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An analytical model of flapping wing structures for bio-inspired micro air

vehicles is presented in this dissertation. Bio-inspired micro air vehicles (MAVs)

are based on insects and hummingbirds. These animals have lightweight, flexible

wings that undergo large deformations while flapping. Engineering studies have

confirmed that deformations can increase the lift of flapping wings. Wing flexi-

bility has been studied through experimental construction-and-evaluation meth-

ods and through computational numerical models. Between experimental and

numerical methods there is a need for a simple method to model and evaluate

the structural dynamics of flexible flapping wings. This dissertation’s analytical

model addresses this need.

A time-periodic assumed-modes beam analysis of a flapping, flexible wing

undergoing linear deformations is developed from a beam analysis of a helicopter

blade. The resultant structural model includes bending and torsion degrees of

freedom. The model is non-dimensionalized. The ratio of the system’s structural

natural frequency to wingbeat frequency characterizes its constant stiffness, and

the amplitude of flapping motion characterizes its time-periodic stiffness. Current



flapping mechanisms and MAVs are compared to biological fliers on the basis of

the characteristic parameters. The beam analysis is extended to develop an plate

model of a flapping wing.

The time-periodic stability of the flapping wing model is assessed with

Floquet analysis. A flapping-wing stability diagram is developed as a function of

the characteristic parameters. The analysis indicates that time-periodic instabilities

are more likely for large-amplitude, high-frequency flapping motion. Instabilities

associated with the first bending mode dominate the stability diagram. Due to

current limitations of flapping mechanisms, instabilities are not likely in current

experiments but become more likely at the operating conditions of biological fliers.

The effect of structural design parameters, including wing planform and

material stiffness, are assessed with an assumed-modes aeroelastic model. Wing

planforms are developed from an empirical model of biological planforms. Non-

linearities are described in the effect of membrane thickness on lift generation.

Structural couplings due to time-periodic stiffness are identified that can decrease

lift generation at certain wingbeat frequencies.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Micro Air Vehicles

Micro air vehicles (MAVs) are a heterogeneous class of aerial robots of very

small size. MAVs are a subset of unmanned air vehicles (UAVs). Operational

UAVs range in size from man-portable remote-controlled vehicles to full-scale

aircraft, with wingspans of two to 100+ ft. MAVs are even smaller, comparable

in size to a human hand. The Defense Advanced Research Projects Agency

(DARPA) is primarily responsible for the initial interest in, and rapid development

of, MAVs. In conjunction with research initiatives, DARPA released a technical

report in 1997 laying out conceptual guidelines for MAV sizing, performance and

missions [1]. MAVs were defined as aerial vehicles with a maximum dimension

no greater than 15 cm. Scaling trends suggested an MAV should have a gross

weight of 100 g and a target payload of 20 g. An “over-the-hill” reconnaissance

mission was used to set MAVs’ performance goals: an endurance of one hour,

a 10-km range and a top speed of 10 to 20 m/s. Additional proposed military

applications included reconnaissance, surveillance and communications in urban

environments and building/cave interiors; mobile immersion sensing of chemical

clouds; and use as flying beacons to aid search-and-rescue missions. Traffic

monitoring, fire/rescue operations, wildlife surveys and power-line inspections

were identified as potential civilian applications. Regardless of mission, MAVs will

operate at Reynolds numbers of 103 to 105, a significantly different aerodynamic

environment than full-scale aircraft (Re = 107 to 108) [2].
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Despite DARPA’s wide range of proposed missions, researcher Robert Michel-

son argues that MAVs may not be best suited to many of them [3]. Citing

the effects of adverse aerodynamic environments and questioning the benefits of

MAVs versus currently operational UAVs for outdoor missions, Michelson singles

out autonomous interior operations as uniquely suited to MAVs, asserting “[t]he

mission space for which size really does matter is ‘indoors and in confined spaces’

where the environment is controlled or at least protected.” DARPA called such

applications “the most demanding envisioned” because of the technological chal-

lenges that must be overcome to give MAVs the “capability to navigate complex

shaped passageways, avoid obstacles and relay information” [1]. This dissertation

will follow Michelson in considering interior operations to be a primary mission of

MAVs. Thus, exceptional maneuverability at low speeds—ideally including hover

capability—is deemed of utmost importance for MAVs.

A menagerie of MAVs have emerged in response to DARPA’s initiatives.

Some are miniaturizations of operational full-scale fixed- and rotary-wing con-

figurations. Others are modeled after the birds and insects that first inspired

men to fly. Some resemble neither; novel approaches based on no previous

mechanical or biological pattern. The following sections will give overviews of

each configuration, saving an in-depth survey of insect flight and insect-like MAVs

for last.

1.1.1 Fixed-Wing Micro Air Vehicles

Fixed-wing configurations represent the most technologically mature MAVs.

Aided by the availability of off-the-shelf components, early prototypes like the

Aerovironment Black Widow [4] (figure 1.1a) and the MLB Trochoid [5] were

demonstrating flight performance consistent with DARPA goals by 2000. Other

operational fixed-wing MAVs include NRL’s MITE [6], several membraneous-
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(a) Aerovironment Black
Widow

(b) U. Florida 4.5-inch MAV

Figure 1.1: Fixed-wing MAVs.

wing vehicles from the University of Florida [7, 8] (figure 1.1b) and the University

of Florida’s “bendable-wing” MAV, whose wings can be rolled up for stowage [9].

Numerous experimental and numerical studies of low-Re airfoil and wing design

have been performed [10–13]. All fixed-wing MAVs use low aspect ratio wings to

maximize wing area for a constrained wingspan, with AR typically between one

and two. Current state-of-the-art research is focusing on the benefits of flexible

wing structures to MAV applications: static aeroelastic deformations of flexible

wings may provide performance enhancements over a range of flight conditions,

while active morphing may be used for flight control [7, 8, 14].

Fixed-wing MAVs are best suited for applications requiring long endurance

and high cruise speeds, such as DARPA’s over-the-hill reconnaissance mission.

They are relatively efficient in producing lift at high flight speeds, and the low-

aspect ratio wings provide more area to store fuel or fuel cells, mission equipment

or payload than other MAV configurations. Fixed-wing designs use separate

systems to produce thrust (engine/motor and prop), lift (airfoils) and control

forces (control surfaces), significantly decreasing complexity of each subsystem

from both a mechanical and a control standpoint. However, they must maintain

a high forward velocity for their wings to generate lift and have large turn radii,
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making them unsuitable for prolonged applications in confined environments.

1.1.2 Rotary-Wing Micro Air Vehicles

Rotary-wing configurations or micro-rotorcraft, based on helicopters, are

an obvious choice for hover-capable MAVs. As with fixed-wing MAVs, initial

development of micro-rotorcraft was expedited by the availability of preexist-

ing components, and a number of vehicles have demonstrated controlled flight.

Operational rotary-wing MAVs generally appear in two configurations: single-

rotor designs with turning vanes, such as the Delft University of Technology XQ-

138 [15] (figure 1.2a), the Micro Craft iSTAR [16] and Univeristy of Maryland

(UMD) TiFlyer [17]; and coaxial-rotor designs, such as the UMD MICOR [18]

(figure 1.2b) and active-structure MAV [19], Epson µFR [20] and Cornerstone

Research Group HALO [21]. A quad-rotor design has also been flight-tested

by NASA Ames [22]; the same configuration is used by Stanford’s three-gram

Mesicopter [23] and Daedalus Flight Systems/UMD’s Microquad [24]. MAVs’

rotors are often shrouded to protect the blades and enhance performance. Drawing

from the analytical techniques used for full-scale helicopters, design studies for

airfoil and rotor configurations [25–28] as well as shroud geometry [29, 30] have

(a) XQ-138, a shrouded
single-rotor configuration

(b) MICOR, a coaxial configuration

Figure 1.2: Rotary-wing MAVs.
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been performed for micro-rotorcraft.

Most micro-rotorcraft use a their rotors to provide both lift and thrust, though

a ring-wing shroud can augment lift in high-speed forward flight. To reduce the

complexity of the rotor system, many rotary-wing MAV designs use fixed-pitch

rotors and provide control by directing the rotor downwash via control tabs. Some

micro-rotorcraft like MICOR, TiFlyer and HALO incorporate traditional control

via swashplate. The efficiency of current rotary-wing MAVs, as measured by the

figure of merit, is relatively low compared to full-scale helicopters [18, 26, 31]. A

rotor with mixed-mode flapping-rotating motion, called an ornicopter, has been

proposed as a method of increasing rotor efficiency and is discussed in section

1.1.4.

1.1.3 Bird-Like Micro Air Vehicles

Flapping-wing MAVs generate aerodynamic forces through oscillatory flap-

ping motion of the wing surfaces. Flapping-wing flight is often conceptualized

as two regimes, bird-like flight and insect-like flight, corresponding to the meth-

ods of steady flight used by the respective animals. The regimes are generally

distinguished by the direction of wing flapping motion. Bird-like flight is char-

acterized by wing motion in a primarily vertical plane. Bird-like flight may be

more accurately designated as “fast forward flight” and is associated with high

flight velocities. In contrast, insect-like flight is characterized by wing motion in a

primarily horizontal plane. Insect-like flight is often considered to be synonymous

to a method of hover known as “normal hovering flight.” Despite often being

considered separately, the bird-like and insect-like flight regimes are not entirely

distinct; rather, they should be viewed as opposing extremes of a continuum of

wing motions. In flight, birds and insects alter the orientation of wing motion to

generate transient control forces.
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In the case of biological fliers, a much clearer distinction between so-called

bird-like and insect-like flight can be made by considering the presence of active

musculature in the wing. Bird-like fliers have muscles in their wings that allow

active control of the shape of the wing (e.g., by extension and retraction). This con-

trol is necessary to enhance dissymmetry between the upstrokes and downstrokes

in forward flight. Contrarily, insect-like fliers do not have muscles in their wings

(in the case of hummingbirds, their muscles cannot actuate a shape change due to

a fused wing skeleton). The wings of insect-like fliers have a fixed planform and

generate roughly symmetric lift on the upstrokes and downstrokes. However, this

distinction is not generally applicable to current MAVs—at present most “bird-

like” MAVS lack the ability to actively alter the shape of their wings.

We now consider bird-like flight more in more detail. Birds (excepting

hummingbirds) and all bats use bird-like flight. Almost all animals that use

bird-like flight are larger than the desired MAV dimensions, many significantly

so. Smaller wrens and finches are the only avian bird-like fliers with wingspans

less than 20 cm. Bird-like flapping occurs in an approximately vertical plane

with secondary forward-and-aft motion. Wing strokes are asymmetric, with the

downstroke duration being generally less than the upstroke (i.e., the wings plunge

downward faster than they return upward). Wingbeat frequency, stroke and gait

may be varied depending on flight condition [32, 33]. The wings pitch about

the span during the stroke, but remain relatively horizontal. All bird-like fliers

have flexible wing structures—articulated bones covered by feathers in birds or

membranes in bats—and musculature by which they actively morph their wings

during each wingbeat, as illustrated in figure 1.3. In slow forward flight, bird-like

fliers extend their wings fully during the downstroke, generating almost all lift

and thrust for the stroke, then pull their wings backward and inward to decrease

negative lift during the upstroke. At higher forward flight speeds the wing
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Figure 1.3: A Canada goose in flight [34].

planform variation between up- and downstrokes is lessened, and some useful

aerodynamic forces are generated on the upstroke. In addition to wing span and

sweep, bird-like fliers can actively alter the twist and camber of their wings. The

wing surfaces can also flex passively like sails to adapt to the free-stream airflow;

in some cases, sets of feathers act as self-deploying flaps.

Besides the impressive adaptability of their wings, bird-like fliers are aided

by the time-periodic nature of flapping, causing unsteady stall effects which in-

crease the maximum instantaneous lift coefficient on the downstroke. A bound

leading-edge vortex, similar to those seen on delta-wing aircraft, has been recorded

on small swifts [35] and may appear on other birds as well. Two recent literature

surveys augment biological studies of bird-like flight with engineering analyses

to aid MAV development. Shyy, Berg and Ljungqvist [36] focus on kinematics,

aerodynamics and power consumption of bird-like flight. Lindhe Norberg [37] re-

views structural morphology of bird-like animals with some additional discussion

of insect-like and gliding/parachuting flight structures. Videler’s Avian Flight [32]

provides a more in-depth look at the mechanisms of bird-like flight.

Almost none of the adaptability of biological bird-like fliers has been repli-

cated by bird-like vehicles, called ornithopters. In contrast to biological fliers’ wide

range of wing motions an ornithopter typically has only a single degree of con-
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trolled wing motion, vertical flapping motion about the root; cf. the University of

Toronto’s model and human-sized ornithopters [38], the Aerovironment/Caltech

Microbat [39] (figure 1.4a), and the UMD JLMAV [40] as well as commercially

available model-scale ornithopters such as the Tim Bird and Cybird. Flapping

motion is invariably generated by a four-bar or slider-crank mechanism connected

to a driven shaft, which has the effect of fixing the wings’ stroke and gait. All

ornithopters to date have had fixed planforms. Most ornithopters, and all operable

research-based MAVs like the Microbat and JLMAV, have simple wings composed

of a stiff leading-edge spar and one or more trailing spars spanned by a torsionally

compliant membrane. Wing deformations result in a net positive thrust but

little lift; an angled tail is used to point the thrust vector upwards to create

usable lift [41]. This design is exceedingly primitive; Alphonse Pénaud was

using such a configuration in 1874, illustrated in figure 1.4b [41]. We may thus

designate vehicles with a single flapping degree of freedom (typically with a fixed

amplitude) and membrane wings with a stiff leading-edge spar as “Pénaud-type

ornithopters.” DeLaurier notes this configuration is inefficient in creating lift; other

ornithopter configurations add fixed cambered airfoils to improve efficiency, but

none truly capture biological bird-like flight. DeLaurier himself has developed

aerodynamic and aeroelastic analyses of ornithopter flight for large-scale vehicles

(a) Microbat (b) Pénaud’s 1874 ornithopter

Figure 1.4: MAV-scale ornithopters.
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with thick airfoils [38,42–44] but such thick airfoils may not be practical for MAVs.

Interest in MAVs has spurred development of new integrated technolo-

gies for ornithopter application. Pornsin-Siriak et al. have used MEMs etching

techniques to create wing spars that mimic two-dimensional bone and venation

patterns of bats and insects [39]. The same team developed flexible check-valves

integral to the wing membrane to allow airflow through the wing on the upstroke,

alleviating negative lift without wing morphing [45]. Kim and Han affixed a Macro

Fiber Composite (MFC) piezoelectric actuator to a Pénaud-type ornithopter wing

to actively induce camber during each downstroke and reported a 20% increase

in lift [46]. Kim and Han implemented their system on a commercially available

Cybird ornithopter with a wingspan of 99 cm—over six times larger than MAVs.

1.1.4 Unconventional Micro Air Vehicles

Some proposed MAVs do not follow the configurations of previous aircraft or

animals. Michelson argues in “Novel Approaches to Miniature Flight Platforms”

[3] that MAVs are hindered by “the uncreative tendency towards biomimicry” and

suggests designers aim instead for bioinspiration: leveraging knowledge gained

from biological fliers without creating exact mechanical copies. Furthermore, he

advocates designing vehicles from the start to be energy-efficient via integrated

multifunctional structures. As an example Michelson presents his Entomopter

design (most closely akin to ornithopters, despite its name), a flapping MAV

with two sets of rigid wings at opposite ends of a beam fuselage, as depicted in

figure 1.5. The fuselage is designed with a torsional resonance at the wingbeat

frequency to enhance the out-of-phase flapping of the two wings. The Entomopter

will be powered by a reciprocating chemical muscle (RCM) powered by chemical

fuel. The RCM produces byproduct waste gas, which will be used for a variety

of different purposes including flow-control over the wings and internal gas bear-
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ings. Constructing such a complex MAV appears to be no small task and after

more than a decade of research no fully operational Entomopter exists, despite the

successful development of four generations of RCMs. The flight of a nonresonant

model of the Entomopter powered by a rubber band—essentially a Pénaud-type

ornithopter with fore and aft wing pairs—is presented on the Entomopter Project

website [47].

Many other bioinspired unconventional MAVs exist. One is Jones’ series of

flapping-wing–propelled MAVs, one of which is pictured in figure 1.6 [48]. These

MAVs use a fixed airfoil to generate lift, trailed by a pair of vertically plunging

Pénaud-type wings which generate thrust alone. The thrust-generating wings flap

in opposing directions and pitch freely about a leading-edge hinge, mimicking

bird-like flapping. The opposing flapping causes the wings to operate as if they

are in ground effect, thereby increasing thrust. The flapping wings have an added

benefit of eliminating stall on the primary fixed wing by entraining airflow over it

at all flight speeds. Jones has successfully flight-tested controllable prototypes of

his design.

Another type of bioinspired designs called ornicopters or rotopters combine

the vertically flapped wings of ornithopers with the rotary-wing motion of heli-

copters. Figure 1.7 shows a time-lapse image of an ornicopter rotor in motion.

Figure 1.5: Mock-up of
Michelson’s Entomopter.

Figure 1.6: Jones’ flapping-
wing–propelled MAV.
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Vladimir Savov developed the configuration as a means of preventing the main-

rotor torque reaction in full-scale single-rotor helicopters, thereby saving power by

eliminating anti-torque devices [49]. Forced vertical flapping of the rotor blades

cause them to act like ornithopter wings, producing thrust that spins the rotor in

addition to lift. Since the rotor shaft is not directly driven there is no reaction torque

on the fuselage, though the vertical reaction force from blade flapping would likely

be problematic. Researchers at the Delft University of Technology implemented an

ornicopter mechanism on a remote-controlled helicopter; flight forces and control

authority have been measured on force balances, but free flight has not yet been

achieved [50]. MAV research of ornicopters has studied the efficiency gains from

a torqueless main rotor, but has also explored a second mode of actuation in

which the rotary blade motion is driven. By superimposing higher-harmonic blade

flapping onto traditional rotary motion, it is hoped that unsteady aerodynamic

effects will improve the low figure of merit of rotary-wing MAVs. Experimental

results from UMD’s Flotor ornicopter MAV test-stand show improvements in both

figure of merit and maximum thrust from superimposed blade flapping [51].

Drawing inspiration from a maple tree’s winged seeds, or samaras, yet

another type of bioinspired MAV takes the form of a single-bladed rotor, shown

in figure 1.8. A biological samara acts as a single-bladed autorotating rotor,

Figure 1.7: Time-lapse image of
Delft U. Tech. ornicopter rotor.

Figure 1.8: MAV-scale robotic
samara, with natural samara.
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generating lift to decrease its rate of descent and increase its dispersal from the

parent tree. The robotic samara MAV adds a powered prop to drive the rotor’s

rotation, thus generating enough lift for sustained hover and flight [52]. In the

event of a power loss, the robotic samara autorotates to a safe landing just as a

biological samara does. The robotic samara presents a unique challenge for vehicle

control. Since the entire MAV structure rotates with the blade, the robotic samara

has no fixed reference frame in which to apply a control scheme. This challenge

was solved by a novel system that takes advantage of a relationship between the

collective pitch of the blade and the MAV’s radius of gyration. By altering the

blade’s pitch and the MAV’s rate of rotation (via the prop’s throttle) full control

of the robotic samara can be achieved [53, 54]. Operational robotic samara MAVs

have been developed and flown by Ulrich et al. [52–54].

A final unconventional design is not bioinspired, but rather a revisitation

of an abandoned full-scale configuration: the cyclogyro (or -giro). Pictured in

figure 1.9, the cyclogyro’s cycloidal rotors are egg-beater–shaped assemblies with

straight blades arranged cylindrically and rotated about the horizontal axis. Pe-

riodic pitching of the blades, typically implemented with a four-bar apparatus,

creates a net aerodynamic force directed radially outward from the rotor. The

direction of the aerodynamic force is controlled by altering the phasing of the

Figure 1.9: Quad-rotor cyclogyro.
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blades’ pitch. Each airfoil sees a uniform velocity profile across its span—in con-

trast to helicopters and ornicopters—so the entire blades can be optimized for high

efficiency operation. In his brief overview of the cyclogyro, Prouty explains that

full-scale cyclogyro research in the 1920s and 30s was halted because of repeated

material failures of test rotors, not a fundamental deficiency of the concept [55].

Cycloidal rotors are attractive in MAV applications because they appear to have

greater power loadings than conventional rotors [56]. Design studies for MAV-

scale cyclogyros have been performed with CFD by Iosilevskii and Levy [57]

and with momentum theory by Sirohi, Parsons and Chopra [56]; both teams

experimentally validated their studies with test-stand–mounted cycloidal rotors.

Prouty notes that cyclogyros operating in high-speed flight (i.e., translational

speed on the same order as the blade rotation speed) will need unconventional

airfoils and likely require independent blade control (IBC) to optimize lift in

both hover and translating flight. This may not be an issue with MAVs, which

should have relatively low translational speeds and blade rotation on the order

of thousands of RPM. Recently a quad-rotor cyclogyro developed by Benedict,

Jarugumilli and Chopra that has demonstrated tethered hover [58], and Benedict et

al. have undertaken experimental studies to improve the performance of cycloidal

rotors [59–61].

1.2 Insect-Like Biological Flight

The previously discussed MAV configurations all have advantages and dis-

advantages. Fixed-wing and rotary-wing MAVs leverage available knowledge

and technology from full- and model-scale vehicles to achieve quick technolog-

ical maturation, but fixed-wing MAVs are not suitable for indoor missions and

rotary-wing MAVs are significantly less efficient than their full-scale counterparts.

Ornithopter MAVs seek to emulate the performance of birds, but are hamstrung
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by an inability to yet replicate the morphing structures of avian wings. Instead,

ornithopters have remained largely unchanged since before the Wright brothers. It

is not improbable that “unconventional” configurations represent the actual future

of MAVs: vehicles which neither downsize full-scale vehicles nor exactly emulate

nature, but incorporate and synthesize elements of both. There is another attractive

configuration that warrants attention: insects and insect-like fliers, which already

operate in MAVs’ desired size and performance range. Robin Wootton makes this

connection explicit: “insects are past-masters of slow, precise, manoeuvrable flight

and hovering—exactly the qualities needed in an MAV” [62]. This section gives an

overview of the current knowledge about biological fliers themselves; discussion

of MAVs that mimic these creatures is in the following section.

Winged insects constitute an astounding portion of life on the Earth. Over

one million species of Pterygota, or ancestrally winged insects, have been described

(more than any other animal group) and their global biomass exceeds that of

humans by an order of magnitude [63, chap. 1]. The diversity and success of

insects arises directly from their ability to fly, granting access to a wide array of

habitats and resources.* The overwhelming majority of insects are much smaller

than MAVs, with typical wingspans on the order of a few millimeters. The

largest insects approach the desired size of MAVs: species of butterflies, moths

and dragonflies reach wingspans of 10 cm or more. Adult insects’ maximum

weight is less than half the projected MAV weight, limited to 40 to 50 g by their

respiratory system [63, p. 3], though the flightless larvae of Goliath beetles may

exceed 100 g. The heaviest insects are poor fliers; highly aerobatic insects weigh

significantly less. For example the Manduca sexta hawkmoth,† an exceptional flier

*Apterygota, insects whose ancestors never developed wings, account for less than 0.1% of
known living insect species. Natural selection has clearly favored flying insects over non-flying
insects.

†“Hawkmoth,” “sphinx moth” and “hornworm” are common names for moths in the family
Sphingidae. Sphingidae moths are well-known for their agile flight and are common subjects of
insect-flight research.
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with a wingspan of 10 cm, weighs about 1.5 g [64].

Convergent evolution has driven hummingbirds to approximate insects not

only in size and flight method but also in metabolism, diet and behavior [63,

pp. 334–336]. Hummingbirds are slightly larger and heavier than comparable

aerobatic insects. Hummingbird wingspans over 15 cm and weights over 5 g

are not uncommon; the giant hummingbird Patagona gigas can exceed 24 cm in

wingspan and 20 g in weight [65, p. 213].

Considering the diversity of winged insects, it is not surprising that flight

kinematics and wing structures vary profoundly among species. This disserta-

tion will focus on so-called “normal hovering flight,” in which a functionally

two-winged flier maintains its mid-air position by beating its wings in an ap-

proximately horizontal stroke plane [66, 67]. Normal hovering flight is used by

animals that generate aerodynamic forces via a single pair of wings (e.g., flies,

mosquitoes, beetles, hummingbirds) or two pairs of wings acting in concert as

one (bees, wasps, butterflies, moths). The majority of hover-capable animals that

have been subjects of aerodynamic study use normal hovering flight; figure 1.10

depicts some examples. Exceptions to normal hovering flight include animals that

hover with inclined stoke planes (hoverflies, dragonflies) and functionally four-

(a) White-lined sphinx moth [68] (b) Rufous hummingbird [69]

Figure 1.10: Animals using normal hovering flight.
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winged animals that flap two pairs of wings with a phase differential (dragonflies,

grasshoppers, lacewings).

1.2.1 Kinematics

In normal hovering flight, the wings on both sides of the animal’s body move

symmetrically. The primary motion is flapping rotation, a rotation about the wing

base in an approximately horizontal stroke plane as illustrated in figures 1.11 and

1.12. Most animals’ flapping stroke amplitude in hover is 120 to 180° [66, 70],

and may increase up to 180°+ at maximum loading [71]. Some small insects’

wings touch at the end of the upstroke, producing an aerodynamic phenomenon

called the Weis-Fogh mechanism or clap-and-fling. Flapping is typically a nearly

harmonic, sinusoidal motion [63, p. 91; 70]. In forward flight, the stroke plane

Stroke 
plane

Wing 
sectionWing 

path

Net force

Downstroke

Upstroke

Figure 1.11: Generalized wing motion during normal hovering flight. Modifica-
tion of original image by Michael H. Dickinson, used with permission.

(a) Flapping rotation (b) Feathering rotation
(wing flip)

(c) Stroke deviation

Figure 1.12: Components of insect wing motion.
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is tilted forward and the half-strokes become asymmetric [63, p. 95], making the

motion more bird-like.

At the end of each half-stroke, the wing undergoes a large-angle rotation

about its span often referred to as the wing flip.‡ In so doing the wing reverses

orientation; the upper wing surface during the downstroke becomes the lower

surface during the upstroke. The leading edge of the wing, denoted by a dot on

the wing section in figure 1.11, is the same during both half-strokes. The angle

of incidence between the wing and the stroke plane, or the geometric angle of

attack, is relatively constant through the middle of the down- and upstrokes. (In

general, this dissertation will prefer the terms “feathering angle” and “feathering

rotation” over “geometric angle of attack” when discussing angular motion as

opposed to absolute static measures, see section 2.2.1.) The geometric angle of

attack of hovering insects at mid-stroke is 30 to 45°; for hummingbirds it is closer

to 15° [70]. Insects can alter the timing and extent of the wing flip depending on

flight conditions [63, p. 96].

The third component of normal hovering motion is stroke deviation, where

the wing moves perpendicular to the stroke plane. This deviation is small with

respect to the flapping motion and often varies from wingbeat to wingbeat [63,

p. 93]. Stroke deviation may cause the wing tip to trace out shapes such as figures-

of-eight (as in figure 1.11), ovals, crescents or more complex paths [70]. Its purpose

is not well understood. Wang has suggested that plunging motions in normal

hovering flight may induce an upward-directed drag force to help support body

weight [72]. (The primary subjects of Wang’s study were dragonflies, functionally

four-winged insects that hover with asymmetric wing strokes in a highly inclined

stroke plane. She concluded 75% of a dragonfly’s weight is supported by drag

‡Perhaps influenced by side projections like figure 1.12, flapping rotation is often termed
“translation” and the wing flip termed “rotation”. Such terminology obscures the former’s
rotational nature.
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forces, with the wings primarily acting like rowing oars.)

1.2.2 Aerodynamics

Our knowledge of insect-like aerodynamic phenomena is far from complete.

Application of modern engineering tools and analyses has aided the understand-

ing of insect-like aerodynamics, but the low Reynolds numbers and unsteady

nature of the airflow present a significantly different flow regime than aerody-

namicists have previously studied. Compounding the difficulties are the small

sizes, high wingbeat frequencies and experimental uncooperativeness of insects,

which hinder accurate high-resolution measurements of the airflow. These issues

have caused aerodynamic phenomena to be overlooked or misunderstood in both

theory and experiment [73]. Properly understanding insect flight may require

paradigm shifts in thought—Wang has gone so far as questioning the applicability

of classical conceptions of lift and drag when studying insect flight [72].

1.2.2.1 Early Comprehensive Studies

The earliest attempt at a general aerodynamic analysis of normal hovering

flight was undertaken by Weis-Fogh in 1973 [66]. Weis-Fogh developed gen-

eral equations for the mean quasi-steady lift produced and power consumed by

normal-hovering animals in a single wingbeat. He assumed the majority of lift

was created by the high-speed flapping rotation during the midstrokes; effects

associated with the wing flip were mostly neglected. He applied his lift equation to

data of biological fliers from extant literature and his own observations, including

26 species of insects, three species of hummingbirds and one species of bat. The

mean lift coefficients necessary to satisfy his equations were generally less than the

maximum lift coefficients experimentally measured from biological fliers’ wings.

Therefore, Weis-Fogh concluded that the aerodynamics of most normal-hovering
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animals could be adequately modeled by quasi-steady analyses, with the caveat

that unsteady effects must certainly play a role at some points during the stroke.

This conclusion was subsequently refuted by Ellington (see below).

The most enduring contribution of Weis-Fogh’s study was his identification

of the unsteady “clap-and-fling” flight mechanism, proposed to explain anoma-

lously large lift generation by certain small wasps. This mechanism, also called

the Weis-Fogh mechanism, theorized that “clapping” the wing surfaces together

during the wing flip at the end of the upstroke then “flinging” them apart about the

trailing edges eliminates the starting vortices of each wing on the downstroke, as

diagramed in figure 1.13. More precisely, clap-and-fling causes the starting vortex

of each wing to manifest as the bound circulation around the opposing wing [74].

Thus, the wings to operate at their full steady-state lift coefficient during the entire

downstroke, overcoming the Wagner effect limiting the instantaneous build-up of

circulation around an impulsively moving wing. Weis-Fogh calculated that the

clap-and-fling mechanism would be available to any animal but would be most

efficient for smaller animals (the wasps being studied by Weis-Fogh had wing

Γ Γ
 Clap

 Fling

Figure 1.13: Conceptual diagram of clap-and-fling. The clap causes mutual
annihilation of the circulations Γ on each wing. Air is forced from between
the wings, creating a momentum jet that may provide additional lift [74]. The
fling draws air into the widening gap between wings in the correct sense for lift
production. The wings separate at the trailing edge; since the net circulation of
total system is zero, there is no delay in circulation build-up around either wing.
After Weis-Fogh [66] and Sane [73].
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lengths less than 1 mm). However, use of clap-and-fling by biological fliers is

the exception, not the rule. Additional theoretical and experimental studies of

the Weis-Fogh mechanism were undertaken by Lighthill [75] and Maxworthy [76].

Ellington identified several variants of this mechanism: clap-and-peel, partial fling

and near fling [74].

Ellington’s landmark six-part study in 1984, “The Aerodynamics of Hovering

Insect Flight,” was the next major attempt at a general analysis of insect aerody-

namics in hover, via a comprehensive amalgam of literature review, theory and

experiment. Revisiting Weis-Fogh’s analysis, Ellington noted deficiencies in both

the theory and the experimental data. By applying “new data and a new theory,”

Ellington reported “the opposite conclusion [of Weis-Fogh] is strongly indicated”:

unsteady effects play a nonnegligible role in lift production [67]. From his own and

other researchers’ measurements, he compiled morphological data of 48 individual

insects representing 18 species, as well as two species of hummingbird and one

species of bat [64]. Using a high-speed film set-up, he recorded the flight of insects

and selected 11 sequences that best approximated hover: nine film sequences

showed normal hover of eight species of insects, and two sequences showed hov-

erflies using an inclined stroke plane. The wing kinematics of each sequence were

mapped from individual frames of film [70]. Using these kinematics as a starting

point for theoretical considerations, Ellington made “deductions” about possible

additional aerodynamic mechanisms [74]. These mechanisms included the Wagner

effect, virtual-mass effects, leading-edge separation bubbles, delayed stall, clap-

and-fling and its variants, and rotational effects of the wing flip. He noted the

inapplicability of many classic unsteady airfoil analyses, since their simplifying

assumptions—small angle perturbations, large forward velocities, planar wakes—

did not hold for normal hovering. In an effort to model the gross influence of

unsteady effects on flight forces, Ellington developed a “pulsed actuator disc”
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model to calculate the mean lift of each stroke by modifying a momentum-theory

actuator disc (as used in propellor and helicopter analyses) with correction terms

accounting for spatially and temporally nonuniform circulation [77]. Finally, he

applied the experimental data and analytical tools from the previous parts to

calculate the lift production and power requirements of insects in his selected

hovering sequences, and used the results to reiterate his conclusion that quasi-

steady lift alone is inadequate for modeling normal hovering flight [78].

Ellington’s papers of 1984 seem to represent a turning point in the inves-

tigation of insect aerodynamics. No subsequent study has adopted Weis-Fogh’s

and Ellington’s methodology of developing a general aerodynamic model, then

applying it to a data set of diverse biological fliers. We can only speculate as

to why this may be, but a key difficulty seems to be measuring the physical

wing/air system. As scientists better understand the complex interaction between

wing and air, modeling its aerodynamics requires motion and airflow histories

at more precise temporal and spatial resolutions than are conveniently available.

In fact, measuring instantaneous aerodynamic force distributions on biological

fliers’ wings is a challenge that has not yet been solved, while coaxing animals to

simply fly in a prescribed position or attitude is difficult (many tests on live insects

“tether” them in a fixed position, but this can induce unnatural wing motions

compared with free flight) [73]. It appears that our modeling of insect aerody-

namics currently outstrips our capability to acquire data from insects themselves.

Thus, emulating the biological breadth of Weis-Fogh’s or Ellington’s simplified

studies in verifying state-of-the-art aerodynamic models is essentially impossible

today. After Ellington’s study, most raw quantitative data for insect aerodynamic

models comes not from direct measurements of biological fliers, but from scaled

mechanical models and computational fluid dynamics (CFD) programs, which

offer better resolution [73]. Such models are validated as well as possible against
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insects, but this is not an ideal situation since they may not capture all aspects of

insect flight. Still, they remain the most viable data source at this time.

1.2.2.2 Aerodynamic Mechanisms

In another respect, Ellington’s identification of unsteady aerodynamic mech-

anisms provided a stepping stone for much of the subsequent study of insect

aerodynamics. With the understanding that additional aerodynamic mechanisms

were necessary to explain insect flight, aerodynamic research since the mid-1980s

has focused on identifying and understanding the roles of these mechanisms. In

addition to quasi-steady effects, the following mechanisms are considered im-

portant: the Wagner effect, virtual mass, clap-and-fling, the leading-edge vortex,

wing–wake interaction and the Kramer effect [73,79]. The first three were correctly

identified by Ellington: the Wagner and virtual mass effects are well known,

especially in helicopter studies [80, ch. 8] and clap-and-fling was discussed earlier.

The leading-edge vortex, wing–wake interaction and the Kramer effect will be

summarized in turn. The primary source for these summaries is Sane’s review of

insect aerodynamics [73]. Ansari, Żbikowski and Knowles briefly review the same

effects in reference to the modeling of MAV aerodynamics [79]; comparing and

contrasting with Sane’s review provides some insight about the varying interpreta-

tions of the mechanisms. Finally, Wang’s review approaches insect aerodynamics

as a useful test case for understanding fluid mechanics [81]; while only a small

portion specifically pertains to normal hovering flight, it gives a refreshing view

from outside the biological and MAV fields and offers provocative alternatives to

those fields’ conventional wisdom.

The leading-edge vortex (LEV) is a vortical flow structure that extends along

the leading-edge of the flapping insect wing. Though its significance was only first

guessed by Ellington et al. in 1996 [82], by 2003 it was considered “the single most

22



important feature of the flows created by insect wings” because of its apparent

ability to explain the large lift generated by insect wings [73]. The LEV is a

low-pressure vortex that remains stably attached to the top of the wing at the

leading edge throughout the flapping stroke, as diagramed in figure 1.14. Its

structure breaks down somewhat near the wing tips, where it merges with the

tip vortices. The LEV’s effect on flight forces is similar to the delayed-stall effect:

the low-pressure vortex creates a suction perpendicular to the wing surface, which

increases the stall angle beyond its steady state value. But in contrast to delayed

stall, where the vortex continues growing until it sheds with subsequent loss of

lift, the attached LEV reaches a stable state and remains on the wing through most

of the flapping stroke. Usherwood and Ellington demonstrated the existence of

an attached LEV on continuously revolving wings, which implies that the LEV is

caused by the rotational flapping motion and is not merely delayed stall operating

within the distance of the flapping stroke [84]. The attached LEV in fact appears

most similar to the vortices seen on the leading edges of delta-wing aircraft.

Ellington et al. identified a strong spanwise velocity in the vortex, and suggested

that the vortex’ stability is due to the transportation of air radially towards the

wing tips. However, other studies have identified attached LEVs with weaker

spanwise components, leading to speculation that the details of the flow structure

Flapping 

rotation

Leading-edge 

vortex

Figure 1.14: Cartoon of attached leading-edge vortex on flapping insect wing.
Note spiraling flow structure caused by spanwise air transport. After van den
Berg and Ellington [83].
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may be Reynolds number dependent [85]. Wang offers an alternative conceptual

explanation for the attachment of the LEV, speculating the low root velocity may

“pin” the vortex to the wing and prevent shedding [81].

During the wing flip at the end of each half-stroke, an insect wing will shed

its wake, undergo a large pitch rotation and reverse direction through the still-

advancing newly shed wake. Ansari, Żbikowski and Knowles call this wing–wake

interaction “the distinguishing feature of insect-like flapping” [79]. The existence

of wing–wake interactions was speculated for some time but their significance, like

that of the LEV, was not recognized until the middle of the last decade. Dickinson

and his associates first measured gross forces due to wing–wake interactions on

robotic models operating in mineral oil: first on a 2-D translational flapper in

1994 [86] then on their Robofly 3-D rotational flapper in 1999 [87]. The data showed

large force spikes during the wing flip corresponding to wing–wake interactions

visualized with particle image velocimetry. Furthermore, the magnitude of the

spikes was highly dependent on the timing of the wing flip, implying that the

flip kinematics play a significant role in force production. Since the wing can

generate large forces by interacting with, and presumably drawing energy from,

its own wake this phenomenon is also known as wake capture. The interaction

between the shed wake and reversing wing is an extremely complex fluid-flow

problem, and its mechanics are not well understood. Ramamurti and Sandberg’s

CFD study concurred that wing–wake interaction causes force peaks [88], but Sun

and Tang’s CFD study suggested that the force spikes were caused by the rapid

accelerations of the wing, not wing–wake interactions [89]. Further particle image

velocimetry studies by Dickinson’s research group using the Robofly flapper again

showed evidence of wing–wake interactions [90]. Both Sane and Wang agree

in their reviews that wing–wake interactions and acceleration effects must both

play some role in force-peak production, but that the relative contributions of
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each mechanism are not clear at this time [73, 81]. Tarascio et al. performed flow

visualization on an open-air flapping test stand and identified a complex wake

structure in which the returning wing interacts with not just its immediately shed

wake, but with a rolled-up wake structure comprised of many previous stroke

wakes [91].

The Kramer effect is an alteration in circulation, and hence lift, of a translating

wing that is also pitching. In insect studies, it is commonly ascribed to the delay

in establishing the trailing-edge Kutta condition on a pitching wing [73]. If the

wing continuously changes pitch, the airflow cannot establish the Kutta condition

instantaneously and circulation steadily increases or decreases, causing a continual

alteration in lift. This lift is proportional to the rate of pitching rotation, so the

phenomenon is sometimes called “rotational lift.” In fact, the Kramer effect is a

quasi-steady effect that is well-known in helicopter theory: it is exactly the quasi-

steady pitch-rate (α̇) dependent lift of a thin airfoil; see Leishman [80, p. 430].

Sane and Dickinson experimentally estimated the “rotational lift coefficient”§ of

their Robofly model wing in a mineral-oil tank and reported that the rotational lift

coefficients decreased with pitch rate at low frequencies, in conflict with theory

showing that the coefficient should be independent of pitch rate. However, using

a constant rotational lift coefficient—one consistent with both theory and their

own high pitch-rate data—Sane and Dickinson reported good correlation between

predicted and measured forces [92].

1.2.2.3 Numerical Aerodynamic Modeling

As a coda to the discussion of flapping-wing aerodynamics, some of the

current modeling techniques used to numerically calculate aerodynamic forces on

§Sane and Dickinson’s rotational lift coefficient is equivalent to the α̇ component of Leishman’s
lift coefficient multiplied by half the free-stream velocity and divided by the pitch rate and chord.
It is theoretically a constant determined by the nondimensional pitching axis location.
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the wing are briefly mentioned; see Ansari, Żbikowski and Knowles [79] for a full

historical review. Though the quasi-steady assumption has been refuted for nor-

mal hovering flight, Sane and Dickinson developed a “revised” two-dimensional

quasi-steady model which included steady translational aerodynamics, added

mass effects and the Kramer effect [92]. A blade-element analysis using this model

showed good correlation to experimental data obtained from their Robofly flap-

ping mechanism except at the beginning of each half stroke caused by the model’s

inability to deal with unsteady wing–wake interactions and/or spanwise flow

effects. On the opposite end of the complexity scale are fully three-dimensional

CFD codes, from Smith, Wilkin and Williams’ early unsteady panel method in

1996 [93, 94] to more advanced incompressible Navier–Stokes solvers by Liu and

Kawachi [95], Ramamurti and Sandberg [88] and Sun and Tang [89].

