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During the last decade, life sciences researchers have gained access to the entire

human genome, reliable high-throughput biotechnologies, affordable computational

resources, and public network access. This has produced vast amounts of data and

knowledge captured in the life sciences Web, and has created the need for new tools

to analyze this knowledge and make discoveries. Consider a simplified Web of three

publicly accessible data resources Entrez Gene, PubMed and OMIM. Data records

in each resource are annotated with terms from multiple controlled vocabularies

(CVs). The links between data records in two resources form a relationship between

the two resources. Thus, a record in Entrez Gene, annotated with GO terms, can

have links to multiple records in PubMed that are annotated with MeSH terms.

Similarly, OMIM records annotated with terms from SNOMED CT may have links

to records in Entrez Gene and PubMed. This forms a rich web of annotated data

records.

The objective of this research is to develop the Life Science Link (LSLink)



methodology and tools to discover meaningful patterns across resources and CVs. In

a first step, we execute a protocol to follow links, extract annotations, and generate

datasets of termlinks, which consist of data records and CV terms. We then mine the

termlinks of the datasets to find potentially meaningful associations between pairs of

terms from two CVs. Biologically meaningful associations of pairs of CV terms may

yield innovative nuggets of previously unknown knowledge. Moreover, the bridge

of associations across CV terms will reflect the practice of how scientists annotate

data across linked data repositories. Contributions include a methodology to create

background datasets, metrics for mining patterns, applying semantic knowledge for

generalization, tools for discovery, and validation with biological use cases.

Inspired by research in association rule mining and linkage analysis, we de-

velop two metrics to determine support and confidence scores in the associations

of pairs of CV terms. Associations that have a statistically significant high score

and are biologically meaningful may lead to new knowledge. To further validate the

support and confidence metrics, we develop a secondary test for significance based

on the hypergeometric distribution. We also exploit the semantics of the CVs. We

aggregate termlinks over siblings of a common parent CV term and use them as

additional evidence to boost the support and confidence scores in the associations

of the parent CV term. We provide a simple discovery interface where biologists can

review associations and their scores. Finally, a cancer informatics use case validates

the discovery of associations between human genes and diseases.



A FRAMEWORK FOR
DISCOVERING MEANINGFUL ASSOCIATIONS

IN THE ANNOTATED LIFE SCIENCES WEB

by

Woei-Jyh (Adam) Lee

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2009

Advisory Committee:
Professor Louiqa Raschid, Chair/Advisor
Professor Stephen M. Mount
Professor Mihai Pop
Professor Carleton Kingsford
Professor Jimmy Jr-Pin Lin



c© Copyright by
Woei-Jyh Lee

2009



Dedication

This is dedicated to my dearest grandparents Tai-Shan and Hsiu-Luan, who

passed away while I was doing this research overseas. I wish that they could have

shared this achievement with me.

ii



Acknowledgments

I would like to convey my gratitude to the following individuals for supporting

me with the inspiration to embark on my Ph.D. Dissertation. My deepest appre-

ciation goes to the advisor, Dr. Louiqa Raschid, who shepherded me through the

bulk of the work. Her kind but rigorous oversight of this thesis constantly boosted

my knowledge to the completion of the work. I was very fortunate to have been

able to work with her since undertaking my previous research topics. I also thank

my co-advisor, Dr. Chau-Wen Tseng for inspiring me to bridge computer science

and life sciences. He always made himself available for invaluable help and precious

advice.

This is a great opportunity to express my appreciation to all co-authors on

publishing this work, including Dr. Alex E. Lash, Dr. Susan M. Baxter, Dr. Maŕıa-
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Chapter 1

Introduction

The knowledge generated by the biomedical enterprise is currently captured in

Web accessible resources containing data on scientific records such as publications,

sequences, genes, proteins, etc. These disparate, not necessarily interoperable, pub-

licly available information resources include PubMed [156, 213], Reference Sequences

(RefSeq) [155, 165], Gene Expression Omnibus (GEO) [12, 62], and RCSB Protein

Data Bank (PDB) [99, 163]. The data is in a variety of human and machine read-

able formats. Biomedical informatics communities created a number of general and

domain specific ontologies or controlled vocabularies (CVs) such as Gene Ontology

(GO) [9, 17, 63, 193], Plant Ontology (PO) [10, 151] and Unified Medical Language

System (UMLS) [20, 21, 206] to improve the interoperability of these resources, and

to add semantic richness to these large data sets. Consequently, the data in these

resources are annotated with links to concepts from these different ontologies and

CVs. Finally, the data records in one repository are also linked to records in other

repositories. For example, a result reported in a publication in the PubMed may

lead a curator to insert a link from a data record in the Online Mendelian Inheritance

in Man (OMIM) [71, 145] to this publication in PubMed.

Life sciences researchers spend countless hours navigating this web of inter-

connected resources, following links from records in one repository to records in
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another, then following links from the data to annotations and back to some other

data, trying to aggregate the information that they need. Life science researchers

also explore these resources by navigating links between records in data resources as

well as paths (informally, concatenations of links). To find related publications to a

human gene, a biologist may start with that human gene record in the Entrez Gene

[46, 116], follow links to a set of OMIM records, and then links to PubMed to reach

a collection of publications in PubMed. While the annotated data records and their

links form a rich knowledge base, few tools allow users to explore the knowledge

captured in these richly annotated graphs, and to find possible meaningful asso-

ciations. Our research will develop the Life Science Link (LSLink) framework to

provide scientists with the methods and tools to explore the Web of interconnected

and annotated records in multiple repositories and identify meaningful patterns.

Our objective is to mine the annotated data records and the links between data

records to identify potentially significant associations between terms in two CVs.

These associations may lead to discovering new knowledge, i.e., knowledge that is

both biologically meaningful and not already well known.

An essential component of the scientific process is the formulation and eval-

uation of hypotheses. The LSLink framework includes a methodology to create

datasets of interest that contain associations between pairs of terms in two CVs.

We develop multiple metrics to identify potentially significant associations of pairs

of CV terms. A single association or a set of associations can correspond to a hy-

pothesis of interest to the scientist. In general, the process of hypothesis testing

consists of four steps as follows:
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1. Formulate the null hypothesis that the observation is the result of pure chance.

2. Identify a statistical test of significance that can be used to assess the truth

of the null hypothesis.

3. Estimate the probability that a value of the test statistic is at least as signifi-

cant as the one observed would be obtained, assuming that the null hypothesis

was true.

4. Compare the observed value to an acceptable significance value. If the ob-

served value is larger than the acceptable significance value, the null hypothe-

sis holds. If the observed value is less or equal to the acceptable significance

value, the observed effect is statistically insignificant, and the null hypothesis

is ruled out.

1.1 An Example

Research in [115, 147] correlated the presence of somatic mutations in the

tyrosine kinase domain of the gene that encodes the epidermal growth factor receptor

(EGFR) with responsiveness to get it in non-small-cell lung carcinoma. A potential

network (or a more restricted directed acyclic graph) of annotated data records

and links relevant to EGFR is shown in Figure 1.1. The data records are from

Entrez Gene [46], PubMed [156], OMIM [145] and PharmGKB (Pharmacogenetics

and Pharmacogenomics Knowledge Base) [150], and include concepts such as genes,

publications and genetic diseases/conditions. Annotations are represented by dotted
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Figure 1.1: Human gene EGFR web of data resources

edges and links between data records are denoted by solid edges.

In Figure 1.1, GO [63] annotates data records in Entrez Gene. As an example,

the term MAP/ERK kinase kinase activity from GO annotates the human EGFR

gene record, which in turns has links to two PubMed publications titled Activating

mutations in the epidermal growth factor receptor underlying

responsiveness of non-small-cell lung cancer to gefitinib [115] and EGFR

mutations in lung cancer: correlation with clinical response to

gefitinib therapy [147] that were published in year 2004. The publication titled

Activating mutations in the epidermal growth factor receptor

underlying responsiveness of non-small-cell lung cancer to gefitinib
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is annotated with 24 MeSH [120] terms, including Mutation and Sequence Deletion.

The publication titled EGFR mutations in lung cancer: correlation with

clinical response to gefitinib therapy is also annotated with 26 MeSH terms,

including Mutation and Sequence Deletion. An analysis of the titles and abstracts

of these two PubMed publications identifies that a term mutation from the Lash

CV [102] is associated with human EGFR gene, and the CV term deletion is also

associated with human EGFR gene.

Using the LSLink framework and metrics described in this thesis, our analy-

sis will identify two potentially significant pairs of CV terms as follows: (MAP/ERK

kinase kinase activity, Mutation) and (MAP/ERK kinase kinase activity,

Sequence Deletion). Both have high support and confidence scores. Further, the

confidence score of (MAP/ERK kinase kinase activity, Mutation) is higher than

the score of (MAP/ERK kinase kinase activity, Sequence Deletion). To ex-

plain this difference, consider that Mutation is a more generic term and occurs at a

higher level in the MeSH hierarchy. In addition, prior research has been conducted

on mutations and MAP/ERK activations on fruit fly and mouse. Consequently, this

association pair (MAP/ERK kinase kinase activity, Mutation) reflects biological

meaningful but well known knowledge. In contrast, the association between MAP/ERK

kinase kinase activity and Sequence Deletion on human EGFR gene may

have lower confidence. At the same time, it is not previously known in the lit-

erature. It may represent a nugget of previously unknown knowledge.
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1.2 The LSLink Framework

Using the LSLink methodology, we can generate termlinks to represent an-

notations, links and associations among data records, and aggregate interconnected

data records from multiple resources. This builds a rich collection of knowledge. Ad-

ditionally, each individual data record is annotated to varying degrees of accuracy

and completeness. The key going forward is to provide semantically rich, scalable,

user-driven tools for discovery as part of the biomedical research environment.

The LSLink methodology addresses the challenges of automating the many

manual steps to navigate databases and to extract, analyze and aggregate asso-

ciations captured in data records and links between data records. It is a generic

methodology that can be applied to any interconnected network in the life sciences

Web. Using techniques outlined in our research, we determine the statistical sig-

nificance of an association between a pair of CV terms. The framework has the

following steps:

• Protocol to follow links, extract annotations, and generate termlinks.

• Queries to create a background dataset and user query datasets.

• A variety of metrics to mine termlinks and determine significant associations.

There are many techniques to extract knowledge from the annotated life sci-

ences Web. A key method is text mining [178, 181] or literature-based discovery.

Such methods are often computationally expensive since they may need to process

the full text, and often cannot be scalably applied to multiple knowledge extrac-
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tion tasks. The literature-based discovery also does not exploit the links between

scientific records. The LSLink framework is the only method that exploits both

annotations and links to discover new knowledge. The LSLink framework, while

straightforward in its objective, has the advantage of being a generic methodol-

ogy that can be scalably applied with multiple CVs on and between multiple data

resources.

We have addressed these problems by designing and developing the LSLink

framework to discover meaningful associations in the annotated life sciences Web.

Contributions of this research are as follows:

• We develop a methodology to extract the data records, links between data,

and annotations from the life sciences Web to generate a background knowl-

edge of human genes and genetic disorders. We identify a background dataset

representing a broad and representative sample of the background knowledge,

which is associated with a specific experiment protocol to retrieve data records,

retrieve annotations and follow links. We support multiple user scenarios for

querying the background dataset. We design a model to retrieve a subset from

the background dataset to answer scientists’ query. We develop an expansible

system to associate markers in the human genome to the PubMed publica-

tions annotated with a collection of genetics terms. We create a custom track

for the UCSC Genome Browser [93, 203] to support the association between

publications and genomic components on the human genome.

• We design two sets of metrics from association rule mining and from hyperge-
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ometric distribution to look for significant associations of pairs of CV terms.

The support and confidence chosen in this study measure the extent to which

an association of a pair of CV terms deviates from one resulting from chance

alone (a random association). We develop a variation of support and confi-

dence scores, and discuss some alternatives on choosing appropriate metrics.

The hypergeometric distribution describes the discrete probability of selecting

particular associations of CV terms from a background dataset when sampling

items without replacement. We apply hypergeometric distribution to test if an

association of CV terms is over-represented. We define a wide selection of user

query datasets for scientist evaluation by their cardinalities of annotations,

links and associations between CV terms. We label multiple subset of associ-

ations in the complete user query dataset depending on their characteristics

between background and user query datasets. We explore the distribution and

statistics for both sets of metrics. We analyze the agreement and disagreement

between the ranked results generated by two sets of metrics. Overlap analysis

reports at least 80% agreement between associations in Top-50% ranks of two

metrics. Kendall’s τ alignment distance reports around 0.5 after normalization

between Top-50% ranks of two metrics.

• We develop a set of extendible tools for discovering meaningful associations.

An example tool is an interactive interface where the scientist can browse

associations and scores of two metrics, and then specify particular terms of

interest in either vocabulary. This type of relevance feedback is used to further
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refine information that is presented in an iterative manner. Medical doctors

and cancer researchers rate the highly ranked associations of pairs of CV terms

along two independent dimensions: {Meaningful, Maybe Meaningful, Not

Meaningful}, and {Widely Known, Somewhat Known, Unknown/Surprising}.

Scientist validation confirmed that a majority of highly ranked pairs of CV

terms were meaningful, which were identified as a true positive. Several of

the pairs were unknown and might lead to further knowledge. We discover

potentially meaningful associations for the queries initiated by the scientists.

We perform user evaluation and validation based on the feedback from the

scientists. We report on extended analysis by examining groups of associations

rather than individual associations, and the group frequency of occurrence.

• We exploit the semantic knowledge in the ontology structure and the pat-

terns of annotations for aggregation between the parent-and-child and among

the sibling CV terms. We illustrate the benefits of exploiting this knowledge

through a set of experimental evaluations. It seems intuitively apparent that

the association evidence attached for example to the child CV terms should

influence the evidence of the parent CV terms. By treating these associations

as strictly independent, we may be ignoring potentially valuable information

offered by the structure of the controlled vocabulary or ontology. Additionally,

new associations between pairs of parent CV terms may also be introduced,

where the parent CV term was not used for annotation. We used three cancer

related user query datasets to illustrate the benefits from the aggregation. We
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further reported on the effect by varying the α ratios to control the contribu-

tion from the child CV terms to the parent term.

1.3 Dissertation Roadmap

The roadmap of this thesis is as follows:

• Chapter 2 discusses related work. We review the diversity of life science data

resources, links between data records in data repositories, and semantics of

the links. We discuss CVs and ontologies, and review ontology mapping. We

also review data mining and statistical methods that are widely used in the

bioinformatics research.

• We present the LSLink framework in Chapter 3. A background dataset and

a few datasets based on user queries are illustrated. We further describe

the process of extending an annotated LSLink dataset to establish links from

publications to the human genome, annotated with Lash CV terms.

• Chapter 4 reports on the notation, variables, definition and metrics, which are

used in our research. We report on the term probabilities, link probabilities,

support and confidence scores and hypergeometric distribution P -values. We

compare the metrics in two ways. An overlap of the Top-K association pairs

shows the level of agreement. We also use a distance metric such as Kendall’s

τ to determine divergence between the two metrics.

• Chapter 5 introduces multiple user evaluation scenarios for discovering and
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identifying meaningful association. We then demonstrate a tool for discovering

meaningful associations.

• We illustrate our methodology to generalize semantic knowledge from the CVs

in Chapter 6. We discuss the benefits of exploiting structural semantic knowl-

edge, and introduce the metrics used for aggregated mining of CV terms. We

report on experimental results for three user query datasets.

• In the Chapter 7, we describe a biological use case to exploit biologically

meaningful and as yet unknown knowledge.

• Chapter 8 concludes and presents some directions for future research.
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Chapter 2

Related Work

The LSLink framework and the research objectives to create background

datasets and mine associations of pairs of controlled vocabulary (CV) terms span

a broad range of research areas from information integration to search and ranking

to text mining to ontologies and annotation. Related research is summarized in

this chapter, and additional details will be presented as needed in later chapters.

In Section, 2.1 we review the diversity of life science data resources, links between

data records in data repositories, and the semantics of the links. In Section 2.2, we

discuss CVs and ontologies, and review ontology mapping. Our research on finding

meaningful associations between pairs of CV terms is related to several topics in

data mining and is discussed in Section 2.3. We report on statistical method to find

patterns in bioinformatics Section 2.4.

2.1 Life Science Data Resources

The life sciences research community has generated an abundance of data on

genes, proteins, sequences, etc. This data has been captured in publicly available

general purpose resources by the three following agencies.

• National Center for Biotechnology Information (NCBI) [132] is a division of

the National Library of Medicine (NLM) at the National Institutes of Health
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(NIH) in the United States of America. The NCBI hosts more than 30 publicly

accessible data resources including PubMed [156], GenBank [65], BLAST [13],

and so on. Entrez [45] serves as a powerful federated retrieval system to

simultaneously search multiple life science databases at the NCBI.

• European Bioinformatics Institute (EBI) [48] is an outstation of the European

Molecular Biology Laboratory (EMBL) [55] in Europe. The EMBL-EBI pro-

vides data resources and tools such as Ensembl [44], UniProt [209], InterPro

[53], etc.

• The Center for Information Biology and DNA Data Bank of Japan (CIB-

DDBJ) [29] is a division of the National Institute of Genetics (NIG) in Japan.

The CIB-DDBJ operates several databases, including the DNA Data Bank

of Japan (DDBJ) [41], which is a member of the International Nucleotide

Sequence Database, GenBank/EMBL/DDBJ.

In addition to these three government-supported agencies, there exist a tremen-

dous number of life science data resources supported by collaborations among uni-

versities, institutions, organizations, and consortia. Example data sources and

databases are discussed in Section 2.1.1. More specialized databases for genomes

and markers are reported in Section 2.1.2. Data records in these life science re-

sources are often linked to records in other repositories to create a life sciences Web.

Section 2.1.3 introduces some important links and the semantic knowledge of the

links.
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2.1.1 Data Sources and Databases

The most popular bibliographic discovery tool in the biomedical domain is

PubMed [156, 213]. It is maintained by the NCBI, and is a free search engine for

accessing MEDLINE records. PubMed accepts a keyword query and processes it

as follows: It first analyzes search keywords to construct meaningful phrases. If an

assembled phrase matches date formats, journal titles, authors or other pre-defined

fields, PubMed automatically expands the search to the corresponding fields. If a

search phrase does not match any pre-defined field, PubMed uses each individual

word as a text word to search the full indexes on PubMed. PubMed returns many

attributes for a record including authors, title, abstract, annotations, and links to

other life science data sources (both inside and outside NCBI). It displays the result

in reverse chronologic order (publish date). PubMed does not rank results based on

relevance or importance, nor does it provide citation to other publications. The full

text and the citation data is accessible at the PubMed Central (PMC) [157] also at

the NCBI.

NCBI Entrez Gene [46, 116] is a database for gene-specific information which

focuses on genes that have active research communities to contribute the analysis and

the information. The content of Entrez Gene represents the result of curation and

automated integration of data from NCBI’s Reference Sequences (RefSeq) [155, 165],

and from collaborating data sources. Each record is assigned with a unique identifier

GeneID. The content includes nomenclature, map location, gene products, markers,

phenotypes, annotations and links to citations, sequences, maps, expression, and
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other gene-related databases.

Online Mendelian Inheritance in Man (OMIM) [71, 145] is a comprehensive

data source for human genes and genetic disorders. The online version is a collabo-

ration between the NCBI and the Johns Hopkins University. The full text overviews

with references in OMIM cover more than 12,000 human genes. Each OMIM record

is assigned with a unique MIM Number, and contains links to other genetics re-

sources. However, there is no common controlled vocabularies annotating OMIM

records. The corresponding data resource for animals is the Online Mendelian In-

heritance in Animals (OMIA) [106, 144], which is maintained in a MySQL database

at the Australian National Genomic Information Service (ANGIS) in Australia. It

has also been integrated into the Entrez query system at NCBI.

GenBank [14, 65], EMBL-Bank [31, 49], and DDBJ [41, 184] constitute the

International Nucleotide Sequence Database (INSD) [87], which is a comprehen-

sive database of publicly available nucleotide sequences obtained through submis-

sions from individual laboratories and batch submissions from large-scale sequencing

projects. Each GenBank record consists of a sequence and its annotations, and is

assigned a unique identifier called an accession number that is shared across three

collaborating databases. Each version of the submitted sequence is also assigned a

unique NCBI identifier called a GI number.

Universal Protein Resource (UniProt) [195, 209] is a freely accessible resource

of protein sequences and functional information. It is produced by the UniProt Con-

sortium, which consists of groups from the EBI, the Swiss Institute of Bioinformatics

(SIB) [188], and the Protein Information Resource (PIR) [153]. UniProt is comprised
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of four major components: the UniProt Archive, the UniProt Knowledgebase, the

UniProt Reference Clusters, and the UniProt Metagenomic and Environmental Se-

quence Database. It also includes cross-references to other databases.

Kyoto Encyclopedia of Genes and Genomes (KEGG) [92, 101] is a collec-

tion of online databases dealing with genomes, enzymatic pathways, and biological

chemicals. KEGG connects known information on molecular interaction networks,

such as pathways and complexes, information about genes and proteins generated

by genome projects, and information about biochemical compounds and reactions.

These databases comprise different networks, known as the protein network, the

gene universe and the chemical universe respectively. There are efforts in progress

to add to the knowledge of the KEGG, including cross-species information in the

database.

2.1.2 Genomes and Markers

A marker (or genetic marker) is a known deoxyribonucleic acid (DNA) se-

quence that can be identified by a simple assay, and is associated with a certain

phenotype. Markers can be used to study the relationship between an inherited dis-

ease and its genetic cause (for example, a particular mutation of a gene that results

in a defective protein). Scientists may determine the precise inheritance pattern of

the gene that has not yet been exactly localized using markers, so they are good

candidates to describe genomic locations. We use markers as an example to enhance

the meaning between genomes and publications, which is one of the case studies of
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our research to be introduced in the next chapter.

The Human Genome Project (HGP) [84] was coordinated by the U.S. Depart-

ment of Energy (DOE) and the NIH. Project goals were to identify approximately

20,000-25,000 genes in human DNA, to determine the sequences of the three bil-

lion base pairs that make up human DNA, to store this information in databases,

and to improve tools for data analysis. The NCBI Human Genome Resources [133]

maintains various resources for the human genome. UniSTS [208, 213] is a NCBI re-

source that reports information about markers. Mouse Genome Informatics (MGI)

[25, 129] offers the Genes and Markers search interface [123], which integrates the

marker data with the gene sources. The query can be filtered by a combination of

protein domains, phenotypes and diseases.

For plant genomes, The Arabidopsis Information Resource (TAIR) [15, 166,

187, 192] provides the Marker Search interface [190] to search markers in three

ways. A publication that discusses a marker found through their system is enclosed

in the result page with a list of associated keywords. Despite the availability of this

information, they do not extract the relationship between such publications and the

markers. A Resource for Comparative Grass Genomics (Gramene) [1, 108] makes

the Markers Search available on grains [69]. The search result is cross-referenced to

some internal sources, but it does not show the meanings of these cross-references

and why these links were created.

The three most commonly used resources to view genomes and markers are the

NCBI Map Viewer [134, 213], the University of California at Santa Cruz (UCSC)

Genome Browser [93, 203], and the EBI Ensembl [44, 58]. The same marker or
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gene may have different genomic positions on different human genome assemblies.

Authors in [88] compare six assemblies provided by the NCBI, the Celera, and the

UCSC. The main disagreement between NCBI Build 34 published in October 2003

and the whole-genome shotgun assembly (WGSA) of the human genome generated

at Celera in 2001 is not due to the assembly errors but to the placement problems.

2.1.3 Links and Link Semantics

There has been much research and development on interconnecting knowledge

sources. The three major repositories the NCBI, the EBI, and the CIB-DDBJ have

made significant efforts to provide integrated access such as Links [47, 213] and

LinkOut [213] at the NCBI, Integr8 [51, 97, 154] at the EBI, and LinkDB [60] at

the CIB-DDBJ. For example there are four types of links from Entrez Gene records

to PubMed publications as follows:

1. Gene References Into Function (GeneRIF) [64] provided by the NLM. These

links are produced through user submissions in an Entrez Gene record or

through manual curation from the published literature by staff of the NLM.

2. Human Immunodeficiency Virus Type 1 (HIV-1) links provided by the Na-

tional Institute of Allergy and Infectious Diseases (NIAID). These interactions

are reported in the Human Protein Interaction Database, and there are links

to PubMed publications that support the described interaction.

3. General Interactions submitted by scientists with links to PubMed publica-

tions that support the described interaction.
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4. Gene Ontology (GO) [63] annotations provided by Gene Ontology Annotation

(GOA) [50]. These links are generated by a combination of electronic mapping

and manual curation.

