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1 Introduction

The efficient storage, management, and manipulation of large datasets is important in many fields of
science, engineering and business. Simulations and experimental measurements are the main sources of
data in engineering and scientific applications. In environmental simulations, for example, the output of
a simulation is one or more datasets, each consisting of a large number of numerical values. A scientist
often needs to access, explore and analyze the datasets to gain insight into the problem at hand and to draw
meaningful and useful conclusions from the raw data. Large volumes of data are also being gathered from
business transactions by commercial institutions. The data has to be queried, mined and manipulated to
discover interesting and important patterns so that an institution can make better business decisions. The
accuracy and value of the information provided by decision support systems and data-mining applications
largely depend on the amount of data, so many businesses are inclined to gather and store as much data as
possible.

Data analysis applications often access a subset of all the data available in a dataset. The data of interest is
then processed to transform it into a new data product. That is, a query into the dataset includes a reference
to a user-defined function for processing the data. Technological advances are providing cost-effective
solutions for storing large datasets; it is possible to build a 1-Terabyte storage system using commodity
disks and PCs at about $10,000. However, software support is needed to efficiently store large datasets,
access the data of interest, and process the data. In some cases data analysis is employed in a collaborative
environment, where multipleclients access the same datasets and perform similar processing on the data. For
instance, in medical training, a large group of students may want to simultaneously explore the same set of
digitized microscopy slides, or visualize the same MRI and CT datasets. In that case, the data server needs to�This research was supported by the National Science Foundation under Grants #ACI-9619020 (UC Subcontract #10152408)
and #ACI-9982087, the Office of Naval Research under Grant #N6600197C8534, Lawrence Livermore National Laboratory under
Grant #B500288 (UC Subcontract#10184497), and the Departmentof Defense, AdvancedResearchProjects Agency,USAF, AFMC
through Science Applications International Corporation under Grant #F30602-00-C-0009 (SAIC Subcontract #4400025559).
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execute multiple queries simultaneously to minimize latencies to the clients. In a multi-client environment,
there may be a large number of overlapping regions of interest, and common processing requirements (e.g.,
the same magnification level for microscopy images, or use of the same transfer functions to convert scalar
values into color values) among the clients.

Optimizations for the execution of multiple queries have been extensively investigated in the context of
relational databases [7, 8, 10, 11, 12, 14]. Common optimization techniques include detection of common
subexpressions in query plans, use of materialized views (or intermediate results), and data prefetching
and caching. Once common subexpressions are detected for a batch of queries, individual query plans are
merged or modified and queries are scheduled for execution so that the amount of data retrieved from the
database is minimized and multiple executions of common paths in the query plans are avoided. The use
of materialized views has also been investigated. Several views of subsets of database relations can be
maintained so that queries can be evaluated using materialized views, to minimize the number of accesses
to the database relations. The materialized views are the intermediate and final results computed during the
execution of previous queries.

In this work we are designing a framework to examine efficient strategies and runtime support for the
execution of multiple query workloads in data analysis applications. We target data mining applications
and applications that analyze, explore, and visualize large multi-dimensional, multi-resolution scientific
datasets. Our goal is to develop optimizations for scheduling system resources and operations, for data
caching, for maintaining and using intermediate data results, and support for distributed and multi-threaded
execution, when a multiple query workload is presented.

Various ideas previously explored for relational databases can be used for applications that analyze
and visualize very large scientific datasets and for decision support applications. However, techniques and
runtime support for relational databases are difficult to directly apply to multiple query workloads in those
applications for several reasons: (1) In many cases, datasets consist of application-specific complex data
structures. For example, the datasets generated by scientific simulations or experimental measurements
are often multi-dimensional and multi-resolution. That is, each data item in a dataset is associated with
coordinates in a multi-dimensional space. Data dimensions can be spatial coordinates, time, or simulation
conditions such as temperature and velocity. In some cases, the mesh modeling the physical domain can
be unstructured and multi-resolution; therefore the data items can be irregularly and sparsely distributed
in the underlying space. (2) Oftentimes, a user-defined data structure, called accumulator, is used to hold
intermediate results during processing. For example, a z-buffer can be used as an intermediate data structure
to hold color and distance values in isosurface rendering of volume datasets. In data mining, histograms
and count tables can be used to hold the distribution of attribute values for building decision trees [13].
(3) User-defined processing of data is an integral part of a query. User-defined functions may be simple
operations such as minimum, sum and average, or complex functions such as visualization operations and
data mining operations.