Most recently, focus has shifted to the development of two-dimensional

unsteady analytic aerodynamic models intended to be simple yet accurate enough

to provide design data for MAV development. The conceptual framework for

such an approach was laid out in Żbikowski’s 2002 paper, where he proposed

to “account separately for the bound leading-edge vortex and for the other [non-

vortical] part of the flow, then adding both contributions” [96]. To do so, Żbikowski

recommended application of helicopter-based aerodynamic methods to account

for the non-vortical flow of a rigid wing (i.e., quasi-steady, unsteady and wake-

interaction effects) and the Polhamus suction analogy to account for the leading-

edge vortex. This method was practically applied by Żbikowski et al. [97]. Ex-

tensions to this technique have been introduced by Singh and Chopra [98], who

added thin-airfoil aerodynamic effects of linear structural deformations, and by

Ansari, Żbikowski and Knowles [99], who introduced a nonlinear aerodynamic

formulation.
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1.2.3 Wing Structures

Insect wings are lightweight, flexible structures that significantly deform

during flight. These deformations presumably affect aerodynamic forces [100].

However, relatively little is known about insect wings’ functional morphology,

the relationship between their physical form and their functional operation. Wing

flexibility is often considered a secondary effect in studies of insect flight. The large

majority of aerodynamic studies ignore flexibility by assuming or constructing

rigid wings. As recently as 2003, Sane’s review of insect aerodynamics did not

include any models that accounted for flexibility [73]. Sane cited the incorporation

of flexibility as necessary future research.

Direct functional analysis of insects’ wings is a difficult task, hindered by

insect species’ wide range of wing geometries and configurations and by the

wings’ inherent multifunctionality [101, ch. 4]. Besides their role as airfoils, an

insect’s wings may be involved in protection, thermoregulation, sexual selection or

territorial displays (the latter two encompassing both visual and aural signaling);

furthermore, many insects’ wings fold and lay flat against the body or under hard-

ened outer wings [102]. For a given insect, differentiation of the wing structures

pertinent to flight from those related to other tasks is not obvious, if it is possible

at all. As such, there are few analytical models which predict the functionality

of a particular feature of the wing structure. Instead much of our understanding

comes from simplified conceptual or physical models—imagining the wing as a

sail, for example, or using creased paper to demonstrate wing folding—or from

increasingly elaborate finite element models that attempt to model the wing as

accurately as possible [103].

At the most basic level insect wings are sheets of cuticle membrane supported

by veins [63, ch. 2]. The veins, either individually or as linked groups, act as

spars in the wing. No musculature exists within the wings; unlike most avian
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wings, insect wings are not “active” structures in the sense of having embedded

muscular actuators. Insects can only control their wings via actuation at the wing

base, where it intersects the thorax. In theory, then, knowledge of the wing’s

static geometry and material properties is sufficient to characterize its functional

morphology. In practice, the complexity of the vein and membrane structures

make such characterizations difficult. The dragonfly shown in figure 1.15 is

illustrative of typical insect wings, although it does not use normal hovering flight

and is thus not directly within the scope of this dissertation. The wing membrane is

a three-dimensional structure with numerous pleats or corrugations [104]. The size

and cross-sectional shape of the veins vary between differing veins and along the

span of individual veins [102]. Major longitudinal veins are linked and supported

by smaller cross-veins. The wing membrane itself varies in thickness and stiffness

throughout the wing.

For the remainder of this section, current knowledge of insect functional

morphology as pertaining to normal hovering flight is summarized. Significantly

more in-depth discussions of insect wing morphology can be found in books by

Dudley [63] and Grodnitsky [101], both of whom use evolutionary considerations

as a means of exploring wing functionality. Wootton’s review paper of 1992 [102]

provides a more succinct summary, albeit one that does not include research from

the last two decades.

Figure 1.15: Insect wing structure, as seen in a photograph of a dragonfly [62].
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Figure 1.16 represents a generalized insect wing structure, as developed by

Wootton in his effort to standardize the nomenclature of wing components [105].

This image is reproduced to present an overview of the functional structure of

the wing; the nomenclature itself is unimportant to this dissertation. The three

longitudinal veins running parallel to the leading edge (labeled costa, subcosta

and radius in figure 1.16a) are typically the largest and thickest veins and act

together as a leading-edge spar for the wing, cf. figure 1.15. The remainder of the

wing veins are generally oriented at an angle to this leading-edge spar, running

outwards and backwards from the leading edge or from the wing root. Insect

wings have distinct lines through which they flex during flight and wing folding,

as drawn on figure 1.16b. Flexion lines are the regions which primarily deform

during flight (the marked claval furrow is also a flexion line). For example, the

median flexion line acts as a hinge for the reversible camber of the wing. In

contrast, fold lines deform primarily when the wings fold next to the body when

not in use. The flexion and fold lines may fall between longitudinal veins or they

Figure 1.16: Generalized vein geometry and flexion lines of insect wings [63,
p. 54]. The top of the wing is the leading edge. Diagram (a) identifies the
longitudinal veins of the wing; cross-veins between the longitudinal veins are not
drawn. Diagram (b) identifies functional regions and lines of flexion and folding.
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may cross longitudinal veins at structurally weakened points. The generalized

diagrams in figure 1.16 should not be considered accurate representations of any

particular insect. Over the course of a species’ evolution, veins may merge, split

or disappear; flexion and fold lines may be more or less numerous and can vary

in location on the wing. In fact, it is exactly the extreme variability of different

insects’ wing structures that obscures analyses of functional morphology.

1.2.3.1 Deficiencies of Structural Data in Aerodynamic Modeling

Confounding the deduction of insect wings’ aeroelastic functional morphol-

ogy is biologists’ current reliance on numerical and mechanical models—in par-

ticular, rigid-wing models—for aerodynamic data sets. As discussed previously,

much of the detailed aerodynamic data used in recent insect studies comes not

from measurements of insects themselves, but from measurements of scaled phys-

ical models or from CFD programs. Many of these studies are performed with

rigid non-deforming wings, either to enable the study of pure aerodynamic effects

or for simplicity. Dickinson’s Robofly, a Reynolds-scaled device that accurately

reproduces three-dimensional Drosophila (fruit fly) kinematics in mineral oil and

is the most advanced mechanical model to date, is typically outfitted with rigid

wings [87].¶ It is not an overstatement to say most of the experimental time-

history data of aerodynamic forces on flapping wings used in studies over the

past fifteen years have been generated from the rigid-wing Robofly, pictured

in figure 1.17. Dickinson’s research group has used Robofly to generate data

for the study of leading-edge vortices [85], wing–wake interactions [87, 90, 107],

wing–wing interactions (i.e., clap-and-fling variants) [108], the Kramer effect [92]

¶In an endnote, Dickinson et al. mention that Drosophila wings to not twist much in flight, and
that flexible wings constructed to mimic their deformations did not evidence much alteration in
forces measured on Robofly. However, no design nor force data for the flexible case is given in the
paper. Moreso, the effect of deformations of Drosophila will likely not be generalizable for all insect
wings, especially those which are seen to significantly deform in flight.
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Figure 1.17: Robofly robotic flapping mechanism operating in mineral oil [106].
The oil appears hazy because of seed bubbles for particle image velocimetry.

and the effects of tethering on insect flight [109]. Force data from Robofly has

been used to validate CFD codes by Ramamurti and Sandberg [88], Sun and

Tang [89] and Sun and Wu [110]; and unsteady analytic aerodynamic models

by Żbikowski et al. [97], Ansari, Żbikowski and Knowles [111] and Singh and

Chopra [98]. Earlier mechanical-model studies also primarily used rigid wings:

e.g., clap-and-fling studies by Spedding and Maxworthy [112] and Sunada et al.

[113] and Dickinson’s 1994 study of wing-wake effects [86]. Likewise, Wang’s 2-D

CFD model of dragonfly aerodynamics (which are not mimicked by Robofly) also

assumes a rigid wing [114]. Taken together, we see that much of the numerical

aerodynamic data on flapping wings comes from rigid-winged systems. This

makes deducing aeroelastic functionality of deforming wing structures difficult

since there is a lack of suitable data for comparison. The effect of deformations

cannot be assessed from wings designed specifically to be non-deformable.

Of course, there are exceptions to the rule of rigid-winged models, though

we shall see that these have deficiencies of their own. A partial exception is the

Reynolds-scaled flapping mechanism with which Ellington et al. first identified

the attached LEV in late 1996 [82]. The 46.5-cm wing on this flapper was a hinged

plate, representing the fore and aft wings of a hawkmoth wing pair beating in
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concert. The hinge allowed the aft section to rotate relative to the forewing,

changing the camber of the total wing system, though neither section of the wing

could itself bend or twist [115]. Liu et al.’s subsequent CFD analyses of this model

included the hinge degree of freedom [95, 116]. However, aerodynamic force

data was not directly measured on the model, so the effect of camber on force

generation was unknown; the CFD studies could only be validated by qualitative

comparisons with smoke-visualized streamlines on the model, so they too are not

a useful source of numerical data on the effect of camber. Also in 1996, Smith

incorporated a flexible FEM structure [94] into his previous unsteady aerodynamic

panel model of a hawkmoth in forward flight [93], which was validated against

tethered hawkmoth force data. Smith’s model showed fair correlation to the

experimental data, but it is not clear that his analysis is valid for all fight cases.

Forward flight—more bird-like than insect-like—will presumably show less de-

pendance on reversible camber deformations and wing–wake interactions during

the wing flip than normal hovering flight. Furthermore, Smith’s study does not

include the then-unknown attached LEV.|| The most recent and advanced non-

rigid aerodynamic model was developed by Singh and Chopra for use in MAV

design analysis [98]. Singh and Chopra’s aerodynamic model incorporates quasi-

steady thin-airfoil aerodynamics; the attached LEV; and starting, shed and tip

vortices. Wing flexibility is included by linearly superimposing the effects of quasi-

steady thin-airfoil deformations of assumed wing structural modes. The rigid

aerodynamic model was first validated with Robofly force data, while the full,

flexible aeroelastic model was validated with data collected with a custom-made

open-air flapping mechanism. This model is a considerable improvement over

||Still prior to the LEV’s identification, Smith extended his forward-flight analysis by including
the Polhamus suction analogy to model leading-edge flow separation on outboard portions of the
wing during the upstroke [117]. This is similar to the current method of modeling the attached LEV,
where the Polhamus suction analogy is applied to the entire wing during up- and downstrokes [96].
Smith’s use of the Polhamus analogy came from physical considerations unrelated to the attached
LEV, and he did not continue this direction of research.
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previous models, but the lack of high-resolution data of flexible wings still makes

it difficult to predict the aerodynamic effect of wing deformations on the complex

and non-linear wing–wake interaction during wing flip.

We now return to biological insect wings. At least for now, the data collected

from live insects and from computational or physical models is insufficient for full

quantitative understanding of how a wing’s structural design affects its interaction

with the air during flight, and vice versa. Thus, most insights into the relationship

of insect wings’ functional morphology on their aerodynamic characteristics are

purely qualitative, not to mention speculative, in nature. Images and movies of

flying insects show wing deformations, which are interpreted in light of full-scale

airplane and helicopter analyses or simply by the researcher’s intuition.

Possible problems with such insights are obvious and manifold: Full-scale

and insect-scale airflows have vastly different Reynolds numbers. Normal hover-

ing flight is much more unsteady than airplane and helicopter flight, and direct

analogies between them may not hold—to say nothing of the wing flip which

has no analogue in full-scale flight. Intuition about such complex phenomena

can be misleading or wrong. But when quantitative information is lacking, such

qualitative insights are a necessary if non-ideal first step towards understanding

aeroelastic functional morphology. A handful of simple analytical models have

been developed, which have allowed some basic quantitative analyses of func-

tional morphology. Only recently, thanks to application of FEA, has the prospect

of accurate quantitative modeling of insect wings come within reach.

1.2.3.2 Reversible Airfoils

The primary study of the insect wings’ functional morphology, vis-à-vis

aerodynamics, concerns their role as reversible airfoils. In normal hovering flight

33



the wings flip over at each half-stroke, operating “upside-down” approximately

half the time. The up- and downstrokes produce nearly equal lift, implying the

wings’ aerodynamic characteristics are the same whether right-side-up or upside-

down. It is therefore infered that the flexible wing reversibley deforms into

oppositely oriented non-symmetric airfoils during successive half-strokes.

In 1981, Wootton systematically identified three general deformation patterns

in flapping insect wings: torsion (or twist), camber and transverse bending [100].

Torsion and camber are reversible deformations: they occur in similar but opposite

fashions on both the up- and downstrokes as illustrated in figure 1.18. Both are

assumed to increase lift during the middle of each half-stroke. (The third type

of deformation, transverse bending, is the bending of the outer portion of some

insects’ wings a chordwise flexural line. It does not appear to be reversible and

occurs during wing upstrokes. Its aerodynamic effects are currently unknown and

it is typically neglected from aerodynamic analyses.)

Standard helicopter blade analyses show that spanwise twist is an important

feature of well-designed rotary wings [80, sec. 3.3]. Negative twist, where the

geometric angle of attack decreases from root to tip, helps to distribute aerody-

namic inflow uniformly across the span of the wing in hover, imparting significant

efficiency benefits. The observed twist of insect wings show this pattern exactly:

the wings reversibly deform with negative twist for both half-strokes, with the

Figure 1.18: Reversible torsion and camber in hovering flight. After Wootton
[100].
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reversal occurring during the wing flips. This reversal is facilitated by the layout

of the wing. The leading-edge vein group is a torsionally compliant spar that shifts

the wings’ elastic axis forward, while the center of gravity and aerodynamic center

of pressure are closer to the mid-chord [100]. Both inertial force and aerodynamic

lift create nose-down pitching moments about the elastic axis, passively twisting

the wing in the correct sense.

Positive camber lowers an airfoil’s zero-lift angle of attack, allowing it to

produce greater lift than a uncambered airfoil at any positive angle of attack,

provided it does not stall [118, p. 240]. Like twist, the direction of camber reverses

during each half-stroke to remain “positive” during both half-strokes in normal

hovering flight. Wootton theorized that high pressure on the underside of the wing

caused the wing membrane to bow upwards, cambering in a fashion “analogous to

the bellying of a sail” [100]. Ennos later proposed that reversible camber is coupled

with twisting deformations by the wing’s vein morphology [119]. By modeling

an insect wing as a leading-edge torsion beam with trailing oblique veins, Ennos

derived analytic equations showing that the orientation, divergence and curvature

of the trailing veins affected the magnitude and location of maximum camber as

well as the geometric angle of attack when the leading-edge beam was twisted.

Ennos’ analysis remains one of the few closed-form analytic equations describing

the function of insect wing structures.

It is important to keep in mind that the aerodynamic effects of insect wing

deformations are mostly analyzed by analogy with flight regimes different than

normal hovering flight. While researchers have been presenting compelling con-

ceptual arguments why reversible airfoils should be beneficial to insect-like flight,

it has only been in the last decade that aerodynamic and aeroelastic studies have

begun to confirm that this is indeed the case. As such, understanding of insect

wings as reversible airfoils is far from complete. It it worthwhile to note that
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reversible structural deformations may have non-aerodynamic benefits as well.

For instance, Wootton has suggested a purely structural interpretation of the

benefits of wing camber, noting that a cambered plate exhibits additional rigidity

from forces applied to its concave side [62]. It is thus possible that reversible

camber may be concerned with maintaining wing shape in addition to enhancing

aerodynamic effects.

1.2.3.3 Wing Corrugations

The vein and membrane structure of an insect wing is not flat but has

corrugations normal to the planform, as in figure 1.19 . In an aerodynamic sense,

these corrugations affect the apparent airfoil shape of the wing: they trap small

recirculating air bubbles that fill in the cross section of the wing seen by the airflow,

as in figure 1.20 [74]. The wing thus acts as an airfoil with a thickness defined by

the envelope of the corrugations. It has also been suggested that corrugations near

Figure 1.19: Partial detail of dragonfly wing structure [120]. Note the numerous
cross-veins between corrugations.

Figure 1.20: Diagram of airflow around corrugated wings [74]. Diagram (a) shows
leading-edge trip and attached recirculation. Diagram (b) shows recirculating air
bubbles between corrugations.
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the wing’s leading edge may trip the airflow to help form the LEV.

With regard to structures, corrugations increase the rigidity of wings without

imposing a significant weight penalty [104], so long as the corrugations are ade-

quately supported by surrounding structures. Newman and Wootton investigated

the role of corrugations in increasing the bending stiffness of dragonfly wings

[120]. When reviewing their findings it is important to note that dragonflies do

not use normal hovering flight and their wings tend to have more corrugations

and more cross-veins than normal-hovering insects (see figure 1.19). Newman and

Wootton described the three-dimensional corrugations and cross-veins acting as

a series of plate girders to support the dragonfly wing. They also showed that

several failure modes of the wing—particularly those in which the top and bottom

veins become co-planar, eliminating the stiffness benefits of corrugation—were

benign and reversible, allowing the wing to temporarily yield under excessive

loadings instead of breaking. Sunada, Zeng and Kawachi investigated the role

of corrugations in the torsion stiffness of dragonfly wings, and confirmed its

beneficial effect [121]. However, they did not account for modes where the wing

deformed; the corrugations were assumed to hold their shape in response to

loading. This is exactly the opposite assumption that Ennos used in his model

of torsion-camber coupling in normal-hovering flight [119]. Ennos assumed the

corrugations would not hold their shape and the membrane’s flexibility between

the veins would make the wing soft in torsion. Wootton et al. make the same

assertion in the introduction to their study of locust wings [122]. With regards

to torsional stiffness, the presence and stiffness of the cross-veins appears to be

crucial. If the cross-veins are strong enough to support the corrugations (as in

dragonflies), the wing is stiffened in torsion. But if the corrugations are not

supported (as is likely in normal hovering insects, which have relatively fewer

cross-veins) the wing will be soft in torsion.
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1.2.3.4 The Pterostigma and Pitch Regulation

One of the earliest studies of wing functional morphology with respect to

fight characteristics is Norberg’s 1972 paper on the role of the pterostigma [123],

a dense pigmented spot on the outer leading edge of some orders of insects,

such as the damselfly in figure 1.21. While many insects with pterostigmas do

not use normal hovering, it is present in the order Hymenoptera which includes

normal-hovering bees and wasps. Norberg’s study focused on dragonflies for

convenience. He located the torsion (elastic) axis of entire dragonfly wings and the

chordwise center of gravity for spanwise strips of wing. While the wing’s center of

gravity was primarily behind the wing’s elastic axis, the dense pterostigma shifted

it ahead of the elastic axis in the corresponding wing strips. Wind-tunnel tests of

anesthetized dragonflies showed that the pterostigma increased the flutter speed

of dragonflies in forward flight by counteracting detrimental torsional loads. Nor-

berg speculated that in normal hovering flight, the pterostigma helps to regulate

excessive twisting of the wing in response to the wing flip.

1.2.3.5 Structural Properties and Distributions

Aside from its analysis, Norberg’s study is notable for simply reporting quan-

titative measurements of insect wings’ engineering structural properties. Given

the historical focus on the aerodynamics of insect wings and the common as-

sumption of a rigid wing, it is perhaps unsurprising that little data about wings’

Figure 1.21: Pterostigmas on a common bluetail damselfly [124].
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structural properties has been published. Measurements of quantitative properties

necessary for structural engineering analyses of wings—bending and torsion stiff-

ness distributions, chordwise locations of the elastic axis and center of gravity, and

mode shapes and natural frequencies to name a few—are simply not available for

most insects.

Not all wing properties are unknown. It is relatively simple to measure wing

planform and mass distributions, and a number of studies provide this data [63,

pp. 55–57]. Ellington’s comprehensive aerodynamic study is most useful, char-

acterizing and correlating nondimensional mass and area distributions of various

insects’ wings or coupled wing pairs [64]. Wing spanwise mass distribution is

biased towards the inboard of the wing, with centers of mass located at 32 to 47%

wing radius from the root. Wing area is somewhat more uniformly distributed,

with centers of area at 42 to 56% of the radius. The locations of the centers of mass

and area are not strongly correlated. Aspect ratios range from 5 to 12.

Simple morphological considerations show that insect wings’ bending stiff-

ness decreases from root to tip: vein diameter and cuticular thickness decrease

toward the wing tip, and there is a higher concentration of veins toward the wing

root [63, p. 55]. Similarly, bending stiffness decreases from the wing’s leading to

trailing edge.

One of the only systematic attempts to quantitatively characterize bend-

ing stiffness is Combes and Daniel’s two-part study “Flexural Stiffness in Insect

Wings” [125,126]; for full discussion see Combes’ dissertation [127]. In the first part

of the study, Combes and Daniel use the static deflection of a clamped wing subject

to a point load as a representative measure of bending stiffness and correlate

stiffness over sixteen species of insects. They conclude that inter-species variation

of bending stiffness in the spanwise direction is proportional to the cube of wing

length, while the variation of stiffness in the chordwise direction is proportional
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to the square of wing length. Using a plate FEM of a Manduca sexta hawkmoth

forewing, they confirm that the three veins that constitute the leading edge spar

are primarily responsible for the wing’s spanwise stiffness. In the second part

of the study, Combes and Daniel investigate the spatial distributions of stiffness

in Manduca sexta hawkmoth and Aeshna multicolor dragonfly wings and used

their hawkmoth FEM to model dynamic response to sinusoidal flapping. Both

hawkmoths and dragonflies had bending stiffnesses that decreased sharply from

root to tip, which Combes and Daniel modeled as an exponential function of

span. Hawkmoth wings also have exponentially decreasing chordwise stiffness,

as do most dragonfly wings. Though this study is useful, it is not without some

shortcomings. The torsional stiffnesses and related measurements like the elastic

axis location are not measured, nor are any structural dynamic characteristics (e.g.,

natural frequencies). The hawkmoth wing FEM is relatively crude as well: the

wing is assumed to have constant density and thickness, and veins are differenti-

ated from membranes only by a greater Young’s modulus.

A handful of other studies provide additional information about wing struc-

tural properties, though none are as comprehensive or useful for the study of

normal hovering flight as Combes and Daniel’s research. Norberg measured

and reported the center of gravity and elastic axis distributions along the span

of dragonfly wings [123]. Also working with dragonflies, Sunada, Zeng and

Kawachi measured the center of gravity and elastic axis distributions; gross bend-

ing, torsion and warping rigidities; and nonrotational torsion natural frequencies

of their wings [121]. Ennos used Norberg’s methodology to measure the center

of gravity and elastic axis location of a hoverfly and bluebottle fly, but only

illustrates the wing of a hoverfly, a non-normal hovering flyer [128]. Wootton,

Smith, Herbert et al. performed an incredibly thorough analysis of the hind wing of

the Schistocerca gregaria locust, encompassing morphological description, bending
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measurements, characterization of material properties and spatial distributions,

and detailed three-dimensional FEA [122, 129, 130]. Unfortunately their study

is not useful for analyzing structures for normal hovering flight: locust hind

wings deform asymmetrically, experience high pressure loads on their underside

only and operate almost exclusively in fast forward flight. In a general sense,

however, the study explicitly demonstrated the negative effects of oversimplified

wing modeling: the FEA portion examined the results of neglecting characteristics

like initial camber, vein curvature and vein taper in the static deformation of the

wing. More relevant to normal hovering flight but sadly lacking in explanation,

Wootton’s 2003 survey of structural modeling techniques cites an FEA study

to give the the lowest (presumably nonrotational) bending and torsion natural

frequencies of a Manduca sexta hawkmoth wing pair [103]. The survey indicates

a full discussion of the FEA is forthcoming, but as of the date of this dissertation it

apparently remains unpublished.

1.2.3.6 Inertial and Aerodynamic Loadings

The structural properties of insect wings are essential to understanding how

they deform, but equally important are the force loadings on the wings. Insect

wings do not have internal musculature, so wing deformations are typically driven

by inertial and aerodynamic loads arising from forced flapping motion: inertial

forces opposing the acceleration of the wing and aerodynamic forces from the air

pressure acting on the wing surface.** There is general agreement that inertial

forces play a primary role in effecting the wing flip, perhaps even more than

muscular actuation at the wing root [128]. Historically, the relative contributions

of inertial and aerodynamic loads during the remainder of the flapping cycle has

**Locusts, mantises and related insects have wings in which camber deformation is coupled to
the downstroke motion via static structural couplings, not through inertial or aerodynamic forces
[122]. This asymmetric coupling does not produce camber on the upstroke. There is no evidence of
similar effects in normal-hovering insects.
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not been as clear—both types of loadings would tend to cause twist and camber

deformations that are consistent with those observed in insect wings. As Combes

and Daniel note, many studies have shown that inertial forces are on average

higher than aerodynamic forces, but others have reached the opposite conclusion

[131]. However, more recent and detailed studies indicate that inertial loads play

the dominant role in causing wing deformations, as opposed to aerodynamic

loads.

Combes and Daniel’s own study measured the instantaneous deflections of

a hawkmoth wing flapped in air and in helium (which has 15% the density of air)

as a means of quantifying the effects of aerodynamic forces on wing bending [131];

see [127] for full discussion. Fourier analysis of wing deformations at typical

wingbeat frequencies showed little difference in the response at the fundamental

frequency whether the wing was in air or helium. Higher-harmonic responses—

particularly the third harmonic and above—were greater in helium than in air,

leading to the conclusion that inertial forces actuate deformations while aerody-

namic forces primarily damp the deformations. Using the same hawkmoth FEM

described in section 1.2.3.5, Combes and Daniel determined that using numerical

damping proportional to the FEM mass matrix was adequate in reproducing

aerodynamic damping in a structural model. Combes and Daniel’s assumption

has been used to justify further research by Mountcastle and Daniel [132] and

Thiria and Godoy-Diana have noted their findings were consistent with Combes

and Daniel [133].

Though not performed on insect wings, Singh and Chopra’s aeroelastic study

of flapping MAV wings also indicated inertial forces are primarily responsible for

structural deformations [98]. Using Combes and Daniel’s study as justification,

Singh and Chopra assumed a “loose” coupling between inertial and aerodynamic

effects and solved each independently and iteratively. Inertial loads and their
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deformations were first estimated for a vacuum chamber case, then aerodynamic

loads were calculated for the deformed wing and used as a correction for a

subsequent inertial calculation, repeating until convergence. Using the bending

moment at the wing root as an indicative measure of loading, Singh and Chopra

reported that inertial loads governed the deformations of the wing, but also

concluded aerodynamics could not be neglected for a fully accurate analysis.

1.2.3.7 Indirect Flapping Actuation

Most species of insects, including all normal-hovering insects, do not have

flight muscles directly connected to their wings [63, pp. 42–45]. Instead indirect

flight musculature connects to a dorsal exoskeletal plate called the notum and

drives the wings by leverage. The flight musculature consists of perpendicularly

oriented muscles as drawn in figure 1.22. During the upstroke, the dorsoventral

muscles contract, pulling the notum downwards and causing the wing to flap up-

wards about flexible pivots. During the downstroke, dorsal longitudinal muscles

oriented along the length of the body (i.e., perpendicular to the page in figure 1.22)

contract. In so doing, their cross-sectional area expands, forcing the notum up

and the wings down. Feathering rotation and other wing controls are actuated by

additional sets of muscles (not shown) that alter the position and orientation of the

Downstroke

Notum
Wing

Dorsoventral 

muscles

Dorsal 

longitudinal 

muscles

Upstroke

Pivots

Figure 1.22: Cross-sectional diagram of a half-thorax illustrating indirect flight
muscle operation.
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pivots.

Some orders of insects have evolved unique, asynchronous flight muscles

that are specialized for high-speed wing motion. Asynchronous flight muscles

contract and release several times in response to a single nerve impulse [134].

(This is contrasted to the synchronous muscles found in all other animals, in

which single nerve impulse is synchronized to a single muscle contraction.) Asyn-

chronous musculature allows insects to perform steady, high frequency flapping

motion—literally, faster than thought—with greater efficiency and power output

than achievable with synchronous muscle. Most normal hovering insects are

in orders with asynchronous flight muscles, though butterflies and moths are

not. The steady oscillatory character of asynchronous muscle actuation has led

to speculation that insects’ flight structures may be “tuned” with respect to the

wingbeat frequency to increase efficiency.

1.2.4 Hummingbirds

A brief account of hummingbirds, focusing on their wing structures, will

conclude the discussion of biological flight. Hummingbirds fly in a manner similar

to insects—particularly the aerobatic hawkmoths, which share hummingbirds’

propensity for feeding on flower nectar while hovering—and their wing kinemat-

ics follow the normal-hovering motions described in section 1.2.1. Broad analogies

can be made between hummingbirds’ wing structures and the wings of insects. It

is generally taken as given that findings and inferences about the function of insect

wings apply to hummingbirds. Still, we must remember that birds and insects are

divergent groups overall, belonging to separate phyla in the animal kingdom. It is

not unreasonable to expect some differences between hummingbirds and insects

despite their convergent evolution. Recent aerodynamic measurements suggest

that hummingbirds differ from insects in the ratio of force production between

44



down- and upstrokes [135]. For the present, we must be content to describe the

anatomy of hummingbird wings as a means of differentiating them from insects.

Like all birds, hummingbirds’ wings are built on a skeletal frame to which is

attached muscles, flesh and feathers. Unlike all other birds, hummingbirds cannot

extend or bend their wings: the unique skeletomuscular configuration, depicted

in figure 1.23a, only allows rotation about the shoulder and axial rotation of the

wrist while the elbow is immobile [32, sec. 2.2.3]. The hand bones are fused and

represent over 80% of the wing skeleton’s length. Ten primary feathers attached

to the fused hand comprize the majority of the wing area, as seen in figure 1.23b.

They extend radially outward and backward from the hand skeleton. The feathers

consist of a central shaft, from which radiate tiny barbs making up the feathery

vanes. The barbs of one feather interlock with the adjacent feather, forming a

coherent surface where the vanes overlap.

The structural analogies between insect and hummingbird wings can thus

be expressed. The hand skeleton and the shafts of the first few feathers play the

same role as the leading-edge veins in insects; the remaining feather shafts are

similar to insects’ trailing radial veins; and the overlapping feather vanes act as

the wing membrane does. Since the majority of a hummingbird’s wing is made

of feathers attached to the fused hand bones, the wing has a constant shape like

(a) Wing skeleton [32, p. 32]

Primary 

feathers

(b) Primaries of a giant hum-
mingbird [65, pl. 40]

Figure 1.23: Hummingbird wing structure.
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insects’ wings. In contrast to most insects, hummingbird flapping muscles attach

directly to the wing structure. The muscles that typically extend the wings are

modified to actuate the large rotations necessary for normal hovering flight.

1.3 Insect-Like Micro Air Vehicles and Test Stands

Interest in insect-like MAVs has blossomed as a consequence of general MAV

research initiatives. We may generically call these vehicles entomopters, that is

“insect-winged,” after the fashion of “bird-winged” ornithopters.†† Indeed, insects

have informed our vision of MAVs’ achievable capabilities—their performance,

maneuverability and size—just as birds influenced early conceptions of full-scale

flight for aviation pioneers. It is only a minor exaggeration to say the objective

of MAV research is the creation of a robotic flying insect: certainly an MAV

matching the size and flight performance of a hawkmoth would be considered

an unqualified success.

Engineers must overcome fundamental deficiencies in understanding insect-

like flight and design before such a machine can be realized. Entomopters are

at the very earliest stages of infancy. In order to create working entomopters we

must understand both the principles of insect flight and how to embody those

principles in MAVs. The preceding section on biological fliers mentioned some

obstacles to the former. Regarding the latter, the difficult task is to properly mimic

or approximate the already-known features of insect flight. This dual lack of

knowledge presents an intriguing opportunity: development of entomopters may

inform, augment and enhance biological understanding of insect flight. Ground-

up construction of insect-like machines could provide novel insights about insects

that are obscured in top-down studies of biological beings.

From a mechanisms perspective, a current challenge is capturing the kine-

††Though contrast Michelson’s capital-E Entomopter, which uses vertical bird-like strokes.

46



matics of insect wings: not only approximating the motions described in sec-

tion 1.2.1 at the proper frequencies, but also altering them in response to flight

conditions—changing the kinematics “on the fly,” as it were. A related difficulty

is miniaturization: making the components necessary for flapping (and all other

systems) small and light enough for practical implimentation. In short, mimicking

insect wing motions has proven difficult in and of itself; doing so at MAV scales

even moreso. The few extant flight-capable entomopters use simplified kinematics,

while more complex systems are almost exclusively bulkier bench-top test stands.

It is typically understood that practical entomopters must exploit state-of-the-art

and next-generation materials like smart composites and MEMS to achieve their

desired size.

1.3.1 Flight-Capable Entomopters

The simplest way to make a hover-capable entomopter is to take a Pénaud-

type ornithopter (see figure 1.4) and rotate it nose-up. Such a configuration

lacks a true feathering degree of freedom at the wing root. The wing flip is

approximated by torsional compliance of the membrane wings in response to

inertial and aerodynamic loads, albeit at smaller magnitudes than the kinematic

wing flip of insects.

This is a surprisingly good first attempt at normal hovering flight. Pénaud-

type ornithopters are effective at producing horizontal thrust, but the vertical (lift)

forces cancel on the up- and downstrokes. A rotated “Pénaud-type entomopter,”

then, produces upward thrust with little side force: exactly what is required for

hovering. It is not difficult to construct a rudimentary Pénaud-type entomopter

from off-the-shelf materials; an example is the entomopter pictured in figure 1.24,

which was built at the University of Maryland and uses a four-bar flapping

mechanism driven by a cell-phone motor. At the time of writing, all flight-capable
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Figure 1.24: A basic Pénaud-type entomopter, tethered to guide wires.

entomopters have used a variation of a Pénaud-type design. I will briefly touch on

two notable examples.

The SRI International/University of Toronto Mentor was the first entomopter

to demonstrate controlled free flight in hover and translation [136]. The Mentor

uses a unique four-wing configuration, shown in figure 1.25a, to enhance lift by

exploiting clap-and-fling. The opposing wings are arranged in an X-configuration,

with each bar flapping in a 76° horizontal arc at the root. Additional structural

flexibility causes the wings’ tips and trailing edges to sweep out arcs approaching

90°. The cross-bars flap in opposing directions, nearly striking at the end of each

stroke in an approximation of clap-and-fling. The four lower control fins orient the

vehicle by directing its downwash. An operator pilots the Mentor by radio-control

while onboard gyros and electronics augment stability. The Mentor is significantly

larger than the target MAV size: the pictured vehicle with an internal combustion

engine has a 36-cm wingspan and weighs 580 g; a later version with a NiCd battery

and brushless motor weighs 440 g. The internal-combustion Mentor has flown in

hover for one minute while the electric Mentor is able to achieve continuous hover

for 20 seconds. The internal-combustion Mentor can achieve translational speeds

of 3 m/s when tilted 15° from vertical, but greater tilts cause instabilities.

At the opposite end of the size range the Harvard Microrobotic Fly is the

smallest entomopter to demonstrate tethered flight [137]. Figure 1.25b shows the

48



60-mg, 3-cm MAV consisting of an airframe, piezo bimorph actuator, bioinspired

transmission and wings. The triangular cantilever pizeo bimorph bends at high

frequency to drive the transmission, which uses leverage to flap the wings in

the same manner as an insect notum (cf. figure 1.22). The driving frequency

of the piezo is tuned to the structural natural frequency of the wing system

so the system operates in resonance. The wings are functionally rigid, but a

compliant joint at the root allows feathering rotation in response to inertial and

aerodynamic forces. Mechanical stops limit the flapping and feathering strokes to

100°. Restrained by vertical guide wires and using an offboard power source, the

Harvard Microrobotic Fly achieved lift-off with a measured thrust-to-weight ratio

of 2:1. The MAV is intended to receive ongoing modifications towards the final

goal of an autonomous vehicle with a projected 120 mg weight.

Most recently AeroVironment’s bio-inspired Nano Air Vehicle (NAV), shown

in figure 1.25c, has demonstrated controlled free flight and hover for a vehicle of

comparable size to hummingbirds [138]. The successful flight of the NAV, which

has a wingspan of 16 cm and a weight of 19 g, was announced in February 2011.

At the date of this dissertation, fall 2011, published documentation of the NAV is

limited to non-technical press releases [138,139]. The NAV is controlled using only

(a) SRI/U. Toronto
Mentor

(b) Harvard Microrobotic Fly (c) AeroVironment
NAV

Figure 1.25: Advanced flight-capable entomopters.
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two flapping wings without auxiliary control surfaces, which suggests that the

wings have more degrees of freedom than a Pénaud-type entomopter. The NAV

has demonstrated continuing flight for eight minutes, as well as transition from

hover to forward flight.

If Pénaud-type entomopters are successful in flight, why consider more com-

plex configurations? Pénaud-type vehicles’ advantage is their simplicity: with a

single degree of motion, the flapping mechanism can be compact and lightweight.

But as a consequence they only produce thrust perpendicular to the flapping

plane. Moreover, if the flapping amplitude is fixed as is typical of most Pénaud-

type vehicles (either by the driving mechanism itself or by mechanical stops)

the amount of thrust is governed by the wingbeat frequency via the throttle—a

flapping-wing analogue of a fixed-pitch propellor. A separate system is required to

direct the thrust and provide control. Using fins to direct the downwash in hover,

like the Mentor MAV does, is the obvious solution but one which carries penalties.

The weight and size of the fins are non-trivial, and control nonlinearities will arise

if the fins move out of the downwash (I suspect such nonlinearities contributed to

the Mentor’s instabilities when it was tilted for translational flight).

Contrast this to the articulation of insect wings: in addition to flapping,

insects have feathering and stroke deviation degrees of freedom. The amplitude

and phasing of each degree of freedom can be changed independently and near-

instanteously. This gives insects immediate command over the magnitude and

direction of their wings’ thrust vector without supplemental control surfaces. If

entomopters achieve similar command of their wing kinematics, the size and

weight savings may offset the simplicity of a Mentor-like configuration. Bioin-

spired kinematic control should provide performance gains as well; direct control

over the aerodynamic forces affords exceptional maneuverability to some insects.

The benefits for normal hovering flight are less clear, but the increased control
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authority will likely improve efficiency by granting fine control over aerodynamic

effects like the leading-edge vortex and wing–wake interaction. The recent success

of the Aerovironment Nano Air Vehicle has demonstrated the feasibility of con-

trolling insect-like entomopters using only flapping wings, but the exact methods

of control have not been published at the time of this dissertation.

1.3.2 Entomopter Test Stands

Development of more complex flapping mechanisms is currently relegated to

bench-top test stands, where they can be designed and evaluated without concern

for their size and weight. Unlike the test stands used for biological research,

which are typically Reynolds-scaled to accurately duplicate insect kinematics at

low frequencies, engineering test stands function at MAVs’ operational wingbeat

frequencies while loosely approximating insect kinematics. But even freed from

the constraint of being flightworthy, most test stands cannot replicate insects’

ability to adapt their kinematics in flight. Instead they physically constrain and

couple the flapping and feathering rotations. Still, they are necessary and useful

stepping-stones towards more elaborate vehicles, and some test-stands are already

demonstrating degrees of insect-like kinematic control.

University of California Berkeley’s long-running Micromechanical Flying

Insect (MFI) project currently straddles the line between test stand and entomopter

[140–144]. The MFI, shown in figure 1.26, is designed as a flight-capable ento-

mopter. At-scale airframes and flapping actuators have been built and evaluated

on test stands, but the MFI has not yet achieved lift-off (however, the Harvard

Microrobotic Fly is an offshoot of MFI research). The MFI’s flapping actuation

is uniquely advanced and is the most successful attempt at approaching insect-

like levels of kinematic control. Each wing is actuated by two independent piezo

bimorphs connected to the wing through four-bar mechanisms. A composite-
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(a) Artist’s conception (b) Composite airframe

Figure 1.26: UC Berkeley Micromechanical Flying Insect (MFI) [145].

flexture transmission links one four-bar to the leading edge of the wing and the

other to the trailing edge. This configuration allows independent flapping rotation

of the leading and trailing edges of the wing. By prescribing a time-lag on the

trailing edge relative to the leading edge’s flapping position, the MFI can control

the feathering angle of its wing. More importantly, the control inputs to the driving

piezos can be altered during operation. This means the MFI should be able to

adapt its kinematics and direct its thrust in flight, though a demonstration of this

capability has not yet appeared in the literature.

Raney and Slominski’s “vibratory flapping apparatus” takes a different ap-

proach to mimicking biological control by replicating the skeletomuscular arrange-

ment of a hummingbird shoulder [146]. In hummingbirds, the wing skeleton

interfaces with the body at the shoulder joint. Two muscles attach to the wing

outboard of the shoulder at opposing downward diagonals while a flexible tendon

attaches from above; muscles and tendon form an upside-down Y arrangement.

The vibratory flapping apparatus in figure 1.27 uses a spring in place of the

tendon and two electrodynamic shakers in place of muscles. The two-dimensional

trajectory of the wing (in flapping and stroke deviation degrees of freedom) can

be prescribed via the oscillatory waveforms of the shakers. Raney and Slominski

demonstrated circular, oval and figure-of-eight tip trajectories with the apparatus
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Figure 1.27: Raney and Slominki’s vibratory flapping apparatus.

and were able to transition between them in as little as four wingbeats. However,

the feathering degree of freedom was uncontrolled. No attempt was made to scale

the flapping apparatus to a flightworthy size.