However, beyond providing ease of access to related material in allied databases,

these typically do not attempt to enhance the representation and the semantics of

individual links. Observe that navigational links are useful only to the extent that

their semantics is readily visible to the user. Unfortunately, this semantics remains

unspecified in many cases. With a vast and growing network of links (and therefore

paths between records), it is imperative that this situation is remedied by specify-

ing the semantics connecting linked pairs of data records in a lucid manner. This

situation is further complicated as the same pair of records may be directly and

indirectly connected in numerous ways.

Research on link semantics is slowly evolving especially given recent exam-

ples of projects enhancing specific links. For example, links in PDBSProtEC [117]

identify SwissProt codes and Enzyme Commission (EC) numbers for chains in the

Protein Data Bank (PDB). The mapping identified by the links are useful to under-

stand structure-function relationships. Protein-Interaction Map (PIMtool) [43, 182]

provides links from proteins to various kinds of interactions reported in multiple

datasets. The relationships observed in these links are the protein-protein inter-

actions, which do not connect the knowledge to genes or other data resources. In

Information Hyperlinked over Proteins (iHOP) [56, 78, 85], there are links that

connect genes and proteins to publications. It is an online service that provides a

19



gene-guided network to access PubMed abstracts. By using genes and proteins as

hyperlinks between sentences and abstracts, the information in PubMed is converted

into navigable links. Sentences in a PubMed abstract are ranked with respect to the

experimental evidence of the interaction between the proteins that appear in the

sentence. BioDASH [137, 158] is a semantic Web prototype of a drug development

dashboard that generates links to associate disease, compounds, molecular biology,

and pathway knowledge. A GeneRIF is a concise phrase describing a function or

functions of a gene. A GeneRIF links a gene record to a published paper describ-

ing that function. Lu et al. [113, 112] enhance and correct GeneRIFs using Gene

Ontology (GO) [63] annotations. Unfortunately, while all of these projects enhance

specific links, the enhancements are typically hardcoded to a specific dataset or

task. In other words, these efforts do not provide a general methodology for using

the knowledge captured by these links to query and analyze across multiple inde-

pendent datasets, to use multiple ontologies, and to be used by multiple applications

or tools. The design of such a methodology is a distinctive feature in our research.

The BioFast project by Bleiholder et al. [19] illustrates that links in the

life sciences must be enriched to capture semantics to support meaningful queries.

The authors analyzed the linked data records and solicited additional information

from biologists to generate semantic labels such identifications of the source and

target elements of links within data records. Work in [75, 76, 124] present several

examples on labeling links using the semantic knowledge of the navigational links

between pairs of life science data resources. Heymann et al. [75, 76] introduce a

semantically enhanced link that includes a link descriptor from some ontology and
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the description about the origin and the target data records of the link. Mihaila et

al. [124] propose a data model and query language that allows scientists to express

knowledge of links and to exploit this knowledge in answering queries. Lee et al. in

[105] define a semantic model for the life science graph, which includes a domain

ontology to describe the data records as well as a CV to capture the semantics of

the links between data records.

2.2 Annotation in the Life Sciences

Annotation is the process of capturing biological knowledge using comments,

references, and citations, either in free text format or utilizing a CV. An annotation

can be used to describe both experimental knowledge or inferred knowledge about a

gene, a protein, or any other life science feature. Annotations can also be applied to

the description of larger biological systems. Annotations are provided by human cu-

ration, using automated computer programs, or both. Section 2.2.1 introduces some

CVs and ontologies in the life sciences domain. Section 2.2.2 reports on enhanced

literature search using ontologies. Mapping tasks between ontologies is discussed in

Section 2.2.3.

2.2.1 Controlled Vocabularies and Ontologies

Biologists have made extensive use of CVs and ontologies to capture domain

knowledge [200, 201]. We use CV terms to capture the semantics associated with

both data objects and links between data objects in life science data resources. We
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briefly discuss ontologies and CVs of interest.

Open Biological Ontologies (OBO) [146, 174] includes a collection of sources

and ontologies that provide domain knowledge in the life sciences. Among the

participating ontologies, Gene Ontology (GO) [9, 17, 63, 193] provides a controlled

vocabulary to describe gene and gene product attributes. A gene product is a

biochemical material resulting from gene expression. GO has about 25,000 entries in

three main divisions (or namespaces): biological process, cellular component,

and molecular function. Biological process is a series of events related to the

functioning of integrated living cells. Molecular function describes activities that

occur at the molecular level. A cellular component is a component of a cell. The

GO ontology is structured as a directed acyclic graph (DAG), such that a child (a

more specific term) can have more than one parent (a more general term). Each GO

term has a unique numerical identifier. Each GO entry includes evidence codes and

references to publications in PubMed or protein records in UniProt that provided

the knowledge. An evidence code indicates the type of work or analysis described in

the cited reference, which supports the GO term. The relationship from a GO term

to its parent term in the GO hierarchy is also captured by relationships such as is-a,

part-of, and regulates. GO terms are used not only to annotate gene records, but

also to annotate proteins and so on. The Gene Ontology Annotation (GOA) [26, 50]

project at the EBI aims to provide high-quality GO annotations to proteins in the

UniProt Knowledgebase (UniProtKB) [207] and International Protein Index (IPI)

[52], and is a central protein data resource for other major multi-species databases

such as Ensembl and NCBI.
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Plant Ontology (PO) [10, 151] has been developed and maintained with the pri-

mary goal of facilitating and accommodating functional annotation efforts in plant

databases and by the plant research community. It has about 1,000 records in two

name spaces: plant growth and development stages, and plant structure.

Similar to GO, PO also includes numerical identifiers, the evidence codes, references

and relationship in the records. It provides a semantic framework for meaningful

cross-species queries across plant databases.

A few CVs have been used for decades. Medical Subject Headings (MeSH)

[120, 169] at the NLM includes about 25,000 descriptors (or main headings) and 83

qualifiers (or subheadings), which are categorized into 16 main branches in the tree

structure. MeSH is used by the NLM to catalogue books, library materials, and to

index articles for inclusion in life sciences related databases including MEDLINE.

Each record node in the MeSH tree hierarchy is assigned with a unique tree number.

However, a MeSH descriptor may have multiple appearances in the tree structure,

and thus each MeSH record contains one or more tree numbers. Each MeSH term

is mapped to one or more Semantic Types [204]. There are about 150 Semantic

Types in a separated tree hierarchy. Semantic Types are concept terms to further

categorize the semantic meaning of the mapped CV terms. The NCI Thesaurus

[37, 59, 136] of the Enterprise Vocabulary Services (EVS) [135] at the National

Cancer Institute (NCI) in the NIH is a reference terminology covering areas of basic

and clinical science, built with the goal of facilitating translational research in cancer.

It contains nearly 110,000 terms in approximately 36,000 concepts, partitioned in 20

sub-domains. Each concept represents a unit of meaning and contains a number of
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annotations, such as synonyms and preferred name, as well as annotations such as

textual definitions and optional references to external authorities. The Systematized

Nomenclature of Medicine-Clinical Terms (SNOMED CT) [189, 210] is considered to

be the most comprehensive clinical healthcare terminology in the world. It is under

an international collaboration of the International Health Terminology Standards

Development Organisation (IHTSDO) [86]. SNOMED CT provides the core general

terminology for the electronic health record (EHR) and contains more than 311,000

active concepts with unique meanings and formal logic-based definitions organized

into hierarchies.

There are other candidate CVs and term taxonomies, which can be used to an-

notate data records and links between records in the life sciences domain. The NLM

initiated a federated knowledge base Unified Medical Language System (UMLS)

[20, 21, 206] to provide integrated access to a large number of biomedical resources

by unifying the vocabularies that are used to access those resources. The UMLS in-

tegrates over two million terms for some 900,000 concepts from more than 60 families

of biomedical CVs, as well as 12 million relations among these concepts. The MeSH,

the NCI Thesaurus, and the SNOMED CT mentioned in the prior paragraph are all

integrated into the UMLS now. Besides, the UMLS includes a Semantic Network

[205] to provide a consistent categorization of all concepts represented in the UMLS

Metathesaurus. The Semantic Types mentioned in a prior paragraph are defined in

the Semantic Network. In addition to data, the UMLS also includes various tools

such as MetaMap [122] for extracting UMLS concepts from text.

Another type of term collection is a nomenclature. Human Genome Organ-
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isation (HUGO) [194] operates HUGO Gene Nomenclature Committee (HGNC)

[24, 82], which aims to create a unique symbol and a meaningful name for every hu-

man gene. The system maintains history of the symbols, the aliases, the synonyms

and its genomic location for each gene record. It contains about 30,000 records. The

corresponding nomenclatures for other species such as mouse, rat, chicken, fruit fly,

yeast, are supported by each individual genome database. The challenges associated

with nomenclatures include intra-species ambiguity, inter-species ambiguity, ambi-

guity with English lexicon and domain-related terms, overlap between different data

sources, etc.

Lash Controlled Vocabulary (Lash CV) [102] contains terms related to genetic

and phenotypic variations. The Lash terms are categorized into five groups as

follows:

1. EPIGENETIC ALTERATION

2. GENOMIC SEGMENT LOSS

3. GENOMIC SEGMENT GAIN

4. GENOMIC SEQUENCE ALTERATION

5. PHENOTYPIC ASSOCIATION

Within each group, there are up to three levels, and relationships among terms are

captured in the hierarchy. Many Lash CV terms have acronyms and synonym terms.

CVs and ontologies play a critical role in annotation, an important activity

in bioinformatics. Entrez Gene records are annotated with GO terms. Records
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in TAIR are annotated with terms from GO and PO. Publications in PubMed

are annotated with MeSH terms (both descriptors and qualifiers). While manual

annotation is most common, there are several automatic or semi-automatic anno-

tation efforts. This includes the design of automatic annotation methods in the

BioCreAtIvE I initiative [18], supervised machine learning based approaches [167],

unsupervised methods [33], and n-gram based statistical models built using full text

[160]. Research in [34] substantiates uncurated annotations using a text similarity

based method which also identifies novel annotations. The authors developed a tool

to allow extraction of text-based GO annotations for a given protein by automati-

cally mapping all of the protein names contained in the corresponding protein record

to PubMed abstracts. These abstracts are then associated with GO terms based on

text similarity between the term and abstracts, using the GO hierarchy to improve

the overall precision.

2.2.2 Enhanced Literature Search

There are tools to perform enhanced search to find relevant literature of in-

terest. Some tools search the PubMed publications with the assistant from CVs

and ontologies. PathBinderH [39, 148] uses biological taxonomy and ontologies for

relevant information retrieval. It parses the PubMed abstract, and filters the result

based on the species of interest. It then returns the sentences that contain search

terms chosen from ontologies. PubMed Assistant [40] is a biologist-friendly interface

for enhanced PubMed search. It provides an interface that displays the information
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about the citations and highlights keywords in the abstract. However, these tools do

not generate any links from PubMed to other data sources, nor discover knowledge

from the annotations and the links.

The work in [161, 162, 215] share a concern with data contained within life

science publications. The first two articles address the search for functionally co-

herent gene groups using statistical natural language processing (NLP) techniques.

The third article explores four approaches to address the discovery of gene or pro-

tein synonyms, which are not present in the existing protein databases. MedScan

[36, 140] automates NLP on the information extraction. It identifies protein names

and chemical words in a sentence, and uses directed binary links with attributes to

represent relationships among proteins. However, the ontological links in MedScan

are only used to describes the extracted relations. None of these extraction systems

create relationships from publications to other sources.

2.2.3 Ontology Mapping

As domain knowledge that is captured is diverse, a single ontology is no longer

sufficient in the life sciences research environment. Records in a resource may be

annotated using one or more ontologies. Ontologies serve as a key factor in interop-

erating across heterogeneous systems. Ontology mapping provides a common layer

on top multiple ontologies to exchange information. A typical mapping process is a

manual and interactive procedure. The system presents a set of candidate mappings

to the user, and the user accepts or reject some of the mappings. The process is
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repeated until the user is satisfied with the mapping result.

The objective in [79] is to determine matches or correspondence between con-

cepts and between subgraphs. Their solutions are based on string similarity between

the labels of concepts, structural similarity and relationship patterns in the ontol-

ogy. Chimaera [118] is an interactive tool, which provides users choices during the

process. It is integrated with the hierarchical relationship. If linguistic matches are

found, the process can then be automated. GLUE [5] semi-automatically creates

ontology mapping using machine learning techniques. It finds the most similar con-

cepts between two ontologies and calculates the joint probability distribution for

similarity measurement.

In the life sciences domain, early work at the National Center for Biomedical

Ontology (NCBO) [131] includes tools for ontology mapping and versioning. These

tools are SMART [141], PROMPT [142], and PROMPTDIFF [143]. The tools use

linguistic similarity matches between concepts for initiating the process, and then

apply the underlying ontological structures to identify further matches between on-

tologies. The goal of the research in [111] is to map CV terms in GO to UMLS.

The first step in their work is to look for overlap manually through a preliminary

exploration of both GO and UMLS ontologies. The authors then develop an auto-

mated system to perform the same task. Therefore the mapping result is verified

by humans, and GO terms are fully mapped to UMLS.

Although our research on discovering meaningful associations between two

CVs is similar to the ontology mapping, the existing tools discussed above are all

looking for terms within the same or similar concept. However, the two CVs and
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ontologies that we are considering may or may not share the similar concepts.

2.3 Mining in the Life Sciences

Our research on associations has an overlap with knowledge discovery and

text extraction and mining. Mining is a process to derive information or discover

knowledge from the existing data mainly in large repositories. A knowledge discov-

ery process includes data cleaning, data integration, data selection, transformation,

data mining, pattern evaluation, and knowledge presentation. Mining can be per-

formed in a variety of information repositories. Data mining in particular is a process

to extract interesting, nontrivial, previously unknown, and potentially useful infor-

mation or patterns from data in large databases [73]. Section 2.3.1 reports on the

association rule mining research. Research on text mining, link and graph mining

is reported in Sections 2.3.2 and 2.3.3 respectively.

2.3.1 Association Rule Mining

Association rules [2, 73] that find frequent itemsets have played a significant

role in knowledge discovery in relational data and there have been extensions to

more complex multi-dimensional data. The authors in [2] defined a transaction to

be a set of items from a sampling space. A rule is defined as an implication from

an antecedent itemset to a consequent itemset. The support measures the statistical

significance of an itemset, which is defined as the proportion of transactions in

the datasets that contain the itemset. The confidence measures the strength of a
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rule by estimating the conditional probability, in which the probability of finding

the consequent itemset of the rule in transactions under the condition that these

transactions also contain the antecedent itemset.

Association rules have not been typically used in the analysis of link data or

graphs. One of the major challenges for link data mining is the Web graph; here too

the emphasis has not been on finding associations. General techniques for mining

sequential patterns is addressed in [211]. For example, there is research on mining

Web usage patterns [22, 23] but the approach based on Markov Chain Models is not

suitable for our problem.

The objective of generalizing association rules is to mine multidimensional as-

sociation rules. It integrates the semantic knowledge or the relationship between

items into the rules. In examples of using CV terms as items, the hierarchical infor-

mation can be used to generalize such association rule mining. Generalized associa-

tion rule mining [72, 91, 202] creates an extended transaction set either by replacing

an item with a new item representing a generalized concept, or by aggregating both

the original item and the generalized item. We note that the generalized concept

does not occur in their original transaction set. Their solution is based on simple

counting approach and faces some limitations, i.e., controlling the contribution of

child CV terms and reflecting variance of confidence. [30] proposed to assign a lower

threshold of support for associations in the lower levels of ontology. Furthermore,

in order to reduce the search space by filtering associations containing independent

items, the metric usefulness or interest is suggested by [177]. The authors define R-

interesting as a rule is interesting if and only if it has no predecessor or its adjacent
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interesting predecessor is R-interesting as shown in [212].

2.3.2 Text Mining

Cohen and Hersh [32, 74] summarize text data mining in the biomedical do-

main prior to 2004. The key goal is to come up with novel and interesting hypotheses

typically involving a pair of records such as a drug and a disease, or a gene and a

disease. A variety of approaches have been explored as for example those that focus

on the free-text of MEDLINE records [57, 196], those that exploit the MeSH terms

associated with records [80, 149, 178, 181, 199], those that exploit the full text of

published documents [98], and so on. MeSHmap in [178, 181] explores text mining

from the MeSH annotations in the MEDLINE records. It supports the queries to

compare pairs of drugs or pairs of other medical terms. The links between two

medical entities in the map generated by MeSHmap represent their similarity as

described in the MEDLINE records. Our effort is similar to that of [149, 199] that

exploit interconnections between terms belonging to different vocabularies. In ad-

dition to labeling links with linked terms, our method has the potential to suggest

novel connections through uncommon yet meaningfully paired terms.

Swanson [186] proposed Literature-based Discovery (LBD) techniques that

follow a disease-cure trajectory to guide the search in the space of implicit asso-

ciations between publications. This strategy conduced Swanson to the discovery

of a set of articles which discuss the disease Migraine, and the articles associated

with them containing information about the substance Magnesium. These connec-
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tions supported Swanson’s hypothesis that the association between Migraine and

Magnesium was true, novel, and experimentally and clinically corroborable. Several

others researchers have been working on this area and have identified several un-

known connections, e.g., between fish oil and the Raynaud’s disease [185], estrogen

and Alzheimer’s disease [173], and curcumin longa and retinal diseases [179, 180].

Text extraction and text mining is a mature research area and there have been

many applications focus on the biomedical literature at the NLM. The Indexing

Initiative (II) [7, 138] sets the goal to automate indexing methodologies for the

biomedical literature. The Medical Text Indexer (MTI) [8, 139] extracts MeSH

main headings and subheadings from the titles and abstracts of the biomedical

literature. The system first locates UMLS concepts in text using the MetaMap

indexing program [6, 121], and then restricts the result to the MeSH terms. The

system can be extended to work semi-automatically on the full text [61].

There are a few researches mining ontology terms especially the GO terms in

the biomedical literature. Textpresso [130, 191] is a text mining system to mark up

full text biological publications on Caenorhabditis elegans. The focus is on a single

data resource, which is a collection of biology publications. Textpresso classifies the

publications into multiple categories of ontology terms which partially derive from

GO. It also emphasizes searchable sentences in the full text system. GOPubMed

[42, 68] is a Web based application that applies simple keyword-based techniques to

retrieve GO terms from abstracts in PubMed. The Whatizit [54, 164] Web service

at the EBI is a text processing system that will identify GO and other controlled

vocabulary terms and link the terms to publicly available databases. However, none
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of the work infers any associations among the ontology terms nor does it infer any

relationships among publications.

Relationship extraction is one of the subfields that detects occurrences of a

specific type of relationship between a pair of data records. Most of the projects

were focused on genes and proteins reported in the biological literature. PhenoGO

[114] aimed to provide GO annotations with additional context. It combined an

existing phenotype organizer system with MeSH indexing. It added phenotypic

contextual information to existing associations between gene products and GO terms

as specified in GOA. GOAnnotator [34] provides associations between protein names

and GO terms that co-occur in sentences with regards to the query proteins. It

relates uncurated annotations to text extracted from the literature. In addition, the

approach uses the GO hierarchy to achieve high precision. Recently, [110] proposed a

text mining system to automatically cluster and rank MEDLINE citations following

simple PubMed queries. It grouped the citations retrieved from the query results,

ranked the citations in each cluster, and generated a set of MeSH terms to describe

each cluster. The results of the system includes a collection of publication groups.

The publications in each group are similar in topic.

2.3.3 Link and Graph Mining

One of the major challenges for link data mining is the Web graph. However,

the emphasis has not been on finding associations. General techniques for mining

sequential patterns is in [211]. For example, there is research on mining Web usage
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patterns [22, 23] but the approach based on Markov Chain Models is not suitable

for our problem.

Other challenges for link mining are large ontology graphs, large Resource

Description Framework (RDF) graphs, large Extensible Markup Language (XML)

trees and biological datasets. Link and graph data mining to discover patterns in

large graphs is a well studied and difficult problem. Discovering patterns implies

descriptive and predictive inference tasks based on link structure [66] and on seman-

tics suggested by relevant ontologies. [90] proposed a similarity measure - two data

entries are similar if they are related to similar data entries. This is used to com-

pute similarity of data entries using a random-walk-based algorithm. In [70, 159],

heuristics are used to discover relevant subgraphs within RDF graphs. Relationships

among the metadata describing nodes is used to discover interesting relationships

among entities. [214] proposes strategies to efficiently search sub-graphs that are

similar to a given query graph, and combines different similarity measures to speed

up the process of graph matching. SAGA [198] extends this research to biological

graphs such as pathway graphs with their special properties such as node mismatch

and node gaps and non linear paths. [81, 100] describe efficient algorithms to dis-

cover subgraphs (patterns) that occur in graphs (networks) and to aggregate them.

The study of graph properties has an important place in in silico bioinformatics

research as seen for example in [107]. Finally, [89] combined sequence similarity and

graph theory to predict protein functions. The authors selected a set of proteins

from topologically conserved and connected subgraphs in the protein-protein inter-

action networks, and then identified GO annotations in the scientific literature. All
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these techniques are based primarily on the structure of the graph and the use some

semantic knowledge or metadata. However, they are not directly applicable to our

challenge.

2.4 Statistical Methods to Find Patterns in Bioinformatics

Bioinformatics researchers have a long history of applying statistical data anal-

ysis methods for hypothesis testing. Of particular interest to us is the use of the

hypergeometric (HG) distribution, which can be used for hypothesis testing, e.g., to

test the over-expression of some genes. 2.4.1 introduces the HG distribution. We are

also interested in linkage analysis from the genetic linkage study. Linkage analysis

as discussed in Section 2.4.2 has assisted genetics researchers in the past fifty years.

2.4.1 Hypothesis Test and Hypergeometric Distribution

Hypothesis testing is a form of statistical inference that uses data from a

sample to draw conclusions about a parameter or a probability distribution. Ex-

periments are carried out to favor or reject the hypothesis. In our research, we

test the significance based on the hypergeometric (HG) distribution [175, 176]. HG

distribution is a discrete probability distribution that describes the number of suc-

cesses in a sequence of draws from a finite population without replacement. This

distribution has been applied to a number of bioinformatics data mining tasks, for

example determining the significance of GO terms annotating a gene record or the

significance of descriptive information for some gene [27, 28].
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A P -value provides a convenient basis for drawing conclusions in hypothesis

tests. The P -value is a measure of how likely the sample results are. If the P -value

is less than a threshold, the null hypothesis can be rejected. The P -value is often

called the observed level of significance for the test. It also gives a quantification

of the level of one’s surprise at finding over-representation for a particular item

in a given sample of smaller set drawn from a larger population as illustrated in

GeneMerge [27, 28]. GeneMerge first computes the significance of occurrences of

particular GO terms for a set of genes compared to a background set of genes. It

then compares the observed frequency to the estimated P -value. If the observed

frequency is higher than the estimation, the GO term is over-represented for the

selected set of genes. GeneMerge returns a range of functional and genomic data for

a given set of study genes and provides statistical rank scores for over-representation

of particular functions or categories in the dataset. It can perform analyses on a

wide variety of genomic data quickly and easily and facilitates both data mining

and hypothesis testing.

2.4.2 Genetic Linkage and Linkage Analysis

Genetic linkage occurs when particular alleles for genes are inherited jointly.

Alleles for genes on the same chromosome tend to segregate together during meiosis,

and are thus genetically linked. Alleles for genes on different chromosomes are

usually not linked, due to independent assortment of chromosomes during meiosis.

Linkage analysis is general-purpose for calculating the likelihood of a pedigree, given
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certain data and assumptions. Linkage analysis [125] is commonly used to map an

unknown gene of interest to a chromosomal region. Besides, linkage analysis is used

to estimate the genetic risks on carrying a disease gene to the next generation [183].

Morton [126, 127, 128] developed the logarithm of the odds (LOD) to the

base 10 or Z score as a statistical test for linkage analysis in human populations.

Computerized LOD score analysis is a simple way to determine the linkage between

alleles for genes, between an allele and a marker, or between two markers. LOD

score helps on discovering the relationship between two phenotypes and locating

candidate genes for genetic diseases. In our research, we adopt it to discover the

association between two CV terms annotating records in two data sources.
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Chapter 3

Methodology to Generate LSLink Datasets

The main goal in the Life Science Link (LSLink) research is to discover mean-

ingful knowledge. Given a Web of life science data resources, knowledge is discovered

from the annotated data records, the links between data records, and from the in-

tegration of the annotations and links. We first describe the methodology to create

LSLink datasets in Section 3.1. Section 3.2 introduces a background dataset to be

used in this research. Based on the user query, we create a corresponding user query

dataset as discussed in the Sections 3.3 and 3.4. A user query dataset is a subset of

the background dataset. We then provide a comprehensive example on extending

an annotated LSLink dataset using the genetic markers in human [102] in Section

3.5.

