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Figure 10. A graphical demostration of how to �nd an optimal solution for MCRP-SP

OR

AND
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Table 5: Algorithm FIND(S

x

): the algorithm for �nding the shortest path combinations from the

limb which corresponds to the subtree S

x

induced by an intermediate node x and all x's descendant

nodes in a parsing tree

01 Case of the type of intermediate node x:

02 Type T

chain

:

03 For b = the first child node of x to the last one do

04 FIND(S

b

); /* Now the limb corresponding to S

b

is replaced */

05 Replace the limb corresponding to S

x

with a two-layer T

chain

limb where

06 the source (sink) layer of the old limb is the source (sink) layer of new 2-layer limb;

07 Put weights on the edges between source and sink layers equal to the shortest path

08 between the corresponding nodes;

09

10 Type T

and

: /* Let x = [ T

and

, forker s, joiner h ] */

11 Let d be the predecessor of forker s in G (i.e. < d; s > 2 V );

12 Let B be the number of child nodes of x in the parsing tree;

13 /* I.e. there are B subgraphs connected by s and h */

14 For b = the �rst child node of x to the B-th child of x do

15 FIND(S

b

); /* Now the limb corresponding to S

b

is replaced */

16 For p = 1 to n, q = 1 to n and b = 1 to B do

17 Compute the minimum replication cost C

b

p;q

from t

s;p

to t

h;q

w.r.t. child b ;

18 For i = 1 to n do begin

19 For p = 1 to n do E

s;p

= �

d;s

(i; p) + e

s;p

;

20 /* E

s;p

accounts for initialization by t

d;i

and execution cost itself. */

21 For q = 1 to n do �

d;h

(i; q) = OPT (C

b

p;q

0

s; E

s;p

0

s) ;

22 /* Create new edges from t

d;i

's to t

h;q

's */

23 end;

24 Replace the T

and

limb with a T

unit

limb, where source layer = sink layer = layer h,

25 and there are new edges from layer d to layer h;

26

27 Type T

or

: /* Let x = [ T

or

, forker s, joiner h ] */

28 Use the same method described above from lines 12 to 17 to compute C

b

p;q

's ;

29 Replace the T

or

limb with a two-layer T

chain

limb, where

30 the source (sink) layer of T

or

limb is the source (sink) layer of T

chain

limb and

31 �

s;h

(p; q) = min

b

(C

b

p;q

), 8 p and q ;

32 end case;

33 Save the shortest paths between any node in source layer and any node

in sink layer for future reference.
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Table 4: Simulation Results for Approximation Method

n
B SINGLE

z

APPROX

z

EXHAUST

z

single error % approx error %

20 2876 2407 2400 20 0.28

24 3463 2835 2831 22 0.16

28 4032 3264 3259 24 0.18

4
32 4606 3678 3673 25 0.11

36 5198 4084 4082 27 0.05

40 5790 4514 4514 28 0.00

20 2794 2282 2250 24 1.46

24 3356 2672 2636 27 1.38

28 3931 3060 3028 30 1.05

8
32 4540 3443 3413 33 0.88

36 5127 3831 3800 35 0.80

40 5683 4215 4192 36 0.55

20 2767 2213 2161 28 2.42

24 3359 2592 2542 32 1.99

28 3912 2996 2941 33 1.88

12
32 4491 3364 3299 36 1.97

36 5063 3736 3676 38 1.62

40 5610 4101 4043 39 1.43

20 2733 2167 2111 29 2.66

24 3287 2558 2492 32 2.66

28 3844 2932 2865 34 2.31

16
32 4393 3315 3240 36 2.32

36 4991 3659 3584 39 2.10

40 5558 4045 3970 40 1.89

z

: Each value shown is the average value over 50 runs.

single error% =

SINGLE � EXHAUST

EXHAUST

� 100%:

approx error% =

APPROX � EXHAUST

EXHAUST

� 100%:
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Table 3: Computation Results for branch-and-bound approach

Set I Set II Total Number of

n
B EIM

z

VLF

z

EIM

z

VLF

z

leaves (2

n

)

20 2 6 4 7 16

24 3 6 3 6 16

28 4 7 3 6 16

4
32 4 7 3 6 16

36 4 7 4 7 16

40 3 6 3 6 16

20 36 74 16 51 256

24 40 75 21 62 256

28 50 86 26 68 256

8
32 63 94 37 78 256

36 73 96 47 84 256

40 81 97 50 86 256

20 186 558 81 340 4,096

24 231 639 102 398 4,096

28 349 839 167 543 4,096

12
32 451 967 204 617 4,096

36 454 984 269 720 4,096

40 636 1,186 301 780 4,096

20 758 3,216 203 1,175 65,536

24 1,065 4,161 329 1,711 65,536

28 1,335 4,862 546 2,496 65,536

16
32 1,884 6,250 726 3,127 65,536

36 2,322 7,227 839 3,493 65,536

40 2,880 8,511 1,179 4,510 65,536

20 2,026 12,042 389 3,079 1,048,576

24 3,579 18,866 761 5,280 1,048,576

28 5,551 27,018 1,227 7,905 1,048,576

20
32 6,405 30,521 1,709 10,357 1,048,576

36 9,517 40,767 2,681 15,032 1,048,576

40 11,651 48,087 3,086 16,857 1,048,576

z

: Each value shown is the average value over 50 runs.
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Figure 9: Pseudo code, graphical demonstration, and dynamic programming

table for approximation methods

Sub(p� 1; b) ! Sub

0

(p; b): Sub(p; b� 1) ! Sub

00

(p; b):

If e

s;p

�

P

b

i=1

([min

x2Sub(p�1;b)

(C

i

x;q

)]� C

i

p;q

)

+

Let t

s;z

be the one satisfys min

1�i�p

(C

b

i;q

) .

begin If t

s;z

2 Sub(p; b� 1) then

Sub

0

(p; b) = Sub(p� 1; b) � t

s;p

Sub

00

(p; b) = Sub(p; b� 1)

Reassign&Remove(Sub

0

(p; b)) Else

end if e

s;z

�

P

b

i=1

([min

j2Sub(p;b�1)

(C

i

j;q

)]� C

i

z;q

)

+

Else Sub

0

(p; b) = Sub(p� 1; b) begin

Sub

00

(p; b) = Sub(p� 1; b) � t

s;z

Legend: Reassign&Remove(Sub

00

(p; b))

(x)

+

= x, if x > 0. end

(x)

+

= 0, if x � 0. Else Sub

00

(p; b) = Sub(p; b� 1)

Sub(p� 1; b)

t

s;p

t

h;q

subgraph G

b

subgraph G

1

Sub(p; b� 1)

t

s;z

t

h;q

G

1

G

b

G

b�1

1

1

n

32

Sub(p; b� 1)

Sub

00

(p; b)

2

b #

B

p!