We now come to a broad category of test stands that we may designate as

single-degree-of-freedom (SDOF) linkage mechanisms. They are characterized by

the use of physical linkages to transform a driven one-degree-of-freedom motion—

typically a rotating motor shaft—into reciprocating wing motion. Pénaud-type

configurations with their planar flapping are the simplest such mechanisms. More

intricate examples, a sample of which are pictured in figures 1.28 and 1.29, couple

feathering and/or stroke-deviation with the flapping motion. By better mimicking

insect-like kinematics, these additional coupled motions can potentially generate

greater thrust than Pénaud-type mechanisms. Like Pénaud-type designs, the

appeal of SDOF mechanisms is their (relative) simplicity. The flapping motions

are wholly defined by their linkage geometries, and their single-input actuations

are easy to implement and control. But if used in a flying entomopter, they will

have the same deficiency as Pénaud-type entomopters: the invariant flapping

motion generates thrust in a fixed direction, so steering the vehicle will require

supplemental control surfaces.

The wing path defined by any SDOF linkage mechanism is invariable during
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operation. But the wing path can be altered by physically swapping out compo-

nents of the mechanism for pieces of different geometry. This makes SDOF mech-

anisms useful for reproducing steady-state flight regimes, like normal hovering or

fast forward flight. Hovering kinematics with different feathering amplitudes, for

example, can be compared by exchanging a few pieces of a well-designed SDOF

mechanism.

The test stands in figure 1.28 approximate normal hovering flight. Wing

motions are symmetric on the up- and downstrokes, and large-amplitude changes

in feathering angle occur intermittently at the end of the flapping strokes. Singh

and Chopra’s test stand uses a scotch yoke to generate planar flapping, while

feathering is set by a bi-stable cam assembly that is switched by contact with

ball stops [98]. It is capable of a flapping stroke of 80° and geometric angles of

attack of 30 to 45° at a wingbeat frequency of 12 Hz. This test stand was employed

for Singh and Chopra’s aeroelastic studies, see pp. 32, 42. Żbikowski, Galiński

and Pedersen’s test stand is somewhat more complex, using a four-bar Watt’s

mechanism modified with auxiliary springs and elastic couplings to generate a

figure-of-eight wingtip path [147, 148]. A coupled Geneva wheel mechanism

effects intermittent feathering rotation. This test stand can achieve a 90° flapping

stroke at a frequency of 20 Hz (its geometric angle of attack is not reported).

(a) Singh and Chopra (b) Żbikowski et al.

Figure 1.28: Single-degree-of-freedom linkage mechanisms for hover.
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Figure 1.29 shows some test stands which approximate forward flight (i.e.,

more like ornithopters than entomopters). Wing motions are typically asym-

metric on the up- and downstrokes, and changes in feathering angle are often

not intermittent, if they are controlled at all. Banala and Agrawal’s is simpliest,

using a five-bar mechanism to generate an asymmetric figure-of-eight motion

with continuous feathering [149]. Its approximation of insect kinematics is not

very good, particularly with respect to the feathering angle on the upstroke.

McIntosh, Agrawal and Khan’s flapper uses a four-bar mechanism for Pénaud-

type ornithopter motion, but adds a follower–guide mechanism to feather the

wings vertically on the upstroke [150]. This arrangement is designed to alleviate

negative lift on the upstroke in forward flight. Nguyen et al.’s mechanism is a basic

Pénaud-type design with a torsion hinge allowing the wing to passively feather in

response to inertial and aerodynamic loads [151]. It is primarily a demonstrator

for the authors’ unimorph lightweight piezo-composite actuator (LIPCA), which

is used instead of the rotary motor common to most SDOF mechanisms. Many

other SDOF linkage test stands can be found in the literature.

1.3.3 Wing Structures

When constructing entomopters, engineers have mostly focused on the kine-

matics and actuation of wing motion. Less thought has been given to the wings’

(a) Banala and Agrawal (b) McIntosh et al. (c) Nguyen et al.

Figure 1.29: Single-degree-of-freedom linkage mechanisms for forward flight.

55



structural design, particularly their structural dynamics. This is hardly unex-

pected. The structural (and structural dynamic) properties of insects themselves

are unclear, providing little guidance to designers.

As such, there is no coherent design philosophy consistently applied to

entomopter wings. In the simplest cases, wings are constructed with seemingly

little regard for their structural properties. Their geometries are planned, they are

built with convenient materials and attached to a flapping mechanism to operate

however they will. More commonly, qualitative experiment-based methods are

implemented: many wings of various geometries and materials are constructed

and evaluated on a flapping test rig, or an initial guesstimate configuration is

iteratively modified. Rarely are wings manufactured to any quantitative design

specification (e.g., a target natural frequency). Indeed, we can currently only spec-

ulate which design parameters should be specified, let alone estimate beneficial

values.

However, one common trend can be identified in the design of entomopter

wings: geometric approximation of insect wing features. Though structural prop-

erties of insect wings may be unknown, their shapes are readily determined.

Engineers can copy or modify them at need. This is frequently seen in the

planforms of entomopter wings, which are often modeled on a particular insect.

More elaborate designs—such as those from Pornsin-Sirirak et al. [39], Shang

et al. [152], Tanaka, Matsumoto and Shimoyama [153], and Tanaka and Wood

[154]—emulate venation patterns, flexion lines or three-dimensional geometry.

Figure 1.30 illustrates some examples of biological imitation.

The degree to which entomopter wings should reproduce insect wings is a

matter of discretion. On one hand we wish to exploit the knowledge embodied

by animals; this is the crux of bioinspired design. On the other, it is unproductive

to blindly copy natural forms whose behaviors are not understood. That is the
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(a) Aluminum frame, mylar mem-
brane

(b) Titanium alloy frame,
parylene-C membrane

Figure 1.30: Insect-inspired entomopter wings. Both are metal frames spanned
by plastic membranes. Singh and Chopra (a) approximate the planform of a fruit
fly [98]. Pornsin-Sirirak et al. (b) project the major venation of a beetle as a two-
dimensional frame [39].

very essence of “the uncreative tendency towards biomimicry” that Michelson

warns against. Evolution has optimized insects’ wings according to the biolog-

ical requirements of each species; their structures manifest functionalities—and

compromises of functionality—that would be unnecessary and perhaps detrimental

to entomopters conceived for other roles. Faithfully imitating insects’ forms in

entomopters without understanding their practical significance may result in a

mismatch of functionality. Instead, we should learn from nature what function-

alities would be beneficial to entomopters, then design MAVs to incorporate those

functions. For example, we should not strive to exactly duplicate insects’ wings,

but from them glean advantageous wing deformations for normal hovering flight

and give entomopters wings that deform in the same fashion. In some cases this

may lead to copying insects’ forms, but in others it may not.

I will now survey selected examples of entomopter wing structures. Atten-

tion is given to cases where an underlying design philosophy has been clearly

elucidated and to cases where the wings’ structural properties are particularly

well-documented.

The wing structures of the Harvard Microrobotic Fly were designed in part

using a priori specifications for the wing’s rotational natural frequency [137]. This
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appears to be the only case so far where an entomopter wing was designed to

specification from its earliest stages. However, the design criteria was chosen to

ensure the rigidity of the wing. As noted earlier, the Harvard Microrobotic Fly

uses a compliant joint to allow passive rotation rotation. The joint is parallel to the

leading edge spar; in figure 1.31 it is hidden within the joint stop, which limits

the maximum angle of feathering rotation. It was desired that the wing itself

be functionally rigid in torsion, so that the feathering rotation was quasi-static.

Thus, the carbon-fiber and polyester wing’s torsion frequency was required to be

sufficient higher than the wingbeat frequency. Using a CAD model, the first torsion

natural frequency of 250 Hz was determined to be adequate to ensure rigidity

during operation at the 110 Hz wingbeat frequency. The wing’s size and planform

are copied from a hoverfly wing.

The design procedure of the Mentor’s wings exemplifies the more common

experimental method. The Mentor team chose a “pragmatic design methodology”

of constructing and evaluating trial wings to hone in on a final design after

concluding that development of an unsteady aeroelastic design algorithm would

be prohibitively prolonged [155, p. 4-1]. Bilyk’s dissertation [155] gives a detailed

description of the first two years of the wing design program, but subsequent

developments are only briefly discussed in an overview of the eight-year Mentor

project [136]. Figure 1.32 shows three stages of wing iterations: BAT-12 is the result

of Bilyk’s initial design study, BIRIB-04 is a later development, and Webwing SF-

Figure 1.31: Harvard Microrobotic Fly wing, with detail of joint stop.
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(a) BAT-12 (76 mm) (b) BIRIB-04 (130 mm) (c) Webwing SF-3 (180 mm)

Figure 1.32: Experimental wing configurations used on the Mentor MAV. The
semispan, measured from central axis to wingtip, is given in parentheses.

3 is the final operational wing of the battery-powered Mentor. These iterations

embody different structural and geometric design strategies. The size of the wings

increases with each iteration: the 180-mm Webwing SF-3 final design is 50 mm

longer than the preceding BIRIB-04, which in turn was 54 mm longer than its BAT-

12 predecessor.

Each wing in figure 1.32 represents a family of related wings; Bilyk’s dis-

sertation includes “Blue” and “Desertcamo” families preceding the BAT family.

The design process within each family was evolutionary: evaluating variant wings

with slightly different structural and geometric layouts gave an intuitive, qualita-

tive feel for optimizing within the family. This follows the team’s stated pragmatic

design philosophy. But the jump between families appears revolutionary; moreso,

the justifications behind the configurational alterations are not well explained.

The spar geometry of the wing families, for example: the BAT family is based

on bats’ finger bones with trailing spars radiating from a “palm” at mid-span,

while the BIRIB has a single trailing spar from the root and the mid-span, and

the Webwing’s spars radiate from the root. No explanation is given why the spar

layouts were thus changed. It is indicated that the Webwing family was developed

to enable construction of consistent wings using pre-preg carbon fibers, in contrast

to the hand-built BAT and BIRIB wings. Thus, the differences between BIRIB and

Webwing configurations may be partially due to manufacturing concerns.‡‡ On

‡‡The Webwing’s layout is most akin to the much earlier Desertcamo family that preceded
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the whole there is little indication how the intuition gleaned from experiments

on one family was exploited in subsequent families, or if it was applicable to

subsequent families at all. The overall impression is that each wing family rep-

resented a wholly new design—starting essentially from scratch—which was then

systematically optimized by the experimental methodology.

Sadly, the Mentor publications do not offer much quantitative data of the

structural designs of the trial wings. The BAT family of wings is the most well-

represented. Bilyk’s dissertation reports the mass and area of every BAT-series

wing, and the location of the centers of mass and area. Additionally, representative

values of bending and torsional stiffness for each wing were calculated from

the deflection caused by a point load at an arbitrary spanwise location. Bilyk

attempted to characterize the BAT wings’ performance as functions of nondimen-

sional parameters in hopes of gaining better understanding of design trade-offs

than was offered by “the intuition obtained from the trial-and-error process of

wing testing” [155, appx. F]. This attempt was not successful; Bilyk suspected

that the stiffness estimates were not sufficiently accurate. Much less data has

been published for the later BIRIB and Webwing families. The overview paper

reports the leading edge spar geometries and materials of selected wings, but no

additional specifications are given.

The Mentor program does provide some design guidelines for wings, albeit

mostly qualitative in nature. For example, the team found the Mentor’s flight

performance was more profoundly influenced by variations of the leading edge

spar’s bending stiffness than by variations of the wing planform. The spar’s

the BAT wings. The Desertcamo family was rejected because the prototype BAT-01 had a more
promising thrust-to-power ratio. In the absence of explanation in the Mentor review paper, we
can only make conjectures about the reasons for this reversion. One possibility is that when
first implementing carbon fiber pre-preg construction, the Mentor team reverted to a simple early
geometry. But an alternate possibility is that the promising performance of the BAT-01 wing did
not reflect the appropriateness of the family in general, and later experiments led the team back
to a previously abandoned design. If the latter is the case, this presents an argument against the
experimental design method, since an outlier test may lead the design in the wrong direction.
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bending stiffness was experimentally optimized so the wing tips almost touched

during the clap-and-fling. The wings were made flexible enough to sweep out

a maximum arc but not so flexible as to hit one another, which would increase

power consumption and noise. Also, in the words of the Mentor team, a “degree

of slackness” was allowed when the membrane was attached to the frame, causing

a nonlinear torsional stiffness that increases with greater deformations. Oddly, the

review paper omits a very important design trend in the Mentor wing families:

the consistent increase of wing radius with each new family. Wing radius strongly

affects the mean lift of a flapping wing [78], and it is not clear from the published

discussion how much of the performance gains arose from improvements in struc-

tural design, and how much arose from the simple lengthening of the wings.

Like the Mentor team, Singh and Chopra also used an experimental design

methodology, though on a less extensive scale [98, 156]. Since Singh and Chopra’s

research was focused on aeroelastic analysis instead of operational optimization,

their wing design went through many fewer iterations and variations than the

Mentor’s. Variations on two basic frame-and-membrane configurations were

developed: scaled fruit fly planforms and rectangular planforms. All the wings

had the same radius and mean chord. The fruit fly wings were constructed with

thin aluminum frames and Mylar membranes. “Wing II,” shown in figure 1.30a,

feathered about the 50%-chord axis and had a closed frame. “Wing III,” in fig-

ure 1.33a, feathered about the 20%-chord axis and had a frame that was open

along the trailing edge. Wing III consistently achieved greater thrust than Wing

II for the same flapping motion, which Singh and Chopra ascribed to greater

rotational lift (i.e., Kramer effect) from the more-forward feathering axis. The

later rectangular series were constructed from composites next in an effort to

decrease wing weight and, thus, inertial power requirements. The rectangular

geometry shown in figure 1.33b was chosen to simplify construction, using either
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(a) Fly planform (b) Rectangular planform

Figure 1.33: Example wings from Singh and Chopra’s experiments.

carbon composite or fiberglass frames and mylar or RC Microlite membranes. The

feathering axis for all the rectangular wings was moved forward to 10% chord.

Singh and Chopra’s study is notable for reporting the first nonrotational nat-

ural frequency of each trial wing, determined from the wings’ impulse response.

This appears to be the only study which reports the wings’ natural frequency

or, indeed, any quantitative data characterizing the structural dynamics of an

MAV wing. Together with thrust and power graphs over the range of flapping

frequencies, this allows an estimation of the dynamic stiffness of the wing. A

schematic diagram is given of Wing III (on which most of the aeroelastic analysis

was focused), from which could be derived estimates of the wing area and centers

of mass and area. However, scant quantitative structural data for the other wings

is given particularly for the rectangular wing series.

1.3.4 Other Flapping-Wing Analyses

Concurrent with the research performed for this dissertation, several research

programs have begun to focus on the aerodynamic and aeroelastic effects of wing

flexibility for flapping-wing flight. Shyy et al. [157] provides an overview of recent

aeroelastic modeling efforts, with a focus on the work of Aono, Chimakurthi et al.

[158,159], as a part of a general survey of flapping-wing aerodynamics. In general,

the aeroelastic analyses are complex numerical methods which couple computa-
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tional fluid dynamics (CFD) with computational structural dynamics (CSD). Such

analyses are shown to provide good agreement with experimental measurements.

The aeroelastic numerical analyses confirm the beneficial effects of flexibility for

flapping-wing aerodynamics.

As flapping-wing MAV technology matures and flight-capable MAVs are

developed, detailed models of insect-like flight dynamics are necessary to develop

suitable control and stability analyses. To this end, Orlowski and Girard developed

an analytical model of insect-like MAV flight dynamics which considers the effects

of six-degree-of-freedom wing motion (flapping, feathering and stroke deviation

for each wing) in addition to the standard six degrees of freedom associated

with rigid-body flight [160]. The wings were modeled as rigid structure, which

comprised 5.7% of the mass of the total MAV. Despite accounting for only a

small portion of the vehicle’s mass, Orlowski and Girard concluded that wing

effects cause appreciable changes in the qualitative and quantitative nature of

flight dynamics when compared to a standard model that neglects wing effects.

Therefore, modeling wing motion is important for understanding insect-like flight

dynamics. The analytical framework used by Orlowski and Girard to model

rigid-wing dynamics is compatible with to the flexible-wing structural dynamic

model presented in this dissertation, suggesting that the the two analyses can be

combined in the future.

1.4 Summary

Insects and insect-like animals are attractive models for micro air vehicles.

In particular, large hawkmoths and hummingbirds are maneuverable and hover-

capable fliers with wingspans near DARPA’s target for MAVs. Study of these

animals will yield knowledge that can be applied to MAV design. Hawkmoths

and hummingbirds use normal hovering flight, in which the wings undergo large-
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angle oscillatory flapping and pitching rotations at frequencies of 10 Hz or more.

These animals’ wings are lightweight and flexible structures that experience sub-

stantial deformations during flight. The airflow associated with normal hovering

flight is significantly different than those of full-scale airplanes and helicopters,

and only within the last fifteen years have we begun to identify and understand

its major aerodynamic mechanisms.

Reversible deformations during normal hovering flight cause nose-down

twist and positive camber of biological fliers’ wings, properties that enhance lift

in rotary-winged helicopters. However, the effect of wing flexibility has been

largely ignored in aerodynamic studies, and the majority of analytical and phys-

ical models of normal hovering flight neglect flexibility altogether. Therefore it

is impossible to definitively conclude that twist and camber, or any structural

deformations for that matter, act analogously in normal hovering flight as in more

well-known fixed- and rotary-wing regimes. There is a clear need for engineers

to better understand the structural and aeroelastic operation of flexible flapping

wings at a basic level.

At present, a number of factors hinder such basic understanding. The first

is the complexity of the biological wings—small, delicate, intricate and multi-

functional structures that often confound simple analysis. Biological complex-

ity has led engineers and biologists to construct analogues of insects for basic

research, studying not the animals directly but mechanical approximations of

them. This leads to the second factor: current mechanical devices cannot replicate

the wingbeat amplitudes and frequencies of biological fliers. This dissertation

shows that the wingbeat amplitudes and frequencies are fundamental parameters

characterizing the time-periodic structural dynamics of the flapping wing. It is

reasonable to assume that as MAV technology progresses mechanical systems will

approach biological ranges of actuation, but current technology cannot physically
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evaluate how those future structural systems will act. The final factor hindering

our understanding is simply a lack of quantitative measurements of structural

properties for either biological or mechanical wings. Only a few instances of data

for bending stiffnesses, natural frequencies and elastic axis and center of gravity

locations are reported for flapping wings; more detailed data is often wholly

unavailable. With little quantitative data on which to base design analysis, most

flapping MAV wings are designed using experimental trial-and-error methods.

Despite these difficulties, recent research indicates a possible bright spot for

the study of flapping wing structures. Biologists have speculated that inertial

loads play a greater role in causing wing deformations than aerodynamic loads.

This speculation is borne out by the few recent studies that account for struc-

tural flexibility. A particularly promising finding by Combes and Daniel, the

only researchers to experimentally evaluate the effect of air density on biological

wing deformations, concludes that the effect of aerodynamics on flapping wing

deformations can be approximated by the addition of damping to a structural

model. This suggests that, on a preliminary level at least, flapping wing flexibility

can be modeled by purely structural methods, allowing analysis separate from

aerodynamic considerations.

1.5 Objective

The objective of this research is the development and application of an ana-

lytic structural model of a flexible flapping wing. The analytic model will capture

the effects of general design variables, such as mass and stiffness distributions, on

the structural dynamics of the wing. This analytic model is developed to address

a gap in current modeling and design capability with regards to flexible flapping

wings.

The current state-of-the-art for design and evaluation of flexible flapping
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wings can be generalized into two broad regimes. On one hand, physical wings for

flapping-wing mechanisms are typically designed by construction-and-evaluation

methods, in which many design iterations are built and experimentally tested.

This design method is efficacious for developing wings for any particular in-

hand mechanism, but not suitable for predicting or optimizing the performance

of wing structures. On the other hand, ever-more-complex coupled CFD/FEM

models of flapping wings (particularly biological wings) are being developed to

study flexible wings. These computational models are very useful for compre-

hensive, detailed examination of a particular wing, but are resource-intensive to

set-up and solve and are difficult to draw generalized knowledge from. The

analytic structural model developed in this dissertation provides a middle-ground

between these two options. The structural model is then applied to examine the

time-periodic stability of flapping wing systems for operating conditions that are

beyond the current capabilities of experimental flapping mechanisms, as well as

interpreting results from a FEM-based aeroelastic code.
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CHAPTER 2

ASSUMED MODES ANALYSIS OF A FLAPPING

WING AS A THIN BEAM

2.1 Introduction

This chapter presents the derivation and non-dimensionalization of the equa-

tions of motion of an elastic wing structure undergoing bending and torsional

deformations. The wing loadings are derived for a thin beam undergoing arbitrary

flapping and feathering motions. The derived blade loadings are used to create the

matrix assumed-modes equations of motion. By enforcing time-periodic flapping

and feathering, the equations of motion are non-dimensionalized as functions of

the flapping and feathering frequencies and amplitudes. The chapter concludes

with commentary and insights on the non-dimensional flapping-wing equations

of motion. The derivation and non-dimensionalization of the flapping wing model

was published in part by Rosenfeld and Wereley [161].

2.2 Model Definition

In order to create a simple analytical model, we assume that the bending and

torsion loads of the wing are carried through the leading-edge spar. Combes and

Daniel [125] show that this is a good assumption for bending deformations, while

Ennos’ study [119] implies it is adequate for torsion deformations. The leading-

edge spar is modeled as a thin beam. We assume the wing is symmetric across the

67



cross-sectional thickness and has no initial twist. The wing has a length or radius

R and a chord distribution c(x).

The motion of the rigid wing is described by a prescribed feathering rotation

φ(t) and a prescribed flapping rotation θ(t) as shown in figure 2.1. The flapping

angle φ describes the wing’s rotation within the stroke plane, while the feathering

angle θ describes the rotation of the wing along its spanwise axis. φ and θ are

defined positive in the directions illustrated. Both φ(t) and θ(t) are periodic func-

tions of time with a frequency ω. φ(t) has a stroke (i.e., peak-to-peak) amplitude

of Φ and a median value of φ = 0, while θ(t) has a stroke amplitude of Θ and a

median value of θ = π/2.

We define several coordinate axes, also seen in figure 2.1. First are the fixed

inertial axes, designated by the vectors ( i˜0, j˜0, k˜0). The flapping axes ( i˜φ, j˜φ, k˜φ)

rotate about the inertial k˜0 axis with the flapping angle φ. In turn, the feathering

axes ( i˜θ, j˜θ, k˜θ) rotate about the flapping i˜φ axis with the feathering angle θ. The

intertial, flapping and feathering coordinate systems are coincident at their origin.

The wing’s elastic axis lies some offset distance eO ahead of the axis of feathering

Stroke 
plane

i, x

j, y
k, z

i0

j0

k0, kφ

iφ, iθ

jφ

jθ

kθ

φ(t)

Flapping 
angle

θ(t)

Feathering 
angle

eO

Elastic 
axis

Figure 2.1: Coordinate systems for thin beam analysis, shown with respect to a
rigid wing. Not to scale.
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rotation. We define the rigid-beam axes ( i˜, j˜, k˜) with their origin at the root of the

elastic axis (i.e., at eO j˜θ) and oriented parallel to the feathering axes. Positions in

the rigid-beam coordinates are denoted by the triplet (x, y, z).

Deformations of the wing are measured in the rigid-beam coordinate system

as in figure 2.2. The wing is allowed to undergo bending within the plane of the

wing v, bending out of the plane of the wing w and torsion about the elastic axis γ.

Positive deformations are as illustrated. Also shown are the locations of the cross-

section’s center of gravity e and area centroid eA, both measured positive forward

of the elastic axis.

This flapping-wing beam model is a generalization of the rotating beam

models used to analyze helicopter rotor blades. The helicopter-blade system is

recovered for the case of constant positive flapping rate, φ̇(t) = C > 0, and small

feathering angle θ(t).

w

γ

e

eA

EA

centroid

CG

v
j

k

Figure 2.2: Cross-section of deflected wing, shown in rigid-beam coordinate
frame. Not to scale.

2.2.1 Nomenclature

The model on which this analysis is based is a synthesis of biological model-

ing of insects and engineering modeling of rotating beams—specifically, helicopter

blades. We attempt to respect the terminology and symbolic conventions of both

fields. Since biological models were derived from aeronautical engineering analy-

ses, there is already significant overlap of both fields’ lexicons. However, there is a

disheartening lack of standardization for biological kinematic nomenclature, with
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only a few key symbols and terms being constant across all studies (the universal

use φ to represent flapping angle is one of the exceptions).

In the interest of clarity when combining the fields, we chose a slightly

less common terminology and nomenclature to refer to the angle of incidence

of the wing measured from the stroke plane. In biological nomenclature, this

angle is typically called the “geometric angle of attack” α, where “geometric” is

occasionally discarded. The measurement of α is not standardized. Many studies

measure α as an absolute value from different origins for alternating half-strokes,

as in figure 2.3; others choose a fixed reference angle (as θ is measured in figure 2.3);

still others measure from a vertical reference line. Furthermore, the biological use

of angle of attack and α conflicts with the engineering convention of measuring

angle of attack from the free-stream velocity vector. To eliminate these confusions

and conflicts we adopt the alternate term “feathering angle,” which is gaining use

MAV studies [146, 150, 151]. Following the convention of Raney and Slominski,

we designate the feathering angle as θ (some biological studies use θ to represent

the angle of stroke deviation). It is referenced so the feathering angle of a wing

traveling nose-forward for counter-clockwise flapping (i.e., rotating in the same

direction as a helicopter rotor) is θ = 0°. This nomenclature has the advantage of

giving θ a similar meaning to helicopter studies, where θ is the blade pitch angle,

while retaining the engineering convention that α designates aerodynamic angles

DownstrokeUpstroke

Stroke 
plane α

θ

Feathering angle 

θ

Angle of attack α

Figure 2.3: Measurement of feathering angle θ versus geometric angle of attack
α. Both wings have the same measured geometric angle of attack α, despite their
different orientiations. Side view of wing, not to scale.
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of attack only.

While the kinematics of the wing use biological nomenclature, the nomen-

clature for beam structures and deformations is taken from Houbolt and Brooks’

study of helicopter blades [162], from which the engineering analysis of this

chapter is derived. Houbolt and Brooks’ nomenclature is standard for helicopter

analysis. The only change we make is to use γ to represent the elastic torsion

deformation of the wing. Houbolt and Brooks designate elastic torsion as φ, which

conflicts with the standard biological nomenclature for flapping angle. Helicopter

analyses typically designate elastic torsion deformations as θ with an additional

subscript (e.g., θe in Johnson [163]). We instead chose γ for differentiation from

feathering angle θ without the use of subscripts.

2.2.2 Estimation of Physical Properties

Before deriving the equations of motion, we need estimates for the structural

properties of the wing. We require measurements of the center of gravity offset

e, the centroid offset eA, the rotational offset eO of the cross-section, as well as the

mass radii of gyration in the chord-wise and thickness directions kmy and kmz, and

the area polar radius of gyration kA, all measured from the elastic axis. As noted

previously, scant quantitative information from biological studies exist on which

to base these values. Norberg’s study [123] indicates some values for e and eA,

but no published information gives insight into reasonable values for the radii of

gyration. Dudley [63, p. 62] suggests that the center of gravity is near the axis of

feathering rotation to decrease inertial torques.

A representative model of a wing cross-section has been created to calcu-

late general dimensions for use in this study. The initial geometry is chosen

to approximate Norberg’s illustrated locations of the EA and CG locations of

dragonfly wings. Denoting the wing chord as c, the average location of the elastic
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axis of the forewing of a dragonfly is 0.21c behind the leading edge of the wing

and the location of the center of gravity is 0.31c behind the leading edge. The

representative wing is modeled as two rectangular sections: a large section of

length 0.42c with its front at the leading edge of the wing and a thinner trailing

section extending for the remaining 0.58c as shown in figure 2.4. Locating the

position of the elastic axis on an arbitrary area such as the cross-section in figure 2.4

is not straightforward. For simplicity, we approximate the elastic axis’ location as

coincident with the centroid of the thick leading section by assuming the thinner

trailing section will not carry large out-of-plane shear loads. Assuming the wing is

of uniform density, the trailing section must be 0.181 times as thick as the leading

section to locate the CG at 0.31c behind the leading edge.

We select the exact thicknesses of the sections to match data from hawkmoth

wings measured by Combes [127, chap. 4]. The mean physical parameters of the

measured hawkmoth wings were a planform area of 774 mm2, a radius of 52.2 mm

and a mass of 44.3 mg. The mean chord is calculated as 14.8 mm and the mean

mass per unit length is 0.852 mg/mm. Combes reports the average density of

hawkmoth wings as 0.5 mg/mm3 [127, p. 108]. The thicknesses of the leading

and trailing sections must be 1.48× 10−2 c and 2.7× 10−3 c, respectively, for the

representative model to have the same mean mass per unit length as the hawkmoth

wings for a section of mean chord. The maximum wing thickness is approximately

1.5% of the chord, which is reasonable for a thin airfoil. The representative physical

0.21c

0.31c

0.42c0.58c

0.015c

0.003c

EA
j

k

Figure 2.4: Representive wing cross-section. Not to scale.

72



properties are then calculated as

e = −0.10c (2.1)

eA = −0.10c (2.2)

eO = −e = 0.10c (2.3)

k2
my = 0.068c2 (2.4)

k2
mz = 1.5× 10−5 c2 (2.5)

k2
A = 0.068c2 (2.6)

e and eA are negative to indicate that they lie behind the elastic axis. The elastic

axis offset eO is set as−e so that the CG is coincident with the feathering axis i˜θ per

Dudley.

2.2.3 Aerodynamics

Aerodynamic forces on the wing are not explicitly included in the structural

model. Biological researchers including Ellington [78] and Ennos [164] have

contended that inertial and elastic forces play the primary role in causing wing

deformations, with aerodynamic forces being secondary. Recent experimental

tests on insect wings and complementary FEA by Combes and Daniel [131] and

numerical aeroelastic models by Singh and Chopra [98] indicate an even stronger

conclusion: aerodynamic forces play very little role in determining wing defor-

mations. Combes and Daniel concluded aerodynamic forces primarily provide

damping to the wing structure, and the structural dynamics can be adequately cal-

culated from a damped structural model without inclusion of aerodynamic terms.

They approximated the aerodynamic damping as viscous damping proportional

to the model’s mass matrix. We follow this approach by using a structural, rather

than aeroelastic, model of the wing. The model is derived for an undamped
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system (damping is added for some analysis cases in chapter 3.) Note that

aerodynamic forces are implicitly included in the model derivation by the external

force distributions and may be expanded given a suitable analytic aerodynamic

model accounting for the influence of wing deformations.

2.3 Equations of Motion

The derivation of the equations of motion is based on the linear methodology

presented in Houbolt and Brooks’ study of helicopter blades [162]. This methodol-

ogy facilitates linear decomposition of the wing dynamics via an assumed-modes

method to simplify analysis. When applied to helicopter blades, Houbolt and

Brooks’ linear analysis does not include nonlinear flap-torsion nor flap-lag Coriolis

couplings [165] when compared to the nonlinear analysis of Hodges and Dowell

[166]. (“Flap” bending by helicopter convention is structurally equivalent to our

out-of-plane bending with respect to the airfoil, while “lag” bending is equivalent

to in-plane bending.) Furthermore, this analysis has assumed that the structural

deflections are small enough to be modeled linearly; if larger deflections occur, a

non-linear model is necessary. Being aware of these deficiencies, we proceed with

the analysis .

We begin with an untwisted beam element of width dx at a radial position xi˜.
The equilibrium equations of this beam element in torsion, out-of-plane bending

and in-plane bending respectively are

−
[
(GJ + Tk2

A)γ′
]′
− TeAw′′ + qyv′ − qzw′ − qx = 0 (2.7)

(EIzw′′ − TeAγ)′′ − (Tw′)′ + q′y − pz = 0 (2.8)

(EIyv′′ − TeA)′′ − (Tv′)′ + q′z − py = 0 (2.9)
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The force loadings py and pz act upon the beam element in the +j˜ and +k˜
directions. The moment loadings qx, qy and qz act at the elastic axis in the +i˜,
−j˜and +k˜ directions, respectively. The centrifugal tension T is defined by

T′ = −px (2.10)

where px is the force loading acting in the +i˜direction. The beam loadings px, py,

pz, qx, qy and qz include inertial forces arising from the prescribed rotations φ and

θ and external forces acting on the beam.

To derive the inertial loadings, the acceleration acting on a differential vol-

ume at a generic point P on the wing is derived in the beam-fixed coordinate

system. The accelerations are integrated over the cross-section to give the loadings

on a differential section of the wing. Consider a differential volume of size

(dx, dy, dz) located at a point P on the undeformed beam. The position vector

of P in the rigid-beam coordinates is

P˜ =


x

y

z

 (2.11)

The beam is allowed to deform in in-plane bending v, out-of-plane bending w and

torsion γ as shown in figure 2.2. If the angle γ is small, the deformed position of

the point P, denoted as P1, is

P˜1 =


x− v′y− w′z

y + v− zγ

z + w + yγ

 =


P1x

P1y

P1z


The rigid-beam axes lie parallel to, and a distance eO j˜ ahead of, the θ-axes. The
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deformed position of point P in the θ-axes is

P˜θ =


x− v′y− w′z

y + v− zγ + eO

z + w + yγ


We calculate the acceleration at the deformed point P1 by transforming the

position vector into the inertial 0-axes, taking the second time derivative and

transforming back into the θ-axes. The transformation matrices from the inertial

axes to the θ-axes and vice versa are

Tθ0 =


cos φ sin φ 0

− cos θ sin φ cos θ cos φ sin θ

sin θ sin φ − sin θ cos φ cos θ

 (2.12)

T0θ = TT
θ0 (2.13)

and the acceleration vector a˜ in the beam-fixed frame is

a˜ = Tθ0
∂2

∂t2

(
T0θP˜θ

)
=


ax

ay

az

 (2.14)
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The components of the acceleration vector are

ax = φ̈
[

sin(θ)w− cos(θ)(v + eO)
]
− φ̇2x

+ 2φ̇θ̇
[

cos(θ)w + sin(θ)(v + eO)
]
+ 2φ̇

[
sin(θ)ẇ− cos(θ)v̇

]
+ y
{
− v̈′γ + φ̈

[
sin(θ)− cos(θ)

]
+ φ̇2v′ + 2φ̇θ̇

[
cos(θ)γ + sin(θ)

]
+ 2φ̇ sin(θ)γ̇

}
+ z
{
− ẅ′ + φ̈

[
cos(θ)γ + sin(θ)

]
+ φ̇2w′

− 2φ̇θ̇
[

sin(θ)γ− cos(θ)
]
+ 2φ̇ cos(θ)γ̇

}
(2.15)

ay = v̈ + φ̈ cos(θ)x− θ̈w + φ̇2 cos(θ)
[

sin(θ)w− cos(θ)(v + eO)
]

− θ̇2(v + eO)− 2θ̇ẇ + y
{
− φ̈ cos(θ)v′ − θ̈γ

+ φ̇2 cos(θ)
[

sin(θ)γ− cos(θ)
]
− θ̇2 − 2φ̇ cos(θ)v̇′ − 2θ̇γ̇

}
+ z
{
− γ̈− φ̈ cos(θ)w′ − θ̈ + φ̇2 cos(θ)

[
cos(θ)γ + sin(θ)

]
+ θ̇2γ− 2φ̇ cos(θ)ẇ′

}
(2.16)

az = ẅ− φ̈ sin(θ)x + θ̈(v + eO)− φ̇2 sin(θ)
[

sin(θ)w− cos(θ)(v + eO)
]

− θ̇2w + 2θ̇v̇ + y
{

γ̈ + φ̈ sin(θ)v′ + θ̈ − φ̇2 sin(θ)
[

sin(θ)γ− cos(θ)
]

− θ̇2γ + 2φ̇ sin(θ)v̇′
}

+ z
{

φ̈ sin(θ)w′ − θ̈γ

− φ̇2 sin(θ)
[

cos(θ)γ + sin(θ)
]
− θ̇2 + 2φ̇ sin(θ)ẇ′ − 2θ̇γ̇

}
(2.17)

Integrating the accelerations over the beam cross-sections gives the force and

moment loadings for the beam at the elastic axis. The beam density ρ may vary

over the cross-section. Since the beam is symmetric about the chordwise axis,

terms multiplied by z integrate to zero. The forces p and moments q are given
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by

px = −
∫
y

∫
z

axρ dz dy

py = Ly −
∫
y

∫
z

ayρ dz dy

pz = Lz −
∫
y

∫
z

azρ dz dy

qx = M−
∫
y

∫
z

[
− ay(P1z − w) + az(P1y − v)

]
ρ dz dy

qy = −
∫
y

∫
z

[
− ax(P1z − w)

]
ρ dz dy

qz = −
∫
y

∫
z

[
− ax(P1y − v)

]
ρ dz dy

Ly, Lz and M are the external loadings acting at the elastic axis, including all

aerodynamic forces. The resultant equations, with all second-order functions of

deformation variables removed, are:

px = mev̈′ + mφ̈
[

cos(θ)(eO + e + v)− sin(θ)(w + eγ)
]

+ mφ̇2(x− ev′)− 2mφ̇θ̇
[

sin(θ)(eO + e + v) + cos(θ)(w + eγ)
]

+ 2mφ̇
[

cos(θ)v̇− sin(θ)(ẇ + eγ̇)
]

(2.18)

py = Ly −mv̈−mφ̈ cos(θ)(x− ev′) + mθ̈(w + eγ)

+ mφ̇2 cos(θ)
[

cos(θ)(eO + e + v)− sin(θ)(w + eγ)
]

+ mθ̇2(eO + e + v) + 2meφ̇ cos(θ)v̇′ + 2mθ̇(ẇ + eγ̇) (2.19)

pz = Lz −m(ẅ + eγ̈) + mφ̈ sin(θ)(x− ev′)−mθ̈(eO + e + v)

−mφ̇2 sin(θ)
[

cos(θ)(eO + e + v)− sin(θ)(w + eγ)
]

+ mθ̇2(w + eγ)− 2meφ̇ sin(θ)v̇′ − 2mθ̇v̇ (2.20)
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qx = M−meẅ−mk2
mγ̈ + meφ̈

[
sin(θ)x + cos(θ)xγ

]
−mφ̈

[
k2

my sin(θ)v′ + k2
mz cos(θ)w′

]
−meθ̈(eO + v)−mk2

mθ̈

+ meφ̇2
[

sin2(θ)w− cos2(θ)eOγ− sin(θ) cos(θ)(eO + v)
]

+ m(k2
my − k2

mz)φ̇2
{[

sin2(θ)− cos2(θ)
]
γ− sin(θ) cos(θ)

}
+ meθ̇2(w− eOγ)− 2mφ̇

[
k2

my sin(θ)v̇′ + k2
mz cos(θ)ẇ′

]
− 2meθ̇v̇ (2.21)

qy = −mk2
mzẅ′ −meφ̈ cos(θ)eOγ + mk2

mzφ̈ sin(θ)−m(k2
my − k2

mz)φ̈ cos(θ)γ

−meφ̇2xγ + mk2
mzφ̇2w′ + 2meφ̇θ̇ sin(θ)eOγ

+ 2m(k2
my − k2

mz)φ̇θ̇ sin(θ)γ + 2mk2
mzφ̇θ̇ cos(θ) + 2mk2

mzφ̇ cos(θ)γ̇ (2.22)

qz = −mk2
myv̈′ −meφ̈

[
cos(θ)(eO + v)− sin(θ)w

]
+ m(k2

my − k2
mz)φ̈ sin(θ)γ−mk2

myφ̈ cos(θ)−meφ̇2x + mk2
myφ̇2v′

+ 2meφ̇θ̇
[

sin(θ)(eO + v) + cos(θ)w
]
+ 2m(k2

my − k2
mz)φ̇θ̇ cos(θ)γ

+ 2mk2
myφ̇θ̇ sin(θ)− 2meφ̇

[
cos(θ)v̇− sin(θ)ẇ

]
+ 2mk2

myφ̇ sin(θ)γ̇ (2.23)

In the preceding equations, km =
√

k2
my + k2

mz is the polar radius of gyration.

The forces and moments of equations 2.18–2.23 are simplified by performing

order-of-magnitude analysis. Orders of magnitude are assigned to each term: m,

x, φ and θ are O(1); v, w, γ, e and eO are O(ε). The squared radii of gyration k2
my

and k2
mz are O(ε2) and O(ε5), resepctively. This implies k2

m = k2
my + k2

mz ≈ k2
my;

the cross-section’s polar radius of gyration is approximately equal to its chordwise

radius of gyration. We simplify the loadings using the following metrics. In px

terms of O(1) and constant terms of O(ε) are retained. In py and pz all terms of

O(1) and O(ε), as well as terms of O(ε2) which are functions of γ are retained. In

qx all terms of O(ε) and O(ε2) as well as terms of O(ε3) which are functions of γ are

retained. In qy all terms of O(ε2) and O(ε3) are retained. In qz, terms of O(ε) and
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constant terms of O(ε2) are retained. The resulting expressions are

px = mφ̇2x + m(eO + e)φ̈ cos(θ)− 2m(eO + e)φ̇θ̇ sin(θ) (2.24)

py = Ly −mv̈−mφ̈ cos(θ)x + mθ̈(w + eγ)

+ mφ̇2 cos(θ)
[

cos(θ)(eO + e + v)− sin(θ)(w + eγ)
]

+ mθ̇2(eO + e + v) + 2mθ̇(ẇ + eγ̇) (2.25)

pz = Lz −m(ẅ + eγ̈) + mφ̈ sin(θ)x−mθ̈(eO + e + v)

−mφ̇2 sin(θ)
[

cos(θ)(eO + e + v)− sin(θ)(w + eγ)
]

+ mθ̇2(w + eγ)− 2mθ̇v̇ (2.26)

qx = M−meẅ−mk2
mγ̈ + meφ̈x

[
sin(θ) + cos(θ)γ

]
−meθ̈(eO + v)

−mk2
mθ̈ + meφ̇2

[
sin2(θ)w− cos2(θ)eOγ− sin(θ) cos(θ)(eO + v)

]
+ mk2

mφ̇2
{[

sin2(θ)− cos2(θ)
]
γ− sin(θ) cos(θ)

}
+ meθ̇2(w− eOγ)− 2meθ̇v̇ (2.27)

qy = −meφ̇2xγ−m(eOe + k2
m)φ̈ cos(θ)γ + 2m(eOe + k2

m)φ̇θ̇ sin(θ)γ (2.28)

qz = −meφ̇2x−m(eOe + k2
m)φ̈ cos(θ) + 2m(eOe + k2

m)φ̇θ̇ sin(θ) (2.29)

2.4 Physical Interpretations of Force Loadings

The cross-sectional force and moment loadings from Eqs. 2.24–2.29 are de-

rived from an order-of-magnitude analysis applied to the integrated inertial forces

across the beam’s cross-section. This derivation implicitly accounts for the var-

ious inertial, centrifugal and Coriolis loadings; no a priori physical insight into

individual component forces is necessary. We would like to understand these

component effects in their own right. In this section the component loadings
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are individually derived to furnish this insight, and also as a confirmation of the

preceeding analysis.

