
A Dual Interpretation of \Standard Constraints" in ParametricSchedulingK. Subramani � Ashok AgrawalaAbstractThe problem of parametric scheduling in hard real-time systems, ( in the presence of linear relative con-straints between the start and execution times of tasks ) was posed in [Sak94] and [GPS95]. In [GPS95], apolynomial time algorithm is presented for the case when the constraints are restricted to be standard ( de�nedin x6 ) and the execution time vectors belong to an axis-parallel hyper-rectangle. In this paper, we extendtheir results in two directions. We �rst present a polynomial time algorithm for the case when the executiontime vectors belong to arbitrary convex domains. We then show that the set of standard constraints can beextended to include arbitrary network constraints. Our insights into the problem occur primarily as a resultof studying the dual polytope of the constraint system.1 IntroductionThe problem of parametric scheduling for hard real-time systems was introduced in [Sak94]. In particular, theyconsidered the scheduling of processes subject to linear relative constraints between the start and execution timesof tasks. In [GPS95], a polynomial time algorithmwas presented for the case, where the constraints are \standard"( de�ned in x6 ). In this paper, we extend the results in [GPS95] in the following two ways:� We present a polynomial time algorithm for parametric scheduling when the execution time vectors belongto arbitrary convex domains,� We extend the class of parametrically schedulable constraints to include arbitrary network constraints.Our insights into the problem occur primarily as a result of studying the dual polytope of the constraint system.In Section x2, we present the parametric scheduling model and pose the parametric schedulabity query. In thesuceeding section, viz. x3, we discuss the motivation behind the problem and related approaches in the litreature.Section x4 commences our analysis by looking at the complement of the parametric scheduling problem. Inthe succeeding section viz. x5, we study the dual of the complement problem and apply Farkas' lemma to derivethe termination condition of our algorithm. x6 presents the \Standard Constraints Model". We also discussthe structure of the standard constraint matrix and interpret the complement of the parametric schedulabityquery in this model. We show that we show that the infeasibility of the input constraint system coincides withthe existence of a loop having in�nite negative cost in a certain weighted graph. This implies that a symbolicversion of the Bellman-Ford Algorithm for the Single-Source-Shortest-Paths problem ( SSSP ) in a network can beused to solve the parametric scheduling problem. Section x7 provides such an algorithm, while x7.1 discusses itscorrectness and complexity. Section x8 deals with extending the class of constraints, for which we can e�cientlyprovide a parametric schedule. In particular, we provide a polynomial time algorithm when arbitrary networkconstraints exist between tasks. We conclude in x9 by summarizing our results and posing problems for furtherresearch.�Department of Computer Science, University of Maryland, College Park, ksmani,agrawala@cs.umd.edu1



2 The Parametric ModelWe are a given a set of ordered non-preemptive tasks fJ1; J2; : : :Jng, with linear constraints imposed on theirrespective start times fs1; s2; : : : ; sng and execution times fe1; e2; : : : ; eng. The constraint system is expressed inmatrix form as : A:[~s;~e] � ~b; (1)where,� ~s = [s1; s2; : : : ; sn] is an n�vector of the start times of the tasks,� ~e = [e1; e2; : : : ; en] is an n�vector of the execution time of the tasks,� A is a m � 2:n matrix of rational numbers,� ~b = [b1; b2; : : : ; bm] is an m�vector of rational numbers.System (1) is a convex polyhedron in the 2:n dimensional space, spanned by the start time axes f~s1; ~s2; : : : ; ~sngand the execution time axes f ~e1; ~e2; : : : ; ~eng. The execution time of the ith