Sub(p; b)

Sub(p� 1; b)

Sub

0

(p; b)

Sub(p; b) = Min Cost(Sub

0

(p; b), Sub

00

(p; b))

30



Table 1: Function BB(k; q; ẑ): branch-and-bound algorithm for solving problem P

q

k

01 Initialize the queue to be empty;

02 Insert root node v

0

into the queue;

03 While the queue is not empty do begin

04 Remove the �rst node u from the queue;

05 Generate all child nodes of u ;

06 For each generated child node v do begin

07 If v is a leaf node (i.e. v is at level k) then

08 Compute g(v) by setting L to be � ;

09 Set ẑ = min ( ẑ, g(v));

10 else begin /* v is an intermediate node */

11 Compute est(v) by (5) ;

12 If est(v) < ẑ then

13 Insert v into the queue according to est(v) ;

14 end;

15 end;

16 end;

17 Return(ẑ).

Table 2: Function OPT (C

b

p;q

0

s; e

s;p

0

s): the optimal solution of MCRP-SP of type T

and

when

C

b

p;q

's and e

s;p

's are given

01 Sort t

s;p

's into a non-decreasing order by values of e

s;p

's ;

02 For q = 1 to n do begin

03 Let node v be a leaf node at level 1;

04 Set v to be t

s;1

and k to be 1;

05 Compute g(v) by setting L to be � ;

06 Initialize ẑ to be g(v) ;

07 For k = 1 to n do

08 ẑ = BB(k; q; ẑ) ;

09 Set c(q) = ẑ ;

10 end;

11 Output the combination with the minimum value among c(1), c(2), : : : , c(n).
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Figure 8: A combination tree for the case where k = 4 and n = 6
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Figure 7: An illustration about how to transform a UCTR instance to a T

and

SP graph

e table
p = 1 p = 2 p = 3

e

s;p

=
2 2 2

e

1;p

=
0 12 12

e

2;p

=
0 12 12

e

3;p

=
0 12 12

e

4;p

=
0 12 12

e

5;p

=
0 12 12

e

6;p

=
0 12 12

e

7;p

=
0 12 12

e

8;p

=
0 12 12

e

9;p

=
0 12 12

e

10;p

=
0 12 12

e

11;p

=
0 12 12

e

12;p

=
0 12 12

e

t;p

=
0 12 12

� table
p = 1 p = 2 p = 3

�

s;1

(p; 1) =
0 0 1

�

s;2

(p; 1) =
0 0 1

�

s;3

(p; 1) =
0 0 1

�

s;4

(p; 1) =
0 0 1

�

s;5

(p; 1) =
0 0 1

�

s;6

(p; 1) =
0 0 1

�

s;7

(p; 1) =
1 0 0

�

s;8

(p; 1) =
1 0 0

�

s;9

(p; 1) =
1 0 0

�

s;10

(p; 1) =
1 0 0

�

s;11

(p; 1) =
1 0 0

�

s;12

(p; 1) =
1 0 0

�

s;i

(p; q) = 0, 8 1 � i � 12, p = 1,2,3 and q = 2,3

�

i;t

(p; q) = 0, 8 1 � i � 12, 8 1 � p, q � 3
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OR

Figure 3: An SP graph and its assignment graph.

Figure 4: An allocation graph and a replication graph of Figure 3.
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Figure 1: An SP graph and its parsing tree

a

b c d e

f

AND

e table
processor 1 processor 2

task a on
5 5

task b on
7 16

task c on
10 20

task d on
25 8

task e on
14 6

task f on
10 13

� table
t

b;1

t

b;2

t

c;1

t

c;2

t

d;1

t

d;2

t

e;1

t

e;2

t

a;1

to
1 4 1 4 1 4 1 4

t

a;2

to
4 1 4 1 4 1 4 1

to t

f;1

from
3 3 3 3 3 3 3 3

to t

f;2

from
3 3 3 3 3 3 3 3

Optimal Assignment:

e

a;1

+ �

a;b

(1; 1)+ �

a;c

(1; 1)+ �

a;d

(1; 2)+ �

a;e

(1; 2)+ e

b;1

+ e

c;1

+e

d;2

+ e

e;2

+ �

b;f

(1; 1)+ �

c;f

(1; 1)+ �

d;f

(2; 1)+ �

e;f

(2; 1)+ e

f;1

= 68

Optimal Replication:

e

a;1

+ e

a;2

+ �

a;b

(1; 1)+ �

a;c

(1; 1)+ �

a;d

(2; 2)+ �

a;e

(2; 2)+ e

b;1

+e

c;1

+ e

d;2

+ e

e;2

+ �

b;f

(1; 1)+ �

c;f

(1; 1)+ �

d;f

(2; 1)+ �

e;f

(2; 1)+ e

f;1

= 67

Figure 2: An example to show how the replication can reduce the total cost
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nodes that were saved earlier. The whole algorithm has the complexity of

O(An

2

2

n

) +

X

i

(R

i

n

3

) +

X

i

(C

i

n

3

)

where A is the number of T

and

limbs, R

i

is the number of subgraphs in the ith T

or

limb, and C

i

is

the number of layers in the ith T

chain

limb. This is not greater than O(Mn

2

2

n

), where M is the

total number of tasks in the SP graph. The complexity of the algorithm is a linear function of M

if the number of processors, n, is �xed.

6.2 Conclusion Remark

This paper has focused on MCRP-SP, the optimal replication problem of SP task graphs for

computation-intensive applications. The purpose of replication is to reduce inter-processor commu-

nication, and to fully utilize the processor power in the distributed systems. The SP graph model,

which is extensively used in modeling applications in distributed systems, is used. The applications

considered in this paper are computation-intensive in which the execution cost of a task is greater

than its communication cost. We prove that MCRP-SP is NP-complete. We present branch-and-

bound and approximation methods for SP graphs of type T

and

. The numerical results show that

the algorithm performs very well and avoids a lot of unnecessary searching. Finally, we present an

algorithm to solve the MCRP-SP problem for computation-intensive applications. The proposed

optimal solution has the complexity of O(n

2

2

n

M) in the worst case, while the approximation solu-

tion is in the complexity of O(n

4

M

2

), where n is the number of processors in the system and M is

the number of tasks in the graph.

For the applications in which the communication cost between two tasks is greater than the

execution cost of a task, the replication can still be used to reduce the total cost. However, in the

extreme case where the execution cost of each task is zero, the optimal allocation will be to assign

each task to one processor. We are studying the optimal replication for the general case.
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path algorithm [1] can be used to compute the weights of the new edges between each node in the

source layer and each node in the sink layer of the new T

chain

limb. The complexity, from lines 05

to 08 of Table 5, in transformation of the limb, corresponding to an intermediate node x with M

children, into a two-layer T

chain

limb is O(Mn

3

). An example of illustrating the replacement of a

T

chain

limb is shown from parts (b) to (c) and parts (d) to (e) in Figure 10.

For the replacement of a T

and

limb, we have to compute C

b

p;q

's. The values can also be computed

by the shortest path algorithm. Hence, the complexity involved in lines 16 and 17 is O(Bn

3

).

According to the computational model in section 2.2, each task instance s may start its execution

if it receives the necessary data from any task instance of its predecessor d. And, from Lemma

2, we know that the minimum sum of initialization costs of multiple task instances of s will be

always from only one task instance of d. Therefore, the initialization of task instance t

s;p

depends

on which task instance of d it communicates with. That is why ,in line 19, the communication

cost �

d;s

(i; p) is added to the the execution cost of e

s;p

before OPT () is invoked. And the most

signi�cant part of the replacement is to compute the weights on the new edges from the source

layer to sink layer. The complexity is n

2

�O(OPT ()), which in the worst case is n

2

2

n

. However, in

the average, our OPT function performs pretty well and reduces the complexity signi�cantly. An

example of illustrating the replacement of a T

and

limb is shown from parts (c) to (d) in Figure 10.

