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1 Introduction

The study of robust nonlinear control has attracted increasing interest over the last few years. Progress
has been aided by the recent entension [FM91, Jam92] of the linear quadratic results [Jac73, Whi81] linking
the theories of L, gain control (nonlinear Hy, control), differential games, and the stochastic risk sensitive
control. Most of the previous research conducted in the area of robust nonlinear control has focused on
the case where full state information is available. Thus, previously little attention has been given to the
problem of robust nonlinear control via output feedback. In this paper we address the problem of robust
H, output feedback control for the special case of bilinear systems.

As a generalization of the results from linear theory, the solution to the output feedback problem has
been postulated to involve a nonlinear observer combined with a controlled dissipation inequality for an
augmented system. By postulating such a structure and solving an augmented game problem, several
researchers [BHW91, TA92, vdS93] have established results yielding sufficient conditions for the existence
of a solution to the output feedback robust control problem. In [JBE93c] a theoretical solution is obtained
for the finite-horizon partially observed dynamic game problem for discrete-time nonlinear systems. The
approach taken there is motivated by ideas from stochastic control; in fact, the controller is obtained as
an asymptotic limit of the controller for the risk sensitive stochastic control problem. In [JB93] this work
is extended to the infinite horizon case and stability issues are addressed. In the latter paper a purely
deterministic viewpoint is maintained. Both papers present results which are necessary and sufficient. The
continuous time problem can be solved, in principle, using a similar approach [JBE93a); however, these
results have not yet been proved rigorously for general systems.

The novelty of the approach of [JBE93a, JBE93c] is the reformulation of the partially observed dynamic
game problem as a fully observed problem in terms of an information state. The information state is derived
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using only past outputs and is determined as the solution of a dynamic programming equation. Thus using
this approach, the original problem is restated in terms of an equivalent problem in which there is full
knowledge of a new state. This new state is called the information state. Although common in stochastic
control, this type of separation approach had not been previously applied to deterministic game problems.
For linear systems, the information state can be related to the “past stress” used by Whittle [Whi81] in
solving the risk sensitive problem for linear systems (see also [Whi91]). Bagar and Bernhard [BB91] have
also employed the “past stress” in their solution to the game problem.

In this paper we address the problem of robust control of bilinear systems using output feedback. This
paper is organized as follows. In Section 2, a statement of the robust output feedback control problem for
bilinear systems is given. In Sections 3 and 4 respectively descriptions are given for the optimal solution
of the problem due to James, Baras, and Elliott, and the Certainty Equivalence solution of the problem
due to Bagar and Bernhard. The implementations of these two solutions are compared in Section 5. The
goal of the comparison is to determine under what conditions the Certainty Equivalence Control (CEC) is
optimal. In addition, examples are given which demonstrate that the optimal controller is stabilizing and
robust to input noise as well as modeling noise.

2 Problem Statement

Consider the class of bilinear systems described by the following set of state space equations

(#(t) = [A+ X Bu(e(t) + (), (o) = 2o,

y(t)

Ca(t) + v(1),

( VQx(t) )
vVRu(t) |

We assume that the state z(t) € IR" is not directly measurable and the initial condition zo € R" is
unknown. All knowledge of the state is restricted to be obtained through the observations y(t) € R?. The
additional output 2(t) € R™™ is a performance measure. The parameters Q = Q' >0and R=R >0
are design parameters which depend on the specific control system design objectives. The admissible
controls u = [uy, ...un,]’ are restricted to take values in U = IR™ and to be non-anticipating functions of the
observation path y. Let Oy, . ; denote the class of all such controls on the interval [to,s]. For notational

(2.1)

I

#(t)

convenience, we define Bu = ", Biu;(t). The disturbances w and v are assumed to be finite energy
signals on the interval [to,t], i.e., w € L?([to, ts],R™) and v € L%([to, ;], R?).

The Robust H,, Output Feedback Control Problem is to determine an admissible control u such that
the resulting closed loop system X* has finite L, gain from the disturbance inputs w, v to the performance
output z. This is stated precisely in Problem 2.1.