task ei is not constant, but belongsto the set Ei where Ei is the projection of a convex set E on axis ~ei. The execution times ei are independentof the start times of the tasks; however they may have complex interdependencies among themselves. Thisinterdependency is captured by the set E. We regard the execution times as n�vectors belonging to the set E.The goal is to come up with a start time vector ~s, that satisifes the constraint system (1), for all execution timevectors belonging to the set E. One way of approaching this problem is through Static Scheduling techniques, asdiscussed in [SA00b]. However, Static Scheduling results in the phenomenon known as loss of schedulability, asdiscussed below.For example, consider the two task system J = fJ1; J2g with start times fs1; s2g, execution times fe1 2[2; 4]; e2 2 [4; 5]g and the following set of constraints:� Task J1 must �nish before task J2 commences; i.e. s1 + e1 � s2;� Task J2 must commence within 1 unit of J1 �nishing; i.e. s2 � s1 + e1 + 1;A static approach forces the following two constraints:� s1 + 4 � s2,� s2 � s1 + 2 + 1) s2 � s1 + 3Clearly the resultant system is inconsistent and there is no static solution. Now consider the following starttime vector assigment. ~s = � s1s2 � = � 0s1 + e1 � (2)This assignment clearly satis�es the input set of constraints and is hence a valid solution. The key feature ofthe solution provided by (2) is that the start time of task J2 is no longer an absolute time, but a ( parameterized) function of the start and execution times of task J1. This phenomenon in which a static scheduler declares asystem infeasible in the presence of a valid solution ( albeit parameterized ) is termed as loss of schedulability.In the parametric scheduling model, we are interested in checking whether an input constraint system has aparameteric schedule, i.e. a schedule in which the start time of a task can depend on the start and executiontimes of tasks that are sequenced before it.De�nition 2.1 A parametric solution of an ordered set of tasks, subject to a set of linear relative constraints (expressed by (1)) is a vector ~s = [s1; s2; : : : ; sn], where s1 is a rational number and each si; i 6= 1 is a function ofthe variables fs1; e1; s2; e2; : : : ; si�1; ei�1g. Further, this vector should satisfy the constraint system, for all vectors~e 2 E.Based on the discussion above, we are in a position to state the parametric schedulabilty query:9s18e1 2 E19s28e2 2 E2; : : :9sn8en 2 En A:[~s;~e] � ~b ? (3)The elimination strategies used in [GPS95] establish that a parametric schedule need only have linear functions.2



3 Motivation and Related WorkOur investigations have been motivated by two orthogonal concerns viz. real-time operating systems and real-timeapplications.In real-time operating systems like Maruti [LTCA89, MAT90, MKAT92] and MARS [DRSK89], the interac-tion of processes is constrained through linear relationships between their start and execution times. Real-timespeci�cation languages like the Maruti Speci�cation Language [SdSA94] permit programmer constructs such as:� within 10 ms; doPerform Task 1 od� Perform Task 1;Delay at most 17 ms;Perform Task 2These constructs are easily transformed into linear constraints between the start and execution times of thetasks. For instance, the �rst construct can be expressed as: s1 � 10, while the second construct is capturedthrough: s2 � f1 + 17. Note that f1 is the �nish time of task 1 and since we are dealing with non-preemptivetasks, we can write fi = si + ei; 8i, where fi denotes the �nish time of task i.The automation of machining operations [Y.K80, Kor83, SE87, SK90] provides a rich source of problems inwhich execution time vectors belong to convex domains. Consider the contouring system described in [TSYT97],where the task is to machine a workpiece through cutting axes. In general, there are multiple axes of motion thatmove with di�erent velocities. In a two axis system, a typical requirement would be