3.1 Methodology to Create LSLink Datasets

Consider a simplified Web of three publicly accessible resources Entrez Gene

[116, 46], OMIM [145, 119] and PubMed [156, 213] in Figure 3.1. Data records

in each resource are annotated with terms from multiple CVs. The links between

data records in any two resources form a relationship between the two resources,

represented by a (virtual) link. Thus, a record in OMIM, annotated with SNOMED

CT terms [189, 210] has multiple links to gene records in Entrez Gene, annotated
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Figure 3.1: Web of Entrez Gene, OMIM and PubMed Resources

with GO terms [9, 17, 63, 193]; gene records further have links to multiple records

in PubMed annotated with MeSH terms [120, 169].

Figure 3.2 illustrates an example Web of GO, Entrez Gene, PubMed and MeSH

resources. Consider that Entrez Gene record e is annotated with two GO terms g1

and g2, and is linked to two PubMed publications p1 and p2. PubMed publication p1

is annotated with MeSH term m1, and publication p2 is annotated with MeSH term

m2. Consider that publication p1 discusses a biological process or molecular function

g1 for gene e, which is related to medical phenomena m1. Similarly, consider that

another publication p2 discusses some other biological process or molecular function

for gene e, which is related to a different medical phenomena m2. By considering

these two relationships together, scientists may discover interesting and unknown

yet associations between g1 and m2, and between g2 and m1.

We identify a background dataset representing a broad and representative sam-

ple of data records, links and annotations. We label this a background LSLink
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Figure 3.2: Example Web of GO, Entrez Gene, PubMed and MeSH Resources

dataset and it is associated with a specific experiment protocol to retrieve data

records, retrieve annotations and follow links. A background LSLink dataset is

composed of a collection of termlinks (to be defined). Each termlink associates a

pair of CV terms.

Figure 3.3 presents the LSLink methodology. We illustrate using the task of

generating termlink instances between Entrez Gene and PubMed. The first step

is to specify a protocol to navigate the records in the data resources and the links

between the records. In this example, the background dataset includes all records

in Entrez Gene that are human genes and annotated with GO terms, and all the

records that they reach in PubMed, following four types of links. The next step

is to specify the CV terms that must be extracted. In addition to identifying the

sets of terms, one can also identify semantic concepts that are to be used to create

the background dataset; an example is presented in Section 3.2. The next step is

to generate the termlink instances for analyzing the semantics of the link and the

associations of CV terms.

Figure 3.4 illustrates three example links between two Entrez Gene (e1 and

e2) and two PubMed (p1 and p2) records. The links are between records e1 and p1,

e2 and p1, and e2 and p2. The terms g1, g2, g3 and m1, m2, m3, m4 annotate these
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Figure 3.3: Methodology to generate termlink instances between Entrez Gene (an-
notated with GO terms) and PubMed (annotated with MeSH terms)

records. Each record is associated with two terms. If we consider the link between

e1 and p1, the two CV terms g1 and g2 annotating e1, and the two CV terms m1

and m2 annotating p1, then we can generate four termlinks. An example termlink is

the following: (g1,m3, e2, p2) = (DNA repair, Mitosis, 675, 10749118). These

three links from Figure 3.4 generate twelve termlinks in Table 3.1. Note that both

linked data records must be annotated in order to generate a termlink.
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Figure 3.4: Example links between Entrez Gene and PubMed

3.2 Background Dataset for Human Genes and Genetic Disorders

Consider a background LSLink dataset that includes all termlinks generated

from all the active human gene records in Entrez Gene with GO annotations that

have links to publications in PubMed with MeSH annotations as follows:

1. Retrieve all active human gene records in Entrez Gene and extract their GO

annotations.

2. Follow all links from these records to PubMed records. There are four types

of links. We do not use this knowledge in this research, but will distinguish

them in future work.

(a) Gene References Into Function (GeneRIF) [64] provided by the NLM.

These links are produced through user submissions in an Entrez Gene
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GO term (g) MeSH term (m) Entrez PMID (p)
GeneID (e)

DNA repair BRCA1 Protein 672 12242698

DNA repair BRCA2 Protein 672 12242698

positive regulation BRCA1 Protein 672 12242698

of DNA repair

positive regulation BRCA2 Protein 672 12242698

of DNA repair

DNA repair BRCA1 Protein 675 12242698

DNA repair BRCA2 Protein 675 12242698

mitotic checkpoint BRCA1 Protein 675 12242698

mitotic checkpoint BRCA2 Protein 675 12242698

DNA repair Mitosis 675 10749118

DNA repair Neoplasm Proteins 675 10749118

mitotic checkpoint Mitosis 675 10749118

mitotic checkpoint Neoplasm Proteins 675 10749118

Table 3.1: Twelve termlinks from the three links in Figure 3.4

record or through manual curation from the published literature by staff

of the NLM.

(b) Human Immunodeficiency Virus Type 1 (HIV-1) links provided by the

National Institute of Allergy and Infectious Diseases (NIAID). These in-

teractions are reported in the Human Protein Interaction Database, and

there are links to PubMed publications that support the described inter-

action.

(c) General Interactions submitted by scientists with links to PubMed pub-

lications that support the described interaction.

(d) GO annotations provided by GOA. These links are generated by a com-
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bination of electronic mapping and manual curation.

3. Extract all MeSH annotations for the PubMed records reached in the prior

step.

The statistics for this background dataset as of September 6th, 2007 is re-

ported in Table 3.2. There are 36,457 active records for human in Entrez Gene, of

which 16,521 gene records have GO annotations. The average number of GO anno-

tations per record is 6.95. There are 6,186 distinct GO terms extracted from these

human gene records. Among 36,457 human genes, there are 25,655 records which

have links to totally 160,728 PubMed records. The intersection of the gene records

which have GO annotations and links to PubMed contains 16,359 genes. There

are 338,026 links which link to 160,728 distinct PubMed records. Among these

PubMed records, MeSH annotations are extracted. The number of MeSH terms,

descriptor/qualifier(s), which are identified as major topic headings is 11,617. The

number of termlink instances generated is more than 14 millions, and the number of

distinct association pairs of GO terms and MeSH descriptor is around 1.9 million.

Based on feedback from our expert users we also made the following adjust-

ments to this background dataset:

• We limited the dataset to MeSH terms that were identified as major topic

headings in the PubMed entries. Table 3.3 reports on the MeSH terms that

were selected in this step from an example PubMed record.

• We identified the Semantic Type of the MeSH terms using a resource [204]

that provided a (possibly many-to-many) mapping between MeSH terms and
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Number of active human gene records in Entrez Gene 36,457

Number of active human gene records which have GO annotations 16,521

Number of active human gene records which have links 25,655
to PubMed records

Number of active human gene records which have GO annotations 16,359
and links to PubMed records

Number of GO annotations extracted 114,799

Number of distinct GO terms extracted 6,186

Number of links from active human gene records 338,026
to PubMed records

Number of links from active human gene records 315,880
with GO annotations to PubMed records

Number of distinct PubMed records which are reached 160,728
via four link types 160,728

Number of distinct MeSH descriptors extracted 18,553

Number of distinct MeSH qualifiers extracted 84

Number of distinct MeSH terms that are major topic headings 11,617

Number of termlink instances generated 14,511,210

Number of distinct association pairs of GO and MeSH terms 1,924,661

Table 3.2: Background dataset of human genes and publication built on September
6th, 2007

Semantic Types. Semantic Types are concepts to categorize MeSH terms. Our

users then filtered the dataset using the Semantic Types. Table 3.4 reports

the Semantic Types that were used in this experiment.

3.3 User Query Dataset

We support multiple user scenarios for querying the background dataset. The

input can be a simple set of gene symbols, record identifiers or medical terms. The
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MeSH terms were identified as major topic MeSH terms were filtered out

Mitosis COS Cells

Neoplasm Proteins Gene Expression Regulation

Protein Kinases Immunohistochemistry

Transcription Factors RNA, Messenger

. . .

Table 3.3: MeSH terms that were selected or filtered out in the PubMed record with
PMID: 10749118

Semantic Types were selected Semantic Types were filtered out

Amino Acid, Peptide, or Protein Biomedical Occupation or Discipline

Biologically Active Substance Body Part, Organ, or Organ Component

Enzyme Educational Activity

Genetic Function Injury or Poisoning

Molecular Function Laboratory Procedure

Nucleic Acid, Nucleoside, or Nucleotide Social Behavior

. . . . . .

Table 3.4: Semantic types that were selected or filtered out in the dataset on the
study of human genes and genetic disorders

scenarios include the following:

1. To find highly related articles associated with a human gene or genetic disor-

der, we retrieve gene records that are associated with a human gene symbol

or a set of human gene symbols, and follow all links to PubMed publications

(in the background dataset).

2. A scientist wants to know all human genes associated with some set of articles.

We retrieve these publications in PubMed and follow all links to human gene

records (in the background dataset).

3. A scientist is interested in specific medical terms in MeSH and would like
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to retrieve highly related human genes. We retrieve publications in PubMed

associated with the MeSH terms and follow all links to human gene records

(in the background dataset).

Given a user query, we first retrieve the dataset corresponding to the query.

Table 3.5 reports on the user query datasets for seventeen human gene symbols. The

second column reports on the number of GO terms annotating the gene records. The

third column reports on the number of PubMed records that are directly linked from

the corresponding gene record. The fourth column reports on the number of distinct

MeSH terms as major topics extracted from the linked PubMed records. The fifth

column reports on the number of termlinks generated for the corresponding human

gene record as shown in the first column. The last column reports on the distinct

number of association pairs of GO and MeSH terms in the result termlinks.

3.4 Complex User Query Dataset

There are hundreds of articles discussing the BRCA1/BRCA2-containing com-

plex, and we used these publications to identify a complex user query dataset early

onset breast cancer in human for our experiments. Table 3.6 reports on this

user query dataset. We consider two human gene records (BRCA1 and BRCA2)

that are annotated with 50 distinct GO terms. 628 distinct PubMed records were

reached from these two gene records. They were annotated with 463 distinct MeSH

terms that were identified as major topic headings. 104,546 termlink instances were

generated of which there were 18,638 distinct pairs of associations. The maximum
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Human Number of Number of Number of distinct Number Number of
gene GO terms distinct MeSH terms w/ of distinct

symbol in the directly linked major topic in the termlinks pair of GO
record PubMed records PubMed records and MeSH

APOE 27 475 501 49,005 13,527

ARAP 18 9 24 648 432

BRCA1 38 513 421 88,578 15,998

BRCA2 16 211 206 15,968 3,296

CFTR 17 383 379 24,344 6,443

CTNNB1 60 409 474 128,940 28,440

DMD 14 179 181 9,828 2,534

EGFR 37 776 804 129,685 29,748

F5 6 189 226 4,458 1,356

F8 8 196 178 5,208 1,424

FGD4 19 9 20 589 380

HLA-DRB1 6 296 315 6,438 1,890

IFNG 25 332 608 40,425 15,200

PSEN1 22 290 297 25,256 6,534

PSEN2 22 98 129 8,272 2,838

TNF 33 1,010 1,266 160,380 41,778

TP53 44 1,888 1,364 393,624 60,016

Table 3.5: Seventeen user query datasets on individual human gene record as of
September 6th, 2007

number of appearance of an association is (protein binding, BRCA1 Protein)

which was extracted from 311 termlinks. After filtering using Semantic Types, we

collected 81,248 termlink instances of which there were 12,296 distinct pairs of as-

sociations.

For the user query on human genes and genetic disorders, we first find the

corresponding OMIM records and then follow the links to Entrez Gene to retrieve

the set of human gene records. The first column in the Table 3.7 reports on the title

of the OMIM record. The second column reports on the number of human gene

records reached by the OMIM record. The number of distinct GO terms extracted

from the gene records is reported in the third column. The fourth column reports

48



Human Number of Number of Number of distinct Number Number of
gene GO terms distinct MeSH terms w/ of distinct

symbol in the directly linked major topic in the termlinks pair of GO
record PubMed records PubMed records and MeSH

BRCA1 38 513 421 88,578 15,998

BRCA2 16 211 206 15,968 3,296

union set 50 628 463 104,546 18,638

Table 3.6: User query dataset for early onset breast cancer in human as of
September 6th, 2007

Human Number Number of Number of Number of Number Number
gene and of distinct distinct distinct of of
genetic gene GO directly MeSH termlinks distinct
disorder records terms linked terms pair

in the PubMed in the GO and
records records records MeSH

BREAST CANCER 13 147 3,237 2,463 1,232,086 124,342

COLORECTAL CANCER 14 135 2,827 2,594 1,189,379 123,343

PROSTATE CANCER 13 117 1,518 1,624 339,491 57,735

TUMOR PROTEIN P53 1 44 1,888 1,364 986,612 83,116

Table 3.7: Four user query datasets for human genes and genetic disorders as of
September 6th, 2007

on the number of distinct PubMed records that are directly linked from the gene

records in the prior step. To be different from the user query datasets as shown in

the Tables 3.5 and 3.6, we consider not only the MeSH terms with major topics but

all MeSH extracted from the PubMed records. The last two columns report on the

number of termlinks and the number of distinct association pairs of GO and MeSH

terms generated from the OMIM record as shown in the first column.

3.5 An Experimental Protocol to Extend an Annotated LSLink Dataset

We describe an experiment protocol to extend an annotated LSLink dataset

to enhance the semantics of links between PubMed publications and markers in the

human genome [102]. We extend the life sciences Web of Figure 3.1 and include a
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Figure 3.5: Web of Entrez Gene, OMIM, Human Genome and PubMed Resources

new resource, Human Genome Map, and link it from the Entrez Gene and OMIM

as shown in the Figure 3.5. This extension incorporates additional knowledge on

common genetic diseases. However, there is no direct link between the Human

Genome Map and PubMed. This section discusses experiment protocol to create

annotated links from PubMed publications to the Human Genome Map.

3.5.1 Regularly Formed Markers

A marker is a generic name for a short DNA segment that is cloned or PCR-

generated [170, 171]. In our study, marker will be used to identify a sequence tagged

site (STS) [168] based genomic element. It occurs uniquely in the genome and its

exact location and order of bases are known. Because each STS marker is unique,

it is used for chromosome placement of mapping and sequencing data from many

different laboratories. STS markers serve as landmarks on the physical map of the

human genome.

The regularly formed set of (STS) markers are named according to a specific
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Figure 3.6: Marker D15S659 with identifier UniSTS: 58271

convention as follows: The format is DchromosomeSinteger[character], where the

first variable chromosome is the chromosome identifier; the integer tells either ab-

solute or relative position of that marker, and the character at the end is optional.

For example, D15S659 and D15S634E are both valid regularly formed marker names

on the human chromosome 15. The Human Genome Project [83] chose the mark-

ers to be approximately 100 Kb apart to complete a physical map of the human

genome. The total length of the human genome is approximately 3 Gb, and are

approximately 30,000 regularly formed markers.

Suppose we consider the regularly formed marker D15S659; the NCBI UniSTS

[208] provides some alternate names and synonyms for this regularly formed marker

including GATA63A03 and SHGC-17599 shown in the Also known as: field of Figure

3.6.
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3.5.2 Marker Datasets

There are three data sources in NCBI that contain either regularly formed

markers or alternative marker names or synonyms. They are as follows:

1. STS Markers: The NCBI UniSTS [208, 213] source for human is available at

ftp.ncbi.nih.gov/repository/UniSTS/UniSTS_human.sts. The first field

of each record is the UniSTS identifier UID, and we collect the marker names

from the Name field of each record.

2. GBK Markers: The NCBI GenBank [14, 65] source provides individual files

for each human chromosome; it is available at ftp.ncbi.nih.gov/genomes/

H_sapiens/CHR_chromosome/hs_ref_chrchromosome.gbk.gz. The decom-

pressed file is structured by groups of contigs. A contig is a set of overlapping

DNA segments derived from a single genetic source. Each contig has multiple

features. We collect the marker in the standard name field of the STS feature.

3. Map Markers: A compressed file contains the text format of the NCBI Map

Viewer [134, 213] source, ftp.ncbi.nih.gov/genomes/H_sapiens/mapview/

sts.q.gz. We collect the marker names from the feature name field.

Table 3.8 provides the cardinalities for the three sets of markers and their

union. The second column reports on the number of markers (including alternate

names and synonyms) and the third column reports on the number of markers in

the set of regularly formed markers. While there are over 303,000 unique marker

names, only 29,342 marker names are regularly formed.
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Data source Number of markers Number of regularly formed markers

NCBI UniSTS 298,218 27,679

NCBI GenBank 87,790 18,922

NCBI Map Viewer 302,272 28,368

(Unique) Union Set 303,562 29,342

Table 3.8: Number of unique marker names extracted from three NCBI data sources
as of March 18th, 2005

3.5.3 Marker Positions

The marker position depends on the genomic sequence from the assembly

version of our selection. Different assemblies of the human genome will generate

different marker positions, because the sequence of the physical map is different.

One of the most popular genome versions is the NCBI human genome build.

The position of a marker on the genome is provided by two NCBI data sources.

1. The NCBI UniSTS database can be displayed in the HTML format by querying

www.ncbi.nih.gov/genome/sts/sts.cgi?uid=uid. The position is listed in

the Mapping Information section. While alternative representations are of-

ten available, we choose the base pair representation from the NCBI Sequence

Map, which corresponds to positions on the NCBI human genome build. Con-

sider the regularly formed marker D15S659 shown in Figure 3.6; the field

Sequence Map provides the interval, 44,161,300-44,161,483 (bp) on Chr

15, as its position on the human genome of NCBI Build 35.1 released on

June 4, 2004. We note this position is not unique, for example, the posi-

tion, 40,981,389-40,981,584 (bp), is obtained by the Celera assembly of

the human genome generated in 2001 [88]. In future work, we will resolve
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Figure 3.7: Marker D15S659 shown in the Region Displayed section between
44,161,300-44,162,700 bp on the human chromosome 15

such inconsistencies.

2. The NCBI Map Viewer provides the position in two formats: HTML and

plain text. Figure 3.7 shows the position of D15S659 on the human chro-

mosome 15. We can also obtain such positions in the plain text format by

querying: www.ncbi.nih.gov/mapview/map_downld.cgi?taxid=9606&map=

sts&chr=chromosome[|Celera]&from=bp&to=bp. The first variable is the

chromosome identifier and the other two variables specify a query region. The

default representation is the NCBI human genome build. The option |Celera

is to choose the Celera assembly.

An important goal in defining a marker is to set a unique position on the

genomic sequence. However, different sequencing and assembly techniques produce

different genomic sequences. The sequence can be changed from an older build of

genome to a newer build version. To create mappings among multiple positions
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of the same marker is important. For example, in Figure 3.6, the steps to map

from 40,981,389-40,981,584 (bp) in the Celera assembly of the human genome

to 44,161,300-44,161,483 (bp) in the NCBI human genome Build 35.1 is not

trivial. One approach is to align two versions of genomic sequences, and create a

mapping of each base pair. Such pairwise alignment only needs to be executed once

when we receive a new version of the genomic sequence.

3.5.4 Choice of a Controlled Vocabulary

The choice of a CV to annotate the links between PubMed publications and

the markers in the Human Genome Map (Figure 3.5) is critical. We must choose an

ontology or CV corresponding to the semantics of the particular biological phenom-

ena that are captured by these links. An examination of existing ontologies, e.g.

GO and MeSH, revealed that they were not suitable to capture the semantics of

links between PubMed publications and markers in the human genome. We created

Lash CV for this task [102].

The Lash CV will focus on relationships associated with genetic and pheno-

typic variations, since this is the focus of a majority of the publications (PubMed

abstracts) containing markers.

Figure 3.8 presents the Lash Controlled Vocabulary (Lash CV) [102] of terms

related to genetics phenomena. The Lash terms are categorized into five groups.

The first group relates the study of changes in gene function that occur without a

change in the sequence of the genome. In general, the term epigenetics refers to
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1. EPIGENETIC ALTERATION

(a) methylation
i. hypermethylation

ii. hypomethylation

(b) histone moiety alteration
i. acetylation

ii. deacetylation

2. GENOMIC SEGMENT LOSS (synonym: loss, deletion)

(a) genomic instability
i. microsatellite instability

ii. allelic imbalance (synonym: allelic loss, allelic reduction)
A. loss of heterozygosity (synonym: LOH)

B. hemizygosity

(b) heterozygosity
i. microdeletion

(c) homozygosity

(d) haploinsufficiency (synonym: haplo-insufficiency)

3. GENOMIC SEGMENT GAIN (synonym: gain, amplification)

4. GENOMIC SEQUENCE ALTERATION

(a) mutation

(b) polymorphism
i. microsatellite

ii. restriction fragment length polymorphism (synonym: RFLP)

iii. single nucleotide polymorphism (synonym: SNP, SNiP)

(c) translocation

5. PHENOTYPIC ASSOCIATION (synonym: phenotype, trait)

(a) locus association (synonym: locus, loci)
i. linkage

ii. quantitative trait locus (synonym: QTL)

(b) allelic association (synonym: allele)
i. linkage disequilibrium

Figure 3.8: Hierarchical CV of genetics terms (Lash Controlled Vocabulary)

influences on gene expression other than those produced by direct changes in the

nucleotides of the genome. The second to the fourth groups relate to the changes in

the genomic sequence. These three groups cover the concepts of inserting, deleting

and substituting an individual or a segment of nucleic acids in the sequences. The

fifth group relates to phenotypes and population genetics.

Within each group, there are up to three levels, and relationships among
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terms are captured in the hierarchy. For example, both hypermethylation and

hypomethylation are related to the addition of methyl groups to specific residues

in the genomic sequence, which is defined by their parent term methylation. The

term hemizygosity locates under allelic imbalance of genomic instability

in group GENOMIC SEGMENT LOSS. We say that the term hemizygosity is a kind of

allelic imbalance. Because the relationships among different levels can be inte-

grated, we can also say that term hemizygosity is a kind of genomic instability.

Furthermore, the term in each level can have synonyms, e.g., allelic imbalance

has the same meaning as allelic loss and allelic reduction. We expect that

in the future, we may need to expand or modify this hierarchy to capture more

comprehensive knowledge of genetic disorders and haplotypic analysis.

3.5.5 Machine Assisted LSLink Labeling

We briefly describe the process to generate labeled links between PubMed

abstracts and regularly formed markers in the human genome. First, we find all

PubMed abstracts containing marker names. Second, we extract single markers and

marker intervals from the PubMed abstract. A marker interval represents a region

on the genomic sequence having two markers as its boundaries. Finally, we extract

terms from the Lash Controlled Vocabulary associated with a marker or marker

interval and create LSLink.

An example of a PubMed record with regularly formed markers linking to

the human genome is PubMed record PMID: 11090339. This record corresponds
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Figure 3.9: Abstract of the PubMed record with PMID: 11090339

to research published by Lichter-Konecki and co-workers [109], and contains

semantic information about the phenomenon under study and the markers to which

this phenomenon was linked. Figure 3.9 gives the abstract of that record. This study

uses a family pedigree to elucidate a phenotypic linkage from a particular genetic

disease to two markers. Phenotype is the physical expression of the information

encoded in the genotype. The disease discussed in the abstract is the Autosomal

Dominant Renal Fanconi Syndrome, and two markers are D15S182 and D15S537

on human chromosome 15. They associate these markers with LOD (stands for

logarithm of the odds to the base 10, which indicates how two gene loci are close to

each other on the chromosome) scores of 4.44 and 4.68, respectively. We note that

this record includes several markers in addition to the two related to linkage.

We create LSLink instances from record PMID: 11090339 to the three mark-

ers shown in Table 3.9. All three markers are annotated with the Lash CV term
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PMID Lash CV term Marker name (LOD score)

11090339 linkage D15S659

11090339 linkage D15S182 (4.44)

11090339 linkage D15S537 (4.68)

Table 3.9: LSLink instances extracted and generated from the PubMed record with
PMID: 11090339

Distinct Distinct Number of generated LSLink
marker names link labels instances before validation

Minimum 1 1 1

Maximum 20 9 55

Average 2.20 1.94 3.86

Table 3.10: Statistics per record from 7,038 PubMed abstracts

linkage.

The details of our experiment protocol and machine assisted link labeling are

provided in [102]. As of March 18th, 2005, there were 9,574 PubMed abstracts

containing regularly formed marker names. The machine assisted discovery tool

processed these abstracts, and found 7,038 PubMed abstracts containing marker

names and semantic terms. We processed 57,782 sentences from these abstracts in

7,953 seconds on a SunBlade 1K with 1GB main memory running Sun Solaris op-

erating system. Table 3.10 reports on the minimum, the maximum and the average

numbers of distinct marker names, link labels and LSLink instances extracted from

7,038 PubMed abstracts. Currently, we have generated 27,168 LSLink instances

from these 7,038 PubMed abstracts using the data set of 29,342 regularly formed

marker names in Table 3.8. However, only 100 PubMed abstracts were validated by

an expert.
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Regularly formed Regularly formed
single markers marker intervals

(90%) (10%)

LOD Score(s) Found 19% 3%

LOD Score(s) Not Found 71% 7%

Table 3.11: Presence of regularly formed markers and LOD scores in 100 PubMed
abstracts in Group 5: PHENOTYPIC ASSOCIATION

We report on the regularly formed markers found in 100 PubMed abstracts

that are associated with the link label PHENOTYPIC ASSOCIATION in Group 5. Ta-

ble 3.11 reports on the number of regularly formed marker names and the LOD

scores (when they are found in the same sentence). The second column reports on

the number of regularly formed single markers, and the third column reports on

the regularly formed marker intervals. There are 488 markers in these abstracts.