In earlier work we developed runtime support and examined strategies for efficient execution of queries in
data analysis applications on distributed-memory parallel machines with a disk farm [6, 9] and in distributed,
heterogeneous environments [3, 5]. Our previous work has focused on the efficient execution of a single
query. Better utilization of system resources can be achieved if commonalities across multiple queries are
exploited. For instance, intermediate data structures computed by a query can be used by another query, if
the two queries have overlapping regions of interest and the same processing requirements. In this paper we
describe the design of a runtime system for shared-memory multiprocessors. This system aims to improve
the execution of multiple queries by (1) maintaining intermediate data structures generated by queries, (2)
caching input data in memory, and (3) providing support for multi-threaded execution (i.e., each query
is executed as a thread). We describe initial experimental results using an application, called the Virtual
Microscope [2], for browsing digitized microscopy images.
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Figure 1: The system architecture.

2 System Architecture

Figure 1 illustrates the architecture of the framework, which consists of several service components,
implemented as a C++ class library, and a runtime system. The runtime system supports multi-threaded
execution on a shared-memory multiprocessor.

2.1 Query Server

The query server interacts with clients for receiving queries and returning query results. A client query
includes (1) a query type id, and (2) user-defined parameters to the query object implemented in the
system. The user-defined parameters include a dataset id for the input dataset, query meta-information (e.g.,
predicate, query window), which describes the data of interest, and an index id for the index to be used for
finding the data items that intersect the query.

An application developer can implement one or more query objects for application-specific subsetting
and processing of datasets. When a query object is integrated into the system, it is assigned a unique
query type id. The implementation of a new query object is done through C++ class inheritance and virtual
methods. A Query base class is provided by the system for this purpose. A query object is associated
with (1) an execute function, (2) a query meta-data object, which stores query information, and (3)
an accumulator meta-data object, which encapsulates user-defined data structures for storing intermediate
results and provides a virtual method, called overlap. A QueryMI base class is provided for implementing
new accumulator meta-data objects via sub-classing the base class. The overlap method is implemented
by the application developer so that the user-defined accumulator meta-data object associated with the query
object can be compared with another accumulator meta-data object for the same query type. Both the query
meta-data object and the accumulator meta-data object are implemented by the application developer by
sub-classing the base classes provided by the system. Note that the final result for a query can also be
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viewed as an intermediate result for another query. Thus, the meta-data information for the output is also
implemented using an accumulator meta-data object. The execute method implements the user-defined
processing of data. In the current implementation, the application developer needs to implement index
lookup operations, operations for the initialization of intermediate data structures, and the processing of
data retrieved from the dataset in the execute method. When a query is received from a client, the query
server instantiates the corresponding query object and spawns a Query Thread (Figure 1) to execute the
query.

The query server interacts with the Page Space Manager (PS) and the Data Store Manager (DS) to
inquire about available memory to better schedule the queries and to send hints for data and page replacement
policies. The least-recently used (LRU) is the only policy currently implemented in the data store manager.

2.2 Data Sources

A data source can be any entity used for storing datasets. In the current implementation, data is accessed in
fixed-size pages. That is, a dataset is assumed to have been partitioned into fixed-size pages and stored in
a data source. Therefore, the data source abstraction presents a page-based storage medium to the runtime
system, whereas the actual storage can be a file currently stored in the local disk or a remote database accessed
over a wide-area network. When data is retrieved in chunks (pages) instead of as individual data items, I/O
overheads (e.g., seek time) can be reduced, resulting in higher application level I/O bandwidth [1]. Using
fixed-size pages allows more efficient management of memory space. A base class, called DataSource, is
provided by the runtime system so that an application developer can implement a data source. The base class
has virtual methods with semantics similar to the Unix file system (i.e., open, read, write, and close methods).
This provides a well defined interface between the runtime system and the storage medium. An application
developer can implement a DataSource object with application- or hardware-specific optimizations. For
instance, if there are multiple disks attached to a host machine, a declustering algorithm can be implemented
in a DataSource object so that the data pages stored through that object are distributed across multiple disks.
As a result, high I/O bandwidth can be achieved when data is retrieved to evaluate a query. Currently, we
have a data source implementation for the Unix file system.