to constrain the sum of thevelocities of the axes to exceed a certain quantity. This is captured through:e1 + e2 � a.Real-time database applications involve the scheduling of transactions and the execution of these transactionsis constrained through linear relationships [BFW97]. More applications of constrained scheduling models can befound in [STA00, SA00a].Deterministic sequencing and scheduling have a rich history of research [BS74, DL78, Cof76]. Our focus is on aparticular scheduling model viz. the parametric scheduling model proposed in [Sak94]. In [GPS95] a polynomialtime algorithm is presented for the standard constraints case, when the execution time vectors belong to anaxis-parallel hyper-rectangle. They use the Fourier-Motzkin ( FM ) elimination method [Sch87] to successivelyeliminate the variables in query (3). The FM algorithm takes exponential time in the worst case; in the casewhere the constraints are standard they show that they can prevent the exponential increase in the number ofconstraints. Hochbaum, et. al. [HN94] have shown that it is possible to implement FM elimination in stronglypolynomial time for network constraints. We shall be using their result in x8 to provide a polytope inclusionalgorithm that determines parametric feasibility. In a previous paper [SA00a], we showed that the parametricscheduling problem is NP-complete in the general case. It was also established that it is su�cient to determinewhether a system is parametrically schedulable; explict construction of the parametric functions is not necessary.In this paper, we extend the results in [GPS95] to provide polynomial time algorithms for more general domains( arbitrary convex domains ) and constraint sets ( arbitrary network constraints ).4 Complement of Parametric SchedulingWe commence our analysis by looking at the complement of the parametric scheduling query (3). Observe thatthe answer to the complement of a query is true i� the answer to the query is false. The complement of query(3) is: :(9s18e1 2 E19s28e2 2 E2; : : :9sn8en 2 En A[~s;~e] � ~b ?); (4)which gives 8s19e1 2 E8s29e2 2 E; : : :8sn9en 2 E A[~s;~e] 6� ~b ?As observed in [SA00a], the execution times are independent of the start times of the tasks and hence we canrestate the query above as:9e1 2 E19e2 2 E2; : : :9en 2 En8s18s2; : : :8sn A[~s;~e] 6� ~b ? (5)3



which implies 9~e = [e1; e2; : : : ; en]8s18s2; : : :8sn A[~s;~e] 6� ~b ? (6)Query (6) basically asks whether there exists an execution time vector ~e = [e01; e02; : : : ; e0n] 2 E such thatthe linear system resulting from substituting these execution times in A:[~s;~e] � ~b is infeasible, i.e. as shown in[SA00a], (6) asks whether the polyhedral set f~s:A:[~s:~e] � ~bj~e = [e01; e02; : : : ; e0n]g is empty.For the rest of the paper, we focus on �nding such a witness execution time vector; if we succeed in �ndingsuch a vector, it means that the input system does not have a parametric schedule. On the other hand, if we cansay de�nitely, that no such execution vector exists within the convex domain E, then query (3) can be answeredin the a�rmative and the input system does have a parametric schedule.5 The Parametric DualWe �rst rewrite the constraint system (1) in the form:G:~s � ~b�B:~e (7)where, A:[~s;~e] = G:~s+B:~eAccordingly, query (6) gives9~e = [e1; e2; : : : ; en]8s18s2; : : :8sn G:~s 6� ~b�B:~e ? (8)Note that ~b � B:~e is an m�vector, with each element being an a�ne function in the ei variables. We set~g = ~b�B:~e, so that we can rewrite query (8) as9~e = [e1; e2; : : : ; en]8s18s2; : : :8sn G:~s 6� ~g? (9)The matrix G will henceforth be referred to as the constraint matrix. Note that G is a m� n rational matrix.In order to �nd an execution time vector, which serves as a witness to the infeasibilty of the input constraintsystem, we study the dual of the complement problem. The following lemma called Farkas' lemma [NW88, Sch87]is crucial to understanding and analyzing the dual.Lemma 5.1 Either f~x 2 Rn+ : A~x � ~bg 6= � or ( exclusively ) 9~y 2 Rm+ , such that, ~yTA � ~0T and ~yT:~b = �1.Proof 5.1 See [Sch87, PS82, NW88].The lemma is interpreted as follows: Either the primal system viz. fA:[~x] � ~b; ~x � ~0g is feasible, in which casethe associated polyhedron is non-empty or ( exclusively ) the vector ~b lies in the polar cone of of the dual spaceviz. f~yT:A � ~0, ~y � ~0g. In the latter case, the function ~yT:~b is unbounded below and its minimum is �1. Fora geometric interpretation of the lemma, refer [PS82].Query (9) requires the system G:~s � ~g to be infeasible for a particular ~e 2 E. Farkas' lemma assures us thatthis is possible only if 9~y0 2 R+m, such that~y0T :G � ~0; ~y0T:(~b� B:~e) = �1 (10)which implies that GT : ~y0 � ~0; ~y0T:(~b�B:~e) = �1: (11)Equation (11) is interpreted algorithmically in the following way:Let z be the minimum of the bilinear form ~y0T:(~b�B:~e) over the two convex bodies :f~y : ~y � ~0; GT :~y � ~0gand E. If z = �1, the input system of constraints does not have a parametric schedule.4



6 \Standard Constraints" ModelAs discussed in [GPS95, Sch87] the Fourier-Motzkin elimination method su�ers from the curse of dimensionalityi.e. it is an exponential time method in the worst-case. [Sak94] shows that for an important subset of constraints,viz. Standard Constraints, the elimination method runs in polynomial time. As described in [Sak94],De�nition 6.1 A standard constraint involves the start times of at most two tasks Ji and Jk, such that exactlyone of si or sj appears on one side of the � relation. Further the coe�cients of all start and execution variablesare unity.For example, the following set of constraints are standard:1. si � sj + 2,2. si + ei � sj ,3. si + ei � sj + ej + 2The constraint si + sj � 2 is not standard, because both si and sj appear on the same side of the relationaloperator �. Absolute constraints i.e. constraints in which the start time of a task is constrained by an absolutevalue ( e.g. s1 � 5 ) are also permitted and considered standard. In order to make the treatment of constraints( absolute and relative ) uniform, we introduce an additional task J0 with start time s0 and execution timee0 = 0. Further we impose the constraint s0 + e0 � s1. Absolute constraints are modi�ed as follows:� Constraints of the form si � a are replaced by si � s0 � a;� Constraints of the form si � a are replaced by s0 � si � �aFor the rest of the discussion, we assume that the matrix G in (11) has been altered to re
ect the abovechanges. Accordingly, GT has n + 1 rows 0 through n and m + 1 columns ( m of the initial constraints and theadditional constraint between s0 and s1. )6.1 Structure of the Transpose of the Standard Constraint MatrixWhen the constraints are standard, the transpose of the constraint matrix ( i.e. GT in (11) ) has the followingstructure:1. All entries belong to the set f0; 1;�1g.2. There are exactly 2 non-zero entries in any column; one of the entries is 1 and the other entry is �1.In this case, we can show that the problem: Is z = ~yT:~b = �1, subject to :GT :~y = ~g; ~y � ~0 (12)where� GT is a (n+ 1)� (m + 1) rational matrix, with the structure discussed above,� ~y is a m+ 1�vector,� ~b is a rational m + 1�vector; b0 = 0.� ~g is a rational n+ 1�vector.has a min-cost 
ow interpretation in a constraint network 1 The network M =< V;R > corresponding to theconstraint system GT :y = g is constructed as follows:1These constraints are a subset of montone constraints, in which only relations of the form: a:x1 � b:x2 � c; a; b > 0 are allowed.5



1. A vertex for vj for the each row j; j = 0; : : :n of GT , giving a total of n+1 vertices. Note that vi correspondsto row Gi i.e. task Ji.2. Associated with each vertex vj is a supply equal to gj; Set g0 = 0.3. An edge ri for each column of i; i = 0; : : :m of GT giving a total of m + 1 edges. Let va denote the vertexcorresponding to the +1 entry and vb denote vertex corresponding to the �1 entry. Direct the edge fromthe vertex va to vb.4. Associated with edge ri is cost bi, where bi is the coe�cent of yi;5. yi(� 0); 8i = 0; : : : ;m represents the 