For clarity and simplicity, the cross-sectional mass distribution is modeled in

this section as a point mass. The mass radius of gyration will therefore equal the

magnitude of the CG offset, so k2
m = e2. Higher-order effects are neglected; only

terms appearing in the simplified loadings of Eqs. 2.24–2.29 are derived.

Beam loadings are defined along the rigid-beam coordinate axes. Recall that

the rigid-beam axes are parallel to the feathering axes by definition. Also recall

that the moment loadings qx and qz are defined positive in the i˜ and k˜ directions

by the right-hand-rule, but qy is positive in the −j˜direction.

2.4.1 Cross-Sectional Inertia

The inertia of the beam cross section resists structural deformations with a

force proportional to the acceleration of the deformations v, w and γ. Figure 2.5

shows the deformation accelerations in the feathering coordinate system. For small

γ, the inertial force loadings resisting deformations are

py = −mv̈

pz = −m(ẅ + eγ̈)

jθ

kθ

w

v

γ

qx

pz

py

eeO

Figure 2.5: Inertial resistance of airfoil cross-section to deformations shown from
the side in the feathering coordinate frame. Undeformed position shown in light
gray, deformed position in dark gray. Dashed arrows indicate positive loadings.
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The torsional loading qx is taken about the deformed elastic axis position and is

equal to

qx = −eγpy + epz

= meγv̈︸ ︷︷ ︸
2nd-order

− meẅ−me2γ̈

The marked second-order term is a non-linear function of deformation variables

and is neglected in our linear model. Comparing the inertial qx terms with Eq. 2.27

confirms that the point-mass analysis gives k2
m = e2. Since no forces act out of the

cross-sectional plane,

px = qy = qz = 0

2.4.2 Flapping Centrifugal Loadings

Like helicopter rotors, flapping wings are stiffened by centrifugal force. In

flapping wings, centrifugal loadings are a primary source of system periodicity.

Figure 2.6 shows the instantaneous flapping centrifugal force acting on the cross-

section at radial position x, drawn in the flapping coordinate frame. The magni-

iφ

jφ Centrifugal 
force

px

Fjφ

x

yφ
Elastic axisφ

Figure 2.6: Centrifugal force components due to flapping rotation φ̇ acting on a
beam element, shown from the top in the flapping coordinate frame. The flapping
rotation acts at the coordinate origin.

82



tudes of the components px and Fjφ are proportional to the distances x and yφ:

px = mφ̇2x

Fjφ = mφ̇2yφ

The length yφ is a function of the feathering angle θ and the beam displacements,

as shown in figure 2.7a:

yφ = (eO + e + v) cos(θ)− (w + eγ) sin(θ)

The force loadings py and pz, shown in figure 2.7b are equal to

py = cos(θ)Fjφ

= mφ̇2 cos(θ)
[
(eO + e + v) cos(θ)− (w + eγ) sin(θ)

]
pz = − sin(θ)Fjφ

= −mφ̇2 sin(θ)
[
(eO + e + v) cos(θ)− (w + eγ) sin(θ)

]

jφ

kφ

w

v

γ

eeO
θ

yφ

(a) Dimensions and dis-
placements

jφ

kφ

qx

pz

qy

qz

py

Fjφ
px

(b) Forces and moments

Figure 2.7: Force components due to prescribed flapping motion φ(t) acting on an
airfoil cross-section, shown from the side in the flapping coordinate frame. Rigid
beam position shown in light gray, displaced position shown in dark gray.
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The torsional loading qx is equal to

qx = −eγpy + epz

= mφ̇2
[
− eγ(eO + e + v︸︷︷︸

2nd-order

) cos2(θ) + eγ(w + eγ) sin(θ) cos(θ)︸ ︷︷ ︸
2nd-order

− e(eO + e + v) sin(θ) cos(θ) + e(w + eγ) sin2(θ)
]

(2.30)

Again, the marked second-order functions of displacement variables are neglected.

Rearranging yields

qx = meφ̇2
[

sin2(θ)w− cos2(θ)eOγ− sin(θ) cos(θ)(eO + v)
]

+ me2φ̇2
{[

sin2(θ)− cos2(θ)
]
γ− sin(θ) cos(θ)

}
(2.31)

Examining Eq. 2.31 reveals that the dependence of qx on v and w arises from the

pz term in Eq. 2.30. The primary effect of v and w on qx is to change the magnitude

of the centrifugal force. In contrast, most of the dependence of qx on γ comes from

the eγ term multiplying py in Eq. 2.30. The primary effect of γ on qx is to change

the moment arm about which the centrifugal force acts. This effect of γ on torque

is used later to account for important forcing terms which would otherwise be

neglected.

The moment loadings qy and qz are functions of the force px. These loadings

are:

qy = −eγpx

= −meφ̇2xγ

qz = −epx

= −meφ̇2x
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Again, note the influence of γ on the moment arm for qy.

2.4.3 Feathering Centrifugal Loadings

The prescribed velocity of feathering rotation θ̇ imparts a centrifugal force on

the beam in the plane of the cross-section, as shown in figure 2.8. The component

loadings of feathering centrifugal force are proportional to yθ and z

py = mθ̇2yθ

= mθ̇2(eO + e + v)

pz = mθ̇2z

= mθ̇2(w + eγ)

The torsional moment qx is

qx = −eγpy + epz

= mθ̇2
[
− eγ(eO + e + v︸︷︷︸

2nd-order

) + e(w + eγ)
]

= meθ̇2(w− eOγ)

jθ

kθ

v
w γ

qx

pz

py

e

θ

eO

z

Centrifugal 
force

yθ

Figure 2.8: Centrifugal force components due to feathering rotation θ̇ acting on an
airfoil cross-section, shown in a side view of the flapping coordinate frame. The
feathering rotation acts at the coordinate origin.
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The second-order term is neglected as usual. Again, the dependence of the

centrifugal feathering component of qx on γ is due to a change in the moment

arm of the py component. Since no forces act outside of the cross-sectional plane,

px = qy = qz = 0

2.4.4 Flapping Inertial Loadings

The time-periodic prescribed flapping motion gives rise to inertial forces

which resist the flapping accelerations. The inertial forces are proportional in

magnitude to the rotational acceleration φ̈. The associated force loadings are

derived for the rigid-beam position. This is justified for the py and pz loadings

because the order-of-magnitude analysis shows that the variation of flapping

inertial loadings due to deformations is small. In the case of px, recall that px is

the differential beam tension force (see Eq. 2.34). The tension force acts primarily

as a stiffness term in the equations of motion; thus, any dependency of px on

the displacements will manifest as non-linear stiffness terms in the equations of

motion and is neglected.

However, in calculating the associated moment loadings qx, qy and qz, we

assume that the torsional deformation γ exists. Recall that, with respect to moment

loadings, the primary influence of γ was to change the moment arm by which the

force loadings acted. Using a non-zero γ for the calculation of the present moment

loadings will account for important terms in qx and qy.

The inertial force resisting flapping accelerations is shown in the flapping

coordinate system in figure 2.9. The component forces px and Fjφ are proportional

86



tbp
iφ

jφ

Inertial force

px

Fjφ

x

yφ
Elastic axisφ

Figure 2.9: Inertial force components resisting flapping acceleration φ̈ acting on a
beam element, shown in a top view of the flapping coordinate frame. The flapping
acceleration acts at the coordinate origin

to the distances yφ and x

px = mφ̈yφ

Fjφ = −mφ̈x

The length yφ is shown in figure 2.10a and is equal to yφ = (eO + e) cos(θ) so that

px = mφ̈(eO + e) cos(θ)

jφ

kφ

eeO
θ

yφ

pz
py

Fjφ
px

(a) Rigid-beam geometry

jφ

kφ

qx
qy

qz

pz
py

px

γ

(b) Geometry with tor-
sion deformation

Figure 2.10: Forces resisting flapping acceleration φ̈ acting on beam cross-section,
shown in the side view of the flapping coordinate frame. Force loadings are
derived from the rigid geometry in (a). Moment loadings are derived from the
deflected geometry in (b) using forces derived from (a).
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The force loadings py and pz are equal to

py = cos(θ)Fjφ

= −mφ̈ cos(θ)x

pz = − sin(θ)Fjφ

= mφ̈ sin(θ)x

When calculating moment loadings, we assume that the force loadings act at

the deflected CG location shown in figure 2.10b. The qx loading is

qx = −eγpy + epz

= meφ̈x
[

cos(θ)γ + sin(θ)
]

The term meφ̈x cos(θ)γ is order ε2 and is thus a significant component of qx, but it

would have been neglected had only the rigid beam been used for the derivation.

The remaining moment loadings are

qy = −eγpx

= −meOeφ̈ cos(θ)γ−me2φ̈ cos(θ)γ

qz = −epx

= −meOeφ̈ cos(θ)−me2φ̈ cos(θ)

Again, if we had assumed that γ = 0 then qy = 0, which would lead to mismatched

coupling terms in the equations of motion.
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2.4.5 Feathering Inertial Loadings

The time-periodic feathering rotation θ̈ gives rise to inertial loadings oppos-

ing the feathering acceleration. These loadings are derived for a cross section

undergoing displacements v, w and γ as shown in figure 2.11. The component

force loadings py and pz are proportional to the distances z and yθ

py = mθ̈z

= mθ̈(w + eγ)

pz = −mθ̈yθ

= −mθ̈(eO + e + v)

and the moment loading qx is

qx = −eγpy + epz

= mθ̈
[
−eγ(w + eγ)︸ ︷︷ ︸

2nd-order

−e(eO + e + v)
]

= −meθ̈(eO + v)−me2θ̈

jθ

kθ

v

w γ

qx

pz

py

eeO

z Inertial force

yθ

θ

Figure 2.11: Inertial force resisting feathering acceleration θ̈, shown in a side
view of the feathering coordinate frame. The feathering acceleration acts at the
coordinate origin.
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As usual the second-order function of deformation variables is neglected. Since no

forces act outside of the cross-sectional plane,

px = qy = qz = 0

2.4.6 Flap-Feather Coriolis Loadings

Coriolis forces arise when a mass in a rotating frame experiences additional

motion within the plane of rotation. The Coriolis force acts perpendicularly to the

velocity of the mass relative to the rotating frame: a mass with a velocity tangential

to the frame’s rotation will experience a Coriolis force in the radial direction, while

a mass with a radial velocity will experience a tangential Coriolis force.

Three types of Coriolis forces can arise in this flapping-feathering model.

The first is flap-feather Coriolis loadings, in which prescribed feathering motion

induces a velocity relative to the rotating flapping frame. The second is feather-

deformation Coriolis loadings, in which the motion of the deforming wing acts

relative to the rotating feathering frame. The third is flap-deformation Coriolis

loadings, in which the motion of the deforming wing acts relative to the rotating

flapping frame. Flap-deformation effects are small according to the order-of-

magnitude analysis, so their derivation is not included. For a given cross-section,

the Coriolis force is proportional to twice the cross sectional mass, the frame’s

rotational velocity and the cross-sectional mass’ velocity relative to the rotating

frame.

In deriving the flap-feather Coriolis force loadings, the wing is assumed to

be rigid, but the moment loadings are derived for a torsionally deformed wing (as

in figure 2.10, but note that py = pz = qx = 0 for flap-feather Coriolis loadings).

This is the same methodology used to derive the flapping inertial loadings.

The flap-feather Coriolis force is shown in figure 2.12. The velocity ẏφ is a
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iφ

jφ

Coriolis 
forcepx

x

yφ
Elastic axisφ

yφ

Figure 2.12: Coriolis loadings on a rigid beam due to the interaction of flapping
velocity φ̇ and feathering velocity θ̇ (through ẏφ), shown in a top view of the
flapping coordinate frame.

function of the prescribed feathering velocity θ̇. Note that ẏφ > 0 causes a Coriolis

force acting outward in the radial direction. This force is equal to px:

px = 2mφ̇ẏφ

Figure 2.10a shows that yφ = (eO + e) cos(θ), so the time derivative of yφ is

ẏφ = −(eO + e) sin(θ)θ̇

and the flap-feather Coriolis force is

px = −2m(eO + e)φ̇θ̇ sin(θ)

Recalling that γ is assumed to exist for calculation of moment loadings, qy and qz

are

qy = −eγpx

= 2meOeφ̇θ̇ sin(θ)γ + 2me2φ̇θ̇ sin(θ)γ

qz = −epx

= 2meOeφ̇θ̇ sin(θ) + 2me2φ̇θ̇ sin(θ)
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Since no forces act within the cross-sectional plane,

py = pz = qx = 0

2.4.7 Feather-Deformation Coriolis Loadings

The feather-deformation Coriolis loadings arise from the motion of a wing

cross-section in the rotating feathering frame. This motion gives rise to both

radial and tangential components of Coriolis force acting in the plane of the cross-

section, as shown in figure 2.13. The force components are proportional to the

perpendicular motions: the radial Coriolis force is proportional to (ẇ + eγ̇) and

the tangential Coriolis force is proportional to v̇. The force components py and pz

are

py = 2mθ̇(ẇ + eγ̇)

pz = −2mθ̇v̇

and the moment loading qx is

qx = −eγpy + epz

= −2meθ̇(ẇ + eγ̇)γ︸ ︷︷ ︸
2nd-order

−2meθ̇v̇

jθ

kθ

w
v

qx

pz

py

e

Radial 
Coriolis 
force

Tangential 
Coriolis forceγθ

Figure 2.13: Coriolis loadings due to the interaction of feathering velocity θ̇ and
beam deformations, shown in a side view of the feathering coordinate frame.
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Once again, the second-order function of deformation variables is neglected. Since

no forces act outside of the cross-sectional plane,

px = qy = qz = 0

2.4.8 Total Loadings

Summing the physically derived inertial, centrifugal and Coriolis loadings to

the total force and moment loadings acting on a beam element at a radial position

x and including the external in-plane force and moment loadings Ly, Lz and M

give the following loadings:

px = mφ̇2x︸ ︷︷ ︸
centrifugal flapping

+ m(eO + e)φ̈ cos(θ)︸ ︷︷ ︸
inertial flapping

− 2m(eO + e)φ̇θ̇ sin(θ)︸ ︷︷ ︸
flap-feather Coriolis

py = Ly︸︷︷︸
external load

− mv̈︸︷︷︸
blade inertia

− mφ̈ cos(θ)x︸ ︷︷ ︸
inertial flapping

+ mθ̈(w + eγ)︸ ︷︷ ︸
inertial feathering

+ mφ̇2 cos(θ)
[

cos(θ)(eO + e + v)− sin(θ)(w + eγ)
]

︸ ︷︷ ︸
centrifugal flapping

+ mθ̇2(eO + e + v)︸ ︷︷ ︸
centrifugal feathering

+ 2mθ̇(ẇ + eγ̇)︸ ︷︷ ︸
feather-deformation Coriolis

pz = Lz︸︷︷︸
external load

−m(ẅ + eγ̈)︸ ︷︷ ︸
blade inertia

+ mφ̈ sin(θ)x︸ ︷︷ ︸
inertial flapping

−mθ̈(eO + e + v)︸ ︷︷ ︸
inertial feathering

−mφ̇2 sin(θ)
[

cos(θ)(eO + e + v)− sin(θ)(w + eγ)
]

︸ ︷︷ ︸
centrifugal flapping

+ mθ̇2(w + eγ)︸ ︷︷ ︸
centrifugal feathering

− 2mθ̇v̇︸ ︷︷ ︸
feather-deformation Coriolis
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qx = M︸︷︷︸
external load

−me(ẅ + eγ̈)︸ ︷︷ ︸
blade inertia

+ meφ̈x
[

sin(θ) + cos(θ)γ
]

︸ ︷︷ ︸
inertial flapping

−meθ̈(eO + e + v)︸ ︷︷ ︸
inertial feathering

+ meφ̇2
[

sin2(θ)(w + eγ)− cos2(θ)(eO + e)γ− sin(θ) cos(θ)(eO + e + v)
]

︸ ︷︷ ︸
centrifugal flapping

+ meθ̇2(w− eOγ)︸ ︷︷ ︸
centrifugal feathering

− 2meθ̇v̇︸ ︷︷ ︸
feather-deformation Coriolis

qy = −meφ̇2xγ︸ ︷︷ ︸
centrifugal flapping

−m(eOe + e2)φ̈ cos(θ)γ︸ ︷︷ ︸
inertial flapping

+ 2m(eOe + e2)φ̇θ̇ sin(θ)γ︸ ︷︷ ︸
flap-feather Coriolis

qz = −meφ̇2x︸ ︷︷ ︸
centrifugal flapping

−m(eOe + e2)φ̈ cos(θ)︸ ︷︷ ︸
inertial flapping

+ 2m(eOe + e2)φ̇θ̇ sin(θ)︸ ︷︷ ︸
flap-feather Coriolis

The physically derived loadings above are identical those derived from the order-

of-magnitude analysis (Eqs. 2.24–2.29) for the assumption that the cross-sectional

mass distribution is a point mass (i.e., k2
m = e2). This validates the previous

analysis.

2.5 Assumed Modes Analysis

Resuming our derivation of the flapping equations of motion, we return to

the equilibrium equations of a beam section Eqs. 2.7–2.9, restated here:

−
[
(GJ + Tk2

A)γ′
]′
− TeAw′′ + qyv′ − qzw′ − qx = 0

(EIzw′′ − TeAγ)′′ − (Tw′)′ + q′y − pz = 0

(EIyv′′ − TeA)′′ − (Tv′)′ + q′z − py = 0

Centrifugal tension T is a function of the prescribed flapping and feathering

rotations φ and θ. This dependence is made explicit by defining mass moments
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Sx and Se

Sx =
∫ R

x
mx dx (2.32)

Se =
∫ R

x
m(eO + e) dx (2.33)

and writing T as a function of these mass moments and the prescribed rotations

T = −
∫ x

R
px dx =

∫ R

x
px dx

= φ̇2Sx +
[
φ̈ cos(θ)− 2φ̇θ̇ sin(θ)

]
Se (2.34)

The equations of motion are solved by applying a modified Galerkin assumed-

modes analysis as described by Houbolt and Brooks [162]. The displacements are

approximated by the summation of the first N non-rotational modes

γ(x, t) =
Nγ

∑
i=1

χγi(x)qγi(t) = χ˜T
γ(x)q˜γ(t) (2.35)

w(x, t) =
Nw

∑
j=1

χwj(x)qwj(t) = χ˜T
w(x)q˜w(t) (2.36)

v(x, t) =
Nv

∑
k=1

χvk(x)qvk(t) = χ˜T
v (x)q˜v(t) (2.37)

where χ(x) are the assumed mode shapes and q(t) are the time-varying modal

magnitudes.

We apply a Galerkin method modified by including forcing boundary terms

in the equations in order to form the equations of motion. In the classic Galerkin

method, assumed modes must satisfy both geometric and forcing boundary condi-

tions. The modified Galerkin method relaxes these restrictions so assumed modes

need only satisfy geometric boundary conditions. The resulting equations are

equivalent to those formed by the Rayleigh-Ritz method. The modified Galerkin
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equations are

∫ R

0
χγiDγ(v, w, γ) dx + χγiQ

∣∣∣∣R
0

= 0 i = 1, . . . , Nγ

∫ R

0
χwjDw(v, w, γ) dx + χ′wjMy

∣∣∣∣R
0

+ χwjVz

∣∣∣∣R
0

= 0 j = 1, . . . , Nw

∫ R

0
χvkDv(v, w, γ) dx + χ′vk Mz

∣∣∣∣R
0

+ χvkVy

∣∣∣∣R
0

= 0 k = 1, . . . , Nv

Dγ, Dw and Dv are the left-hand sides of Eqs. 2.7–2.9, respectively, and the forcing

functions are

Q = (GJ + Tk2
A)γ′

My = EIzw′′ − TeAγ + δ(x)krootw′(x)

Mz = EIyv′′ − TeA

Vz = −M′y + Tw′ − qy

Vy = −M′z + Tv′ − qz

The term δ(x)krootw′(x) represents a torsional root spring of stiffness kroot acting

on the out-of-plane displacement mode. The Dirac delta distribution δ(x) indicates

that this term exists only at x = 0 and is zero elsewhere. Note that this term will

also be zero for a cantilever boundary condition, since w′(0) ≡ 0 for a cantilever

beam.

Substituting the expressions for Dγ, Dw and Dv and using integration by

parts to eliminate the boundary terms, the equations are

∫ R

0

[
χ′γi(GJ + Tk2

A)γ′ − χγi(TeAw′′ − qyv′ + qzw′ + qx)
]

dx = 0,

i = 1, . . . , Nγ (2.38)
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∫ R

0

[
χ′′wj(EIzw′′ − TeAγ) + χ′wj(Tw′ − qy)− χwj pz

]
dx + χ′wj(0)

(
krootw′(0)

)
= 0,

j = 1, . . . , Nw (2.39)

∫ R

0

[
χ′′vk(EIyv′′ − TeA) + χ′vk(Tv′ − qz)− χvk py

]
dx = 0, k = 1, . . . , Nv (2.40)

The integrands must equal zero for every assumed mode for the equations to be

true.

A matrix equation is formed for the modal magnitude vectors q˜v, q˜w and q˜γ

by substituting the simplified force and moment equations Eqs. 2.24–2.29 and the

modal summation equations Eqs. 2.35–2.37 into the modified Galerkin equations

Eqs. 2.38–2.40 and setting the integrands equal to zero. Rearranging forcing terms
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to the right-hand side, the full matrix equation is


A B 0

BT C 0

0 0 D




q̈˜γ

q̈˜w

q̈˜v

+ 2θ̇


0 0 E

0 0 F

−ET −FT 0




q̇˜γ

q̇˜w

q̇˜v

+



G 0 0

0 H 0

0 0 I



− φ̈ cos θ


J −K −L+M 0

(−L+M)T −N 0

0 0 −P

+ θ̈


0 0 E

0 0 F

−ET −FT 0



+ φ̇2


Q R− S 0

(R− S)T T 0

0 0 U

− φ̇2 sin2 θ


A B 0

BT C 0

0 0 0



+ φ̇2 cos2 θ


A+V 0 0

0 0 0

0 0 D

+ φ̇2 sin θ cos θ


0 0 E

0 0 F

ET FT 0



− θ̇2


−V B 0

BT C 0

0 0 D

+ 2φ̇θ̇ sin θ


−K −L+M 0

(−L+M)T −N 0

0 0 −P



+ kroot


0 0 0

0 W 0

0 0 0





q˜γ

q˜w

q˜v



=



F˜γA + φ̈ sin θ F˜γB − θ̈F˜γC − φ̇2 sin θ cos θ F˜γC

F˜wA + φ̈ sin θ F˜wB − θ̈F˜wC − φ̇2 sin θ cos θ F˜wC F˜vA − φ̈ cos θ (F˜vB + F˜vC − F˜vD) + φ̇2(F˜vE − F˜vF )

+φ̇2 cos2 θ F˜vG + θ̇2F˜vG + 2φ̇θ̇ sin θ (F˜vC − F˜vD)




(2.41)
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The integral matrix entries are

Aij = Aji =
∫ R

0
mk2

mχγiχγj dx Bij =
∫ R

0
meχγiχwj dx

Cij = Cji =
∫ R

0
mχwiχwj dx Dij = Dji =

∫ R

0
mχviχvj dx

Eij =
∫ R

0
meχγiχvj dx Fij =

∫ R

0
mχwχvj dx

Gij = Gji =
∫ R

0
GJχ′γiχ

′
γj dx Hij = Hji =

∫ R

0
EIzχ′′wiχ

′′
wj dx

Iij = Iji =
∫ R

0
EIyχ′′viχ

′′
vj dx Jij = Jji =

∫ R

0
mexχγiχγj dx

Kij = Kji =
∫ R

0
k2

ASeχ
′
γiχ
′
γj dx Lij =

∫ R

0
m(eOe + k2

m)χγiχ
′
wj dx

Mij =
∫ R

0
eASeχγiχ

′′
wj dx Nij = Nji =

∫ R

0
Seχ
′
wiχ
′
wj dx

Pij = Pji =
∫ R

0
Seχ
′
viχ
′
vj dx Qij = Qji =

∫ R

0
k2

ASxχ′γiχ
′
γj dx

Rij =
∫ R

0
mexχγiχ

′
wj dx Sij =

∫ R

0
eASxχγiχ

′′
wj dx

Tij = Tji =
∫ R

0
Sxχ′wiχ

′
wj dx Uij = Uji =

∫ R

0
Sxχ′viχ

′
vj dx

Vij = Vji =
∫ R

0
meOeχγiχγj dx Wij =Wji = χ′wi(0)χ′wj(0)
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and the forcing vector entries are

FγAi =
∫ R

0
Mχγi dx FγBi =

∫ R

0
mexχγi dx

FγCi =
∫ R

0
m(eOe + k2

m)χγi dx FwAi =
∫ R

0
Lzχwi dx

FwBi =
∫ R

0
mxχwi dx FwCi =

∫ R

0
m(eO + e)χwi dx

FvAi =
∫ R

0
Lyχvi dx FvBi =

∫ R

0
mxχvi dx

FvCi =
∫ R

0
m(eOe + k2

m)χ′vi dx FvDi =
∫ R

0
eASeχ

′′
vi dx

FvE i =
∫ R

0
eASxχ′′vi dx FvF i =

∫ R

0
mexχ′vi dx

FvGi =
∫ R

0
m(eO + e)χvi dx

where the mass moments Sx and Se are defined in Eqs. 2.32–2.33. Note that if the

CG is coincident with the feathering axis—as we assumed for our estimated wing

properties—then eO = −e andK,M,N and P are zero matrices.

2.6 Non-dimensional Analysis

The linear, time-periodic matrix equations of the flapping-wing deformations

given in Eq. 2.41 are the basis of our time-periodic structural stability analysis.

This study focuses on out-of-plane bending and torsion deformations only, so we

consider a reduced system with no in-plane deformations, v = 0. (However,

the following non-dimensionalization and stability analyses can be extended to

include this additional deformation.) In order to develop a scalable stability anal-

ysis, the system of equations is non-dimensionalized with respect to characteristic

parameters: the system’s non-dimensional non-rotating natural frequencies and

the stroke amplitudes of the prescribed rigid-beam rotations. We begin with the
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reduced out-of-plane-bending/torsion equations:

A B

BT C


q̈˜γ

q̈˜w

+


G 0

0 H

 − φ̈ cos θ

 J −K −L+M

(−L+M)T −N


+ φ̇2

 Q R− S

(R− S)T T

− φ̇2 sin2 θ

A B

BT C


+ φ̇2 cos2 θ

A+V 0

0 0

− θ̇2

−V B
BT C


+ 2φ̇θ̇ sin θ

 −K −L+M

(−L+M)T −N

+ kroot

0 0

0 W



q˜γ

q˜w


=

F˜γA

F˜wA

+ φ̈ sin θ

F˜γB

F˜wB

− θ̈

F˜γC

F˜wC

− φ̇2 sin θ cos θ

F˜γC

F˜wC

 (2.42)

Non-dimensional length and time variables ξ and τ are introduced:

ξ = x/R (2.43)

τ = ωt (2.44)

so that 0 ≤ ξ ≤ 1. Non-dimensional structural distributions, denoted by a hatted

variable, are defined as follows. Length distributions (including bending mode

shapes) are non-dimensionalized with respect to the beam radius R:

χ̂wi(ξ) = χwi(ξR)/R

ĉ(ξ) = c(ξR)/R, etc. . . .
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while the torsion mode shapes retain their value in radians

χ̂γi(ξ) = χγi(ξR)

Mass and stiffness distributions are non-dimensionalized by the maximum distri-

butional values, e.g. m0 = max(m) and EIz0 = max(EIz):

m̂(ξ) = m(ξR)/m0

ÊIz(ξ) = EIz(ξR)/EIz0, etc. . . .

All non-dimensional structural distributions are non-dimensional in both value

and argument. The mass and stiffness distributions m̂, ÊIz and ĜJ have a mini-

mum value of 0 and a maximum value of 1.

Flapping and feathering rotation distributions are non-dimensionalized by

their respective amplitudes. For formality, the prescribed rotation distributions φ̂

and θ̂ are separately defined for zero stroke amplitudes.

φ̂(τ) =


φ( τ

ω )/(Φ/2) Φ 6= 0

0 Φ = 0
(2.45)

θ̂(τ) =


θ( τ

ω )/(Θ/2) Θ 6= 0

0 Θ = 0
(2.46)

The flapping rotation φ has a median value of 0, so φ̂ will range between−1 ≤ φ̂ ≤

1. The feathering rotation θ has a median value of π/2, so θ̂ will range between

−1 ≤ θ̂ − π/Θ ≤ 1.

Finally, we non-dimensionalize the external force and moment using the
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previously defined characteristic mass, length and time measures:

M̂(ξ) = M(ξR)/(m0R3ω2) (2.47)

L̂z(ξ) = Lz(ξR)/(m0R2ω2) (2.48)

We now substitute the above non-dimensional definitions into the flapping

equation of motion Eq. 2.42. We find that all of the matrices and vectors—

with the exception of the stiffness matrices G, H and W—are multiplied by

the dimensional factor m0R3ω2. Dividing both sides by this factor gives us non-

dimensional flap-torsion equations of motion of the form

 Â B̂

B̂T Ĉ



∗∗q˜γ

∗∗q˜w

+


 GJ0

m0R4ω2 Ĝ 0

0 EIz0
m0R4ω2Ĥ

 +
kroot

m0R3ω2

0 0

0 Ŵ


− Φ

2

∗∗
φ̂ cos θ

 Ĵ − K̂ −L̂+ M̂

(−L̂+ M̂)T −N̂

+
Φ2

4

∗
φ̂2

 Q̂ R̂− Ŝ

(R̂− Ŝ)T T̂


− Φ2

4

∗
φ̂2 sin2 θ

 Â B̂

B̂T Ĉ

+
Φ2

4

∗
φ̂2 cos2 θ

Â+ V̂ 0

0 0


− Θ2

4

∗
θ̂2

−V̂ B̂
B̂T Ĉ

+
ΦΘ

2

∗
φ̂
∗
θ̂ sin θ

 −K̂ −L̂+ M̂

(−L̂+ M̂)T −N̂



q˜γ

q˜w


=

 F̂˜γA

F̂˜wA

+
Φ
2

∗∗
φ̂ sin θ

 F̂˜γB

F̂˜wB

− Θ
2

∗∗
θ̂

 F̂˜γC

F̂˜wC

− Φ2

4

∗
φ̂2 sin θ cos θ

 F̂˜γC

F̂˜wC

 (2.49)
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The non-dimensional matrix entries are defined as

Âij = Âji =
∫ 1

0
m̂ k̂2

m χ̂γi χ̂γj dξ B̂ij =
∫ 1

0
m̂ ê χ̂γi χ̂wj dξ

Ĉij = Ĉji =
∫ 1

0
m̂ χ̂wi χ̂wj dξ Ĝij = Ĝji =

∫ 1

0
ĜJ χ̂′γi χ̂′γj dξ

Ĥij = Ĥji =
∫ 1

0
ÊIz χ̂′′wi χ̂′′wj dξ Ĵij = Ĵji =

∫ 1

0
m̂ ê ξ χ̂γi χ̂γj dξ

K̂ij = K̂ji =
∫ 1

0
k̂2

A Ŝe χ̂′γi χ̂′γj dξ L̂ij =
∫ 1

0
m̂ (êO ê + k̂2

m) χ̂γi χ̂′wj dξ

M̂ij =
∫ 1

0
êA Ŝe χ̂γi χ̂′′wj dξ N̂ij = N̂ji =

∫ 1

0
Ŝe χ̂′wi χ̂′wj dξ

Q̂ij = Q̂ji =
∫ 1

0
k̂2

A Ŝx χ̂′γi χ̂′γj dξ R̂ij =
∫ 1

0
m̂ ê ξ χ̂γi χ̂′wj dξ

Ŝij =
∫ 1

0
êA Ŝx χ̂γi χ̂′′wj dξ T̂ij = T̂ji =

∫ 1

0
Ŝx χ̂′wi χ̂′wj dξ

V̂ij = V̂ji =
∫ 1

0
m̂ êO ê χ̂γi χ̂γj dξ Ŵij = Ŵji = χ̂′wi(0) χ̂′wj(0)

and the non-dimensional forcing vector entries are defined as

F̂γAi =
∫ 1

0
M̂ χ̂γi dξ F̂γBi =

∫ 1

0
m̂ ê ξ χ̂γi dξ

F̂γCi =
∫ 1

0
m̂ (êO ê + k̂2

m)χ̂γi dξ F̂wAi =
∫ 1

0
L̂z χ̂wi dξ

F̂wBi =
∫ 1

0
m̂ ξ χ̂wi dξ F̂wCi =

∫ 1

0
m̂ (êO + ê) χ̂wi dξ

where the non-dimensional mass moments are

Ŝx =
∫ 1

ξ
m̂ξ dξ

Ŝe =
∫ 1

ξ
m̂(êO + ê) dξ
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2.6.1 Non-rotational Beam Natural Frequencies

The matrix equation of Eq. 2.49 can be fully non-dimensionalized by multi-

plying the equation by the inverted mass matrix,

 Â B̂

B̂T Ĉ


−1

Additional manipulation is necessary to explicitly parameterize the equation in

terms of the system’s non-rotating structural frequencies. The non-rotational

stiffness of the beam is a function of the beam’s bending stiffness EIz0, torsion

stiffness GJ0 and root spring stiffness kroot. We wish to parameterize the equation

of motion with respect to three uncoupled, non-rotational frequencies of the beam:

ωcant, the first bending natural frequency of the beam when attached with cantilever-

free boundary conditions; ωtor, the first torsion natural frequency of the beam when

attached with clamped-free boundary conditions; and ωroot, the rigid natural fre-

quency of the pinned beam due to the root spring.

The total non-rotational structural stiffness matrix is

1
ω2

 GJ0
m0R4 Ĝ 0

0 EIz0
m0R4Ĥ+ kroot

m0R3Ŵ


which can be non-dimensionalized by premultiplying by the inverted mass matrix:

1
ω2

 Â B̂

B̂T Ĉ


−1  GJ0

m0R4 Ĝ 0

0 EIz0
m0R4Ĥ+ kroot

m0R3Ŵ



=
1

ω2

 I Â−1B̂

Ĉ−1B̂T
I


−1  GJ0

m0R4 Â
−1Ĝ 0

0 Ĉ−1 ( EIz0
m0R4Ĥ+ kroot

m0R3Ŵ
)
 (2.50)
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2.6.1.1 Torsion Natural Frequency

We first consider the term GJ0/(m0R4)Â−1Ĝ, which represents the torsional

stiffness of the beam. The natural frequencies of the uncoupled torsion mode are

given by

ω2
γi = (λR)2

γi
GJ0

m0R4 i = 1, . . . , Nγ (2.51)

where (λR)γi is a characteristic parameter for the ith mode which is a function

of the beam structure and boundary conditions. For the first torsion mode of

a general assumed-modes system, this parameter is the minimum eigenvalue of

Â−1Ĝ:

(λR)2
γ1 = eig(Â−1Ĝ)min (2.52)

See appendix A.1 for demonstration of Eq. 2.52 for the case of a uniform beam.

We now define ωtor as the first torsion frequency of our modeled beam

subject to a clamped-free boundary condition. We do this in order to use ωtor as a

characteristic measure of torsion strain stiffness in comparing different beams—by

selecting a particular, known boundary condition, we ensure that ωtor will only be

a function of the beam mass distribution m̂ and torsional stiffness distribution ĜJ

when comparing different beams. This additional definition is somewhat unnec-

essary for the torsion modes, where we shall only look at beams with clamped-free

torsion boundaries. However it will be vitally important for the bending modes,

where we will compare beams with different boundary conditions. We therefore

include the definition of ωtor here as a useful analogy:

ω2
tor = (λR)2

tor
GJ0

m0R4 (2.53)

where

(λR)2
tor = eig(Â−1Ĝ)min

∣∣∣
clamped-free

(2.54)
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It is then easy to see that

GJ0

m0R4 Â
−1Ĝ =

ω2
tor

(λR)2
tor
Â−1Ĝ (2.55)

2.6.1.2 Bending Natural Frequency

We now consider the term

Ĉ−1
(

EIz0

m0R4Ĥ+
kroot

m0R3Ŵ
)

which represents the combined out-of-plane bending stiffness of the beam result-

ing from both the beam’s strain stiffness and the root spring stiffness. We begin by

removing the ratio EIz0/m0R4 from inside the parentheses:

EIz0

m0R4 Ĉ
−1
(
Ĥ+

krootR
EIz0

Ŵ
)

(2.56)

By analogy to the previous analysis, we can write the first natural frequency of the

beam in bending as

ω2
1 = eig

[
Ĉ−1

(
Ĥ+

krootR
EIz0

Ŵ
)]

min

EIz0

m0R4 (2.57)

The natural frequency ω1 is due to the combined effects of strain stiffness and

root spring stiffness. It is not equivalent to ωcant or ωroot except in special cases

presented below:

CANTILEVER BEAM. Consider a root spring kroot that is infinitely stiff so that

there is no change in slope at the root: w′(0) = 0. In this case, the system reduces

to a cantilever beam. Since Ŵ is solely a function of the root slope, Ŵ = 0 and
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the natural frequencies are

ω2
1 = eig(Ĉ−1Ĥ)min

EIz0

m0R4

∣∣∣∣
cantilever-free

(2.58)

where we explicitly note that the system is being evaluated with cantilever-free

boundary conditions. The ith natural frequency of a cantilever beam is similarly

given as

ω2
wi = (λR)4

wi
EIz0

m0R4 i = 1, . . . , Nw (2.59)

Thus, the minimum eigenvalue of the right-hand term of Eq. 2.58 corresponds

to the first natural frequency of the cantilever-free system, ωw1 = ωcant. (See

appendix A.2 for a demonstration that eig(Ĉ−1Ĥ)min = (λR)4
w1 with a uniform

beam.) We therefore define ωcant as

ω2
cant = (λR)4

cant
EIz0

m0R4 (2.60)

where

(λR)4
cant = eig(Ĉ−1Ĥ)min

∣∣∣
cantilever-free

(2.61)

We see that the system’s first natural frequency is the first natural frequency of a

cantilever beam

ω2
1 = ω2

cant (2.62)

as expected. Since there is no root spring stiffness contribution, ωcant characterizes

the bending strain stiffness of the beam.

RIGID BEAM WITH SPRING. Consider a pinned beam with infinite bending stiff-

ness EIz0 so that the beam is rigid with no curvature, w′′(x) = 0. In this case, the

system reduces to a rigid beam with a root spring. Since Ĥ is a function of beam

108



curvature w′′, Ĥ = 0 and the natural frequency is

ω2
1 = eig

(
krootR
EIz0

Ĉ−1Ŵ
)

min

EIz0

m0R4

= eig(Ĉ−1Ŵ)min
kroot

m0R3

∣∣∣∣
rigid, pinned-free

(2.63)

The natural frequency of a pinned rigid beam with a spring is

ω2
root =

kroot

Ib

=
kroot

Îbm0R3
(2.64)

where Îb, the non-dimensional mass moment of inertia of the rigid beam about the

pin, is equal to

Îb =
∫ 1

0
m̂ ξ2 dξ (2.65)

Once again, the minimum eigenvalue is eig(Ĉ−1Ŵ)min = 1/ Îb. See appendix A.3

for a demonstration with a uniform beam. So, the system’s natural frequency is

the natural frequency of a pinned rigid beam with a root spring

ω2
1 = ω2

root (2.66)

as expected. Since there is no strain stiffness contribution, ωroot characterizes the

root spring stiffness.

Dividing Eq. 2.64 by Eq. 2.60 gives a ratio of the natural frequency of a rigid

beam with a root spring over the natural frequency of a cantilevered beam

(
ωroot

ωcant

)2

=
1

(λR)4
cant Îb

krootR
EIz0

(2.67)

The natural frequency of the beam in bending from Eq. 2.68 can now be rewritten
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as

ω2
1 = eig

[
Ĉ−1

(
Ĥ+

(
ωroot

ωcant

)2

(λR)4
cant Îb Ŵ

)]
min

EIz0

m0R4 (2.68)

The non-dimensional expression (ωroot/ωcant)2 characterizes the ratio of the root

spring stiffness to the bending strain stiffness of the system. Note that the term

(λR)4
cant is approximated as eig(Ĉ−1Ĥ)min where Ĉ and Ĥ are assembled using

cantilever-free modes, even if the modeled system is not itself cantilever-free. In

other words, the matrices Ĉ and Ĥ used to calculate (λR)4
cant are different than

those used in the matrix equation itself unless we are modeling a cantilever-free system.