2.3 Page Space Manager

The page space manager (PS) controls the allocation and management of buffer space available for input
data. All interactions with data sources are done through the page space manager. Queries access the page
space manager through a Scan object. This object is instantiated with a data source object and a list of
pages (which can be generated as a result of index lookup) to be retrieved from the data source. The pages
retrieved from a data source are cached in memory. The manager implements replacement policies that are
specified by the query server. The current implementation of the page space manager uses a hash table for
searching pages in the memory cache.

We should note that the design of a cache model is closely related to the application and datasets
handled by the cache. In some cases, data elements in a dataset can be distributed irregularly (e.g., grid
points in unstructured, multi-resolution grids). More complex cache models are required to achieve good
performance in these cases. In particular, cache blocks can be non-rectangular and variable sized. More
complex index structures must be developed to efficiently find blocks in the cache. In addition, updates to
the indices, when blocks are inserted or deleted from the cache, should be done efficiently to reduce cache
lookup costs. In addition, although general cache replacement policies such as LRU can provide good
performance, better cache utilization can be achieved through a cache replacement policy that takes into
account the request patterns of an application. Application-specific prefetching can be incorporated into
data caching. For example, visualization of time varying data may request data elements in consecutive time
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steps. In that case, while one set of time steps is visualized, data for the following steps can be prefetched.
We are planning to add prefetching and implement several application specific replacement policies in the
near future.

The page space manager also keeps track of I/O requests received from multiple queries so that over-
lapping I/O requests are reordered and merged, and duplicate requests are eliminated, to minimize I/O
overheads. For example, if the system receives a query into a dataset that is already being scanned for
another query, the traversal of the dataset for the second query can be piggybacked onto the first query in
order to avoid traversing the same dataset twice.

2.4 Data Store Manager

The data store manager (DS) is responsible for providing dynamic storage space for intermediate data
structures generated as partial or final results for a query. Note that intermediate data structures present
one type of commonality among multiple queries. That is, given an intermediate result X computed by a
query Q1, the output Y for a query Q2 may be computed from X . One trivial case is when more than one
query is able to share the exact same data structure. The most important feature of the data store is that it
records semantic information about intermediate data structures. This allows the use of intermediate results
to evaluate queries. A query thread interacts with the data store using a DataStore object, which provides
functions similar to the C language malloc. When a query wants to allocate space from the data store for
an intermediate data structure, the size (in bytes) of the data structure and the corresponding accumulator
meta-data object are passed as parameters to the malloc method of the data store object. The data store
manager allocates the buffer space, records a pointer to the buffer space and meta-data object, and returns
the allocated buffer to the caller.

The data store manager also provides a method, called lookup. This method can be used by a query
or the query planner to check if a query can be answered entirely or partially using the intermediate results
stored in the data store. Since the data store manager maintains user-defined data structures, the operation
of the lookup method should be customized for each intermediate data structure. This is achieved by
implementing the overlap method provided by the accumulator meta-data object (see Section 2.1). The
overlap method takes an accumulator object and returns a real number between 0 and 1, called the overlap
index. The number represents the percent overlap between the current query and the intermediate result in
the data store. If the overlap index is 1, it means the query overlaps entirely with the intermediate result, so
the query can be answered by using the intermediate result. If the overlap index is less than 1, the execute
function of the query is expected to generate sub-queries to retrieve the subsets of the dataset required to
evaluate the portions of the query (which cannot be computed using the intermediate results), and to pass
the sub-queries to the query server.

A hash table is used to access accumulator meta-data objects in the data store manager. The hash table is
accessed using the dataset id of the input dataset. Each entry of the hash table is a linked list of intermediate
data structures allocated for and computed by previous queries. The lookup method calls the overlap
method for each accumulator meta-data object in the corresponding linked list, and returns a reference to
the object that has the largest overlap with the query.