ow on edge ri. The 
ow on the edge v0�v1 i.e. y0 does not contributeto the total cost as the cost on this edge is 0.The vertex v0 is the source of this network. Each constraint is now a mass balance condition i.e. it states thatthe net 
ow into node vi which is the di�erence between the total 
ow into vi and the total 
ow out of vi mustequal the supply at vi. z = ~yT :~b represents the cost of the 
ow.Let us analyze the case where all vertices two special cases, which directly bear upon our scheduling problem:1. ~g = ~0 i.e. the supply at all vertices is zero.Lemma 6.1 In this case the condition z = �1 is possible only i� there is a negative cost loop in thenetwork.Proof 6.1 Clearly, if there is a negative cost loop, we can pump 
ow in that loop decreasing the costarbitrarily, while meeting the mass balance constraints.Now assume that z = �1. This is possible only if the 
ow vector ~y is unbounded in some of its elements.Let us pick some element yk that is unbounded i.e. yk = +1. Thus there is an in�nite 
ow on edge ek. Inorder to satisfy the zero supply requirement at the vertices corresponding to its end-points, ek must belongto a closed loop and all the edges in that loop have the same 
ow equal to +1. Since z = �1, it followsthat the cost around that loop is negative.2. g1 = R(� 0); gi = 0; i = 2; : : :n. In this case the �rst node has a supply that could be non-zero. This isnow a Single-Source Shortest Path Problem with vertex v1 being the source. Using arguments identical tothe case above, it is clear that that z = �1 coincides with the existence of a negative cost cycle i.e. theshortest path from the source v0 to any vertex on this cycle is of length �1.Our dual system (11) though is in the form GT :~y � ~0; ~y � ~0. Before we apply the 
ow-related concepts andresults derived above, the system needs to be converted into equality form. We use the Complementary Slacknessproperty [Sch87, PS82] to aid us in this conversion. Observe that in the primal system, the start time variablesare strictly ordered i.e. we have si � si+1; i = 0; : : :n � 1. We impose s1 � � to simpleify the analysis. Thusin any solution ( including the optimal ), we must have si > 0; 8i = 1; : : :n. According to the ComplementarySlackness property, if the primal variable is non-zero at optimality, then the corresponding constraint in the dualmust be met with equality. Thus, all the constraints in the system GT :~y � ~0, except the �rst one, are met withequality, which is exactly what we need. Hence, we can rewrite condition (11) for infeasibility in the primal as:9~y 2 Rm+1+ GT : ~y0 = [R; 0; : : : ; 0]T ~y0T:(~b�B:~e) = �1: (13)Thus our problem is equivalent to the SSSP problem as discussed in case (2) of the above analysis. Thereis one major di�erence, viz. in our case the edge costs are symbolic ( e.g. e1; e1 � e2, etc. ) and not rationalnumbers. However, if we can �nd values e0i 2 E for the ei variables, then our techniques and results still hold.We now require an algorithm that detects symbolic negative cost cycles in the constraint graph corresponding tothe given constraint system. We provide such an algorithm in the following section.6



7 The Symbolic Bellman-Ford AlgorithmAlgorithms 7.1 together with procedures 7.2 and 7.3 represent the Symbolic Bellman-Ford Algorithm. The keymodi�cation to the algorithm in [CLR92] is the addition of procedure 7.3. In the case, where the edge weightsare rational numbers, it is trivial to check whether d[v] exceeds d[u] + w(u; v].The input to the algorithm is a graph G = (V;E), with V denoting the vertex set and E denoting the edge set.The weights on the edges are parameterized linear functions in the execution times ei as discussed above. Thefunction Initialize-Single-Source sets the source s to be at a distance of 0 from itself and all other vertices ata distance of 1 from the source. A detailed