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To increase traffic mobility and safety, several types of active traffic management (ATM) 

strategies, such as variable speed limit (VSL) and hard shoulder running (HSR), are implemented 

in many countries. While all kinds of ATM strategies show promise in releasing traffic 

congestion, many studies indicate that stand-alone strategies have very limited capability. This 

paper proposes an integrated VSL and HSR control strategy based on a reinforcement learning 

(RL) technique, Q-learning (QL). The proposed strategy bridges a direct connection between the 

traffic flow data and the ATM control strategies via intensive self-learning processes, thus 

reduces the need for human knowledge. A typical congested interstate highway, I-270 in 

Maryland, U.S. is simulated using a dynamic traffic assignment (DTA) model to evaluate the 

proposed strategy. Simulation results indicated that the integrated strategy outperforms the stand-

alone strategies and traditional feedback-based VSL strategy in mitigating congestions and 

reducing travel time on the freeway corridor.  
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Chapter 1 Introduction 

1.1. Background  

In an era of accelerated urbanization around the world, the ability to travel 

freely is more critical than ever before. Travel is no longer just for commuting to and 

from work. Travel for other purposes such as entertainment, vacation, leisure activities, 

running errands, and shopping surpasses work-related trips. While trips through modes 

such as public transportation (e.g., bus, rail), new transportation network companies 

(e.g. Uber, Lyft), bicycle, shared bike, and scooters have been increasing, trips carried 

out through personally owned vehicles are still the predominant method of travel. This 

phenomenon results in continued pressure on freeway systems, leading to increases in 

delays and congestion. Highway congestion has truly become a Gordian knot in 

transportation from both planning and operation standpoints. 

To solve the traffic congestion problem, numerous methods and approaches 

have been researched, developed, and implemented. The traditional method in 

mitigating traffic congestion from the supply side is to increase the number of travel 

lanes so as to increase capacity. Widening roads is one of the most direct methods but 

is often limited by the fiscal appropriation and lengthy construction process. 

Additionally, the higher capacity of these new lanes through widening is often quickly 

overtaken by increased demand. This is why roads are widened from two lanes to four 

lanes initially, and then further expanded to six or eight lanes. Widening roadways on 

its own has failed to solve the congestion issue. 
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Recently, more attention has been paid to leveraging traffic operational 

techniques and approaches to solve traffic congestion. Many researchers state that an 

efficient operation of existing road infrastructure is the only solution that balances 

economic benefit and technical performance. Even though the capacity is defined as a 

constant variable that represents the expected maximum throughput of the roadway, it 

is claimed that this traditional understanding violates factual conditions. The capacity 

of a roadway segment should be regarded as a random variable instead of a constant 

value. These factual evidences favor improving traffic throughput by dynamic traffic 

control. Several types of dynamic control methods based on traffic flow theory have 

been developed and deployed in real-world applications. They prove that traffic control 

is a way to prevent, or at least relieve, traffic congestion, hence improving traffic 

conditions [1].  

1.2. Active Traffic Management (ATM) 

Among these dynamic control methods, active traffic management (ATM)—

such as variable speed limit (VSL), ramp metering (RM), hard shoulder running (HSR), 

and adaptive traffic signal control (ATSC)—has the ability to manage both recurrent 

and non-recurrent congestion and has been widely applied in freeway systems. These 

deployed ATM methods include: 

1) Variable Speed Limit: variable speed limit (VSL) is one of the relatively new 

freeway operation methods. VSL improve traffic conditions by posting 

dynamic speed limits to regulate the traffic flow on mainline. Several VSL 
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control systems have been developed and implemented in real world 

applications for different purposes such as safety, mobility, and work zones. A 

VSL system is composed of multiple traffic sensors, queue warning signs or 

dynamic guiding signs, commutation systems and online control algorithm. For 

a VSL application, the traffic sensors collect real-world data such as speed, 

density, volume and queue delay. The system receives the traffic data and 

generates optimal solution based on the online control algorithm. And then the 

system updates the speed limits and posts them on the dynamic message signs 

to regulate inflow volume from upstream. With the dynamic speed limits based 

on real traffic conditions, the VSL system can make improvement in safety and 

mobility [2-3]; 

2) Ramp Metering: Ramp metering is one of the most widely implemented ATM 

strategies. RM controls the traffic volume merging on to the freeway mainline 

by installing traffic signals at on-ramps. By regulating inflow volume from one 

or multiple ramps, the RM strategies can significantly relieve stress on freeway 

mainline. [4-6]; 

3) Dynamic Queue Warning: dynamic queue warning informs upstream drivers of 

upcoming traffic conditions based on data collected by real-time traffic sensors. 

Warning signs are presented several miles upstream to help drivers anticipate 

the upcoming condition and act upon it. In some real-world applications, DQW 

strategy is integrated as part of VSL control system to maximize the benefits 

[7-8]. 
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4) Hard Shoulder Running: hard shoulder running, also known as dynamic 

shoulder lane, temporarily uses the shoulder lane as an additional general 

purpose lane (GPL) to increase lane capacity during rush hours. Different from 

other mainline traffic flow control methods, HSR is the only strategy improve 

traffic congestion by directly increasing roadway capacity. However, HSR is 

not suggested to be active for long period for safety concern [9]. 

5) Adaptive Traffic Signal Control (ATSC): as one of the most effective traffic 

signal control methods, the ATSC system allocates green signal time to various 

vehicle groups in a dynamic way by analyzing real-time data collected by 

sensors installed on all approaches of an intersection. The ATSC minimizes 

delays, reduces vehicle hours traveled, and reduces fuel vehicle consumption 

[10-12].   

Early ATM strategies tend to use simple logic-based algorithms. These kind of 

strategies are easy to implement but fail to provide accurate solutions. Some recent 

research have adopted various advanced algorithms to enhance the performance. 

Generally speaking, most recent strategies can be roughly divided into two categories: 

optimization-based strategies and feedback-based strategies. As the name suggests, 

optimization-based strategies improve traffic condition by considering traffic operation 

process as optimization problem. With accurate traffic flow model, car-following 

model and traffic prediction model, the strategies could provide effective solutions. 

However, these optimization problem requires powerful computing hardware and 

accurate models, and it is hard to imagine the investment for real world 

implementations. Unlike optimization-based strategies, feedback-based algorithms 
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achieve similar effect without rigorous requirements for model and hardware. Even 

though they are better in feasibility, the performance of feedback-based strategies are 

limited due to the deficiency in traffic prediction model. More recently, the 

reinforcement learning (RL) technique has been integrated in some ATM control 

strategies to optimize solutions in a rapid way. The problem of RL is initially come up 

by behaviorist psychology, which focuses on how an agent tend to commutate with the 

environment and take actions in order to receive maximum cumulative rewards. 

Applied in a ATM strategy, RL method helps the agent learn how to provide optimal 

solutions (speed limits, meter rates) that can receive maximum cumulative rewards 

(minimum queue delay or maximum throughput) for the next few steps. Though the 

offline training is still time-consuming, the introduction of RL helps the ATM strategies 

provide accurate and timely response to various traffic conditions.  

Many researchers analyzed ATM traffic control methods and stated the benefits 

of applying these operational methods on freeways. Although various ATM control 

strategies have been widely implemented, it has gradually been realized that a stand-

alone control algorithm has limited ability of improving traffic conditions. Even though 

RM control can significantly lower the density of the immediate downstream of the 

controlled on-ramps, it is a hot potato to balance the benefits and drivers’ compliance 

rate. VSL helps release the bottleneck congestion by regulating the inflow volume from 

upstream. However, several simulation-based evaluation studies demonstrate that 

variable speed limit fails to make improvements under extreme congestion. Route 

guidance methods only work in the case of nonrecurring traffic congestion and HSR 

cannot be utilized all the time without impeding traffic safety [13]. More and more 
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research studies have demonstrated the limitation of a stand-alone ATM system and 

the possibility of coordinating two or more ATM-based systems for more benefits [14-

16].  

1.3. Traffic Modeling Approach 

To test the reliability of traffic control algorithms, traffic simulation models are 

developed as an indispensable instrument for transportation planners and traffic 

engineers. A simulation model should not only represent a traffic network and traffic 

demand in the real world, but also simulate dynamic traffic conditions. In the past few 

decades, the traffic-modeling field has made significant progress. Traffic simulator 

development can be traced back to the 1950s when computers were introduced to 

universities and research institutions. Limited by the Central Process Unit (CPU) and 

computer memory, most simulation models were built for only short roadway segments. 

Additionally, the functions of the traffic simulator were restricted to changing number 

of lanes and traffic demand. Nowadays, traffic simulators have been revolutionized 

with powerful computing, multifunctional simulation environment and good visual 

results [20].  

Traffic simulation models can be divided into micro, macro, and meso-scale 

platforms in terms of their objectives and components. VISSIM, AVENUE, Paramics, 

Aimsun, and SOMU, etc. are representatives of microscopic simulation models [17, 

18]. These models work through pre-defined agents in the system. Complex traffic 

conditions are visualized by realistic traffic models. The critical advantage of a 

microscopic model is its efficiency in evaluating complex traffic congestion, intricate 
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geometric configurations, and system-level impacts of proposed strategies. A 

microscopic model necessitates detailed and complicated input data and running it is 

usually time-consuming. The development, calibration, validation, and maintenance 

are often costly and technically challenging. 

Instead of tracking an individual vehicle, macroscopic models simulate a traffic 

system based on traffic flow theory. Macroscopic models such as cell transmission 

model (CTM) and TRANSCAD can handle large networks with short simulation time 

[19]. Compared with microscopic models, macroscopic models need less 

computational effort and pave the way for integrating multiple control methods such as 

Kalman Filter and ATM methods. However, limited by available details, specific 

considerations (e.g., drivers’ compliance rate and mixed traffic flow) may be difficult 

to incorporate in macroscopic models.  

As a compromise between micro and macro modeling approaches, mesoscopic 

models are developed. Mesoscopic models balance between the realism and 

computational efficiency in demand and supply models, and therefore can handle the 

non-trivial networks and provide detailed results at the same time. Mesoscopic models 

are used more and more widely. The most popular usage are dynamic traffic assignment 

(DTA) models. For example, several DTA models have employed mesoscopic supply 

simulation, which uses aggregate traffic flow relationships to model individual vehicle 

movements, and gain computational efficiencies over a time-consuming microscopic 

simulation. The mesoscopic models are more advantageous in regional traffic analysis, 
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which is necessary in ATM control studies. It improves precision and increases 

efficiency, while at the same time, an agent’s behavior can still be traced.  