Close to 90% are regularly formed single markers, and 19% of these markers had

LOD scores. 10% are regularly formed marker intervals, and 3% had LOD scores.

Altogether, approximately 22% of the single and marker intervals had LOD scores.

We compared the links generated by a human expert with the result generated

by our machine assisted discovery tool. We report on the precision and the recall of

the machine generated result compared to the human expert result in Table 3.12. In

order not to give double penalties on counting the misidentified markers, we count

each misidentified marker interval with two errors and each pair of misidentified

single markers with single error. For example, 14 marker intervals were misidentified

as 28 single markers (which were counted as 14 errors), and 10 single markers were

misidentified as 5 marker intervals (which were counted as 10 errors. All LOD
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Regularly Regularly All

LOD scoresformed formed regularly
single marker formed

markers intervals markers

Machine Generation 439 49 488 108

Human Correction 421 58 479 60

Correct Generation 411 44 455 60

Precision 93.6% 89.8% 93.2% 55.5%

Recall 97.6% 75.9% 95.0% 100%

Table 3.12: Performance compared to human expert result in 100 PubMed abstracts
in Group 5: PHENOTYPIC ASSOCIATION

scores were captured (100% recall), but the precision was low, for example, the tool

captured 48 floating point numbers that are not LOD scores.

3.5.6 Integration to the Genome Browser

There have been several browsers implemented to visualize the features and

components on the genome. The NCBI Map Viewer and the UCSC Genome Browser

[77, 203] are both widely used. We can manually display the links and the semantics

of the links from the PubMed to the human genome as shown in the Figure 3.10.

There are four PubMed publications on the left side, and there are six regularly

formed markers highlighted using the image generated by the NCBI Map Viewer

on the right side. In the middle are five terms from the Lash CV. The links from

PubMed publications to the markers on the human genome are in the dashed arrows.

The annotations of the link labels connect each dashed arrow with one or more Lash

CV terms using dotted lines with joint circles.

We chose the UCSC Genome Browser on Human Genome to visualize our
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Figure 3.10: A manually generated display on PubMed, Map Viewer, links from
PubMed to Map Viewer, and Lash CV annotations

results, because it offers an option to add custom tracks to the standard tracks.

We briefly illustrate an interface for users to browse LSLink resources to discover

new knowledge. Figure 3.11 shows a visualization of labeled LSLink instances from

PubMed publications to single STS markers and STS marker intervals. Recall that

these labeled markers were illustrated in Figure 3.10. We extract the locations of

various genomic components (STS markers, SNPs and genes) from the NCBI Map

Viewer map files as described in Section sub:marker-positions. We use NCBI human

genome Build 36.2 since it is used in the UCSC Human Genome Browser Gateway

March 2006 Assembly. As shown in Figure 3.11, we create one custom track on

the Human Genome Browser. Each bar in the custom track shows the Lash CV

term with a PMID. A vertical bar represents a single STS marker, and an STS

marker interval is presented as a solid horizontal bar. When clicking on the bar, the
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Figure 3.11: Browsing labeled LSLink instances at the UCSC Genome Browser

browser will display the annotated PubMed record, in whose abstract contains the

STS markers and the Lash CV term.
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Chapter 4

Metrics to Identify Meaningful Associations

Our research objective is to identify meaningful associations between pairs of

CV terms that are (statistically) significant and also unknown in the literature. We

present our notation and variables to describe the life sciences data resources in

Section 4.1. We also describe the definition of background dataset and user query

dataset, which is an interesting subset of the background dataset based on scientists’

interest. We define two groups of metrics to be used in our research and evaluation.

Metrics based on association rule mining is discussed in Section 4.2. We develop a

variation of support and confidence scores, and discuss some alternatives on choosing

appropriate metrics. The use of the hypergeometric probability distribution for

hypothesis testing was presented in Section 4.3, and we will also use this metric as a

second metric. We calculate P -value and test if an association is over-represented.

We will use real datasets (detailed in Section 4.4) to evaluate both sets of

metrics. We define subsets of associations in a user query dataset regarding the

appearance in between background and the user query datasets. The statistics and

distribution of scores generated by two metrics is reported in Section 4.5. The

distribution shows P -values are increasing roughly as confidence scores decrease.

Furthermore, using the Top-K results of both metrics, we will compare both the

overlap (agreement) as well as the distances (disagreement) between the two rank-
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ings. The overlap analysis of confidence scores and P -values in Section 4.6 reports

on the agreement between two metrics. The result shows that larger than 80% of as-

sociations in the Top-50% overlap. Section 4.7 reports on the disagreement between

confidence scores and P -values by calculating the distance between two metrics.

4.1 Notation and Definition

An upper case variable represents a data source, and the corresponding lower

case variable represents a data record in that source. The subscripts following the

lower case variable are used if there are multiple data records. The notation and

definition that we use are as follows:

• Data sources:

– Entrez Gene (E); #(E) is the total number of records in E

– OMIM (O); #(O) is the total number of records in O

– PubMed (P ); #(P ) is the total number of records in P

• Data records:

– Entrez Gene record e in E; ei where i = {1, 2, . . . ,#(E)}; for example

e2 = GeneID: 675 with official symbol BRCA2

– OMIM record o in O; oj where j = {1, 2, . . . ,#(O)}; for example o1 =

MIM Number: 114480 with title BREAST CANCER

– PubMed record p in P ; pk where k = {1, 2, . . . ,#(P )}; for example p2 =
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PMID: 10749118 with title Potential role of BRCA2 in a mitotic

checkpoint after phosphorylation by hBUBR1.

• Links:

– (e, p) denotes a link in between Entrez Gene record e in E and PubMed

record p in P ; for example (e2, p2) = (675, 10749118)

– #(E,P ) is the total number of links between E and P

• Controlled vocabularies:

– Gene Ontology, GO (G); #(G) is the total number of records in G

– Medical Subject Headings, MeSH (M); #(M) is the total number of

records in M

• Annotations:

– GO term g in G annotates records in E; gu where u = {1, 2, . . . ,#(G)};

for example g1 = DNA repair with identifier GO:0006281

– MeSH term m in M annotates records in P ; mw where w = {1, 2, . . . ,

#(M)}; for example m3 = Mitosis with Tree Number G05.105.220.781

• Associations between CV terms:

– (g,m) denotes an association pair of GO term g and MeSH term m; for

example (g1,m3) = (DNA repair, Mitosis)

– #(G,M) is the total number of association pairs of GO G and MeSH M

terms
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4.1.1 Background Dataset

A termlink is a four-tuple (CV term, CV term, data source, data source).

The background dataset is a collection of termlinks that represent the background

knowledge as introduced in Chapter 3. Background datasets and cardinalities are

defined as follows:

• (G,M,E, P ) denotes the background dataset of all gene records from E anno-

tated with GO terms from G with links to publication records in P annotated

with MeSH terms from M ; termlinks are derived from this dataset

• (g,m,E, P ) denotes a set of termlink instances between gene records in E

annotated with GO term g linked to publication records in P annotated with

MeSH term m

• (g,m, e, p) denotes a termlink instance between the gene record e annotated

with GO term g with link to the publication record p annotated with MeSH

term m; for example (g1,m3, e2, p2) = (DNA repair, Mitosis, 675,

10749118)

• #l(G,M,E, P ) represents the cardinality of links between E and P in the

background dataset (G,M,E, P )

• #t(G,M,E, P ) represents the cardinality of termlink instances in the back-

ground dataset (G,M,E, P )

• #t(G,M, e, p) represents the cardinality of termlink instances generated from
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the link between the gene record e and the publication record p annotated

with terms in G and M respectively

• #l(g∧m,E, P ) represents the cardinality of links in between E and P in which

data records are annotated with the pair of terms g and m in the background

dataset (G,M,E, P )

• #t(g∧m,E, P ) represents the cardinality of termlink instances containing the

pair of terms g and m in the background dataset (G,M,E, P )

• #l(g ∨ m,E, P ) represents the cardinality of links in between E and P in

which data records are annotated with either GO term g or MeSH term m in

the background dataset (G,M,E, P )

• #t(g ∨ m,E, P ) represents the cardinality of termlink instances containing

either GO term g or MeSH term m in the background dataset (G,M,E, P )

4.1.2 User Query Dataset

As described in Chapter 3, we build a user query dataset based on feedback

from scientists. A user query will select E ′ and P ′ to be subsets of E and P

respectively. The notation is as follows:

• (G,M,E ′, P ′) denotes a user query dataset which is a subset of the corre-

sponding background dataset (G,M,E, P )

• (g,m,E ′, P ′) denotes a set of termlink instances containing the pair of GO

term g and MeSH term m in the user query dataset (G,M,E ′, P ′)
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• #l(G,M,E ′, P ′) represents the cardinality of links in the user query dataset

(G,M,E ′, P ′)

• #t(G,M,E ′, P ′) represents the cardinality of termlink instances in the user

query dataset (G,M,E ′, P ′)

• #l(g ∧ m,E ′, P ′) represents the cardinality of links in which data records

are annotated with the pair of terms g and m in the user query dataset

(G,M,E ′, P ′)

• #t(g ∧ m,E ′, P ′) represents the cardinality of termlink instances containing

the pair of terms g and m in the user query dataset (G,M,E ′, P ′)

• #l(g ∨m,E ′, P ′) represents the cardinality of links in which data records are

annotated with either GO term g or MeSH term m in the user query dataset

(G,M,E ′, P ′)

• #t(g ∨ m,E ′, P ′) represents the cardinality of termlink instances containing

either GO term g or MeSH term m in the user query dataset (G,M,E ′, P ′)

4.2 Metrics Based on Association Rule Mining

We first define term probabilities and link probabilities, and then introduce

the metrics derived from association rule mining. Then we discuss some alternates

to the metrics based on association rule mining.
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4.2.1 Term Probabilities

The frequency of a CV term which annotates data records in a data source

reflects how commonly a CV term is used to annotate a data record in the dataset.

There are two methods to estimate the term probabilities in the background dataset.

By counting each annotation as an instance, we estimate the term level term fre-

quency. The equation (4.1a) estimates the term level term probability of a GO term

g in E, and the equation (4.1b) estimates the term level term probability of a MeSH

term m in P as follows:

Pr tl term(g, E) =
number of annotations that are g in E

total number of annotations in E
(4.1a)

Pr tl term(m,P ) =
number of annotations that are m in P

total number of annotations in P
(4.1b)

We note that term probability can also be estimated using the cardinality of

data records that are annotated. The equations (4.2a) and (4.2b) estimate data

level term probabilities for the term g in E and the term m in P respectively as

follows:

Pr dl term(g, E) =
number of records annotated with g in E

total number of records in E
(4.2a)

Pr dl term(m,P ) =
number of records annotated with m in P

total number of records in P
(4.2b)
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4.2.2 Link Probabilities

The probability of the termlink instances in the dataset can be estimated using

the cardinality of the specific pair of CV terms among all the annotations in the

dataset. The conditional probability of the termlink instances in the dataset can be

estimated as the conditional probability of a specific pair of CV terms in the dataset

conditioned on either CV term appearing in the termlink instances in the dataset.

The equation (4.3a) estimates the termlink level link probability of the pair of terms

g and m in the user query dataset (G,M,E ′, P ′), and the equation (4.3b) estimates

the termlink level conditional probability of the pair of terms g and m in the user

query dataset (G,M,E ′, P ′) as follows:

Pr tl link(g,m,E ′, P ′)

=
number of termlinks containing the pair of g and m in (G,M,E ′, P ′)

total number of termlinks in (G,M,E ′, P ′)

=
#t(g ∧m,E ′, P ′)
#t(G,M,E ′, P ′)

(4.3a)

Pr tl cond(g,m,E ′, P ′)

=
number of termlinks containing the pair of g and m in (G,M,E ′, P ′)

number of termlinks containing either g or m in (G,M,E ′, P ′)

=
#t(g ∧m,E ′, P ′)
#t(g ∨m,E ′, P ′)

(4.3b)

We note that link probability and the conditional probability can also be

estimated using the cardinality of links between data records that are annotated

similarly to what we estimate the term probabilities. The equations (4.4a) and (4.4b)
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estimate link level link probability and link level conditional probability respectively

for the pair of term g and m in E and term m in the user query dataset (G,M,E ′, P ′)

as follows:

Pr dl link(g,m,E ′, P ′)

=
number of links containing the pair of g and m in (G,M,E ′, P ′)

total number of links in (G,M,E ′, P ′)

=
#l(g ∧m,E ′, P ′)
#l(G,M,E ′, P ′)

(4.4a)

Pr dl cond(g,m,E ′, P ′)

=
number of links containing the pair of g and m in (G,M,E ′, P ′)

number of links containing either g or m in (G,M,E ′, P ′)

=
#l(g ∧m,E ′, P ′)
#l(g ∨m,E ′, P ′)

(4.4b)

4.2.3 Support and Confidence Scores

The support and confidence chosen in this study measure the extent to which

an association of a pair of CV terms deviates from one resulting from chance alone (a

random association). We note that support reflects the relative ratio of termlink in-

stances that associate the two CV terms with respect to all termlink instances in the

dataset, and confidence reflects the relative ratio of termlink instances that associate

the two CV terms with respect to those termlink instances that are associated with

one of the CV terms. Users may then analyze those associations that score high in

both support and confidence since they are potentially significant associations that

could be used to annotate the links and also lead to new knowledge.

A baseline support and confidence in the user query dataset (G,M,E ′, P ′) is
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defined as follows:

SuppB(g,m,E ′, P ′)

=
number of associations containing both g and m in (G,M,E ′, P ′)

total number of associations in (G,M,E ′, P ′)

=
#t(g ∧m,E ′, P ′)
#t(G,M,E ′, P ′)

(4.5a)

ConfB(g,m,E ′, P ′)

=
number of associations containing bothg and m in (G,M,E ′, P ′)

number of associations containing either g or m in (G,M,E ′, P ′)

=
#t(g ∧m,E ′, P ′)
#t(g ∨m,E ′, P ′)

(4.5b)

The support and confidence scores as shown in the Equations (4.5a) and (4.5b)

respectively are equivalent to the termlink level link probability and conditional

probability defined in the Equations (4.3a) and (4.3b) respectively.

We also incorporate a term-freq correction factor from Equations (4.1a) and

(4.1b) representing the term probabilities of the CV terms occurring in annotations

in the background dataset. Typically, association rules for relational databases do

not consider such correction factors or background datasets. Applying log operator

definition is also novel to our research. We then define support and confidence with

73



correction as follows:

SuppC(g,m,E ′, P ′) = log(
SuppB(g,m,E ′, P ′)

Pr tl term(g, E)Pr term(m,P )
)

= log(
Pr tl link(g,m,E ′, P ′)

Pr tl term(g, E)Pr tl term(m,P )
)

(4.6a)

ConfC(g,m,E ′, P ′) = log(
ConfB(g,m,E ′, P ′)

Pr tl term(g, E)Pr term(m,P )
)

= log(
Pr tl cond(g,m,E ′, P ′)

Pr tl term(g, E)Pr tl term(m,P )
)

(4.6b)

4.2.4 Alternatives on Choosing Appropriate Metrics

Given the universe of terms, data records and links between data records,

there are many possible approaches to obtain expressions for support and confi-

dence scores. We briefly describe some alternatives. We can also define weighted

support and confidence scores. Recall that each link between data records in our

approach generated multiple termlink instances; the cardinality of these instances

is determined by the number of CV terms annotating each of the data records par-

ticipating in the link. We can then distribute the weight of the link proportionally

among the multiple termlink instances that are generated. This is a common ap-

proach to weighted authority flow borrowed from research in ranking. We have not

experimented with the weighted scores in this study.

Applying logarithm on estimating probability can be traced back to Berkson

in 1944 [16]. Berkson introduced the logit model for logistic regression. The logit of

a probability p between 0 and 1 is given by the formula as follows:

logit(p) = log(
p

1− p
) = log(p)− log(1− p) (4.7)
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Note that in Equation (4.7), the numerator and the denominator inside the log()

function sum up to 1. This relationship does not hold in Equations (4.6a) and

(4.6b). Barnard in 1949 [11] introduced the likelihood principle in the sequential

test. For example to test the hypothesis θ against the hypothesis θ′, we can estimate

the significance level as follows:

log(
probability of reaching a correct decision if θ is true

probability of reaching a wrong decision if θ′ is true
) (4.8)

Furthermore, Morton in 1955 [126] developed the LOD (or Z) score as a statistical

test for linkage analysis as follows:

LOD = Z = log(
probability of birth sequence with a given linkage value

probability of birth sequence with no linkage
)

(4.9)

However, the support and confidence with correction defined in Equations (4.6a) and

(4.6b) do not test if an association pair of CV terms is correct or wrong. The nu-

merators inside log() in Equations (4.6a) and (4.6b) are link probabilities estimated

in the user query dataset, and the denominators are term probabilities estimated in

the background dataset.

In addition to the methodology described in the Chapter 3, an alternative ap-

proach is to generate LSLink itemsets following the itemset definition of association

rule mining in relational databases [2, 3, 73]. Now each link will generate a single

LSLink itemset containing a set of CV terms. Thus, the link between Entrez Gene

record GeneID: 675 and publication PMID: 10749118 as shown in the Figure 3.4

will generate one LSLink itemset with the four CV terms, {DNA repair, mitotic

checkpoint, Mitosis, Neoplasm Proteins}. We do not consider this itemset ap-
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proach in this study.

4.3 Hypergeometric Distribution

The hypergeometric (HG) distribution describes the discrete probability of se-

lecting particular associations of CV terms from a background dataset when sam-

pling items without replacement. The HG distribution gives a quantification of the

level of one’s surprise at finding over-representation for a particular item in a given

sample of size k drawn from a larger population of size n [28, 27]. The P -value of

the HG distribution applied to our problem is the expected value of picking at least

r termlink instances containing a specific pair of CV terms (g,m) in a sample of k

termlink instances in a user query dataset.

Consider a background dataset of n = #t(G,M,E, P ) termlink instances gen-

erated from the links between data sources E and P annotated with CVs G and

M . There are s = #t(g∧m,E, P ) termlink instances containing specific pair of CV

terms g and m in the background dataset. We then consider a user query dataset of

k = #t(G,M,E ′, P ′) termlink instances which is a subset of the background dataset.

An observation of a termlink instance with this particular pair of CV terms (g,m)

in the user query dataset is defined to be a success. HG distribution probability and

P -value to observe r occurrences of an association, given n, s and k are as follows:

Pr(r|n, s, k) =

(
s
r

)(
n−s
k−r

)(
n
k

) (4.10)
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P − value =

min(s,k)∑
q=r

Pr(q|n, s, k) (4.11)

A concept known as the P -value provides a convenient basis for drawing con-

clusions in hypothesis tests. The P -value is a measure of how likely the sample

results are. The smaller the P -value, the less likely the sample results. We compare

this P -value with the observed ratio of occurrences in the user query dataset. If

the observed ratio far exceeds the estimated value, we determine this association

between the pair of CV term to be over-represented in the user query dataset.

4.4 Background and User Query Datasets for Evaluation of Metrics

We use the background dataset defined in Section 3.2 for evaluation of metrics.

As reported in Table 3.2, as of September 6th, 2007 there are 16,359 active human

gene records in the Entrez Gene which are annotated with GO terms and have

links to PubMed records. The distribution of distinct GO terms in each user query

dataset for a human gene is given in Figure 4.1. 1,054 user query datasets contain

one GO term, 1,373 datasets contain two GO terms, and the human CTNNB1 gene

dataset contains 60 distinct GO terms (shown on the far right side in the figure).

The median and the mean number of distinct GO terms in user query datasets is

6 and 6.81 respectively as reported in the first row in Table 4.1. The second row

reports on the number of distinct MeSH terms in the termlink instances. The third

row reports on the number of distinct PubMed publications, which is equivalent to

the number of links from the human gene record to the PubMed data source. The
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Figure 4.1: Distribution of distinct GO terms annotating a human gene record in
Entrez Gene

Metric Minimum Maximum Median Mean

#(G) 1 60 6 6.81

#(M) 1 1,364 22 37.26

#l(G,M,E ′, P ′) 1 1,888 9 19.31

#t(G,M,E ′, P ′) 1 393,624 182 887.05

#(G,M) 1 60,016 126 375.03

Table 4.1: Statistics in 16,359 human gene user query datasets

fourth row reports on the numbers of termlink instances, and the fifth row reports

on the number of distinct pairs of GO and MeSH terms in the user query dataset.

Recall that a simple user query dataset comprises a single human gene and

the PubMed records to which it is linked. We process specific user query datasets as

follows to determine support and confidence of the associations in each user query

dataset:

• Determine the term probabilities in Equations (4.1a) and (4.1b) for the corre-

sponding GO and MeSH terms, g and m, respectively, using the background

dataset.
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• Determine the link probabilities in Equations (4.3a) and (4.3b) for associations

of pairs of terms, g and m, using all relevant termlink instances in the user

query dataset.

• Determine the support and confidence in Equations (4.6a) and (4.6b) in all

pairs of associations of CV terms (g,m).

• We then apply some filtering steps. First, we limit our dataset to MeSH terms

that are identified as major topic in the PubMed records. Further, we identify

the Semantic Type of the MeSH terms using a resource [204] that provides

a many-to-many mapping between MeSH terms and Semantic Types. The

Semantic Types that are of interest to the evaluation task can be selected by

scientists.

For our evaluation, we chose user query datasets that have the following fea-

tures:

1. Cardinality of distinct GO terms.

2. Cardinality of distinct MeSH terms.

3. Cardinality of links from Entrez Gene to PubMed records.

4. Cardinality of termlinks.

5. Cardinality of associations of distinct pairs of GO and MeSH terms.

Among seventeen human genes as reported in Table 3.5, we chose eight human

genes {TP53, TNF, EGFR, CTNNB1, HLA-DRB1, F5, ARAP, FGD4} for evalu-

79



GeneID 7157 7124 1956 1499 3123 2153 116985 121512

Human gene TP53 TNF EGFR CTNNB1 HLA-DRB1 F5 ARAP FGD4

#(G) 44 33 37 60 6 6 18 19
(high) (high) (high) (high) (med.) (med.)

#(M) 1,364 1,266 804 474 315 226 24 20
(high) (high) (med.) (med.)

#l(G, M, E′, P ′) 1,888 1,010 776 409 296 189 9 9
(high) (high) (med.) (med.)

#t(G, M, E′, P ′) 393,624 160,380 129,685 128,940 6,438 4,458 648 589
(high) (high) (high) (high)

#(G, M) 60,016 41,778 29,748 28,440 1,890 1,356 432 380
(high) (high) (high) (high)

Table 4.2: Statistics in eight human gene user query datasets for evaluation of
metrics

ation of metrics. The statistics of these eight user query datasets are reported in

Table 4.2. Both human gene TP53 and TNF datasets have high values of cardi-

nalities for all five features. Both human gene EGFR and CTNNB1 datasets have

high values of cardinalities for Features 1, 4 and 5. Both human gene HLA-DRB1

and F5 datasets have medium cardinalities of Feature 1 (distinct GO terms). Both

human gene ARAP and FGD4 datasets have medium values of cardinalities of Fea-

tures 2 and 3. We also chose user query dataset for early onset breast cancer

in human as reported in Table 3.6 for evaluation of metrics. The values for the five

features in this user query dataset are 50, 463, 724, 104,546 and 18,638 respectively.

Certain association pairs of GO and MeSH terms may appear only in some

user query datasets. Some GO or MeSH terms may only be meaningful to some sets

of human genes. We define some interesting subsets of associations of a user query

dataset for further analysis as follows:

• Complete: This refers to the whole user query dataset.

• Singleton: In some user query datasets, there are associations of pairs of GO
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and MeSH terms that occur only once in the user query dataset (and the back-

ground dataset) and they are labeled singleton associations. For example in the

early onset breast cancer in human user query dataset, the association

of GO term regulation of S phase of mitotic cell cycle and MeSH

term Fanconi Anemia Complementation Group G Protein (Amino Acid,

Peptide, or Protein) is a singleton association.

• Non-singleton: The complement from deleting the singleton associations from

the complete associations is the non-singleton set of associations.

• Local: Associations that only occur in a particular user query dataset but

do not occur elsewhere in the background dataset are local associations. For

example the association of GO term mitotic checkpoint and MeSH term

Fallopian Tube Neoplasms (Neoplastic Process) appears three times in

both the early onset breast cancer in human user query dataset and the

background dataset. Note that these include the singleton associations.