2.5 Index Manager

The index manager manages indices defined on the datasets. The query thread interacts with the index
manager to access index data structures and search for data that intersect with the query.
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Figure 2: The Virtual Microscope client.

3 Analysis of Microscopy Data: The Virtual Microscope

The Virtual Microscope (VM) [2] provides a realistic digital emulation of a high power light microscope.
Figure 2 shows the client interface for VM. The raw data for such a system can be captured by digitally
scanning collections of full microscope slides under high power. A slide can contain multiple focal planes.
The size of a slide with a single focal plane can be up to several gigabytes, uncompressed. At a basic level,
the Virtual Microscope can emulate the use of a physical microscope, including continuously moving the
stage and changing magnification.

In order to achieve high I/O bandwidth during data retrieval, each focal plane in a slide is regularly
partitioned into data chunks, each of which is a rectangular subregion of the 2D image. Each pixel in a chunk
is associated with a coordinate (in x- and y-dimensions) in the entire image. As a result, each data chunk
is associated with a minimum bounding rectangle (MBR), which encompasses coordinates of all the pixels
in the chunk. An index is created using the MBR of each chunk. Since the image is regularly partitioned
into rectangular regions, a simple lookup table, consisting of a 2-dimensional array, serves as an index.
During query processing, the chunks that intersect the query region are retrieved from disk. Each retrieved
chunk is first clipped to the query window. Afterwards, each clipped chunk is subsampled to achieve the
magnification level (subsampling factor) given in the query. The resulting image blocks are directly sent to
the client. The client assembles and displays the image blocks to form the query output.

The Virtual Microscope can provide functionality that a physical microscope can never achieve. One
example of additional capability is in a teaching environment, where an entire class of students can access
and individually manipulate the same slide at the same time, searching for a particular feature in the slide.
In that case, the data server may have to process multiple queries simultaneously.

The implementation of the Virtual Microscope using the runtime system described in this paper is done by
sub-classing two of the base classes, Query and QueryMI, creating a total of four new objects, VMQuery,
MIVMQuery, VMQueryMI, and MIVMQueryMI. The VMQueryMI and MIVMQueryMI objects store the
meta-information associated with queries (e.g. dataset name, predicates, and MBRs) and intermediate data
structures. The MIVMQuery object is used to query the server about datasets that are currently stored in
the server. The VM queries are executed by the VMQuery object. A VM query retrieves a subregion of
the image, specified by the query window, and subsamples the region to generate an image at the requested
magnification. Therefore, the output image generated by a query is also available as an intermediate result
and is stored in the data store manager so that it can be used by other queries. The magnification level and
the bounding box of the output image in the entire dataset is stored as meta-data. An overlap function
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Figure 3: The total execution time (in seconds) of all the queries as the size of the memory used by the
page space manager and the data store manager varies. off denotes the case in which no intermediate
data structures are stored in the data store manager. on represents the case in which the data store manager
maintains intermediate results. PS stands for the Page Space manager, and DS is the Data Store manager.

was implemented to intersect two regions and return an overlap index. The overlap index is computed asoverlap index = IAOA � ISOS (1)IA is the area of intersection between the intermediate result in the data store and the query region, OA is
the area of the query region, IS is the subsampling factor used for generating the intermediate result, andOS is the subsampling factor specified by the current query. Note that OS should be a multiple of IS so that
the query can use the intermediate result. Otherwise, the value of the overlap index is 0. When a VM query
is received by the server, a VMQuery object is instantiated and spawned as a query thread. The execute
method of the VMQuery object first calls the overlap method to find the intermediate results in the data
store manager that can be used in the evaluation of the query. A set of subqueries is then generated, each of
which corresponds to a subregion of the query window that cannot be satisfied by the intermediate results.
Each sub-query is executed as a new VM query. If there are no intermediate results that overlap the query,
the execute method performs an index lookup to find the pages that intersect the query and submits the list
of pages to the page space manager. As pages are retrieved from the dataset, the execute method processes
each retrieved page to generate a region of the output image. When all the pages have been processed, the
output is sent back to the client and is also stored in the data store manager.