1.4. Objective 

As the literature on developing and deploying an effective ATM system 

revealed, a host of issues must be further analyzed and resolved. Obviously, the 

improvements expected from stand-alone ATM control strategy are limited by external 

conditions. Traditional VSL-alone algorithms are not reliable enough. With increasing 

traffic demand, the ability to integrate traffic information with actionable solutions is 

even more needed. In the meantime, a reinforcement learning technique should also be 

included as an effective method for optimizing the coordinated ATM control 

algorithms. However, only a few research efforts have explored the benefits of 

coordinated ATM algorithms, especially the effectiveness of VSL under reinforcement 

learning technique. This research work attempts to develop and implement a 

coordinated ATM control system that can be implemented in regional transportation 

analysis with shoulder running activated.  

The objective of this research is to develop a coordinated dynamic traffic 

control system that integrates variable speed limit information with hard shoulder 

running using a reinforcement learning technique. The ultimate goal is to build a model 

that enables traffic scenario analysis, such as time-of-day, freeway trajectory, future 

demand assessment, and special event traffic conditions. To analyze the performance 

of the proposed algorithm, a mesoscopic simulation model based on DTALite is 

developed, which can dynamically present the traffic improvement.   
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This research contributes to new information and new approaches in solving 

traffic congestion in the following ways: 

1) Reinforcement-learning (RL) technique: a new efficient method that integrates 

the RL into ATM control strategies to obtain optimal solutions without running 

into complex calculation.  

2) VSL integration: a new effective method that integrates VSL control with HSR, 

enabling the dynamic control system to be more efficient and manageable. 

3) Reward function of Q-learning: a new formulation on QL reward function is 

created based on the queue delay instead of the density at a bottleneck. The 

proposed algorithm provides support for evaluating the possibility of only using 

queue delay as the key parameter for ATM control. 

4) DTA simulation model: to the authors’ best knowledge, this is the first paper 

analyzing RL-based ATM control with DTA model. Compared to traditional 

microscopic analysis, the mesoscopic DTA model requires less computational 

burdens for regional impact on large-scale network. 

1.5. Paper Organization 

The remainder of this paper is organized as follows. Chapter Two is a literature 

review of previous studies on VSL, HSR, and other coordinated ATM control strategies. 

The basic reinforcement learning technique and the QL-based ATM control algorithm 

are introduced in Chapter 3. Chapter 4 discusses the MOE evaluation under different 
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scenarios using a case study on I-270, Maryland, United States. Finally, findings and 

recommendations are summarized in Chapter 5. 
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Chapter 2 Literature Review 

 

This chapter is a review of past work on variable speed limit, hard shoulder running, 

applications of artificial intelligence, and other related researches associated with 

traffic operational systems. 

2.1 Real World Applications 

A number of variable speed limit control systems have been implemented in the 

United States since 1960s (Table 2-1). Until now, VSL systems have been widely 

implemented in many states for various purposes [21-22]. According to a government 

report in 2015, VSL applications in U.S. are implemented for three primary functions: 

alleviating recurrent traffic congestion, reducing average speed to ensure traffic safety 

under severe weather conditions, improving traffic capacity during non-recurrent 

congestion caused by work zones or incidents [23].  

While the United States has installed VSL systems as far back as the 1960s on 

locations such as the New Jersey Turnpike, the operation systems have experienced an 

enormous upswing in the last few decades [24]. As the first approach of variable speed 

limit in U.S., New Jersey Turnpike VSL system was mainly designed for safety 

concerns. The system monitored the traffic and weather conditions based on the 

feedback from more than 120 sensors, and then provided decision support for speed 

limits to improve traffic safety. Another application is on I-90, which has become an 

important transportation hub for passenger traffic and physical distribution since it 

opened in 1970s. With the regional economic development and population increasing, 
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the freeway system was under too much pressure. Variable speed limit was applied on 

Interstate 90 (I-90) in Washington State, U.S., as a possible transportation system 

manage and operation (TSMO) type solution to achieve both safety and operation 

benefits [25]. Based on the analysis by Ulfarsson et al., the speed variation on I-90 was 

significantly decreased after variable speed limit system started operation [26]. To 

enhance traffic safety, Abdel-Aty et al. (2006) applied VSL system on I-4 in Orlando, 

Florida and the performance indicates that the VSL contributes to the reduction of both 

crash risk and average speed [27]. Recently, Chang et al. developed a multiple-

objective VSL control system on MD 100 in Maryland State to increase speed and 

throughput. The algorithm tends to reduce the speed variance between free flow state 

and stop-and-go congested state. Furthermore, travel time estimation and drivers’ 

response were also considered in the algorithm to reach better performance [28-29]. A 

study on MD 100 by Chang et al. (2011) indicates that the VSL strategy could be a 

possible method in releasing congestion with sudden speed drop [29]. Other 

applications such as I-66 in Virginia, I-35W and I-494 in Minnesota, and I-255 in 

Missouri were implemented for different purposes and received visible benefits. Other 

than the United States, VSL systems have been widely implemented all over the world 

such as Germany, Australia, and the U.K. [30-31] Studies on these applications also 

proved the safety and mobility benefits of VSL in reducing speed variation and 

enhancing traffic throughput [31].  

2.2. Variable Speed Limit Effects 

Congestion on freeway system has become a major problem that leads to 

capacity, safety, and mobility reduction [32]. Frequent acceleration and deceleration as 
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a result of high density and low density on congested segment, leading to the increase 

of unsafety. Studies reveal that drivers are more likely to be involved in the traffic 

accidents when driving in the traffic with high variations [33]. Historical data collected 

by the Department of Transportation (DOT) indicates that the incidents rate is 

significant higher on freeways than urban roads due to wider range of speed [33]. In 

addition, the incidents rate also increases with higher freeway occupancy [34-36]. 

Variable speed limit was analyzed by several studies as the possible method to reduce 

speed variance by decreasing average headway on freeways [35]. Table 2 1. Examples 

of VSL, DMS and Queue Warning Applications in U.S. 

Lee et al. developed a microscopic simulation model to capture drivers’ 

response to speed limit control [36]. The results indicated that the speed deviation was 

reduced with VSL control, and translate into lower speed variation and incidents rate. 

Abdel-Aty et al. (2008) proposed a VSL strategy with homogeneous speed zone to 

explore possible benefits in reducing rear-end and lane-change crash risks [37]. It is 

proved that VSL could be an effective method in preventing incidents under 

uncongested conditions and reducing incidents rate under modest congested conditions 

according to Abdel-Aty et al (2008). However, the safety benefits may be limited when 

the congestion is severe. 

 

 

 



14 

 

Table 2-1: Examples of Real World VSL Apllications in U.S 

Real-world VSL Implementations in U.S. 

State Location Length 

(miles) 

Status Authority Operation 

Types 

Primary 

Functions 

Florida I-4 10.5 Active Regulatory Hybrid Congestion 

Florida US 27 3 Active Regulatory Automated Congestion 

Georgia I-285 36 Active Regulatory Hybrid Congestion 

work zones 

Minnesota I-35W 18 Temporarily 

Deactivated 

Advisory 

 

Automated 

 

Congestion 

Minnesota I-94 10 Temporarily 

Deactivated 

Advisory 

 

Automated 

 

Congestion 

 

Nevada US 395  

(Alternate) 

5 Active Regulatory Automated 

 

Weather 

 

New Jersey NJ 

Turnpike 

148 Active Regulatory Manual Congestion 

Weather 

Oregon OR 213 Single 

Inter-

section 

Active Regulatory Hybrid Weather 

Oregon OR 217 7 Active Advisory 

 

Automated Congestion 

Weather 

Tennessee I-75 9 Active Regulatory Automated Weather 

Virginia I-66 13 Active Regulatory Automated Congestion 

Work zones 

Virginia I-95 

(Express 

Lanes) 

~10 Active Regulatory Manual Congestion 

Washington I-90 25 Active Regulatory Hybrid Weather 

Washington US 2 23 Active Regulatory Automated Congestion 

Washington I-5 8 Active Regulatory Automated Congestion 

Washington I-90 

(Bellevue 

to Seattle) 

10 Active Regulatory Automated Congestion 

Washington SR 520 8 Active Regulatory Automated Congestion 

Source: FHWA (Guidelines for the Use of Variable Speed Limits Systems in Wet Weather) 

In addition to safety benefits, VSL has received increased interest in relieving 

traffic congestion. A set of variable speed limit signs placed on freeway segments 

displaying dynamically controlled speed limits harmonize the speed transition between 

free-flow segment and congested segment. It has been proved that the capacity is a 

variable parameter instead of remains constant. Capacity drop at bottleneck reduces the 

discharging rate, and then results in the nonlinear and discontinuous of speed-volume 

relation [38-39]. To avoid capacity drop phenomenon or at least reduce the effects, 
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several VSL strategies have been developed [40]. Properly implemented VSL system 

can maximize the roadway utilization, so as to decrease average corridor travel time 

during rush hours. It has been proved that the bottleneck speed and throughput could 

be improved in an impressive way according to Kwon and Brannan (2007) [41]. 

Hadiuzzaman et al. (2013) proposed a VSL strategy with model predictive control to 

avoid capacity drop [42]. The simulation results from VISSIM indicates that the total 

travel time, total travel delay decreased by 39.0% and 8.0%. The VSL strategy is 

effective in improving traffic throughput, but not a good choice for travel time 

reduction according to the macroscopic VSL simulation model taking throughput as 

the objective function [43]. Other studies point out that the total travel time could be 

reduced by more than 20%, which contrasts with Alessandri’s results (1999) [44-45].  

2.3. Variable Speed Limit Strategies 

Variable speed limit is a commonly used ATM strategy that releases bottleneck 

congestion by regulating the inflow volume from upstream. VSL enables dynamic 

changes of posted speed limits in response to different travel conditions to meet the 

objectives of safety, efficiency, and environmental consistency. Early studies tend to 

use simple logic-based VSL strategies, in which the speed limits are updated based on 

some established rules based on volume, density, and throughput. Logic-based VSL 

strategies are widely adopted in many real-world applications since they are simple, 

feasible and efficient [46]. These kind of strategies are easy to implement but fail to 

build close communication with constantly changing traffic conditions. Most logic-

based strategies use logic tree to classify the traffic condition into different groups, and 

then apply speed limits to control traffic. However, the traffic flow is continuous and 
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ever-changing that could not be simply classify as discrete variables. It is possible for 

a traffic condition to be wrongly classified and even deteriorate the traffic congestion.  

Later some research use several advanced techniques, such as model predictive 

control, connected vehicle technique, mainline traffic flow control and travel time 

estimation to intensify the performance of VSL strategies [48-51]. Most of these 

strategies consider the traffic control as an optimization problem with an objective 

function that minimizing the total travel time or maximizing the throughput [52-53]. 

Optimization-based strategies outperform the logic-based approaches in capturing the 

dynamic traffic conditions and providing effective solutions in general. Even though 

these strategies provide excellent performance on a theoretical level, the feasibility are 

deserved to be questioned. The optimization problem usually requires accurate traffic 

prediction model and complex computation process, which are appropriate for real-

world implementations. Additionally, it is very different or even impossible for the 

optimization-based strategies to provide quick response to the traffic, in terms of the 

current computing power.  