Problem 2.1 Robust H,, Output Feedback Control
Given p > 0, find a control u € Oto,t, such that for all initial conditions zo € IR", there exists ﬁ;‘j finite
such that

1 u
llI1* < ;(Ilwll2 +loll) + £,

Jor all w,v € Ly([t,,ts]).
Here we chose to use the gain parameter 4 in order to remain consistent with the risk sensitive stochastic
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control problem from which our solution was derived. The more common gain parameter +, consistent
with the linear H,, problem, is related to u by 72 = %

The solution to the robust H,, output feedback control problem is equivalent to the solution to a
related zero sum game problem [FM91, Jam92]. Consider the cost functional

J(v) = Jiy(v) = sup, pera SuPgoern{ Blz0) + § S (< 2(),Q2(s) > + < u(s), Ru(s) >

=5 (lw(s)I1? + llo()lI*))ds + 2(=(21)}-

It can be shown that X* is finite gain on [tg, ] if and only if there exists a finite quantity ,B;‘f such that

(2.2)

J(u) < BY Ve€ [to,ty]

Problem 2.2 Bilinear Partially Observed Game
Given p > 0, under the assumptions

(A1) there exists u > 0 and u € Oy 4, such that J(u) is finite,
(A2) the initial cost satisfies
-1 _
#a) = §— o < (s - 3), P (e = 5) >
2p
where T € R™, P € R™™ > 0 and ¢ € R, and

(A3) the terminal cost ®(x) > 0 is locally Lipschitz continuous with at most quadratic growth,

find u € Oy, 1, to minimize the cost functional for the bilinear systems described by equation (2.1).

By making use of the equivalence of Problems 2.1 and 2.2 we are able to use all the established tools
of optimal control theory.

3 Optimal Controller

The information state can be thought of as a deterministic sufficient statistic in that it contains all the
information needed to control the system with respect to the given performance measure. The information
state is not a state estimator. For Problem 2.2 the information state p is given by

pe(z) = suPyerz SuPgoern{ B(z0) + 3 fi (< 2(5), Q2(s) > + < u(s), Ru(s) >

—5 (o) + [ICx(s) = y(s)|1?))ds : a(t) = «}

where past observations and controls {u(s),y(s) : s € [to,t]} are known. From the definition it is clear that
the information state is the cost accumulated up to the time £, consistent with the available information
at time 7, and assuming the state at time ¢ is 2. Thus the information state evaluates the accrued cost for




each possible state z at time t. Using dynamic programming it can be shown that the information state is
the solution to the Hamilton-Jacobi equation

% = F(ps,ult), y(t)) (3.3)
Po = p, |

where
a
F(pyu,y) = —supyern{< Vop,(A+ Bu)z + w > +5,(||w]]* + [|Cz - y[[%)
~3(<2,Qz > + < u,Ru >)}
= =< Vup,(A+ Bu)e > +4||Vapl* + 3(< 2,Q2 > + < u, Ru>) — o [|Ca — g%
The maximizing disturbance in this case is @ = —uVp.

The cost (equation (2.2)) can be rewritten in terms of the information state
J(u) = sup (ps,, ®)
yeL?
where the “sup pairing” (-, ) is defined by
a
(p,g) = sup {p(2) + (=)}

Thus the value of the game is given by

Wp,t)= inf sup{(py,,®):p: = p}.

in
€0t yeI,
Applying dynamic programming, we can determine an optimal control u(t) which is a function of the past
observations {y(s) : s € [to,t]} through the information state p. The dynamic programming equation is
(c.f., [JBE93b])
Q% + infyev supyere{< Vo, W, F(p,u,y) >} =0

W(p, tf) = (pv (I))

The optimal control is given by the minimizing value of » in this equation.

In general the information state is infinite dimensional, i.e., p; = pi(z) evolves in a general class of
functions which cannot be parameterized by finite dimensional quantities. In [Jam93] James describes a
class of nonlinear systems for which the special form of the dynamics and cost function allow the information
state to be described in terms of finite dimensional quantities. Not only do bilinear systems with quadratic
cost fall into this class, in this case the information state is also a quadratic. The exact form of the
quadratic is explored in Theorem 3.6.

The fact that the quadratic information state satisfies equation (3.3) can be shown by direct differen-
tiation and substitution. Before we show this, however, we must first define some pertinent operators and
present a lemma. Let A, B € R"*™ where A = [a;;] and B = [b;;].

Definition 3.3 The matriz dot product [-,-] : R™™ x R™*™ — IR is defined by

[4,B] £ 3.3 aijbi;.

i=1j5=1



Definition 3.4 The derivative of a function W(-) : R™*™ — IR with respect to its matriz argument is

defined by

VW A [OW]

da;;

Thus VW is the matrix of first partial derivatives with respect to the elements of A.

Lemma 3.5 Suppose A, B € R"*" and A is symmetric, then

(i) Va<z,A7lz >= —A7122'A7?, and

(i) [Va<z,A™ 1z >, B]= - < A™12,BA"z > .

