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The main goal of this dissertation has been to contribute to a better understanding 

of car-following behavior, and more specifically, on the variability in car-following 

behavior that is commonly observed in naturalistic driving situations.  

This dissertation includes a thorough review of the literature in this area in which 

some important limitations of current car-following experimental studies and models, 

which make them inconsistent with naturalistic driving behavior under car-following 

situations, were investigated.  A new data collection system using an instrumented test 

vehicle, with a synchronized user interface and data acquisition program coupled with 

two separate CAN networks, GPS, inertial distance measuring instrument, and digital 

video, has been developed to produce a sufficient quality and quantity of data on real 

driving behavior. 

As a result of the data collection and analysis, we developed a better 

understanding of various behavioral characteristics in car-following behavior: (1) there 

was an oscillatory (or “drift”) process in car-following behavior, which appears as a 

sequence of parabolic shapes in keeping desired following distance, (2) traffic hysteresis 



  

exists in car-following behavior, which is the phenomenon that drivers’ acceleration and 

deceleration have different speed-density curves, (3) each individual driver has his or her 

own driving rule, rather than keeping a deterministic and strict driving law, but following 

distance for  individual drivers can vary over time and space under different driving 

maneuvers and conditions, such as traffic, geometric, or environmental conditions, (4) 

drivers behave differently under different driving maneuvers, although they have exactly 

the same (current) instantaneous states, such as speeds of the lead and following vehicles 

and following distances, (5) reactions of following vehicle caused by the same driving 

maneuvers in car-following situations repeat themselves over time and space.  

It was statistically evident from the analysis that different traffic and road 

characteristics (e.g., vehicle type, number of lanes, location of driving lane, and traffic 

condition), human characteristics (e.g., gender and distraction factors), and environmental 

characteristics (e.g., time of day and weather) have different effects on car-following 

behavior.  

We hope that the findings of this dissertation will provide clues to guide the 

construction of more realistic car-following models to help improve the realism of 

microscopic traffic simulators, for which car-following logic is the core, and to develop 

more appropriate ACC algorithms and control strategies. 
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Chapter 1: Introduction 

 

 Large and increasing vehicular traffic volumes and the accompanying safety 

concerns have increased the need for a better understanding of the dynamic 

characteristics of traffic flow.  There have been a variety of theoretical approaches and 

mathematical descriptions applied to the study of traffic flow on a roadway.  One such 

theory is normally called “car-following,” and other similar appellations have also been 

used.  The general idea is that the motion of each car in the line of traffic depends on that 

of the car in front of it, at least under high density conditions.  The behavior of single-

lane no-passing traffic can then be described and analyzed in terms of the motions of 

individual cars in the line of traffic. 

 This dissertation focuses on research for which the central goal is a better 

understanding of car-following behavior, and more specifically, on the variability in car-

following behavior that is commonly observed in naturalistic driving situations.  Most of 

the empirical work in this area is several decades old, and no real improvements in 

methods or understanding have taken place recently either.  New applications in partial 

traffic automation require a more careful treatment of the subject matter since the car-

following logic has been the core for developing appropriate automation algorithms and 

control strategies.  Chapter 1 of this dissertation describes the general background, the 

limitations of previous experimental studies and models on car-following behavior, 

objectives of this research, and brief descriptions of the remaining chapters of the 

dissertation.   
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1.1 Background 

Over the past half century, research and field experiments to study car-following 

behavior have been conducted on test tracks and roadways, and then modeled to represent 

drivers’ behavior.  Car-following models form one of the main logical processes in all 

microscopic traffic simulation models such as INTEGRATION, CORSIM, VISSIM and 

PARAMICS, and in modern traffic flow theory.  In recent years, the importance of a 

detailed understanding of such driver behavior has become more essential because an 

adequate description of this process has instant application in both the design and 

assessment of advanced driver assistance systems (ADAS), such as adaptive cruise 

control (ACC) which enables the driver to keep the desired following distance through 

the distance sensors and vehicle dynamic actuators. It is noteworthy that the 

establishment of an understanding of normative driver behavior was ranked as the second 

most important area for development out of 40 problem statements, as scored by an 

advanced vehicle control and safety systems (AVCSS) panel (ITS America, 1997).   

However, the manner in which previous data were collected introduced biases 

into the models, and also tended to obscure important statistical variations of following 

behavior both across and within drivers, which might help explain why stochastic 

elements are not well-represented in current car-following models. 

It is our premise that basic research to understand the underlying causal 

mechanisms and variability of car-following behavior is still required.  Data collection 

techniques are much better now than they were when much of the seminal data in this 

field was collected.  With new high-fidelity data and better understanding of detailed car-
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following behavior, modern traffic flow theory and the realism of microscopic traffic 

simulators could be improved greatly. 