We also consider to use the approximation method to �nd the sub-optimal replacement of a

T

and

limb. In that case, function OPT () in line 21 is replaced with Sub(n;B). The total complexity

involved is O(n

4

B

2

) then.

Finally, for the replacement of a T

or

limb, if there are B subgraphs connected between the forker

and the joiner, then the complexity will be O(Bn

2

) for the new edges and O(Bn

3

) for C

b

p;q

's. An

example of illustrating the replacement of a T

or

limb is shown from parts (a) to (b) in Figure 10.

When the traversal reaches the root node of the parsing tree, the result of FIND() will give

us either one single layer or two layers, depending on the type of root node. All we have to do is

to select the lightest of these n (in single layer) or n

2

(in two layers) shortest path combinations.

An optimal replication graph itself is found by combining the shortest paths between the selected
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Sub(n;B) by the approximation method is O(n

2

B

2

).

We conduct a set of experiments to evaluate the performance of the approximation method. For

each problem size (n;B), we randomly generate 50 instances and solve them by using approximation

method and exhaustive searching. The data for computation and communication in the experiments

are based on the uniform distribution over the range [1,50]. We compare the minimum cost obtained

from exhaustive searching (EXHAUST) with those from from approximation (APPROX) and single

assignment solution (SINGLE). The optimal single assignment solution is the one in which only one

forker instance is allowed. Note that the solutions from SINGLE are obtained from the shortest

path algorithm [1]. The results are summarized in Table 4. From the table, we �nd out that the

approximation method yields a tight approximation of the minimum cost. On the contrary, the

error range for single copy solution is at least 20%. This again justi�es that the replication can

lead to a lower cost than an optimal assignment does.

6 Solution of MCRP-SP for computation-intensive applications

6.1 The Solution

Given a computation-intensive application with its SP graph, we generate its parsing tree and

assignment graph �rst. The algorithm �nds the minimum weight replication graph from the as-

signment graph. Then the optimal solution is obtained from the minimum weight replication graph.

The algorithm traverses the parsing tree in the post�x order. Namely, during the traversal, an

optimal solution of the subtree S

x

, induced by an intermediate node x along with all x's descendant

nodes, can be found only after the optimal solutions of x's descendant nodes are found. Given an

SP graph G and a distributed system S, we know that there is a one-to-one correspondence between

each subtree S

x

in a parsing tree T (G) and a limb in the assignment graph of G on S. Whenever a

child node b of x is visited, the corresponding limb in the assignment graph will be replaced with a

a two-layer T

chain

limb if b is a T

chain

- or T

or

-type node; and a one-layer T

unit

limb if b is a T

and

-type

node. The algorithm is shown in Table 5. A graphical demonstration of how the algorithm solves

the problem is shown in Figure 10.

Before the replacement of a T

chain

limb is performed (i.e. x is a T

chain

-type node), each con-

stituent child limb has been replaced with a T

unit

or two-layer T

chain

limb. Hence, the shortest
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5.1 Approximation Method

For the problem P

q

k

de�ned in section 4.1, we exploit an approximation approach to solve it in

polynomial time. The approach is based on iterative selection in a dynamic programming fashion.

Given a joiner instance t

h;q

and subgraphs G

b

, b = 1, 2, : : : , B, and minimum costs C

b

p;q

between

t

h;q

and t

s;p

, p = 1, 2, : : : , n, and b = 1, 2, : : : , B. we de�ne Sub(p; b) to be the sub-optimal

solution for replication of forker s where forker instances t

s;1

, t

s;2

, : : : , t

s;p

and subgraphs G

1

, G

2

,

: : : , G

b

are taken into consideration.

Strategy 1:

Sub(p; b) can be obtained from Sub(p� 1; b) by considering one more forker instance t

s;p

. Strategy

1 consists of two steps. The �rst step is to initialize Sub(p; b) to be Sub(p� 1; b) and to determine

if t

s;p

is to be included into Sub(p; b) or not. If yes, then add t

s;p

in. The second step is to examine

if any instances in Sub(p� 1; b) should be removed or not. Due to the possible inclusion of t

s;p

in

the �rst step, we may obtain a lower cost if we remove some instances t

s;i

's, i < p, and reassign the

communications for some graphs G

j

's from t

s;i

's to t

s;p

.

Strategy 2:

Sub(p; b) can also be obtained from Sub(p; b� 1) by taking one more subgraph G

b

into account.

Initially, Sub(p; b) is set to be Sub(p; b�1). The �rst step is to choose the best forker instance from

t

s;1

, t

s;2

, : : : , t

s;p

for G

b

. Let the best instance be t

s;z

. The second step is to see if t

s;z

is in Sub(p; b)

or not. If not, a condition is checked to decide whether t

s;z

should be added in or not. Upon the

addition of t

s;z

, we may remove some instances and reassign the communications to achieve a lower

cost.

We compare two possible results obtained from the above two strategies and assign the one with

lower cost to actual Sub(p; b). Hence by computing in a dynamic programming fashion, Sub(n;B)

can be obtained. The algorithm and its graphical interpretation are shown in Figure 9.

5.2 Performance Evaluation

The complexity involved in each strategy described in section 5.1 is O(nB). Since the solving

of Sub(n;B) needs to invoke n � B times of strategies 1 and 2, the total complexity of solving
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counter for each index at lines 13 and 8 of Table 1 respectively. Each time the execution reaches

line 13 (8), EIM (VLF) is incremented by 1.

The �rst set of experiments is on SP graphs of type T

and

where the communication cost between

any two task instances is arbitrary and is generated by random number generator within the range

[1,50]. The execution cost for each task instance is also randomly generated within the same range.

The second set of experiments is on SP graphs of type T

and

with the constrain of computation-

intensive applications. We vary the size of the problem by assigning di�erent values to the number

of processors in the system (n) and the number of parallel-and subgraphs connected by forker and

joiner (B). For each size of the problem (n, B), we randomly generate 50 problem instances and

solve them. The results, including the average values of EIM and VLF over the solutions of 50

problem instances, are summarized in Table 3.

From Table 3, we �nd out that the proposed method signi�cantly reduces the number of ex-

pansions for intermediate nodes and leaf nodes. For example, for problem size (n, B) = ( 20, 40),

the total number of leaf nodes is 2

20

(= 1,048,576) if an exhaustive search is applied. However,

our algorithm only generates 16,857 nodes on the average, because we apply est(v), ẑ, and the

branch-and-bound approach.

The branch-and-bound approach and the estimation function even perform better for the

computation-intensive applications. We can see that EIM and VLF values are much more smaller

in Set II than those in Set I. It is because that in the computation-intensive applications an optimal

number of replications for the forker is smaller than that in general applications. The ẑ value in

function OPT () is able to re
ect this fact and avoid the unnecessary expansions.

5 Sub-Optimal Replication for SP Graphs of Type T

and

The branch-and-bound algorithm in section 4.1 yields an optimal solution for T

and

subgraphs.