By analogy to previous derivations, we can define a characteristic parameter

(λR)1 that gives the frequency of the first root-spring–free bending mode as

(λR)4
1 = eig

[
Ĉ−1

(
Ĥ+

(
ωroot

ωcant

)2

(λR)4
cant Îb Ŵ

)]
min

(2.69)

so that

ω2
1 = (λR)4

1
EIz0

m0R4 (2.70)

(c.f. Eq. 2.60). Tables 2.1 and 2.2 summarize the various natural frequency

definitions we have developed. Table 2.1 gives the nomenclature for the various

frequencies, the definitions in terms of characteristic λRs and beam properties, and

Table 2.1: Summary of beam frequencies.

Name Symbol Definition Mode Shape

Torsion frequency ωtor ω2
tor = (λR)2

tor
GJ0

m0R2

Cantilever frequency ωcant ω2
cant = (λR)4

cant
EIz0

m0R4

Root spring frequency ωroot ω2
root = kroot

Îbm0R3

First natural frequency ω1 ω2
1 = (λR)4

1
EIz0

m0R4
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Table 2.2: Summary of characteristic λRs.

Symbol Definition Modal B.C. in matrices

(λR)tor (λR)2
tor = eig(Â−1Ĝ)min Clamped-free

(λR)cant (λR)4
cant = eig(Ĉ−1Ĥ)min Cantilever-free

(λR)1 (λR)4
1 = eig

[
Ĉ−1

(
Ĥ+

(
ωroot
ωcant

)2
(λR)4

cant Îb Ŵ
)]

min
Root-spring–free

depictions of the modes and boundary conditions associated with each frequency.

Table 2.2 gives the nomenclature for the characteristic λRs, their definitions as

minimum eigenvalues of assumed-modes matrices and the boundary conditions

of the assumed modes used for calculating those matrices.

As a final note, the bending modes for the assumed-modes model must

be calculated so that they are valid for the root-spring boundary conditions.

Appendix B presentes the derivation of the mode shapes for an arbitrary root

spring, where the relative stiffness of the root spring is measured by the ratio

ωroot/ωcant.

2.6.1.3 Total System Stiffness

Returning to Eq. 2.50, the matrix on the right-hand side can be written as

 GJ0
m0R2 Â

−1Ĝ 0

0 Ĉ−1 ( EIz0
m0R4Ĥ+ kroot

m0R3Ŵ
)


=

 ω2
tor

(λR)2
tor
Â−1Ĝ 0

0 ω2
1

(λR)4
1
Ĉ−1

(
Ĥ+

(
ωroot
ωcant

)2
(λR)4

cant Îb Ŵ
)
 (2.71)

We continue by writing the torsion frequency ωtor as a function of the first can-

tilever frequency ωcant

ω2
tor =

(
ωtor

ωcant

)2

ω2
cant (2.72)
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and similarly, the first bending frequency ω1 as a function of the first cantilever

frequency

ω2
1 =

(
ω1

ωcant

)2

ω2
cant

=
(λR)4

1

(λR)4
cant

ω2
cant (2.73)

This results in a final form:

 GJ0
m0R2 Â

−1Ĝ 0

0 Ĉ−1 ( EIz0
m0R4Ĥ+ kroot

m0R3Ŵ
)


= ω2
cant


(

ωtor
ωcant

)2
1

(λR)2
tor
Â−1Ĝ 0

0 1
(λR)4

cant
Ĉ−1

(
Ĥ+

(
ωroot
ωcant

)2
(λR)4

cant Îb Ŵ
)


(2.74)

The result of the manipulations is a matrix explicitly written so that it is propor-

tional to the square of the first natural frequency of the beam with cantilever-free

boundary conditions, ωcant. The relative contribution of the torsion strain stiffness

on the total system is a function of the ratio ωtor/ωcant. Likewise, the relative

contribution of the root spring stiffness on the total system is a function of the ratio

ωroot/ωcant. Moreso, these frequency ratios are independent, so that the relative

root spring stiffness can be varied while holding the relative torsion strain stiffness

constant or vice versa. All the other terms in the above matrix are functions of

the non-dimensional property distributions of the beam: m̂, ÊIz, ĜJ, etc. The

preceding manipulations provide us convenient, non-dimensional control over the

contributions of various stiffnesses in the system and will give us a powerful tool

for analyzing the stability effects of these stiffnesses.

Multiplying Eq. 2.49 by the inverse mass matrix and using the relationships
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of Eqs. 2.50 and 2.74, the final non-dimensional bending-torsion equation is:


∗∗q˜γ

∗∗q˜w

+

[ (ωcant

ω

)2
Kω −Φ

∗∗
φ̂ cos θ K∗∗

φc
+ Φ2

∗
φ̂2K ∗

φ2 −Φ2
∗
φ̂2 sin2 θ K ∗

φ2s2

+ Φ2
∗
φ̂2 cos2 θ K ∗

φ2c2 −Θ2
∗
θ̂2K∗

θ2 + ΦΘ
∗
φ̂
∗
θ̂ sin θ K ∗

φ
∗
θs

]q˜γ

q˜w


= F˜ext + Φ

∗∗
φ̂ sin θ F˜∗∗φs

−Θ
∗∗
θ̂ F˜∗∗θ −Φ2

∗
φ̂2 sin θ cos θ F˜ ∗φ2sc

(2.75)
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The stiffness matrices in Eq. 2.75 are

Kω =

 I Â−1B̂

Ĉ−1B̂T
I


−1

×

 1
(λR)2

tor

(
ωtor
ωcant

)2
Â−1Ĝ 0

0 1
(λR)4

cant
Ĉ−1

(
Ĥ+

(
ωroot
ωcant

)2
(λR)4

cant Îb Ŵ
)


K∗∗
φc

=
1
2

 Â B̂

B̂T Ĉ


−1  Ĵ − K̂ −L̂+ M̂

(−L̂+ M̂)T −N̂



K ∗
φ2 =

1
4

 Â B̂

B̂T Ĉ


−1  Q̂ R̂− Ŝ

(R̂− Ŝ)T T̂


K ∗

φ2s2 =
1
4

I

K ∗
φ2c2 =

1
4

 Â B̂

B̂T Ĉ


−1 Â+ V̂ 0

0 0



K∗
θ2 =

1
4

 Â B̂

B̂T Ĉ


−1 −V̂ B̂
B̂T Ĉ



K ∗
φ
∗
θs

=
1
2

 Â B̂

B̂T Ĉ


−1  −K̂ −L̂+ M̂

(−L̂+ M̂)T −N̂


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and the forcing vectors are

F˜ext =

 Â B̂

B̂T Ĉ


−1 F̂˜γA

F̂˜wA


F˜∗∗φs

=
1
2

 Â B̂

B̂T Ĉ


−1 F̂˜γB

F̂˜wB


F˜∗∗θ =

1
2

 Â B̂

B̂T Ĉ


−1 F̂˜γC

F̂˜wC


F˜ ∗φ2sc

=
1
4

 Â B̂

B̂T Ĉ


−1 F̂˜γC

F̂˜wC


To aid numerical calculation of these matrices, note that the matrix K∗

θ2 and the

forcing vector F˜ ∗φ2sc
can be calculated as

K∗
θ2 = K ∗

φ2s2 − K ∗
φ2c2

F˜ ∗φ2sc
= F˜∗∗θ /2

2.6.2 Comments on Non-dimensional Analysis

We now examine the non-dimensional system equation Eq. 2.75. The stiff-

nesses of the system can be categorized as constant, non-rotational stiffnesses or

as time-periodic rotational stiffnesses. The former are expressed by the leading

stiffness term (ωcant/ω)2Kω, the latter by the remaining stiffness terms. The

non-rotational stiffnesses are inherent to the structure of the wing system, arising

either from the strain stiffness of the wing or from stiffness within the boundary

condition. In contrast, the rotational stiffnesses arise from inertial loadings as the

wing rotates. They are time-periodic in our flapping-wing system because the
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flapping motions are time-periodic. We will now define the normalized cantilever

frequency ωcant/ω and the flapping and feathering strokes Φ and Θ as character-

istic non-dimensional parameters of the system’s stiffness, respectively expressing

the magnitude of the constant and time-periodic stiffnesses of the system.

2.6.2.1 Normalized Cantilever Frequency and Non-rotational Stiffness

We begin by writing out in full the expression of the non-rotational stiffness

term:

(ωcant

ω

)2
Kω =

(ωcant

ω

)2

 I Â−1B̂

Ĉ−1B̂T
I


−1

×

 1
(λR)2

tor

(
ωtor
ωcant

)2
Â−1Ĝ 0

0 1
(λR)4

cant
Ĉ−1

(
Ĥ+

(
ωroot
ωcant

)2
(λR)4

cant Îb Ŵ
)


This term represents the non-rotational stiffness of the wing structure subject to

forcing at a prescribed frequency ω and its magnitude is proportional to the square

of our characteristic parameter, the normalized cantilever frequency ωcant/ω; such

a relationship is expected from the basic theory of structural dynamics [167]. A

number of considerations influenced the choice of the cantilever frequency as the

characteristic parameter. First, with regards to the first bending frequency of the

root-spring–free beam ω1, we note that ω1 will vary depending on the the root

spring stiffness, meaning that two structurally identical beams will have different

ω1 if the root spring stiffnesses are different. Characterizing with respect to ω1

would therefore obscure the effect of the root spring on stability. The first cantilever

frequency ωcant represents the system at a convenient ideal case* so characterizing

with respect to ωcant allows us to compare with a known idealized system. Further-

*I.e., one in which the root spring is infinitely stiff
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more, many previous analyses of flapping wing structures have assumed that the

wings have a cantilever boundary condition, so that characterizing with respect to

ωcant is convenient for examining these studies. Second, with regards to the first

torsion frequency of the beam ωtor, we simply note that the torsion frequencies of

wing will be higher than the bending frequencies and thus chose the lower of these

frequencies

Recall that the frequency ωcant is a measure of the bending strain stiffness of

the beam. The torsion strain stiffness is measured by ωtor, so the relative torsion

strain stiffness is set through the frequency ratio ωtor/ωcant. Similarly, the root

spring stiffness is measured by ωroot and the relative root spring stiffness is set

through the frequency ratio ωroot/ωcant. The premultiplying matrix

 I Â−1B̂

Ĉ−1B̂T
I


−1

expresses bending/torsion modal coupling through the beam’s CG offset.

2.6.2.2 Flapping and Feathering Strokes and Time-Periodic Stiffness

The remaining stiffness terms are time-periodic inertial stiffnesses arising

from the prescribed motion of the flapping wing. The magnitudes of these stiff-

nesses are functions of the flapping and feathering stroke amplitudes Φ and Θ,

while the time-variations are due to the rotational distributions φ̂ and θ̂. (The

trigonometric functions of the dimensional feathering angle, sin θ and cos θ, are

functions of both Θ and θ̂ and thus affect both the magnitude and time-variation of

the stiffnesses). This is a notable finding: the relative magnitudes of time-periodic

inertial stiffnesses are dependent on the total angle of rotational motion but are

independent of the frequency at which the motion occurs.
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2.6.2.3 Comparison of Biological Fliers and Engineering Studies

By using our defined non-dimensional characteristic parameters, we can

present scalable analyses for flapping systems. Flapping systems with identical

structural and rotational non-dimensional distributions will have matched non-

rotational strain stiffness if they have equal normalized cantilever frequencies

ωcant/ω. Likewise, these systems will have matched inertial (i.e., periodic) stiff-

nesses if they have equal flapping and feathering amplitudes Φ and Θ.

We can apply this knowledge to evaluate the effectiveness of current flapping-

wing mechanisms in mimicking biological fliers. Table 2.3 compares biological

fliers in hover, MAVs and flapping test-stands for a simplified case of no feathering

rotation Θ = 0 and no torsional deformations γ = 0 (a full analysis of this case

appears in the following section). Furthermore, we assume that any measured

structural natural frequencies in the literature is equivalent to the cantilevered fre-

quency ωcant: a good assumption, since almost all computational and experimental

studies have used cantilever boundary conditions.

The flapping strokes of biological fliers sweep out large arcs of 110 to 190°,

with greater flapping strokes associated with greater loadings [71]. Unfortunately,

there are no experimental data of the normalized cantilever frequency ωcant/ω

Table 2.3: Non-dimensional flapping parameters of biological fliers and MAVs in
hover.

Φ [deg] ωcant/ω

Insects [66] 110–180 —
Manduca sexta [103, 168] 115–120 1.15–1.55

Hummingbirds [71] 120–190 —
Mentor MAV (Zdunich et al.) [136] 76 —
Robofly (Dickenson et al.) [87, 169] 60–180 � 1
U. Maryland testbed (Singh & Chopra) [98] 80 .8–5.2
Cranfield U. testbed (Żbikowsi et al.) [147] 90 —
NASA Langley testbed (Raney & Slominski) [146] 45 ∼ 1
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for biological fliers available. The sole datum in literature is derived from a FEM

analysis of a Manduca sexta hawkmoth wing, indicating that the flapping frequency

is slightly below the first non-rotating flap frequency. We can understand why

biological fliers would tend towards large flapping strokes and relatively low nor-

malized bending frequencies by examining Ellington’s expression for the quasi-

steady portion of lift generated by normal hovering flight [78, Eqn. 11]. Among

other factors, this equation shows that the mean lift is a function of flapping stroke,

wing radius, wing area S and mean flapping velocity (i.e., ω):

(Lq-s)mean ∝ Φ2R2S ω2

Larger flapping strokes obviously produce greater lift. Likewise, higher flapping

frequencies ω also produce greater lift, so lowering ωcant/ω is important. A second

consideration also plays a role in lowering ωcant/ω: for a driving mechanism of

fixed power, increasing the flapping frequency of the wing requires decreasing the

wing’s inertia and mass (Singh experienced this effect with his flapping test stand,

where heavy wings could not be tested at high flapping frequencies [156, pp. 66–

67]). For a given material, m0 can be lowered by scaling the wing’s cross-section;

m0 will decrease proportionally with ct, where c is the chord and t is the wing

thickness. However, the bending stiffness EIz0 will decrease proportionally with

ct3; furthermore, a significant decrease of chord will adversely affect lift via smaller

wing area S. Thus, lower wing weight is best achieved though decreased thickness,

which lowers EIz0 more than m0. Recalling that

ω2
cant ∝

EIz0

m0R4

and noting that decreasing wing radius R will adversely affect lift, we see that

lowering wing weight will lower ωcant—more reason for operating at low ratios of
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ωcant/ω. Ellington’s expression for the rotational portion of lift [78, Eqn. 17] gives

the proportionality

(Lrot)mean ∝
Φ R2S ω2

AR
∝ Φ S2ω2

for which the above considerations also hold.

Only the Reynolds-scaled Robofly testbed is capable of matching the flapping

stroke Φ, and therefore the inertial stiffnesses, of biological fliers. As with biolog-

ical fliers, there is little data available for ωcant/ω of man-made engineering ap-

paratuses. The only experimental data from which ωcant/ω can be quantitatively

computed are from the University of Maryland flapping testbed—the most flexible

wing tested had values similar to insects, but most experiments were performed at

ωcant/ω of two to five. Composite wings on the NASA testbed were operated near

resonance of the rotational natural frequency by tuning the flapping frequency

via feedback from a wing-mounted strain sensor. The Robofly testbed is typically

outfitted with a functionally rigid wing, so ωcant/ω is very large.

Taken together, and even accounting for our considerable simplifications,

it is clear that no man-made MAV or test-stand has yet produced data that is

structurally similar to biological systems. No current open-air flapping mechanism

can achieve biological fliers’ flapping stroke Φ (Robofly operates in mineral oil).

Development of mechanisms capable of 120° ≤ Φ ≤ 180° will allow matching

of inertial stiffnesses. The lack of detailed, extensive measurements of biological

wings’ natural frequencies is the obvious hurdle in matching ωcant/ω ratios—once

target values are established, materials and manufacturing techniques should be

assessed for constructing MAV wings.
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2.7 Summary

The linear assumed-modes matrix equations of motion of a flapping wing

were developed for a wing modeled as a thin elastic beam undergoing bending

and torsion motions. The blade loadings and equations of motion were developed

by using an extension of Houbolt and Brooks’ helicopter-blade methodology that

included time-dependent flapping and feathering angles. The resulting wing load-

ings were then re-derived by physical considerations by considering the separate

inertial, centrifugal and Coriolis forces acting on the wing. The loads calculated

from these two derivations were shown to be equivalent, validating the analyses.

The blade loadings were then used to generate the assumed-modes matrix

equations of motion. In order to model insect-like wing structures, the wing root

is assumed to have a pinned boundary condition and a root spring. The ideal

cantilever boundary condition can be recovered from this model by assuming a

root spring of infinite stiffness.

By assuming prescribed, time-periodic flapping and feathering motions, the

equations of motion were non-dimensionalized for insect-like flapping. The nondime-

sional parameters which characterized the system were identified:

• ωcant/ω: Natural bending frequency of the wing (assuming cantilever bound-

ary conditions) divided by wingbeat frequency, or “normalized cantilever

frequency.” Characterizes the magnitude of the constant structural stiffness

of the wing structure.

• Φ, Θ: Stroke amplitudes of the flapping and feathering motions. Character-

ize the magnitudes of the time-periodic stiffnesses of the system.

• ωtor/ωcant: Natural torsional frequency of the wing divided by natural bend-

ing frequency of the wing (assuming cantilever boundary conditions). Char-

acterizes non-rotational torsion stiffness relative to non-rotational bending
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stiffness.

• ωroot/ωcant: Natural frequency of an rigid wing with a root-spring boundary

divided by natural bending frequency of the wing (assuming cantilever

boundary conditions). Characterizes the root spring stiffness relative to the

wing’s structural stiffness.

Non-dimensionalization reveals that, for a given wing structure experiencing time-

periodic insect-like motion, the magnitude of the constant stiffness is a function of

the wingbeat frequency only. Conversely, the mangnitudes of the time-periodic

stiffnesses are functions of the flapping and feathering stroke amplitudes only. This

independence has not been previously identified.

Using the characteristic values of the normalized cantilever frequency and

the flapping and feathering amplitudes, biological fliers were compared with

mechanical MAVs and flapping-wing test stands. MAVs and test stands were

found to have lower stroke amplitudes than biological fliers, indicating relatively

lower time-periodic stiffnesses. MAVs and test stands were also found to have

higher normalized cantilever frequency than biological fliers, indicating relatively

greater constant stiffnesses. This indicates that MAV research to date has resulted

in physical models in which time-periodic stiffness effects will be relatively small

compared to the biological fliers on which they are based. Possible consequences

of this dissimilarity will be addressed in subsequent chapters.
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CHAPTER 3

ASSUMED MODES LINEAR TIME-PERIODIC

STABILITY

3.1 Introduction

A time-periodic system can experience instabilities for certain combinations

of constant and periodic stiffness magnitudes. These instabilities arise directly

from the time-periodic nature of the system. The time-periodic flapping wing

equation of motion, which was developed in the previous chapter, is analyzed

for instabilities in this chapter. The stability of the flapping wing system is

characterized as a function of the normalized cantilever frequency (representing

the constant stiffness magnitude) and the flapping stroke (representing the time-

periodic stiffness magnitude). The stability of the system is examined with respect

to various system and modeling parameters, including number and coupling of

assumed modes, root spring stiffness, feathering stroke amplitude, and other

structural parameters. Mechanical systems, including MAVs and test stands, are

compared with biological fliers regarding the respective instability regions. The

flapping-wing stability analysis and results were published in part by Rosenfeld

and Wereley [161].
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3.2 Analytical Stability Analyses

We first develop a parametric stability analysis of a flapping wing for for

a reduced case of Eq. 2.75. The feathering angle is fixed at θ = π/2 and the

wing is assumed rigid in torsion, γ = 0. The wing is thus oriented with its

chord pointing nose-up as it flaps in the horizontal plane and it deforms only

by bending within the plane of rotation (i.e., equivalent to elastic blade lag in

helicopter analysis). The bending deformation is modeled by a single assumed

mode, w(x, t) = χw1(x)qw1(t). A diagram of this case is shown in figure 3.1, and

the reduced non-dimensional equation of motion is

∗∗qw1 +
[
(ωcant/ω)2 Kω + Φ2

∗
φ̂2 (K ∗

φ2 − K ∗
φ2s2)

]
qw1 = 0 (3.1)

where the scalar stiffnesses are

Kω =
1

(λR)4
cant Ĉ11

[
Ĥ11 +

(
ωroot

ωcant

)2

(λR)4
cant Îb Ŵ11

]
(3.2)

K ∗
φ2 = T̂11/(4 Ĉ11) (3.3)

K ∗
φ2s2 = 1/4 (3.4)

w

Φ

φ(t)

Prescribed 
rigid postionDeflected 

postion

Figure 3.1: Top view of simplified single-mode, flapping motion. The deflection
w(x, t) is in the plane of flapping rotation φ(t).
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Comparing Eq. 3.1 with the standard equation for helicopter lag [163] shows that

Φ2
∗
φ̂2 K ∗

φ2 is the centrifugal stiffness while Φ2
∗
φ̂2 K ∗

φ2s2 is the centrifugal relaxation.

The equation is further simplified by prescribing harmonic flapping rotation,

φ̂ = cos τ. For this case, Eq. 3.1 becomes a time-periodic scalar Mathieu equation

[170] with the form
∗∗qw1 + (a− 2q cos 2τ) qw1 = 0 (3.5)

The parameters a and q characterize the periodicity of the Mathieu equation. The

constant stiffness a is the mean stiffness of the system and the pumping stiffness

q is the amplitude of the time-periodic component of stiffness. Constant and

pumping stiffness are functions of the physical system parameters ωcant/ω and

Φ:

a = (ωcant/ω)2 Kω + Φ2 (K ∗
φ2 − .25)/2 (3.6)

q = Φ2 (K ∗
φ2 − .25)/4 (3.7)

3.2.1 Development of a Parametric Flapping-Wing Stability Diagram

The parametric stability analysis of flapping MAV wings can now be de-

veloped from the Mathieu equation in Eq. 3.5. The scalar Mathieu equation is a

classic time-periodic equation; its stability is well known and can be represented

graphically on a Strutt diagram as a function of the stiffness parameters a and q,

as shown in figure 3.2. The stability boundaries of the Mathieu equation are given

by a set of Mathieu functions, corresponding to lines of marginally-stable values

of (q, a). Mathieu functions are known analytically, allowing us to create figure 3.2

as the exact, analytical stability diagram of the Mathieu equation.

The Strutt diagram in figure 3.2 is ideal for analyzing the general Mathieu

equation, but we desire a flapping-wing stability diagram in terms of our physical
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Figure 3.2: Strutt diagram of Mathieu equation. Shaded areas are unstable, black
lines are stability boundaries calculated by Mathieu functions.

system parameters, ωcant/ω and Φ. Using the relationships in Eqs. 3.6–3.7, the

Strutt diagram can be transformed into a new stability diagram showing the effects

of independent variations of ωcant/ω and Φ. Equations 3.2–3.3 show that the

stiffnesses Kω and K ∗
φ2 are functions of the root spring frequency ratio ωroot/ωcant:

explicitly in Kω and implicitly in both since the mode shape used to calculate Ĉ11,

Ĥ11, etc. changes with ωroot/ωcant. For this example, we choose ωroot/ωcant = ∞,

or cantilever-free boundary conditions.

We need to transform the Strutt diagram over the values of (q, a) associated

with physical parameter ranges of interest. The normalized cantilever frequency

range is selected as 0 ≤ ωcant/ω ≤ 4 —we shall see that parametric instabilities are

unlikely at above this range—and the flapping stroke range as 0 ≤ Φ ≤ π radians.

Recalling that Ŵ = 0 for the cantilever boundary condition, Eq. 2.61 can be used

to show that Kω = 1. K ∗
φ2 for the cantilever wing is 0.298, so the variation of q and a

to be small as a function of Φ. This represents a small influence of periodic inertial

stiffness on the single-mode cantilever model.

Figure 3.3 depicts how a Strutt diagram is transformed into a stability dia-

gram in terms of the non-dimensional parameters ωcant/ω and Φ. Figures 3.3a–
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(c) Stability diagram

Figure 3.3: Transformation of Strutt diagram to flapping-wing stability diagram
for single cantilever-free bending mode, Θ = 0°.

3.3b show the Strutt diagram. The first redraws figure 3.2 for reference, while

the second shows a detail view with a dashed line enclosing the region on (q, a)

corresponding to 0 ≤ Φ ≤ π and 0 ≤ ωcant/ω ≤ 4 for the cantilever-free

beam. By inverting Eqs. 3.6–3.7, we calculate the Mathieu functions bounding

the unstable regions as functions of (Φ, ωcant/ω), resulting in the flapping-wing

stability diagram for the enclosed region shown in figure 3.3c.

We now examine the stability diagram in figure 3.3c more throughly. Com-

binations of parameters resulting in parametric instabilities are the shaded areas

bounded by the dark lines of the transformed Mathieu functions. Only to the

lowermost Mathieu functions enclose a significant region of instability on this

diagram; the Mathieu functions at higher ωcant/ω are essentially zero-thickness

lines of marginal stability. This is a typical trend: parametric instabilities decrease

at higher normalized cantilever frequencies. The unstable regions appear rela-

tively benign, occupying only a small portion of the diagram. We will see that

the unstable regions are larger when we do not make the simplifications used for

this initial stability diagram: inclusion of additional modeled bending and torsion

modes will increase their size, as will a non-zero feathering stroke Θ.

The vertical axis of the stability diagram is the normalized cantilever fre-
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quency ωcant/ω, which represents the magnitude of the relative non-rotational

structural stiffness of the wing, including both strain stiffness and root-spring

stiffness, if present. For any particular wing, the physical non-rotational stiffness

is fixed, so increasing ωcant/ω is equivalent to decreasing the flapping frequency

ω: as the wing moves more slowly, the stiffness of the structure increases relative

to the effects of motion. The horizontal axis is the flapping stroke Φ written in

degrees for convenience, which represents the magnitude of the inertial stiffness

of the beam arising from rotational motion. Moving vertically on the stability

diagram is equivalent to changing the constant stiffness of the system, while

moving horizontally is generally equivalent to changing the time-periodic stiffness

of the system. (More precisely, some—but not all—of the rotational stiffnesses

will change the time-averaged mean stiffness of the system, so Φ and also Θ will

affect the constant stiffness of the system, c.f. Eq. 3.6. However, these effects are

secondary to the effect of ωcant/ω.) Time-periodic structural effects will be most

pronounced at low ωcant/ω and high Φ, where constant stiffness will be lowest

and time-periodic stiffness will be highest. In section 2.6.2.3, we showed that

operating at low ωcant/ω and high Φ would maximize quasi-steady lift for normal

hovering flight. We expect the wings of biological fliers and flapping MAVs which

efficiently generate lift will likely experience time-periodic structural effects.

We use this simple case to illustrate the effect of flapping stroke Φ and nor-

malized cantilever frequency ωcant/ω on the propagation of unforced, undamped

instabilities in the time domain. We propagate an initial tip deflection of ŵ = .01

with an explicit Runge-Kutta ODE solver [171] implemented on Fortran 95 for

various system parameters. Figure 3.4 shows the effect of varying Φ—the measure

of the system’s time-periodic inertial stiffness—as ωcant/ω and strain stiffness is

held constant. Each alternating white and gray band is, respectively, a downstroke

and upstroke of the wing. Since ωcant/ω is fixed, all of these time-plots represent
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Figure 3.4: Propagation of unforced, undamped tip perturbations ŵ in single-
mode system, ωcant/ω = .85, 90° ≤ Φ ≤ 170°

a wing flapped at a constant frequency. As Φ increases, so does the natural fre-

quency of the rotating wing, as can be seen by comparing the crests and troughs of

tip deformation plots. When the rotating natural frequency approaches a harmonic

of the flapping frequency, as in case E, parametric instabilities occur. Case D is

close to, but not in, the region of instability; the deformations initially grow but the

system is stable overall. It must be stressed that these instabilities are not caused

by inertial forcing of the beam. Since we are considering a homogeneous system,

forcing does not play a role in these instabilities. Rather, they are wholly the result

of the periodic inertial stiffnesses arising from the flapping rotation.

Similar results are seen when ωcant/ω is varied at a fixed Φ, as in figure 3.5.

Here, strain stiffness changes with ωcant/ω as inertial stiffness is held constant.
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Figure 3.5: Propagation of unforced, undamped tip perturbations ŵ in single-
mode system, .5 ≤ ωcant/ω ≤ 1.3, Φ = 150°
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The wing’s rotating natural frequency increases with ωcant/ω. As before, para-

metric instabilities occur when the wing’s rotating natural frequency is near a

harmonic of the flapping frequency. However in contrast to figure 3.4, these

plots represent wings flapped at different frequencies. If we assume a constant

ωcant for a given wing, the dimensional time t corresponding to one period of

non-dimensional time τ is proportional to ωcant/ω. Finally, note that the single-

mode system is more sensitive to changes of its constant strain stiffness than its

time-periodic inertial stiffness, hence the more pronounced change in the rotating

natural frequency with ωcant/ω than with Φ.

3.2.2 Biological Fliers, MAVs and Test Stands

The single-mode cantilever stability diagram is redrawn in figure 3.6 with

overlays of the approximate parameter ranges of biological fliers, MAVs and test
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encloses normalized cantilever frequencies of Singh’s light-weight Wing VI [156].
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stands given in table 2.3. First, we look at the operational range of MAVs and

open-air test stands. It was noted earlier that all operational open-air mechanisms

have been unable to deliver large-stroke flapping motions at the desired flapping

frequencies, instead limited to Φ ≤ 90°. The illustrated ωcant/ω range comes

from the sole available source, Singh’s flapping testbed. Almost all of Singh’s

tests were performed at ωcant/ω > 2. However “Wing VI,” which had both the

lowest cantilever frequency and lowest mass of all the tested wings [156, p. 69],

operated down to ωcant/ω ≈ 0.8. (“Wing IX” is recorded as having a similarly-

low cantilever frequency, but data for flapping frequency ω was not reported.) The

wing construction and flapping actuation methods used by Singh were typical of

current MAV research, so we do not expect other open-air experiments to have

significantly different ωcant/ω values. In contrast to the open-air test stands,

the Robofly operates at Reynolds-scaled frequencies in mineral oil, allowing a

series of slow-speed stepper motors to achieve a wide range of flapping strokes.

Robofly is used for fluid mechanics studies and is fitted with functionally-rigid

wings; combined with the low Reynolds-scaled flapping frequencies, this means

Robofly’s normalized cantilever frequencies are certainly above the range of the

stability diagram. Between the open-air studies and the mineral-oil Robofly, we see

that parametrically-unstable regions exist in a very small part of the range explored

by current mechanical flapping studies. Biological fliers, however, use greater

flapping strokes and, as discussed previously, efficient lift production should drive

biological fliers to operate at low ωcant/ω. The Manduca sexta hawkmoth, the

only biological flier for which ωcant/ω can be numerically calculated, operates

closer to the region of instability than most current flapping mechanisms reach.

Though the recorded hovering values of Manduca sexta’s flapping stroke are given

as approximately 120°, it is probable that it could use larger stokes to increase lift

for heavy loading conditions.

131



3.2.3 Root Spring Stiffness

Earlier, we chose to develop the flapping-wing stability diagram using a

cantilever boundary condition, which is equivalent to an infinitely-stiff root spring

or ωroot/ωcant = ∞. We now revisit this choice by examining effect of different

values of root-spring stiffness on the stability diagram. The root-spring stiffness

changes the diagram by altering the stiffnesses Kω and K ∗
φ2 , which will alter the

range of stiffness parameters (q, a) corresponding to the ranges of interest of

(Φ, ωcant/ω) (Eqs. 3.6–3.7).

Figure 3.7 shows a detail view of the Strutt diagram, on which have been

marked the regions corresponding the our stability diagram as ωroot/ωcant de-

creases from ∞ to 0.5. Before continuing, it must be noted that some of the trends

seen in this simplified case (i.e., single modeled bending mode, no feathering rota-

tion) do not carry through to more complex models. These differences are mostly

because the current case approaches a single rigid-body mode as ωroot/ωcant → 0.

We will begin by discussing the trends that are generalizable from this case, then

discuss those that are not in the following paragraph. From figure 3.7, we see that
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Figure 3.7: Effect of root spring stiffness on single-mode stability diagram
envelope, shown on detail view of Strutt diagram. Shaded regions correspond
to 0 ≤ ωcant/ω ≤ 4 and 0 ≤ Φ ≤ π for various ωroot/ωcant.
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the maximum constant stiffness a of the enclosed region decreases with decreasing

ωroot/ωcant. This makes sense physically: by decreasing ωroot/ωcant, we decrease

the root spring stiffness relative to the wing’s bending strain stiffness. Since the

bending strain stiffness is constant for a given wing and ωcant/ω, the root spring

stiffness must decrease, hence the total non-rotational system is less stiff and a is

lower. This is true for any modeled system.

There are two trends unique to this single-mode, non-feathering model which

appear on figure 3.7 as ωroot/ωcant approaches zero: first, that the maximum

constant stiffness a of the enclosed regions goes to zero and second, that the

maximum pumping (i.e., time-periodic) stiffness q decreases monotonically to

zero. We shall address each separately. Constant stiffness a approaches zero for

this case because the sole modeled root-spring–free mode approaches a rigid beam,

which has no strain stiffness, while the root-spring stiffness also approaches zero.

Thus, the total constant stiffness approaches the stiffness of a rigid pinned-free

beam, which is zero. Additional modeled root-spring–free bending modes will

approach pinned-free bending modes, which will retain some strain stiffness as

ωroot/ωcant approaches zero. Pumping stiffness q decreases monotonically to zero

because the system approaches a rigid beam with deformation motion completely

within the plane of forced rotation φ(t). Recall that the periodic stiffness of this

simplified system is equivalent to centrifugal stiffness in the zero-offset helicopter

lag case. Centrifugal stiffness occurs because the bending deflections of the beam

decrease the radial position of the wing elements, performing work against the

centrifugal force field (i.e., increasing the system’s potential energy), as shown

in figure 3.8a. In contrast, rigid deflections do no work against the centrifugal

force field as in figure 3.8b, thus no centrifugal stiffness and no time-periodic

stiffness component of the model. Again, additional models modes will not

approach the rigid-beam mode and will retain some centrifugal stiffness (moreso,
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Figure 3.8: Motion of a beam element against centrifugal force arising from beam
deflection, shown in top view of flapping frame. Gray background arrows show
the magnitude and direction of the centrifugal force field due to flapping rotation,
mφ̇2x2

these stiffnesses may not constantly decrease, see below). Alternately, a non-zero

feathering angle would cause rigid-beam deflections to partially act out of the

flapping plane, which would cause work to be done against the centrifugal force

field. This would also retain some centrifugal stiffness.

As a demonstration that pumping stiffness q and constant stiffness a will

not generally approach zero as ωroot/ωcant approaches zero, let us consider the

second bending mode as if it were uncoupled from the first bending mode. (In

reality this is not the case, since the bending modes will be coupled through off-

diagonal entries in the K ∗
φ2 matrix.) We construct q and a as before, using Kω and

K ∗
φ2 calculated from Eqs. 3.2–3.3 using the second root-spring–free bending mode

(i.e., with C22,H22, etc.). The maximum values of q and a for our stability diagram,

corresponding to the uncoupled second mode as a function of ωroot/ωcant, are

given in table 3.1. As we asserted before, constant stiffness a steadily decreases

with ωroot/ωcant, but does not approach zero. Pumping stiffness q first decreases

with ωroot/ωcant but then increases, with a minimum somewhere between 1 <

ωroot/ωcant < 2. This demonstration does not have any strict physical meaning,

since we are considering an uncoupled mode of a system that is coupled in reality;

it is merely a quick illustration that some of the ωroot/ωcant trends in the simplified

single-mode model do not hold for higher modes.
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Table 3.1: Maximum pumping stiffness q and constant stiffness a for uncoupled
second root-spring–free modes as a function of ωroot/ωcant.

ωroot/ωcant q(π, 4) a(π, 4)
∞ 3.38 635
5 3.33 612
2 3.23 530
1 3.22 421
0.5 3.28 349
0 3.33 314

Returning to the stability diagrams themselves, figure 3.9 shows the effect of

root spring stiffness on the single-mode, flapping-only stability diagram. The first

five stability diagrams correspond to the five shaded regions in figure 3.7 while the

last shows ωroot/ωcant = .05, which is nearly equivalent to a pinned-free system.

The contraction of the stability diagram region on the Strutt diagram manifests as

an expansion of the plotted region on the stability diagrams themselves: we can
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Figure 3.9: Effect of root spring stiffness on single-mode stability diagram, Θ = 0°.
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see that as ωroot/ωcant decreases, instability plot “zooms in” toward the origin. It

is most notable on the vertical axis, where the instability regions spread apart to

higher normalized cantilever frequencies. This means that at lower root spring

stiffnesses, instabilities will be encountered at higher ωcant/ω, that is, at lower

flapping frequencies ω. Again, this is physically intuitive: reducing the stiffness

of the total system will cause instability effects to manifest at lower actuation

frequencies. The effect is not as apparent on the vertical axis, since our simplified

model had a relatively small dependence on time-periodic stiffness to begin with.

As before, the apparent ability to eliminate instabilities by decreasing ωcant/ω is

unique to this simplified model. We will see that decreasing ωcant/ω will result in

larger unstable regions on more complex analyses.

3.2.4 Uncoupled Bending and Torsion

In general the analytic, single-mode stability analyses that we have applied

thus far cannot be directly extended to deal with multiple modes. However, if we

consider a single bending mode and a single torsion mode that are structurally

uncoupled, the system is equivalent to two separate single-mode equations, from

which we can generate the stability diagram via transformations of Mathieu func-

tions as above. We now allow a nonzero torsion deformation γ, but continue

to hold the feathering angle constant at θ = π/2. If both bending and torsion

deformations are modeled by a single assumed mode, the homogeneous matrix

equation of motion is


∗∗qγ1

∗∗qw1

+
[
(ωcant/ω)2 Kω + Φ2

∗
φ̂2(K ∗

φ2 − K ∗
φ2s2)

]qγ1

qw1

 = 0˜ (3.8)

The matrices Kω and K ∗
φ2 will be diagonal and the degrees of freedom will be

uncoupled if the wing’s center of gravity and area centroid are coincident with its
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elastic axis: ê = êA = 0. This will be the case if the wing is symmetric along its

chord as well as along its thickness. (The matrix K ∗
φ2s2 is always diagonal.) In order

to calculate Kω and K ∗
φ2 , it is necessary to know the squared non-dimensional mass

and area moments k̂2
m and k̂2

A. We use values calculated from the representative

wing developed in section 2.2.2. Using Eqs. 2.4–2.6, the non-dimensional values

will be k̂2
m = k̂2

A = .068ĉ2 (recall that k̂2
m ≈ k̂2

my). We select the non-dimensional

chord as ĉ = 1/4 so the wing has the same aspect ratio as a single hummingbird

wing, based on Chai and Millard’s measurements of AR ≈ 8* [71].

The characteristic parameter defining the torsion-mode stiffness is the non-

rotating natural frequency ratio of the first clamped-free torsion mode to the first

cantilever-free bending mode, ωtor/ωcant. We look to a FEA of an insect wing

to estimate a reasonable baseline value of this ratio; Wootton et al.’s FEA of a

hawkmoth wing calculated the first non-rotational bending frequency as 31 Hz

and the first non-rotational torsional frequency as 88 Hz [103]. We therefore

choose the ratio ωtor/ωcant = 2.84 as our baseline. The analytical stability plot

of the uncoupled two-mode stability diagram using the baseline ωtor/ωcant is

shown in figure 3.10b. The other diagrams of figure 3.12 show the baseline

ωtor/ωcant ± 1 for comparison. The uncoupled torsion modes appear as thin

lines that hardly vary position with flapping stroke Φ. This indicates that time-

period stiffnesses have relatively little effect on the torsion instabilities. The

effect of torsion frequency ratio ωtor/ωcant can be easily seen in figure 3.12—as

ωtor/ωcant increases, the torsion instabilities become packed closer together. This

is very similar to the effect of the root-spring frequency ωroot/ωcant discussed

above: a smaller torsion frequency ratio ωtor/ωcant indicates a smaller relative

non-rotational torsion stiffness, which has the effect of “zooming in” the region

*Chai and Millard measured AR with respect to the span and area of both wings. Therefore,
their reported AR are twice the value that would be calculated for a single wing. Note also that
selecting ĉ = 1/4 results in a slightly more slender wing than the hawkmoth measurements from
which the representative wing was derived in section 2.2.2, which have ĉ = .28

137



Flapping stroke Φ, deg

N
or

m
al

iz
ed

 c
an

til
ev

er
 fr

eq
ue

nc
y 

ω
ca

nt
/ω

 

0 30 60 90 120 150 180
0

1

2

3

4

(a) ωtor/ωcant = 1.84
Flapping stroke Φ, deg

 

0 30 60 90 120 150 180
0

1

2

3

4

(b) ωtor/ωcant = 2.84
(baseline)

Flapping stroke Φ, deg

 

0 30 60 90 120 150 180
0

1

2

3

4

(c) ωtor/ωcant = 3.84

Figure 3.10: Effect of torsion stiffness on uncoupled two-mode stability diagram,
Θ = 0°. Gray regions are cantilever-free bending instability regions, black lines
enclose clamped-free torsion instability regions.

of the Strutt diagram that is transformed into the stability diagram.

3.3 Floquet Analysis

All of the previous stability diagrams were constructed by transformation

of the analytic Mathieu functions. This transformation was possible because

our simplified analytical models were equivalent to scalar Mathieu equations.