 

1.2 Limitations of Previous Studies on Car-Following Behavior 

Car-following models were first proposed by Reuschel (1950) and Pipes (1953).  

The body of literature in this area was extended greatly by Herman et al. (1959~1967) 

during what may be thought of as the “heyday” of transportation science, when 

accomplished researchers from mathematics and physics converged on transportation as a 

rich area of practical research.  The literature has been continuously refined up to the 

present with various different approaches to describing a relationship between the leader 

and the following vehicle(s).  Additionally, a series of field experiments have been 

conducted, accompanied by the development of different car-following models to 

calibrate parameters, and to validate and support the models.  Certain of these models and 

methods are reviewed more thoroughly later in this dissertation.  

Previous empirical studies and models of car-following behavior have some 

important limitations.  The research philosophy of most previous car-following studies 

was to develop models first, based on simple theories of driver responses, and then to 

calibrate and validate them with field data using uncertain experimental methods, as will 

be discussed in the Chapter 2 of the dissertation.  It is difficult to ascertain whether the 

behavior induced by the models, applying the above research philosophy, is in any way 

“natural.”  For example, a common assumption in car-following models is that the 

reaction of a following vehicle at time Tt + depends only on the situation at an earlier 

time instant t.  Hence, current car-following models are “memoryless” in the sense that 
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the following vehicle’s action lags the lead vehicle consistently by a constant delay.  In 

particular, there is no dependence on the past sequence of car motions that produced the 

current state.  In fact, for a given instantaneous state, the most natural following response 

might differ, depending on how that state was reached.  Of course, history can always be 

added to the definition of state, but possibly at severe cost in terms of complexity.  With 

careful forethought, it may be possible to capture the most salient aspects of the history 

and yet retain models that are tractable. 

Largely, there have been two kinds of data collection methods for car-following 

experiments, using either video recording (or aerial film) to capture many anonymous 

vehicles, or wire-linked test vehicles on a test track or a roadway.  In the first case, it 

should be noted that this type of data collection is very difficult and tedious work.  One 

advantage is that real drivers are being observed, who are unaware that the experiment is 

taking place, thus, their behavior is as “natural” as can be expected.  Furthermore, there 

are many different subjects.  However, there are large experimental errors caused by the 

inaccuracy of the measured values of distance and spacing within each small frame of 

film.  Hence, this method tends to produce large calculation errors in drivers’ responses, 

such as acceleration or deceleration.  In particular, driving maneuvers (or scenarios) that 

unfold over a greater distance than can be captured by the camera cannot be represented 

properly.  In fact, it may be more important to investigate sequences of car motions for 

determining following behavior than instantaneous states because the most natural 

following response might differ, depending on how that state was reached.  Furthermore, 

it is very hard to capture various human characteristics such as gender and age.   
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With the wire-linked vehicles, the drivers of the following vehicles (i.e., the 

subjects of the experiment) were members of the research team, who knew they were 

being observed, and who were also typically driving under specific instructions to follow 

the lead vehicle at a safe distance.  It is reasonable to presume, therefore, that they were 

driving in an artificially attentive and careful manner.  Moreover, they were aware of the 

premises of the experiments.  This kind of design has the obvious weakness that it may 

not capture what normal drivers will do under normal conditions on a roadway.   

Furthermore, this experimental design provides a very limited understanding of 

the variation of following behavior across different drivers.  Only one (or a few) 

members of a diverse population are represented.  Hence, most existing car-following 

models have been analyzed under the assumption that all drivers behave in the same way 

and that a deterministic relationship exists between the action of a lead vehicle and the 

reaction of the following vehicles.  In fact, there might be various responses to the same 

stimuli within the same driver and across different drivers.  Moreover, only certain 

potentially causal elements, such as relative speeds and spacings, have been studied.  

There are numerous other factors that may be influential, such as various human 

characteristics, traffic and road characteristics, and environmental characteristics.   

 

1.3 Research Objectives 

A major goal of this research is to observe and analyze the car-following behavior 

of subjects who do not know they are part of an experiment.  We would like to 

investigate the stochastic effects in car-following behavior across and within drivers with 

distinguishable driving maneuvers that unfold over a sequence of time, as well as those 



 

 6

caused by variability of critical factors such as human characteristics (e.g., gender  and 

environmental conditions like telephoning or vehicle occupancy (distraction level)), 

traffic and road characteristics (type of vehicle, congestion level, number of lanes, and 

location of driving lane), and environmental characteristics (e.g., time of day and weather 

condition).  In order to achieve this goal, the following objectives have been pursued: 

• Review the literature in this area and disclose some important limitations of 

current car-following experimental studies and models, which make them 

inconsistent with naturalistic driving behavior under car-following situations. 