However, the complexity involved is in exponential time in the worst case. Hence, we also consider

to �nd a near-optimal solution in polynomial time.
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Since the complexity involved in computing g(v) is (

n�i

y

k�y

), we use the following estimation function

est(v) to approximate g(v):

est(v) =

y

X

a=1

e

s;i

a

+

i

y

+k�y

X

j=i

y

+1

e

s;j

+

B

X

b=1

min

p=i

1

;i

2

;:::;i

y

;i

y

+1;i

y

+2;:::;n

(C

b

p;q

) + e

h;q

: (5)

Since

i

y

+k�y

X

j=i

y

+1

e

s;j

�

X

j

x

2`

e

s;j

x

and

B

X

b=1

min

p=i

y

+1;i

y

+2;:::;n

(C

b

p;q

) �

B

X

b=1

min

p2`

(C

b

p;q

) ;

it is easy to see that est(v) � g(v). Hence, we use est(v) as the lower bound of the objective

function at node v.

4.1.2 The Proposed Algorithm

Three parameters of the branch-and-bound algorithm are joiner instance (t

h;q

), the number of

processors that forker s is allowed to run (k), and the up-to-date minimum cost (ẑ). The algorithm

BB(k; q; ẑ) is shown in Table 1.

The MCRP-SP problem can be solved by invoking BB(k; q; ẑ) n

2

times with parameters set to

di�erent values. BB(k; q; ẑ) solves the problem P

q

k

, while the whole procedure, shown in Table 2,

solves P .

4.2 Performance Evaluation

The essence of the branch-and-bound algorithm is the expansion of the intermediate nodes. Upon

the removal of a node from the queue its children are generated and their estimated values are

computed. If the estimation function performs well and gives a tight lower bound of objective

function, the number of expanded nodes should be small. Then an optimal solution can be found

out as soon as possible.

We conduct two sets of experiments to evaluate the performance of the proposed solution. The

performance indices we consider are the number of enqueued intermediate nodes (EIM) and the

number of visited leaf nodes (VLF) during the search. We calculate EIM and VLF by inserting one
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least-cost branch-and-bound algorithm to �nd an optimal solution by traversing a small portion of

the combination tree.

During the search, we maintain a variable ẑ to record the minimum value known so far. The

search is done by the expansion of intermediate nodes. Each intermediate node v at level y repre-

sents a combination of y out of n forker instances. The expansion of node v generates at most n�y

child nodes, while each child node inherits y forker instances from v and adds one distinct forker

instance to itself. For example, if node v is represented by � t

s;i

1

, t

s;i

2

, : : : , t

s;i

y

�, where i

1

< i

2

< : : :< i

y

, then � t

s;i

1

, t

s;i

2

, : : : , t

s;i

y

, t

s;i

y

+j

� represents a possible child node of v, 8 1 � j �

n� i

y

. A combination tree, where k = 4 and n = 6, is shown in Figure 8. At any intermediate node

of a combination tree, we apply an estimation function to compute the least cost this node can

achieve. If the estimated cost is greater than ẑ, then we prune the node and the further expansion

of the node is not necessary. Otherwise, we insert this node along with its estimated cost into a

queue. The nodes in the queue are sorted into non-decreasing order of their estimated costs, where

the �rst node of the queue is always the next one to be expanded. When the expansion reaches

a leaf node, the actual cost of this leaf is computed. If the cost is less than ẑ, we update ẑ. The

algorithm terminates when the queue is empty.

4.1.1 The Estimation Function

The proposed branch-and-bound algorithm is characterized by the estimation function. Let node v

be at level y of the combination tree associated with subproblem P

q

k

and be represented by � t

s;i

1

,

t

s;i

2

, : : : , t

s;i

y

�, where i

1

< i

2

< : : :< i

y

. Any leaf node that can be reached from node v needs

k� y more forker instances. Let ` = � j

1

, j

2

, : : : , j

k�y

� be a tuple of k� y instances chosen from

the remaining n� i

y

instances, where j

1

< j

2

< : : :< j

k�y

. Let L be the set of all possible `'s. Let

g(v) be the smallest cost among all leaf nodes that can be reached from node v.

g(v) =

y

X

a=1

e

s;i

a

+ min

`2L

[

X

j

x

2`

e

s;j

x

+

B

X

b=1

min

p=i

1

;i

2

;:::;i

y

or p2`

(C

b

p;q

) ] + e

h;q

:
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r, which causes a con
ict. Hence the second term in Eq. (4) must be zero. Thus, we may obtain a

subset of V

1

for UCTR problem by selecting node x 2 V

1

if X

s;x

equals 1. Since the �rst term in

Eq. (3) is equivalent to the �rst term in Eq. (4), the total sum for UCTR problem will be also K

or less then.

2

4 Optimal Replication for SP Graphs of Type T

and

In this section, we develop the branch-and-bound algorithm to �nd an optimal solution for T

and

subgraphs. The non-forker nodes only need to run on one processor. Hence, an optimal assignment

of non-forker nodes can be done after an optimal replication for forkers is obtained.

4.1 A Branch-and-Bound Method for Optimal Replication

Consider a T

and

SP graph with forker-joiner pair (s,h) shown in Figure 6. There are B subgraphs

connected by s and h. These B subgraphs have a parallel-and relationship. Since the joiner h has

only one copy in optimal solution (i.e.

P

n

p=1

X

h;p

= 1), we decompose the minimum cost replication

problem P for a T

and

SP graph into n subproblems P

q

, q = 1, 2, : : : , n, where P

q

is to �nd the

minimum cost when the joiner is assigned to processor q (i.e. X

h;q

= 1).

Given a joiner instance t

h;q

, subgraphs G

b

's, b = 1, 2, : : : , B, and the minimum costs C

b

p;q

's

between each forker instance t

s;p

and joiner instance t

h;q

, 8 1 � p � n and 1 � b � B. we further

decompose problem P

q

into n subproblems P

q

k

, k = 1, 2, : : : , n, where k is the number of replicated

copies that the forker s has. Basically, P

q

k

means the problem of �nding an optimal replication for

k copies of forker s where the joiner h is assigned to processor q. Since the problem of �nding an

optimal replication for forker s is NP-complete, we propose a branch-and-bound algorithm for each

subproblem P

q

k

.

We sort the forker instances according to their execution costs e

s;p

's into non-decreasing order.

Without loss of generality, we assume e

s;1

� e

s;2

� : : :� e

s;n

. We represent all the possible

combinations that s may be replicated by a combination tree with (

n

k

) leaf nodes. To make the

solution e�cient, we shall not consider all combinations since it is time-consuming. We apply a

15



j V

0

2

j = m, then the unit cost f = n �m. Assign r = m � f (= n �m

2

) and K = n �m. The

forker and joiner of G

a

are s and t respectively. Then V

a

= fs, t,1,2,: : : ,rg and E

a

= f< s,i > j i

= 1,2,: : : ,rg [ f< i,t > j i = 1,2,: : : ,rg. We assign the execution costs and communication costs in

H as follows. An illustration, where m = 2 and n = 3, is shown in Figure 7.

� 8 1 � p � n, e

s;p

= m.

