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Abstract

We derive a lower bound for the sta�ng levels required to meet a projected load in a

retail service facility. We model the queueing system as a Markovian process with non-

homogeneous Poisson arrivals. Motivated by an application from the postal services, we

assume that the arrival rate is piecewise constant over the time horizon and retain such

transient e�ects as build-up in the system. The optimal sta�ng decision is formulated

as a multiperiod dynamic programming problem where sta� is allocated to each time

period to minimize the total costs over the horizon. The main result is the derivation

of a lower bound on the sta�ng requirements that is computed by decoupling successive

time periods.
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1 Introduction

Queueing theory is frequently used to determine the sta�ng required to meet a desired

level of service. Standard analytical formulas derived for such classical queueing systems

as the M=M=s queue are used to see how the desired service characteristics improve as the

number of servers s allocated to the system is changed. For example, using the classical

M=M=s queue formulas, one can compute the number of servers required to ensure that

no more than 100p percent of the customers should wait more than t minutes to be served.

Studies of applications that use this approach include the following: Foote (1976) and Deutsch

and Mabert (1980) for bank tellers; Larson (1972) for emergency telephone line operators;

Andrews and Parsons (1989) and Quinn, Andrews, and Parsons (1991) for telephone agents

and trunk lines at L.L.Bean; Agnihothri and Taylor (1993) for telephone operators scheduling

appointments for hospital patients; and Khan and Callahan (1993) for sta�ng in an hospital

laboratory providing outpatient services.

The present study was motivated by the determination of sta�ng needs for agents at post

o�ce facilities as part of a larger project for the U.S. Postal Service (USPS) in which the �rst

author participated. Typically, a post o�ce has several windows at which postal agents serve

customers. The post o�ce can react to changes in the demand (arrivals of customers) by

opening or closing windows. Thus, given the level of demand for a speci�c period, the sta�ng

decision is to allocate the number of servers (for window service) to meet a pre-determined

service criterion. The sta�ng has to respond to changes in the arrival rate of customers by

time of the day or the day of the week.

To cite an example, in a large post o�ce, the arrival rate was found to go from a low of

approximately 100 customers per hour in the early morning to a peak of 230 customers per

hour between 1 to 2 PM, declining back to the low level by 5 PM. Correspondingly, over the

course of the same day, the number of agents (clerks) varied between 5 and 9, and the mean

service time for customers was 2.3 minutes. The USPS desired the sta�ng computation to

incorporate the e�ect of the time-varying arrival rate as well as possible build-ups in the

facility. Generally, the post o�ce recorded arrival rates over 15 or 30-minute time intervals

and had conducted preliminary studies to evaluate the e�ect of adaptively changing sta�ng

levels every 15 or 30 minutes based on the number of customers in the system (Assad 1992).

As stated by Green, Kolesar, and Svoronos (1991), a standard stationary analysis can

be used if the arrival rate 
uctuations are mild. However, their experiments with queueing

systems with exponential service times and sinusoidal Poisson arrivals show that stationary

analysis can lead to signi�cant errors in estimating delays as the amplitude and frequency
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of the periodic rate increase. This stream of research has continued to evaluate various

approximation schemes designed to handle the time-varying arrival rates (Green and Kolesar

1997). Focusing more directly on sta�ng, Jennings et al. (1996) propose an approximation

that can be used to determine the number of servers s(t) as a function of time to meet a target

probability of experiencing a nonzero wait in an Mt=GI=st system with non-homogeneous

Poisson arrivals. In this study, we consider a Poisson arrival process in which the arrival

rate �(t) is piecewise constant and speci�cally consider sta�ng requirements. In contrast to

the sources cited above, we consider the adaptive multi-period problem where the sta�ng

decision depends upon the state of the system at the beginning of each time period. This

allows for the model to consider build-up and the spill-over e�ect of congestion from one

period to the next, which the stationary analysis ignores by assuming steady-state conditions

in each time period independently. The purpose of this note is to derive a lower bound for

the optimal sta�ng requirements that is computed based on a decoupling of the successive

time periods.

2 The Dynamic Programming Formulation

2.1 Problem Formulation

We seek to determine the optimal sta�ng policy across multiple time periods in a retail

service facility where the total cost function comprises the cost of servers allocated and the

customer delay costs over the planning period. The time horizon of length T is divided into

N periods indexed by n (n = 1; :::; N). Period n has duration �n. We let tn = tn�1+ �n with

t1 = 0 so that tn marks the beginning of period n.

We assume that customers arrive at the service facility following a Poisson process with

arrival rate �n over time period n, and that each customer requires an exponential service

time with parameter �. We de�ne the state of the system at the beginning of period n

as the number of customers in the system and denote it by the random variable Xn. For

convenience, we assume that the system starts in an arbitrary but known state (X1 = i1).