• Develop a new data collection system using an instrumented test vehicle, which 

could overcome shortcomings of previous data collection methods, and a 

synchronized user interface program to check the status of each device and 

concurrently store the information transferred from each device to the laptop 

computer.   

• Collect car-following time series data during the rush and non-rush hour periods.  

In particular, pay attention to sequences of events that may be more important to 

determining following behavior than instantaneous relative speeds and spacings. 

• Profile and investigate the following vehicle’s responses and logical processes in 

car-following situations. Furthermore, identify the variability in car-following 

behavior across and within drivers, investigate various critical causal factors 

affecting the driving behavior of the following vehicle, classify behavioral 

profiles of the following vehicles based on those factors, and distinguish 

stochastic differences in following behavior. 
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1.4 Organization of the Dissertation 

 The rest of the dissertation is organized as follows.  An in-depth review of 

previous research on car-following behavior is provided in Chapter 2.  Chapter 3 

introduces a new data collection system using an instrumented test vehicle and the system 

architecture, i.e., hardware and software of the new data collection system.  As a partial 

technical aside, this chapter also includes some geometric analysis of when the radar 

range sensor used in this study can be obfuscated near curves when used in its intended 

application as a forward-facing rage sensor for autonomous cruise control (ACC).  While 

developing and testing the new data collection system, a preliminary survey was 

conducted to observe real car-following behavior under naturalistic driving conditions 

and furthermore to identify driving maneuvers that would be observed in car-following 

situations.  Chapter 4 presents some findings from the preliminary survey and car-

following field experiments using the new data collection system.  Chapter 5 describes 

the findings that are observed from the data collected in the study site.  Finally, some 

conclusions and contributions of this dissertation are offered.   
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Chapter 2: Literature Review 

 

The review of the literature is divided into four sections and focuses mainly on the 

problems and limitations in previous experimental studies and models of car-following 

behavior.  In the first section, the most well-known simple car-following models are 

described.  The limitations with respect to causal mechanisms that each model has 

adopted to represent car-following behavior follows in the second section.  The third 

section describes the data collection methods used in previous car-following field 

experiments and some biases caused by those methods.  The fourth section describes the 

logical process of representing the following vehicle’s responses.  Finally, the review of 

the literature is summarized in the fifth section. 

 

2.1 Seminal Models 

An important contribution of this dissertation is documentation of a method to 

collect high-resolution vehicle behavior data using contemporary technology. The 

absence of such methods at the time the first car-following models were developed is 

evidenced by the somewhat out-of-order research methodology that tended to permeate 

the earliest models in this area.  The general pattern was to propose an extremely simple 

and uniform model of driver response (such as collision avoidance or maintaining safe 

following distances), and then to use the necessarily crude experimental methods of the 

time to calibrate the small number of parameters involved in the model.  What was not 

done, and what should be the hallmark of good research, is to collect the data first, 

scrutinize it carefully, and then to let ideas about possible models manifest themselves in 
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the data.  To be fair, these were extremely competent researchers, so one must conclude 

that the expedient nature of the methodology was dictated by the technological 

limitations in place.  Nevertheless, it was possible in this dissertation to collect better data 

and to let these better speak for themselves, without the temptation necessarily to hasten 

to simple models.      

The family of car-following models typically referred to colloquially as the 

“General Motors” models was based on a model first developed by Chandler et al. (1958).  

This was a simple linear model, in the sense that the response (acceleration or 

deceleration) of the following vehicle was assumed to be proportional (linear) to the 

stimuli (relative velocity) between the lead and following vehicles.   

)]()([)( 11 txtxαTtx nnn ++ −=+ &&&&                                           (1) 

where )(1 Ttxn ++&& is the acceleration or deceleration of the following vehicle at time 

)( Tt + , )(txn& is the velocity of the lead vehicle at time t, )(1 txn+& is the velocity of the 

following vehicle at time t, T is a reaction time and α is a sensitivity parameter.  The only 

parameters in this model were the delay with which the response followed the stimulus, 

and the “sensitivity” or gain of the model.  A series of field experiments were carried out 

on test tracks to calibrate these parameters.  Interestingly, while the field data revealed 

significant variation in the sensitivity values across different drivers, the model could not 

accommodate this variation and it was not adequately explained. Later, a common 

explanation amongst other researchers was that it makes sense for the sensitivity to 

increase as the relative spacing decreases.   