The introduction of coupled modes and feathering rotation θ(t) will break this

equivalency, with the result being that we cannot construct exact, analytic sta-

bility boundaries for more complex models. Instead, the stability diagrams of

these more complex models must be evaluated numerically on a discrete mesh

of (Φ, ωcant/ω). We use Floquet analysis to evaluate the stability of the linear,

time-periodic system at each discrete mesh point [170]. At any particular point

(Φ, ωcant/ω), the matrix equation of motion Eq. 2.75 is transformed into a state-

space form
∗z˜(τ) = A(Φ, ωcant/ω, τ) z˜(τ) (3.9)

where the time-periodic state-space matrix A is a function of the system parame-

ters. This equation is integrated over one period 0 ≤ τ ≤ 2π to construct a time-
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independent transition matrix Q that transfers the state-space vector one period

into the future. The integration is performed by the Runge-Kutta ODE solver used

to construct the tip deflection figures 3.4 and 3.5.

z˜(τ + 2π) = Q(Φ, ωcant/ω) z˜(τ) (3.10)

The system at point (Φ, ωcant/ω) is considered unstable if the eigenvalues of

Q(Φ, ωcant/ω) satisfy

max
∣∣∣eig(Q)

∣∣∣ > 1 + ε (3.11)

where ε is a small safety factor to account for numerical errors in the time integra-

tion and is set at ε = 10−5.

3.3.1 Flapping and Feathering Rotation

Before adding higher-frequency torsion and bending modes to the model, we

examine the effect of feathering stroke amplitude Θ on the single-mode stability

diagram, shown in figure 3.11. In each diagram, Θ is held constant while Φ

and ωcant/ω vary. Figure 3.11a redraws the previously considered Θ = 0° case

with analytic stability boundaries, while the remaining figures are numerically

generated. The instability regions at higher ωcant/ω are so thin as to often fall

between the numerical grid. The general shapes of the unstable regions are

similar at all magnitudes of Θ, but the size of the unstable regions increases

with increasing Θ. For larger feathering strokes, the unstable regions associated

with the bending-mode instability extend to higher Φ and ωcant/ω than at lower

strokes. The shaded region extending from the origin as Θ increases appears to

be an additional bending parametric instability affecting systems with low total

stiffnesses (i.e., where both non-rotational and flapping stiffnesses are relatively

small) associated with feathering-induced periodic stiffnesses.
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Figure 3.11: Effect of feathering stroke Θ on single-mode stability diagram.

Though our model is still relatively crude, figure 3.11 already indicates that

structures undergoing insect-like flapping and feathering should not be operated

at low ωcant/ω because of parametric instabilities. For example, if our representa-

tive system has a feathering stroke of Θ = 150°, much of the region ωcant/ω < 1.5

is unstable. Therefore, flapping frequencies greater than 2/3rds of the lowest non-

rotational bending frequency should be avoided for this structure.

3.3.2 Additional Modes

We now add higher-frequency structural modes to the system, beginning

with the first torsion mode. For the special case with no feathering rotation and the

CG and the centroid coinciding with the elastic axis (ê = êA = 0), the bending and

torsion modes are uncoupled and the modal equations of motion reduce to two

uncoupled scalar Mathieu equations. We may apply the analytic transformation
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of the Strutt diagram separately for each mode and develop an exact stability

diagram by overlaying the instability regions, as in figure 3.12a. In this diagram,

gray regions are the previously derived bending instability regions while the black

lines are the boundaries of the torsion-mode instabilities. As with the bending-

associated instability regions, the torsion regions at higher ωcant/ω are essentially

zero-width lines of marginal stability. Figure 3.12b shows the stability diagram

of the same system generated numerically by Floquet analysis. Again, only the

lowest instability regions are thick enough to show up on the mesh. Setting ê and

êA to their nonzero baseline values couples the bending and torsion modes; the

resulting matrix equation of motion cannot be solved analytically. Figure 3.12c

shows the numerically generated stability diagram of the coupled case. The

additional shaded areas—e.g., the horizontal spike near ωcant/ω = .45—arise from

bending-torsion modal couplings.

The simple, coupled two-mode system allows comparison of the different

types of instability regions in the time domain. In figure 3.13, the flapping stroke is

held constant at Φ = 150° while ωcant/ω is varied to create systems with bending,

torsion or coupled bending-torsion instabilities. At each point, two time plots are

created: one propagating an initial tip bending deformation of ŵ = .01 and one

propagating an initial tip torsion deformation of γ̂ = .01. Cases E and F show
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Figure 3.12: Two-mode mode stability diagram, Θ = 0°.
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a system unstable in bending. Case E, with an initial tip deformation, clearly

shows the bending natural frequency is near the first harmonic of the flapping

frequency, causing the instability. The coupled torsion deformation grows with

bending, but has an additional frequency component at its own nature frequency,

2.84 times higher than the bending frequency. Case F shows that the initial

torsion deformation does not immediately cause the bending deformation to grow

quickly, indicating that bending deformations affect torsion more than torsion

deformations affect bending. However, the bending deformation is present and

will eventually go unstable. Cases A and B show a system unstable in torsion.

In these cases, it is the torsion deformation frequency that is near the flapping

frequency (recall that lower ωcant/ω corresponds to less dimensional time per

period of τ). Both cases clearly go unstable; in case A, the additional frequency

component in the bending deformations at 1/2.84 of the torsion frequency is

visible. Cases C and D show a system unstable in coupled bending-torsion. As

with case F, we see in case D that the initial tip torsion weakly affects the bending

deformations. Case C shows the clearer result. Neither bending nor torsion

deformations have a frequency near the flapping frequency, which is characteristic

of a coupled instability.

Figure 3.14 shows the stability diagram for the non-feathering, flapping-
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Figure 3.14: Additional coupled modes included on flapping stability diagram,
Θ = 0°.

wing model as progressively higher coupled modes are included. The leftmost

diagram is again the exact single mode case, the middle diagram adds the first

torsion mode (ωtor/ωcant = 2.84) and the rightmost adds the second bending

mode (ωw2/ωw1 = 6.27). The instability regions associated with higher-frequency

modes primarily manifest at lower values of ωcant/ωw. These are regions where the

first-bending-mode instabilities already dominate the diagram for non-zero feath-

ering strokes. Recalling that parametric instabilities decrease at higher normalized

cantilever frequencies, we can expect that the instability regions associated with

these higher modes will be relatively benign at higher ωcant/ω. Thus, we should

expect the parametric instabilities associated with the first bending mode to con-

tinue to dominate the system even when higher modes are modeled.

This expectation is borne out when non-zero feathering rotation is applied

to the three-mode model. Figure 3.15 shows the effect of increasing feathering

stroke on the three-mode model’s stability diagrams. Comparing this to the

corresponding single-mode diagrams of figure 3.11, shows that the diagrams are

practically identical at higher normalized cantilever frequencies, i.e. ωcant/ωw >

1.5. The instabilities associated with higher-frequency structural modes grow (note

the nearly horizontal spike at ωcant/ωw ≈ .6, which is a torsion-associated region)
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(f) Θ = 150°

Figure 3.15: Effect of feathering stroke Θ on three-mode stability diagram.

and coalesce. But, these additional regions of instability largely act in regions

where the single-mode model already indicated that operation is inadvisable. This

suggests that adequate guidelines for avoiding parametric instabilities may be

generated with models containing only a few low-frequency modes, but more

research is necessary to confirm such a generalization.

3.3.3 Root Spring Stiffness

We now reexamine the effect of root-spring stiffness for a system with mul-

tiple modes and feathering rotation. Figure 3.16 shows the stability diagram for

a feathering, three-mode system as a function of root-spring stiffness. The two

bending modes are modeled with root-spring–free boundary conditions. Using

the exact, single-mode diagrams in figure 3.9 as a comparison, we see again that

decreasing ωroot/ωcant causes a “zoom-in” effect with respect to the first-mode
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Figure 3.16: Effect of root spring stiffness on three-mode bending stability
diagram, Θ = 120°.

bending instabilities. With smaller ωroot/ωcant, the instability regions associated

with the first bending mode move higher and increase in width. This includes

the instability region in the lower-left corner, previously identified as an effect of

feathering-induced periodic stiffnesses, which eventually fills the majority of the

diagram in figure 3.16f. In contrast, note that the instability regions associated with

higher modes remain at the bottom of the diagram for all values of ωroot/ωcant.

From these plots, we can conclude that low values of ωroot/ωcant should be

avoided. This is already the case for most MAVs and test stands, which use

clamped boundaries at the wing root. In general, it seems advisable to allow as

little deviation from this clamped boundary condition as possible.
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3.3.4 Lossy (Damped) Stability

Combes and Daniel [131] concluded that aerodynamic forces on a flapping

wing primarily add damping to the system. Damping is included in our non-

dimensional equations of motion by adding a linear viscous damping matrix 2ζ I

multiplying the modal velocity terms. We choose viscous damping as valid for

the linear, small-deflection structural model considered in this study. Combes

and Daniel report using a “mass damping factor” of 10 resulted in a good match

between their FEM and their experimental data at a wingbeat frequency of 26 Hz

[126]. Assuming this indicates a damping matrix of the form αM where α = 10,

the equivalent damping can be approximated as follows. The equivalence between

the linear damping ζ and the mass damping α is

ζ =
α

2ωn
=

α

2ωcant
(3.12)

where ωn is the natural frequency of an appropriate nth mode, in radians/second.

For our case, we are concerned with the first cantilever bending mode, so we set

ωn = ωcant. Combes and Daniel do not report the natural frequencies of their

FEM, so ωcant for their model must be estimated. Wootton et al., using their own

FEM, report the first natural frequency of a hawkmoth wing as 31 Hz, as compared

to hawkmoth wingbeat frequencies of 21 to 27 Hz [103] . If ωcant = 31 Hz is

substituted into Eq. 3.12 with α = 10, the linear damping is ζ = 0.026. While

this is a reasonable value, it is perhaps not wise to assume that Wootton et al.’s

FEM is equivalent to Combes and Daniel’s FEM. Instead, we may only assume that

Combes and Daniel’s FEM has a first natural frequency greater than or equal to the

wingbeat frequency ωcant ≥ 26 Hz (equivalent to ωcant/ω ≥ 1). This relationship

bounds the linear damping to ζ ≤ 0.030. An extreme value of ζ = 0.030 may then

be chosen as a upper bound for Combes and Daniel’s damping.
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Figure 3.17 shows the undamped, flapping and feathering three-mode model

along with a slightly damped and significantly damped system. As damping

is increased, the thin outlying regions of instability disappear while the large

regions slightly shrink. But even with damping as high as ζ = .10, the general

shape and size of the instability regions at low ωcant/ω—the area our stability

tests indicate should be avoided—remain unchanged. We can also note that the

instability regions associated with higher-frequency modes tend to be eliminated

with damping, again lending credence that perhaps only a small number of modes

are necessary to model time-periodic stability of flapping wings.
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Figure 3.17: Effect of constant damping on three-mode stability diagram, Θ =
120°.

3.3.5 Center of Gravity Location

We now return to the undamped model. In rotary wing systems such as

helicopters, the chordwise location of center of gravity significantly affects system

stability [163]. It is therefore instructive to examine the effects of CG on flapping

wing system stability. For the baseline stability diagram, redrawn in figure 3.18a,

the baseline CG is 10% chord behind the elastic axis. Figure 3.18b shows the effect

of moving the CG forward to the EA; figure 3.18c moves the CG an additional 10%

chord forward. For our model, the CG location does not appear to greatly affect

the instability regions associated with the first bending mode, which dominate
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Figure 3.18: Effect of chordwise CG location on three-mode stability diagram,
Θ = 120°.

the diagrams. The CG location does affect the higher-mode instability regions,

seen by comparing the areas of 60° ≤ Φ ≤ 150°, ωw1/ω < 2/3. Notably,

the horizontal spike (near ωw1/ω = .6) corresponding to a torsion instability

diminishes when the CG coincides with the EA, while the diagonal spike directly

below corresponding to a coupled bending-torsion instability strengthens. When

the CG is ahead of the EA, both these regions seem equally thick. However, we

again see that these changes do not affect the overall character of the stability

diagram.

3.3.6 Feathering Axis Location

The elastic axis offset distance êO was chosen so that the CG is coincident

with the feathering axis i˜θ, in order to reduce inertial torques during feathering

rotation. We assess whether this selection has any effect on stability by changing

the offset distance. The baseline diagram is given in figure 3.19b, while figure 3.19a

and 3.19c move the axis of rotation ±10% chord from the CG along the chord. The

effect on stability diagrams is negligible; data comparison shows that figures 3.19a

and 3.19c each differ from the baseline case over only .2% of the plotted range,

primarily in subtle shifts of higher-mode instability regions. Small changes of êO
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Figure 3.19: Effect of feathering axis location on three-mode stability diagram,
Θ = 120°.

appear to have almost no effect on system stability.

3.4 Summary

A parametric stability analysis for a flapping-wing structure was developed

in this chapter. By modeling the flapping-wing system with a single-degree-

of-freedom (SDOF) bending mode undergoing sinusoidal flapping, the resulting

time-periodic scalar equation of motion is shown to be equivalent to the Mathieu

equation. Using this equivalence, the stability boundaries of the simplified wing

system as functions of the characteristic non-dimensional parameters (normalized

cantilever frequency and flapping stroke) can be solved exactly by transformation

of the Mathieu functions. A stability diagram plotting regions of instability of a

flapping wing as a function of normalized cantilever frequency and flapping stroke

was derived from a transformation of the Strutt diagram.

Using the simplified SDOF model, it was demonstrated that parametric

instabilities occur when a combination of constant and time-periodic stiffness

cause the wing’s rotational natural frequency to approach an even harmonic of the

flapping frequency. In general, systems with relatively low constant stiffness (i.e.,

low normalized cantilever frequency) and high time-periodic stiffness (i.e., high
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flapping stroke) are more likely to experience parametric instabilities. This region

corresponds to biological fliers. In contrast, MAVs and mechanical test stands tend

to have lower flapping strokes and higher normalized cantilever frequencies, and

thus operate in regions where parametric instabilities are unlikely. This suggests

that as mechanical systems approach the operating conditions of biological fliers,

the possibility of encountering parametric instabilities becomes greater than they

currently are.

The transformed Mathieu funcations can be used to calculate the exact stabil-

ity boundaries for SDOF systems or uncoupled multi-mode systems undergoing

flapping rotation. Exact stability solutions were calculated for an SDOF system

for a range of root-spring stiffnesses, and for uncoupled two-degree-of-freedom

bending–torsion system. In order to analyze systems with multiple coupled elastic

modes or systems with non-zero feathering rotation, it is necessary to numerically

calculate system stability using the Floquet method.

For multi-mode models, it is found that regions of instability exists which are

associated with each individual mode. Additional “coupled” instability regions

exist due to the interaction of two (or possibly more) modes. In general the

instability regions associated with the first bending mode dominate the system,

except at low values of normalized natural frequency (ωcant/ω < 1), where higher-

mode instabilities may be strong. Studies were performed to examine the effect

of operational and structural parameters on regions of instabilities. It is found

that increases in feathering angle exacerbate instabilities, as to decreases in root-

spring stiffness (that latter greatly so). Damping of the system slightly decreases

the instability regions, but does not eliminate them completely. The chordwise

location of the wing’s center-of-gravity and elastic axis do not significantly alter

the instability regions.
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CHAPTER 4

ASSUMED MODES ANALYSIS OF A FLAPPING

WING AS A THIN PLATE

4.1 Introduction

In chapter 2, the flapping-wing equations of motion were derived by mod-

eling the wing structure as a thin beam. This modeling assumption was justified

by biological studies that indicated that the wing’s leading-edge spar carries most

bending and torsion loads for biological fliers. However, the validity of the thin-

wing assumption warrants further consideration, because the wings of biological

fliers and MAVs typically have low aspect ratios. In this chapter, the assumed-

modes equations of motion are re-derived for a flapping wing modeled as a

two-dimensional plate. The plate equations of motion are non-dimensionalized

and their stability is analyzed in the same manner as the thin-beam equations of

chapters 2 and 3. Assumed modes for input into the plate model are generated

using a commercial finite element analysis (FEA) code. The results are compared to

the thin-beam model in order to identify any differences or discrepancies between

the two modeling methods.

4.2 Assumed-Modes Plate Model

The equations of motion of a wing are derived using Banerjee and Kane’s

assumed-modes analysis of a plate undergoing large motion [172]. Their analysis
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assumes a plate undergoing large rigid-body translations and rotations while

simultaneously experiencing small, linear deformations relative to the rigid-body

position. The displacements are modeled as the sum of the non-rotational modes

of the plate; Banerjee and Kane suggest that the modes be determined by finite

element analysis (FEA) of the plate.

The full equation of motion as given by Banerjee and Kane for the ith mode

(retaining most of their original notation) is

N

∑
j=1

{
E3ijq̈j + (ω1E2ij −ω2E1ij)q̇j +

[
λij − (v̇1 + ω2v3 −ω3v2)Cij

− (ω1ω2 − ω̇3)C2ij + (ω2
2 + ω2

3)C1ij − (v̇2 + ω3v1 −ω1v3)Dij

− (ω̇3 + ω1ω2)D1ij + (ω2
3 + ω2

1)D2ij + (ω̇1 + ω2ω3)E2ij

+ (ω3ω1 − ω̇2)E1ij − (ω2
1 + ω2

2)E3ij

]
qj

}
= −(v̇3 + ω1v2 −ω2v1)Ai − (ω̇1 + ω2ω3)B2i − (ω3ω1 − ω̇2)B1i (4.1)

Here, the terms A–E are integer functions of the mode shapes, λij is an element

of the non-rotational modal stiffness matrix (as calculated by FEA) and v and ω

are elements of the respective translational rotational velocity vectors of the plate’s

rigid body motion as measured in the plate-fixed coordinate system.

We wish to apply Banerjee and Kane’s equation of motion to the time-

periodic system shown in figure 4.1. The inertial axes, flapping and feathering axes

are defined identically to the assumed-modes beam model of previous chapters.

As before, the rigid-body coordinate system ( i˜, j˜, k˜) is parallel to the feathering axes

and lies an offset distance eO ahead of the axis of feathering rotation. In contrast

to the beam model, where the i˜axis was defined as the elastic axis of the wing, we

here define the i˜axis so that is coincides with the rearmost point of the wing finite

element model (FEM). This slight change is more convenient for defining the FEM
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Figure 4.1: Coordinate systems for thin plate analysis. Not to scale.

and reflects that the location of the FEM’s elastic axis is unknown beforehand.

There is no translational motion in the flapping system of figure 4.1 so all

velocities v = 0 in the equation of motion Eq. 4.1. The rotations ω1, ω2 and ω3 in

Eq. 4.1 are equivalent to the rotational velocity of the feathering θ-axes as measured

along i˜θ, j˜θ and k˜θ, respectively:


ω1

ω2

ω3

 =


θ̇

φ̇ sin θ

φ̇ cos θ

 (4.2)

Substituting Eq. 4.2 into Eq. 4.1 and setting all v terms equal to zero results in a
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flapping-wing–specific equation:

N

∑
j=1

{
E3ij q̈j +

[
θ̇ E2ij − φ̇ sin(θ) E1ij

]
q̇j +

[
λij − φ̈ cos(θ) (D1ij − C2ij)

− φ̈ sin(θ) E1ij + φ̇2 C1ij − φ̇2 sin2(θ) E3ij + φ̇2 cos2(θ)D2ij

+ φ̇2 sin(θ) cos(θ) E2ij + θ̈ E2ij − θ̇2 (E3ij −D2ij)− 2φ̇θ̇ sin(θ) C2ij

]
qj

}
= φ̈ sin(θ)B1i −

[
θ̈ + φ̇2 sin(θ) cos(θ)

]
B2i (4.3)

The terms B through E in Eq. 4.3 are integrals over the plate surface S:

B1i =
∫∫
S

xθ χwi ρ dx dy (4.4)

B2i =
∫∫
S

yθ χwi ρ dx dy (4.5)

C1ij =
∫∫
S

xθ αij ρ dx dy (4.6)

C2ij =
∫∫
S

yθ αij ρ dx dy (4.7)

D1ij =
∫∫
S

xθ βij ρ dx dy (4.8)

D2ij =
∫∫
S

yθ βij ρ dx dy (4.9)

E1ij =
∫∫
S

χwi χuj ρ dx dy (4.10)

E2ij =
∫∫
S

χwi χvj ρ dx dy (4.11)

E3ij =
∫∫
S

χwi χwj ρ dx dy (4.12)

The mass per unit area of the plate is ρ. The terms xθ and yθ are the distances

from the origin of the feathering axes measured in the i˜θ and j˜θ directions and χui,
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χvi and χwi are the displacements of the ith non-rotational mode in the i˜, j˜ and k˜
directions. The functions αij and βij are line integrals across the plate:

αij(x, y) =
∫ x

0

[
∂

∂x
χvi(σ, y)

∂

∂x
χvj(σ, y) +

∂

∂x
χwi(σ, y)

∂

∂x
χwj(σ, y)

]
dσ

βij(x, y) =
∫ y

0

[
∂

∂y
χui(x, σ)

∂

∂y
χuj(x, σ) +

∂

∂y
χwi(x, σ)

∂

∂y
χwj(x, σ)

]
dσ

The above equations can be simplified further by assuming that the wing

is relatively stiff in the plane of the wing, such that a linear model will not

deform in the i˜ and j˜ directions. This assumption is justified later in section 4.6

by inspection of the numerically-calulated mode shapes. By this assumption, the

modal deformations χu and χv will be χu = χv = 0 for all modes. Thus the

integrals E1ij = E2ij = 0 and αij and βij simplify to

αij(x, y) =
∫ x

0

∂

∂x
χwi(σ, y)

∂

∂x
χwj(σ, y) dσ (4.13)

βij(x, y) =
∫ y

0

∂

∂y
χwi(x, σ)

∂

∂y
χwj(x, σ) dσ (4.14)

Applying these simplifications to Eq. 4.3 and evaluating the equation for all

assumed modes gives the matrix equation of motion

E3 q̈˜+
[
Λ− φ̈ cos(θ) (D1 − C2) + φ̇2 C1 − φ̇2 sin2(θ) E3

+ φ̇2 cos2(θ)D2 − θ̇2 (E3 −D2)− 2 φ̇θ̇ sin(θ)C2

]
q˜

= φ̈ sin(θ)B˜1 −
[
θ̈ + φ̇2 sin(θ) cos(θ)

]
B˜2 (4.15)

It stands for us now to calculate the mode shapes and numerically evaluate the

integral matrices in Eq. 4.15, as explained in section 4.4.
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4.3 Equivalence to Beam Formulation

The equivalence of the assumed-modes plate equation to the beam equation

formulated in the previous chapters can be demonstrated by considering a rectan-

gular plate with a small width, such that the plate properties and mode shapes do

not vary with y. In this case, χwi(x, y) = χwi(x) and ∂χwi/∂y = 0. Furthermore let

us assume, as we did for the beam bending analysis in section 3.2, that the plate is

modeled by a single mode and the feathering angle is fixed at θ = π/2. For these

assumptions, the homogenous form of Eq. 4.15 reduces to

E311 q̈1 +
[
λ11 + φ̇2 (C111 − E311)

]
q1 = 0 (4.16)

This is the dimensional form of the non-dimensional bending-only equation, Eq. 3.1

on page 124. It is trival to show that the square of the first non-rotating bending fre-

quency is the modal stiffness λ11 divided by the modal mass E311. The equivalence

of the term C111 can be shown by integrating over the width of the plate

C111 =
∫∫
S

xθ

[∫ x

0

∂

∂x
χw1(σ, y)

∂

∂x
χw1(σ, y) dσ

]
ρ dx dy

=
∫ R

0
xθ

[∫ x

0

d
dx

χw1(σ)
d

dx
χw1(σ) dσ

]
m dx

and switching the order of integration:

C111 =
∫ R

0

[∫ R

x
mxθ dx

]
d

dx
χw1(σ)

d
dx

χw1(σ) dσ (4.17)

Since xθ = x, the bracketed term in Eq. 4.17 is the mass moment Sx (Eq. 2.32, p. 95)

and C111 is equivalent to T11 as defined on page 99.

General equivalences between the equations of motion of the beam formula-

tion and plate formulation can be determined by inspection of the bending-torsion
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beam equation Eq. 2.42 (p. 101) and the plate equation Eq. 4.15:

Λ ≡

G 0

0 H+ krootW


C1 ≡

 Q R− S

(R− S)T T


C2 ≡

 K L−M

(L−M)T N


D1 ≡

J 0

0 0


D2 ≡

A+V 0

0 0


E3 ≡

A B

BT C


B˜1 ≡

F˜γB

F˜wB


B˜2 ≡

F˜γC

F˜wC


where the matrices on the right-hand side of the equations are defined on page 99.

Note that these general equivalences hold, but that differences in selection of

assumed mode shapes will alter the exact forms of the matrices. For example,

using FEA to identify the normal mode shapes of a given plate will eliminate

the coupling matrices B in the modal mass matrix E3; in fact, E3 will be strictly

diagonal.
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4.4 Finite Element Analysis

The assumed mode shapes are calculated using the FEA applications of the

I-DEAS 11 NX program. This program allows for easy definitions of layouts and

materials for finite element models (FEM), automatic mesh generation and normal

mode solutions. All FEMs are created using 8-node parabolic plate elements [173]

as shown in figure 4.2. The mapping/shape functions Ni for the element are are

given by

f (ξ, η) =
8

∑
i=1

Ni(ξ, η)( fnode)i = N˜ T f˜node (4.18)

N˜ (ξ, η) =
1
4



−(1 + ξ)(1− η)(1− ξ + η)

2(1 + ξ)(1 + η)(1− η)

−(1 + ξ)(1 + η)(1− ξ − η)

2(1 + ξ)(1− ξ)(1 + η)

−(1− ξ)(1 + η)(1 + ξ − η)

2(1− ξ)(1 + η)(1− η)

−(1− ξ)(1− η)(1 + ξ + η)

2(1 + ξ)(1− ξ)(1− η)



(4.19)

where f is the function over the surface of the element and ( fnode)i is the function

value at the ith node. Each node has three translational degrees of freedom (u, v,

η = 1

η = -1

ξ =
 1

ξ =
 -1

1

2

345

6

7 8

Figure 4.2: Position and numbering of parabolic plate element nodes.
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w) and three rotational degrees of freedom (γx, γy, γz), so that the 8-node element

has 48 degrees of freedom.

The I-DEAS mesh-generation FEA application outputs the nodal positions

(x, y, z) for the mesh, the connectivity vector for each element and the density ρ

of each element. The normal mode FEA solution outputs the nodal displacements

(u, v, w, γx, γy, γz) for each normal mode, the modal masses of each mode (which

are the diagonal entries of the matrix E3) and the natural frequency ωi for the

mode. Since the modes are normal for this linear model the off-diagonal modal

masses are zero, E3ij = E3ji = 0, i 6= j. The entries of the diagonal modal

stiffness matrix Λ can be calculated by λii = ω2
i E3ii but, as we shall see, non-

dimensionalization of the equations of motion makes this calculation unnecessary.

The surface integrals in Eqs. 4.4–4.12 are evaluated by summing the integrals

over the surfaces of the individual elements. The elemental surface integrals are in

turn approximated by Gaussian quadrature, in which an integral of a function f

is approximated by the weighted summation of that function evaluated at points

known as quadrature points.

∫∫
Selement

f (x, y) dx dy =
∫ 1

−1

∫ 1

−1
f (ξ, η) det J(ξ, η) dξ dη

≈∑
i

∑
j

f (ξi, ηj) det J(ξi, ηj) WiWj (4.20)

The Jacobian matrix J of the mapping (x, y)→ (ξ, η) is equal to

J(ξ, η) =

 ∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

 (4.21)

The 5-point quadrature points and weights used in this study are listed in table 4.1

and depicted in figure 4.3.
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Table 4.1: 5×5 Gauss quadra-
ture points and weights.

ξi, ηj Wi, Wj

0 0.568889
±0.538469 0.478629
±0.906180 0.236927

η = 1

η = -1

ξ =
 1

ξ =
 -1

Figure 4.3: Quadrature points
on plate element. Areas of cir-
cles are proportional to WiWj

4.4.1 Approximation of αij and βij with Radial Basis Functions

The modal displacements χw can easily be calculated at the quadrature

points on an element-by-element basis in order to evaluate the surface integrals.

Calculating the functions αij and βij (Eqs. 4.13–4.14) is not so simple, because

they require line integrals to be evaluated over several elements. Banerjee and

Kane suggest evaluating the surface integrals Eqs. 4.6–4.9 by using integration by

parts to eliminate αij and βij, and they demonstrate the technique for a uniform

rectangular plate [172]. Unfortunately, creating an integration-by-parts solution

for a general nonuniform, nonrectangular plate is prohibitively difficult, so we

choose to evaluate αij and βij directly. At this time, we note that the spatial

derivates ∂χw/∂x and ∂χw/∂y in the integrands of αij and βij are given by the

rotation angles from the FEA:

∂χw/∂x = −γy

∂χw/∂y = γx

Exactly evaluating αij and βij would require finding all of the elements along

the line of integration and numerically solving a line integral of over each indi-

vidual element. This procedure would be additionally complicated for a general
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mesh because of the nonuniform orientation of the automatically-generated grids,

as illustrated by figure 4.4.* Instead, we would like to eliminate the need to

identify and integrate over individual elements. One possibility is using the nodal

data to construct a spline approximation of the integrands over the entire plate

surface and integrating the spline to find αij and βij. But calculating an accurate

spline over the entire surface is numerically expensive for large data sets. As an

alternative, we use radial basis functions (RBFs) to generate local approximations

of the integrands on the fly.

Radial basis functions are typically used in meshless finite volume methods,

in which a volume is modeled by distributed, unconnected nodes [174]. As

opposed to meshed FEA methods in which nodes’ influences on one another are

determined by the element connectivity, meshless methods use the proximity of

nodes to weight their influence. Much of the background and analysis of RBFs is

beyond the scope of this thesis; we are merely interested in their use to approxi-

mate a function from the distributed nodes of a nonuniform FEM mesh. The key

feature of RBFs (more specifically, RBFs with compact support) is that they have a

finite neighborhood of influence, or support. This allows local approximation of a

function without considering the entire FEM domain.

y

x

Figure 4.4: Example nonuniform plate FEM mesh. Mesh created by manually par-
titioning plate area, then applying I-DEAS’ automatic mesh-generation routine.

*The rectangular plate in figure 4.4 has been manually partitioned to generate the nonuniform
grid. A rectangular plate would normally be meshed with uniform rectangular elements. However,
use of nonuniform materials (e.g., spars vs. membranes) or nonrectangular geometries will lead to
similarly nonuniform meshes.
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Radial basis functions φ have the form φ(r), where r is the positive distance

measured between points of interest [175]. In this thesis, we choose the RBF

φ(r) =


(1− r)4(4r + 1) 0 ≤ r ≤ 1

0 r > 1
(4.22)

The support radius of this RBF is r = 1, but it can be arbitrarily scaled to some

radius R by taking φ(r) = φ(r/R). For some N nodes, a function f at a point

x˜0 = (x0, y0) is given as a weighted sum of RBFs

f (x˜0) =
N

∑
i=1

ai φ
(
||x˜i − x˜0||

)
(4.23)

where ||x˜i − x˜0|| is the distance between x˜0 and the ith node x˜i.

Interpolation at a general point x˜0 is performed as follows. First, the N nodes

within the interpolation support radius R are identified, as shown in figure 4.5.

The unknown coefficients ai are solved with Eq. 4.23 by creating a system of

linear equations for the known nodal function values f (x˜j), j = 1, . . . , N. Once

these coefficients are known, Eq. 4.23 is used to interpolate the function value

f (x˜0). By calculating the RBFs between the fixed FEM nodes prior to interpolation,

significant computational overhead is saved, making this interpolation method

relatively time-efficient.

Interpolation point

Interpolation support

Node support

Node used in interpolation

Node not used in interpolation

Figure 4.5: Radial basis function interpolation domain.
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For the calculation of αij, then, the integrand (∂χwi/∂x)(∂χwj/∂x) = γyi γyj is

approximated using the RBF interpolation at any points needed for the numerical

integration; βij is calculated similarly. Validation of this method and discussion of

the selection of the support radius R is postponed to section 4.4.3.

4.4.2 Mode Shape Validation

The FEM output from the I-DEAS 11 NX program was validated by calculat-

ing the mode shapes of a uniform isotropic rectangular plate of length a and width

b with simply-supported boundaries on all edges. This boundary condition was

selected because the mode shapes and natural frequencies are known exactly [176,

p. 44] and are given for any integers m and n by

χwmn(x, y) = sin
(mπx

a

)
sin
(nπy

b

)
(4.24)

ωmn =

√
D
ρ

[(mπ

a

)2
+
(nπ

b

)2
]

(4.25)

In Eq. 4.25, the flexural rigidity D is D = Et3/12(1− ν2) where E is the Young’s

modulus, t is plate thickness and ν is Poisson’s ratio; and ρ is the mass per unit

area of the plate. Table 4.2 gives the properties of the plate used for validation.

The FEA output was validated by comparing the modal displacements χw

predicted at the nodes of a FEM to the exact displacements at the same location

Table 4.2: Plate properties for FEA validation.

Property Value
E 2× 105 MPa
t .5 mm
ν .3
ρ 4 kg/m2

a 100 mm
b/a 1/4, 1/3
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as calculated by Eq. 4.24. The plate was modeled and meshed using the I-DEAS

program and the first ten natural modes were calculated and saved. The integers

m, n corresponding to the ten lowest exact natural frequencies were selected using

Eq. 4.25 and the exact modal displacements were calculated. The FEA and exact

data of χw may differ by a scale factor, so the FEA modes were scaled so that the

mean value of χ2
w over all the node points was equal to the mean value of χ2

w of

the corresponding exact mode. The mean and standard deviation of the difference

of the scaled FEA data from the exact data (i.e., χw error = (χw)exact − (χw)FEM)

provide measures of the quality of the FEA results. Additionally, the natural

frequencies calculated from the FEA were checked against the exact frequencies

from Eq. 4.25.

Two plates were used in the FEM validation having width-to-length ratios

of 1/3 and 1/4 respectively. Four meshes were automatically generated for each

plate with nominal element lengths of 5, 31
3 , 2 and 1 mm. The 2-mm element

(corresponding to a 50× 17-element mesh on the 1/3 plate and a 50× 13-element

mesh on the 1/4 plate) was selected as sufficiently fine to resolve the mode shapes.

Figure 4.6 shows the first six modes of the 1/3 plate. Tables 4.3 and 4.4 give the

z

x

y

Mode 1 Mode 2 Mode 3

Mode 6Mode 5Mode 4

Figure 4.6: Normal modes of a simply-supported plate from FEA; b/a = 1/3,
50 × 17 rectangular mesh. Element color is proportional to the magnitude of
displacement at the element centroid.
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results of the validation with the 2-mm element. For reference, the maximum

magnitude of the exact mode shapes of Eq. 4.24 is |χw| = 1 mm for all modes.

The FEA under-predicts the exact natural frequency within 0.3% for all cases and

within 0.15% for the first five modes. The mean error in the FEA modes χw is at

least a factor of 10−6 smaller than the maximum modal displacement in all cases

and the standard deviation of the FEA modal errors is approximately a factor of

10−5 smaller than the maximum modal magnitude.

Table 4.3: FEA validation results for a simply supported plate, b/a = 1/3.

Mode (m, n) Exact ωmn
[Hz]

FEA ωmn
error

Mean χw error
[mm]

STD χw error
[mm]

1 (1,1) 1188 −.035% 1.26× 10−6 5.75× 10−5

2 (2,1) 1545 −.046% −2.74× 10−15 6.30× 10−5

3 (3,1) 2139 −.064% 4.02× 10−7 5.44× 10−5

4 (4,1) 2971 −.089% −4.90× 10−15 2.99× 10−5

5 (5,1) 4040 −.120% −2.33× 10−7 3.82× 10−5

6 (1,2) 4397 −.130% −1.15× 10−17 4.47× 10−5

7 (2,2) 4753 −.141% 5.07× 10−14 4.26× 10−5

8 (6,1) 5348 −.160% −4.47× 10−16 1.10× 10−4

9 (3,2) 5348 −.160% 2.90× 10−17 1.08× 10−4

10 (4,2) 6179 −.185% −7.22× 10−12 3.86× 10−5

Table 4.4: FEA validation results for a simply supported plate, b/a = 1/4.

Mode (m, n) Exact ωmn
[Hz]

FEA ωmn
error

Mean χw error
[mm]

STD χw error
[mm]

1 (1,1) 2020 −.060% −2.28× 10−7 3.06× 10−5

2 (2,1) 2377 −.071% −3.56× 10−14 3.17× 10−5

3 (3,1) 2971 −.088% 6.57× 10−7 3.11× 10−5

4 (4,1) 3803 −.114% 1.36× 10−14 3.10× 10−5

5 (5,1) 4872 −.146% 5.18× 10−8 3.47× 10−5

6 (6,1) 6179 −.185% −3.44× 10−15 4.37× 10−5

7 (1,2) 7724 −.232% −1.31× 10−12 6.11× 10−5

8 (7,1) 7724 −.228% 1.23× 10−7 5.30× 10−5

9 (2,2) 8081 −.240% −1.22× 10−13 6.88× 10−5

10 (3,2) 8675 −.259% 1.13× 10−12 6.33× 10−5

165



4.4.3 Radial Basis Function Interpolation Validation

The radial basis function interpolation of αij and βij described in section 4.4.1

was validated on the 1/3 simply-supported plate with the properties given in

table 4.2. In order to test the interpolation on a nonuniform mesh, we use the

mesh shown in figure 4.4 on page 161 to validate the interpolation. This mesh was

automatically generated by the I-DEAS with a target element length of 2 mm, as

used in the above validation. The interpolation support radius R was chosen to

be 4 mm, or twice the automatic meshing routine’s target element length. The

accuracy of the interpolation was validated by calculating αij for the first five

modes at evenly-distributed points on the plate and comparing the results to the

exact solution. The points chosen for this comparison are the locations of the corner

nodes (i.e., nodes 1, 3, 5, 7) of the elements of the 50× 17 rectangular mesh used

for the mode shape validation. In general, the points at which αij are compared

are not nodes of the non-uniform mesh. As before, the FEA modes were scaled so

that they have the same mean value of χ2
w over all sampling points as the exact

solution. Figure 4.7 shows a typical αij(x, y) plotted on 0 < x ≤ a.

As in the previous section, the mean and standard deviations of αij error =

(αij)exact − (αij)RBF over the selected points are measures of the quality of the

interpolation. Table 4.5 gives the validation results (the reported maximum |αij|

is for the entire plate, not just the sampling points). For all modal combinations,

x = 0

x = a

α
ij

Figure 4.7: Graphical comparison of exact and approximate αij. Gray line is
exact solution, dots are numerical solution using RBF approximations. α15 shown,
calculated at y = .3755b = 12.52 mm.
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Table 4.5: RBF interpolation validation results for a simply supported plate,
b/a = 1/3.

i,j |αij|max
[mm]

Mean αij error
[mm]

STD αij error
[mm]

1,1 49.3 −.0289 .0286
1,2 29.6 −.0228 .0388
1,3 30.6 −.00431 .0562
1,4 31.0 −.000532 .0728
1,5 31.1 .0239 .0844
2,2 197 −.0793 .0944
2,3 113 −.0523 .0947
2,4 59.2 −.0174 .116
2,5 74.8 .00300 .150
3,3 444 −.116 .142
3,4 199 −.0753 .170
3,5 140 −.0780 .244
4,4 790 −.0984 .279
4,5 349 −.0517 .264
5,5 1234 .463 .742

the mean error in αij is approximately a factor of 10−3 smaller than the respective

maximum magnitude of αij; the standard deviation of the error is similarly small.

Note that the calculation of αij via RBF interpolation encompasses two approxima-

tions: first, the approximation of the FEM modes to the actual modes and second,

the approximation of the RBF interpolation to the FEM modes. Even with these

dual approximations, the calculated values of αij have small enough errors that

the RBF interpolation method can be considered valid for this study.

4.4.4 Matrix Calculation Validation

As a final check of the numerical methods used for our approximations, we

calculate the matrices C1 through E3 using the FEM modes and RBF interpolation

and compare them with the exact integral values. We use again the 1/3 plate with

properties given in table 4.2 and the nonuniform FEM mesh shown in figure 4.4;
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the origin of the plate-fixed axes are coincident with the feathering axes, so that

xθ = x and yθ = y. The exact integrals were solved by symbolically evaluating

Eqs. 4.6–4.12 using MATLAB’s Symbolic Toolbox functions and substituting the

plate properties into the symbolic solutions. In contrast to the previous validation

studies, the exact solutions are scaled to the FEM modes and not vice versa. The

scaling factors were chosen to make the modal masses of the exact solution the

same as the modal masses from the FEA, so that the E3 matrices are identical for

the exact and FEM solutions.

Table 4.6 gives the exact and approximate FEM equation-of-motion matrices

for the first five modes. The FEM matrices agree very well with the nonzero entries

of the exact matrices. The FEM matrices do not accurately capture the matrix zeros,

instead giving values that are one to four orders of magnitude smaller than the true

nonzero entries. This will have the effect of introducing nonphysical couplings

into the system. However, it is not clear that a general wing will have null entries

Table 4.6: Equation-of-motion matrices for simply supported plate, b/a = 1/3.