Not restricted by the computing requirement, some other research tend to use 

feedback-based VSL strategies, which update control variables based on the observed 

traffic conditions [54-56]. These kind of strategies control the traffic by regulating one 

or more traffic variables within a certain range. To some extent, the range is similar 

with the objective function in optimization-based strategies, but can be simply reached 

using traffic flow theory instead of complex computation. Compared with 

optimization-based strategies, feedback-based strategies perform similar in accuracy 
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and efficiency but requires less in hardware. However, most feedback-based strategies 

fail to timely response to the environment since the strategy are passively motivated by 

the real-time traffic conditions. In other words, the performance is limited since only 

the current traffic condition is consider in the strategies. Additionally, the parameters 

and ranges have to rely more on researchers’ knowledge and experience. Without 

systematic process, human error may affect the performance of feedback-based 

strategies. 

Recently, the reinforcement learning (RL) technique are getting more attention 

in solving complex optimization problems [57-58]. RL is an area of machine learning 

concerned with how the software agents ought to take actions in an environment to 

maximize some notion of cumulative reward. The RL relies on the environment 

formulated by the Markov decision process (MDP), which refers to a set of sequential 

decisions under an observable environment. Among several kinds of RL-based 

methods, Q-learning (QL) is the most popular one with benefits of policy-free and 

model-free. It can also be viewed as an efficient strategy of asynchronous dynamic 

programming (DP). In the QL process, the agent is a self-learning machine that receives 

state information from environment and produces actions at each time step. A reward 

function is designed to evaluate each state-action pair, and the maximum expected 

reward is updated and stored in a Q-table. Without implementing a policy, the agent 

intensifies the policy by using the Q-table as the source to learn and improve by itself. 

Some more recent research studies have integrated QL method into ATM control 

strategies such as variable speed limit and hard shoulder running. In a QL-based ATM 

strategy, the agent communicates with the environment (simulation network) by 
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receiving states (traffic conditions) and taking actions (updated speed limits, meter 

rates, queue warning status). A reward function is generated to evaluate the 

performance (traffic improvement) of each state-action pair. According to the Q-

updating function, the agent always learn how to find the actions that can achieve 

maximum cumulative rewards in the next few steps. Rezaee et al. (2012) introduced a 

RL-based RM strategy using real-life data from Highway 401 in Toronto [59]. The 

study compares the RL-based strategy with traditional ALINEA strategy and indicates 

that RL-based method outperforms the other one in reducing total travel time. Zhao et 

al. (2011) designed a RL-based RM strategy to relieve both recurrent and non-recurrent 

congestions [60]. Different from other studies using speed, density as volume, Zhao et 

al. consider queuing as the effective measurement. Li et al. (2017) developed a RL-

based VSL system for freeway recurrent bottlenecks [61]. The results indicate that RL-

based strategies are more effective compared with feedback-based strategies. Zhu et al. 

analyzed the mobility and environmental benefits of a RL-based VSL strategy under 

stochastic demand [62]. The proposed strategy reduced corridor travel time by 18% 

and emission consumption by 20%. Even though the QL-based strategies require some 

time for offline training process, the agent can take optimal actions under various states 

without complex computation and accurate prediction model. 

2.3. Coordinated ATM Strategies 

Meanwhile, with increasing traffic demand, requirements of VSL control 

strategies are more stringent and complex. The disadvantages of stand-alone strategies 

have been noticed [62-63]. Abdel-Aty et al. (2008) suggested that VSLs work better at 

lower demand level [37]. Grumert and Tapani (2012) pointed out that VSL was less 
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effective than ramp metering [65]. Grumert’s study also indicated that VSL has poor 

performance compared with RM. To maximize the benefits, some research explored 

the possibility of integrating two or more ATM strategies together [66]. One such 

system is the integrated RM and VSL control. Ramp metering aims at improving the 

mainline traffic flow condition by appropriately regulating the inflow from on-ramps 

to mainline [67]. Due to the limitation of ramp capacity and user endurance, ramp 

metering alone cannot make much improvement on network travel time [42, 68]. 

According to behavior researches, drivers’ responses to RM control could be affected 

by unbalanced psychology, meaning that drivers may drive more aggressively after 

entering a freeway mainline to make up for the delay experienced on the ramps. 

Similarly, VSL reduces density and increases throughput at bottlenecks by holding 

more vehicles at upstream. However, when volume exceeds capacity on a freeway, the 

VSL algorithms have minimum value in reducing speed variance. Integrated the 

advantages of the two strategies, Abdel-Aty and Dhindsa (2007) proposed a 

coordinated strategy that significantly outperformed the strand-alone strategy in 

reducing crash possibility and improving traffic mobility [69]. A Genetic-Fuzzy 

feedback-based strategy integrated RM and VSL was introduced by Ghods et al. (2007) 

[70]. The integrated algorithm achieved 5.1% reduction of total travel time, which was 

significantly better than stand-alone scenario. 

As literature revealed, a host of issues need to be further analyzed and resolved. 

Obviously, the improvements expected from stand-alone ATM control strategy are 

limited. Traditional VSL-alone algorithms are not reliable enough. The ability to 

integrate traffic information with actionable solutions is more needed. In the case that 
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VSL is not efficient under high volume conditions, a question worthy of further study 

is the possibility to integrate HSR to directly increase roadway capacity. Hard shoulder 

Running has been adopted in many studies and real-world practices for its effectiveness 

in reducing traffic congestion [71-72]. The effects of the HSR on freeway capacity and 

traffic flow characteristics were analyzed by Geistefeldt (2013) based on data collected 

from freeways in Germany [9]. With the implementation of Hard shoulder running, the 

freeway congestion is relieved by increasing traffic hourly throughput by 1000 

vehicles. Samoili et al. (2013) developed a short-time prediction model to evaluate the 

network performance of HSR [73]. The HSR could increase the roadway capacity by 

10% and maintain the traffic speed at a stable level. In addition, the short-term 

prediction model predicted that more than 20% volume on the left-lane would be 

attracted to the shoulder lane. Ma et al. (2016) analyzed the benefits of using HSR to 

improve traffic efficiency of nonrecurring traffic incidents [72]. The study provided 

several suggestions on the length of the shoulder opened upstream of an incident, the 

length of the shoulder opened downstream of incidents, and the opening duration of the 

shoulder. The study concluded that HSR could improve traffic condition by reducing 

an average delay up to 80% and increasing traffic throughput up to 40%. 

Even though HSR has significant performance, the safety impact has been a 

national controversy in recent years [73-77]. Geistefeldt (2011) analyzed the impacts 

of shoulder lane operation on traffic efficiency and safety using Brilon’s method on 

several highways in Germany. It was found that the HSR contributed to a significant 

improvement in traffic capacity by 25%, but failed to improve traffic safety. Chapoton 

and Dumont (2015) studied the HSR system in Switzerland and emphasized the 
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concern of the impact of HSR on drivers’ behavior. The study analyzed people’s 

response to HSR configuration and indicated that drivers’ attitudes presented great 

polarization [73]. Since HSR should not be active for long period, the coordination 

between HSR and other strategies may provide both safety and mobility benefits.  
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Chapter 3 Methodology and Model Generation 

In this study, a coordinated ATM control strategy is proposed and tested based 

on the reinforcement learning (RL) technique. To better demonstrate the methodology, 

the concept of basic RL and QL algorithms are first introduced in this chapter. Next, 

the proposed coordinated QL-Based ATM concepts are presented with some practical 

implementation principles. The rest of this chapter includes: 

(1) Traffic congestion causes and effects 

(2) VSL & HSR control theory 

(3) Basic Q-learning theory 

(4) Coordinated QL-based ATM control algorithm 

(5) Study area description 

(6) Simulation model 

(7) Parameters setting 

3.1. Traffic Congestion Causes and Effects 

There are several reasons for traffic congestion. The leading reason is the 

imbalance between traffic demand and roadway capacity. Traffic congestion usually 

happens when inflow demand exceeds the road capacity, resulting in saturation or 

oversaturation. Traffic congestion includes recurring congestion and non-recurring 

congestion. 

1) Recurring congestion: recurring congestion refers to continuous traffic 

congestion formulated at a relatively fixed roadway segment with special 
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trajectories such as diverging area, merging area, on-ramps, off-ramps, curves, 

and strong grade during peak hours. Previous studies suggest that recurring 

congestion is often seen as a capacity problem and is logically combated by 

increasing roadway capacity. 

2) Non-recurring congestion: different from recurring congestion, trajectory and 

demand are not the leading causes of non-recurring congestion. The reasons of 

non-recurring congestion include crashes and incidents, work zones, heavy 

weather conditions, big events, and others influence factors (polices or 

unexpected foreign object) .   

A direct way to judge congestion is comparing inflow traffic 𝑞𝑖𝑛𝑓𝑙𝑜𝑤  from 

upstream and the capacity 𝑐𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 at the downstream. If 𝑞𝑖𝑛𝑓𝑙𝑜𝑤 is less than or 

equal to 𝑐𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 , the roadway segment is close to free flow status. In a case where 

the inflow 𝑞𝑖𝑛𝑓𝑙𝑜𝑤 is higher than the downstream capacity 𝑐𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚, the bottleneck 

is activated, blocking inflow vehicles. The head of the queue is always at the bottleneck 

while the tail spills back as long as the inflow is high. When congestion happens, there 

are two effects: capacity drop and blocking of ramps: 

1) Capacity drop: several studies on roadway capacity indicate that the capacity is 

not a constant variable that equals to the expected maximum throughput of the 

roadway as shown in Figure 3-1(a). The capacity decreases by about 20% at a 

bottleneck due to speed reduction. Capacity drop happens because drivers need 

time to accelerate from low speed to normal speed when leaving a bottleneck 

[55].  
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2) Blocking of ramps: another negative effect of active bottlenecks is the blockage 

of ramps due to the spill-back of a queue. Blocking off-ramps also adds pressure 

on the mainline, and then resulting in the paralysis of traffic system. 

 

Figure 3-1. (a) Fundamental diagram of flow-density relationship under uncongested 

condition; (b) fundamental diagram of flow-density relationship with capacity drop; 

(c) fundamental diagram of flow-density with VSL control; and (d) fundamental 

diagram of flow-density with HSR control. 

3.2. VSL & HSR Control Theory 

As indicated by previous studies, insufficient roadway capacity is the main 

reason for both recurring congestion and non-recurring congestion. MTFC strategies 

such as VSL and Rm tend to maximize the bottleneck throughput by regulating the 
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inflow volume from upstream. Unlike theirs, however, HSR improves the throughput 

by increasing the temporary capacity of bottleneck and downstream.  