In the linear model, the sensitivity term is independent of the spacing between the 

lead and following vehicles.  Hence, Gazis et al. (1959) developed a non-linear car-
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following model with a sensitivity term that was inversely proportional to the relative 

spacing.   
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where  α0 is a calibration parameter.  Subsequently, Edie (1961) assumed that as the 

speed of the traffic stream increases, the driver of the following vehicle would be more 

sensitive to the relative velocity between the lead and following vehicles.  Hence, he 

introduced the speed of the following vehicle into the sensitivity term of the non-linear 

car-following model developed by Gazis et al. (1959).   
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where α′ is a dimensionless sensitivity parameter.  Finally, a generalized form of car-

following models was proposed (Gazis et al., 1961) that subsumes all of these 

aforementioned models.   
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where l and m are constants.   

It should be noted that the above car-following models developed with support 

from General Motors assume that all drivers follow the exact same driving rules.  In fact, 

these rules may differ with different drivers, or even for the same driver and with 

different conditions, and in fact, possibly even to some extent with the same driver and 

nearly identical situations.  Therefore, it is difficult to ascertain whether the behavior 

induced by the above models, applying the above research philosophy, is in any way 

“natural.”  In particular, there simply are not enough modern data sets collected under 
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appropriate experimental conditions to make this determination.  Hence, a more desirable 

approach to the study of car-following behavior in this dissertation was first to collect 

large quantities of detailed data under car-following situations using modern observation 

techniques.  Following that, the data was processed and analyzed in various ways to look 

for emerging patterns.   

 

2.2 Causal Mechanisms  

A number of different approaches have been adopted and developed to represent 

the causal mechanisms in car-following behavior.  However, only certain potentially 

causal elements, such as relative speeds and spacings, have been considered and 

formalized in previous car-following models. 

One of the earliest studies, by Pipes (1953), is based on the goal of avoiding 

collisions or maintaining safe following distances.  He assumed that the movements of 

the various vehicles of the line obey a postulated following rule suggested by a “rule of 

thumb” frequently taught in driver training, which is to allow one additional length of a 

car in front for every ten miles per hour of speed.  By the application of this postulated 

following rule, he proposed the following simple linear equation in which the car spacing 

is a linear function of speed of the following vehicle.  

nnnn Lxbxx ++=− ++ 11 &τ                                                (5) 

where xn is the position of the front of the nth vehicle, 1+nx is the position of the front of  

vehicle 1+n , b is the minimum distance between the vehicles when stopped, τ is the 

time gap prescribed by the postulated traffic law, 1+nx& is the velocity of the vehicle 1+n  
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and Ln is the length of the nth vehicle.  For example, if the rule of thumb was to allow 15 

feet for every 10 miles per hour, τ would be  
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If this equation (5) is differentiated with respect to time, the result is as follows: 

11 ++ =− nnn xxx &&&& τ                                                       (6) 

Equation (6) cannot be applied in general as a traffic law, because it only serves to keep 

those pairs of vehicles in equilibrium that were in that state to begin with.  In fact, all 

linear models would suffer from this same drawback – since the derivative (equation (6), 

or the “following law”) is independent of the constant terms of the equilibrium spacing 

rule (equation (5)), any initial condition would produce the same following behavior for 

the same speed profile of the lead vehicle, including spacings that were far too close 

(after a lane change, perhaps) or too distant (in which case the interaction between the 

vehicles might be weak or nonexistent).  The behavior that drivers, finding themselves in 

an “out-of-equilibrium” status, might follow to return to equilibrium was not defined or 

studied.   

From the perspective of driving in expectation of a “brick wall stop,” where one 

imagines the lead vehicle to stop instantaneously (a frequent worst case scenario 

considered in these models), the spacing rule for this model seems dubious, as simple 

physics suggests that stopping distance should vary with the square of vehicle speed, 

rather than linearly.  Kometani and Sasaki (1959) modified the linear model to 

accommodate that consideration - the car spacing is expressed by a quadratic relation of 

speeds of the lead and following vehicles.  They introduced a time lag T (reaction time of 
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a driver) in the model and assumed that a driver chooses his or her velocity at time Tt +  

based on the spacing observed at an earlier time t. 

2 2
1 1 1 2 1( ) ( ) ( ) ( ) ( )n n n n nx t x t x t x t T x t T bα β β+ + +− = + + + + +& & &                     (7) 

where )(txn  and )(txn& are the position and speed of the nth vehicle at time t respectively, 

and α , 1β , 2β  and b are all constants. 

Notwithstanding its obvious flaws, Zhang and Kim (2001) recently modified 

Pipes’ model to reproduce both the so-called “capacity drop” and “traffic hysteresis” 

phenomena, which some experimenters have deduced from field data.  They postulated 

that cars are always in one of three phases - acceleration, deceleration and coasting.  The 

time gap, which the original model assumed to be constant, was made a function both of 

vehicle spacing and of which phase a driver was in.  They did not, however, address the 

suspicion, raised by many people and significant empirical evidence, that not many 

people drive according to this safe following distance rule. 