� 8 1 � i � r, 8 1 � p � n, if p = 1 then e

i;p

= 0 else e

i;p

= r.

� 8 1 � p � n, if p = 1 then e

t;p

= 0 else e

t;p

= r.

� 8 1 � i � r, 8 1 � p � n, let q = (i� 1) div (m � n), where div is the integral division. If

d

v

p

;b

q+1

6= 0 then �

s;i

(p; 1) = 1 else �

s;i

(p; 1) = 0.

� 8 1 � i � r, 8 1 � p � n, 8 q 6= 1, �

s;i

(p; q) = 0.

� 8 1 � i � r, 8 1 � p,q � n, �

i;t

(p; q) = 0.

It is easy to verify that the SP graph constructed by the the above rules is of type T

and

and

computation-intensive. For each node in V

0

2

of G

0

, we create f nodes in G

a

, where the communica-

tion cost between each node and source s is either one or zero.

Let us now argue that there exists a feasible subset of V

0

1

for UCTR problem if and only if there

exists a valid assignment of X

i;p

's such that the total sum in Eq. (4) is K or less. Suppose a feasible

subset V

k

of V

0

1

exists such that the sum in Eq. (3) is C (� K) . Let V

0

1

be fv

1

,v

2

,: : : ,v

n

g Then we

can obtain a valid assignment by letting X

i;1

= 1, X

i;2

= 0, : : :, X

i;n

= 0, 8 1 � i � r, and X

t;1

=

1, X

t;2

= 0, : : :, X

t;n

= 0, and X

s;p

= 1, if v

p

2 V

k

; and X

s;p

= 0, if v

p

62 V

k

, 8 1 � p � n. Since

each node x in V

0

2

corresponds to f nodes in G

a

, it is sure that the communication cost between

node x and any node (v

p

) in V

0

1

is equal to the total communication costs between these f nodes

and any task instance of source (t

s;p

) in G

a

. By summing up all the costs, we can obtain that the

total sum is C. Since C � K � n�m < r, this is a valid assignment.

Conversely, if there exists an assignment of X

i;p

's such that the sum in Eq. (4) is K or less,

then the following must be true that X

i;1

= 1, X

i;2

= 0, : : :, X

i;n

= 0, 8 1 � i � r, and X

t;1

= 1,

X

t;2

= 0, : : :, X

t;n

= 0. It is because for some p 6= 1, if X

i;p

= 1 then the sum must be greater than
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mC, we can see that the second term of Eq. (3) (i.e. the sum of communication cost) must be

zero. Suppose, for some g

y

2 V

0

2

, the minimum communication cost between g

y

and vertices in V

0

is nonzero, then the communication cost will be at least m�n. Since C � n, it implies that m�n

� m�C. The total cost in Eq. (3) will be greater than m�C, which is a contradiction. Thus the

minimum communication cost between any vertex in V

0

2

and any vertex in V

k

is zero. It means that

at least one of two end points of each edge in E belongs to V

k

. Since, there is at most C vertices in

V

k

(the activation cost for each vertex is m), and by selecting the vertices in V

k

, we obtain a vertex

cover of size C or less in G.

2

[Theorem 2]: The problem, MCRP-SP for computation-intensive applications, is NP-complete.

[Proof]: From Lemma 3, we know that only the forker in an SP graph of type T

and

needs to run on

more than one processor. Consider the following recognition version of Problem (1) for SP graphs

of type T

and

:

Given a distributed system of n processors, an SP graph G

a

= (V

a

,E

a

) of type T

and

, its

assignment graph H and two positive integers m and r. Let r be a multiple of m, V

a

= fs, t,

1,2,: : : ,rg and E

a

= f< s,i > j i = 1,2,: : : ,rg [ f< i,t > j i = 1,2,: : : ,rg. Task s (t) is the forker

(joiner) of G

a

. Execution cost e

i;p

and communication cost �

i;j

(p; q) are de�ned in H , 8 < i,j >

2 E

a

and 8 1 � p,q � n. Integer variable X

i;p

= 1 if task i is assigned to processor p; and = 0,

otherwise. When a positive integer K � r is given, is there an assignment of X

i;p

's, such that

[

X

i;p

X

i;p

� e

i;p

+

X

<i;j>2E; 1�q�n

min

X

i;p

=1

(�

i;j

(p; q) �X

j;q

) ] � K?

where

X

i;p

X

i;p

= 1; 8i 6= s; and

X

i;p

X

i;p

� 1; if i = s: (4)

We shall transform the UCTR problem to this problem. Given any graph G

0

= (V

0

1

[ V

0

2

,E

0

)

considered in UCTR problem, we construct an SP graph of type T

and

, G

a

= (V

a

,E

a

), and its

assignment graph H , such that G

0

has a feasible subset of V

0

1

to allow the sum in Eq. (3) is K or

less if and only if there is an assignment of X

i;p

's for G

a

and H to satisfy Eq. (4). Let j V

0

1

j = n,
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of �nding an optimal replication for the forkers in an SP graph is NP-complete. First, a special

form of the replication problem is introduced.

Uni-Cost Task Replication (UCTR) problem is stated as follows:

INSTANCE: Graph G

0

= (V

0

; E

0

), V

0

= V

0

1

[ V

0

2

, where j V

0

1

j = n and j V

0

2

j = m. If x 2 V

0

1

and

y 2 V

0

2

then edge < x; y > 2 E

0

(i.e. j E

0

j = m� n). For each x 2 V

0

1

, there is an activation cost

m. Associated with each edge < x; y > 2 E

0

, there is a communication cost d

x;y

= n�m or 0. A

positive integer K � n �m is also given.

QUESTION: Is there a feasible subset V

k

� V

0

1

such that, we have

[

X

x2V

k

m+

X

y2V

0

2

min

x2V

k

(d

x;y

) ] � K? (3)

[Theorem 1]: Uni-Cost Task Replication problem is NP-Complete.

[Proof]: The problem is in NP because a subset V

k

, if it exists, can be checked to see if the sum

of activation costs and communication costs is less than or equal to K. We shall now transform

the VERTEX COVER [3] problem to this problem. Given any graph G = (V ,E) and an integer C

� j V j, we shall construct a new graph G

0

= (V

0

,E

0

) and V

0

= V

0

1

[ V

0

2

, such that there exists a

VERTEX COVER of size C or less in G if and only if there is a feasible subset of V

0

1

in G

0

. Let

j V j = n and j E j = m. To construct G

0

, (1) we create a vertex v

i

for each node in V , (2) we

number the edges in E, and (3) we create a vertex b

j

for each edge < u,v > 2 E where u, v 2 V .

We de�ne K = m� C, V

0

1

= fv

1

, v

2

, : : : , v

n

g, V

0

2

= fb

1

, b

2

, : : : , b

m

g and E

0

= f< v

x

,b

y

> j v

x

2

V

0

1

, b

y

2 V

0

2

g. Let d

v

x

;b

y

= 0, if v

x

is an end point of the corresponding edge of vertex b

y

; and =

n�m, otherwise. An illustration, where n = 7 and m = 9, is shown in Figure 5.