• Non-local: The complement of discarding local associations from the complete

associations is the non-local set of associations.

• Local-non-singleton: A singleton association is also a local association. The

subset of the local associations, which are not singleton associations, are labeled

local-non-singleton associations.

Figure 4.2 illustrates the relationship among these five subsets of associations.

It may be argued that a singleton is a possibly erroneous association that has no
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Figure 4.2: Diagram to illustrate the relationship among complete, singleton, non-
singleton, local, non-local and local-non-singleton subsets of associations

biological meaning and a local association must be so well known to the scientist

that they would not be interested in discovering such associations. Based on our

interactions with three scientists on these user query datasets, we observed that sci-

entists were interested in both singleton associations (they had biological meaning)

and local associations (they were not always well known). Thus, we report on both

the results from the complete user query dataset and from the user query dataset

where the singleton and local associations have been filtered out.

We report on the cardinalities of these subsets in the early onset breast

cancer in human user query dataset in Figure 4.3. There are 18,638 associations

of pairs of GO and MeSH terms in the complete set (as reported in the Table 3.6).

Of these 18,638 associations of distinct pairs, 4,636 associations occurred only once

in the background dataset as we already labeled them as singleton associations.

Therefore, the non-singleton subset contains 14,002 associations. There are 2,072

associations in the local-non-singleton subset. The singleton and local-non-singleton

subsets are combined into 6,708 associations. We already labeled these local associ-

ations. Lastly, there are 11,930 associations in the non-local subset.
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Figure 4.3: Number of associations in subsets of early onset breast cancer in

human user query dataset

4.5 Distribution of Confidence Scores and P -values

We report on the corrected confidence scores (Equation (4.6b)) and the P -

values (Equation (4.11)) for the early onset breast cancer in human user query

dataset. Figure 4.4 reports on the confidence scores for five subsets of associations,

the complete associations, the non-singleton associations, the non-local associations,

the singleton associations, and the local-non-singleton associations. The horizontal

axis reports on the confidence scores, and the vertical axis reports on the numbers

of associations. On the left hand side, for the range of confidence scores 3.00 to

6.00, both non-singleton and non-local associations have less occurrences compared

to the complete set of associations. It indicates that the confidence scores of most

associations in the singleton and the local subsets are higher than 3.00. This is

confirmed by the distribution as shown on the right hand side. To further explore

this difference, Figure 4.5 display a quantile plot for the same first three subsets.

Because the scientists are more interested in the association with higher confidence

scores, we reverse the confidence scores on the horizontal axis. The vertical axis
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reports on the accumulated percentage of associations in each subset. The figure

shows that the confidence scores for non-singleton and non-local associations are

lower compared to the complete set of associations. The figure also shows that the

median confidence score in the complete set is higher than the median score in the

non-singleton subset, which is higher than the median score in the non-local subset.

The significant section for confidence scores higher than 5.00 is exploded on the

right. Figures 4.6 reports on the quantile plot of confidence scores for the complete,

singleton, local-non-single and non-local subsets. We observe that singleton and

local-non-singleton subsets of associations have higher median and mean confidence

scores.

Next, we report on the distribution of the P -values for the same user query

dataset and the five subsets. Figure 4.7 reports on the distribution for the complete,

non-singleton, non-local, singleton and local-non-singleton subsets of associations.

The corresponding quantile plots are reported in Figures 4.8 and 4.9. On the left

hand side in Figure 4.7, the distribution of non-singleton associations is within the

range between the complete and the non-local associations, because the non-local

subset is a subset of the non-singleton subset, and the non-singleton subset is a

subset of the complete set. Figure 4.8 reports on the quantile plot of P -values for

these three same subsets. The horizontal axis reports on the P -values, and the

vertical axis reports on the percentage of associations compared to the whole subset

as accumulated from lower to higher P -values. We observe that the non-singleton

subset of associations has higher accumulated percentage of associations, which

indicates higher median and mean P -values than the other two subsets. We explode
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Figure 4.4: Distribution of confidence scores for complete, non-singleton, non-local,
singleton and local-non-singleton associations in early onset breast cancer in

human user query dataset

Figure 4.5: Quantile plot of confidence scores for complete, non-singleton and non-
local associations in early onset breast cancer in human user query dataset

Figure 4.6: Quantile plot of confidence scores for singleton, local-non-singleton
and non-local associations in early onset breast cancer in human user query
dataset
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the region of smaller P -values outside the chart on the left hand side to a larger

chart as shown on the right hand side. On the right hand sides in Figure 4.7, we

observe the P -value for singleton associations is between 0.00001 and 0.0001, and

the P -values for local-non-singleton associations appear at a series of peaks. We also

observe this ladder effect in Figure 4.9.

Tables 4.3 and 4.4 report on the minimum, the maximum, the median, the

arithmetic mean and the variance for confidence scores and P -values in different

subsets of associations. The association that has the minimum confidence score in

this user query dataset is a non-local association. The association that has the max-

imum confidence score is a singleton association. The median scores indicate that

local associations in general have higher confidence scores than non-local associa-

tions. The variance is lower for the singleton, the local and the local-non-singleton

subsets. Table 4.4 shows that the maximum P -values in the singleton, the local

and the local-non-singleton subsets are much lower than the non-singleton and the

non-local subsets. We also observe (as expected) that both confidence scores and

P -values are sensitive to, and discriminate among the association type; i.e., if it is

local or non-local. It also appears that the P -values are much more sensitive to the

association type; this corresponds to a greater variance in the P -values. These are

preliminary results and must be studied further.
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Figure 4.7: Distribution of P -values for complete, non-singleton, non-local, single-
ton and local-non-singleton associations in early onset breast cancer in human

user query dataset

Figure 4.8: Quantile plot of P -values for complete, non-singleton and non-local
associations in early onset breast cancer in human user query dataset

Figure 4.9: Quantile plot of P -values for singleton, local-non-singleton and non-local
associations in early onset breast cancer in human user query dataset
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Subset Minimum Maximum Median Mean Variance

Complete -0.064 6.463 3.369 3.344 0.895

Singleton 2.201 6.463 4.032 4.077 0.388

Non-singleton -0.064 6.326 3.106 3.117 0.833

Local 2.201 6.463 4.078 4.140 0.389

Local-non-singleton 2.903 6.326 4.145 4.260 0.369

Non-local -0.064 5.827 2.914 2.914 0.621

Table 4.3: Statistics on confidence scores for subsets of early onset breast

cancer in human user query dataset

Subset Minimum Maximum Median Mean Variance

Complete ≈ 0 ≈ 1 8.93e−4 1.37e−2 3.37e−3

Singleton 8.92e−4 8.92e−4 8.92e−4 8.92e−4 0.00

Non-singleton ≈ 0 ≈ 1 7.86e−5 1.77e−2 4.35e−3

Local ≈ 0 8.93e−4 8.93e−4 5.87e−4 1.80e−7

Local-non-singleton ≈ 0 7.97e−7 7.12e−10 3.05e−7 1.50e−13

Non-local ≈ 0 ≈ 1 1.79e−3 2.11e−2 5.11e−3

Table 4.4: Statistics on P -values for subsets of early onset breast cancer in

human user query dataset

4.6 Overlap Analysis of Confidence Scores and P -values

We first report on a visual comparison of the correspondence between the

scores of the two metrics. For the early onset breast cancer in human user

query dataset, Figures 4.10 and 4.11 display scatter plots of the confidence scores

and P -values. Figure 4.10 reports on the complete set of associations and Figure

4.11 reports on the non-local (including singleton) subset of associations. The boxed

areas represent sections of high confidence scores correlated with low P -values. For

the complete set of associations in Figure 4.10, there are 1,357 associations in the
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smaller box (maximum P -value = 0.0177), and 3,072 associations in the larger box

(maximum P -value = 0.0437). When we consider the non-local subset of associations

in Figure 4.11, we observe that cardinalities of associations in the corresponding two

boxes are much lower; they are 144 and 606 respectively with the same maximum P -

values. Recall that these boxed areas represent a correspondence of high confidence

scores and low P -values. This indicates that the non-local associations show lower

correspondence of the two metrics.

For all six human gene datasets of Table 4.2, we rank the associations using

the two metrics. Then, consider K% of the associations, where K is varied from 0%

to 100%. Figure 4.12 reports on the overlap of two ranks, for varying values of K.

For X = 10%, the overlap ranged from 4.8% (TNF) to 23.6% (F5). For X = 25%,

the overlap ranged from 28.5% (CTNNB1) to 38.6% (F5). For X = 50%, we observe

that the overlap is significant and ranged from 83.8% (F5) to 92.6% (CTNNB1).

Using the early onset breast cancer in human user query dataset, we fur-

ther validate the correspondence of the confidence score rank using the rank based on

P -values. As in Figure 4.12, we compute the confidence scores and the P -values for

the user query dataset and rank the associations. We then consider the Top-25 and

Top-100 associations identified using the confidence score rank. We then validate

these associations using the P -value rank. We do this by determining how many of

the Top-25 and Top-100 associations occur in the overlap of the Top-K% identified

using the P -value rank. The higher the number in this overlap, the stronger the

validation is.

Table 4.5 identifies on the Go and MeSH terms appeared in the Top-25 in
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Figure 4.10: Scatter plot of P -values versus confidence scores for complete associa-
tions in early onset breast cancer in human user query dataset

Figure 4.11: Scatter plot of P -values versus confidence scores for non-local associa-
tions in early onset breast cancer in human user query dataset
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Figure 4.12: Overlaps between ranks by confidence scores and P -values

the complete associations based on the confidence scores. There are ten GO terms

and five MeSH terms. Table 4.6 reports on the Top-25 associations in the rank

result. The first two columns refer to the GO and MeSH terms in Table 4.5. The

third and fourth columns report on the confidence scores and the rank based on

the confidence scores. The fourth and fifth columns report on the P -values and

the corresponding ranks. The seventh column reports on the observed fraction of

occurrences among the 81,428 termlink instances in this user query dataset. A value

of 1/81,428 indicates a singleton association. All associations in the Top-25 happen

to be classified as local associations. The surprise or over-expression factor is the

deviation between the P -value and the observed fraction. The surprise appears

to be more significant for the non-singleton associations compared to the singleton

associations. The singletons are identified in the last column in the table.

Table 4.7 reports on the results of comparing the Top-25 associations based on

confidence score ranks with the Top-K% associations based on P -value ranks. The
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GO term appeared in the MeSH term (Semantic Type) appeared
Top-25 confidence scores in the Top-25 confidence scores

g1 chromatin remodeling m1 BRCA2 Protein

g2 DNA damage response, signal transduction (Amino Acid, Peptide, or Protein;

by p53 class mediator resulting in Biologically Active Substance)

transcription of p21 class mediator m2 Breast Neoplasms, Male

g3 double-strand break repair via homologous (Neoplastic Process)

recombination m3 Fallopian Tube Neoplasms

g4 establishment and/or maintenance of (Neoplastic Process)

chromatin architecture m4 Fanconi Anemia

g5 histone acetyltransferase activity Complementation Group G Protein

g6 mitotic checkpoint (Amino Acid, Peptide, or Protein;

g7 negative regulation of centriole replication Biologically Active Substance)

g8 negative regulation of fatty acid m5 HMGA1b Protein

biosynthetic process (Amino Acid, Peptide, or Protein;

g9 regulation of S phase of mitotic cell cycle Biologically Active Substance)

g10 secretory granule

Table 4.5: GO and MeSH terms to be referred in Table 4.6

GO MeSH ConfC RankC P − value RankP Observed Singleton
term term fraction

g9 m4 6.463 1 0.000892 5,064 1/81, 428 yes
g6 m4 6.415 2 0.000892 5,064 1/81, 428 yes
g3 m4 6.406 3 0.000892 5,064 1/81, 428 yes
g10 m4 6.348 4 0.000892 5,064 1/81, 428 yes
g9 m2 6.326 5 3.21e−31 961 10/81, 428 no
g9 m3 6.279 6 7.11e−10 2,351 3/81, 428 no
g6 m2 6.278 7 3.21e−31 961 10/81, 428 no
g3 m2 6.269 8 3.21e−31 961 10/81, 428 no
g6 m3 6.231 9 7.11e−10 2,351 3/81, 428 no
g3 m3 6.223 10 7.11e−10 2,351 3/81, 428 no
g10 m2 6.210 11 3.21e−31 961 10/81, 428 no
g4 m4 6.209 12 0.000892 5,064 1/81, 428 yes
g10 m3 6.164 13 7.11e−10 2,351 3/81, 428 no
g4 m2 6.071 14 3.21e−31 961 10/81, 428 no
g1 m4 6.030 15 0.000892 5,064 1/81, 428 yes
g4 m3 6.025 16 7.11e−10 2,351 3/81, 428 no
g1 m2 5.893 17 3.21e−31 961 10/81, 428 no
g5 m4 5.889 18 0.000892 5,064 1/81, 428 no
g9 m1 5.884 19 7.96e−248 146 81/81, 428 no
g2 m3 5.884 20 7.11e−10 2,351 3/81, 428 no
g7 m3 5.884 20 7.11e−10 2,351 3/81, 428 no
g8 m3 5.884 20 7.11e−10 2,351 3/81, 428 no
g2 m5 5.883 23 0.000892 5,064 1/81, 428 yes
g7 m5 5.883 23 0.000892 5,064 1/81, 428 yes
g8 m5 5.883 23 0.000892 5,064 1/81, 428 yes

Table 4.6: Statistics of Top-25 confidence scores in early onset breast cancer

in human user query dataset
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P -values Complete Non-singleton Non-local

Top-1% 0 (P = 1.15e−268) 0 (P ' 0) 3 (P ' 0)

Top-2% 1 (P = 4.47e−144) 4 (P = 3.75e−208) 6 (P = 1.32e−157)

Top-10% 6 (P = 4.52e−22) 7 (P = 3.21e−31) 8 (P = 3.59e−27)

Top-20% 15 (P = 7.12e−10) 10 (P = 6.35e−13) 12 (P = 5.92e−11)

Table 4.7: Overlap of associations between Top-25 confidence score ranks and Top-
K% P -value ranks

P -values Complete Non-singleton Non-local

Top-1% 0 (P = 1.15e−268) 4 (P ' 0) 11 (P ' 0)

Top-2% 10 (P = 4.47e−144) 16 (P = 3.75e−208) 18 (P = 1.32e−157)

Top-10% 18 (P = 4.52e−22) 30 (P = 9.75e−33) 35 (P = 5.65e−27)

Top-20% 56 (P = 7.12e−10) 57 (P = 6.35e−13) 53 (P = 5.96e−11)

Table 4.8: Overlap of associations between Top-100 confidence score ranks and Top-
K% P -value ranks

second column reports on the complete associations; the third column on the subset

with non-singleton associations, and the fourth column on the non-local associations.

Among complete associations, 15 of Top-25 associations based on confidence score

ranks are in the overlap of the Top-20% associations based on P -value ranks. Among

non-singleton associations, 10 occurred in the overlap with the Top-20% associations

based on P -value ranks. Besides, for non-local associations, 12 occurred in the

overlap with the Top-20% associations based on P -value ranks.

If we consider Top-100 associations reported in Table 4.8, we observe very

similar overlap behavior for the complete associations, the non-singleton associa-

tions, and the non-local associations. 56, 57 and 53 of the Top-100 associations

based on confidence score ranks overlap with the Top-20% based on P -value ranks,

respectively.
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Figure 4.13: Kendall’s τ distances between ranks by confidence scores and P -values

4.7 Disagreement Analysis between Confidence Scores and P -values

As reported in Figure 4.12 at 25% of the confidence score ranks and the P -

value ranks, the overlap is less than 40%. These two rankings are not in agreement.

Kendall’s τ [94, 96] rank correlation and distance is a non-parametric measure of the

disagreement between two rankings. It counts the number of pairwise disagreements

between two ranking lists. The larger the distance, the more dissimilar the two lists

are. [95, 96] suggests penalty if two ranking lists contain ties or missing elements.

Figure 4.13 reports on the Kendall’s τ distances between two rank results on four

medium size human gene user query datasets. The horizontal axis is the Top-K%

in each rank result, and the vertical is the Kendall’s τ distances, which are numbers

between 0.0 and 1.0. Kendall’s τ equals to 0.0 indicating two rank results are fully

agreed with each other, while Kendall’s τ equals to 1.0 indicating two rank results

are in the reversed orders. As the K in the Top-K% increased, the Kendall’s τ

decreased.
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The Kendall’s τ distances are generally high in Figure 4.13 may be because of

the missing association pairs between two Top-K% rank results, which are reported

as low overlaps in Figure 4.12. In order to compare two rank results without missing

association pairs, we could first generate a list of associations chosen either the union

or the common associations between two rank results. We can further define new

rank results as follows:

• u(alt) is the union set of two rank results using an alternated rank position-

ing, in which we alternate the association pair from the higher-to-lower rank

between two rank results.

• u(conf) is the union set of two rank results ranked by the confidence scores.

• u(pval) is the union set of two rank results ranked by the P -values.

• i(conf) is the common set of two rank results ranked by the confidence scores.

• i(pval) is the common set of two rank results ranked by the P -values. i(log)

and i(hgp) are the common result from two metrics.

Table 4.9 reports the corresponding distance measures. The second and third

rows report on the full set of associations in the corresponding user query dataset.

The distance Dconf,pval reports the Kendall’s τ distances for the full list of the rank

results between the confidence scores and the P -values. The last five rows report on

the Top-K% rank results as shown in the fourth row. The distances of Du(alt),u(conf)

and Du(alt),u(pval) are very close in the same dataset, which are expected. However,

these distances are also close to the distances in the full sets of rank results, Dconf,pval.
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Human gene HLA-DRB1 F5 ARAP FGD4

Top-K% 100% 100% 100% 100%

Dconf,pval 0.285 0.274 0.249 0.283

Top-K% 10% 10% 25% 25%

Du(alt),u(conf) 0.235 0.262 0.268 0.279

Du(alt),u(pval) 0.249 0.283 0.318 0.329

Du(conf),u(pval) 0.669 0.623 0.593 0.589

Di(conf),i(pval) 0.621 0.555 0.502 0.566

Table 4.9: Kendall’s τ distances between rank results among various subsets

The last two rows correspond to the distances within the union and the intersection

by the two metrics. These distances were close to the original Top-K% rank results

as shown in the Figure 4.13.
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Chapter 5

User Evaluations of Discovering Potentially Meaningful Associations

There can be a potentially large number of associations of pairs of CV terms

even for a single gene. For example, for a user query dataset defined for the human

gene TP53 as shown at the last row in the Figure 3.5, there were 393,624 termlinks,

which generate 60,016 distinct associations of pairs between GO and MeSH terms!

The support and confidence metrics were used to rank these pairs of associations and

identify the Top-20 potentially significant pairs for each user query dataset. Experts

(medical doctors and cancer researchers) rated the associations of pairs of CV terms

along the following independent dimensions: {Meaningful, Maybe Meaningful,

Not Meaningful}, and {Widely Known, Somewhat Known, Unknown/Surprising}.

User validation confirmed that a majority of highly ranked pairs were meaning-

ful, which were identified as a true positive. Several of the pairs were unknown

and might lead to further knowledge [104]. For example, for early onset breast

cancer in human, user query dataset the previously unknown association of the

GO term negative regulation of centriole replication with the MeSH term

Fallopian Tube Neoplasms might be interesting, because it indicates that the tu-

mor and the negative regulation might have a causal relationship.

The background dataset of termlinks from this study and the associations

among pairs of GO and MeSH terms are available at the following site: http://www.
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cbcb.umd.edu/research/lslink/lodgui/. We describe this tool with examples in

Section 5.1. Section 5.2 discusses the user evaluation provided by the medical doctors

and the cancer researchers. Section 5.3 reports on some other possible analyses that

can be achieved by using this discovering tool.

5.1 Browsing Meaningful Associations

In this section, we discuss the tools provided to scientists, and we discuss

the outcome of a preliminary validation study. Each user query dataset may yield

hundreds or thousands of associations, and scientists need the support of analysis

tools to visualize the associations and assist in their exploration. The following are

example features of an analysis tool:

• Given some GO term (or MeSH term), present all the associations containing

that term and being significant with respect to a threshold selected by the

scientist.

• Group the significant associations based on semantic knowledge. An example

is the Semantic Type associated with the MeSH terms.

• Group associations using either a GO term or MeSH term, so that scientists

can analyze groups of associations rather than individual associations.

We aim for an interactive interface where the scientist can browse some results

and then specify particular terms of interest in either vocabulary. This type of

relevance feedback may be used to further refine information that is presented in
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an iterative manner. For example, the initial query provided by the scientist may

be refined after the scientist has had an opportunity to look at the kinds of links

presented that were found to be significant.

We develop an online tool to support discovering meaningful associations at

http://www.cbcb.umd.edu/research/lslink/lodgui/. Figure 5.1 reports on the ini-

tial interface that the scientist can use to analyze associations for some user query

dataset of LSLink. We consider a simple query where the scientist identifies a hu-

man gene symbol. There are 16,260 datasets to choose from. Based on a user query

dataset of LSLink that is associated with the Entrez Gene record, the support and

confidence scores, and the P -values are determined. After selecting a human gene

symbol such as CFTR and click on the Search button, the tool prompts for a selec-

tion between two CV types as displayed in the Figure 5.2. If the scientist is inter-

ested in the GO term ATP-binding and phosphorylation-dependent chloride

channel activity, Figure 5.3 displays a list of CV terms to be selected from. The

tool then retrieves the data from the server and displays in the online interface.

In addition to three sets of scores, the tool also calculates and reports on the

minimum, the maximum, the average and the median of the confidence scores among

the association pairs listed in the main table. Figure 5.4 illustrates the maximum

confidence score 6.7763 is between the pre-selected GO term and the MeSH term

Amikacin. The scientist can then browse the full list of the MeSH associated with

the pre-selected GO term as shown in the Figure 5.5.

To select another human gene such as TP53, the scientist goes up to the top of

the interface, select the new symbol, and click on the Search button. 5.6 reports on

99



Figure 5.1: Online interactive tool for discovering meaningful associations

such updated result, and the scientist can scroll down the scrolling bar on the right

hand side to find the splitting place by the mean of the confidence scores. A threshold

for significance can be determined by the scientist based on the range of scores for

this dataset. The scientist can then select a threshold confidence. The system will

use this threshold to identify all associations that exceed the score. Note that here

we ordered the associations based on the confidence score. Figure 5.7 illustrates the

result when the user selected associations of the MeSH term Fibroblasts with a

threshold of 3.0 on the confidence score for the TP53 dataset.
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Figure 5.2: Online interactive tool for selecting a CV type of interest

Figure 5.3: Online interactive tool for selecting a CV term of interest
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Figure 5.4: Online interactive tool for reporting the statistics of the confidence scores

Figure 5.5: Online interactive tool for reporting the list of CV terms and their
corresponding scores
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Figure 5.6: Online interactive tool for splitting the associations by the mean confi-
dence score

Figure 5.7: Online interactive tool for filtering the associations by a threshold of the
confidence score
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5.2 User Validation

A validation task was conducted to explore methods for assessing the LSLink

strategy. We identified associations that exceed a threshold on confidence and had

them rated along two independent dimensions as follows:

• The first dimension is to assign a score for a meaningful association; the rating

is as follows:

– yes

– maybe

– no

• The second dimension is to assign a rating based on whether the association

is already known; this score is as follows:

– widely

– somewhat

– no (surprising)

The evaluation team chose six human genes APOE, BRCA1, BRCA2, CFTR,

PSEN1, PSEN2 and classified the Top-20 associations for each human gene dataset.

The associations that they examined for human gene CFTR are shown in Table 5.1.