exposition of the Bellman-Ford Algorithm is presented in [CLR92].Let �[v0; vi], d[vi] denote the length of the shortest path from v0 to vertex v and the current estimate of theshortest path respectively.Function Symbolic Bellman-Ford(G;w; s)1: Initialize-Single-Source2: for ( i 1 to jV (G)j � 1 ) do3: for ( each edge (u; v) 2 E[G] ) do4: Symbolic-Relax(u; v; w)5: end for6: end for7:8: for ( each edge (u; v) 2 E[G] ) do9: if ( d[v] >sym d[u] + w(u; v) ) then10: return(false)11: end if12: end for13:14: return(true) Algorithm 7.1: Symbolic Bellman FordProcedure Symbolic-Relax(u; v; w)if ( d[v] >sym d[u] + w(u; v) ) thend[v] = d[u] + w(u; v)end if Algorithm 7.2: Symbolic-RelaxFunction Symbolic >(u; v; w)if ( minE :(d[v]� d[u]� w(u; v)) < 0 ) thenreturn(true )elsereturn(false )end if Algorithm 7.3: Implementation of >symAssuming that all vertices are reachable from the source ( a valid assumption in our case ), a return value oftrue means that there is a �nite shortest path from the source to every other vertex. Likewise, the detection of anegative cost cycle ( indicating that certain vertices are at a distance of �1 from the source ), causes the valuefalse to be returned. When dealing with rational numbers, all the above operations are relatively straightforward.In our case, the weights on the edges are no longer rational numbers, but parameterized linear forms in the ei7



variables, as indicated above. The algorithm implementing Symbolic > is a convex minimization algorithm[PS82, HuL93].7.1 Analysis - Correctness and ComplexityThe correctness of the algorithm follows from the correctness of the Bellman-Ford algorithm [CLR92]. Thefollowing two cases arise:1. There is no point ~e0 2 E such that substituting ~e0 on the edge costs results in a negative cost cycle.Claim 7.1 Algorithm (7.1) returns true.Proof 7.1 Observe that in the absence of a witness vector ~e0 2 E, the shortest path from v0 to every vertexis �nite. Using the inductive technique from [CLR92], it is clear that after jV (G)j � 1 iterations of the forloop in Step 2 of Algorithm (7.1) the distance of each vertex has converged to its true shortest path from thesource. Consequently the test in the succeeding for loop fails and the value true is returned.2. There exists a point ~e0 = [e01; e02; : : : ; e0n] 2 E such that substituting ~e0 on the edge costs results in a negativecost cycle.Claim 7.2 Algorithm (7.1) returns false.Proof 7.2 Once again, we use the same technique as in [CLR92].The time taken by the algorithm is dominated by the O(n3) loop represented by Steps 2 � 6 of Algorithm 7.1.Each call to Symbolic-Relax takes time O(C) where C is the time taken by a convex programming algorithm[HuL93]. Accordingly, the total time taken by Symbolic-Bellman-Ford is O(n3:C).7.2 ExampleLet us apply our techniques to the following problem.We have four tasks fJ1; J2; J3; J4g with execution times fe1 2 [4; 8]; e2 2 [0; 11]; e3 2 [10:13]; e4 2 [3; 9]g andstart times fs1; s2; s3; s4g constrained through:� Task J4 �nishes before time 56; s4 + e4 � 56� Task J4 �nishes within 12 units of J3;s4 + e4 � s3 + e3 + 12� Task J4 starts no earlier than 18 units of T2 completing: s2 + e2 + 18 � s4� Task J3 �nishes within 31 units of J1 completing: s3 + e3 � s1 + e1 + 31Implicit are the ordering constraints:0 � s1; s1 + e1 � s2; s2 + e2 � s3; s3 + e3 � s4Based on (3), the parametric schedulabilty query is:9s18e1 2 [4; 8]9s28e2 2 [6; 11]9s38e3 2 [10; 13]9s48e4 2 [3; 9]f(2); (3); (4); (5); (6)g (14)We construct the graph in Figure (1) as per the discussion in x6.1.In this case, the convex domain is the axis-parallel hyper-rectangle E = [4; 8]� [6; 11]� p10; 13]� [3; 9]. Weprovide the graph M =< V;E > and E as the input to Algorithm (7.1). The tables below (1-2) detail the theiterations of the algorithm.At the end of the 2nd iteration, the shortest path values converge and after applying Steps (8-12) of Algorithm(7.1), we conclude that there is no negative cost loop in the graph.8
