Primary Tumor (T) Stage

Oral Cavity

T1 Tumor 2 cm or less in greatest dimension.

T2 Tumor more than 2 but not more than 4 cm in greatest dimension.

T3 Tumor more than 4 cm in greatest dimension.

T4 Tumor invades adjacent structures.

Oropharynx

T1 Tumor 2 cm or less in greatest dimension.

T2 Tumor more than 2 but not more than 4 cm in greatest dimension.

T3 Tumor more than 4 cm in greatest dimension.

T4 Tumor invades adjacent structures.

Hypopharynx

T1 Tumor limited to one subsite of hypopharynx.

T2 Tumor invades more than one subsite of hypopharynx or an adjacent

site, without fixation of hemilarynx.

T3 Tumor invades more than one subsite of hypopharynx or an adjacent

site, with fixation of hemilarynx.

T4 Tumor invades adjacent structures.
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Supraglottis Larynx

T1 Tumor limited to one subsite of supraglottis with normal mobility.

T2 Tumor invades more than one subsite of supraglottis or glottis with

vocal cord morbidity.

T3 Tumor limited to larynx with vocal cord fixation and/or extension

to involve postcricoid area, medical wall of pyriform sinus or pre-

epiglottic tissues.

T4 Massive tumor extending beyond the larynx to involve oropharynx,

soft tissue of neck or destuction of thyroid cartilage.

Glottis Larynx

T1 Tumor limited to the vocal cord(s) with normal mobility.

T2 Tumor extends to supraglottis and/or subglottis and/or with im-

paired vocal cord morbidity.

T3 Tumor limited to larynx with vocal cord fixation.

T4 Tumor invades through thyroid cartilage and/or extends to other

tissues beyond the larynx.

Subglottis Larynx

T1 Tumor limited to the subglottis.

T2 Tumor extends to vocal cord(s) with normal or impaired mobility.

T3 Tumor limited to larynx with vocal cord fixation.

T4 Tumor invades through cricoid or thyroid cartilage and/or extends

to other tissues beyond the larynx.
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Nodal Involvement (N) Stage

N0 No regional lymph node metastasis.

N1 Metastasis in a single ipsilateral lymph node, 3 cm or less in great-

est dimension.

N2a Metastasis in a single ipsilateral lymph node more than 3 cm but

not more than 6 cm in greatest dimension.

N2b Metastasis in multiple ipsilateral lymph nodes, none more than 6

cm in greatest dimension.

N2c Metastasis in bilateral or contralateral lymph nodes, none more

than 6 cm in greatest dimension.

N3 Metastasis in a lymph node more than 6 cm in greatest dimension.
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Appendix F

Head and Neck Cancer Data

122 observations are listed in Table F.1. The variables in the data set are:

N Case number.

A Age in years.

G Gender. 0=female; 1=male.

Tr Treatment. 0=radiotherapy; 1=radiotherapy plus concurrent chemotherapy.

P Primary tumor site. 1=oral cavity; 2=oropharynx; 3=hypopharynx;

4=supraglottic larynx; 5=glottic larynx; 6=subglottic larynx.

K Karnofsky performance status.

T T stage. 1=T1; 2=T2; 3=T3; 4=T4.

N N stage. 0=N0; 1=N1; 2=N2a; 3=N2b; 4=N2c; 5=N3.

EC Ever used cigarettes. 0=no; 1=yes.

CC Currently using cigarettes within 6 months. 0=no; 1=yes.

Bcl2 Score of B-cell lymphoma 2 IHC staining.

GST Score of glutathione S-transferase π IHC staining.

p53 Score of protein 53 IHC staining.

TS Score of thymidylate synthase IHC staining.

PFS Progression-free survival time in years.

C Progression-free survival status. 0=censored; 1=failed.