All General Motors car-following models, introduced in section 2.1, have the 

same basic form: Response = function (stimuli, sensitivity), where response is 

acceleration or deceleration of the following vehicle and the stimuli are the relative 

velocity between the lead and following vehicles.  The various modifications of the 

sensitivity term led to a generalized form of car-following models, equation (4).  Most of 

the previous models are special cases of this generalized model with different 

combination of l and m.  For example, equation (1) is represented by equation (4) with 

0== ml , equation (2) is by equation (4) with 0,1 == ml , and equation (3) is given 

by equation (4) with 1,1 == ml .  Note that the magnitude of the response is directly 

proportional to the relative velocity at the time of observation (before the lag), and to the 
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instantaneous velocity of the following vehicle at the time of actuation (after the lag) and 

with some exponent to be calibrated.  This latter artifact does not necessarily agree with 

the physics of the problem, as fluid resistance and non-constant power curves at high 

speeds greatly reduce the acceleration (positive) that a vehicle can achieve.  This 

response is inversely proportional to some power of the relative spacing at the time of 

observation, which is reasonable. 

In most previous car-following models, the driver’s absolute response was the 

same for acceleration and deceleration, i.e., the models were “symmetric.”  However, it is 

well-known that the capability (and, perhaps, willingness) to decelerate in a vehicle is 

generally greater than to accelerate.  Hence, Herman and Rothery (1965) conducted car-

following experiments to investigate the difference of the capability of a driver’s reaction 

between acceleration and deceleration, and Ozaki (1993) proposed modified car-

following models that have different forms of driver’s responses based on the data 

collected on a test track and a Japanese motorway: 

)]()([)( 1,,1 txtxαTtx nnadadn ++ −=+ &&&&  

0.1
1

9.0
1 )]()(/[)(*1.1 txtxtx nnnd ++ −= &α  

2.0
1

2.0
1 )]()(/[)(*1.1 txtxtx nnna +

−
+ −= &α                                       (8) 

)(*7.0)]()([*02.03.1 1 txtxtxT nnnd &&+−+= +       

)(*6.0)]()([*01.05.1 1 txtxtxT nnna &&−−+= +  

where dα  and aα  are sensitivity values for deceleration and acceleration, dT  and aT  are 

driver reaction times for deceleration and acceleration respectively.   
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The series of General Motors car-following models do not consider the effect of 

the inter-vehicle spacing independently of the relative velocity; i.e., drivers will always 

accelerate if the relative velocity is positive and decelerate if the relative velocity is 

negative.  However, in real driving, it is often seen that when the following vehicle is 

some reasonable distance behind the leading vehicle, the following vehicle can accelerate 

even if the relative velocity is zero.  One might circumvent this criticism by claiming that 

this would not happen in high density traffic; however, due at least in part to lane-

changing and a mix of vehicle types, such larger-than-average gaps frequently appear, 

even in rush-hour traffic.  Hence, Low et al. (1998) proposed a car-following model, 

adding a nonlinear spacing-dependent term to the model developed by Gazis et al. (1961). 

31
1 1 1
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&&                     (9) 

where a and b are positive real numbers, Dn+1 is the desired spacing that the driver of 

vehicle 1+n  attempts to achieve from the vehicle ahead.  The first term on the RHS is 

the model proposed by Gazis et al. and the cubic term is the additional spacing-dependent 

term. 

Gipps (1981) claimed that the parameters l,mα , l and m in the generalized form of 

General Motors car-following models have no obvious connection with identifiable 

characteristics of drivers or vehicles, and argued that the parameters in a model should 

correspond to obvious characteristics of drivers and vehicles.  Hence, he proposed a 

model for the response of the following vehicle based on the assumption that each driver 

sets limits to his desired braking and acceleration rates, and then uses these limits to 

calculate a safe speed with respect to the preceding vehicle.  It was assumed that the 
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driver of the following vehicle selects his speed to ensure that he can bring his vehicle to 

a safe stop if the vehicle ahead comes to a sudden stop.  The model has two components, 

which cover acceleration and braking separately.  The acceleration component is as 

follows: 

2/1
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where )(1 Ttxn ++& is the maximum speed to which vehicle 1+n  can accelerate during the 

time interval (t, Tt + ), 1+na is the maximum acceleration for vehicle 1+n  and 1+nV is the 

desired speed at which the driver of vehicle 1+n  wishes to travel.  The braking 

component is as follows: 

2/1
2

111
2

111 ]}ˆ
)()())()((2[){()(

b
txTtxtxLtxbTbTbTtx n

nnnnnnnn
&

&& −−−−−+=+ ++++++   (11) 

where )(1 Ttxn ++& is the maximum safe speed for vehicle 1+n  with respect to vehicle n, 

1+nb is the most severe braking that the driver of vehicle 1+n  wishes to undertake 

( 1+nb <0), nL is the effective length of vehicle n and b̂ is the estimate of nb .  Finally, in 

any given circumstances, the speed adopted by vehicle 1+n  is the minimum value of 

these two components.   