3.2.1. VSL Control Theory 

The idea of VSL is to regulate upstream traffic volume with appropriate 

controls to avoid capacity drop at a bottleneck. For example, the free flow speed on the 

freeway is 𝑣𝑓𝑓𝑠 . If no VSL control is applied to this segment, the traffic flow at a 

bottleneck is 𝑞𝑓𝑓𝑠 . However, using VSL, the outflow 𝑞𝑣𝑠𝑙  from the VSL control 

segment is controlled less than or equal to the bottleneck capacity (𝑞𝑣𝑠𝑙 is controlled 

less than 𝑐𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 in most situations due to the capacity drop). The congestion on 

the freeway could certainly not be avoided since 𝑞𝑖𝑛𝑓𝑙𝑜𝑤  is always higher than 

𝑐𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 even if the VSL is applied.  

As shown in Figure 3-1(c), the red line represents the flow rate under VSL 

control. It is obvious that with a lower posted speed limit, the critical density increases 

while the maximum flow rate 𝑄𝑉𝑆𝐿 decreases. As long as 𝑄𝑉𝑆𝐿 < 𝑄𝑑𝑟𝑜𝑝, the congestion 

releases. In addition, a higher density at the VSL control segment proves lower flow 

rate since more vehicles are stored in the segment.  

3.2.2. HSR Control Theory 

Although VSL can release traffic congestion to some degree by avoiding the 

capacity drop and increasing outflow at the bottleneck, the congestion on the freeway 

cannot be avoided since 𝑞𝑖𝑛𝑓𝑙𝑜𝑤 is higher than 𝑐𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚. To remedy the defects of 

VSL, HSR is introduced by temporarily increasing  𝑐𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 . Under normal 
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conditions, an additional lane provides enough capacity to handle inflow volume 

𝑞𝑖𝑛𝑓𝑙𝑜𝑤 from upstream.  

As shown in Figure 3-1(d), the maximum flow rate at a bottleneck location 

increases when HSR control is active. With the same free-flow speed and wave speed, 

the 𝑄𝐻𝑆𝑅  is significantly higher than 𝑄𝑐 .  For a three-lane freeway, the temporary 

capacity can increase by 22% using a shoulder lane as general-purpose lane, which can 

greatly relieve severe traffic congestion. 

Recently, HSR has been widely implemented on many highways in the U.S., 

such as I-595 Reversible Express Lanes, I-66 between Merrifield, Virginia and 

Washington D.C., I-35W in Minneapolis, and I-110/I-10 Metro Express Lanes in Los 

Angeles, California. Judging by their performance, HSR is one possible strategy for 

addressing congestion and reliability issues within the transportation system, and is 

particularly cost-effective where widening roads is infeasible, undesirable, or cost 

prohibitive. HSR exists in many different forms, but they are all designed as 

designating the left or right shoulder lane as a normal travel lane during certain times 

of the day. 

3.3. Basic Q-Learning Algorithm  

3.3.1. Reinforcement Learning Algorithm 

Machine learning has rapidly developed in the past few decades. As a self-

learning system that can extract information and develop knowledge, machine-learning 

algorithms prove to be more efficient than traditional optimization algorithms. Machine 
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learning has a variety of learning methods that generally fall into three categories: 

supervised learning, unsupervised learning and reinforcement learning. Supervised 

learning uses training examples to learn how to classify the inputs while unsupervised 

learning methods form the concepts by themselves. Different from these two 

categories, a reinforcement learning method uses a reward function to tell the agent 

how the action performs.  

As one of the effective learning methods for complex relationships, 

reinforcement learning technique (RL) is a potential method for addressing 

optimization problems. A RL method works by formatting the optimization problem 

into Markov chain decision process, which refers to a set of sequential decisions under 

an observable environment. For ant Markov chain decision process, the time-dependent 

character indicates that the future state is completely independent of the past states or 

actions, as long as the current state is given. This kind of relationship can be described 

in a mathematical equation as follows: 

𝑷(𝑆𝑡+1|𝑆𝑡) = 𝑃(𝑆𝑡+1|𝑆1,  … ,  𝑆𝑡) 

              

(1) 

 

where 𝑆𝑡  refers to the current state at time t and 𝑆𝑡+1  refers to the state of next 

timestamp. 

A RL method consists of three parts, agent, reward function, and environment. 

The agent is a self-learning machine that receives its state information from its 

environment and produces actions at each time step. The performance of a state-action 

pair is evaluated by the reward function, which is the source for the agent to learn and 
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improve itself. As shown in Figure 3-2, at each time step, the agent perceives the state 

of its environment and takes an action to transfer the system from its current state to a 

new state. A reward calculated by the reward function is posted to the agent to evaluate 

the quality of the transition. After sufficient iterations, the agent traverses all state-

action pairs and learns how to find a sequence of optimal actions that yields the 

maximum cumulative reward over the time period. For a successful RL process, the 

cumulative reward an agent received at each iteration will converge to a relatively 

stable level, which is an indication that the RL has completed its training.  

 

Figure 3-2.Components of Reinforcement Learning. 

3.3. Basic Q-learning Strategy 

Q-learning is a model-free and policy-free RL technique [78]. It can also be 

viewed as an efficient strategy of asynchronous dynamic programming (DP). The Q-

learning method provides an agent with decision-making capability regarding optimal 

solutions by traversing the entire set of states and actions without modeling the 
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environment. Q-learning is the most popular RL technique, with reliable performance 

in many fields of engineering [79]. 

QL consists of the state set S, the action set A, and the reward function R. At 

each step of the learning process, the QL agent receives state information from the 

environment and chooses an action. Usually the agent randomly chooses actions in the 

incipient stage of the process and tends to choose a particular action after the 

convergence. The agent takes an action to transfer the environment from current state 

to a new state. In the QL method, a reward function is determined and assigned to each 

state-action pair to evaluate the performance of the action. After multiple iterations of 

learning, the agent learns how to take an action from the current state to maximize the 

possible rewards in the next steps. Also, in an ideal world, for any given state, the agent 

could select a sequence of actions that maximize the cumulative rewards. The relation 

between the states set S, the action set A, and the reward function R can be described 

as: 

𝑄 ∶ 𝑆 ∗ 𝐴 → 𝑅          (2) 

 

where Q refers to the Q-value that represents the quality of each state-action pair. For 

any QL problem, the ultimate goal is learning a policy π for an agent operating in an 

environment with stochastic actions and rewards, and to do so without a model. For 

each possible policy π, the value the agent can adopt is:  

𝑉𝜋(𝑆) =  𝑅𝑡 + 𝛾𝑅𝑡+1 + 𝛾2𝑅𝑡+2 + ⋯         (3) 

 

where 𝑉𝜋(𝑆) refers to the possible cumulative rewards under policy π as for the current 

state S.  The Q-function using the Bellman equation could be represented as: 
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𝑄𝜋(𝑠𝑡, 𝑎𝑡 ) =  𝐸[𝑅𝑡+1 +  𝛾𝑅𝑡+1 +  𝛾2𝑅𝑡+1 + ⋯ |𝑠𝑡, 𝑎𝑡]         (4) 

Therefore, in terms of the value function, the learning task can be reformulated 

to learn the optimal policy 𝜋∗ such that: 

𝜋∗ =  𝑎𝑟𝑔𝑚𝑎𝑥∀𝜋𝑉∗(𝑠), (∀𝑆)           (5) 

A one-step look-ahead search can be performed from any state to determine the optimal 

policy using: 

𝜋∗ =  𝑎𝑟𝑔𝑚𝑎𝑥∀𝜋[𝑟(𝑠, 𝑎) +  𝛾𝑉∗𝛿(𝑠, 𝑎))]           (6) 

where 𝑟(𝑠, 𝑎) is the current reward and 𝛾𝑉∗𝛿(𝑠, 𝑎)) is the reward for the sequence of 

next steps. δ refers to state transition function. For any infinite MDP that could possibly 

be solved using QL, the agent’s ultimate goal is to maximize the total cumulative 

rewards: 

∑ 𝛾𝑅𝑡

∞

𝑖=0

 
 

           (7) 

where Rt is the reward at time step t, and γt is the discount factor that defines the relative 

importance of the current rewards and those earned earlier (0≤γ≤1).  

For a nondeterministic environment, the QL methods usually follow the 

following steps: 

1) Initialize the Q-Table: an initial Q-table with n columns and m rows should first 

be set, where n refers to the number of possible actions and m represents the 
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number of possible states. Since there are no reward records at the beginning, 

values for all cells are initialized as 0; 

2) Choose and take an action: the agent chooses an action for the current state 

based on the Q-table. Based on the exploration and exploitation theory in 

reinforcement learning, the epsilon greedy strategy is introduced to speed up 

the learning process. The epsilon greedy strategy takes higher epsilon rates at 

the beginning stage to allow the agent to explore the environment by randomly 

choosing actions. The reason for this is because at the initial phase of the 

learning process, the agent has less knowledge on policy and needs to traverse 

as many state-action pairs as possible to learn. After multiple rounds of 

exploration, the agent traverses enough state-action pairs and receives sets of 

reward records. As the learning process moving forward, the epsilon rate 

decreases and the agent begins to exploit the environment. During the process 

of exploration, the agent progressively becomes more confident in estimating 

the Q-values. 

3) Evaluate the state-action pair: instead of simply traversing state-action pairs, 

the agent updates the Q-table based on the token actions and observed rewards. 

For a non-deterministic environment, the Q-value is updated through Q-

function: 

             𝑁𝑒𝑤 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) +  𝛼[𝑅(𝑠, 𝑎) +  𝛾𝑚𝑎𝑥𝑄′(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]            (8) 

where Q(s, a)  refers to the Q value of the current adopted reward for state-

action pair (s, a). New Q(s, a) represents the new Q value for the state-action 
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pair (s, a). 𝑅(𝑠, 𝑎)  is the reward for taking that action at that state, and 

𝛾𝑚𝑎𝑥𝑄′(𝑠′, 𝑎′) refers to the maximum expected reward given the new state 

(𝑠′) and all possible actions at that new state. Learning rate and discount rate 

are represented by 𝛼 and 𝛾, respectively. 

Theoretically speaking, if the state and action are defined properly, the learning 

process can reach convergence after enough iterations of learning. Sometimes the 

learning rate and discount rate also influence the converging speed. When the learning 

process reaches convergence, the agent has traversed plenty of state-action pairs and 

received the corresponding rewards. The final product of the QL process is an updated 

Q-table, from which the optimal action (the action with the largest Q-value) for a state 

can be found. Now the agent can be used for the optimal control according to its 

knowledge. 