The sta�ng decision is to allocate sn servers to period n based on the initial state Xn and

the arrival rate for that period (provided as input). If period n starts with i customers and

uses s servers, we can calculate the time-averaged mean system size mn(i; s) over time period

n. We denote the sta�ng policy by S: it speci�es sn as a function of Xn.

The cost incurred in each period has two components. First, using a server incurs a cost

of r per person per time unit, re
ecting the labor cost rate for each sta� person. Next, there
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is a waiting cost of d per time unit for each person residing in the system. Let k = r=d denote

the conversion ratio between unit wait and server costs. The total cost for period n starting

in state i is

Cn(i; s) = [dmn(i; s) + rs]�n = cn(i; s)d�n;

where the cost

cn(i; s) = [mn(i; s) + ks]

can be interpreted as the rate at which costs are incurred in a period with initial state i and

s servers if waiting costs are scaled so that d = 1.

Using the preceding notation, we can state the optimization problem as

min
S

NX
n=1

E[Cn(Xn; sn)]; (1)

with the minimization performed over all sta�ng policies S, with initial condition X1 = i1.

Evaluation of the cost function requires computation of the time-averaged quantitymn(i; s).

Given the initial state of the system i at the beginning of period n and the number of servers

s used, the system evolves as a transient M=M=s queue with the initial state i speci�ed.

Using numerical integration, we trace the trajectory of the mean system size, say mt(i; s), as

a function of time over period n to compute mn(i; s) =
1
�n

R �n
0 mt(i; s)dt. For convenience,

henceforth, we shall assume that �n = � for all n. If all time periods are equal, Cn and cn

di�er by the same multiplicative factor for all n, and the minimization problem (1) can be

restated with Cn replacing cn.

2.2 The Optimality Equation

We use dynamic programming to obtain the optimal adaptive sta�ng problem. The key

observation in formulating the dynamic program is that the transition from Xn to Xn+1 is

governed by Markovian transition probabilities obtained from the transient behavior of the

multi-server queue in operation during period n. Thus, if the system starts in state i at the

beginning of period n and s servers are used during the period, one can compute the transition

probability Pij(s) of �nding the system in state j at the end of period n or, equivalently, at

the beginning of period n+ 1.

De�ne f�n(i) as the optimal expected cost over periods n through N if the system starts

period n in state i. Let X(i; s) denote the state at the end of a period, given that the period

starts in state i and uses s servers. We also de�ne fn(i; s) = cn(i; s)+minbs E[fn+1(X(i; s); bs)],
which is the total expected cost for stages n through N , when the system starts period n
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with i customers, uses s servers in period n, and optimal decisions are made thereafter.

By de�nition of s�(�); f�n(i) = min
s
ffn(i; s)g; and the value of bs yielding the minimum is

s�n+1(X(i; s)). Using backward recursion, we have the optimality equations:

f�N (i) = min
s

cN (i; s); (2)

f�n(i) = min
s

�
cn(i; s) +E

�
fn+1(X(i; s); s�n+1(X(i; s)))

�	
; n = 1; :::; N � 1 (3)

= min
s

�
cn(i; s) +E

�
f�n+1(X(i; s))

�	
; n = 1; :::; N � 1: (4)

Thus, the optimal policy is computed as follows:

s�N(i) = argmin
s

cN (i; s): (5)

s�n(i) = argmin
s

8<
:cn(i; s) +

X
j

Pij(s)f
�

n+1(j)

9=
; ; n = N � 1; :::; 1: (6)

2.3 Single-Period Decoupled Sta�ng Procedure Approximation

This method chooses the number of servers in order to minimize the expected total period

cost for each period for a given initial state, i.e.,

sn(i) = argmin
s

c(i; s); n = 1; � � � ; N:

Of course, this procedure is myopic in that it ignores the costs of subsequent periods. As in

the optimal solution, the policy is a state-dependent vector for each period. Thus, the initial

state and transient e�ects within each period are considered, unlike in steady-state sta�ng.

3 A Lower Bound on the Optimal Policy

Our main result is the following structural property for the optimal policy:

Theorem The single-period sta�ng provides a lower bound for the optimal sta�ng policy,

i.e., s�n(i) � sn(i) for all n=1,� � �, N.

The proof of the theorem uses a series of lemmas that rely on notions of stochastic ordering.