Theorem 3.6 For Problem 2.2, the information state is given by

pe) = ¢(t) — % < a(t) - #(t), P71 (t)(2(t) - E(1)) >

where P = P' > 0 and 2(t), P(t) and ¢(t) satisfy the ODE’s

Proof:

LHS

RHS

e

i

e

B1) = (A+Bu(t) + kP()Q)3(1) + P()C(y(2) - C(1))

350) = 3

P(t) = P(t)(A+ Bu(t)) + (A+ Bu(t))P(t) — P(t)(C'C — pQ)P(t) + I
P(0) = P

$(t) = (< 2(),Q8(t) > + < u(t), Ru(t) > —1|ly(t) - CZ(1)|1?)

#0) = ¢

ap

at

.

< Vap,z > +[Vpp, Pl+ < Vep,$ >

+ < P7Y(z - %),(A+ Bu+pPQ)z + PC'(y - CZ) >
+§1; <(z—-2)P~Y,(P(A+ Bu) + (A+ Bu)P — P(C'C — pQ)P + )Pz — z) >
+1(< %,Q% > + < u, Ru > —1||y - C3|]?)

+(x —ZYP (A + Bu)z + 5;(z — ) P~*(z - %)
+3(<2,Qz >+ < u,Ru > —%Hy - Cz||?)

— < Vzp, (A4 Bu)z > +4||Vopl* + 3(< 2,Q2 > + < u, Ru > — ||y — Czl[?)
%(w - z)YP YA+ Bu)z + .}—u(a: -Z)P %z - 7)

+%(< z,Qz >+ < u,Ru> —%Hy - Cz||?)
LHS




Theorem 3.6 implies that for bilinear systems with quadratic cost the information state can be identified
with the finite dimensional quantity p = (Z, P,#). Thus the output feedback robust control problem is
equivalent to a new finite dimensional state feedback game with state p = (%, P, ¢). We now regard the
value function W as a function of p:

W(p,t)= W(&, P, ¢,t) = W(p,,1),
1

where p, = ¢ — 3. <z -7, P~1(z — ) >. The dynamic programming equation is now

( %vtz + supyemeinfuev{< VoW, (A + Bu(t) + pP(t)Q)Z(t) + P()C'(y(t) — CZ(t)) >

+ VoW, P(t)(A + Bu(®)) + (4 + Bu())P(t) - P(t)(C'C — pQ)P(2) + I]
4 (3.4)
+ H< B, QB(1) > + < u(t), Ru(t) >) - &lly(t) - CE@)|P} = 0

[ W(p,ty) = (pptqu’)

where y plays the role of a competing disturbance. Note that since Isaacs condition is satisfied the order
in which the inf and sup are applied is inconsequential.

An interesting and novel feature of this problem is that the value function need not be finite for all
values of p,t. In the linear case, this is closely related to the coupling condition [YJ93]. Let us write

D = {(z,P,¢,t) eR" X S" xR x [0,T] : W(Z,P,¢,t) is finite }.
In general, D is a nontrivial subset of R” x S™ X R x [0,T); see the numerical examples in Section 5.
The partially observed game problem can now be solved using the dynamic programming equation

(3.4) [Fri71, BB91, FH93], as stated in the following theorem.

Theorem 3.7 (Verification) Assume there exists a smooth solution W € C*(D) of the Hamilton-Jacobi
equation (3.4). Then the control u*(p,t) which attains the infimum in (3.4) defines an optimal controller
u* € Oy, which minimizes the cost functional (2.2) for the partially observed game. In this case u* is
given by

u*(p,t) = —R™'k(p, 1)

where k is defined by
ki(pt) £ < VaW(p,1), Bi& > +[VPW(p, 1), PB] + [VeW(p, ), BiP],  i=1,---m
and the optimal control at time t is u} = u*(pt,1).
In general, the value function need not be C?, and equation (3.4) must be interpreted in a generalized

sense. This is typically the case in optimal control and game theory. However, it can happen that W is
smooth in certain regions, as in the next theorem.

[This theorem may have to be restated. However, it is not as important as the other theorems.]

Theorem 3.8 There erists t' € (to,ts] (possibly small) such that the solution W to the Hamilton-Jacobi
equation (3.4) is smooth for t € [to,t']. Thus, by the Verification Theorem, u* is optimal on [to,'].

Proof: ...using characteristic equations u



4 Certainty Equivalence

Systems with finite dimensional information state are important because they allow direct implementa-
tion of the optimal controller. For problems which have an information state which is not finite dimensional
direct implementation is impossible. However, theoretical knowledge of the optimal solution can be used
for guidance in the design of a suboptimal controller. In this paper we examine a particular suboptimal
controller, the Certainty Equivalence Controller (CEC) of Bagar and Bernhard. We compare the optimal
controller obtained in Section 3 with the CEC in an effort to investigate the optimality of the CEC.