3.4. Coordinated RL-based ATM Algorithm 

As one of the most popular reinforcement methods, the Q-learning technique has 

offered a promising performance in dealing with the requirement of complex 

optimization. Recently more and more researchers have incorporate the QL method 

into traffic operation strategies. In the QL-based ATM strategies, the agent 

communicates with the environment by receiving states (traffic condition) and taking 

actions (updated traffic controls). A reward function is generated to evaluate the 

performance (traffic improvement) of each state-action pair. Even though the QL-based 

strategies require some time for offline training process, the agent can take optimal 

actions under various states without complex computation and accurate prediction 
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model. In this study, a QL-based ATM control strategy incorporating the variable speed 

limit and hard shoulder running strategies is proposed and tested to relieve traffic 

congestion. The operations of the proposed ATM strategy and traditional strategy are 

presented in Figure 3-3: 

 

 

(a) 

 

(b) 

 

Figure 3-3: (a) Traditional ATM Algorithm; and (b) Proposed QL-Based ATM 

Algorithm 

As indicated by the flowchart, the QL-based strategy increases the efficiency 

by replacing manual efforts with computation work. The proposed coordinated strategy 
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is composed of three parts: a QL-based offline agent, an online ATM control simulator, 

and an offline model set. The following parts of the section outline the specification of 

the proposed strategy.  

3.4.1. State of the QL-Based ATM Strategy 

State is the consolidation of horal, spatial, and material information. A state reflects a 

step change in the environment. The more detailed information a state provides, the 

more accurate the solution is, but the more time is needed for the learning process. 

Balancing learning time and solutions’ accuracy is a common consideration when using 

machine learning methods. Typically, learning time increases exponentially as the 

number of state variables increase.  

The objective function of most ATM strategies is minimizing total travel time in the 

system, which can be represented by the inflow and outflow traffic in the network:  

𝑇𝑇𝑇 = 𝑞𝑖𝑛
0 −  𝑞𝑜𝑢𝑡

0 +  𝑞𝑖𝑛
1 −  𝑞𝑜𝑢𝑡

1 + ⋯ +  𝑞𝑖𝑛
𝑛 −  𝑞𝑜𝑢𝑡

𝑛             (9) 

Where 𝑞𝑖𝑛
𝑘   refers to the inflow during time interval k and 𝑞𝑜𝑢𝑡

𝑘   means the outflow 

during time interval k. If we consider 𝑞𝑖𝑛
𝑘 and 𝑞𝑜𝑢𝑡

𝑘  together as the discharging rate in 

the system at time interval k, TTT can be reformulated as Equation 11: 

𝑇𝑇𝑇 = 𝑄0 +  𝑄1 + ⋯ +  𝑄𝑘 =  ∑ 𝑄𝑘

𝐾

𝜅=0

 

         (10) 

𝑇𝑇𝑇 =  ∑[𝑄0 +  ∑ 𝑞𝑖𝑛
𝑘

𝑘−1

𝜅=0

−

𝐾

𝑘=1

  ∑ 𝑞𝑜𝑢𝑡
𝑘

𝑘−1

𝜅=0

] 
         (11) 
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Comparing the system travel time during one period, the cumulated outflow 

travel time equals to the cumulated outflow travel time under uncongested condition 

plus the queue delay caused by traffic congestion. Now the system travel time can be 

transformed to a new format using queue delay. For the given system, the initial demand 

and inflow are unchangeable. That is to say, any strategies that aims at decreasing the 

cumulated queue delay tend to decrease system travel time.  

In contrast to previous studies that applied traditional variables such as speed, 

density, and volume, the current study takes the queue delay as the variable in the 

objective function. Although the link-based volume, speed and density well represent 

the average and the standard deviation of traffic in each link, they could not provide an 

overall view of the network. For some optimization-based strategies, bottleneck 

condition was mostly used as the only state variable. To minimize the negative effect 

on upstream VSL control section, the average queue delay of the entire corridor was 

designed as one state variable. Additionally, the posted speed limits were also included.  

It should be mentioned that even though queue delay is a discrete variable, the 

states may have higher dimensions. Based on the analysis of a non-control scenario, 

the queue delay has the range from 0 to 215 per lane per time interval. To decrease the 

training time of the agent, this study classifies the queue delay and queue delay 

reduction into five levels (Table 3-1) and thirteen levels (Table 3-2).  

 

 



36 

 

Table 3-1. Level of Queue delay 

Level Range 

1 𝑁𝑄 ≤ 30  

2 30 <  𝑁𝑄 ≤ 60  

3 60 <  𝑁𝑄 ≤ 120 

4 120 <  𝑁𝑄 ≤ 150 

5 150 <  𝑁𝑄 

 

Table 3-2. Level of Queue Delay Reduction  

Level Range 

-3 ∆𝑄≤ −75  

-2 −75 <  ∆𝑄≤ −35  

-1 −35 <  ∆𝑄≤ 0 

0 0 <  ∆𝑄≤ 20 

1 20 <  ∆𝑄≤ 35  

2 35 <  ∆𝑄≤ 75 

3 75 <  ∆𝑄 

 

Similar to the queue delay, density also meets the same condition. It is obvious that density is a continuous 

variable that should also be aggregated into discrete dimensions. The result of non-control scenario indicates that 

the density varies from 0 to 176 vehicles/mile/lane. Therefore, the density used in this study is categorized into 7 

levels (Table 3-3). Table 3-3. Level of Density 

Level Range 

1 𝐷 ≤ 35  
2 35 <  𝐷 ≤ 75 
3 75 <  𝐷 ≤ 100  
4 100 <  𝐷 ≤ 125 

5 125 <  𝐷 ≤ 150 
6 150 < 𝐷 ≤ 165 
7 165 <  𝐷 

Above all, the proposed strategy takes the level of queue delay and queue 

delay reduction combined with the density of VSL control segment as three state 

variables.  
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3.4.2. Actions of the QL-Based ATM Strategy 

Actions are defined as actionable activities in creating or resolving a problem 

in a follow-up step: what to do next. In this study, an action refers to the control of 

variable speed limit and hard shoulder running. The control period should be set to 

ensure that the effect (or reward) after the action taken can be perceived by the agent. 

In our study, the authors tested two control periods for the QL-based strategy which 

are 5 minutes and 10 minutes. In other words, the QL-based agent is able to post new 

speed limits or update shoulder lane status after 5 minutes and 10 minutes from the 

previous action. Some restrictions may need to be set for practical considerations such 

as to ensure drivers are not confused due to frequently changing speed limits. For 

example, an ideal posted speed limit could be either whole numbers (e.g., integers) or 

numbers with decimal points. In practice, control speed limit displayed on a dynamic 

message sign does not have decimal digits to reduce driver confusion [80]. Based on 

real world experience, the actions should follow the following rules: 

1) Control speed limits are discrete and are multipliers of five (e.g., 5, 10, 15, 20, 

et al.); 

2) Control speed limits on a freeway corridor should never exceed the maximum 

speed limit or the free flow speed; 

3) Control speed limits should always be higher than one or several lower bound 

speed limits, even if the corresponding congestion is severe. This is to avoid 

confusing drivers and to increase traffic flow efficiency;  
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4) Control speed limits should not change with significant difference. The posting 

of significant speed differences tends to cause sudden acceleration or 

deceleration, which may worsen the existing congestion.  

Hard shoulder running improves traffic congestion by increasing the capacity at 

bottlenecks and corresponding upstream roadway segments. The activation or 

deactivation of a shoulder lane requires the coordination of speed limit signs, notice 

light signs, relief zones, and variable message signs (VMS). In the proposed strategy, 

actions include: 

1) Increasing the control speeds by the same amount (5 mph) on VSL controlled 

segments; 

2) decreasing the control speeds by the same amount (5 mph) on VSL controlled 

segments; 

3) Increasing the control speeds by the same amount (10 mph) on VSL controlled 

segments; 

4) Decreasing the control speeds by the same amount (10 mph) on VSL controlled 

segments; 

5) Increasing the control speeds by different amounts (5 mph or 10 mph) on VSL 

controlled segments; 

6) Activating shoulder lane; 

7) Deactivating shoulder lane. 
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3.4.3. Rewards of the QL-Based ATM Strategy 

In terms of previous studies on ATM strategies, the judgment for the 

performance could be the reduction of travel time, the reduction of total delay, and/or 

the improvement of throughput. As just discussed, the objective of the proposed 

strategy is to minimize network travel time, that is, to minimize the cumulated queue 

delay in the network. In the simulation model, the number of queued vehicles on each 

link at each time interval was recorded and updated in real time. Refer to previous 

studies, any control that manage to increase the early exit flows of the freeway section 

will lead to a decrease in the total travel time. Therefore, in addition to total network 

queue delay, bottleneck queue delay was included as part of the reward function. To 

increase learning efficiency, the reward function uses an exponential distribution 

function, which allows the agent to get relatively large reward or penalty when the 

queue changes largely. In the study, the reward function is designed as: 

𝑅(𝑠) = −𝛼(𝑄𝑘
𝑠 − 𝑄𝑘−1

𝑠′
)|(𝑄𝑘

𝑠 − 𝑄𝑘−1
𝑠′

)| −  𝛽𝑄(𝑏)𝑘
𝑠           (13) 

Where 𝑄𝑘
𝑠 represents the cumulated queue delay in the network at state s during 

time interval k, and time step k . 𝑄(𝑏)𝑘
𝑠   refers to the queue delay at the bottleneck 

location at state s  during time interval k. The parameter α and β  are introduced to 

determine the magnitude of the reward. The exponential distribution function helps the 

learning process reach the convergence at an accelerated speed. With the designed 

reward function, the agent tends to learn how to provide optimal sequence of actions 

for any given state. The pattern of reward distribution is shown in Figure 3-4. As the 
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figure presents, the green dots represent the positive rewards while red ones refer to 

negative rewards. The size of the dots represent the absolute value of the penalty.  

 

Figure 3-4. Rewards for different state in the QL. 

In addition to VSL, HSR is also an integral component of the proposed strategy. 

The cooperation of all strategies contribute to utilizing resources. As one of the two 

controls, HSR plays a distinctive role in improving the performance for its rapid 

supplement of road capacity. While HSR is effective, it is not encouraged be active all 

the time for safety concern. Under normal condition, a freeway with multiple lanes 

usually has two shoulders in each direction. Closure of any shoulder lane increases the 

difficulty for a needy vehicle to relocate to the nearest shoulder when such a need arises. 

Also, if a needy vehicle fails to move to the shoulder lane, it will result in blocking 

regular traffic lanes and causing unusual congestions. Meanwhile, the operation of HSR 
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is costly, which requires expensive guiding signals, warning signs, cameras, speed limit 

signs and VMS. In addition, the occupancy of shoulder lanes for any prolonged period 

increases the burden of emergency service. To deal with this issue, this study enforces 

HSR to be activated only when the VSL alone is not effective. Several studies suggest 

that VSL only provides good performance in less serious conditions but fails to provide 

reliable control under over-saturated conditions. Therefore, the coordinated strategy 

designed for this study should focus on finding the time point to activate HSR, which 

is when the VSL loses effectiveness. To help the agent learn when to activate HSR, a 

penalty function is integrated in the reward function considering the safety and traffic 

throughput impact. After multiple tests, the penalty function is designed as: 

𝑃(𝑠) =  
𝜃

[(𝑄𝑘
𝑠) ∗  (𝑄(𝑏)𝑘

𝑠 )]^𝜀
 

         (14) 

The penalty function indicates that the HSR only activates when both the 

corridor queue delay and bottleneck queue delay are high.  