An obvious critique of the above models is that they assume that all drivers follow 

the same driving rules.  In fact, these rules may differ with different drivers, or even for 

the same driver and with different conditions, and in fact, possibly with the same driver 

and nearly identical situations.  Subramanian (1996) and Ahmed (1999) extended the GM 

non-linear car-following model (Gazis et al., 1961) by assuming that the reaction time is 

a function of factors (e.g., age, gender, weather conditions, geometry, vehicle type and 
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traffic conditions) modeled by a truncated log-normal random variable.  We share with 

these authors the sense that there are significant stochastic components missing from 

other car-following models.  However, there is a difference between injecting some 

randomness into the model, and doing so in a way that properly captures stochastic 

effects.  For example, simply turning a constant parameter into a random variable, yet 

still assuming that, once sampled, it will remain the same for that driver throughout the 

journey, does not capture the incomplete consistency that has been observed within 

drivers for similar stimuli.  Further, this retains the myopic character of the model and 

does not allow for the kind of longer-term, evolving maneuvers that we feel are a critical 

component of actual driving.  In particular, the use of a simple study site and myopic data 

collection schemes prevents (unfairly) this variation from even being observed in the first 

place.    

Kikuchi et al. (1992, 1999) also recognized that the reactions of the following 

vehicle to the lead vehicle might not be based on a deterministic relationship, but rather 

on a set of approximate driving rules developed through experience.  Their approach to 

modeling these rules consisted of a fuzzy inference system with membership sets that 

could be used to describe and quantify the behavior of following vehicles.  However, the 

logic to define the membership sets is subjective and depends totally on the judgment and 

approximation of the researchers.  Furthermore, no field experiments were conducted to 

calibrate and validate these fuzzy membership sets under real driving conditions.  While 

we agree with the premise of the paper, and seek to resolve similar issues, the 

methodology employed does not warrant any further explanation.  Some researchers may 

argue over semantics, but we believe that there are no quantitative problems in fuzzy 
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logic that cannot be solved in an equivalent manner using classical methods (Ruspini, 

1996), so the use of fuzzy logic by itself does not distinguish a model from other 

approaches. 

All of the models examined so far use only a simple set of kinematic variables, 

such as relative spacings and speeds, instantaneous speeds, etc., to determine subsequent 

behavior.  In fact, there are numerous other factors besides basic kinematics that may 

influence car-following behavior, such as various human characteristics (e.g., gender, 

environmental conditions like telephoning, vehicle occupancy (distraction level)), traffic 

and road characteristics (e.g., type of vehicle, congestion level, number of lanes, and 

location of driving lane), and environmental characteristics (e.g., time of day and weather 

condition).  We hypothesize that different types of vehicles, such as truck and auto, and 

different geometric and road traffic conditions might have a different impact on car-

following behavior.  For example, a vehicle cannot accelerate rapidly on a steep roadway, 

compared to level terrain, and might be more careful when driving behind a truck.  

Different traffic and road characteristics such as road curvature, relative speed, stream 

speed and the length of time in the coupled state might affect car-following behavior 

differently, as suggested by Rockwell (1972).  Recently, Chen et al. (1995) conducted a 

series of experimental studies using a video recording method for environmental effects 

on car-following behavior, although this kind of data collection method has the obvious 

weakness that it may not capture various human characteristics and driving maneuvers 

that unfold over a greater distance than can be captured by the camera.  They found that 

the effects of road surface conditions and weather, traffic density, and different locations 

are related to the differences in car-following behavior.   
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Unfortunately, no further studies have been made to identify numerous other 

factors that may be influential to car-following behavior, investigate those effects 

quantitatively and to incorporate their findings into car-following models that could 

replicate these characteristics.  Hence, it is very important to identify various critical 

factors affecting the driving behavior of the following vehicle through extensive field 

experiments, investigate the relationships between those factors and the following 

vehicle’s behavior, and categorize the range of each critical factor based on the 

differences of behavioral characteristics.  Of course, in order to do so, empirical data 

must be collected and studied.  The next section describes some studies that have been 

done in the past, as well as experimental errors and biases that should be avoided if 

possible. 