The first two columns report on the support and confidence scores as defined in

Equations 4.6a and 4.6b. The pairs of GO and MeSH terms as reported in the third

and the four columns. The last two columns report on the user evaluation metrics.
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SuppC ConfC GO term MeSH descriptor Mean- Known
w/ major topic ingful
(Semantic Type)

6.12 7.34 ATP-binding and phosphorylation- Mucociliary Clearance yes widely
dependent chloride channel activity (Organ or Tissue Function)

6.12 7.34 channel-conductance-controlling Mucociliary Clearance yes widely
ATPase activity (Organ or Tissue Function)

6.12 7.34 ATP-binding and phosphorylation- Salmonella typhi yes widely
dependent chloride channel activity (Bacterium)

6.12 7.34 channel-conductance-controlling Salmonella typhi yes widely
ATPase activity (Bacterium)

5.64 6.85 ATP-binding and phosphorylation- Pancreatitis, Alcoholic no widely
dependent chloride channel activity (Disease or Syndrome)

5.64 6.85 channel-conductance-controlling Pancreatitis, Alcoholic no widely
ATPase activity (Disease or Syndrome)

5.52 6.74 ATP-binding and phosphorylation- Fimbriae Proteins (Amino maybe no
dependent chloride channel activity Acid, Peptide, or Protein)

5.52 6.74 channel-conductance-controlling Fimbriae Proteins (Amino maybe no
ATPase activity Acid, Peptide, or Protein)

5.52 6.74 ATP-binding and phosphorylation- Nucleoside Transport yes somewhat
dependent chloride channel activity Proteins (Amino Acid,

or Protein)
5.52 6.74 channel-conductance-controlling Nucleoside Transport yes somewhat

ATPase activity Proteins (Amino Acid,
or Protein)

5.87 6.72 ATP-binding and phosphorylation- Cystic Fibrosis yes widely
dependent chloride channel activity (Disease or Syndrome)

5.87 6.72 channel-conductance-controlling Cystic Fibrosis yes widely
ATPase activity (Disease or Syndrome)

5.42 6.65 ATP-binding and phosphorylation- Bronchiectasis yes widely
dependent chloride channel activity (Disease or Syndrome)

5.42 6.65 channel-conductance-controlling Bronchiectasis yes widely
ATPase activity (Disease or Syndrome)

6.08 6.62 ATP-binding and phosphorylation- Cystic Fibrosis yes widely
dependent chloride channel activity Transmembrane Conductance

Regulator (Amino Acid,
Peptide, or Protein)

6.08 6.62 channel-conductance-controlling Cystic Fibrosis yes widely
ATPase activity Transmembrane Conductance

Regulator (Amino Acid,
Peptide, or Protein)

5.38 6.60 ATP-binding and phosphorylation- Pseudomonas Infections yes somewhat
dependent chloride channel activity (Disease or Syndrome)

5.38 6.60 channel-conductance-controlling Pseudomonas Infections yes somewhat
ATPase activity (Disease or Syndrome)

5.34 6.57 ATP-binding and phosphorylation- Fallopian Tube Diseases yes somewhat
dependent chloride channel activity (Disease or Syndrome)

5.34 6.57 channel-conductance-controlling Fallopian Tube Diseases yes somewhat
ATPase activity (Disease or Syndrome)

Table 5.1: User evaluation of the human gene CFTR dataset
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Figure 5.8: Two sibling GO terms appeared in the Top-20 associations by confidence
score ranks

These Top-20 associations are happened between two GO terms and ten MeSH

terms. As shown in the Figure 5.8, these two GO terms ATP-binding and

phosphorylation-dependent chloride channel activity and channel-

conductance-controlling ATPase activity are sibling terms, which have a com-

mon parent GO term chloride channel activity. We note that we can consider

the contributions from two child terms onto their parent term at the higher level in

the hierarchy. This raises the idea of aggregation or generalization in the CVs and

ontologies to be illustrated in the next chapter.

A majority (16 out of 20) of these associations were identified as yes meaning-

ful and widely or somewhat known. Two associations were not semantically mean-

ingful. According to the article with PMID: 10195826 in the Figure 5.9, the authors

claimed common CFTR mutations are not found in patients with alcoholic

pancreatitis. This is the case of a negative annotation, which is a key limitation
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Figure 5.9: Evidence publication PMID: 10195826 for a negative annotation

in general. There are two unknown associations (pairs of the two identified GO

terms and MeSH term Fimbriae Proteins) that scientists found, which might lead

to interesting meaningful further knowledge.

To complete the evaluation, we also examined a random sampling of 20 as-

sociations with medium or low scores for confidence. The association of the GO

term chloride ion binding and the MeSH term Phosphoprotein Phosphatase

(Enzyme) had a medium score of 3.12. The association is not meaningful. The as-

sociation of the GO term membrane and the MeSH term Cloning, Molecular had

a low score of 0.65. Both terms are generic and the association is not meaningful.

The evaluation team then classified the Top-20 associations for the early

onset breast cancer in human user query dataset. The evaluation results are

reported in the Table 5.2. The association between the GO term negative

regulation of centriole replication and the MeSH term Fallopian Tube
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Neoplasms (Neoplastic Process) was identified as maybe meaningful and

unknown.

While the validation did not immediately identify interesting but as yet un-

known knowledge, this is not unexpected. First, these genes are well studied so

many associations are already known. Second, many MeSH terms are general terms

used to classify the content of the article rather than identifying specific results re-

ported in the article. Consequently, we do not expect that these general terms will

lead to interesting results and the evaluation team planned to identify more specific

MeSH terms using the Semantic Types of these terms such as those reported in the

Table 3.4.

The evaluation team further determined that more meaningful results would

be obtained by combining these associations with additional knowledge about the

genes. They suggested exploring the associations between GO terms and phenotypes

using the link from Entrez Gene to OMIM and the link from the Entrez Gene to

the PharmGKB [67, 150, 197]. We note that the link from Entrez Gene to OMIM

was identified in our initial study and we plan to extend to the second path (as

concatenation of links).

5.3 Advanced Analysis

Two histograms of the distribution of confidence scores are reported in the

Figures 5.10 and 5.11. Figure 5.10 presents the number of associations to the range

of confidence scores for two human genes, APOE and CFTR, in the form of a
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SuppC ConfC GO term MeSH descriptor Mean- Known
w/ major topic ingful
(Semantic Type)

5.35 6.46 regulation of S phase Fanconi Anemia Complementation maybe somewhat
of mitotic cell cycle Group G Protein

(Amino Acid, Peptide, or Protein;
Biologically Active Substance)

5.30 6.42 mitotic checkpoint Fanconi Anemia Complementation maybe widely
Group G Protein
(Amino Acid, Peptide, or Protein;
Biologically Active Substance)

5.30 6.41 double-strand break Fanconi Anemia Complementation yes widely
repair via homologous Group G Protein
recombination (Amino Acid, Peptide, or Protein;

Biologically Active Substance)
5.24 6.35 secretory granule Fanconi Anemia Complementation no no

Group G Protein
(Amino Acid, Peptide, or Protein;
Biologically Active Substance)

5.33 6.33 regulation of S phase Breast Neoplasms, Male maybe somewhat
of mitotic cell cycle (Neoplastic Process)

5.23 6.28 regulation of S phase Fallopian Tube Neoplasms maybe somewhat
of mitotic cell cycle (Neoplastic Process)

5.28 6.28 mitotic checkpoint Breast Neoplasms, Male maybe somewhat
(Neoplastic Process)

5.27 6.27 double-strand break Breast Neoplasms, Male yes widely
repair via homologous (Neoplastic Process)
recombination

5.18 6.23 mitotic checkpoint Fallopian Tube Neoplasms maybe somewhat
(Neoplastic Process)

5.17 6.22 double-strand break Fallopian Tube Neoplasms maybe somewhat
repair via homologous (Neoplastic Process)
recombination

5.21 6.21 secretory granule Breast Neoplasms, Male no no
(Neoplastic Process)

5.10 6.21 establishment and/or Fanconi Anemia Complementation yes somewhat
maintenance of Group G Protein
chromatin architecture (Amino Acid, Peptide, or Protein;

Biologically Active Substance)
5.11 6.16 secretory granule Fallopian Tube Neoplasms no no

(Neoplastic Process)
5.07 6.07 establishment and/or Breast Neoplasms, Male yes widely

maintenance of (Neoplastic Process)
chromatin architecture

4.91 6.03 chromatin remodeling Fanconi Anemia Complementation maybe somewhat
Group G Protein
(Amino Acid, Peptide, or Protein;
Biologically Active Substance)

4.97 6.03 establishment and/or Fallopian Tube Neoplasms maybe somewhat
maintenance of (Neoplastic Process)
chromatin architecture

4.89 5.89 chromatin remodeling Breast Neoplasms, Male yes widely
(Neoplastic Process)

4.78 5.89 histone Fanconi Anemia Complementation maybe somewhat
acetyltransferase Group G Protein
activity (Amino Acid, Peptide, or Protein;

Biologically Active Substance)
5.33 5.88 regulation of S phase BRCA2 Protein yes widely

of mitotic cell cycle (Amino Acid, Peptide, or Protein;
Biologically Active Substance)

5.15 5.88 negative regulation of Fallopian Tube Neoplasms maybe no
centriole replication (Neoplastic Process)

Table 5.2: User evaluation of the early onset breast cancer in human user query
dataset
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Figure 5.10: Distribution of numbers of associations for confidence scores in two
human gene APOE and CFTR datasets

histogram. For APOE, there are 13,527 associations and the scores range from 0.27

to 6.37 with a mean 4.33 and median 4.41. For CFTR, there are 6,443 associations

and the scores range from 0.04 to 6.78 with a mean 3.75 and median 3.81. The

variance of the scores appears to be much greater for APOE (1.38) than for CFTR

(1.01).

On the Figure 5.11, we report on the range of confidence scores for associations

that involve two GO terms, apolipoprotein E receptor binding and cytoplasm

in the human gene APOE dataset. For apolipoprotein E receptor binding,

there are 501 associations and the scores range from 2.59 to 6.37 with a mean 4.88

and median 4.94. For cytoplasm, there are 501 associations and the scores range

from 0.27 to 4.04 with a mean 2.56 and median 2.62. The variances of the scores for

both GO terms are about 0.71. The associations of the GO term apolipoprotein

E receptor binding yields higher confidence scores compared to associations of

the GO term cytoplasm. To explain, the former term appears only in the human
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Figure 5.11: Distribution of numbers of associations for confidence scores on two
GO terms in the human gene APOE dataset

gene APOE record in the background dataset, but the latter term annotates 1,541

gene records in the background dataset. Those associations that contain the GO

term apolipoprotein E receptor binding are classified as local associations as

illustrated in the previous chapter.

A further conclusion of the validation task was that some meta-level analysis is

needed. One suggestion was to examine groups of associations rather than individual

associations and the group frequency of occurrence. The rationale for the frequency

analysis is that the GO terms associated with the gene record were determined a

priori based on known knowledge about the gene. On the other hand, scientists

may not have studied all the knowledge in the PubMed articles linked to the gene

record and annotated the PubMed record with this knowledge. Hence, grouping the

associations by MeSH terms may help to uncover hidden but possibly significant

patterns. The higher frequency reflects those MeSH terms that are associated with

many GO terms for some user query (human gene). For those terms of interest,
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the distribution of these GO terms in the GO hierarchy may also be relevant in

identifying meaning.

We consider those associations that are above a user specific threshold for the

confidence score. We then group these associations by the MeSH terms. We can

perform a frequency analysis on the MeSH terms and identify how many GO terms

were associated with each MeSH term. Table 5.3 identifies the results for the user

query on gene APOE with 6.50 as the threshold on the confidence score. The first

column identifies the MeSH term, and the second column identifies the cardinality of

GO terms associated with the MeSH term. The corresponding scores are descending

from the top row to the bottom row. The highest cardinality is 5 in APOE, and

the five GO terms are apolipoprotein E receptor binding, vasodilation, tau

protein binding, regulation of axon extension and response to reactive

oxygen species. Next, for each of the (GO, MeSH) associations, we can report on

the number of termlinks from the user query dataset in the Table 5.4. We note that

we can also report on the scores or the P−values of the metric.
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MeSH descriptor w/ major topic (Semantic Type) Number of associated GO terms

Akathisia, Drug-Induced (Disease or Syndrome) 5

Apolipoprotein E4 (Amino Acid, Peptide, or Protein) 5

Candidiasis, Cutaneous (Disease or Syndrome) 5

Central Nervous System Infections (Disease or Syndrome) 5

Hyperlipoproteinemia Type V (Disease or Syndrome) 5

Tinea Versicolor (Disease or Syndrome) 5

Hyperlipoproteinemia Type III (Disease or Syndrome) 5

Dyslipidemias (Disease or Syndrome) 5

Akathisia, Drug-Induced (Disease or Syndrome) 3

Hyperlipoproteinemia Type III (Disease or Syndrome) 3

Dyslipidemias (Disease or Syndrome) 2

Hyperlipoproteinemia Type IV (Disease or Syndrome) 2

Hyperlipoproteinemias (Disease or Syndrome) 2

Optic Neuritis (Disease or Syndrome) 2

Vitamin K Deficiency (Disease or Syndrome) 2

Table 5.3: Frequency analysis of MeSH to GO associations in the human gene APOE
dataset (with threshold 6.50 on confidence score)

MeSH descriptor w/ major topic GO terms Number of termlinks

Hyperlipoproteinemia Type V apolipoprotein E receptor binding 1

Hyperlipoproteinemia Type V regulation of axon extension 1

Hyperlipoproteinemia Type V response to reactive oxygen species 1

Hyperlipoproteinemia Type V tau protein binding 1

Hyperlipoproteinemia Type V vasodilation 1

Table 5.4: Number of termlinks containing pair of MeSH and GO terms in the
human gene APOE dataset
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Chapter 6

Aggregation Using Semantic Knowledge in Controlled Vocabularies

We address two limitations of our approach in Chapter 5 to identify significant

associations of pairs of CV terms. Suppose we consider some termlinks of a user

query dataset. We consider a bipartite graph of GO terms and MeSH terms. There

is an edge between a GO and MeSH terms if there is a corresponding termlink in the

user query dataset. We call this an association bridge between the two ontologies.

While mining this association bridge of termlinks between the sets of CV terms, we

treated each CV term (of the CV or ontology) independently. For example, is-a is

a key relationship that exists amongst terms of a single CV. Intuitively, termlink

evidence existing for a child CV term could influence the support and the confidence

scores of the parent CV term. By mining the termlinks of the child and the parent

CV terms independently, we may be ignoring this potential contribution from the

structure of the ontologies.

The second limitation is that we did not consider any patterns of annotation

in a dataset of termlinks. Suppose we consider a user query dataset of an OMIM

record conceptually linked to a set of Entrez Gene records. Such a set of gene records

have some biological affinity since they are all associated with the human gene or

genetic disorder in the OMIM record. Our analysis of such sets of gene records and

the corresponding datasets of termlinks indicates that patterns of annotation do
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exist. One such pattern is an increase in the frequency of annotation using sibling

CV terms that will be illustrated in Section 6.2.

The extension discussed in this chapter will exploit both sources of knowledge,

i.e., the is-a structure of ontologies and the pattern of annotations [103]. We ag-

gregate the termlinks associated with a parent CV term and use this evidence to

potentially boost the values for support and confidence scores in associations of the

parent CV term. A weight factor (α) determines the relative weight of evidence or

the contribution from the child CV terms. The value of α can also reflect a variance

of confidence scores of the sibling CV terms of the same parent CV term, e.g., a

high variance can reduce the contribution from child terms.

Section 6.1 discusses some benefits of exploiting structural knowledge in the

CVs and ontologies. We introduce patterns of annotations in Section 6.2, and met-

rics for aggregation in Section 6.3. Section 6.4 reports on an experimental evaluation

using three user query datasets. We then discuss the impact of different α values

on the rank before boosting to the boosted rank in the Section 6.5.

6.1 Benefits of Aggregating Structural Knowledge

Three examples from the GO hierarchy are shown in Figure 6.1(a). DNA

metabolic process is a parent term of DNA recombination and DNA repair, which

is a parent term of recombinational repair. Both integral to membrane and

intrinsic to plasma membrane are child terms of intrinsic to membrane. The

term cell part has three child terms intracellular, cell surface and membrane.
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Figure 6.1: Example hierarchies in GO and MeSH

Figure 6.1(b) reported an example MeSH hierarchy. DNA Probes is a parent term

with two child terms DNA, Complementary and DNA Primers.

The three level hierarchy for GO:0006259 (DNA metabolic process) at the

top of Figure 6.1(a) is used to illustrate some aggregation scenarios. We refer to

these four GO terms by their GO IDs in Figure 6.2. These GO terms annotate a set

of Entrez Gene records, which are directly linked to PubMed records. Their MeSH

annotations are also reported. In Figure 6.2(a), the parent GO term GO:0006259

and its child term GO:0006310 annotate Entrez Gene records. In a first step, we

could aggregate the contribution of the immediate child term and the parent term as

shown in Figure 6.2(b). In a second step, we could further aggregate the contribution

of the grandchild term GO:0000725 as shown in Figure 6.2(c) to perform a multiple-

level aggregation.

By initially focusing at the level of associations between pairs of individual CV
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Figure 6.2: One-level and multiple-level aggregation from child terms to their parent
term in GO

terms (Chapter 4), we are able to simplify the problem of finding patterns. How-

ever, by ignoring their structural properties, we may be losing valuable insight. We

illustrate the potential benefit of exploiting structural knowledge of is-a hierarchies.

Consider the termlinks generated from a user query dataset of the human gene

TP53 in Entrez Gene, PubMed records that are linked to it, and the correspond-

ing annotations. Consider the GO and MeSH is-a hierarchies of Figure 6.3. In

Figure 6.3(a), a termlink (negative regulation of progression through cell

cycle, Cyclin-Dependent Kinases, 7157, 17612495) occurs between the par-

ent GO term and the parent MeSH term. In addition, two termlinks (cell cycle

arrest, CDC2-CDC28 Kinases, 7157, 14640983) and (cell cycle arrest,
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Figure 6.3: Example parent-and-child hierarchies in GO and MeSH (each dashed
line shows an actual association generated in the human gene TP53 user query
dataset)

Cyclin-Dependent Kinase 2, 7157, 17371838) occur between the child terms.

These latter two termlinks are evidence to boost the association between the pair

of parent terms.

In Figure 6.3(b), the termlink (protein binding, Tosylphenylalanyl

Chloromethyl Ketone, 7157, 12821135) occurs between the parent GO term

protein binding and a child MeSH term Tosylphenylalanyl Chloromethyl

Ketone. In addition, there are two termlinks from the parent MeSH term to

two child GO terms. Note that there is no termlink between the two parent CV

terms, protein binding and Amino Acid Chloromethyl Ketones in the termlink

dataset; this is represented by a broken link between the pair of terms in the associ-

ation bridge. However, the three termlinks in this Figure can be considered evidence

to introduce a new association between the parent GO term protein binding and

the parent MeSH term Amino Acid Chloromethyl Ketones.

To summarize, Figure 6.3 presented two examples of termlinks associated with
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combinations of parent/child CV terms. It seems intuitively apparent that the

termlink evidence attached for example to the child GO terms should influence the

evidence of the parent GO terms. By treating these termlinks as strictly indepen-

dent, we may be ignoring potentially valuable information offered by the structure

of the GO ontology. Note that this applies to each participating ontology involved

in generating termlink, in this case GO and MeSH. Thus, analogously from the per-

spective of the MeSH hierarchy, parent MeSH terms may benefit from the termlink

evidence of their child MeSH terms. Finally, new associations between pairs of par-

ent CV terms may also be introduced, where the parent CV term was not used for

annotation.

Note that in the experiments reported in this research, we only exploit a limited

amount of knowledge. For example, we limit aggregation of termlink evidence along

the GO is-a hierarchy alone, and we only consider aggregation from a GO term

to its immediate parent term. Given the prevalence of siblings in co-annotation

relationships, we would like to explore strategies that can exploit these patterns

using the is-a structural hierarchy of the GO ontology. Although we do not evaluate

the patterns over the MeSH ontology, our initial observations suggest that similar

patterns exist in MeSH. We plan to study multiple-level aggregation along both the

GO and MeSH hierarchies in future research.
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6.2 Patterns of Annotations

Next, we illustrate a pattern of annotation that results in a higher frequency

of annotations that use sibling terms from the GO ontology. We note that there is a

similar pattern of higher frequency of annotation of parent and child terms, and that

these patterns are also observed in individual Entrez Gene record annotations. For

example in the human gene TP53 user query dataset as shown in Figure 6.3(b), the

parent GO term protein binding and three of its child terms are all annotating

the human TP53 gene record.

We consider a dataset of termlinks obtained from OMIM records conceptually

linked to (one or a set of) gene records in Entrez Gene. We note that these gene

records are biologically linked since they are associated with the same mendelian

disorders and in the OMIM record. As of September 6th, 2007, there were 14,851

OMIM records. The distribution of Entrez Gene records conceptually linked to an

OMIM record is given in Figure 6.4. While 14,502 OMIM records are linked to a

single gene, 193 records have links to two genes, and the OMIM record with the

title SCHIZOPHRENIA (MIM Number 181500) links to 22 genes, which is shown on

the far right side in the figure. The average number of gene records linked from an

OMIM record is 1.057.

To illustrate the annotation pattern, we compare two techniques to group pairs

of gene records to create user query datasets. For the first method (OMIM-linked),

we place a pair of genes in a user query dataset only if both genes are conceptu-

ally linked to the same OMIM record. Next, we generate a similar number of pairs
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Figure 6.4: Distribution of Entrez Gene records linked per OMIM record

Figure 6.5: Distribution of numbers of sibling GO terms for 1,000 pairs of genes

for Random-paired; here we pick a pair of human genes at random from Entrez

Gene. For each pair in OMIM-linked and Random-paired, we extract the GO an-

notations. Each dataset contains 1,000 pairs of genes. To validate the pattern of

annotation, we generated the 1,000 pairs of OMIM-linked genes and the 1,000 pairs

of Random-paired genes three times. Figure 6.5 shows the distribution of the num-

ber of sibling GO terms that annotate the pairs of genes from OMIM-linked and

Random-paired.

We observe that pairs of genes in the OMIM-linked dataset have a much higher

distribution of sibling GO terms than in the Random-paired dataset. For example
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as reported in Figure 6.5, there are 1,618 occurrences of termlinks involving a pair

of sibling GO terms, and 148 occurrences of termlinks involving a triple of sibling

GO terms in OMIM-linked. In contrast, the 1,000 pairs of genes in Random-paired

only have 559 occurrences of pairs and 34 occurrences of triples of sibling GO terms.

To validate this pattern of annotation, we generated 1,000 pairs of OMIM-linked

genes and 1,000 pairs of Random-paired genes three times. The three OMIM-linked

datasets had a mean of 1,499 pairs of sibling GO terms and a mean of 196 triples of

sibling GO terms. The three Random-paired datasets had a mean of 487 pairs of

sibling GO terms and a mean of 41 triples of sibling GO terms. To summarize, user

query datasets such as pairs of OMIM-linked genes with biological affinity reflect a

pattern of annotation with a higher frequency of annotation using sibling GO terms.

6.3 Metrics for Aggregation

We consider boosting the support and confidence scores of associations of the

parent CV terms using the evidence of the termlinks of child CV terms. We use

the unboosted score for support or confidence score in Equations 4.5a and 4.5b as a

baseline.

We propose two solutions for aggregation. The simple solution, 1-step Link

aggregation (1L), will aggregate the termlinks from the child to the parent and use a

counting approach. This approach has two limitations. One is that the percentage

contribution from the termlinks of the child CV term cannot be controlled. The

second is that a variance of confidence scores among the sibling terms of the parent
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Figure 6.6: Examples of one-level 1L Aggregation from child term to parent term

CV term cannot be factored in by the 1L simple counting approach. We then present

a comprehensive solution, 2-step Score-Score (2SS), that obtains a weighted score

for the parent CV term. The weighted score allows the contribution from the child

CV terms to be controlled. The value of the weight α can reflect the variance of

confidence scores of the sibling CV terms. For example, a high variance can increase

the contribution from the child terms.

6.3.1 Simple Solution for Aggregation (1L)

Consider the example in Figure 6.6(a) where g1 and g2 are two sibling child

terms of parent GO term g. There are two termlinks, one from GO term g, and

another one from g2, to the MeSH term m. The baseline confidence score for the

parent g, or for the child g2, paired with m, are 1
4

and 1
3
, respectively.

The simple 1L counting based approach to boost the confidence score of the

parent CV term g will accumulate all termlinks associated with g2 and credit it to

the parent term. The 1L expression for the boosted support and confidence scores
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for the parent term is as follows:

Supp1L(g,m,E ′, P ′) =
#(g ∧m,E ′, P ′) + #(gi ∧m,E ′, P ′|gi ∈ Child(g))

#(G,M,E ′, P ′)
(6.1a)

Conf1L(g,m,E ′, P ′) =
#(g ∧m,E ′, P ′) + #(gi ∧m,E ′, P ′|gi ∈ Child(g))

#((g ∨ gi) ∨m,E ′, P ′|gi ∈ Child(g))
(6.1b)

In this example, the original confidence for the association between parent g

and m was 1
4
, and the boosted confidence score is 1+1

5
= 2

5
.

6.3.2 Limitations of the Simple Solution

We present two cases that illustrate the limitation of the simple 1L counting

approach. Consider the termlinks of Figure 6.6(b). The original confidence scores

for the associations of g, and g2, with m, are 1
4

and 2
6
, respectively. We note that

these values are equal to the scores in Figure 6.6(a). Suppose that we use the

simple counting 1L approach to boost the confidence score. The boosted value for

confidence score for the association between g and m will be 1+2
7

= 3
7
.

We note that the boosted confidence score of 3
7

in Figure 6.6(b) between g and

m is different from the boosted value of 2
5

of Figure 6.6(a). However, in both cases,

the original confidence scores between g and m, and between g2 and m, are identical.