For the case of linear systems it has been shown that the Certainty Equivalence Controller (CEC) is
optimal [BB91]. For nonlinear systems, some general conditions have been found under which a Certainty
Equivalence Principle (CEP) [Whi81, BB91, JBE93a)] holds, i.e., the CEC is optimal. The CEC is defined
in terms of a minimum stress estimate Z; and the optimal state feedback controller %(z,?):

’uoE(t) = ﬂ(a':t,t). (4.5)
The value function of the full state feedback game is the solution to the Hamilton-Jacobi equation
% = —infysup,{< V,V,(A+ Bu)z + w > +i(< 2,Qz > + < v, Ru > —%||w||2)}
(4.6)
‘/tf = Q’

and 7(z,t) is the value of u achieving the minimum in (4.6), assuming V is sufficiently smooth. Indeed,
i(z,t) = —R1%(z, 1), where ki(z,1) 2 < V.V(z,t), Bix >, i=1,---m, and the optimal disturbance is
W(z,t) = pVV(z,t). The minimum stress estimate [Whi81] of the state is given by

Z(p, 1) = argmax{p,(z) + Vi(2)}. (4.7)

Thus Z; = Z(ps,t). Note that in general, Z is set valued.

When the minimum stress estimate is unique and the information state and value function are suffi-
ciently smooth, it can be shown by applying the verification principle that the CEC is optimal. This gives
an alternative proof to the ones given in [BB91, DBB93].

Theorem 4.9 If

(i) the minimum stress estimate &(p,t) is unique for all (p,t) € D, and

(ii) the full state information value function V satisfying (4.6) is continuously differentiable,

then the function
Weg(p,t) = (poyV2) (4.8)

is a solution to the dynamic programming equation (3.4) and the Certainty Equivalence Controller (4.5)
is optimal.

Proof:

Consider (p,t) € D, then by assumption (i) the minimum stress estimate # is unique. This together
with assumption (ii), that the full state information value function V is continuously differentiable, allow
us to equate Weog = p,(Z) + Vi(Z) and to differentiate naturally with Z as a parameter.
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By first order optimality condition V,V(Z) = —V,p(z) = %P‘l(i — ). First calculate y* and u* when

W =Weg.

y* = Ci-}-,uCPV;WCE =C%

w(p,t) = —R7k(p,t)

where k is defined by

k‘,’(p, t)

i

Thus when W =

f V:Wee(p,t), BiZ > +[VpWcE(p,t), PB] + [VeWeE(p,t), B; P, i=1,---m
5 <P Y%-1%),BZ > 44, < P72 -7),(BiP)P7(z - %) >
+4; < P7Y(3 - 2),(PB)P~Y(z - &) >
5 <PNz-1%),Biz >
k,’(i,t)

WC’E,
u*(p,t) = U(Z) = ucE.

Now by direct differentiation and substitution it can be shown that Wog = V(%) + p(Z) satisfies equation

(3.4). Now
LHs 2

and also
RHS £

Thus since u* = %(Z) when W = W¢Eg we are done.

IWecE
at

Q)

5 ()

-3 < PNz -3),(A+ Bu(2))z + P7\(z - %) > -3(< 7,Q% > + < U(%), RU(%) >)
+9; < (8-%),PYz-7)>

— < V-W¢E, (A + Bu* + pPQ)z + P(t)C'(y*(t) — CZ(t)) >
—[VpWog, P(A + Bu*) + (A4 Bu*)P — P(C'C — uQ)P + 1]
~-3(<2,Q% > + < w*, Ru* >) + L |ly* - Cz|?

-+ < P71z - %),(A+ Bu* + pPQ)Z + P(1)C'(y*(t) — CZ(t)) >
—2; < P& - %),(P(A+ Bu*) + (A+ Bu*)P — P(C'C — pQ)P + )P~} (z - %) >
-1(<%,Q% > + < v, Ru* >) + & |ly* - C3||?

—+ < PY(z-%),(A+ Bu*)z+ P71 (- &) > —3(< & QT > + < u*, Ru* >)
+a < (2-%), P74z - %) >

The conditions given in Theorem 4.9 are essentially those of [BB91], and are difficult to verify in general.
The key difficulty is the uniqueness of the minimum stress estimate.

(Is it possible to prove uniqueness of Z in some cases? Presumably V' will be smooth for small times.??7]

.........

.........




5 Examples

In this section we present several examples of systems which are designed to demonstrate two different
properties of the solution. First, we consider a bilinear system which is unstable without control in order
to demonstrate that the optimal controller is stablizing and robust to input noise as well as modeling noise.
Second, we consider a bilinear system which is stable without control in order to clarify the issue of the
domain D of the optimal value function W. In addition we address the issue of determining when the CEC
is optimal.

6 Conclusions
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