93



Table F.1: Head and Neck Cancer Data

N A G Tr P K T N EC CC Bcl2 GST p53 TS PFS C

1 67 1 0 3 80 2 2 1 0 0.00 1.33 0.00 0.00 6.44 0

2 54 1 1 2 90 2 3 1 1 2.00 2.67 1.50 2.00 1.02 1

3 46 1 1 4 100 3 3 1 1 1.00 2.67 0.00 0.00 0.70 1

4 34 1 0 2 70 3 3 1 1 0.00 3.00 0.67 1.50 0.62 1

5 48 1 1 4 80 4 3 1 1 1.33 1.67 3.00 2.00 0.42 1

6 63 1 0 2 100 3 3 1 0 0.00 1.00 0.00 1.67 1.06 1

7 77 1 0 1 70 3 3 1 1 0.33 2.67 2.00 2.00 1.68 1

8 52 1 1 2 100 2 3 1 0 0.67 1.67 1.67 1.33 9.19 0

9 46 0 1 2 70 3 0 1 0 1.00 0.00 2.00 1.00 0.81 1

10 56 1 0 2 90 4 3 1 1 1.00 3.00 0.00 1.00 0.73 1

11 65 1 1 6 90 3 3 1 1 0.33 2.00 0.00 1.33 1.00 1

12 53 1 1 4 70 4 3 1 1 0.33 1.67 2.00 1.67 4.89 0

13 52 1 0 3 100 3 4 1 1 0.00 2.67 0.33 2.00 1.86 0

14 67 1 1 4 90 4 4 1 0 2.67 3.00 3.00 2.00 2.32 1

15 47 0 1 2 80 2 3 1 1 0.00 1.00 0.00 1.00 0.24 1

16 67 1 1 2 70 4 3 1 1 1.00 1.33 0.00 1.67 0.26 1

17 39 1 0 1 70 2 3 1 0 1.00 0.00 0.00 1.00 0.91 1

18 60 0 0 4 100 4 4 1 1 1.33 3.00 0.00 1.33 0.61 1

19 37 1 1 2 80 3 3 1 1 0.33 2.00 2.33 2.00 1.02 1

20 51 1 0 2 90 4 3 1 0 1.33 1.67 1.00 1.00 4.70 0

21 66 1 1 5 90 4 3 1 1 0.33 1.00 2.67 1.67 8.09 0

22 38 1 1 2 90 4 4 1 1 1.00 2.33 1.00 1.00 0.50 1

23 65 1 0 2 90 4 3 1 0 0.33 2.00 1.33 2.33 5.49 1

24 60 1 0 2 70 3 4 0 0 1.00 3.00 3.00 2.33 0.81 1

25 50 1 0 2 90 2 3 1 1 1.33 3.00 0.00 1.00 1.12 1

Continued. . .
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N A G Tr P K T N EC CC Bcl2 GST p53 TS PFS C