3.4.4. Parameters of the QL-Based ATM Strategy 

In the QL process, several parameters need to be properly defined since these 

variables greatly affect the performance of the strategy.  

1) Learning rate: learning rate refers to the learning speed with range 0 ~ 1 that 

controls how quickly the agent communicates with the environment. A setting 

of 0 means that Q-values are never updated, hence nothing is learned, and while 

a higher value means that learning occurs quickly. Learning rate is a tricky 

variable in a QL process and should be properly defined. If the learning rate is 

too small, the learning process completes complex computation too frequently. 



42 

 

The heavy computation burden prevents the learning process from reaching 

convergence. However, a large value may result in the large variance of each 

iteration, and the agent may not find optimal solution.  

2) Discount factor: the discount factor defines the relative importance of the 

current rewards and the rewards earned in the previous steps. In other word, the 

discount factor decides the ‘sight’ of the agent. A discount factor close to zero 

forces the agent to be ‘short-sighted’ by only considering the reward in the 

immediate future. In contrast, a factor closer to one makes the agent forecasts 

the cumulative rewards that expects to get. With a higher value, the agent tends 

to explore the higher cumulative rewards for the next few steps during the 

learning process.  

3) Epsilon-greedy: the epsilon-greedy decides the rates of exploitation and 

exploration. A high epsilon-greedy value means that the agent tends to explore 

more while a low value means that the agent chooses an action based on the 

estimated value. For the learning process, the agent should explore more at the 

beginning stage to traverse as many action-state pairs as possible. However, a 

continuous higher exploration rate may prevents the agent learning from the 

accumulative results. In the current study, the epsilon-greedy is set as a high 

value at the beginning and decreases systematically. 

4) Learning iteration: the current study undergoes many iterations to ensure the 

QL algorithm has enough time to converge. 

The detailed setting of learning parameters is summarized in Table 3-4. 
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Table 3-4. Learning Parameters of QL Algorithm 

Learning Parameters of QL Algorithm 

Learning parameter Value 

Learning iterations 150~500 

Learning rate 0.005 

Reward decay 0.99 

Discount factor 0.9 

Start epsilon-greedy 0.9 

3.5. Study Area Description 

Within any metropolitan area, traffic congestion associated with urban freeways 

is typically the worst. To evaluate the feasibility and benefits of the proposed algorithm, 

the I-270 corridor in suburban Maryland outside of Washington, D.C. is selected as the 

experimental freeway segment, with a large study area including the I-495 beltway 

from America Legion Memorial Bridge to Woodrow Wilson Memorial Bridge, and 

MD-295 from US-50 to I-695. The model also covers all on-ramps, off-ramps and a 

significant number of local roads.  

I-270, one of the most important freeways connecting Washington D.C. to 

Frederick, MD, experiences heavy congestion during morning and evening peak 

periods on any weekday. While free flow travel time is only about 29 minutes, travel 

time reaches as high as 67 minutes and 52 minutes for the AM and PM peak periods, 

respectively. Based on historical data from RITIS, weekday peak-period speed drops 

quickly from 65 mph to 30 mph. In several bottleneck areas, the speed was as low as 

10 mph, which caused further congestion spill back. There are two main reasons for 
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traffic congestion: high traffic demand causing recurrent congestion and incident 

blockage, causing a sudden capacity drop that leads to non-recurrent congestion. RITIS 

Data indicates that more than 150 incidents occurred during the peak period on I-270 

in 2016.  These incidents resulted in an average 24.6 minutes delay during peak hour.      

In this paper, the model is built to represent the real-world diverging bottleneck 

at the I-270 spur (Figure 3-5). At the diverging point, the five-lane I-270 mainline splits 

into two three-lane freeways that lead to the counter-clockwise direction and 

clockwise-direction of I-495, respectively. Although the total capacity of the two 

branches satisfies the needs of inflow from upstream, what matters more is the 

misdistribution of traffic demand. The counter-clockwise direction of 495 has higher 

demands from the I-270 spur than the clockwise direction. Another reason is the 

frequent lane changing at the diverging point, since some drivers take advantage of the 

lighter traffic of one side and merge into the high-demand flow at the last moment. The 

frequent lane changing close to the diverging point also results in the sharp deceleration 

and increases the spill back of traffic congestion. Additionally, the American Legion 

Memorial Bridge at downstream is one of the segments with high incidence of 

congestion, which also affects the I-270 diverging section.  



45 

 

 
Source Google Map (https://www.google.com/maps) 

Figure 3-5. Traffic condition at I-270 spur (morning peak). 

Table 3-5. Components of DTA Simulation Model (Initial MWCOG Model and 

Subarea Model) 

 Large-initial model Subarea model 

Number of nodes 23589 9860 

Number of links 47511 28287 

Number of zones 3722 2030 

Number of HOV links 158 107 

Number of agents 4925741 2434299 

Number of demand types 24 24 

Number of vehicle types 5 5 
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3.6. Simulation Model  

3.6.1. Online Simulation Model 

Most ATM algorithms are integrated with traffic simulators, including 

macroscopic, microscopic, and mesoscopic models. Taking advantages of the 

mesoscopic model, which can perform complicated simulations within a reasonable 

period, DTALite, a dynamic traffic assignment (DTA) model written with open-source 

mesoscopic scale, was adopted in the study [81]. DTALite integrates many advanced 

simulation functions and offers a visualized user interface named Network Explorer for 

Traffic Analysis (NEXTA). The attractive functions model the traffic impacts of road 

reconstructions, special traffic conditions, active traffic managements, tolling systems, 

and general evolution of demand. The efficient running mechanism of DTALite also 

supports the free combination of multiple scenarios, which helps decision-makers find 

optimal solutions to improve traffic operation systems. The crucial components of 

DTALite software are:  

1) Agent-based traffic assignment: reassigns agents in the network to reach the 

user equilibrium. The user equilibrium is usually evaluated by the travel time 

index (TTI) which is a ratio of average simulated travel divided by the free flow 

travel time.  

2) Origin destination matrix estimation (ODME): adjust the OD matrix by 

minimizing the absolute error between observed traffic counts data and 

simulated results. The error of traffic counts is usually calculated using 

weighted mean squared error.  
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Research based on the DTALite simulation model proved the model’s ability 

in simulating dynamic traffic operation algorithms [81-82]. Reasons for adopting 

DTALite as the simulation model in this study are listed below.  

1) Difference compared to macroscopic and microscopic model: the DTALite is a 

mesoscopic model and can provide detailed simulation results with short 

running time and low memory need. 

2) Built-in simulation functions: the DTALite has built-in functions to simulate 

ATM strategies such as variable speed limit and ramp metering using lane 

capacity and dynamic speed control. 

3) Rigorous traffic queuing model and build-in parallel computing capability: the 

queuing model and parallel computing capability can speed up the analysis 

process through multi-core CPU hardware [82]. 

4) Real-time information: during the customized setting of updating time interval, 

the DTALite provides real-time system-level and link-level statistical outputs 

that describe time-dependent network performance, such as volume, density, 

speed, number of queued vehicles, and bottleneck locations. These time-

dependent outputs help the proposed algorithm make decision to support 

dynamic controlling; 

5) Agent-based inputs: agent-based input allows DTALite to analyze the route 

choice changes under ATM control [83]; 

6) NEXTA: the interface of DTA model provides a visual animation of vehicles 

running on the links for a large-scale network over the simulation period.  
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3.6.2. Model Generation 

For the analysis of regional impact, this study covers the Washington 

Metropolitan Area, which encompasses Maryland, Washington D.C., and Northern 

Virginia. The base-year (2015) Metropolitan Washington Council of Governments 

(MWCOG) travel demand model is used as the seed input for model developing. The 

geocoded MWCOG model in a GIS environment is converted into DTA network 

format. Preparatory volume calibration and origin-destination matrix estimation 

(ODME) process are applied to ensure the demand is consistent with observed data. 

Instead of using the large network, the MWCOG model was cut into smaller subarea 

model for time-consuming concern. The subarea network that contains 2,030 TAZ 

zones, 9,860 nodes, and 28,287 links, is displayed in Figure 3-6. 

 

Figure 3-6. The Mesoscopic Simulation Network and Locations of Traffic Counts. 
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Table 3-6. Components of DTA Simulation Model (Initial MWCOG Model and 

Subarea Model) 

 Large-initial model Subarea model 

Number of nodes 23589 9860 

Number of links 47511 28287 

Number of zones 3722 2030 

Number of HOV links 158 107 

Number of agents 4925741 2434299 

Number of demand types 24 24 

Number of vehicle types 5 5 

 

3.6.3. Model Calibration and Validation 

Model calibration and validation process are critical for building a consistent and 

reliable model before integrating any control algorithms. Several key parameters such 

as volume, travel time, and speed are calibrated in the study. Link-based volume is 

calibrated based on the time-dependent (e.g., hourly) link volume data collected by 

real-world detectors. Traffic data from 179 sensors used in the Regional Integrated 

Transportation Information System (RITIS) and State Highway Administration (SHA) 

Internet Traffic Monitoring System (I-TMS) from 2015 are utilized (Figure 3-6). In the 

DTALite model, a build-in calibration function, known as ODME, is used as the 

approach to adjust input OD. Since the automated adjustment may not be reliable when 

the corridor is congested, the authors adopt a manual process to adjust the demand side 

to reduce the gap between observed and simulated counts.  
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Figure 3-7. Calibration and Validation Process for A DTA Model 

Beyond volume, corridor travel time must also be consistent with real-word 

data. In this study, observed travel time data from the RITIS website is used as the 

reference for corridor travel time calibration. Average 15-minutes of travel time on 
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each freeway corridor is calibrated against simulated results. In addition to the demand 

side calibration, the supply side parameters such as lane capacity and jam density are 

also adjusted. Figure 4 demonstrates the calibration and validation process. 

 

Figure 3-8. (a) Traffic Volume Comparing before Calibration; and (b) after 

Calibration. (c) Corridor Travel Time Comparing before Calibration; and (d) after 

Calibration 

For validation, weighted mean squared error (WMSE) is used to validate the 

corridor travel time using the following calculation method: 
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𝑦𝑖,𝑡
∗   and 𝑦𝑖,𝑡 denote the observed and simulated value, respectively, at each link i during 

time interval t. N is the total number of sensors, and T is the total number of time 

intervals. For most simulation-based analysis, WMSE is accepted below 15 or 20% in 

practice for model calibration. As shown in Figure 5, validation results indicate that the 

WMSE decrease to 7.91% from 32.74% for volume, and to 10% from 40% for corridor 

travel time after calibration. 