 

2.3 Experimental Studies and Biases 

As mentioned in the previous chapter, numerous car-following field studies have 

been conducted to calibrate parameters and to validate the models.  One of the most 

extensive experiments was performed by Chandler et al. (1958), cooperating with the 

General Motors research team.  They first conducted field experiments using wire-linked 

vehicles on the test track to quantify the parameter values for the reaction time and the 

sensitivity in the simple linear model (equation (4) with 0== ml ).  In the experiment, 

eight different drivers were used in the instrumented car and were asked to follow the 

lead vehicle while maintaining a safe distance.  Subsequently, Gazis et al. (1959) also 

performed experiments using wire-linked vehicles to obtain the parameter values for the 

sensitivity parameter and reaction time in the non-linear model (equation (4) with 
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0,1 == ml ).  It was conducted at the Holland, Queens Mid-town, and Lincoln Tunnels 

in New York with eleven different drivers, and at the General Motors test track.  A 

similar three-car experiment was carried out by Herman and Rothery (1963) to 

investigate the effect of looking two cars ahead instead of just at the car immediately in 

front, and to study the appropriateness of an “asymmetric” model; i.e., one in which 

acceleration and deceleration responses were different in absolute value (for the same 

absolute stimulus). 

Kometani and Sasaki (1959) performed car-following experiments with two test 

vehicles.  A lead vehicle and a following vehicle were photographed by a camera from 

the top of a roadside building.  Rough instructions were given to the driver of the lead 

vehicle concerning the magnitude and the location of intended acceleration and 

deceleration maneuvers, whereas the driver of the following vehicle was instructed to 

follow the lead vehicle, maintaining a safe spacing which he considered a minimum.   

Numerous experiments were conducted afterward to modify the sensitivity term 

of the generalized General Motors model.  Similarly, Hanken et al. (1967, 1968) 

developed an empirically-based model by piece-wise linear regression analysis with data 

from car-following experiments using wire-linked vehicles similar to those used by the 

General Motors research team.  Aron (1988) used three instrumented vehicles with 

optical sensors installed on the wheels of the second and third vehicle to collect car-

following data.  Ozaki (1993) proposed a modified General Motors car-following model 

based on the data collected on a test track with a lead vehicle and two instrumented 

following vehicles, and on a Japanese motorway with a video camera mounted on the top 

of a 32-floor building. Recently, Brackstone et al. (1999) conducted car-following 
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experiments on a three-lane motorway in the United Kingdom.  In their experiments, 

each of seven subjects was instructed to follow an instrumented test vehicle through the 

test section.   

In most of these experiments, the drivers of the following vehicles knew they 

were being observed, and most were also driving under specific instructions to follow the 

lead vehicle at a safe distance.  Moreover, they were aware of the premises of the 

experiments.  This kind of design has the obvious weakness that it may not capture what 

normal drivers will do under normal conditions on a roadway.  Furthermore, this provides 

a very limited understanding of the variation of following behavior across different 

drivers.  Only one (or a few) members of a diverse population are represented.  Hence, 

most existing car-following models have been analyzed under the assumption that all 

drivers behave in the same way and that a deterministic relationship exists between the 

action of a lead vehicle and the reaction of the following vehicles.  In fact, there might be 

various driver responses within the same driver and across different drivers.  The 

significant variations in the value of reaction time (1.0 to 2.2 seconds) and sensitivity 

(0.17 to 0.74) of different drivers observed in car-following experiments performed by 

Chandler et al. (1958) and Gazis et al. (1959) illustrate the random fluctuations of 

following behavior amongst drivers. 

On the other hand, Treiterer and Myers (1974) monitored the trajectories of a 

large number of vehicles using aerial film to calibrate parameters in the generalized 

General Motors model. They investigated the acceleration and deceleration phases 

separately.  Similarly, Subramanian (1996) used the data collected by FHWA to estimate 

the parameters in the extended General Motors non-linear model.  The data were 



 

 22

collected using a 35-mm motion picture camera mounted on an aircraft.  The film data 

were then reduced using a microcomputer-based digitizing system.  Subsequently, 

Ahmed (1999) collected car-following data using standard video equipment.  The length 

of the recorded section varied from 150 to 200 meters at different zoom levels.  The 

video data were processed using image processing software.  The drivers in the car-

following experiments did not know they were part of an “experiment.”  However, it 

should be noted that this type of data collection is very difficult and tedious work and 

there are large experimental errors in video recording or aerial film methods caused by 

the inaccuracy of the measured values of distance and spacing within each small frame of 

film or video.  Hence, it tends to produce large calculation errors in drivers’ responses, 

such as acceleration or deceleration.  In particular, driving maneuvers (or scenarios), as 

will be discussed in the next section in detail, that unfold over a greater distance than can 

be captured by the camera cannot be represented properly.  In fact, it may be more 

important to investigate sequences of car motions for determining following behavior 

than instantaneous states because the most natural following response might differ, 

depending on how that state was reached.  Furthermore, this kind of design has the 

obvious weakness that it may not capture various human characteristics such as gender, 

occupancy, and in-vehicle activities. 