26 56 1 0 4 90 4 4 1 1 2.00 1.67 2.67 1.00 5.57 1

27 65 0 1 2 100 2 3 1 0 1.00 2.50 1.33 1.00 7.65 0

28 54 1 1 2 90 2 3 1 0 2.00 3.00 2.67 1.67 2.04 1

29 65 0 1 2 70 2 4 1 1 1.33 2.33 3.00 1.33 0.03 1

30 69 1 1 3 90 4 3 1 0 0.33 3.00 2.00 1.67 8.32 0

31 58 1 0 3 60 4 3 1 1 0.00 1.67 2.33 0.33 0.01 1

32 62 1 1 1 100 3 2 1 1 0.00 3.00 2.33 1.00 0.93 1

33 47 1 1 1 100 1 3 1 1 0.00 2.33 0.00 1.33 0.31 1

34 48 1 1 1 70 1 3 1 1 3.00 2.00 1.67 3.00 7.40 0

35 65 1 0 5 90 4 3 1 0 0.33 1.67 2.67 1.00 7.21 0

36 43 1 1 2 100 2 3 1 1 1.00 3.00 0.00 1.33 2.77 1

37 56 0 1 2 90 1 2 1 0 1.00 0.33 0.00 2.67 7.50 0

38 50 1 0 2 90 3 3 1 0 3.00 3.00 2.00 2.00 8.20 0

39 63 1 0 1 80 2 3 1 1 1.67 1.33 3.00 1.33 2.21 1

40 48 0 0 4 80 4 4 1 1 0.67 0.00 2.33 2.00 7.22 0

41 59 0 1 1 90 4 3 1 1 0.00 2.67 2.33 0.67 0.54 1

42 31 1 1 1 80 2 3 1 1 0.50 2.00 0.00 1.50 7.24 0

43 43 0 1 1 90 4 3 1 1 1.00 2.33 2.00 2.67 6.87 0

44 49 1 1 2 90 1 3 1 1 3.00 0.33 1.67 1.00 6.85 0

45 47 1 0 4 100 4 3 1 1 0.00 2.00 0.00 1.67 0.21 0

46 61 0 1 1 80 3 3 1 1 0.00 1.67 0.00 0.33 0.28 1

47 72 1 1 3 70 4 2 1 1 1.00 1.67 3.00 2.00 0.26 1

48 51 1 0 3 100 3 3 1 1 1.00 2.00 0.00 0.33 0.93 1

49 68 1 0 2 70 1 3 1 1 0.33 1.00 3.00 2.67 1.71 0

50 59 1 1 2 80 3 2 1 1 3.00 1.00 3.00 2.33 7.72 1

51 40 1 0 2 100 3 3 1 1 0.33 1.67 0.00 1.00 0.58 1

52 53 1 0 3 80 4 4 1 1 0.67 3.00 0.00 1.00 0.23 1

Continued. . .
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N A G Tr P K T N EC CC Bcl2 GST p53 TS PFS C

53 55 1 0 2 90 2 3 1 1 2.67 1.33 1.67 2.33 6.11 0

54 55 1 0 2 100 4 3 1 1 1.00 2.67 0.00 1.33 0.06 1

55 46 1 1 2 90 1 3 0 0 1.00 1.00 1.00 1.67 7.21 0

56 56 1 1 3 90 4 3 0 0 1.00 3.00 3.00 1.33 0.90 1

57 31 1 0 2 80 2 3 1 1 1.00 3.00 2.33 2.67 1.61 1

58 59 1 0 1 90 3 3 0 0 0.33 2.00 0.00 1.67 0.42 1

59 63 1 0 4 90 3 4 1 0 1.00 3.00 2.67 1.00 0.72 1

60 64 1 1 4 90 3 3 1 0 2.00 1.33 2.67 2.00 7.49 1

61 65 1 1 1 90 2 3 1 0 1.00 3.00 0.00 0.50 6.63 1

62 45 1 0 2 80 4 3 1 1 1.00 2.67 1.67 2.00 2.63 1

63 51 1 1 2 80 3 3 1 0 0.33 1.33 3.00 1.33 0.54 1

64 52 1 1 2 70 4 3 1 0 0.67 2.00 0.00 1.00 1.78 1

65 49 1 0 3 80 4 3 1 1 1.33 3.00 0.00 1.33 0.93 1

66 32 1 0 2 90 3 3 1 1 0.67 1.33 2.67 2.00 1.13 1

67 57 1 1 3 70 4 4 1 1 0.00 3.00 3.00 1.00 0.34 1

68 60 1 0 4 90 2 4 1 0 0.67 3.00 0.00 1.00 1.91 1

69 78 1 1 3 80 3 3 1 1 1.00 1.33 2.00 1.00 4.30 1

70 60 1 1 4 70 2 4 1 0 2.00 1.00 1.50 1.00 0.55 0

71 57 1 0 1 90 4 3 1 1 0.33 1.67 0.00 1.67 1.62 1

72 52 1 0 2 90 2 3 1 1 1.67 3.00 3.00 1.33 0.71 1

73 40 1 0 2 90 1 3 1 1 3.00 1.50 0.67 1.67 5.49 0

74 42 0 0 2 90 1 3 1 1 1.00 1.33 0.00 1.00 0.96 1

75 66 1 0 4 80 3 4 1 0 0.00 2.00 3.00 1.33 0.24 1

76 55 1 0 1 90 2 3 1 1 0.00 1.00 2.33 0.33 2.29 1

77 58 1 0 4 80 4 3 1 1 2.00 3.00 2.00 1.00 3.67 0

78 50 1 1 3 70 4 3 1 1 1.00 1.50 2.00 1.50 0.02 1

79 74 1 0 2 70 4 3 1 1 3.00 1.67 1.00 2.00 6.20 0

Continued. . .
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N A G Tr P K T N EC CC Bcl2 GST p53 TS PFS C