3.6.4. ATM Implementations 

A single-direction freeway of a total length of 5.5 miles on I-270 Southbound 

is coded as the ATM control segment, as shown in Figure 3-9.  The mainline in this 

segment has two types of lanes that represent the general-purpose lanes (GPL) and 

high-occupancy lanes (HOV), respectively. In this study, ATM control is only applied 

on GPL. A 4.25-mile segment upstream to the diverging point is included in the VSL 

control segment. The 0.75-mile segment close to the diverging point is the 

acceleration section without speed limit control, which helps vehicles accelerate to 

free flow speed. The acceleration section can remain critical density and the outflow 

keeps close to bottleneck density. At further upstream, a 3.5-mile segment is 

controlled by VSL. The advisory speed limits in the VSL control section mainly 

follow a declining curve to prevent the downstream congestion from growing too fast 

and blocking the ramps. The 3.5-mile VSL control section was divided evenly into 7 
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parts, the lengths of which are expected to be similar but not exactly the same. 

Considering real-world applications, dynamic message signs are placed along the 

road to present the current speed limit, active warnings, and prohibitions.  

The sudden capacity drop at the diverging area creates the bottleneck and the 

congestion spills back to upstream with the increase of demand. To directly provide 

additional capacity, 1-mile segment at bottleneck is designed as HSR control section, 

including a 0.25-mile buffer zone at upstream and 1-mile convertible zone at 

downstream. After this part of HSR section, the shoulder lane will change to a 

special-occupied section that can only be used by vehicles leaving the freeway using 

the closest off-ramp. This design helps vehicles smoothly drive out of the fully-

occupied section and avoid the confict with off-ramp and on-ramp. 

 

Figure 3-9. Study Area and Implementation of ATM Control 

3.7. Parameters Setting 

The simulation covers the morning peak period from 5:00 am to 11:00 am. 

The first two hours is a warm-up period that leads the system to a steady state and is 

excluded from analysis. The supply side parameters such as capacity, free flow speed, 

and length are kept in consistent with the MWCOG model. Other parameters are set 
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based on the previous experience of traffic simulation. Other defined supply side 

parameters and simulation configurations are shown in Table 3-6 and Table 3-7: 

Table 3-7. Supply Side Parameters for Simulation Model 

Traffic parameter Value 

Free flow speed (miles/hour) 65 

Lane capacity (Freeway) (vehicles/mile/lane) 2000 

Lane capacity (Ramp) (vehicles/hour/lane) 1500 

Wave speed (miles/hour) 12 

Critical density (vehicles/mile/lane) 30.7 

Jam density (vehicles/mile/lane) 180 

Percentage of dropped capacity (%) 10 

Discharge flow after capacity drop (vehicles/mile/lane) 1800 

 

Table 3-8. Scenario Parameters for Simulation Model 

Setting Value 

Warm period 4:00 am ~ 6:00 am 

Cool period 9:00 am ~ 11:00 am 

Simulation period 6:00 am ~ 9:00 am 

Signal control representation Continuous flow with link capacity 

constraint 

Traffic flow model Newell's cumulative flow count model 

Routing method Without OD demand estimation 

Number of learning iterations 120 

Number of assignments per iteration 20 
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The simulation model considers six driver classes: SOV, HOV2, HOV3, APV, 

COM, and TRK, of which the percentage is calculated based on MWCOG 2015 base 

demand. The ratios of each demand type are listed in Table 3-8.  

Table 3-9. Number of Vehicles for Different Demand Types 

 SOV HOV COM&APV TRK 

# of Vehicles 1545170 72147 33906 117258 

Ratio 63.8% 29.9% 1.4% 4.9% 

 

The value of time (VOT) is also considered based on the SHA for Maryland I-

270 and I-495 Level 2 Traffic and Revenue Study. The study estimates the VOT on a 

county basis using each county’s average median household income, the average 

number of hours worked per household per year, and by considering the breakdown 

of trip purposes and applying perception weighting factors for the trip purposes. 

Some regions and demand types are combined in the study to decrease the 

dimensions. Table 3-9 presents the VOT estimation for each demand type of each 

region in the MWCOG study area using the introduced approach.  

Table 3-10. Value of Time ($) for Different Demand Type 

 Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 

SOV 15.6 18.0 18.9 19.8 21.6 24.0 

HOV 18.7 21.6 22.7 23.8 25.9` 28.8 

COM&APV 18.7 21.6 22.7 23.8 25.9 28.8 

TRK 57.7 66.6 69.9 73.3 79.9 88.8 
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In the simulation model, there are default detectors on each link to provide 

real-time traffic conditions to the reinforcement-learning agent. The real-time data 

includes inflow, outflow, speed, density, and number of queued vehicles. This setting 

is the ideal situation for simulation models, while the arrangement of detectors needs 

deeper analysis for field implementation in the future. In this study, the model 

provides one-minute interval traffic information, which presents the best performance 

after several experiments. 

Various scenarios are simulated in this study. That is, different combinations 

of techniques are tested for different time intervals: 5 minutes, and 10 minutes. The 

scenarios include:  

1) No control scenario: the traffic condition is the same with real world. 

2) QL-based VSL: only variable speed limit control could be activated during the 

simulation. 

3) QL-based HSR: only hard shoulder running control could be activated during 

the simulation. 

4) QL-based VSL&HSR: both variable speed limit control and hard shoulder 

running control could be activated during the simulation. 
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Chapter 4 Simulation Results 

 

This study develops a coordinated ATM control method that integrates the 

variable speed limit and hard shoulder running. To fully validate the advantages of 

coordinated control strategy and the integrated reinforcement learning techniques, the 

authors test and compare several scenarios. This section summarizes the simulation 

results of different scenarios. 

4.1. MOEs 

Measures of effectiveness, also known as MOE, are the measures selected to 

quantify if the results accomplish the objectives or conformity of expected results. For 

some model-based experiments, MOE are especially crucial to evaluate the proposed 

algorithm and provide effective suggestions for model improvement. In this study, 

corridor travel time, bottleneck speed and system travel time are defined as three major 

measures. Additionally, other performances such as queue delay on ramp and density 

are also considered.  

1) Corridor travel time (ATM control segment): corridor travel time is the direct 

way to evaluate the improvement of the entire corridor. Also, what mostly 

attracts users may not be the density or speed improvement at the bottleneck 

location but the reduction of estimate travel time on the corridor. 

2) Bottleneck speed and density: bottleneck speed and density directly present the 

influence of ATM control on bottleneck location.  
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3) System travel time: system travel time is the more representative measure to 

present what affects the proposed algorithm have on the entire system. The 

ATM control on I-270 not only influences the bottleneck location, but also 

affects other corridors. 

4) Ramp queue delay: Even though the proposed strategy controls freeway 

mainline, ramps are inevitably affected. Excessive delay on ramps may kill 

drivers’ patience and decrease compliance rate.  

As a benchmark, the author also tests a feedback-based VSL strategy on the 

same network to compare with the proposed algorithm. Details of the feedback-based 

startegy are discussed in a research paper of Zhang et al [83]. 

4.2. Results for Non-control Scenarios 

The fully calibrated model without ATM controls is the mapping of the actual 

traffic condition. As presented by the blue curve in Figure 4-2, the speed at I-270 

diverging point suddenly decreases around 5:50 a.m. Within a very short time, the 

speed drops from 60 to 40 mph and then 10 mph. Meanwhile, the volume at I-270 

mainline reaches 7,500 vehicles/hour, of which approximately half are assigned on to 

the I-270 Spur toward I-495 CCW direction to Virginia. The demand on I-270 Spur 

increased to almost 1600 vehicles/hour/lane, which is close to the roadway capacity, 

stays at this level, and remains for 2.5 hours. The insufficient roadway capacity could 

not satisfy the continuous increasing traffic demand, and then gradually form the 

bottleneck. Additionally, the sudden acceleration and deceleration among high-density 

traffic also contributes to the congestion. During this period, the density at bottleneck 
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stays around jam density (180 vehicles/mile/lane) and the spilling back queue keeps 

that of entire corridor at high level. Several upstream links (S4 to S7) of active 

bottleneck are highly affected by the shockwave and the speed dropping, resulting in 

the corridor travel time increases to 18 minutes, more than twice the free flow travel 

time (Figure 4-1). It can also be observed that the bottleneck speed decreases in 

staggering speed, that is to say, the queue also spills back at express speed. This is just 

more proof that a control strategy with good prediction model and quick response is of 

the essence in releasing congestion.  

 

Figure 4-1. Corridor Travel Time for Different Scenarios 

Table 4-1. Corridor Travel Time Summary 

Control Scenarios Corridor Travel 

Time (min) 

Improvement (%) 

No Control 21.91 / 

Single VSL Control  18.40 -15.98 

VSL&HSR Control  16.01 -26.94 

Feedback Control  20.09 -8.20 
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Figure 4-2. Bottleneck Speed for Different Scenarios 

Table 4-2. Bottleneck Speed Summary 

Control Scenarios Bottleneck Speed 

(mph) 

Improvement (%) 

No Control 16.20 / 

Single VSL Control  23.57 +45.59 

VSL&HSR Control  29.32 +80.98 

Feedback Control  23.02 +42.10 

 

4.3. Results for Feedback-Based VSL Control Scenario 

The feedback-based VSL control strategy is tested as the benchmark to evaluate 

the performance of the proposed strategy, as shown by the orange curve in Figure 4-2. 

Different from non-control scenario, the bottleneck speed fluctuates several times from 

5:50 to 6:15 a.m. instead of keeping falling to the bottom. Even though the traffic 

condition is still not optimistic for the conversation, implementation of the feedback-

based strategy has kept traffic speed at bottleneck above 20 mph, and density below 

150 vehicles/mile/lane during most of the time. It can also be observed from the figures 
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that the congestion dissipates faster than the non-control scenario, which is a strong 

demonstration that VSL control can increase traffic throughput. Toward the end of 

congested period, the orange curve has a significant falling down after recovering to 

free flow speed. This is attribute to the quick increase of posted speed limit, which is 

an inevitable result of lacking the benefits from traffic state prediction. A feedback-

based strategy works based on the feedback from the environment, to some extent, it is 

a reactive operation that response to the traffic condition passively. Even though the 

traffic condition could be improved, the performance is limited by the feedback nature. 

This explains the feedback-based strategies has limitation in providing quick response 

especially to the rapidly changing traffic conditions. Extends to the ATM control 

section, although the feedback-based control has not completely eliminated speed 

dropping and spilling back queue, the shockwave has been suppressed to a great extent. 

In addition, Figure 4-1 indicates that feedback-based control benefits corridor travel 

time to a certain extent, average 8.2% lower than non-control scenario.  