Let us now argue that there exists a vertex cover of size C or less in G if and only if there is

a feasible subset of V

0

1

in G

0

to satisfy that the sum of activation cost and communication cost is

m�C or less. Suppose there is a vertex cover of size C, then for each vertex b

y

(= < u,v >) in V

0

2

,

at least one of u and v belongs to the vertex cover. By selecting all the vertices in the vertex cover

into the subset of V

0

1

, we know that the sum in Eq. (3) will be m�C. Since C � n, it implies that

m� C � n�m.

Conversely, for any feasible subset V

k

� V

0

1

such that the total cost is equal to or less than
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< A

i

(

�

X

0

i

) +

n

X

p=1

X

0

i;p

� e

i;p

+

n

X

q=1

min

X

0

i;p

=1

(X

j;q

� �

i;j

(p; q)) = m:

The result, m

0

< m, contradicts our assumption. It means that the assumption is wrong and

Lemma 2 holds.

2

Lemma 3: Given a computation-intensive application with its SP task graph G, the objective of

the minimum cost can be achieved by considering only the replication of the forkers.

Proof: We proceed to prove the lemma by contradiction. Let the minimum cost for task replication

problem be z

0

if only the forkers(i.e. outdegree > 1) are allowed to run on more than one processor.

Assume the total cost can be reduced further by replicating some task i which is not a forker. Then

there are two possible cases for i:

1. i has outdegree 0.

2. i has outdegree 1.

In case 1, i is the sink of the whole graph. Also i may be the joiner of some SP subgraphs. If i is

allowed to run on an extra processor b, which is di�erent from the one which i is initially assigned

to (when z

0

is obtained), then the new cost will be z

0

+ e

i;b

+

P

<d;i>2E

�

d;i

. Apparently, the new

cost is greater than z

0

. This contradicts our assumption that the total cost can be reduced further

by replicating task i.

In case 2, i has one successor. Let < i; j > 2 E. From the assumption, we know that the

replication of i can reduce the total cost. Hence, the minimum activation cost for task instances

in layer j, A

j

(

�

X

j

), is obtained when task i is replicated onto more than one processor. This

contradicts Lemma 2. Hence, the assumption is incorrect and the objective of the minimum cost

can be achieved by considering only the replication of the forkers.

2

Lemma 3 tells that, given an SP graph, if we can �nd out the optimal replication for the forkers,

Problem (1) for computation-intensive applications can be solved. Now, we show that the problem

11



< i; j > 2 E, we know that

A

j

(

�

X

j

) = min

�

X

i

fA

i

(

�

X

i

) +

n

X

p=1

X

i;p

� e

i;p

+

n

X

q=1

min

X

i;p

=1

(X

j;q

� �

i;j

(p; q))g:

Let us assume that the above equation reaches a minimal value m when more than one node

from layer i is selected and the optimal replication vector is

�

X

0

i

. Since

P

n

p=1

X

i;p

> 1 for

�

X

0

i

, we

may remove one selected node from layer i and obtain a new vector

�

X

0

i

. Without loss of generality,

let us remove t

i;r

. By removing node t

i;r

, a new value m

0

is obtained. Since m is the minimum

value for layer i, it implies that m � m

0

.

From Lemma 1, we obtain that A

i

(

�

X

0

i

) < A

i

(

�

X

0

i

). And for a computation-intensive application,

the following holds that

P

n

q=1

�

i;j

(p; q) � min

p

(e

i;p

), 8 1 � p � n. Then,

m

0

= A

i

(

�

X

0

i

) +

n

X

p=1

X

0

i;p

� e

i;p

+

n

X

q=1

min

X

0

i;p

=1

(X

j;q

� �

i;j

(p; q))

< A

i

(

�

X

0

i

) +

n

X

p=1

X

0

i;p

� e

i;p

+

n

X

q=1

min

X

0

i;p

=1

(X

j;q

� �

i;j

(p; q))

< A

i

(

�

X

0

i

) + (

n

X

p=1

X

0

i;p

� e

i;p

� e

i;r

) +

n

X

q=1

min

X

0

i;p

=1

(X

j;q

� �

i;j

(p; q))

= A

i

(

�

X

0

i

) +

n

X

p=1

X

0

i;p

� e

i;p

+ [

n

X

q=1

min

X

0

i;p

=1

(X

j;q

� �

i;j

(p; q))]� e

i;r

< A

i

(

�

X

0

i

) +

n

X

p=1

X

0

i;p

� e

i;p

+ [

n

X

q=1

min

X

0

i;p

=1

(X

j;q

� �

i;j

(p; q))]�min

p

(e

i;p

)

� A

i

(

�

X

0

i

) +

n

X

p=1

X

0

i;p

� e

i;p

+ [

n

X

q=1

min

X

0

i;p

=1

(X

j;q

� �

i;j

(p; q))]�

n

X

q=1

�

i;j

(p; q)

< A

i

(

�

X

0

i

) +

n

X

p=1

X

0

i;p

� e

i;p

10



minimum activation cost of vector

�

X

i

for layer i , A

i

(

�

X

i

), to be the minimum sum of the weights

of all possible nodes and edges leading to the selected nodes of layer i in a replication graph.

Then the goal of Problem (1) can be achieved by computing the minimal value of fA

sink

(

�

X

sink

) +

P

n

p=1

X

sink;p

� e

sink;p

g over all possible values of

�

X

sink

.

3.2 Complexity

In this section, we can show that Problem (1) for a computation-intensive application is NP-

complete provided we prove the following:

Lemma 1: For any layer l in the replication graph, the minimum activation cost for two selected

nodes t

l;p

and t

l;q

will be always greater than that for either node t

l;p

or t

l;q

only.

Proof: The Lemma can be proven by contradiction. Let A

1

be the the minimum activation cost for

two nodes t

l;p

and t

l;q

, and A

2

and A

3

be the minimum costs for t

l;p

and t

l;q

respectively. Assume

that A

1

< A

2

and A

1

< A

3

. Since A

1

includes the activation cost of node t

l;p

, an activation cost

for t

l;p

only can be obtained from A

1

. The obtained value c is not necessarily the minimum value

for t

l;p

, hence A

2

� c. The value c is obtained by removing some weighted nodes and edges from

replication graph. This implies that c < A

1

. From above, we �nd that A

2

< A

1

, which contradicts

the assumption. The same reasoning can be applied to A

3

and reaches a contradiction. Therefore,

the assumptions are incorrect and Lemma 1 holds.

2

Lemma 1 can be further extended to the cases where more than two weighted nodes are chosen.

The conclusion we can draw is that the more nodes are selected from a layer, the bigger the

activation cost is.

Lemma 2: Given a computation-intensive application with its SP task graph G = (V , E) and its

assignment graph, if node i has outdegree one and edge < i; j > 2 E, then for any vector

�

X

j

, the

minimal activation cost A

j

(

�

X

j

) can be obtained by choosing only one weighted node from layer i.

(i.e.

P

n

p=1

X

i;p

= 1)

Proof: The Lemma can be proven by contradiction. Since node i has outdegree one and edge

9



3.1 Assignment Graph

Bokhari [1] introduced the assignment graph to solve the task assignment problem (2). To prove

the NP completeness of problem (1) and solve the problem, we also adopt the concept of the

assignment graph of an SP graph. The assignment graph of an SP graph can be de�ned similarly.