4 Experimental Results

In this section we describe experimental performance results for the Virtual Microscope application imple-
mented using the runtime infrastructure. The experiments were carried out on an 8-processor SMP machine,
running version 2.4.3 of the Linux kernel. Each processor is a 550MHz Pentium III and the machine has
4GB of main memory. We have used the driver program described in [4] to emulate the behavior of multiple
simultaneous clients. The implementation of the driver is based on a workload model that was statistically
generated from traces collected from real experienced users. Interesting regions are modeled as points in
the slide, and provided as an input file to the driver program. When a user pans near an interesting region,
there is a high probability a request will be generated. The driver adds noise to requests to avoid multiple
clients asking for the same region. In addition, the driver avoids having all the clients scan the slide in the
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Figure 4: The total execution time (in seconds) as the maximum number of concurrent threads is varied.

same manner. The slide is swept through in either an up-down fashion or a left-right fashion as observed
from real users. We emulated 16 concurrent clients executing on a cluster of PCs connected to the SMP
machine via 100Mbit Ethernet. Each client generated a workload of 100 queries. The output for each query
was a 1024x1024 RGB image. In the experiments we used a dataset of size 26000x26000 3-byte pixels.
The image was partitioned into 64KB pages, each of which represents a square region in the entire image,
and stored on the local disk attached to the SMP machine. The time values presented in the figures are the
total execution time for all the queries from all the clients (i.e., a total of 1600 queries) at the server.

In the first set of experiments, we look at the performance implications of using intermediate results for
evaluating queries. In Figure 3, off denotes the case in which no intermediate data structures are stored
in the data store manager. With on, the data store manager maintains intermediate data structures and
queries can be evaluated using the intermediate results in the data store. In these experiments, up to 8 query
threads are allowed to simultaneously execute at the server. As is seen from the figure, better performance
is obtained when the data store manager maintains intermediate results, with the execution time of the 1600
queries decreasing by 38%. We also observe that as the size of the memory allocated for the page space
manager and for the data store manager increases, the execution time decreases as expected.

The second set of experiments examines how query server performance changes as the maximum number
of query threads that are allowed to execute concurrently is varied. The runtime system creates a thread
pool that can be configured to set the maximum number of threads that can be simultaneously spawned. As
is shown in Figure 4, when the size of the thread pool is increased from 2 to 4, the total query execution
time drops by a factor of 1.95. The decrease in the execution time is less than linear when 4 more threads
are added. This is because, as more threads are added, there is likely more contention to access the page
space manager and the data store manager.

Figure 5 shows the average overlap index per query as the size of the data store memory is varied.
As is seen from the figure, the overlap index increases as the size of the data store memory increases.
Therefore, more intermediate results can be used to evaluate a query and more queries can be answered
using intermediate results. A consequence of this is that queries will issue fewer page requests to the page
space manager. This result is shown in Figure 6. The number of hits to the pages cached in the page space
manager remains almost constant, since it depends on the amount of memory allotted to the page space
manager. As the number of page requests decreases, fewer I/O requests to the storage system need to be
generated, reducing the I/O overhead.
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5 Conclusions

We have presented a runtime infrastructure designed to provide efficient support for execution of multiple
query workloads in data analysis applications on a shared-memory multiprocessor. The infrastructure
provides a framework for application developers to implement application-specific processing on data
and user-defined data structures for storing intermediate results. The system provides support for (1)
maintaining and accessing user-defined intermediate data structures generated by queries, (2) caching
of input data, and (3) multi-threaded execution. Our initial experiments using the Virtual Microscope
application show promising results; significant performance improvements are achieved by using multiple
threads for executing simultaneous queries and by making use of intermediate results.

We are in the process of implementing a clustering algorithm for data mining. Our implementation
decomposes the clustering algorithm into a set of operations (e.g., projection and selection of tuples that
are to be clustered, distance matrix generation, and clustering computations). Our goal is to investigate
the performance impact of organizing the processing structure of a data mining query into a pipeline of
components. Such a decomposition may provide more opportunities for data reuse as each component will
produce intermediate results. These intermediate results can be used by other queries, possibly increasing
concurrency and resulting in pipelined processing of multiple queries.
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