4.4. Result for QL-based VSL and QL-based VSL&HSR Control Scenarios 

The grey curve and yellow curve in Figure 4-2 represent the performance of QL-based 

VSL and QL-based VSL&HSR strategy, respectively. To begin with, let us compare 

the QL-based VSL strategy and the feedback-based VSL strategy. As far as the 

bottleneck speed is concerned, the QL-based strategy and feedback-based strategy 

differs in the trend but not markedly in the substance of average speed during entire 

congested period. However, we may still discover from Figure 4-1 that the curve of 

speed changed gently under the QL-based strategy. It is still fluctuating under the 

control, but could hardly see the sudden decrease from free flow speed which is similar 
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to the end of feedback-based scenario. This strongly confirms that the introduction of 

QL method redeems the limitation of traffic prediction in feedback-based strategy 

tremendously. Even though these two strategies present no significant difference in 

bottleneck speed improvement, the QL-based scenario outperforms the other one in 

corridor travel time reduction. All of these are profit from adopting cumulative queue 

delay on the entire corridor in the states and reward function of QL process. With the 

powerful self-learning ability, the QL-based strategies can better learn how to balance 

the performance of entire corridor instead of sacrificing upstream VSL control segment 

for bigger improvement at bottleneck.  

 Compared with stand-alone strategy, coordinated strategy drives the traffic 

system to improve on all fronts. There is no significant difference during the first 1 

hour. However, the bottleneck speed experiences a sharp increase up to 40 mph from 

8:00 to 8:30 a.m. This attributes to the direct increase of roadway capacity by the 

activation of hard shoulder running. After 8:30 a.m., the agent predicts there is a 

tendency for the congestion to moderate, so it deactivates shoulder lane control and 

only uses variable speed limit control. During the entire simulation, the average speed 

increases 29.3 mph, almost 80% higher than non-control scenario and 40% higher than 

VSL-alone scenarios. Benefits from the coordinated ATM control, the congestion 

dissipated 10 minutes earlier than stand-alone strategies. For the corridor travel time, 

hard shoulder running helps it decrease from 30 minutes to 20 minutes.  
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Table 4-3. Summary of All MOE 

 I-270 SB Freeway Mainline I-270 SB Ramps 

 Corridor 

Travel 

Time 

(min.) 

Speed 

(mph) 

Density 

(vpmpl) 

Queue 

Delay 

(veh) 

Travel 

Time 

(min.) 

Queue 

Delay 

(veh*min) 

No Control 21.90 39.15 76.25 27.5 0.58 3.89 

QL-VSL 

Control  

 

18.4 

(-15.98%) 

44.62 

(+13.97%) 

67.99 

(-10.83%) 

19.34 

(-29.67%) 

0.55 

(-5.17%) 

3.31 

(-14.9%) 

QL-VSL&HSR 

Control  

 

16.0 

(-26.94%) 

48.85 

(+24.77%) 

61.88 

(-18.84%) 

16.39 

(-40.4%) 

 

0.50 

(-13.79%) 

2.66 

(-31.61%) 

FB-VSL 

Control  

 

20.1 

(-8.20%) 

42.29 

(+8.14%) 

70.92 

(-6.99%) 

21.02 

(-23.56%) 

0.68 

(+17.24%) 

5.04 

(+29.56%) 

 

 

Figure 4-3. System Travel for Different Scenarios 

4.5. Summary of other findings 

As shown in Table 4-3, the study compares other MOEs such as density and queue 

delay. To distinguish the impact on freeway mainline and ramps, the results of I-270 

freeway mainline and freeway ramps are summarized separately. It proves that ATM 
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control performs well in releasing traffic congestion on freeways. An in-depth 

comparison of flow speeds between the stand-alone VSL strategy and the coordinated 

ATM strategy indicates that the HSR brings great improvement in improving corridor 

travel time. There is another interesting concern that the traffic performance 

deteriorates significantly under the feedback-based ATM control, especially the queue 

delay on ramps, while the QL-based strategies show considerable improvement. 
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Chapter 5 Conclusion 

 

5.1. Summary of the Research 

This study proposes a coordinated ATM control algorithm to release freeway 

congestion using reinforcement-learning technique. The algorithm takes advantage of 

the VSL and HSR to achieve better performance in traffic improvement. Benefited 

from the contribution of reinforcement learning technique, the proposed algorithm 

works efficiently by reducing the burden of time-consuming optimization calculation.   

The proposed control framework has been applied to a network, where the 5.5-

mile segment is controlled by the variable speed limit and hard shoulder running 

strategies. Considering both the detailed information about individual agents and speed 

of model services, DTALite, a mesoscopic dynamic traffic analysis (DTA) model is 

adopted to simulate the traffic improvement under the proposed strategy. The DTA 

model is adjusted, calibrated and validated using real-world traffic data to capture the 

realistic traffic conditions. Five scenarios are compared based on 5-minutes-VSL 

control, 10-minutes-VSL control, 5-minutes-coordinated control, 10-minutes-

coordinated control, and no control. The simulation results indicate that the proposed 

strategy could improve the traffic flow condition by reducing the corridor travel time 

up to 27%. By comparing the results of the proposed coordinated strategy with that of 

the stand-alone VSL strategy, coordinated strategy outperforms the other one. By 

applying random traffic flow in the network, the model set correctly captured 90% (23 

of 25 tests) of the congestion scenarios and provided optimal controls immediately. As 

a benchmark, the proposed QL-based strategies are compared to a feedback-based VSL 
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strategy. The feedback-based VSL strategy reduces the corridor travel time by 8.6% 

and increases bottleneck speed by 42.1%. The results suggest that QL-based strategy 

method redeems the limitation of traffic prediction in feedback-based strategy 

tremendously. Additionally, the QL-based strategy better balances the performance at 

bottleneck and upstream ATM control segment.  

5.2 Advantages of the proposed Algorithm 

The simulation model shows the advantages of the proposed strategy in several 

aspects. First, the coordinated ATM strategy provides the proof in solving the long-

standing problem of stand-alone ATM control strategies, which is regarded as 

unreliable in complex traffic congestion scenarios. The effectiveness of any stand-alone 

ATM control strategy like variable speed limit or ramp metering is limited by the size 

of flowing traffic. Too heavy a traffic often results in the quickly reach of a roadway’s 

capacity, which leaves limited room for manipulation. As the only method based on 

the capacity improvement, the introduction of hard shoulder running can work with the 

variable speed limit to guide the traffic to flow through a bottleneck.  

Second, adopting the queue delay as the key parameter to evaluate the traffic 

condition with the reward function provides a possible method to evaluate the 

performance of the algorithm. Past reinforcement learning algorithms took density, 

speed and volume as the parameters to define the states and reward functions. However, 

the traditional variables are insufficient to provide the overall evaluation of the traffic 

condition of the network. Additionally, the corridor queue delay helps the agent learn 

how to balance the performance of entire corridor instead of sacrificing one part. 
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Therefore, this study takes the queue delay as the key parameter to replace the 

traditional variables.   

Furthermore, the adoption of reinforcement learning technique minimizes the 

burden of complex optimization process, which existing with many traditional ATM 

algorithms. The Q-Learning agent is trained in an offline scheme. After the agent learns 

how to get the optimal strategy for various traffic conditions, the controlling system 

does not need to perform heavy computing which enables real-time decision-making. 

In addition, through the continuous learning function, the RL-based ATM algorithm 

has the capability of predicting traffic state transitions and acts in a proactive control 

scheme. 

5.3 Deficiency of the Proposed Algorithm 

While the proposed strategy performs well in improving traffic flow under 

congested condition, there are still areas that require further research. First, while the 

reinforcement learning technique can provide an optimal action for any given state 

immediately, the model requires long period of training. Defects in any link will result 

in a great reduction of traffic control effects. In addition, some studies indicate that the 

effects of ATM control, especially VSL, are affected by traffic flow characteristics at 

different types of freeway bottlenecks. For example, the VSL strategy should also 

consider the unique variable for a particular type of bottleneck caused by diverging, 

merging, on-ramp, off-ramp, or even different number of lanes. The one-to-one 

correspondence between simulation models and scenarios means a series of models 

need to be built, trained and tested for different traffic conditions. 
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Secondly, some assumptions used in the algorithm may reduce the accuracy of 

the performance. In this study, it is assumed that all drivers would fully obey the posted 

speed limits while it is known this is not the case in the real world. The dynamic speed 

limit signs are contributing mainly under free-flow traffic condition. And when the 

situation is on the contrary, for example the heavy congested or the inclement weather 

conditions, the speed limit signs may not work well since drivers are easily influenced 

by the surrounding drivers and weather conditions. Therefore, the simulation results 

based on this assumption may not reflect the performance in real world applications.  

In addition, this study assumes perfect input data with true data reliability. In 

the real world, most of the ATM operation systems use loop detectors to collect real-

time data to support the dynamic control algorithm and it is a significant challenge for 

a loop detector to deliver continuous and reliable data. For the record: the data quality 

is limited due to the huge operating and maintaining expense, and the on blemish of the 

inaccuracy of loop detectors.  

5.4 Future Work 

Although the proposed strategy presents great benefit in improving freeway 

traffic congestion, the performance loss caused by the miss-considering factors or hard 

constraints are still examined. To improve the strategy, several topics for future studies 

include the following:  

1) As discussed in the weakness for the proposed strategy, issues related to training 

time can be further improved. Regarding the model training time, more efficient 

coding and computational method should be tried to reduce the learning time. 
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The network of parallel computing, and the networks of distributed appliances 

could also be introduced to the computational process.  

2) Like discussed in the previous section, the simulation results are based on the 

theoretical framework presented in the current study. Not surprisingly, the 

performance of real-world applications is not what the simulation model 

presents, but far different. Notably, traffic improvement under the proposed 

ATM strategy is relatively depended on the drivers’ compliance rate. In this 

study, the drivers are assumed to fully follow the posted speed limits, which is 

impossible in real world conditions.  

3) To extend the issue indicated above, the effects of drivers’ compliance with 

posted speed limits should be considered for evaluating the operational effects 

of ATM control strategies. How to design the implementation of ATM system 

to increase drivers’ compliance ratio, and how to minimize the influence of 

abnormal driving behavior are two important aspects, which significantly 

strengthen the performance. On this matter, some field studies are suggested to 

have better understanding of drivers’ behavior. For simulation purpose, a 

distribution function based on behavior models such as stochastic equations 

should be developed to represent true behavior. 

4) About the imperfection of data assumption as related to the reliability issue with 

loop detectors, while other technology can be deployed, for simulation 

purposes, intermittent real data from loop detector complemented by historical 

data may be modeled as a single input data for the model run.   
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5) Current variable speed limit and hard shoulder implementations follow simple 

rules, which may not be the optimal installation method. About the optimized 

installation of these two strategies, deeper analysis is suggested to coordinate 

with microscopic simulation models. Traffic data from a VSL-equipped 

freeway are also needed to provide an enhanced understanding of the impact of 

different ATM implementations.  
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