Some of the lemmas can be derived as special cases of more general results found in the sizable

literature on stochastic ordering (see for example Stoyan 1983, and Shaked and Shanthikumar

1994). However, to provide a more self-contained exposition, we have relied on a single key

proposition, which allows us to derive all the necessary lemmas. We now review the de�nitions

of stochastic ordering (the two de�nitions are equivalent for the case of random variables),

followed by the two propositions used in the proofs of the results that follow.
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De�nition(Ross 1983, p.251)

X �st Y (X is stochastically greater than Y ) if P (X > a) � P (Y > a)8a. Thus, two random

variables X and Y are equal in distribution, X =st Y , if P (X > a) = P (Y > a) 8a:

De�nition (Ross 1983, p.256)

The random vector X = (X1;X2; � � � ;Xn) is stochastically greater than the random vector

Y = (Y1; Y2; � � � ; Yn), written X �st Y , if for all increasing functions f , E[f(X)] � E[f(Y )]:

The use of sample path proofs (e.g., Lemma 2) requires the following result, which could also

serve as a third de�nition for stochastic ordering of random variables.

Proposition 1 (Shaked and Shanthikumar 1994, p.5). X �st Y if and only if there exist

two random variables bX and bY de�ned on the same probability space such that

bX =st X; bY =st Y; and Pf bX � bY g = 1:

The key stochastic ordering result from the queueing literature that is used in our proofs is

the following result:

Proposition 2 (from Proposition 2 in Shanthikumar and Yao 1989, p.415). In a queueing

network of M nodes, with �rst-come-�rst-served queue discipline, de�ne the following:

Si(n) = service time of the nth job to initiate a service at node i;

di(n) = epoch of the nth job to complete a service at node i;

si = number of servers at node i:

Then the nth service completion epoch at node i, di(n), is

(a) decreasing in the number of servers (si), and

(b) increasing in the job service times (Si).

So in particular, if we consider a single-node system and let D(t) denote the number of

customer departures by epoch t, then the above proposition implies that D(t) is increasing

in the number of servers and decreasing in the service times.

Lemma 1 If X �st Y and f is an increasing function, then

(a) f(X) �st f(Y ) and

(b) E[f(X)] � E[f(Y )]:
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Proof.

(a) Letting f�1(a) = inffx : f(x) > ag for an increasing function f, then

Pff(X) > ag = PfX > f�1(a)g � PfY > f�1(a)g = Pff(Y ) > ag:

Hence, f(X) �st f(Y ).

(b) This follows from (a) or the second de�nition of stochastic ordering. 2

The following result can also be established as a special case of Sonderman (1979), Theorem

1.

Lemma 2 X(i; s) �st X(i; s + 1) for all i, s.

Proof. We compare two systems, one with s servers and one with s+1 servers, given identical

interarrival time and service time sequences. Speci�cally, let A1; A2; A3; � � � be i.i.d interarrival

random variables and S1; S2; S3; ::: be i.i.d. service time random variables. For a system with

s servers and ! = fA1; A2; A3; :::g�fS1; S2; S3; � � �g; let N
(s)(t; !) be the number of customers

in the system at t, A(s)(t; !) be the number of customer arrivals by t, and D(s)(t; !) be the

number of customer departures by t. Let N0 = N (s)(0; !) be the initial number of customers

in the system. Then X(i; s) corresponds to N (s)(�; !) with N0 = i, where � is the length of

time period. Then we have for each ! and all t,

N (s)(t; !) = N0 +A(s)(t; !)�D(s)(t; !);

N (s+1)(t; !) = N0 +A(s+1)(t; !)�D(s+1)(t; !):

Since A(s+1)(t; !) = A(s)(t; !); we have

N (s)(t; !)�N (s+1)(t; !) = D(s+1)(t; !)�D(s)(t; !):

From Proposition 2 part (a), D(t) is increasing in s. Hence, applying Proposition 1, we have

D(s+1)(t) �st D
(s)(t) =) N (s+1)(t) �st N

(s)(t) =) X(i; s+ 1) �st X(i; s): 2

In the following three lemmas, we drop the period subscript n for notational convenience,

since a single period is being considered in isolation.

Lemma 3 c(i; s) and m(i; s) are increasing in i for all s.

Proof. Since c(i; s) = m(i; s) + ks, we need to show that m(i; s) is increasing in i. By

de�nition, m(i; s) = 1
�

R �
0 N(t)dt: So it su�ces to show that N(t) is stochastically increasing
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in i. Let N(i)(t) denote the number of customers in the system at t, given that the system

starts with i customers at t = 0. We must show that N(i)(t) �st N(i+1)(t): We give a direct

proof based on Proposition 2. Ross (1983) uses a somewhat di�erent argument to establish

this result for birth-death processes.

We construct two systems denoted throughout with superscripted \prime" and \double

prime" such that N 0(t) and N 00(t) are equal in distribution to N(i)(t) and N(i+1)(t); respec-

tively, as follows. Both begin empty with identical interarrival time distributions

A0

j = A00

j = 0; j = 1; :::; i + 1; Aj i.i.d; j > i+ 1;

and i.i.d. service time distributions with the single exception that

S0

1 = 0;

i.e., the �rst service time is 0 in the primed system.