Exact [mm2] FEM [mm2]

C1


1.14 .835 .353 −.171 −.102

4.85 −2.35 .627 .297

11.0 3.46 .900

SYM. 11.1 −3.43

11.1




1.14 .837 .352 −.170 −.103

4.86 −2.35 .626 .296

11.1 3.46 .895

SYM. 11.1 −3.44

11.1


C2


.309 .278 0 −5.68e−2 0

1.24 −.782 0 9.90e−2

2.78 1.15 0

SYM. 2.79 −1.14

2.79




.310 .279 −1.77e−4 −5.68e−2 −2.13e−4

1.24 −.784 −3.20e−4 9.91e−2

2.79 1.15 −1.35e−3

SYM. 2.79 −1.14

2.79


D1


2.78 −1.00 0 6.02e−2 0

2.78 1.08 0 −6.15e−2

2.78 −.830 0

SYM. 1.57 −.502

1.00




2.78 −1.00 8.52e−4 6.00e−2 1.16e−3

2.79 1.08 −3.48e−4 −6.28e−2

2.78 −.830 −6.41e−4

SYM. 1.57 −.502

1.00


D2


1.14 0 0 0 0

1.14 0 0 0

1.14 0 0

SYM. .644 0

.413




1.14 3.71e−4 2.74e−5 −5.85e−5 2.76e−4

1.14 −5.09e−4 −3.35e−4 −4.39e−4

1.14 4.01e−5 −5.51e−5

SYM. .644 1.94e−5

.412


E3


.376

.376

.376

.212

.136




.376

.376

.376

.212

.136



168



in these matrices—it is likely they arise because of the simple geometry we have

chosen for the validation study. Since the nonzero matrix entries are captured

accurately, we conclude this numerical method is valid with the understanding

that there may be some small nonphysical couplings in a general system.

4.5 Non-dimensional Analysis

Now that we know we can accurately calculate the dimensional assumed-

modes plate equation of motion via FEA, we can continue by rewriting it in non-

dimensional form. As before, we introduce non-dimensional time τ = ωt and

non-dimensional prescribed flapping and feathering rotations φ̂ and θ̂:

φ̂(τ) =


φ( τ

ω )/(Φ/2) Φ 6= 0

0 Φ = 0

θ̂(τ) =


θ( τ

ω )/(Θ/2) Θ 6= 0

0 Θ = 0

For the plate case, it is not necessary to non-dimensionalize the equations in terms

of the structural plate properties (i.e., mass, stiffness, etc.). The primary insight

from non-dimensionalizing the beam equations was the effect of the beam’s non-

rotating natural frequencies on the equations of motion. This effect can be easily

determined from the results of the FEA in our plate model.

Note that we use a slightly different nomenclature for the plate modes,

normalizing to the lowest natural frequency ω1 instead of the lowest cantilever

natural frequency ωcant; thus the representative non-dimensional stiffness for the

plate model is ω1/ω, the normalized first natural frequency. This change is reflective

of the generality of the modes of the plate model, where “bending” and “torsion”
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deformations need not be distinct.

Substituting the non-dimensional flapping and feathering rotations φ̂ and θ̂

into the the equation of motion Eq. 4.15 and dividing through by ω2 gives

E3
∗∗q˜+

[
1

ω2 Λ− Φ
2

∗∗
φ̂ cos θ (D1 − C2) +

Φ2

4

∗
φ̂2 C1 −

Φ2

4

∗
φ̂2 sin2 θ E3

+
Φ2

4

∗
φ̂2 cos2 θD2 −

Θ2

4

∗
θ̂2 (E3 −D2)−

ΦΘ
2

∗
φ̂
∗
θ̂ sin θ C2

]
q˜

=
Φ
2

∗∗
φ̂ sin θ B˜1 −

[
Θ
2

∗∗
θ̂ +

Φ2

4

∗
φ̂2 sin θ cos θ

]
B˜2 (4.26)

This equation can be fully non-dimensionalized by multiplying through by E−1
3 .

Recall that E3 is the diagonal modal mass matrix and Λ is the diagonal modal

stiffness matrix, so that E−1
3 Λ is a diagonal matrix of the squared non-rotational

frequencies of the structure:

E−1
3 Λ =


ω2

1
. . .

ω2
N

 (4.27)

We continue multiplying Eq. 4.26 by E−1
3 , using the relationship of Eq. 4.27. The

result can be rearranged into the form

∗∗q˜+
[
(ω1/ω)2 Kω −Φ

∗∗
φ̂ cos(θ) K∗∗

φc
+ Φ2

∗
φ̂2 K ∗

φ2 −Φ2
∗
φ̂2 sin2(θ) K ∗

φ2s2

+ Φ2
∗
φ̂2 cos2(θ) K ∗

φ2c2 −Θ2
∗
θ̂2 K∗

θ2 + ΦΘ
∗
φ̂
∗
θ̂ sin(θ) K ∗

φ
∗
θs

]
q˜

= Φ
∗∗
φ̂ sin θ F˜∗∗φs

−Θ
∗∗
θ̂ F˜∗∗θ −Φ2

∗
φ̂2 sin θ cos θ F˜ ∗φ2sc

(4.28)
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where the matrices are defined as

Kω =
1

ω2
1


ω2

1
. . .

ω2
N


K∗∗

φc
=

1
2
E−1

3 (D1 − C2)

K ∗
φ2 =

1
4
E−1

3 C1

K ∗
φ2s2 =

1
4

I

K ∗
φ2c2 =

1
4
E−1

3 D2

K∗
θ2 =

1
4

(I − E−1
3 D2)

K ∗
φ
∗
θs

= −1
2
E−1

3 C2

and the forcing vectors are

F˜∗∗φs
=

1
2
E−1

3 B˜1

F˜∗∗θ =
1
2
E−1

3 B˜2

F˜ ∗φ2sc
=

1
4
E−1

3 B˜2

We see that the non-dimensional plate equation of motion in Eq. 4.28 has the same

form as the non-dimensional beam equation of motion in Eq. 2.75 on page 113,

demonstrating their equivalence.

The matrix Kω is a determined solely from the natural frequencies of the

system. In order to reduce numerical errors, Kω is calculated using the natural

frequencies given by the FEA output, as opposed to solving E−1
3 Λ. Likewise, the

entries of E3 are taken directly from the modal masses output by the FEA. As a

check, however, the modal masses of E3 are also calculated from the mode shapes
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by the surface integral Eq. 4.12 to confirm that the FEA output is valid.

4.6 Representative Wing FEM

We use the representative wing developed for the beam analysis in sec-

tion 2.2.2 as the model wing for the the plate analysis, so that the results can be

directly compared. We use the physical properties of hawkmoth wings given

by Combes, specifically a wing length of 52.2 mm and a uniform wing density

of 0.5 mg/mm3. The feathering axis is coincident with the chordwise center of

gravity. In keeping with our beam model, the chord has been chosen as 1/4 the

wing length. Young’s modulus has been selected so that the wing has a bending

stiffness of approximately EIz = 1.09× 10−4 Nm2, near the average for dorsal and

ventral mean stiffnesses of Manduca sexta hawkmoths measured by Combes [127,

p. 145]. We also use a Poisson’s ratio of .495 as reported by Combes [127, p. 108].

All material properties are modeled as isotropic. Table 4.7 summarizes the wing

Table 4.7: Plate properties for representative wing FEM.

Property Value
R 52.2 mm
c 13.05 mm
eO -9 mm
E 33 GPa
ν .495

Leading section

t .1931 mm
ρ .0966 mg/mm2

Fraction of chord 42%

Trailing section

t .0350 mm
ρ .0175 mg/mm2

Fraction of chord 58%
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properties.

The FEM was meshed using an automatic meshing routine with a target

element length of R/50. The resulting mesh is shown in figure 4.8. This FEM

is designated as the “straight-spar” wing. A cantilever boundary is applied at

the root of the wing. The first six non-rotational modes are shown in figure 4.9.

These are solely out-of-plane deformation modes. As asserted in the derivation

of the plate equations, the wing is stiff in-plane so the deformations in the i˜ and j˜
directions are effectively zero—the maximum deflections in the i˜ and j˜ directions

have magnitudes on the order of 10−14 times those in the k˜direction for all modes.†

y

x

Figure 4.8: Planform view of FEM mesh of straight-spar wing. Thick leading
elements are dark gray, thin trailing elements are light gray.

y

x

z

Mode 1

Mode 4 Mode 5 Mode 6

Mode 3Mode 2

Cantilever 

boundary

Figure 4.9: Normal modes of the straight-spar wing FEM. Element color is
proportional to the magnitude of displacement at the element centroid.

†The FEM used to calculate the plate modes does not have any restraints limiting deformations
to the out-of-plane direction. In contrast to the assumed-modes plate derivation of section 4.2, there
is no a priori assumption that the FEM modes will not deform in the i˜and j˜directions. Rather, the
normal-modes analysis simply does not identify any the deflections in the i˜and j˜directions.
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The first mode shows no chordwise variation in deformations and reproduces the

first bending mode of a slender cantilever beam. The second mode shows minor

chordwise variations, but in shape approximates the second bending mode of a

cantilever beam. The third mode, in contrast, is a torsional mode while the forth,

fifth and sixth modes are higher-order deformations of the trailing membrane.

4.6.1 Split-Spar Wing

In order to investigate the effects of structural layout and non-uniform span-

wise structural properties, the straight-spar FEM was modified to create an alter-

nate “split-spar” wing model, shown in figure 4.10. The thickened leading-edge

elements in the straight-spar wing are divided into two equal-sized spars in the

split-spar wing, one of which is angled backwards so as to intersect the trailing

edge at the wing tip. This configuration approximates the trailing radial spars

that are often incorporated into insect-like MAV wings (cf. Singh and Chopra’s

wing shown in figure 1.33b). The weight and out-of-plane spanwise bending

stiffness of the split-spar wing is identical to the straight-spar wing. The first six

non-rotational modes of the split-spar wing as shown in figure 4.11. As with the

straight-spar wing, the split-spar wing’s first mode is the first bending mode of a

cantilever beam. Similarities can be seen between the second modes of the straight-

spar and split-spar wings. The split-spar’s third and higher modes show complex

couplings between bending and torsion.

y

x

Figure 4.10: Planform view of FEM mesh of split-spar wing. Thick elements are
dark gray, thin elements are light gray.
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Figure 4.11: Normal modes of the split-spar wing FEM. Element color is
proportional to the magnitude of displacement at the element centroid.

4.6.2 Natural Frequencies of FEM wings

A futher comparison between the FEM models is performed by examining

their modal natural frequencies in table 4.8. The natural frequencies of a com-

parable beam model are also reported. The beam frequencies were analytically

calculated by for a uniform cantilever beam with EIz0 and m0 properties calcualted

from the data of table 4.7. The third and fifth beam frequencies are torsion

frequencies, calculated by assuming a uniform clamped beam with a first torsion

frequency equal to 7.52ω1. This value was chosen to replicate the non-dimensional

torsion frequency of the straight-spar FEM wing. For all structural models, a

non-dimensional frequency is also reported, measured in relation to each model’s

Table 4.8: Natural frequencies of wing FEMs.

Straight-spar FEM Split-spar FEM Beam
Mode ωi [Hz] ωi/ω1 ωi [Hz] ωi/ω1 ωi [Hz] ωi/ω1

1 85.6 1 85.4 1 83.5 1
2 511 5.97 520 6.09 523 6.27
3 644 7.52 543 6.35 628 7.52
4 1062 12.4 1343 15.7 1465 17.5
5 1201 14.0 1459 17.1 1884 22.6
6 1497 17.4 1964 23.0 2871 34.4
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respective first natural frequency.

The first natural frequencies of the straight-spar FEM, split-spar FEM and

analytical beam modes agree within 2.5% of each other. This similarity of natural

frequencies, along with the absence of chordwise variations of deformations in the

FEM modes, indicates that the first modes of both FEMs are essentially the same as

the first cantilever beam mode. The second natural frequencies of the both FEMs

are likewise close to the second beam frequency, though both FEMs show minor

chordwise deformations and are not exactly equilvalent to the corresponding beam

mode.

It is interesting to compare the second and third modes of the FEM models.

The third mode of the straight-spar FEM is torsion mode that is significantly

stiffer than the second bending mode, evidenced by the 130 Hz difference between

their natural frequencies. In contrast, the third mode of the split-spar beam is of

comparable stiffness to the second mode (their natural frequencies about 20 Hz

apart). The mode shapes appear qualitatively similar, as well, mirrored about

the wing’s midchord. While the straight-spar and split-spar wings are similar

with respect to their lower modes, the splitting of the leading edge spare has a

significant effect on the structural response for higher modes.

4.7 Stability of Plate Wings

Having derived the natural modes of the plate wings by use of finite element

analysis, the stability of the plate wings is analyzed. Application of the stability

analysis to the plate equation of motion (Eq. 4.28) proceeds exactly as before:

Floquet analysis of the homogeneous state-space representation gives us a non-

dimensional stability diagram. We first consider the simple case of a wing modeled

by a single mode. Figure 4.12 compares the single-mode plate wing and beam

wing stability diagrams for various feathering strokes. The plate-wing stability
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Flapping stroke Φ, deg

 

 

0 30 60 90 120 150 180
0

1

2

3

4

(e) Beam wing, Θ = 160°
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(f) Beam wing, Θ = 120°

Figure 4.12: Comparison of single-mode stability diagrams of plate and beam
assumed-modes models. The top row (blue) shows plate diagrams and the bottom
row (gray) shows comparable beam diagrams.

diagram is generated using the first mode of the straight-spar wing. Due to the

equivalence of the first modes of the straight-spar and split-spar wings, the single-

mode stability diagram of each will be identical. In fact, the plate wing and beam

wing stability diagram are also virtually identical for all feathering strokes, which

is expected because of strong similarities of the first plate and beam modes.

The general resemblance of the plate and beam stability diagrams continues

when higher modes are added, because of the dominant character of the first

mode. Figure 4.13 compares plate and beam stability diagrams of systems with

three modeled modes at various feathering strokes. For the three-mode diagrams,

the straight-spar plate wing and split-spar plate wing are considered separately. As

per the previous section, the beam models are calculated with a normalized torsion

frequency of ωtor/ωcant = 7.52 to reflect the torsional stiffness of the straight-spar
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(f) Split-spar plate wing,
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(g) Beam wing, Θ = 0°
Flapping stroke Φ, deg

 

 

0 30 60 90 120 150 180
0

1

2

3

4

(h) Beam wing, Θ = 60°
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(i) Beam wing, Θ = 120°

Figure 4.13: Comparison of three-mode stability diagrams of plate and beam
assumed-modes models. The top row (blue) shows straight-spar plate diagrams,
the middle row (green) shows split-spar plate diagrams and the bottom row (gray)
shows beam diagrams.
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plate wing model. The stability diagrams for both plate models and the beam

model are very similar with no feathering rotation (Θ = 0°). At nonzero feathering

strokes the straight-spar plate model shows greater regions of instability than the

split-spar plate model, which in turn shows greater regions of instability than the

comparable beam mode. However, these differences manifest at low normalized

first natural frequencies, approximately ω1/ω < 2/3. This range is below the thick

horizontal spike associated with the first-mode instabilities, a region in which it is

already inadvisable to operate an MAV. At greater values of ω1/ω the beam and

plate models remain remarkably similar.

From the stability analysis in chapter 3, we identified two trends in the beam-

wing stability diagrams. The first trend is that the first-mode instability regions

were dominant and persistent over the range of parameters considered in this

dissertation. This trend appears to hold for the plate-wing analysis as well: the

first-mode instability regions domination the stability diagrams. For the models

considered in this chapter, the first mode of the plate models is nearly identical

to the first mode of the beam model, resulting in strong similarities between the

stability diagrams of the plate models with the beam modes in figures 4.12 and

4.13.

The second trend from the beam-wing stability analysis is that the effects of

changes in system design parameters manifested as relatively minor differences in

higher-mode instability regions at low values of ωcant/ω (typically ωc/ω < 2/3).

This trend also appears to hold for the plate wing in figure 4.13. The primary

difference between the plate-wing diagrams and the beam-wing diagrams are

somewhat larger unstable regions associated with these higher-mode instabilities

of the plate models within this low-ω1/ω bound.

We may conclude that the stability trends we have seen from parameteric

variations of beam models in chapter 3 will be generally borne out if a more
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complex plate model is used for the same analysis. From the view of a prelim-

inary designer of a flapping-wing MAV, the additional effort in constructing a

plate analysis—as opposed to a beam analysis—may be unwarranted for stability

calculations. So long as the first assumed-mode of a beam model reasonably

captures the first plate mode, the stability diagrams from both analyses should be

similar overall. For use in examining a preliminary design configuration, it may

be adequate to simply develop a beam model, with the understanding that regions

of instability will likely be underpredicted at low ωcant/ω, where the beam model

would already show general operation is probably inadvisable.

Care should be taken for wings where the second (and possibly higher)

natural frequencies are close to the first natural frequency, increasing the range

of ωcant/ω where higher-order instabilities may appear. In such cases, a plate

stability analysis would probably be advisable for preliminary design. Plate

stability analysis would also be warranted for wing designs with first natural

modes that show large chordwise variations in deflection, i.e., where the first mode

cannot be adequately modeled using a beam representation.

4.8 Summary

The linear assumed-modes matrix equations of motion of a flapping wing

were developed for a wing modeled as a thin plate undergoing elastic deforma-

tions. The equations of motion were developed by considering an assumed-modes

model of a plate undergoing generalized large rigid-body motions and linear

elastic deformations and simplifying for the case of insect-like flapping motion

and out-of-plane bending deflections. The resulting dimensional flapping-wing

plate equations of motion are equivalent to the flapping-wing beam equations

developed earlier in this thesis.

The construction of the mass and stiffness matrices for the the assumed-
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modes equations of motion require evaluations of surface and line integrals based

on the assumed mode shapes of the plate wing. Assumed modes for use in the

thin-plate analysis were calculated with a commercial FEA code. The necessary

surface integrals were calculated from the FEA output are calculated with Gaus-

sian quadrature over each plate element. Line integrals were calculated numeri-

cally, using integrands that are estimated from surrounding node points through

the use of radial basis functions (RBFs). The output FEA mode shapes, RBF

integrand estimations and equation-of-motion matrix calculations were validated

against a simply-supported rectangular plate whose mode shapes are known

exactly.

A rectangular wing FEM was modeled with a large thickened leading-edge

spar, based on the “representative” insect wing model. A second rectangular wing

FEM was developed in which the spar was split evenly into a leading-edge spar

and a trailing radial spar. The mode shapes of both models were calculated and the

Floquet stability analysis was applied to both. The results of the stability analysis

of both wings show that the first bending mode dominates the stability response.

The plate models’ stability plots were compared to a beam-wing stability plot.

This comparison revealed that the plots for all three models were similar, except

that the plate models show somewhat greater regions of instability at normalized

natural frequencies less than one. This similarity suggests that beam models may

be adequate for estimations of structural stability of flapping wings.
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CHAPTER 5

PARAMETRIC STUDY OF AN AEROELASTIC

FLAPPING WING

5.1 Introduction

The preceding chapters of this thesis have focused on the structural modeling

and stability of a flapping wing system. Previous research has indicated that

inertial loadings arising from wing flapping motions are the primary drivers

of structural deformations in flapping wings, while aerodynamic forces play a

secondary role. Therefore, aerodynamic forces have only been considered ab-

stractly, as external force loads (derived for the equations of motion, but not

included in any analysis) or as general system damping terms which may mitigate

instabilities. However, the purpose of flapping wings on MAVs is the generation of

aerodynamic forces. In this chapter, an aeroelastic flapping-wing analysis is used

to perform a parametric study of the effect of structural design parameters on the

lift generated by a flapping MAV wing.

5.2 Aeroelastic Model

The parametric study presented here uses an unsteady flapping-wing aero-

elastic analysis developed and validated by Singh and Chopra [98]. Singh and

Chopra’s analysis is a loosely coupled aeroelastic analysis, meaning that the struc-

tural and aerodynamic portions of the analysis are not performed simultaneously.
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Instead, separate structural and aerodynamic analyses are iteratively applied until

convergence is attained. A brief overview of the analysis is given here. A more

detailed explanation of the analysis can be found in Singh’s dissertation [156].

The structural portion of the analysis models the wing as a plate subject to

large rigid-body rotational motions (i.e., flapping and feathering rotations) and

small, linear structural deformations.* The plate wing is represented as a finite

element model (FEM) with a structured rectangular grid. The equations of motion

for the structural analysis were derived using Hamilton’s method by equating the

variations of strain energy and kinetic energy within the plate. Modal reduction

was applied to the FEM matrix equation to reduce the degrees of freedom of

the system. Additional simplifications were made when the analysis was im-

plemented in Fortran code [177]. Material and structural properties (Young’s

modulus, density, Poisson’s ratio and thickness) were assumed to be constant

within each element. The materials were also assumed to be isotropic. Since

these simplifications were in place during the verification of the analysis, they are

retained in the present analysis.

The aerodynamics of a flapping wing were analytically modeled using a

quasi-steady thin airfoil theory that was augmented to include the effects of

the attached leading-edge vortex (LEV) and the wing’s wake. The conceptual

framework for this method was proposed by Żbikowski as a combination of

analyses originally developed for helicopters and delta-wing aircraft [96]. The

unsteady aerodynamic modeling of pitching and plunging airfoils and of trailing

and returning wakes are well-known from helicopter analysis (see [80, ch. 8]).

The LEV was modeled by Polhamus’ suction analogy which describes the effect

of attached vortices on swept delta wings at high angles of attack [178]. Singh

and Chopra implemented Żbikowski’s framework and expanded it by including

*In contrast to the non-dimensional plate model presented in chapter 4 of this thesis, Singh and
Chopra’s model is fully dimensional.
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pitching and plunging motions due to the structural deformations of the wing

itself. Quasi-steady thin airfoil theory was used to calculate circulatory and

noncirculatory (i.e., apparent mass) forces on the wing, including the effect of

the wing’s feathering rate, often called the “Kramer effect” or “rotational lift” in

flapping-wing analyses. The quasi-steady lift also includes aerodynamic forces

generated due to elastic deformation of the wing. The LEV was modeled by

rotating the quasi-steady leading-edge suction force by 90° so that it acts normal to

the wing, as per Polhamus’ suction analogy. Unsteady wake aerodynamics were

included with the Wagner and Küssner functions.

5.3 Baseline Wing

The baseline structural model for the parametric studies is Singh and Chopra’s

Wing III FEM, based on an aluminum-frame wing with a flexible mylar membrane

that was used for experimental validation of the aeroelastic analysis [98]. A view

of the finite element model is shown in figure 5.1 and the physical wing on which

it was modeled is shown in figure 5.2. The FEM has a span of 9.28 cm, a maximum

chord of 4.78 cm and a total area of 30.56 cm2. The flapping mechanism used in the

experimental validation test had a 5.5-cm–long arm equipped with strain gauges,
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Figure 5.1: FEM of baseline wing.
Colored elements are modeled as alu-
minum, white elements as mylar.

Figure 5.2: Physical model
for baseline FEM.
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causing a spanwise offset of the wing root. The elements of the FEM are modeled

as either aluminum or mylar. All elements of a particular material are assumed to

have identical properties, listed in table 5.1.

The mode shapes of the baseline FEM are calculated as part of the modal

reduction of the structural model for use in the aeroelastic analysis. The first four

mode shapes are drawn in figure 5.3. Mode one is the first bending mode of the

wing and has a natural frequency of 36.7 Hz. Mode two is the first torsion mode,

with a natural frequency of 85.0 Hz. The third and fourth modes are higher-order

deformations of the mylar wing membrane

The input flapping angle φ and feathering angle θ for the parametric study

are plotted in figure 5.4. Two sets of data are shown in the figure. The first are

Table 5.1: Structural properties for baseline wing elements.

Aluminum Mylar
E 60 GPa 7 GPa
ρ 2400 kg/m3 1250 kg/m3

ν .33 .25
t .0508 mm .0104 mm

Mode 1 Mode 2

Mode 3 Mode 4

zy

x

Maximum 

deflection

No 

deflection

Figure 5.3: First four modes of the baseline FEM. Color shows the magnitude of
out-of-plane deflection.
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Figure 5.4: Input flapping motions and feathering motions for aeroelastic analysis.
Solid lines are sinusoidal motions, dashed lines are the “Fourier series fit” from the
Singh and Chopra’s validation exercise.

the pure sinusoidal functions. The stroke amplitudes of the sinusoids are selected

as the nominal stokes in the validation study: a flapping stroke of Φ = 80° and a

feathering stroke of Θ = 90°. The second set of motions in figure 5.4 are Singh and

Chopra’s “Fourier series fit” of the experimental flapping and feathering inputs

that are used in the validation study [98, figure 41]. Note that the sinusoidal

feathering input has a similar phase offset as the feathering of the Fourier series

fit. The sinusoidal input motions are used for the majority of the parametric study

for their simplicity and their applicability to generalized results, as opposed to

the Fourier series fit, which represents the motions of a specific mechanism. The

Fourier series fit is used in cases where the current analysis is compared to the

original validation study.

The validity of the current implementation of the aeroelastic analysis was

confirmed by performing a test case from Singh and Chopra’s validition study

and comparing the results from the original and current analyses. The selected

test case was the calculation of the bending moment at the wing root caused by

flapping motion with a 9.07 Hz wingbeat frequency. Figure 5.5 plots the results

from the validation exercise (originally reported in [98, figure 52a]) against the

results from the current implementation. Both sets of data agree in both shape and
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Figure 5.5: Comparison of calculated bending moments from validation exercise
and current implementation, ω = 9.07 Hz.

magnitude, giving confidence that the current implementation of the aeroelastic

analysis is valid.

The lift forces generated by baseline wing while undergoing sinusoidal flap-

ping motion are plotted in figure 5.6. The wingbeat frequency is ω = 9.07 Hz,

a speed typical of the flapping mechanism used in the validation exercise. The
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Figure 5.6: Total lift and lift components baseline wing subject to sinusoidal
motion, ω = 9.07 Hz. Components plotted are: circulatory loads (Circ),
noncirculatory apparent-mass loads (Ap. Mass), leading-edge vortex suction
(LEV) and wake losses (Wake).
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flapping wing generates a mean thrust of .0385 N over one wingbeat, enough to lift

3.92 g. The equivalent rigid-wing lift is calculated by neglecting structural elastic-

ity in the aeroelastic analysis. Subject to identical flapping motions, a rigid baseline

wing generates a mean thrust of .0325 N. The elastic baseline wing generates 18%

more thrust than an equivalent rigid wing, a significant improvement.

A breakdown of the mean thrust components is given in table 5.2. Almost

half of the total thrust arises from circulatory loads, while apparent mass effects

and the LEV account for roughly 30% and 20% of the loads, respectively. The lift

deficit from the wake is relatively low at about 4% loss of lift. Note in figure 5.6

that the circulatory and LEV loads are greatest slightly after the middle of each

half-stroke when the wing begins to pitch up relative to the flapping motion. In

contrast, the added-mass loads are greatest at the beginning of each half-stroke.

The effects complement each other to generate positive lift at all times during the

wingbeat, despite circulatory and noncirculatory lift each producing negative life

at some point during each half-stoke.

Table 5.2: Mean values of lift components on baseline wing undergoing sinusoidal
motion, ω = 9.07 Hz.

Component Mean lift Percentage of total
Circulation 0.0186 N 48.3%
Apparent mass 0.0126 N 32.7%
LEV 0.0087 N 22.6%
Wake -0.0014 N -3.6%

5.4 Wing Planform Shape

As part of his morphological study of insect morphology, Ellington showed

that the chord distribution of an insect wing can be generally approximated by

a Beta distribution as a function of span [64]. Furthermore, the Beta distribution

itself can be characterized as a function of a single variable, the spanwise location
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of the wing’s first moment of area (i.e., the wing’s spanwise center of area). This

simple approximation allows the generation of a series of arbitrary insect-like

planforms for use in the parametric study.

Ellington reports that the wing chord c at a spanwise location x is given by

the Beta distribution as

c(x) = xp−1 (R− x)q−1/B, 0 ≤ x ≤ R (5.1)

where p and q are parameters derived from the spanwise moments of wing area

and B acts as a scaling factor. The parameters p and q are

p = r̂1

(
r̂1(1− r̂1)
r̂2

2 − r̂1
2 − 1

)
(5.2)

q = (1− r̂1)
(

r̂1(1− r̂1)
r̂2

2 − r̂1
2 − 1

)
(5.3)

where r̂1 is the first spanwise moment of wing area and r̂2 is the second spanwise

moment of wing area. These values are non-dimensionalized by the wing radius

so, for example, a wing with r̂1 = .50 has a spanwise center of area at .50R.

Ellington’s experimental morphological study showed that the second moment

of wing area is a strong function of the first moment, closely following the relation

r̂2 = 0.929 r̂1
0.732 (5.4)

Thus, an approximate biologically inspired chord distribution may be generated

solely from the non-dimensional first moment of wing area r̂1. These relationships

are valid for the range of Ellington’s experimental measurements, 0.42 ≤ r̂1 ≤ 0.56.

The baseline wing, based on a fruit fly wing, has a first moment of area of

r̂1 = 0.47†. Three additional biologically inspired FEM planforms were generated

†The three innermost columns of elements in the FEM, which represent the aluminum
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from Ellington’s Beta distribution method for r̂1 = 0.42, 0.51 and 0.56, spanning

the range of Ellington’s measurements. The new FEM planforms use the same

material properties as the baseline wing (see table 5.1) as well as the same wing

length, mass, and area. The shape of the leading-edge spar has likewise been kept

constant in all wings. Figure 5.7 compares all four planforms.

The four wings were subjected to sinusoidal flapping motion at a wingbeat

frequency of ω = 9.07 Hz. The predicted mean lift and a breakdown of the lift com-

ponents are given in table 5.3. Mean lift increases as r̂1 increases, which is to say, as

(a) r̂1 = .42 (b) r̂1 = .47 (baseline)

(c) r̂1 = .51 (d) r̂1 = .56

Figure 5.7: Biologically inspired wing FEMs of equal area and mass.

Table 5.3: Total lift and lift components of bioinspired wing planforms with
different first moments of area r̂1.

r̂1 = 0.42 r̂1 = 0.47 r̂1 = 0.51 r̂1 = 0.56
Mean Lift 0.0338 N 0.0385 N 0.0423 N 0.0428 N
Circulation 49.4% 48.3% 49.6% 52.1%
Apparent Mass 31.7% 32.7% 32.2% 30.6%
LEV 23.1% 22.6% 22.7% 23.4%
Wake -3.8% -3.6% -4.5% -6.1%

connection spar, are not included in the first moment of area calculations of this or subsequent
wings.
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the wing area is biased more towards the wing tip. This relationship is expected:

the outboard sections of rotating wings generate more lift than inboard sections,

a result well-known from helicopter analysis. The proportional contributions of

the separate lift components are relatively constant for all of the planforms and,

indeed, the plots of the lift forces are quite similar, as seen in figure 5.8. Circulatory

lift, for example, contributes approximately half of the total lift for all planforms.

The results of this planform study suggest that wings for MAVs should

have planform areas biased towards the wing tip, with the goal of increasing

lift. However, data in Ellington’s morphological survey of insect-like fliers [64]

seems to support the opposite conclusion. Ellington’s measurements show that

better fliers generally have wing planforms biased more towards the wing root.
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Figure 5.8: Time history of total lift and lift components of biologically inspired
wing planforms, ω = 9.07 Hz.
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Honeybees, for example, typically have r̂1 ≈ .49, while exceptional fliers like

hawkmoths and hummingbirds have r̂1 ≤ .44. In contrast, insects with r̂1 > .54

are typically poor fliers, such as craneflies and lacewings. This discrepancy implies

that additional factors are influencing biological wing planforms that are not

included in this analysis. One such factor is the possibility that inboard-biased

planforms may be more efficient at generating lift (similar to blade taper for an

optimum hovering helicopter rotor). Unfortunately, the aeroelastic analysis used

in this study does not predict power requirements so system efficiency cannot be

evaluated at this time. It is recommended that this discrepancy be examined in

future research.

5.5 Material Thickness

The thickness of the materials used to construct the wing will have a signifi-

cant effect on the structural response of the flexible wing, which in turn will change

the thrust it generates. In order to characterize these effects, a parametric variation

of the thickness of the aluminum frame and mylar membrane is performed. The

thickness of the frame or the thickness of the membrane is varied from one-half

to two times its baseline value while all other material properties are fixed at their

baseline values (see table 5.1). Baseline sinusoidal flapping motion of frequency

ω = 9.07 Hz is used for all cases.

5.5.1 Wing Frame Thickness

The first parametric study varies the frame thickness. The frame is the

primary structural component of the wing; in particular, the leading-edge spar

is primarily responsible for the bending stiffness of the wing. The wing’s first

structural mode is the first bending mode, implying that bending flexibility plays
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a key role in the gains in thrust experienced by an elastic wing over an equivalent

rigid wing. We may thus expect a loss of wing thrust with a thicker frame, since a

thicker, stiffer spar will resist beneficial deformations. Conversely, we may expect

thrust gains with decreasing frame thickness. This expectation is generally borne

out in the parametric study.

The results of the frame-thickness study are reported as non-dimensional

values in table 5.4. The first value in the table is the predicted lift of the elastic wing

non-dimensionalized by the lift of an equivalent rigid wing (as for the baseline

wing, Lrigid = .0325 N for all cases). The second is the first natural frequency of

the wing divided by the flapping frequency. Thicker frames have higher natural

frequencies, indicating greater stiffness in bending. For the most part the results

show the expected trend: for frame thicknesses of 0.9 times the baseline and

greater, thicker wings are stiffer and produce less lift due to smaller beneficial

deformations. Very stiff wings approach the rigid-wing value of lift.

Of note are the two wings with the thinnest frames, with 0.50× and 0.75×

baseline frame thickness. These wings have relatively low stiffnesses and experi-

ence very large deformations when subjected to flapping motions. The aeroelastic

analysis predicts wingtip deflections greater than 100% of the wing length for

Table 5.4: Results of parametric variation of flapping-wing frame thickness.
Frame thickness is referenced to baseline frame thickness of 0.0508 mm. First
natural frequency ω1 is referenced to wingbeat frequency ω = 9.07 Hz.

Frame thickness/
baseline thickness

L/Lrigid ω1/ω Note

0.50 2.06 1.84 Violates small-deflection assumption

0.75 0.22 2.91 Violates small-deflection assumption

0.90 1.26 3.59
1.00 1.18 4.04
1.25 1.12 5.18
1.50 1.08 6.29
2.00 1.05 8.15
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both cases. Such excessive deformations violate the analysis’ assumption of small

deformations and linear strains, so these results are not strictly valid. However, it

is surprising that the lift for the 0.75×-thickness case does not follow the expected

trend of increased lift for decreased thickness, but instead produces nearly 80%

less lift than the rigid-wing case.

This decrease in lift for the 0.75×-frame-thickness wing occurs because the

natural frequency of the wing structure has been reduced such that the normalized

first natural frequency ω1/ω is near three. At ω1/ω ≈ 3, the flapping motion of

the wing and the time-periodic stiffness of the flapping structure act together to

increase structural deformations that are detrimental to lift production.

Experimental evidence of this phenomenon is found in Singh’s measure-

ments of flapping-wing lift. Figure 5.9 plots Singh’s “high-frequency” lift mea-

surements of Wing III as a function of ω1/ω. The data were collected by flapping

Wing III over a range of wingbeat frequencies ω. The upper bound of ω, and

hence the lower bound of ω1/ω, was limited by the performance of the flapping

mechanism. Figure 5.9 shows that lift increases with decreasing ω1/ω until ω1/ω

nears three, where the characteristic lift reduction is seen. Singh identifies the
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Figure 5.9: Experimental mean lift versus normalized first natural frequency for
Singh’s Wing III. Data originally reported in [156, figure 6.8].
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cause of lift reduction a “large accelerations introduced by wing elasticity, [which]

signicantly [reduce] the non-circulatory contribution to the thrust.” The cause of

these large elastic accelerations was not specifically identified. It is implied that

the elastic deformations are a consequence of a high flapping frequency ω. In

fact, the cause of the lift reduction is not related to the magnitude of the flapping

frequency ω alone. It is related to the value of the normalized natural frequency

ω1/ω approaching a value of three.

Returning to the frame-thickness variation, we can see how the time-periodic

stiffnesses of the wing act to excite a large structural response when ω1/ω ≈ 3.

Figure 5.10 plots the variation of tip deflections for different frame thicknesses. The

0.75×-frame-thickness wing of figure 5.10b shows a pronounced 3-per-wingbeat

(i.e., 3ω) response component, which is driving the increased elastic accelerations.

This 3-per-wingbeat response is directly caused by this wing operating at ω1/ω ≈

3. In contrast, the other wings which operate at higher or lower values of ω1/ω

do not have the large 3ω response. The mechanism by which ω1/ω ≈ 3 flapping

motion drives large 3ω structural response is explained in complete detail later

in section 5.6. For the moment, it is enough to note that this 3ω response is

detrimental to lift production, resulting in the loss of mean lift for this case.
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Figure 5.10: Comparison of tip deflections of wings with 0.50 to 1.00× baseline
frame thickness. Units are not included because 0.50× and 0.75× cases violate
small-deflection assumption, so the results are not strictly valid.
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This detrimental loss of lift is illustrated in figure 5.11, which plots the predicted

instantaneous lift over one wingbeat for frame thicknesses of 0.50×, 0.75× and

1.00× the baseline value. The plots for the 0.50× and 1.00× thicknesses are similar,

showing positive lift over the entire stroke. The 0.75× thickness case shows a

significantly different lift history, where negative lift generation on both half-

strokes results in a reduction of mean lift.
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Figure 5.11: Comparison of lift variations of wings with 0.50 to 1.00× baseline
frame thickness. Units of lift are not included because 0.50× and 0.75× cases
violate small-deflection assumption, so the results are not strictly valid.

5.5.2 Wing Membrane Thickness

The effect of wing membrane thickness on the wing’s lift is somewhat more

complicated than the effect of frame thickness (notwithstanding the anomalous

0.75× frame thickness case). Variations of membrane thickness do not mono-

tonically increase or decrease lift. In fact all of the thickness cases considered in

the parametric study, whether using thicker or thinner membranes, have greater

predicted lifts than the baseline case. This results can be understood by examining

the wing membrane both as a structural stiffener and as a source of inertial

loadings.

The results of the membrane-thickness study are reported in table 5.5. In

comparison to the results of the frame-thickness study, the lift and first natural
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Table 5.5: Results of parametric variation of flapping-wing membrane thickness.
Membrane thickness is referenced to baseline membrane thickness of 0.0104 mm.
First natural frequency ω1 is referenced to wingbeat frequency ω = 9.07 Hz.

Membrane thickness/
baseline thickness

L/Lrigid ω1/ω

0.50 1.29 4.07
0.75 1.19 4.16
1.00 1.18 4.04
1.25 1.20 3.92
1.50 1.21 3.82
2.00 1.23 3.68

frequency show relatively small variations with membrane thickness. But in

contrast to the frame-thickness results, neither lift nor first natural frequency is a

monotonic function of membrane thickness. This is due to two conflicting trends:

the membrane’s contribution to the wing’s stiffness and its contribution to the

wing’s mass. The wing membrane contributes somewhat to the overall stiffness

of the wing, and for the 0.5× and 0.75× membrane thickness cases the effect is

the same as seen for the frame thickness: a thinner membrane is more flexible,

allowing larger beneficial deformations that increase lift. However, the membrane

is not the wing’s primary structural element, so this trend does not continue for

thicker membranes. Instead, as the membrane thickness increases further, its

additional mass produces greater inertial loads in response to flapping motion.

The increasing inertial loads drive increasing wing deformations in spite of the

greater relative bending stiffness.

The trends of these two effects—the contribution of membrane mass versus

the contribution of membrane stiffness—can be demonstrated by independently

varying the mass and stiffness of the membrane elements through the parameters

ρ and E. Membrane mass changes proportionally with wing thickness, so an

equivalent mass variation is simulated by varying the membrane density ρ ∝ t.

The membrane’s bending stiffness EI is proportional to the cube of thickness, so
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the equivalent stiffness variation is simulated by varying the Young’s modulus

E ∝ t3. Figure 5.12 plots the results of the variations of thickness, mass and stiff-

ness. The independent effects of mass and stiffness are clear: as thickness increases,

the increased bending stiffness acts to suppress lift-beneficial deformations while

the increased mass acts to amplify them. When acting in concert, these opposed

effects partially mitigate each other but act in total to increase lift when membrane

thickness is increased or decreased.
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Figure 5.12: Effect of variation of membrane thickness and equivalent variations
of mass and stiffness.

5.6 Forced Flapping at Odd Subharmonics of the the First Natural

Frequency

In the frame-thickness parametric study of section 5.5.1 it was observed

that reducing the wing’s stiffness such that the first natural frequency ω1 was

approximately three times the wingbeat frequency ω, the structural response had

a particularly large response with frequency 3ω. This response is a consequence of

the time-periodic structural stiffness of the flapping wing system. The mechanism

of this phenomenon can be demonstrated using the non-dimensional flapping-
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wing beam equation of motion derived in chapter 2, which is given in Eq. 2.75.

For this demonstration we will consider a beam wind with cantilever boundary

conditions.

A number of initial simplifications are made for the sake of clarity. It is as-

sumed that the beam wing is modeled by one bending mode, and all torsion modes

are neglected. Note that for a single-mode cantilever beam, Kω = 1. Flapping

motion is modeled as a pure cosine input, φ̂(τ) = cos(τ), while feathering angle

is constant at θ̂ = π/2 to fix the wing in a vertical orientation. Applying these

simplifications to Eq. 2.75 results in the scalar differential equation

∗∗q1 +
[
(ω1/ω)2 + KΦ2 sin2(τ)

]
q1 = −FΦ cos(τ) (5.5)

Some notational changes are introduced in Eq. 5.5 with respect to Eq. 2.75 for

convenience. The stiffness and forcing constants K and F in Eq. 5.5 are defined

as

K ≡ K ∗
φ2 + K ∗

φ2s2 =
T̂11

4 Ĉ11
− 1

4

F ≡ F˜∗∗φs
=

F̂wB1

2 Ĉ11

and ω1 ≡ ωcant, the first cantilever natural frequency.