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Figure 1: Constraint Graph Corresponding to ExampleEdge E�ectv0 � v1 v1 = 0v1 � v2 v2 = �e1v2 � v3 v3 = �e1 � e2v2 � v4 v4 = �18� e2v3 � v4 v4 = �e1� e2 � e3v3 � v1 v1 = 0v4 � v3 v3 = �e1 � e2v4 � v2 v2 = �18� 2:e2 � e3v4 � v0 v0 = 0Table 1: Iteration 1
Edge E�ectv0 � v1 v1 = 0v1 � v2 v2 = �18� 2:e2 � e3v2 � v3 v3 = �e1 � e2v2 � v4 v4 = �e1� e2 � e3v3 � v4 v4 = �e1� e2 � e3v3 � v1 v1 = 0v4 � v3 v3 = �e1 � e2v4 � v2 v2 = �18� 2:e2 � e3v4 � v0 v0 = 0Table 2: Iteration 2 ( Final iteration )8 Network Constraint SchedulingIn [HN94], a strongly polynomial algorithm is presented for checking feasibility of a linear program when thereare at most two variables per constraint i.e. all constraints are of the form :a:xi + b:yj � ck, where a; b 2 Q. Inother words, it is no longer required that the constraints be monotone or standard as in x6. In this section, weshow that their technique can be extended to the problem of parametric scheduling in a straightforward fashion,thereby enhancing the class of constraints for which we can e�ciently determine the existence of a parametricschedule. Consider the complement of query (6)8~e 2 E9s1; s2; : : : ; sn A:[~s;~e] � b ? (15)Suppose we project the object represented by A:[~s;~e] � b onto the execution space i.e. the space of the eivariables to get a new polyhedron P:~e � ~p. Then the query (15) can be interpreted as the following polytopeinclusion problem:Does the convex body E lie completely within the polytope represented by P:~e � ~p ?The input system has a parametric schedule i� the above question can be answered a�rmatively. So now weare faced with 2 sub-problems:1. Projection of A:[~s;~e] � b onto execution space. 9



2. Determing whether the convex body E lies completely within the projected object.A linear constraint a:x � c is a half-hyperplane in n�space. A convex body � is said to lie on the valid side ofa:x � c, i� for all points y 2 � a:y � c. When there is no confusion, we say that a:x � c is valid for rho.Lemma 8.1 A convex body � lies on the valid side of a:x � c , i� maxy2�a:y � c
a.x <= c

G

Figure 2: Validity of hyperplanesProof 8.1 This is obvious as indicated by Figure 2. We also note that the validity of a:x � c for � can be checkedin O(C) time, through a convex miniization algorithm.Lemma 8.2 Given a polyhedral system A:~x � ~b and a convex body X in the same space, it is possible to determinewhether X lies completely within A:~x � ~b in time O(m:C) where m is the number of constraints in A:~x � ~bProof 8.2 We �rst note that X is contained within A:~x � ~b i� each constraint ai:~x � bi is valid for X.Accordingly, we can apply a convex minimization algorithm m times to verify that each constraint is valid andthen declare whether or not X is contained within A:~x � ~b.We are now left with the problem of projecting the polyhedral object (1) onto execution time space to getanother polyhedron of the form P:~e � ~p. We achieve the projection through the Fourier-Motzkin eliminationprocedure [DE73, Sch87]. In general, the procedure creates exponentially many inequalities [Sch87]; howeverthere are good results for the case when the number of variables per constraint is restricted to just 2 or less.Nelson [Nel78] gave the �rst sub-exponential algorithm for the restricted case of two variables per constraint. Heshowed that the total number of inequalities was bounded by O(m:nlogn). This result was improved in [HN94],where it is shown that elimination procedure can be implemented e�ciently i.e. in time time O(m:n2: logm),where m is the number of constraints and n is the number of variables.We use their implementation to project the object (1) onto execution time space in time O((m:n2: logm):C).We then use Lemma (8.2) to verify the existence of a parametric schedule in time O((m:n2: logm):C).9 Concluding RemarksIn this paper, we set out to address two issues in parametric scheduling:10
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