The following de�nitions apply to the assignment graph. And we draw up an assignment graph for

an SP graph in Figure 3.

1. It is a directed graph with weighted nodes and edges.

2. It has M � n nodes. Each weighted node is labeled with a task instance, t

i;p

.

3. A layer i is the collection of n weighted nodes (t

i;1

, t

i;2

, : : : , and t

i;n

). Each layer of the

graph corresponds to a node in the SP graph. The layer corresponding to the source (sink)

is called source (sink) layer.

4. A part of the assignment graph corresponds to an SP subgraph of type T

chain

, T

and

or T

or

is

called a T

chain

, T

and

or T

or

limb respectively.

5. Communication costs are accounted for by giving the weight �

i;j

(p; q) to the edge going from

t

i;p

to t

j;q

.

6. Execution costs are assigned to the corresponding weighted nodes.

Given an assignment graph, Bokhari [1] solves Problem (2) by selecting one weighted node

from each layer and including the weighted edges between any two selected nodes. This resulting

subgraph is called an allocation graph. To solve Problem (1), more than one weighted node from

each layer may be chosen. Similarly, a replication graph for Problem (1) can be constructed from

an assignment graph by including all selected nodes and edges between these nodes. Examples of

an allocation graph and a replication graph are shown in Figure 4 for an assignment graph shown

in Figure 3. Note that for each node x in the replication graph there is only one edge incident to

it from each predecessor layer of x.

In a replication graph, each layer may have more than one selected node. Let Variable

�

X

l

= (X

l;1

, X

l;2

, : : : , X

l;n

) be a replication vector for layer l in a replication graph. We de�ne the

8



1. if w is a T

unit

node with a child i, then

F (w) = F (i) = �(

n

X

p=1

X

i;p

)

2. if w is a T

chain

node with c children, F (w) = F (child

1

) � F (child

2

) � : : :� F (child

c

).

3. if w is a T

and

node with forker s, joiner t and c children, then F (w) = F (s) � F (t) � F (child

1

)

� F (child

2

) � : : :� F (child

c

).

4. if w is a T

or

node with forker s, joiner t and c children, then F (w) = F (s) � F (t) � �(F (child

1

)

+ F (child

2

) + : : :+ F (child

c

)).

The minimum cost replication problem for SP graphs, MCRP-SP, can be formulated as 0-1

integer programming problem, i.e:

Z = Minimize [

X

i;p

X

i;p

� e

i;p

+

X

<i;j>2E; 1�q�n

min

X

i;p

=1

(�

i;j

(p; q) �X

j;q

) ]

subject to F (r) = 1; where r is the root of T (G) and X

i;p

= 0 or 1; 8i; p: (1)

The restricted problem which allows each task to run on at most one processor has the following

formulation.

Z = Minimize [

X

i;p

X

i;p

� e

i;p

+

X

<i;j>2E;p;q

�

i;j

�X

i;p

�X

j;q

]

subject to

n

X

p=1

X

i;p

� 1 and F (r) = 1;

where r is the root of T (G) and X

i;p

= 0 or 1; 8i; p: (2)

The task assignment problem (2) for SP graphs of M tasks onto n processors, has been solved

in O(n

3

M) time [12]. However,the multiprocessor task assignment for general types of task graphs

without replication has been reported to be NP-complete [9]. As for the MCRP-SP problem, it

can be shown to be NP-complete. In this paper, we are able to solve the problem and present a

linear-time algorithm that is linear in the number of tasks when the number of processors is �xed

for computation-intensive applications.

7



The purpose of the replication problem considered in this paper is to decrease the sum of

execution and communication costs. Under such consideration, there is no need to enforce plural

communication between any two task instances. Hence, we propose the 1-out-of-n communication

model. In the model, for each edge < i, j > 2 E, a task instance t

j;q

may start its execution if it

receives the data from any one task instance of its predecessor, task i.

3 Problem Formulation and Complexity

Based on the computational model presented in Section 2.2, the problem of minimizing the total

sum of execution and communication costs for an SP task graph can be approached by replication

of tasks. An example where the replication may lead to a lower sum of execution costs and

communication costs is given in Figure 2, where the number of processors in the system is two, and

the execution costs and communication costs are listed in e table and � table respectively. If each

task is allowed to run on at most one processor, then the optimal allocation will be to assign task

a to processor 1, b to 1, c to 1, d to 2, e to 2, and f to 1. The minimum cost is 68. However, if

each task is allowed to be replicated more than one copies, (i.e. to replicate task a to processors 1

and 2), then the cost is 67.

We introduce integer variable X

i;p

's, 8 1 � i � M and 1 � p � n, to formulate the problem

where each X

i;p

= 1 if task i is replicated on processor p; and = 0, otherwise. We de�ne a binary

function �(x). If x > 0 then �(x) = 1 else �(x) = 0. We also associate an allocated 
ag F (w) with

each node w in the parsing tree, where F (w) = 1 if the allocation for tasks in the subtree S

w

is

valid; and = 0, otherwise. A valid allocation for the tasks in S

w

is an allocation that follows the

semantics of T

chain

, T

and

, and T

or

subgraphs. A valid allocation is not necessarily the allocation in

which each task in S

w

is allocated to at least one processor. Some tasks in T

or

subgraphs may be

neglected without e�ecting the successful execution of an SP graph.

Given an SP graph G, its parsing tree T (G) and any internal node w in T (G), allocated 
ag

F (w) can be recursively computed:

6



2.2 Computational Model

An application program consists of M tasks labeled m = 1, 2, : : : , M . Its behavior is represented

by an SP graph with the tasks correspond to the nodes. Each task may be replicated onto more

than one processor. A task instance t

i;p

is a replication of task i on processor p. A directed edge < i,

j > between nodes i and j exists if the execution of task j follows that of task i. Associated with

each edge < i, j > is the communication cost incurred by the application. We are concerned with

types of applications where the cost of execution of a task is always greater than the communication

overhead it needs. The model is stated as follows.

Given a distributed system S with n processors connected by a communication network, an

application is computation-intensive if its associated SP graph G = (V , E) on S satis�es the

following conditions:

1. �

i;j

(p; q) � 0,

2.

P

n

q=1

�

i;j

(p; q) � min

p

(e

i;p

), 8 < i; j >2 E, and 1 � p � n, where

� �

i;j

(p; q) is the communication cost between tasks i and j when they are assigned to processors

p and q respectively, and

� e

i;p

is the execution cost when task i is assigned to processor p.

The �rst condition states that the communication cost between any two task instances (e.g.

t

i;p

and t

j;q

) is not negative. The second one depicts that for every edge < i; j >, the worst-case

communication cost between any task instance t

i;p

and all its successor task instances (i.e. t

j;q

's, 8

q) is less than the minimum execution cost of task i.

2.3 Communication Model

The communication model we considered is di�erent from that of reliability-oriented replication.

In reliability-oriented replication problem, the objective is to increase the degree of fault tolerance.

To detect fault and maintain data consistency, each task has to receive multiple copies of data from

several task instances if its predecessor is replicated in more than one place.
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2 De�nitions

2.1 Graph Model

A series-parallel (SP) graph, G = (V;E), is a directed graph of type p, where p 2 fT

unit

, T

chain

,

T

and

, T

or

g and G has a source node (of indegree 0) and a sink node (of outdegree 0). An SP graph

can be constructed by applying the following rules recursively.