Since N(t) = A(t) �D(t) and the arrival processes are clearly equal in distribution, the

proof reduces to showing

D0(t) �st D
00(t);

which follows from Proposition 2, part (b), since D(t) is decreasing in service times and

S0

j �st S
00

j . 2

Lemma 4 If X �st Y , then m(X; s) �st m(Y ; s+ 1) and E[c(X; s)] �st E[c(Y ; s)] for all s.

Proof. By Lemma 3, m(i; s) and c(i; s) are both increasing in i for all s. Hence by Lemma 1,

m(X; s) �st m(Y ; s) and E[c(X; s)] �st E[c(Y ; s)]:

In the proof of Lemma 2, we established that N (s+1)(t) �st N
(s)(t); hence,

m(Y ; s) �st m(Y ; s+ 1):

Combining this with the �rst inequality above completes the proof. 2

Lemma 5 min
s

c(i; s) � min
s

c(i+ 1; s) for all i and s.

Proof. By de�nition of s�(�); c(i+ 1; s�(i+ 1)) = min
s

c(i+ 1; s): Clearly,

min
s

c(i; s) � c(i; s�(i+ 1)) � c(i+ 1; s�(i+ 1));

since by Lemma 3, c(i; s�(i+1)) � c(i+1; s�(i+1)): The result follows by de�nition of s�(�).

2
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Lemma 6 fn(i; s) and f�i (i) are increasing in i for all s.

Proof. The proof proceeds by backward induction on n.

For n = N , fN (i; s) equals cN (i; s), which is increasing in i by Lemma 3.

Assuming the result holds for fn+1; we establish it for fn.

From the proof of Lemma 3, we know that X(i; s) is stochastically increasing in i; so that

X(i; s) �st X(i� l; s); i > l > 0:

By the induction hypothesis for any arbitrary �xed value of bs; fn+1(i; bs) is increasing in i, so
Lemma 1 applies to give

E[fn+1(X(i; s); bs)] � E[fn+1(X(i � l; s); bs)]:
Since the preceding relation is true for arbitrary bs, taking minimums on both sides, we have

minbs E[fn+1(X(i; s); bs)] � minbs E[fn+1(X(i � l; s); bs)]:
Hence, minbs E[fn+1(X(i; s); bs)] is increasing in i. This shows that fn(i; s) is the sum of two

functions that are increasing in i, establishing the �rst part of the result.

By de�nition, f�n(i) = min
s
ffn(i; s)g; and fn(i; s) is increasing in i as just shown. Taking

minimum with respect to s establishes the second part of the lemma. 2

Proof of Theorem. We proceed by backward induction.

For n = N , s�N (i) = sN (i), since both values minimize cN (i; s) with respect to s by de�nition.

Assume the result holds for n+ 1, i.e., s�n+1(i) � sn+1(i); we establish it for n.

Consider sn(i)� l; l > 0: We will show that the total cost increases over using a sta�ng level

of sn(i): Speci�cally, we show fn(i; sn(i) � l) � fn(i; sn(i)); l > 0; by showing

cn(i; sn(i)� l) + min
s

E[cn+1(X(i; sn(i)� l); s)]

� cn(i; sn(i)) + min
s

E[cn+1(X(i; sn(i)); s)]; l > 0: (7)

By de�nition of sn(i) minimizing the single-period cost, we have

cn(i; sn(i)� l) � cn(i; sn(i)); l > 0: (8)

By Lemma 2, X(i; sn(i) � l) �st X(i; sn(i)); l > 0; so that by Lemma 4,

E[cn+1(X(i; sn(i)� l); s)] � E[cn+1(X(i; sn(i)); s)]:

Taking minimums on both sides over s,

min
s

E[cn+1(X(i; sn(i)� l); s)] � min
s

E[cn+1(X(i; sn(i)); s)]: (9)

Hence, combining (8) and (9) establishes (7), and the result follows. 2
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4 Summary and Conclusions

The original motivation for the work reported here was sta�ng in the presence of transient

e�ects. We found that the optimal policy for the dynamic programming formulation is

bounded below by the single-period decoupled solution. Experiments testing the quality of

the lower bound were performed by Yoo (1996) as part of a computational investigation of the

optimal sta�ng problem. The test problems indicated that the expected sta�ng (resulting

from the decoupled sta�ng procedure of Section 2.3) was within 5% of the expected sta�ng

associated with the optimal sta�ng policy in about 95% of the test cases; similarly, the

expected cost was within 3% of the optimal in about 80% of the test cases.
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