This is the first limitation. Ideally, we would like to control the contribution made

by termlinks from the child CV terms, so that in a case such as Figures 6.6(a)

and (b), when the confidence score of the child CV term is the same, then there

is an identical contribution to the parent CV term. With the 1L approach, the

contribution to the parent CV term is not controlled by the confidence score of the
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Figure 6.7: Examples of one-level 2SS Aggregation from child terms to parent term

child CV term but instead it is controlled by the number of termlinks that refer to

the child CV terms.

We next consider the situation where there is a variance in the confidence

scores of the associations of the sibling CV terms. In Figure 6.7(a), the confidence

scores for the associations of each of child terms, g1 or g2, with m, is 3
8
, i.e., they are

of equal confidence scores. In Figure 6.7(b), there is a variance of the confidence

scores of the child terms. The confidence score of the association of g1 with m is 1
8
,

while the confidence score in the association of g2 with m is five times higher and is

5
8
.

In both Figures 6.7(a) and (b), the original confidence score of the association

of the parent g with m is 1
8
. Using the 1L approach, the boosted confidence score

for the association between g and m is also 1+3+3
10

= 7
10

, in both cases. On one hand,

when there is equal confidence score in the associations of the sibling terms (as

in Figure 6.7(a)), this may be considered strong evidence that these siblings should

boost the confidence score in the associations of the parent term. On the other hand,

when there is a significant variance in the confidence scores of the sibling terms (as
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in Figure 6.7(b)), it is unclear if these siblings are providing strong evidence to boost

the confidence score in the parent term. Thus, referring to Figures 6.7(a) and (b),

when there is no variance in the confidence scores of the siblings as in Figure 6.7(a),

the boost to the parent should be greater.

6.3.3 Comprehensive Solution for Aggregation (2SS)

We present the 2SS aggregation method; it will overcome both limitations of

the 1L approach. It will use a weight factor α to control the contribution to the

parent CV term using the confidence scores of the child CV terms. The value of α

will be determined based on the variance of the confidence scores of the sibling CV

terms. The support and confidence scores presented in Equations (6.2a) and (6.2b).

Supp2SS(g,m,E ′, P ′)

= (1− α) ∗ SuppB(g,m,E ′, P ′) + α ∗ Avg(SuppB(gi,m,E
′, P ′)|gi ∈ Child(g))

(6.2a)

Conf2SS(g,m,E ′, P ′)

= (1− α) ∗ ConfB(g,m,E ′, P ′) + α ∗ Avg(ConfB(gi,m,E
′, P ′)|gi ∈ Child(g))

(6.2b)

We summarize the features of the 2SS solution. First, we calculate the confi-

dence score for each of the child terms, and then we average the confidence scores

over all the child terms. We then use a weighting factor α to determine the actual

contribution from the child terms that should be used to boost the confidence score
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of the parent. We experiment with the following simple rule of thumb to determine

a value for α between 0 and 1
2
, where the value for α will depend on the variance in

the confidence scores for the child terms. If there is high variance in the confidence

score for each of the child terms of some parent g, then we will be less confident that

we should aggregate over these child terms and use the child terms to potentially

boost the confidence score in g. If the variance in the confidence scores for the child

terms is low, we assign α = 1
2

to show that there is equal importance between the

weight given to the parent term and the weight given to the child terms.

We note that based on the above expression, the boost to the parent g is

greatest when the confidence score of each of the child terms is independently high,

and when there is low variance in the confidence score of the child terms. The boost

to g is low when either the confidence score in each of the child terms is low, or when

there is a high variance in the confidence scores of all child terms of g. The boosted

confidence score (with α = 1
2
) in Figure 6.7(a) is 1

2
× 1

8
+ 1

2
× (3

8
+ 3

8
) = 1

4
. This

value is higher compared to the boosted confidence score (with α = 1
4
) in Figure

6.7(b) which is 3
4
× 1

8
+ 1

4
× (1

8
+ 5

8
) = 3

16
. Although the difference between these

two boosted confidence values is 1
16

, this difference can have a major impact on the

rank of the associations. However, in our experiments, we use the same value of α

for all associations.

We note that the rule of thumb used to select a value of α will need to be

expanded to consider aggregation along multiple levels of the GO hierarchy, as well

as simultaneous aggregation along both the GO and MeSH hierarchies.
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6.3.4 Comparison to Generalized Association Rule Mining

Generalized association rule mining in [72, 91, 202] creates an extended trans-

action set either by replacing an item with a new item representing a generalized

concept, or by aggregating both the original item and the generalized item. We

note that the generalized concept does not occur in their original transaction set.

Their solution approach is similar to our counting based 1L approach and faces the

limitations that were discussed, i.e., controlling the contribution of child CV terms

and reflecting variance of confidence. The difference between generalized association

rule mining and what we call aggregation is that all nodes and concept in our CV or

ontology are real and can be in a real transaction because data records can be an-

notated by all nodes, but in generalized association rule mining only leaf nodes are

in the real transactions. Consequently, the simple counting approach is largely used

in generalized association rule mining, since it is the only choice for aggregation.

6.4 Experimental Evaluation

6.4.1 Generating user query datasets

Disease related user query datasets were generated using the corresponding

OMIM record. The protocol follows links from OMIM to Entrez Gene and then to

PubMed. Table 6.1 reports on the statistics of four disease related datasets. For

example, for the BREAST CANCER user query dataset, the OMIM record has links to

13 Entrez Gene records that are annotated with 147 distinct GO terms. Following
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MIM Number 114480 114500 176807 191170

Title BREAST CANCER COLORECTAL CANCER PROSTATE CANCER TUMOR PROTEIN P53

#(E′) 13 14 13 1∗

#(G) 147 135 117 44

#(P ′) 3,237 2,827 1,518 1,888

#(M) 2,463 2,594 1,624 1,889

#t(G, M, E′, P ′) 1,232,086 1,189,379 339,491 986,612

#(G, M) 124,342 123,343 57,735 83,116

#(Gnew) 24 23 20 7

#(Gnew, M) 18,648 18,002 9,539 13,223

Table 6.1: Statistics in four human genes and genetic disorder user query datasets

the links from these 13 Entrez Gene records to PubMed, we obtain 3,237 distinct

PubMed records that are annotated with 2,463 distinct MeSH descriptor terms (of

selected UMLS semantic types [20, 204]). We generate 1,232,086 termlink instances

and collect 124,342 distinct association pairs of a GO term and a MeSH term. The

one-level aggregation using the GO structured is-a hierarchy introduces 24 new GO

terms (titled as #(Gnew) in the table) and 18,648 pairs of associations (titled as

#(Gnew,M) in the figure) that did not occur among the original termlinks. We

note that ∗ corresponds to the human gene TP53 user query dataset in the Chapter

3.

6.4.2 Examples of Identifying Significant Associations via

Aggregation

We use three user query datasets to illustrate a range of opportunities to boost

the associations of the parent CV terms. We note that all these examples have been

verified to be meaningful and some are previously unknown.
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We calculate a baseline confidence score, ConfB, for associations of the parent

CV term that do not reflect aggregation evidence, and a boosted confidence score

Conf2SS. We also report on the original rank RankB and the new rank Rank2SS.

Note that for each user query dataset, Rank2SS is determined over a combination

(union) of both the original pairs of associations of CV terms and any new asso-

ciations introduced via aggregation. For example, for the BREAST CANCER dataset,

Rank2SS will be determined over (124,342+18,648) associations. We use constant

values of α = 1
2

in the following seven examples. We note that the boosted ranks on

the child terms can be worse than the baseline ranks, because the newly introduced

parent term may have better ranks and the ranks of some other parent terms may

have improved more.

The first example in Table 6.2 involves a parent GO term DNA binding and

its three child terms, transcription factor activity, damaged DNA binding

and sequence-specific DNA binding. The associated MeSH term is Cell Cycle

Proteins. We see that the parent term already has the highest confidence score

(among these associations) and has a rank of 156. The confidence score of the child

terms are low and they are farther back in rank. There is also high variance in the

confidence score of the child terms. Nevertheless, there is a positive contribution

from the child terms and the parent term’s boosted rank is 133. We note that

the actual confidence score of the parent term has gone down after boosting and in

general the scores for confidence score tend to reduce after boosting. However, the

rank is determined using the score relative to other associations. Thus, while the

actual score may reduce, the rank may actually improve.
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GO term Parent GO term ConfB RankB Conf2SS Rank2SS

DNA binding 0.0180 156 0.0099 133

transcription factor activity DNA binding 0.0045 2,572 3,522

damaged DNA binding DNA binding 0.0005 31,030 38,349

sequence-specific DNA binding DNA binding 0.0005 31,030 38,349

Table 6.2: BREAST CANCER user query dataset having MeSH descriptor term Cell

Cycle Proteins

GO term Parent GO term ConfB RankB Conf2SS Rank2SS

protein binding 0.0160 235 0.0123 73

enzyme binding protein binding 0.0172 182 203

protein N-terminus binding protein binding 0.0171 197 239

identical protein binding protein binding 0.0003 52,113 53,740

insulin receptor substrate binding protein binding 0.0001 116,801 132,716

Table 6.3: BREAST CANCER user query dataset having MeSH descriptor term Tumor

Suppressor Protein p53

In the second example in Table 6.3, we consider the parent GO term protein

binding in the BREAST CANCER user query dataset. The parent GO term has four

child terms, enzyme binding, protein N-terminus binding, identical protein

binding and insulin receptor substrate binding. The confidence scores of the

associations of child terms enzyme binding and protein N-terminus binding are

high and their ranks are 182 and 197 respectively. The confidence scores of the other

two child terms are very low. This is a case where the confidence scores in two child

terms are high and there is also high variance among the child terms’ confidence

scores. The boost is significant because the two child terms’ confidence scores are

higher than the parent term’s baseline confidence score. We see that the parent

rank has improved from 235 to 73.

In the third example in Table 6.4, the parent term phosphoinositide

3-kinase activity does not have a confidence score since there are no termlinks for
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GO term Parent GO term ConfB RankB Conf2SS Rank2SS

phosphoinositide 0.0125 71
3-kinase activity

phosphatidylinositol-4,5- phosphoinositide 0.0325 29 32
bisphosphate 3-kinase activity 3-kinase activity

1-phosphatidylinositol- phosphoinositide 0.0175 161 195
3-kinase activity 3-kinase activity

Table 6.4: BREAST CANCER user query dataset having MeSH descriptor term
1-Phosphatidylinositol 3-Kinase

this GO term to the MeSH term 1-Phosphatidylinositol 3-Kinase. The parent

term has two child terms, phosphatidylinositol-4,5-bisphosphate 3-kinase

activity and 1-phosphatidylinositol-3-kinase activity. Both child terms

have high confidence scores and their ranks are also very good, at 29 and 161,

respectively. The variance in the child terms is also low. This is a situation where the

boost provided by the child terms should be the most significant, i.e., the confidence

score in the child terms is high and variance in confidence scores is low. Thus, after

the parent term is boosted, it too has a very good rank of 71. We note that the

rank of the child terms terms has worsened slightly. To explain, there are several

parent GO term associations that did not occur in the original termlinks that have

been introduced after aggregation. They tend to be ranked ahead of the child terms

from the example.

In the Fourth example in Table 6.5, we consider the parent GO term protein

binding in the COLORECTAL CANCER user query dataset. The parent GO term

has four child terms, enzyme binding, protein N-terminus binding, protein

C-terminus binding and insulin receptor substrate binding. The confidence

score of the associations of child terms enzyme binding and protein N-terminus
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GO term Parent GO term ConfB RankB Conf2SS Rank2SS

protein binding 0.0165 147 0.0126 93

enzyme binding protein binding 0.0174 101 129

protein N-terminus binding protein binding 0.0174 101 132

protein C-terminus binding protein binding 0.0004 40,481 47,729

insulin receptor substrate binding protein binding 0.0001 117,248 133,069

Table 6.5: COLORECTAL CANCER user query dataset having MeSH descriptor term
Tumor Suppressor Protein p53

binding is high and their rank is 101. The confidence scores of the other two child

terms is very low. This is a case where the confidence scores in two child terms is

high and there is also high variance among the child terms’ confidence scores. The

boost should not be as significant as in the previous case. We see that the parent

rank has improved from 147 to 93. Thus, the boost is not as significant as in Table

6.3.

In the fifth example in Table 6.6, the parent term defense response does not

have a confidence score since there are no termlinks for this GO term to the MeSH

term Toll-Like Receptor 1. The parent term has two child terms, inflammatory

response and innate immune response. Both child terms have the same high

confidence score and their rank is also very good as 11. There is no variance between

the child terms. This is a situation that parent term did not occur in the original

user query dataset, and both child terms have the same original confidence scores.

The boost provided by the child terms solely contribute to the parent term’s score.

Thus, after the parent term is boosted, it maintains the high rank at 11.

In the final example in Table 6.7, we consider the PROSTATE CANCER user

query dataset. The parent term integral to membrane has only one child term
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GO term Parent GO term ConfB RankB Conf2SS Rank2SS

defense response 0.0182 11

inflammatory response defense response 0.0364 11 11

innate immune response defense response 0.0364 11 11

Table 6.6: COLORECTAL CANCER user query dataset having MeSH descriptor term
Toll-Like Receptor 1

GO term Parent GO term ConfB RankB Conf2SS Rank2SS

integral to membrane 0.0429 14 0.0394 1

integral to plasma membrane integral to membrane 0.0360 26 30

Table 6.7: PROSTATE CANCER user query dataset having MeSH descriptor term
Kangai-1 Protein

integral to plasma membrane. The associated MeSH term is Kangai-1 Protein.

Both parent and child have high confidence scores and their rank is within the Top

30. The boosted confidence score for the parent term pushes it to rank first among

the (57,735+9,539) associations for this user query dataset! To summarize, we use

a variety of GO is-a hierarchies, and range of confidence scores for the child terms,

to illustrate the impact on the parent CV term.

6.5 Impact of α on Boosted Rank

We consider the BREAST CANCER dataset; it has 124,342 associations prior to

aggregation and 18,642 associations are added after aggregation. We select the Top

300 associations (after 2SS boosting). Figure 6.8 reports on the rank RankB before

boosting (Y axis) and the rank Rank2SS after boosting (X axis), for the Top 300.

If an association did not occur in the original termlink dataset, its rank is labeled

no rank on the Y axis. We compare two α values, 1
2

and 1
4
.

A 45 degree line in Figure 6.8 represents the case where there is no change
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Figure 6.8: Impact (rank changes) of boosting confidence scores for BREAST CANCER

user query dataset

in the rank from boosting. For α = 1
4

(labeled +), the contribution from the

child terms is only 25%; hence we see many of these datum clustered around the no

change in rank line. There are a few datum scattered above the line indicating

cases where the ranks have improved after boosting.

For α = 1
2

(labeled •), the situation is quite different since the contribution

from the child terms is more significant at 50%. Many of the datum above the

baseline indicate improvement of the rank. Among these improvements, there are

six new associations (originally with no rank) and 21 associations whose original

ranks were greater than 8,000 that now occur in the Top 300.
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Chapter 7

Biological Use Cases that Exploit Knowledge of Associations

Cancer researchers face a daunting challenge as they search data records, follow

links, integrate and mine the vast Web of records in multiple repositories. An

example task is to mine the knowledge in publications related to a particular cancer

or genetic disorder in human. Our objective is to apply the LSLink framework and

methodology to identify potentially significant associations between terms in GO

and MeSH. The associations between a GO term and a MeSH term could represent

a variety of biological relationships. These associations may lead to discovering new

knowledge about human cancer and new relationship between genes and genetic

disorders.

We collected background knowledge (including data, annotations and links

between data records) for human genes and genetic disorders prior to September

6th, 2007, and construct a background dataset of termlink instances as described in

Section 3.2. We collaborate with a cancer researcher Dr. Chi-Ping Day (specializa-

tion in cancer specific promoters) on discovering and validating possible unknown

knowledge. Consider a set of cancer related human gene records in Entrez Gene an-

notated with GO terms that has multiple links to a set of publications in PubMed

annotated with MeSH terms. Section 7.1 introduces the discovery process of finding

a publication that studies an unknown association. In order to distinguish between
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a known association and an unknown association, we examine the related literature

to see how known associations are reported. This is discussed in Section 7.2. Section

7.3 reports on the evidence that supports the discovery. It may provide insight into

the knowledge used by the scientists. We discuss and present a set of publications

that might have assisted the scientists of the prior publication on their research in

Section 7.4. Section 7.5 reports some limitations of the work.

7.1 Discovery Process

Our collaborator in cancer research is interested in the BRCA1/BRCA2-

containing complex. We built the early onset breast cancer in human user

query dataset to include annotations and links for two human gene BRCA1 and

BRCA2 records in Entrez Gene as shown in Table 3.6. We calculate the support and

confidence scores, and the P -values for this user query dataset. The Top-20 associa-

tion pairs of GO and MeSH terms based on confidence scores are reported in Table

5.2. Our collaborator classified the 20th rank association pair between GO term

negative regulation of centriole replication and MeSH term Fallopian

Tube Neoplasms (Neoplastic Process) under the categories maybe meaningful

and not known yet as reported in Section 5.2. However, we have not found sufficient

evidence to support this hypothesis. However, the association pairs below Top-20

might also be biologically meaningful. To further investigate potentially meaningful

associations, we take the following steps:

1. The overlap analysis in Section 4.6 suggests that Top-50% confidence score
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ranks and Top-50% P -value ranks agree on 80% of association pairs. The com-

plete set of this early onset breast cancer in human user query dataset

contains 18,638 associations. Among these associations, 8,261 are in both

Top-50% for the confidence score and P -value ranks.

2. Section 4.4 discusses an observation that scientists were interested in both

singleton and local associations. Among 8,261 associations from the previous

step, there are 4,427 associations in the local subset.

3. We then limit the associations by GO terms. Our collaborator selects seven

GO terms that discuss promoter, DNA damage response, DNA repair, and

apoptosis as shown in the second column in Table 7.1. 1,008 associations

remain after this filtering.

4. We further limit the associations by MeSH terms using their Semantic Types.

Our collaborator selects three Semantic Types out of the left column in Ta-

ble 3.4. These three Semantic Types are Biologically Active Substance,

Enzyme, and Genetic Function. We receive 171 MeSH terms among 585 as-

sociations after this filtering. A partial list of these MeSH terms are reported

on the second column in Table 7.2.

Next, our collaborator used the discovery tool introduced in Section 5.1 to

review these 585 associations. Our collaborator performed the frequency analysis

as discussed in Section 5.3, and reported the results in Tables 7.1 and 7.2. The

third column in Table 7.1 reports on numbers of associations that contain the cor-
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ID GO term Number of distinct
associated MeSH terms

g1 DNA damage response, signal transduction 167
by p53 class mediator resulting
in transcription of p21 class mediator

g2 DNA damage response, signal transduction 55
resulting in induction of apoptosis

g3 DNA repair 26

g4 positive regulation of DNA repair 33

g5 regulation of apoptosis 123

g6 regulation of transcription from 29
RNA polymerase II promoter

g7 regulation of transcription from 152
RNA polymerase III promoter

Table 7.1: Frequency analysis for GO terms of final 585 associations of GO and
MeSH terms in early onset breast cancer in human user query dataset

responding GO term among the final 585 associations. The largest cluster is be-

tween the GO term DNA damage response, signal transduction by p53 class

mediator resulting in transcription of p21 class mediator and 167 MeSH

terms. The smallest cluster is between DNA repair and 26 MeSH terms. The third

column in Table 7.2 reports on number of associations that contain the correspond-

ing MeSH term among the final 585 associations. The MeSH term HMGA1b Protein

(Biologically Active Substance) is associated with all seven GO terms as re-

ported in Table 7.1. The MeSH term Promoter Regions (Genetics)

(Biologically Active Substance) is associated with only one GO term DNA

damage response, signal transduction by p53 class mediator resulting

in transcription of p21 class mediator.
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ID MeSH term (Semantic Type) Number of distinct
associated GO terms

m1 1-Phosphatidylinositol 3-Kinase (Enzyme) 3

m2 Apoptosis (Biologically Active Substance) 2

m3 BRCA1 Protein (Biologically Active Substance) 3

m4 BRCA2 Protein (Biologically Active Substance) 3

m5 DNA Methylation (Genetic Function) 3

m6 DNA Repair Enzymes (Enzyme) 4

m7 HMGA1b Protein 7
(Biologically Active Substance)

m8 Promoter Regions (Genetics) 1
(Biologically Active Substance)

m9 Tumor Suppressor Protein p53 3
(Biologically Active Substance)

. . . . . . . . .

Table 7.2: Frequency analysis for MeSH terms of final 585 associations of GO and
MeSH terms in early onset breast cancer in human user query dataset

Among all GO and MeSH terms, our collaborator is highly interested in three

GO terms {g1, g4, g7} and eight MeSH terms {m1, m2, m3, m4, m5, m6, m8, m9}.

Our tool further identified 21 interesting association pairs of GO and MeSH terms as

reported in Table 7.3. We note that three GO and eight MeSH terms may generate

24 associations. However, three out of these 24 associations had been filtered out in

the preparation steps as described at the beginning of this section. We label a set of

identifiers Ax where x ∈ {1, 2, . . . , 21} in the first column of Table 7.3. The second

and third columns report on three GO and eight MeSH terms in the corresponding

association. Columns four and five report on confidence scores and ranks. Columns

six and seven report on P -values and ranks.
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ID GO MeSH ConfC RankC P − value RankP Mean- Known
term term ingful

A1 g1 m4 5.32 176 1.61e−110 332 yes Widely
A2 g4 m4 5.29 196 1.61e−110 332 yes Widely
A3 g7 m4 5.28 204 1.61e−110 332 yes somewhat
A4 g1 m3 5.13 304 ≈ 0 1 yes Widely
A5 g4 m3 5.10 335 ≈ 0 1 yes Widely
A6 g7 m3 5.09 338 ≈ 0 1 maybe somewhat
A7 g1 m6 4.10 2623 8.93e−4 5064 yes Widely
A8 g4 m6 4.06 2777 8.93e−4 5064 yes Widely
A9 g7 m6 4.06 2797 8.93e−4 5064 maybe somewhat
A10 g1 m8 3.93 3369 1.62e−49 711 yes Widely
A11 g1 m5 3.86 3730 7.97e−7 3191 yes somewhat
A12 g4 m5 3.83 3883 7.97e−7 3191 yes somewhat
A13 g7 m5 3.82 3908 7.97e−7 3191 maybe no
A14 g1 m9 3.73 4348 2.03e−43 769 yes somewhat
A15 g4 m9 3.70 4536 2.03e−43 769 yes somewhat
A16 g7 m9 3.69 4566 2.03e−43 769 maybe no
A17 g1 m2 3.45 5734 4.03e−25 1103 yes Widely
A18 g7 m2 3.41 5908 4.03e−25 1103 yes somewhat
A19 g1 m1 3.28 6608 8.934−4 5064 yes Widely
A20 g4 m1 3.25 6802 8.93e−4 5064 yes somewhat
A21 g7 m1 3.24 6835 8.93e−4 5064 maybe no

Table 7.3: Interesting associations identified among 585 associations in early onset

breast cancer in human user query dataset

7.2 Distinguishing a Known or Unknown Association

Each interesting association pair of GO and MeSH terms can be classified with

one of the following cases:

• There is no prior evidence to support this association.

• There is some evidence to support this association, but there are also other

related associations that can make it difficult to draw conclusions.

• There is very clear evidence, so this association is well known.
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Figure 7.1: Weak associations (generated from the links between Entrez Gene and
PubMed) versus strong associations (extracted from AmiGO)

In order to distinguish a known or unknown association, we search for evidence

in the form of supporting literature. This is a time consuming process and is heavily

depending on the knowledge of the scientist. Among the set of PubMed publica-

tions linked from an Entrez Gene record, some PubMed publications may or may

not directly relate to some GO terms annotating the corresponding Entrez Gene

record. As shown in Figure 7.1, the top association between GO and MeSH terms

is connected through the annotated Entrez Gene record and the PubMed publica-

tion, which is identified by LSLink. This association pair of GO term g1 and MeSH

term m1 has weak supporting evidence in the annotated literature, which may not

directly relate to the GO term g1. In contrast, the association pair of GO term g2

and MeSH term m2 has strong supporting evidence in the annotated literature, if

there is a direct link from the annotated GO record g2 in AmiGO [4] (which is the

official GO browser and search engine) to the PubMed publication with the MeSH

annotation m2.

Our collaborator reviews three previously identified GO term records {g1, g4,

g7} at AmiGO. We find that the article [38] by Deng and Brodie titled Roles of
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BRCA1 and its interacting proteins discusses a set of biological phenomena

in GO including g1, g5 and g7. This article can be found in PubMed with PMID:

10918303, and is annotated with a set of MeSH terms including BRCA1 Protein, DNA

Damage, DNA Repair, Genes, p53, and Transcription, Genetic. This article is

an evidence to support associations A4 and A6. We may further conclude that A7,

A9, A14, A16, A17 and A18 are also known associations. The authors summarize the

two models discussed in the article on Page 734 in the text as follows:

"The first model predicts that enhanced function of p53 or

its mediators should repress BRCA1-associated tumorigenesis by

increasing apoptosis and stabilizing the genome. The second

model argues that increases in RB levels should inhibit the

proliferation of tumor cells in patients who suffer reduced

BRCA1 expression caused by familial mutations or epigenetic

modifications."