1. A graph G = (V;E) = (fvg, �) is an SP graph of type T

unit

. (Node v is the source and the

sink of G.)

2. If G

1

= (V

1

; E

1

) and G

2

= (V

2

; E

2

) are SP graphs then G

0

= (V

0

, E

0

) is an SP graph of type

T

chain

, where V

0

= V

1

[ V

2

and E

0

= E

1

[ E

2

[ f<sink of G

1

, source of G

2

>g.

3. If each graph G

i

= (V

i

,E

i

) with source-sink pair (s

i

,t

i

), where s

i

is of outdegree 1, is an SP

graph, 8 i = 1,2,: : : ,n, and new nodes s

0

62 V

i

and t

0

62 V

i

, 8 i are given then G

0

= (V

0

, E

0

) is

an SP graph of type T

and

(or type T

or

), where V

0

= V

1

[ V

2

[ : : :[ V

n

[ fs

0

, t

0

g and E

0

= E

1

[ E

2

[ : : : [ E

n

[ f< s

0

; s

i

> j 8 i = 1,2,: : : ,n g [ f< t

i

; t

0

> j 8 i = 1,2,: : : ,n g. The source

of G

0

, s

0

, is called the forker of G

0

. The sink of G

0

, t

0

, is called the joiner of G

0

. G

0

is an SP

graph of type T

and

(or type T

or

) if there exists a parallel-and (or parallel-or) relation among

G

i

's.

A convenient way of representing the structure of an SP graph is via a parsing tree [4]. The

transformation of an SP graph to a parsing tree can be done in a recursive way. There are four

kinds of internal nodes in a parsing tree: T

unit

, T

chain

, T

and

and T

or

nodes. A T

unit

node has only

one child, while a T

chain

node has more than one child. Every internal node x, along with all its

descendant nodes induces a subtree S

x

which describes an SP subgraph G

x

of G. Each leaf node

in S

x

corresponds to an SP graph of type T

unit

. A T

and

(or T

or

) node y consists of its type T

and

(or

T

or

) along with the forker and joiner nodes of G

y

. We give an example of an SP graph G, and its

parsing tree T (G) in Figure 1.
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and it may start its execution after receiving necessary data from one copy of each preceding task.

Clearly, in a heterogeneous environment the cost of execution of a task depends on the processor on

which it executes, and the communication costs depend on the topology, communication medium,

protocols used, etc. When a task t is allowed to have only one copy in the system, the sum

of the interprocessor communication costs between t and other tasks may be large. Sometimes

it will be more bene�cial if we replicate t onto multiple processors to reduce the inter-processor

communication, and to fully utilize the available processors in the systems. Such replication may

lead to a lower total cost than the optimal assignment problem does. An example illustrating this

point is presented in Section 3.

In the assignment problem, polynomial-time algorithms exist for special cases, such as tree-

structure [11] and series-parallel [12] task graphs. This paper represents one of the �rst few attempts

at �nding special cases for the replication problem. The class of applications we consider in this

paper is computation-intensive applications in which the execution cost of a task is greater than its

communication cost. Such applications can be found in an enormous number of �elds, such as digital

signal processing, weather forecasting, game searching, etc. We formally de�ne a computation-

intensive application in Section 2.2. In this paper, we prove that for the computation-intensive

applications, the replication problem is NP-complete, and we present a branch-and-bound algorithm

to solve it. The worst-case complexity of the solution is O(n

2

2

n

M). Note that the algorithm is

able to solve the problem in the complexity of the linear function of M .

We also develop an approximation approach to solve the problem in polynomial time. Given a

forker task s with K successors in the SP graph, the method tries to allocate s to processors based

on iterative selection. The complexity of the iterative selection for a forker is O(n

2

K

2

), while the

overall solution for an SP graph is O(n

4

M

2

).

In the remainder of this paper, the series-parallel graph model and the computation model are

described in section 2. In section 3, the replication problem is formulated as the minimum cost

0-1 integer programming problem and the proof of NP completeness is given. A branch-and-bound

algorithm and numerical results are given in section 4, while the approximation methods and results

are given in section 5. The overall algorithm is presented and conclusion remark is drawn in section

6.
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1 Introduction

Distributed computer systems have often resulted in improved reliability, 
exibility, throughput,

fault tolerance and resource sharing. In order to use the processors available in a distributed

system, the tasks have to be allocated to the processors. The allocation problem is one of the

basic problems of distributed computing whose solution has a far reaching impact on the usability

and e�ciency of a distributed system. Clearly, the tasks of an application have to be executed

satisfying the precedence and other synchronization constraints among them. (Such constraints are

often speci�ed in the form of a task graph.)

In executing an application, de�ned by its task graph, we have the option of restricting ourselves

to having only one copy of each task. The allocation problem, in this case, is referred to as

assignment problem. If, on the other hand, a task may be replicated multiple times, the general

problem is called the replication problem. In this paper, we consider the replication problem and

present an algorithm to �nd the optimal replication of series-parallel graphs for computation-

intensive applications.

For distributed processing applications, the objective of the allocation problem may be the

minimum completion time, processor load balancing, or total cost of execution and communication,

etc. For the assignment problem where the objective is to minimize the total cost of execution and

interprocessor communication, Stone [11] and Towsley [12] presented O(n

3

M) algorithms for tree-

structure and series-parallel graphs, respectively, of M tasks and n processors. For general task

graphs, the assignment problem has been proven [9] to be NP-complete. Many papers [8][9][10]

presented branch-and-bound methods which yielded an optimal result. Other heuristic methods

have been considered by Lo [7] and Price and Krishnaprasad [5]. All these works focused on the

assignment problem.

Traditionally, the main purpose of replicating a task on multiple processors is to increase the

degree of fault tolerance [2][6]. If some processors in the distributed system fail, the application may

still survive using other copies. In such a communication model, a task has to communicate with

multiple copies of other tasks. As a consequence, the total cost of execution and communication

of the replication problem will be bigger than that of the assignment problem. In this paper, we

adopt another communication model in which the replication of a task is not for the sake of fault

tolerance but for decreasing of the total cost. In our model, each task may have more than one copy

2
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Abstract

We consider the replication problem of series-parallel (SP) task graphs where each task may

run on more than one processor. The objective of the problem is to minimize the total cost

of task execution and interprocessor communication. We call it, the minimum cost replication

problem for SP graphs (MCRP-SP). In this paper, we adopt a new communication model where

the purpose of replication is to reduce the total cost. The class of applications we consider

is computation-intensive applications in which the execution cost of a task is greater than

its communication cost. The complexity of MCRP-SP for such applications is proved to be

NP-complete. We present a branch-and-bound method to �nd an optimal solution as well as

an approximation approach for suboptimal solution. The numerical results show that such

replication may lead to a lower cost than the optimal assignment problem (in which each task

is assigned to only one processor) does. The proposed optimal solution has the complexity of

O(n

2

2

n

M ), while the approximation solution has O(n

4

M

2

), where n is the number of processors

in the system and M is the number of tasks in the graph.
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