80 50 1 1 2 90 2 3 1 0 2.00 2.00 2.33 2.00 6.73 0

81 64 1 0 3 90 4 3 1 1 2.00 2.67 3.00 2.00 6.30 0

82 47 1 0 1 80 1 3 1 0 0.33 3.00 0.00 1.00 1.17 1

83 66 1 0 1 80 3 3 1 1 0.00 1.33 3.00 1.00 0.79 0

84 50 0 1 4 80 3 4 1 1 2.67 1.33 3.00 1.00 2.91 1

85 62 1 0 5 90 3 3 1 1 1.67 3.00 2.33 0.67 3.43 1

86 51 1 0 2 80 1 3 1 1 2.00 1.67 2.67 0.67 3.72 1

87 51 1 1 1 90 3 3 1 1 0.33 2.00 1.67 1.33 3.14 1

88 54 1 0 4 80 1 3 1 1 1.50 3.00 3.00 1.00 0.74 1

89 48 1 1 2 90 2 3 0 0 1.67 0.00 0.33 1.67 6.19 0

90 44 1 1 2 90 3 3 1 1 2.33 1.00 0.33 1.67 5.22 0

91 62 1 0 4 80 3 3 1 0 1.00 1.67 3.00 1.67 0.30 1

92 54 0 0 4 80 4 4 1 1 1.33 1.00 0.00 2.00 0.75 1

93 56 1 1 2 100 3 2 1 0 3.00 1.00 2.00 2.67 5.56 0

94 48 1 0 2 100 3 3 1 0 1.50 0.00 1.50 1.50 5.10 0

95 61 1 0 2 90 2 3 1 1 0.00 2.33 0.00 1.00 1.68 1

96 52 1 0 1 70 4 4 1 1 0.00 0.33 2.00 1.00 0.45 0

97 47 1 0 1 90 1 3 1 1 1.50 3.00 1.00 2.50 6.02 0

98 62 1 0 3 90 1 2 1 0 0.67 1.00 3.00 2.33 0.34 1

99 60 0 1 2 70 4 3 1 0 0.00 1.33 1.00 1.00 3.49 0

100 54 1 0 2 80 4 3 1 0 2.00 2.33 0.00 2.67 0.34 1

101 70 1 1 3 80 3 3 1 0 1.00 2.00 2.67 2.00 0.52 1

102 66 1 1 2 90 2 3 1 0 1.67 2.67 2.33 1.33 4.90 0

103 48 0 0 1 70 4 4 1 1 1.67 2.67 3.00 2.00 1.02 1

104 64 1 0 1 80 3 4 1 1 0.33 0.00 0.00 1.33 0.94 1

105 55 1 0 2 90 1 3 1 0 1.00 2.67 1.33 1.00 4.65 0

106 54 1 1 2 70 3 3 1 0 0.33 1.67 1.67 2.00 0.71 1

Continued. . .
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N A G Tr P K T N EC CC Bcl2 GST p53 TS PFS C

107 50 1 1 5 90 4 5 1 1 1.67 2.33 3.00 1.67 5.36 0

108 68 1 1 2 70 2 4 1 1 3.00 2.67 0.00 2.67 1.42 1

109 64 1 1 2 90 2 3 1 1 1.00 1.67 1.33 1.00 0.09 1

110 53 1 1 4 100 3 3 1 0 1.33 1.67 0.00 0.67 0.99 1

111 51 1 0 2 90 2 2 1 0 1.67 2.67 1.33 2.00 5.37 0

112 63 1 0 1 80 1 3 1 1 2.00 2.33 3.00 1.33 2.12 1

113 54 1 1 4 90 4 4 1 0 0.33 3.00 1.67 1.00 0.39 1

114 61 1 1 2 80 2 3 1 1 0.33 2.33 3.00 1.00 1.39 1

115 63 1 0 3 90 4 3 1 1 0.67 1.00 3.00 1.00 0.90 1

116 63 1 0 2 80 2 3 1 0 1.00 2.33 2.00 1.33 0.22 1

117 79 1 0 1 80 2 0 1 1 0.00 1.67 1.00 1.67 0.32 0

118 76 0 0 1 90 3 3 1 0 1.00 0.00 0.00 0.67 0.74 1

119 53 1 1 6 90 4 1 1 1 1.67 3.00 0.33 2.33 3.83 1

120 58 1 0 1 90 3 3 1 1 3.00 1.00 3.00 2.33 2.97 1

121 52 1 0 2 90 3 4 1 1 1.00 3.00 0.00 1.33 0.86 0

122 47 1 0 2 100 2 3 1 0 1.33 2.00 2.00 1.00 2.93 0
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