The first model reported in this article discusses the GO term DNA damage

response, signal transduction by p53 class mediator resulting in

transcription of p21 class mediator, and three MeSH terms {Apopdesis,

BRCA1 Protain, Tumor Suppressor Protein p53}, which validates the associa-

tions A4, A14 and A17.

Using AmiGO, another article [35] by Daniel titled Highlight: BRCA1 and

BRCA2 proteins in breast cancer discusses a biological process of positive

regulation of DNA repair, which is GO term g4. This article is found in PubMed
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with PMID: 12242698 and is annotated with a set of MeSH terms including BRCA1

Protein, BRCA2 Protein, DNA Repair, Gene Expression Regulation, and

Transcription, Genetic. It serves as an evidence to support associations A2, A5

and A8.

We further expand the search space for evidence by using the GO hierar-

chy. For the GO term regulation of transcription from RNA polymerase III

promoter, we locate its parent term and two sibling terms in the GO hierarchy

that are also in this user query dataset. We report these four terms in Figure 7.2.

The parent GO term is regulation of transcription, DNA-dependent. The two

sibling GO terms are positive regulation of transcription, DNA-dependent,

and regulation of transcription from RNA polymerase II promoter. In the

result of this expansion of three related GO terms based on GO hierarchy, we find an

article [172] by Siddique titled The BRCA2 is a histone acetyltransferase dis-

cusses a biological process of regulation of transcription, DNA-dependent. It

is in PubMed with PMID: 9619837, and annotated with MeSH term including BRCA2

Protein. It provides support for the conclusion that A3 is possibly a meaningful

association.

However, we did not find literature earlier than year 2007 as evidence to sup-

port those associations containing MeSH terms Promoter Regions (Genetics),

DNA Methylation. and 1-Phosphatidylinositol 3-Kinase regarding to human

genes BRCA1 and BRCA2.
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Figure 7.2: GO term with identifier GO:0006359, two of its sibling terms, and their
immediate common parent term

7.3 Evidence to Support the Discovery

Our collaborator analyzed the result in Table 7.3. The following two asso-

ciations of GO and MeSH terms, A13 = (regulation of transcription from

RNA polymerase III promoter, DNA Methylation) and A21 = (regulation of

transcription from RNA polymerase III promoter, 1-Phosphatidylinositol

3-Kinase), were found to be significant. Our collaborator confirmed that the combi-

nation of these two associations was indeed a meaningful discovery. Subsequently, we

identified the following target publication (pt) of interest, that appeared in the jour-

nal BMC Cancer in January 2008, titled, Ovarian carcinomas with genetic and

epigenetic BRCA1 loss have distinct molecular abnormalities [152]. The

authors of this target publication pt proved that the suppression and down-regulation

of BRCA1 by promoter methylation is associated with the up-regulation of PIK3CA.

PIK3CA is a positive regulator of cell survival in the 1-Phosphatidylinositol
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Figure 7.3: Two biologically meaningful associations of pairs of GO and MeSH terms
that validated by the target publication pt

3-Kinase (PI3K) pathway. Moreover, the germline or somatic loss of the BRCA1

gene is not associated with PIK3CA up-regulation. Taken together, these results

demonstrate that the PIK3CA gene may have some effect on the promoter methy-

lation of tumor suppressor genes, leading to A13 and A21 as shown in Figure 7.3. The

GO term regulation of transcription from RNA polymerase III promoter is

regulated by the MeSH term DNA Methylation), and is mediated by the MeSH

term 1-Phosphatidylinositol 3-Kinase.

The target publication pt validates that subclassifications of ovarian carci-

nomas can be used to guide treatment and determine prognosis. Germline and

somatic mutations, loss of heterozygosity (LOH), and epigenetic events such as pro-

moter hypermethylation can lead to decreased expression of BRCA1/BRCA2 in

ovarian cancers. Figure 2 in pt reports on a summary of BRCA1 abnormalities

and associated features. The second classification is High grade carcinoma with

epigenetic BRCA1 loss. All of the BRCA1 promoter hypermethylation is asso-

ciated with lower RNA level, consistent with the hypothesis that this BRCA1 is

down-regulated by promoter methylation. A summary of analysis of high grade se-
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rious/undifferentiated ovarian tumors in Figure 3 of pt, again in the High grade

carcinoma with epigenetic BRCA1 loss group, most cases have higher copy num-

ber of PIK3CA (catalytic subunit of PI3K) gene in the column of MIP COPY NUMBER.

Also, in the column of qRT-PCR, most cases have either higher level of PI3KCA or

lower level of PTEN. Since PTEN is the inhibitor of PI3KCA, this implies that the

tumor needs only one way to activate PI3K. Figure 2 and Figure 3 are further

discussed on Page 5 in the text as follows:

"We found that those tumours with BRCA1 loss through genetic

events differed according to several parameters from tumours

with loss of BRCA1 due to epigenetic events. Most striking were

differences in PIK3CA copy number as determined by the MIP copy

number assay. While none of the BRCA1 mutation positive cases

demonstrated an increased PIK3CA copy number almost all (7/8)

of the samples with epigenetic loss of BRCA1 had increased copy

number at the PIK3CA locus. The PIK3CA copy number increases

were low level (mean amplification ratio 2.7, range 1.7-4.9),

and in all but one case amplification of PIK3CA was associated

with amplification of the entire chromosomal arm. PIK3CA mRNA

levels were assessed using qRT-PCR and relative mRNA levels were

found to correlate with copy number ratios (p = 0.02)."

Based on the results reported in these two figures in pt, in a particular subtype

of high grade ovarian carcinoma, we can conclude that BRCA1 loss is indeed asso-
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ciated with its promoter (regulation of transcription from RNA polymerase

III promoter) methylation (DNA Methylation) as well as PI3K

(1-Phosphatidylinositol 3-Kinase) activation. This suggests that PI3K medi-

ates promoter methylation of the BRCA1 gene, resulting in the silencing of BRCA1.

Note that promoter methylation relates to the association A13, and PI3K relates to

the association A21 as shown in Figure 7.3. The authors draw a conclusion on Page

8 in the text as follows:

Putting the result from these two figures together, in a particular subtype of

high grade ovarian carcinoma, BRCA1 loss is associated with its promoter methyla-

tion as well as PI3K activation, suggesting that PI3K mediates promoter methyla-

tion of BRCA1 gene, resulting its silencing. The authors draw a conclusion on Page

8 in the text as follows:

"This is the first study, however, to report that decreased

PTEN expression levels are associated with ovarian carcinomas

carrying BRCA1 mutations while increased PI3KCA copy number is

associated with ovarian carcinomas with epigenetic loss of

BRCA1."

The target publication pt is an evidence to support the associations between

the GO term gt = regulation of transcription from RNA polymerase III

promoter, and the MeSH term mt ∈ {DNA Methylation, 1-Phosphatidylinositol

3-Kinase}. Table 7.4 reports in the MeSH terms for the target publication pt

with PMID: 18208621. The first column reports on the MeSH descriptors, and
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the second column reports on the MeSH qualifiers. There are two descriptors

BRCA1 Protein and Ovarian Neoplasms that have two qualifiers genetics and

metabolism. Among these fifteen MeSH terms, five of them are identified as ma-

jor topics, which are identified in the last column. Although MeSH term mt has

not been used to annotate pt, our collaborator finds pt supports the discovery of

associations A13 and A21 as shown in Figure 7.3. Our collaborator further concludes

that although other associations between GO term regulation of transcription

from RNA polymerase II promoter and MeSH term mt do not occur in our final

set of 21 associations, these two associations inferred in the target publication pt

are meaningful and novel. We note that these two associations are in the subset of

non-local associations.

7.4 What to Suggest to Scientists

We use associations A13 and A21, and target publication pt to illustrate the

scientific discovery process. When A13 and A21 are recognized as potentially signif-

icant, both by our metrics and by scientist, then a natural first step is to check for

the novelty of A13 or A21. We will thus mine the literature for the imprint of A13

or A21. If the imprint is low, then novelty is assumed to be high; conversely, a well

known or trivial association may have a high imprint.

A logical next step is to provide a ranked set of published articles that ex-

plains or elaborates on A13 and A21. We will begin by predicting papers most rele-

vant to the target MeSH term mt ∈ {DNA Methylation, 1-Phosphatidylinositol
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MeSH descriptor MeSH qualifier(s) Major topic

BRCA1 Protein geneticsmetabolism Yes

Base Sequence No

Epigenesis, Genetic genetics Yes

Female No

Gene Deletion Yes

Gene Expression Regulation, Neoplastic genetics Yes

Genome, Human genetics No

Humans No

Immunohistochemistry No

Nuclear Proteins genetics No

Ovarian Neoplasms geneticsmetabolism Yes

PTEN Phosphohydrolase genetics No

RNA, Messenger genetics No

Transcription Factors genetics No

Tumor Suppressor Protein p53 metabolism No

Table 7.4: MeSH terms in the target publication pt with PMID: 18208621

3-Kinase}, the target GO term gt = regulation of transcription from RNA

polymerase III promoter, and also the target human gene et = BRCA1 of inter-

est. We use relevance feedback from scientists to determine the effectiveness of our

retrieval approach. We also explore a novel protocol to use the target publication pt,

and the publications that it cites, to identify a set of gold standard publications to

further elaborate on the association. We perform more detailed analyses on target

publication pt, target MeSH term mt, target GO term gt, and target human gene

et. We label six sets of PubMed publications for analysis as follows:

• Pc: The set of PubMed publications that are cited in the target publication

pt.
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• Pf : The set of PubMed publications that are cited in the publications in Pc.

We label these forward citations from Pc.

• Pb: The set of PubMed publications that cite publications in Pc. We label

these backward citations to Pc.

• Pm: The set of PubMed publications that are returned by PubMed using the

target MeSH term mt as a keyword to search at PubMed.

• Pg: The set of PubMed publications that are retrieved from the target GO

term gt record at AmiGO [4], which the official GO browser and search engine.

• Pe: The set of PubMed publications that are linked via the target human gene

et record in Entrez Gene.

The gold standard publications for the previous mentioned target publication

pt is the set of publications in Pc. We can best support the scientist by providing

her with the CV pair (gt,mt), the evidence publications in Pt that support the pair

(gt,mt), as well as publications that are either in the gold standard Pc or are similar

to the publications in Pc. Clearly, the challenge is to identify those publications that

are in Pc or are very similar. We can define the problem as follows: Given some CV

pair = (gt,mt), evidence publications Pt, and maybe some relevant GO and MeSH

terms, how do we identify documents that are in Pc or are similar to those in Pc.

While this research does not attempt to solve this above problem, our case study

will explore how well we can perform in identifying the gold standard set described

here, using overlap analysis.
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Figure 7.4: A citation network for the target publication pt

Figure 7.4 reports on a citation network generated in November 2008 for the

target publication pt. There are 83 publications cited in pt. 80 out of these 83

citations are found in PubMed, and we denote this set of PubMed publications as

Pc. The other three citations include one Web address and two citations that are not

found in PubMed. These 80 publications are cited by 1,819 publications in PubMed

other than pt, and further cite 299 publications in PubMed publications. We label

1,819 backward citations as Pb, and 299 forward citations as Pf .

We analyze 80 PubMed records in Pc. 78 out of 80 records have MeSH anno-

tations, and there are 1,153 MeSH annotations for these 78 PubMed records. We

filter the MeSH terms by their Semantic Types and extract 252 distinct MeSH terms

from these annotations. Figure 7.5 reports on the cardinalities of PubMed records

annotated by each MeSH term on the horizontal axis, and the number of such

MeSH terms in the vertical axis. For example, there are 128 MeSH terms extracted

from Pc that are annotating only one PubMed record in Pc. MeSH term Ovarian
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Figure 7.5: Distribution of number of MeSH descriptors versus the cardinalities of
citations for the corresponding MeSH descriptors for the target publication pt

Neoplasms, which is shown on the far right side in the figure, annotates 49 PubMed

records. We report on the Top 12 MeSH terms (range from 10 to 49 on the hor-

izontal axis in Figure 7.5) with highest cardinalities of annotations in Pc in Table

7.5. MeSH term Ovarian Neoplasms annotates 49 publication cited by the tar-

get publications. Two MeSH terms {DNA Methylation, 1-Phosphatidylinositol

3-Kinase} in mt have cardinalities of 12 and 10 respectively. Two MeSH terms of

human genes Genes, BRCA1 and Genes, BRCA2 annotate 22 and 15 publications re-

spectively, and the MeSH terms of their corresponding proteins BRCA1 Protein and

BRCA2 Protein annotate 10 and 13 citations for the target publication respectively.

As shown in Figure 7.4, ten records in Pc cite 299 PubMed publications, which

are in Pf . We note that citations of the other 70 publications in Pc are not provided

by PubMed yet. We extract 4,533 MeSH annotations in Pf , and filter with Semantic

Types to collect a set of MeSH terms. We report the Top-12 MeSH terms with

highest cardinalities of annotations in Pf in Table 7.6. The MeSH terms in this set
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MeSH term Number of publications

Ovarian Neoplasms 49

Genes, BRCA1 22

Mutation 21

Breast Neoplasms 19

Genes, BRCA2 15

BRCA2 Protein 13

1-Phosphatidylinositol 3-Kinase 12

DNA, Neoplasm 12

Germ-Line Mutation 12

Neoplasm Proteins 12

Neoplasm Staging 12

BRCA1 Protein 10

DNA Methylation 10

Gene Expression Regulation, Neoplastic 10

Table 7.5: MeSH terms with highest cardinalities of annotations in Pc

appeared broader in concept compared to the MeSH terms reported in Table 7.5.

MeSH Mutation has the highest cardinality to annotate 72 PubMed publications

in Pf . The MeSH term 1-Phosphatidylinositol 3-Kinase in mt annotated 44

records in Pf . Another MeSH term DNA Methylation in mt is not found in this set

of MeSH terms.

Similarly in Figure 7.4, 68 records in Pc are cited by 1,721 PubMed records

with PMID smaller than 18208621 of pt. We label this set Pb, which might include

similar work as published in pt. We note that there are two other publications in

Pc that are not yet cited by any publications in PubMed. We extract 28,127 MeSH

annotations in Pb, and report the Top-12 MeSH terms with highest cardinalities of

annotations in Pb in Table 7.7. Unsurprisingly, most of these twelve MeSH terms
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MeSH term Number of publications

Mutation 72

Proto-Oncogene Proteins 61

Protein-Serine-Threonine Kinases 58

Cell Line 55

Ovarian Neoplasms 49

Proto-Oncogene Proteins c-akt 49

DNA 47

Signal Transduction 47

1-Phosphatidylinositol 3-Kinase 44

Phosphorylation 43

Breast Neoplasms 36

Enzyme Activation 36

Table 7.6: MeSH terms with highest cardinalities of annotations in Pf

are well used terms, and may not have close relationships to pt and mt. MeSH term

Tumor Suppressor Protein p53 annotates 485 PubMed publications in Pb. MeSH

terms 1-Phosphatidylinositol 3-Kinase and DNA Methylation in mt annotate

97 and 55 PubMed publications respectively.

To search relevant literature discussing DNA Methylation and

1-Phosphatidylinositol 3-Kinase, our collaborator combines these two terms

and uses the keyword "1-Phosphatidylinositol 3-Kinase"[All Fields] AND

"DNA Methylation"[All Fields] to query PubMed. PubMed returns a set of

20 publications with PMID smaller than 18208621 of pt. We label this set Pm. We

then extract 422 MeSH annotations in this set, and report Top-12 MeSH terms with

highest cardinalities of annotations in Pm in Table 7.8. As a validation, all these 20

publications are annotated with MeSH terms in mt.
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MeSH term Number of publications

Tumor Suppressor Protein p53 485

Cell Line 321

Breast Neoplasms 305

Cyclins 298

Mutation 292

Cyclin-Dependent Kinase Inhibitor p21 275

DNA-Binding Proteins 252

Apoptosis 246

Cell Cycle 244

Transcription Factors 235

Tumor Cells, Cultured 226

Proto-Oncogene Proteins 208

Table 7.7: MeSH terms with highest cardinalities of annotations in Pb

The union set of Pc, Pf , Pb, and Pm has 2,119 distinct PubMed publications.

We retrieve 240 PubMed records annotated with either MeSH term

1-Phosphatidylinositol 3-Kinase or DNA Methylation. Our collaborator spent

several hours to review titles, abstracts, and MeSH annotations in this set of 240

PubMed records, and concluded as follows.

1. There is no evidence in PubMed to support the association between GO term gt

and MeSH terms in mt, so the associations (regulation of transcription

from RNA polymerase III promoter, 1-Phosphatidylinositol 3-Kinase),

and (regulation of transcription from RNA polymerase III promoter,

DNA Methylation) are both unknown to scientists as of September 6th, 2007.

2. Our collaborator finds those publications also annotated with MeSH term

Promoter Regions (Genetics) are closely related to pt.
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MeSH term Number of publications

1-Phosphatidylinositol 3-Kinase 20

DNA Methylation 20

Proto-Oncogene Proteins c-akt 8

Promoter Regions (Genetics) 7

Signal Transduction 7

Apoptosis 6

Enzyme Inhibitors 6

Mutation 6

Phosphorylation 6

Protein-Serine-Threonine Kinases 6

RNA, Messenger 6

Gene Expression Regulation, Neoplastic 6

Table 7.8: MeSH terms with highest cardinalities of annotations in Pm

We further generated Pg and Pe. Pg is a set of PubMed publications identi-

fied in the GO term regulation of transcription from RNA polymerase III

promoter (GO:0006359) record in the AmiGO browser, which contains seven pub-

lications. Pe is a set of PubMed publications linked from the target human gene

record et BRCA1 in Entrez Gene, which contains 513 publications as shown in Ta-

ble 3.6. Table 7.9 reports on the overlap between two sets of PubMed publications

generated for analysis. The numbers in each cell reports on the overlap between the

sets of publications in the corresponding row and column. For example, there are

55 PubMed publications linked from human gene BRCA1 (as in Pe) also found in

the set of the backward citations (as in Pb). We note that there are 13 out of 80

gold standard publications (in Pc) can be found in Pf , Pm, and Pe. This may not

be a high ratio, but it can be a good start. Improving the relevance ratio on the
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Pc Pf Pb Pm Pg Pe

Pc 80 5 3 0 0 5

Pf 299 10 0 0 3

Pb 1,721 0 0 55

Pm 20 0 0

Pg 7 1

Pe 513

Table 7.9: Overlap analysis between sets of PubMed publications related to pt, gt,
mt, and et

suggestions to scientists will make exciting future work.

7.5 Limitations of the Work

Some limitations of the work are as follow:

• We have observed that many known associations occur in the Top-K, when

the associations are ranked based on either metric. On the other hand, many

interesting associations mat not occur in the Top-K rank. By processing Top-

50% ranks, we may not identify these low rank associations. To improve the

discovery outcome, a solution is to help the scientist use various filters and

other methods like grouping to find associations of interest. We may also need

to design more applicable metrics to estimate and locate those biologically

meaningful associations, which are not identified by our existing metrics.

• To find and filter widely known association is not trivial as discussed in Section

7.2. We first need to find potentially supporting literature from available data

resources such as PubMed and AmiGO. We then need to analyze or mine
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the text for the knowledge supported in the publication. This process takes

a tremendous amount of time for scientists. It involves text extraction and

mining, and is difficult to be automated.

• When we present potentially interesting associations to scientists, they may

want to see a set of relevant or related publications if they would like to

validate the discovery. Some of the suggesting publications may only discuss

either CV term of the association pair, and some of the supporting publications

may describe relationships regarding to the target. Multiple publications must

be integrated together to support an unknown discovery.

• The user evaluation using two dimensions of metrics is truly depended on the

knowledge of the scientist, and resources that scientists can use. In this work,

the evaluation is done by the same scientist, who expresses the interest of the

query to generate the user query dataset. Publications, public data resources

such as AmiGO, and textbooks are all useful resources to validate the meaning

of the association.

• Our methodology depends on the correct annotations for data records, and

the correct links between data records. If the data record of interest is not

annotated with any CV terms, or annotated with incorrect CV terms, we are

unable to generate a correct result.
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Chapter 8

Conclusion and Future Direction

We have presented the LSLink framework and methodology to explore the in-

terconnected and annotated data records in multiple repositories for life sciences, and

to identify biologically meaningful associations. We have generated a set of termlink

instances to represent a background dataset of knowledge. We then identified those

associations of pairs of CV terms in two CVs that are potentially significant and

may lead to new knowledge. We have developed a methodology to determine the

support and confidence scores in associations between pairs of CV terms. We then

used the hypergeometric distribution to calculate probabilities and P -values to de-

termine over-represented associations. We created an initial dataset of termlink

instances from human gene records in Entrez Gene annotated with GO terms that

link to PubMed publications annotated with MeSH terms. We supported multiple

user query scenarios, and created corresponding user query datasets.

We have reported on experiments that show two metrics adopted from the

association rule mining and the hypergeometric distribution. We found support

and confidence scores of the association rule mining to be efficient and promising

for each user query dataset. We then used P -values of hypergeometric distribution

as a second metric to further process significant associations. We have identified

multiple user query datasets for evaluation of two metrics based on the cardinalities
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of annotations of the data, links between data records, termlink instances, and

association pairs of CV terms. We further defined six types of associations based

on their appearance in background and user query datasets. We observed that

both metrics are sensitive to the association type, with the P -values better able

to discriminate based on the association type. We performed overlap analysis and

reported on the agreement between two metrics. We calculated Kendall’s τ rank

distance to determine the dissimilarity of the high ranked associations identified

using the support and confidence scores and the P -values.

We have developed a discovery tool for scientists and data curators to browse

meaningful associations and the corresponding scores. We have designed two sets

of metrics for user validation. We extended the user evaluations to determine if

the significant associations that are identified by either the support and confidence

scores or P -values are of interest. To be of interest they must be both biologically

meaningful and not widely known. We reported on the results of two user valida-

tion tasks, and identified two potentially biological meaningful associations that are

not known yet to scientists. We reported on the filtering, grouping and frequency

analysis using the discovery tool.

We have presented an approach and preliminary evaluation to exploit knowl-

edge from CVs and ontologies. The patterns of annotations to identify significant

associations jointly offer a bridge between two CVs and ontologies. We have con-

sidered the potential contribution from the structure of the CVs and ontologies by

mining the termlinks of the child and parent CV terms together. We have also

considered a user query dataset of an OMIM record conceptually linked to a set of
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Entrez Gene records. Such set of gene records have some biological affinity since

they are all associated with the genes and genetic disorders in the OMIM record.

Our analysis of such sets of gene records and the corresponding datasets of termlinks

indicates that patterns of annotation do exist. One such pattern is an increase in the

frequency of annotation using sibling CV terms. We used three user query datasets

to explain the benefits in aggregating the semantic knowledge and patterns in CVs

and ontologies. We then discussed the impact of different ratio values on ranks

before aggregating to boosted ranks.

We have collaborated with a cancer researcher on a case study to discover and

validate associations that are both biological meaningful and not known yet. We

preprocessed a user query dataset containing two human genes, and reported on

the discovery process to identify significant associations. We illustrated a method-

ology to distinguish a known or unknown association. We discussed the evidence

to support a majority of associations that are of interest to our collaborator. For

associations that are not known yet, we identified a target publication that supports

our discovery. We reported on the evidence in the target publication to support the

discovery. We then analyzed the citations and annotations to report on what to

suggest to scientists.

In future work, we will extend the dataset to include additional links, such

as pharmacogenetic and related literature, so that associations across multiple re-

sources can be analyzed. We will analyze the background and user query datasets

using synthetic data to model the metrics. We will develop advanced metrics that

can further identify significant associations. We will automate identification on nega-
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tive annotations. We will automate distinguishing a known or unknown association.

We will also extend the methodology to include more semantic knowledge associ-

ated with the CV terms, and patterns within an ontology. We will investigate how

relationships within an ontology may impact the significance of some associations

among CV terms. We also plan to study cases where the associations are judged

to be not meaningful or unknown to scientists. We will also analyze techniques to

identify significant associations, e.g., association rule mining techniques and also

consider modifications to our approach to determine support and confidence. We

will study possible corrections to be applied in the hypergeometric distribution test.

In generalizing associations, we will consider extensions, e.g., aggregating simulta-

neously using the structure of both ontologies, aggregating up multiple levels, etc.

We also plan an extensive evaluation on termlinks to identify interesting patterns of

annotation, and study their impact on finding significant associations. Last but not

least, we can establish more biological use cases to validate and prove the success of

our framework for discovering meaningful association in the annotated life sciences

Web.
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