We assume that the solution of Eq. 5.5 is an infinite series of sinusoidal

harmonics of the wingbeat frequency

q1(τ) =
∞

∑
n=0

[
An cos(nτ) + Bn sin(nτ)

]
(5.6)

where An and Bn are magnitudes which must be solved for. Substituting Eq. 5.6
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into Eq. 5.5 (and noting sin2(τ) = 1
2 −

1
2 cos(2τ)) results in the equation

−
∞

∑
n=0

[
n2An cos(nτ) + n2Bn sin(nτ)

]
+
[(ω1

ω

)2
+

KΦ2

2

] ∞

∑
n=0

[
An cos(nτ) + Bn sin(nτ)

]
− KΦ2

2
cos(2τ)

∞

∑
n=0

[
An cos(nτ) + Bn sin(nτ)

]
︸ ︷︷ ︸

time-varying stiffness

= −FΦ cos(τ) (5.7)

The time-varying stiffness term in Eq. 5.7 is the source of the coupling between

harmonics. This coupling can be shown explicitly by expanding the products of

the cos(2τ) term with the harmonics in the infinite series:

cos(2τ)
∞

∑
n=0

[
An cos(nτ) + Bn sin(nτ)

]
=

1
2

∞

∑
n=0

[
An cos

(
(n− 2)τ

)
+ An cos

(
(n + 2)τ

)
+ Bn sin

(
(n− 2)τ

)
+ Bn sin

(
(n + 2)τ

)]
=

1
2

{
A2 + (A3 + A1) cos(τ) + (B3 − B1) sin(τ)

+ (A4 + 2A0) cos(2τ) + B4 sin(2τ)

+
∞

∑
n=3

[
(An+2 + An−2) cos(nτ) + (Bn+2 + Bn−2) sin(nτ)

]}
(5.8)

For the purposes of demonstration, we will now make a further simplifica-

tion and assume that the structural response of the wing is comprised of only the

first three harmonics, so An = Bn = 0 for n ≥ 4. Using this assumption and the
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relationship of Eq. 5.8, Eq. 5.7 is rewritten and simplified to give

−A1 cos(τ) +
(ω1

ω

)2
A1 cos(τ) +

KΦ2

4
(A1 − A3) cos(τ)− 9A3 cos(3τ)

+
(ω1

ω

)2
A3 cos(3τ) +

KΦ2

2

(
A3 −

1
2

A1

)
cos(3τ) = −FΦ cos(τ) (5.9)

The harmonics of the response can now be considered separately. We will look at

the cos(τ) terms in Eq. 5.9:

−A1 cos(τ)︸ ︷︷ ︸
mass

+
(ω1

ω

)2
A1 cos(τ)︸ ︷︷ ︸

strain stiffness

+
KΦ2

4
(A1 − A3) cos(τ)︸ ︷︷ ︸
inertial stiffness

= −FΦ cos(τ) (5.10)

The flapping motion drives the first harmonic response directly through the terms

containing A1. Additionally, the time-periodic coupling in the inertial stiffness

term drives the third harmonic response through the term containing A3.

Now consider cos(3τ) terms in Eq. 5.9:

−9A3 cos(3τ)︸ ︷︷ ︸
mass

+
(ω1

ω

)2
A3 cos(3τ)︸ ︷︷ ︸

strain stiffness

+
KΦ2

2

(
A3 −

1
2

A1

)
cos(3τ)︸ ︷︷ ︸

inertial stiffness

= 0 (5.11)

If the wingbeat frequency ω is third subharmonic of the wing’s natural frequency

then ω1/ω = 3 and the mass and strain stiffness contributions in Eq. 5.11 will can-

cel. The third harmonic magnitude A3 will then be equal to one-half of A1. When

the system is excited at the third subharmonic of ω1, the stiffness of the 3-per-

wingbeat response becomes relatively small, causing the 3-per-wingbeat portion

of the response to absorb energy through increased structural deformations.

For a general flapping wing system, the n-per-wingbeat response will lose

stiffness when the wingbeat frequency is the nth subharmonic of the first bend-

ing frequency, when ω1/ω = n. However, this loss of stiffness appears to be

significant only when ω1/ω = 3. For other values of n, the effect on the total
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system response will be considerably less severe. The special significance of

the ω1/ω = 3 case can be understood by noting that wingbeat frequencies of

ω1/ω = n will reduce the stiffness of the nω structural response only with respect

to the (n− 2)ω and (n + 2)ω response components. The structural response of the

flapping wing is dominated by the 1-per-wingbeat response component, which

can only significantly couple to the 3-per-wingbeat response component.

This effect is best understood with an example. We shall consider again the

forced response of the scalar flapping-only system of Eq. 5.5 solved by the assumed

harmonic response of Eq. 5.6. We assume the response is limited to the first five

harmonics, so the modal response of the system is

q1 = A1 cos(τ) + A3 cos(3τ) + A5 cos(5τ)

and the magnitudes of the response components solve the matrix equation


(ω1

ω

)2 + KΦ2

4 − 1 −KΦ2

4 0

−KΦ2

4

(ω1
ω

)2 + KΦ2

2 − 9 −KΦ2

4

0 −KΦ2

4

(ω1
ω

)2 + KΦ2

2 − 25




A1

A3

A5

 =


−FΦ

0

0


Furthermore, we will assume a uniform beam wing (for which K = 0.048) and

flapping stroke Φ = 90°. Table 5.6 gives the relative magnitudes of the response

components for several integer values of ω1/ω. In general, the 5-per-wingbeat

response A5 is orders of magnitudes less than the 3-per-wingbeat response A3,

Table 5.6: Frequency response components of a simplified flapping system for
different normalized first natural frequencies.

ω1/ω = 2 ω1/ω = 3 ω1/ω = 4 ω1/ω = 5
A3 = −0.0060A1 A3 = 0.4995A1 A3 = 0.0042A1 A3 = 0.0018A1

A5 = −0.0014A3 A5 = −0.0019A3 A5 = −0.0033A3 A5 = 0.5000A3
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which is itself orders of magnitudes less than the 1-per-wingbeat response A1.

When ω1/ω = 3 the 3-per-wingbeat response is nearly half of the 1-per-wingbeat

response, an effect which will significanty alter the total response of the system.

Likewise, when ω1/ω = 5 the 5-per-wingbeat response is half of the 3-per-

wingbeat response. While this represents a significant relative change in the 5-per-

wingbeat response, both the 3-per-wingbeat and 5-per-wingbeat responses are still

very small with respect to the dominant 1-per-wingbeat response.

5.7 Summary

A validated aeroelastic model of a flapping wing was used to perform a para-

metric study of flapping wing performance with changes of structural properties.

The performance of the wings in this study are evaluated by the magnitude of

the mean lift force over one flapping period. The baseline wing for this study

is the physical wing and subsequent FEM used for the original validation of the

aeroelastic model. The baseline wing is modeled on the planform of a fruit fly

wing, and has an aluminum frame and a mylar membrane. Sinusoidal flapping

and feathering motions are prescribed with flapping frequencies and amplitudes

based on the original validation study. The inclusion of modeled deformations of

the wing result in an 18% increase in mean lift in comparison with a rigid-wing

case. Circulatory effects (including lift arising from wing deformations) account

for nearly half of the mean lift, while LEV and apparent mass effects contribute

approximately 20% and 30% of the mean lift, respectively.

The effect of wing planform shape on lift was analyzed. Planform ge-

ometries were generated using an empirical model of biological wing planforms

parameterized by the radial center-of-area location. Wing FEMs were constructed

with centers-of-area between 42% and 56% of wing radius and were designed to

have the same mass and leading-edge spar geometry as the baseline wing. The

203



aeroelastic model indicates that total lift increases as the wing center-of-area is

biased outboard. This trend is expected due to the greater relative airspeed (and

hence, greater quasi-steady lift per unit chord) at the outer portions of the rotating

wing. While the results of this parametric analysis suggest that outboard-biased

wings are preferable for lift generation, the opposite trend is evident in nature: the

strongest and most agile biological fliers have the the most inboard-biased wings.

A possible explanation for this discrepancy may be that inboard-biased wings are

more efficient in generating lift, but this cannot be confirmed with the current

aeroelastic model, which does not predict power requirements. It is suggested

that this discrepancy be studied as future research.

The effect of material thickness on lift was analyzed in two separate studies.

The first study varied the thickness of the aluminum frame only. The aluminum

frame includes the leading-edge spar, which is the primary structural member of

the wing. For frame thicknesses of 90% of the baseline thickness and higher, lift

decreases as frame thickness increases. As the frame thickness grows large, lift

decreases to approach its rigid-wing value. This trend indicates that a thicker

frame is more resistant to beneficial deformations. For frame thicknesses reduced

to 75% and 50% of the baseline value, the wing experienced large deformations

which invalidate the analysis. However, the 75% thickness cases showed an

anomalous and significant decrease in lift, caused by a large and detrimental

bending structural response at the 3/rev frequency. The flapping-wing structural

model, which was developed in this dissertation, was used to show that the time-

periodic stiffnesses of the system will couple together odd harmonic structural

responses independently of even harmonic structural responses. For wingbeat

frequencies near odd subharmonics of the bending frequency, these couplings can

drive large structural motions due to decreased structural stiffnesses at the same

frequency.
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The second study of material thickness varied the thickness of the my-

lar membrane only. The magnitude of mean lift is less sensitive to changes in

membrane thickness than it was to changes in frame thickness. However, the

parametric study revealed that the mean lift generated by the wing increased

when the membrane thickness was increased and also when it was decreased.

This result is caused by two opposing trends. Increased membrane thickness

will stiffen the wing, limiting lift-enhancing deformations, but simultaneously,

increased membrane thickness increases the mass of wing wing, increasing inertial

loads that drive lift-enhancing deformations. By coincidence, the former trend was

dominant as membrane thickness was decreased from the baseline (lower thick-

ness leads to lower stiffnessness and greater deformations), while the later was

dominant as membrane thickness was increase (higher thickness leads to greater

mass and greater deformations). These trends were numerically demonstrated

by independently changing the mass and bending stiffness of the membrane.

This non-monotonic effect of membrane thickness demonstrates the complexity

of designing flexible wing structures for flapping wing flight.
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CHAPTER 6

CONCLUDING REMARKS

In many ways, bio-inspired flapping-wing MAVs are unique aeronautical

systems. Their mode of flight and their small size make them significantly unlike

the airplanes and helicopters that form the basis of our current knowledge of

aeronautical engineering. They offer a distinctive opportunity to learn directly

from nature, to incorporate knowledge that is embodied in biological fliers. The

possible benefits of bio-inspired MAVs are profound: tiny aerial robots with excep-

tional maneuverability, able to perform tasks in environments that are enclosed

or otherwise inaccessible to conventional vehicles. Achieving this goal requires

advances of our understanding of the complex functional processes of insect-like

flight and the means to realize them in mechanical systems. This dissertation

works toward a more complete understanding of insect-like flight by presenting

an analytic study of flexible, flapping wing structures for normal hovering flight.

6.1 Summary and Conclusions

Bio-inspired flapping-wing flight is an attractive model for micro air vehicles

because animals are existing, observable systems that demonstrate the feasibility

of small-scale flight. The flapping-wing flight method used by birds and insects

take advantage of novel aerodynamic phenomena to enhance lift at smaller scales.

Bio-inspired flapping-wing flight is often subdivided into two broad regimes, bird-

like flight and insect-like flight. Unsurprisingly, engineering knowledge about

these two flapping-wing flight regimes is derived primarily from observations of
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biological fliers. Based on such observations, bird-like flight appears to be the

less attractive of the two with regard to MAV applications, for several reasons.

First, bird-like flight is associated with high forward flight speeds, which is in-

appropriate for the autonomous operations in confined spaces to which MAVs

are best suited. Second, almost all bird-like biological fliers exceed the desired

dimensions of MAVs, some by orders of magnitude, which suggests that bird-like

flight may not be optimized for MAV-scale flight. Third, all biological bird-like

fliers have active musculature used to alter the shape of their wings on a per-

wingbeat basis, suggesting that optimized bird-like flight requires complex and

high-frequency morphing of the wings. Development and control of comparable

small, fast actuators for MAV wings would be a challenge with current technology.

Insect-like flight suffers none of these drawbacks. Insect-like flight is char-

acterized by hover capability and low-speed maneuverability, which is ideal for

operation in confined spaces. Many of the largest and most maneuverable insect-

like fliers, including hawkmoths and hummingbirds, are the same size as the MAV

target, indicating that optimized insect-like flight is achievable at MAV scales.

Finally, no biological insect-like flier has the ability to actively change the shape

of its wing; this suggests that optimized insect-like flight can be achieved with

fully-passive wing structures. Indeed, hummingbird evolution has resulted in

elimination of the active wing control that is available to all other birds. This implies

that the wing structures of insect-like MAVs can be optimized without the need for

active on-wing actuation, significantly simplifying their construction.

While the construction of wings for insect-like MAVs may be relatively

simple, their operation is not. Though they are not actively controlled, the wings

of insect-like biological fliers are quite flexible and experience significant defor-

mations due to the action of inertial and aerodynamic forces. These deformations

include reversible twist and camber on up- and downstrokes, which are consistent

207



with lift-enhancing aerodynamics. Wing flexibility therefore appears to be impor-

tant to insect-like flight.

Despite this apparent importance, wing flexibility is often neglected in quan-

titative analyses of insect-like flight in both the biological and engineering fields.

Little useful data is available regarding the structural properties of insect wings,

so it is difficult to deduce structural design strategies for bio-inspired MAVs. As

such, wings for insect-like MAVs are often designed by experimental construction-

and-evaluation methods, or by attempts to replicate the structural and geometric

features of insect wings. The construction-and-evaluation approach can be scatter-

shot and will likely not yield an optimized design, while replication of biological

wings without an attendant understanding of their functionality may lead to

incorporation of unnecessary structural features into MAV wings. Since biological

information is not readily available, this dissertation presents an engineering

model of a flexible flapping wing as a means of exploring and evaluating the

structural dynamics of insect wings.

A flapping-wing structural analysis was developed that models the wing as

a thin elastic beam undergoing small, linear deformations in out-of-plane bending,

in-plane bending and torsion while subject to large, unsteady flapping and feath-

ering rotational motions. This analysis was derived as an extension of existing

helicopter blade analyses. The flapping wing analysis models cross-sectional prop-

erties of the wing, including cross-sectional mass, cross-sectional bending stiffness,

center-of-gravity location, center-of-area location, location of wing feathering axis,

polar mass radius of gyration and polar area radius of gyration. Since many of

these properties have not been reported for either biological fliers or MAV wings, a

simplified cross-sectional model was developed to estimate representative values.

The inertial cross-sectional loadings of the wing were independently derived by

two methods: first, by integration of forces acting on an infinitesimal volume of
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the wing, and second, by consideration of various centrifugal, inertial and Coriolis

forces acting on a cross-section. The two derivations were shown to be equivalent.

An assumed-modes model of the wing was derived, which included a torsional

spring at the wing root. This spring, which counteracts out-of-plane bending

motions, was included to model the indirect flapping actuation method used by

insects. MAV-type flapping actuations can be modeled by assuming an infinitely

stiff torsional spring to recover cantilever boundary conditions. The assumed-

modes equations of motion of the wing include time-varying stiffnesses which

are functions of the velocities and accelerations of the flapping and feathering

rotations.

The structural model was non-dimensionalized in time for the case of pre-

scribed, periodic flapping and feathering motions. The non-dimensionalization of

the constant, structural stiffness of the wing was facilitated by the definition of

three natural frequencies, each characterizing a unique stiffness of the model:

1. The first natural bending frequency of the elastic, non-rotating wing when

subject to cantilever boundary conditions, ωcant. This characterizes the bend-

ing stiffness of the wing structure.

2. The first natural torsion frequency of the elastic, non-rotating wing when

subject to cantilever boundary conditions, ωtor. This characterizes the torsion

stiffness of the wing structure.

3. The natural rotational frequency of the rigid wing when subject to pinned

boundary conditions with a root spring, ωroot. This characterizes the stiffness

of the root spring.

The non-dimensional equations of motion reveal that the constant strain stiffness

and the time-periodic inertial stiffnesses of the flapping wing structure are both

parameterized by the prescribed flapping and feathering motions. The constant
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strain stiffness is parameterized by the frequency of the flapping motion while

the time-periodic inertial stiffnesses are parameterized by the amplitudes of the

flapping and feathering strokes. More specifically, the constant strain stiffness is

parameterized by the ratio of a characteristic structural natural frequency to the

flapping wingbeat frequency; the present analysis uses the “normalized cantilever

frequency,” ωcant/ω. The identification of the independent effects of wingbeat

frequency and wingbeat amplitude on, respectively, the constant strain and time-

periodic inertial stiffnesses of a flapping wing structure is an insight unique to this

non-dimensionalized analytical model.

The non-dimensional parameterization of the flapping wing equations al-

lows us to compare mechanical flapping-wing systems (MAVs and test stands)

with biological fliers to assess the similarity of the systems. Current mechanical

flapping devices typically have flapping amplitudes which are less than those

of biological fliers, indicating that mechanical systems experience lower time-

periodic stiffnesses. Also, current mechanical systems also tend to have rigid

wings or low wingbeat frequencies, leading to greater ωcant/ω and hence greater

constant stiffnesses than biological fliers. Therefore, current flapping-wing mecha-

nisms are not structurally similar to flapping insect wings—the mechanical sys-

tems have greater constant stiffnesses and lesser time-periodic stiffnesses than

biological fliers. Structural effects related to time-periodic stiffnesses on biological

wings are expected to be greater than can be replicated on current mechanical

models. Basic aerodynamic considerations indicate that lift developed by flap-

ping wing mechanisms can be maximized by increasing wingbeat frequency and

amplitude. This suggests that as future flapping-wing mechanisms improve, the

balance of constant and time-periodic structural stiffnesses will tend to approach

that of biological fliers.

One of the possible time-periodic effects that flapping wings may encounter
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are parametric instabilities, unstable structural responses caused by the periodic

variations of system stiffness parameters. The parametric stability of a system

is a function of the magnitude of the system’s constant and time-periodic stiff-

ness. Parametric instabilities have not yet been observed in mechanical flapping

systems. However, the dissimilarity between current mechanical and biological

flapping systems means that current observations from mechanical systems may

not be applicable to biological systems (nor to future mechanical systems which

will be more similar to biological fliers). Using a simplified single-degree-of-

freedom structural model, which was equivalent to the scalar Mathieu equation,

a parametric stability diagram was developed as a function of two flapping-wing

parameters: normalized cantilever frequency and flapping stroke amplitude. Para-

metric instabilities are shown to be unlikely for current mechanical flapping-wing

systems, but are much more likely for the operational regions of current biological

fliers. Therefore it is important for a designer to be aware of the possibility of

parametric instabilities as future MAVs approach the wingbeat frequencies and

amplitudes of biological fliers.

Further stability studies are presented for flapping-wing systems with sin-

gle and multiple modal degrees-of-freedom; coupled and uncoupled assumed

modes; and variations of feathering amplitude and structural design parameters.

Stability diagrams were primarily generated through numerical Floquet analysis,

though some of the simplest cases are solved exactly via transformation of Mathieu

functions. For multi-mode systems, instability regions associated with individual

modes were identified, as well as additional regions associated with the interaction

between two or more modes. Instability regions associated with the first bending

mode of the wing were dominant in every case examined in this dissertation.

This first-bending-mode instability manifests most prominently as large unstable

regions for normalized cantilever frequencies of ωcant/ω < 1 to 1.5. Higher-
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mode and coupled instability regions also tend to manifest in ωcant/ω < 1, but are

generally small compared to the first-bending-mode instability regions. Variations

of structural design parameters cause minor changes in the higher-mode and

coupled instability regions but do not alter the first-bending-mode instability.

An exception is the root-spring stiffness, which can cause significant increases in

the size of the instability regions, but only for soft springs (i.e., ωroot ≤ ωcant).

The inclusion of linear damping in the structural model mitigates but does not

eliminate parametric instabilities. Due to the dominance of the first bending mode

in the stability diagrams, it appears that single-mode stability calculations may

be sufficient for design studies to confirm the avoidance of possible parametric

instabilities.

Having developed and analyzed a thin-beam structural model of a flapping

wing the methodology is extended to a plate model of a flapping wing, which

will better represent the low-aspect ratio wings typical of insect-like biological and

mechanical systems. The flapping plate model is derived as a special case of a

generalized assumed-modes model of a flexible plate undergoing large motions.

The flapping-wing plate equation of motion has the same general form as the

flapping-wing beam equation of motion. Therefore, the non-dimensionalization

procedure and stability analysis developed for the thin-beam wing can be applied

directly to the plate wing model. Mode shapes for complex plate geometries

are calculated using finite element analysis. A procedure for numerically eval-

uating line integrals using radial basis functions is presented and validated as

a means of calculating modal matrices. A plate-model equivalent of the thin-

beam baseline wing is developed, along with a modified model with a more

complex spar geometry. The stability diagrams for both plate wing models are

calculated and compared with the equivalent thin-beam diagram. The flapping-

wing plate stability diagrams are dominated by the first-mode instability regions,
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while instability regions associated with higher modes tend to manifest in the

range of ωcant/ω < 1. The plate-wing stability diagrams are found to be very

similar to the diagrams for the equivalent beam model. This similarity suggests

that basic stability calculations may be performed with a beam-wing model, even

for low-aspect ratio wings. Such a technique would seem particularly effective

when the first mode of a plate wing is well-approximated by a beam bending

mode, as is the case for the models presented here.

Finally, an aeroelastic flapping-wing analysis is applied to examine the effects

of structural design parameters on lift generation. The aeroelastic analysis loosely

couples an FEM-based structural model with an analytic unsteady aerodynamic

analysis. The baseline wing for the structural parametric study is a frame-and-

membrane wing, modeled from a fruit fly wing planform, that had been used

for experimental validation of the aeroelastic analysis. An empirical model of

biological insect wing planforms was used to generate a series of model wings

of different planforms, which were parameterized by the wing’s spanwise area

centroid. Lift was found to increase as the wing’s area was biased more out-

board, suggesting that optimized wings should be designed with outboard-biased

planforms. This trend is contrary to biological fliers—the strongest biological

fliers tend to have the most inboard-biased wing planforms. It is speculated

that inboard-biased wings may operate more efficiently but this theory cannot be

tested with the current aeroelastic analysis, which has not been validated to predict

power required. Parametric variation of the thickness of the wing frame indicates

that increases in frame thickness lead to decreases in generated lift, due to the

stiffer frame suppressing beneficial deformations. This finding demonstrates that

wing flexibility can lead to gains in lift production. Parametric variation of the

thickness of the membrane indicated increases in lift were possible by increasing

or decreasing membrane thickness. This is the result of two opposing trends:
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1) as membrane thickness is decreased the thinner wing is less stiff, allowing

greater beneficial deformations, and 2) as membrane thickness is increased the

thicker wing has more mass, so inertial loads increase and force greater beneficial

deformations.

During the parametric study of the effect of membrane thickness, one partic-

ular case gives a unique result. In this case, the frame thickness was reduced by an

amount that caused the wing’s first natural frequency to be approximately three

times greater than the wingbeat frequency, ω1 = 3ω. In this case, the structural

response of the wing showed a large 3/wingbeat component which caused a

significant reduction in lift. This 3/wingbeat response was not observed in any

other aeroelastic case in this dissertation. The thin-beam structural model was

used to show that the time-periodic stiffnesses of the wing cause odd harmonics

of the structural response to be coupled together. When the wingbeat frequency

satisfies ω1/ω = 3, the 3/wingbeat structural response experiences reduced

stiffness, which is driven to large magnitude through the odd-harmonic structural

coupling of the 1/wingbeat inertial loads. In this manner, the 3/wingbeat response

that caused a significant loss of lift was analyzed using a purely structural model.

6.2 Contributions

• A thin-beam analytical assumed-modes structural model of a flexible, flap-

ping insect wing is developed. The analysis is created to be compatible

with analytical design studies and explicitly includes cross-sectional design

parameters in its formulation. The model is presented in both dimensional

and non-dimensional forms. Prior to this study, all models of flexible insect

wings structures were FEM-based models, from which the effects of design

parameters are not explicitly evident. This dissertation is the first to present

a non-dimensional analysis of flapping wing structures.
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• Non-dimensional structural similarity parameters are identified which char-

acterize the magnitude of the constant, structural stiffness and the time-

periodic inertial stiffness of the flapping wing system. These similarity

parameters allow comparison of the structural similarity of biological and

mechanical flapping-wing systems at different scales.

• A parametric stability analysis is developed for flapping wing structures.

The analysis includes a stability diagram which characterizes a wing’s para-

metric stability as a function of parameters characterizing the wing’s constant

strain stiffness and time-periodic inertial stiffness. Studies are presented that

examine the effects of structural design parameters on parametric stability.

• The conceptual framework of non-dimensionalization and parametric sta-

bility analysis developed for the thin-beam wing is extended for flapping

wings modeled as plates. Equivalences between the thin-beam model and

plate model are identified for both the equations of motion and the stability

analyses.

• Parametric studies of structural parameters’ effects on lift production are

presented, using a validated aeroelastic flapping wing model. Several unique

observations are presented, including identification of harmonic structural

couplings which may be detrimental to lift and the non-monotonic effect of

membrane thickness on lift production. In general, the results confirm that

beneficial structural deformations can increase lift of flapping wings.

6.3 Recommendations for Future Work

This dissertation has presented the development of structural models of

flapping wings for use in designing MAVs, implemented these models to study
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possible instabilities of MAV wings, and performed parametric studies of aeroe-

lastic wing models. The study of flapping wing structures and aeroelastic effects

is still in its early stages and provides numerous opportunities for continuing

contributions to the field. Based on the research presented in this dissertation,

the following future research tasks are recommended:

• The flapping-wing beam equations of of motion presented in this dissertation

can be extended to include a prescribed stroke deviation, the rotational

wing motion perpendicular to the stroke plane. Stroke deviation is evident

in biological flapping flight, but its purpose is not well understood. The

framework that has been developed to derive the equations of motion will

accommodate stroke deviation rotations in the same manner as flapping and

feathering rotations. Inclusion of stroke deviation will allow more accurate

representation and analysis of insect-like wing motions.

• Following this dissertation’s methodology of extending Houbolt and Brooks’

analysis of helicopter blades [162] to generate a linear structural model of a

flapping wing, a nonlinear thin-beam flapping wing structural model should

be developed based on the analysis of Hodges and Dowell [166]. The linear

thin-beam flapping wing model created in this dissertation cannot be used to

model large nonlinear wing deformations, and it does not include nonlinear

coupling terms known from helicopter analyses of rotating beams. Large

wing deformations are frequently observed in biological fliers and it seems

likely that MAV wings will likewise exhibit large deformations as technology

progresses, necessitating the development of appropriate analysis tools.

• An aerodynamic model can be integrated into the non-dimensional thin-

beam flapping wing model to create a non-dimensional aeroelastic model.

A quasi-steady aerodynamic model incorporating leading-edge vortex and
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added-mass effects could be added to this dissertation’s structural model

through its external loading terms. These terms comprise the majority of the

lift-generating effects on the wing, allowing the model to predict airloads for

flapping wings. Non-dimensionalization of the aerodynamic terms through

the methodology established in this dissertation should provide insight into

key aeroelastic parameters.

• The two preceding recommendations, i.e., the development of a nonlinear

structural model and application of a suitable aerodynamic model, can be

applied to this dissertation’s plate model as well as the beam model. Refor-

mulation of the two-dimensional plate model to include spars (modeled as

beam elements) will greatly enhance the ability to model the actual spar-and-

membrane geometries of biological and MAV wings. A two-dimensional

vortex-latice aerodynamic model can be incorporated into the plate-wing

model to derive a two-dimensional aeroelastic model.

• The parametric instabilities identified in this study for have not been exper-

imentally observed in flapping-wing mechanisms. The prime difficulty in

obtaining experimental confirmation of such stabilities are the limitations of

current flapping mechanisms in generating the large-stoke, high-frequency

flapping motions where instabilities are expected to be possible. It is an-

ticipated that future improvements of flapping mechanisms towards such

large-stroke, high-frequency motion will be necessary to attain increased lift.

When these improved flapping mechanisms become available, experimental

studies to confirm such instabilities should be performed.

• Regarding the parametric study of wing planform shape with an aeroelastic

analysis, there exists a discrepancy between the results of parametric study

and observations of nature. The parametric study suggests that better perfor-
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mance (i.e., greater lift) is achieved with wing planforms biased toward the

wing tip, however, all strong biological fliers have planforms biased toward

the root. The universality of inboard-biased planforms on strong biological

fliers suggests that this represents an optimized design, which would be

beneficial for MAV designers to understand.

A hypothesis is put forward that inboard-biased wings may produce lift

more efficiently than out-board biased wings. This theory cannot be tested

at this time because the aeroelastic analysis used in this dissertation cannot

predict power requirements. Testing this hypothesis would require the de-

velopment and validation of an aeroelastic analysis that can predict power

requirements.

• An experimental study to measure and record the material and structural

properties of biological wings is necessary to fill large gaps in current knowl-

edge. Representative measurements of bending and torsional stiffness, elas-

tic axis location, cross-sectional area of inertia, wing mode shapes and wing

natural frequencies are almost non-existant for insect-like biological fliers at

the present time. This lack of knowledge hinders analysis and understanding

of the function of flexible wings in insect-like flight. A systematic effort to

generate this knowledge would benefit engineers developing bio-inspired

MAVs as well as biologists studying insect-like flight.
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APPENDIX A

NATURAL FREQUENCIES OF BEAM WINGS

A.1 Characteristic (λR)γ1 of a Uniform Clamped-Free Beam

Presented is a demonstration that eig(Â−1Ĝ)min = (λR)2
γ1 for the case of a

uniform clamped-free beam. Â and Ĝ are given by

Âij = Âji =
∫ 1

0
m̂ k̂2

m χ̂γi χ̂γj dξ

Ĝij = Ĝji =
∫ 1

0
ĜJ χ̂′γi χ̂′γj dξ

For a uniform beam, m̂ = k̂2
m = ĜJ = 1, and the exact ith mode shape for a

clamped-free boundary is

χ̂γi(ξ) = sin (λR)γiξ (A.1)

where (λR)γi solves

cos (λR)γi = 0 (A.2)

Since Eq. A.1 are the exact mode shapes, Â and Ĝ will both be diagonal and

the eigenvalues of Â−1Ĝ will be the diagonal entries

eig(Â−1Ĝ) = Ĝii/Âii, i = 1, . . . , Nγ
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Now solve for Âii, noting that cos (λR)γi = 0 by definition from Eq. A.2:

Âii =
∫ 1

0
sin2(λR)γiξ dξ

=
1
2

+
sin (λR)γi cos (λR)γi

(λR)γi

=
1
2

Likewise,

Ĝii = (λR)2
γi

∫ 1

0
cos2(λR)γiξ dξ

= (λR)2
γi

[
1
2
−

sin (λR)γi cos (λR)γi

(λR)γi

]
=

1
2
(λR)2

γi

Therefore,

eig(Â−1Ĝ) = (λR)2
γi, i = 1, . . . , Nγ

and the minimum eigenvalue is (λR)2
γ1 corresponding to the lowest natural torsion

frequency.

A.2 Characteristic (λR)w1 of a Uniform Cantilever-Free Beam

Presented is a demonstration that eig(Ĉ−1Ĥ)min = (λR)4
w1 for the case of a

uniform cantilever-free beam. Ĉ and Ĥ are given by

Ĉij = Ĉji =
∫ 1

0
m̂ χ̂wi χ̂wj dξ

Ĥij = Ĥji =
∫ 1

0
ÊIz χ̂′′wi χ̂′′wj dξ
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For a uniform beam, m̂ = ÊIz = 1, and the exact ith mode shape for a cantilever-

free boundary is

χ̂wi(ξ) = sin (λR)wiξ +
sin (λR)wi

sinh (λR)wi
sinh (λR)wiξ (A.3)

where (λR)wi solves
tan (λR)wi

tanh (λR)wi
− 1 = 0 (A.4)

As in appendix A.1, using the exact mode shapes of the system means that Ĉ

and Ĥ are diagonal and

eig(Ĉ−1Ĥ) = Ĥii/Ĉii, i = 1, . . . , Nw

We now note that, Ĉii is

Ĉii =
∫ 1

0

[
sin (λR)wiξ +

sin (λR)wi

sinh (λR)wi
sinh (λR)wiξ

]2

dξ

and Ĥii

Ĥii = (λR)4
wi

∫ 1

0

[
− sin (λR)wiξ +

sin (λR)wi

sinh (λR)wi
sinh (λR)wiξ

]2

dξ

It is clear that Ĥii/Ĉii = (λR)4
wi if the integrals in the above equations are equal.

The only difference between the integrals is the sign of the leading term within

the brackets, sin (λR)wiξ. Thus, the integrals in Ĉii and Ĥii will be the same if the

interior product of the binomials,

2
sin (λR)wi

sinh (λR)wi

∫ 1

0
sin (λR)wiξ sinh (λR)wiξ dξ
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is zero. Evaluating the integral yields

∫ 1

0
sin (λR)wiξ sinh (λR)wiξ dξ =

sin (λR)wi cosh (λR)wi + cos (λR)wi sinh (λR)wi

2(λR)wi

=
cos (λR)wi sinh (λR)wi

2(λR)wi

(
tan (λR)wi

tanh (λR)wi
− 1
)

= 0

because the term in parentheses is zero by definition from Eq. A.4. It is confirmed

that Ĥii/Ĉii = (λR)4
wi. Therefore,

eig(Ĉ−1Ĥ) = (λR)4
wi, i = 1, . . . , Nw

and the minimum eigenvalue is (λR)4
w1 corresponding to the lowest natural bend-

ing frequency of the cantilever-free beam.

A.3 Non-dimensional Mass Moment of Inertia of a Pinned, Uni-

form Rigid Beam

Presented is a demonstration that eig(Ĉ−1Ŵ)min = 1/Ib for the case of a

pinned, uniform rigid beam. Ĉ and Ĥ are given by

Ĉij = Ĉji =
∫ 1

0
m̂ χ̂wi χ̂wj dξ

Ŵij = Ŵji = χ̂′wi χ̂′wj

and Ib is

Ib =
∫ 1

0
m̂ ξ2 dξ
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For a uniform beam, m̂ = 1, and the rigid pinned beam only has a single mode

shape

χ̂w1(ξ) = ξ

Since there is only a single mode,

eig(Ĉ−1Ŵ)min = eig(Ŵ11/Ĉ11)min = Ŵ11/Ĉ11

It is obvious that Ŵ11 = 1, and evaluating Ĉ11 gives

Ĉ11 =
∫ 1

0
m̂ ξ2 dξ

= Ib

Thus, eig(Ĉ−1Ŵ)min = 1/Ib.
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APPENDIX B

DERIVATION OF ROOT-SPRING–FREE

BENDING MODES OF A UNIFORM BEAM

For our modified Galerkin assumed-modes model to be valid, the assumed

beam modes must satisfy the boundary conditions of the system, hence they must

change in relation to the root spring stiffness kroot. In this dissertation, we use the

exact bending modes of a uniform beam with the appropriate boundary conditions

as our assumed mode shapes. As in the derivation of our non-dimensional model,

we use the frequency ratio ωroot/ωcant as a measure of the root spring stiffness

relative to the beam’s bending stiffness, so that the non-dimensional modes χ̂w are

given by a function χ̂w(ξ, ωroot/ωcant). The derivation of these mode shapes is

presented here.

We consider a uniform beam supported by a pin with a root spring of stiffness

kroot at x = 0 and free at x = R. In order to calculate the beam’s modes, we must

solve the following beam equation

EI w′′′′(x)−ω2 m w(x) = 0 (B.1)

over 0 ≤ x ≤ R. The general solution for this equation is of the form

w(x) = A sin λx + B cos λx + C sinh λx + D cosh λx
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subject to the boundary conditions

w(0) = 0

EI w′′(0) = kroot w′(0)

EI w′′(R) = 0

EI w′′′(R) = 0

Note that as kroot → ∞ the second boundary condition approaches w′(0) = 0.

Conversely, as kroot → 0 the second boundary condition approaches w′′(0) = 0.

These extremes are equivalent to the cantilever boundary condition and the pinned

boundary condition, respectively, at x = 0.

For convenience, we introduce a change in variable y = R − x to pose the

solution of the beam equation as

w(y) = A sin λy + B cos λy + C sinh λy + D cosh λy (B.2)

subject to the boundary conditions

w(R) = 0 (B.3)

EI w′′(R) = −kroot w′(R) (B.4)

EI w′′(0) = 0 (B.5)

−EI w′′′(0) = 0 (B.6)

Substituting Eq. B.2 into the moment boundary condition Eq. B.5 gives

0 = EI λ2(−A sin 0− B cos 0 + C sinh 0 + D cosh 0)

= EI λ2 (−B + D)
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so that D = B. Likewise, substituting Eq. B.2 into the shear boundary condition

Eq. B.6 gives

0 = −EI λ3(−A cos 0 + B sin 0 + C cosh 0 + D sinh 0)

= −EI λ3 (−A + C)

so C = A. We now continue with the displacement boundary condition Eq. B.3.

Evaluation of this boundary condition, noting the above equalities, gives

0 = A(sin λR + sinh λR) + B(cos λR + cosh λR)

Introducing the coefficient Cλ for notational convenience as

Cλ =
sin λR + sinh λR
cos λR + cosh λR

we can write B = −Cλ A. The solution to the beam equation Eq. B.2 is rewritten as

w(y) = A
[

sin λy + sinh λy− Cλ(cos λy + cosh λy)
]

(B.7)

We can now solve for the modes’ characteristic parameters λR by substitut-

ing Eq. B.7 into the root spring boundary condition Eq. B.4:

EI λ2 A
[
− sin λR + sinh λR− Cλ(− cos λR + cosh λR)

]
=

− kroot λ A
[

cos λR + cosh λR− Cλ(− sin λR + sinh λR)
]

We now divide both sides by λA and manipulate the left hand side to yield an
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explicit λR term:

EI
R

λR
[
− sin λR + sinh λR− Cλ(− cos λR + cosh λR)

]
=

− kroot

[
cos λR + cosh λR− Cλ(− sin λR + sinh λR)

]

By substituting in the expression for Cλ and simplifying, this equation becomes

2
EI
R

λR
cos λR sinh λR− sin λR cosh λR

cos λR cosh λR
= −2 kroot

1 + cos λR cosh λR
cos λR cosh λR

which is then further rearranged as

λR (cos λR sinh λR− sin λR cosh λR) +
krootR

EI
(1 + cos λR cosh λR) = 0

The above equation has no closed-form solution for the characteristic values of

λR. Instead, λR must be solved numerically for each mode shape for a given root

spring stiffness kroot. Using Eq. 2.67, the fraction krootR/EIz0 is calculated as a

function of a user-defined value of ωroot/ωcant:

krootR
EIz0

= (λR)4
cant Îb

(
ωroot

ωcant

)2

We now return to the beam solution in Eq. B.7, which is written as a function

of y. We can rewrite this equation in terms of the non-dimensional length variable

ξ by substituting

y = R− x = R(1− ξ)

Since the magnitudes of the mode shapes are unimportant in relation to the
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stability analysis, we set A = 1, resulting in

w(ξ) = sin
(
λR(1− ξ)

)
+ sinh

(
λR(1− ξ)

)
− Cλ

[
cos

(
λR(1− ξ)

)
+ cosh

(
λR(1− ξ)

)]

The methodology for finding the mode shapes of a root-spring–free uniform

beam is summarized as follows. First, select a value for the spring-frequency-to-

first-bending-frequency ratio ωroot/ωcant. Then, find the characteristic parameters

λR for the mode shapes by numerically solving the equation

λR (cos λR sinh λR− sin λR cosh λR)

+ (λR)4
cant Îb

(
ωroot

ωcant

)2

(1 + cos λR cosh λR) = 0 (B.8)

Once λR is calculated for the desired number of modes, the mode shapes on

0 ≤ ξ ≤ 1 are given by the equation

w(ξ) = sin
(
λR(1− ξ)

)
+ sinh

(
λR(1− ξ)

)
− sin λR + sinh λR

cos λR + cosh λR

[
cos

(
λR(1− ξ)

)
+ cosh

(
λR(1− ξ)

)]
(B.9)

Figure B.1 depicts some bending mode shapes of the beam as a function of

decreasing ωroot/ωcant. The first diagram, figure B.1a, shows the ideal cantilever

case, which is equivalent to an infinitely stiff root spring. The last, figure B.1h,

shows the ideal pinned case, which is equivalent to no root spring. Figures

B.1b–B.1g show the modes as ωroot/ωcant decreases from 50 to 0.05; these mode

shapes are intermediate between the cantilever and pinned case. Root spring

frequency ratios of ωroot/ωcant > 50 are generally equivalent to a cantilever

boundary, while ωroot/ωcant < .05 are generally equivalent to a pinned boundary.
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Figure B.1: Root-spring–free mode shapes of a uniform beam as a function of
ωroot/ωcant. First three bending modes are shown on all diagrams except for the
pinned-free case, which shows rigid-body mode and first two bending modes.
Modes scaled to a tip displacement of -1.

The most pronounced transition occurs in the range of .5 < ωroot/ωcant < 5.

Note that as the frequency ratio ωroot/ωcant → 0, the first root-spring–free mode

approaches the pinned-free rigid-body mode, while the (i + 1)th root-spring–free

mode approaches the ith pinned-free bending mode.
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[97] R Żbikowski, K. Knowles, C. B. Pedersen and C. Galiński, “Some Aeromechanical
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