 As reviewed above, the design of experimental studies in previous car-following 

models has the obvious limitation that it may not capture normal driving behavior.  

Hence, new data collection methods that could overcome shortcomings of previous 

methods should be considered.  The new data collection methods need to observe and 

analyze the car-following behavior of subjects who do not know they are part of an 
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experiment.  Also, they should be able to capture the following behavior of a diverse 

population of drivers to identify and distinguish the variability in car-following behavior 

across and within drivers.  Furthermore, the new data collection method should be 

designed to capture various critical factors such as human characteristics, traffic and road 

characteristics, and environmental characteristics affecting the driving behavior of the 

following vehicles. 

 

2.4 Memoryless Process 

A common assumption in car-following models is that the reaction of a following 

vehicle at time t+T depends only on the situation at an earlier time instant t.  Hence, 

current car-following models treat the dynamic evolution of cars at a given state as a 

memoryless process; i.e., the following vehicle’s action lags the lead vehicle consistently 

by a constant delay.  In particular, there is no dependence on the past sequences of car 

motions that produced the current state (in existing car-following models, the state 

includes only instantaneous conditions, not historic ones).   

In fact, for certain instantaneous states, the most natural following responses 

might differ, depending on how those states were reached.  For example, a following 

driver might not respond promptly to maintain his or her desired distance when the lead 

vehicle has recently cut into the lane where the following vehicle is driving.  If it is clear 

that the new leader can accelerate and increase the spacing unilaterally, or that an 

additional lane change may be imminent, the follower may choose simply to wait 

cautiously without taking evasive action, whereas current simple state-based models 

(with a myopic definition of the state) would predict a nearly immediate and probably 

aggressive deceleration maneuver.  Figure 1 shows two examples where the same state 
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might be produced under very different causes, and hence very different effects might be 

expected.  In the first case, the new lead vehicle labelled n changes lanes in front of the 

subject car (vehicle labelled n+1), and acquires some relative position and velocity 

thereby.  The vehicle then accelerates, prompting no response from the following vehicle 

to maintain his or her desired distance.  In the second case, if the same spacings and 

speeds had resulted from a deceleration event, the follower might be inclined to 

decelerate immediately.   

Actually, Chandler et al. (1958) first introduced the idea that the response of the 

following vehicle depends not only on what the relative speed was at a certain earlier 

instant, but rather on its time history.  Hence, they extended the simple linear car-

following model in which the acceleration of the following vehicle is proportional to the 

relative speed between the lead and the following vehicles, by adding a weighting 

function (Lee, 1966, called it a “memory function”) that is intended to represent the way 

in which the following driver responds to the information he or she has received from the 

lead vehicle over some time interval.  Therefore, the stimulus at a given time, t, depends 

on the weighted sum of earlier values of the relative speed. 

1 1( ) [ ( ) ( )] ( )
t

n n n
t t

x t T x z x z h z t dz+ +
−∆

+ = − −∫&& & &                                  (12) 

where )(1 Ttxn ++&& is the acceleration or deceleration of the following vehicle at time 

)( Tt + , )(txn& and )(1 txn+& are the velocity of the lead and the following vehicle at time t 

respectively, and t∆ is the interval over which memory is applied, and ( )h t is the 

weighting function defined on [- t∆ ,0].  
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Figure 1. Examples of different responses to the same instantaneous state 
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Lee (1966) investigated the consequences of applying several examples of 

possible weighting functions such as the Dirac delta function, decaying exponential 

function, and the Heaviside step function.  Obviously, the simple linear car-following 

model developed by Chandler et al. (1958) is a special case of the more general theory 

when the Dirac delta function is used as the weighting function and the impulse occurs at 

time t only.  However, no data collection results were shown to determine the appropriate 

form of the weighting function, or to confirm that this is indeed a reasonable model.  

Subsequently, Darroach and Rothery (1972) illustrated how one might estimate the 

memory function, and in the special case when it is proportional to the Dirac delta 

function, the reaction time and sensitivity parameters of the basic linear model, using 

Fourier analysis techniques.  However, they did not deal with the question of the 

accuracy of the estimated weighting function and no further research has been made to 

compare it with real car-following behavior.  This type of approach seems to hold some 

promise, at least to the extent that it attempts to resolve some of the critiques of models 

we have presented so far.  Unfortunately, the idea of using time-series history to predict 

the response of the following vehicle has had rather little influence on later developments 

in car-following models. 

  

2.5 Summary 

Car-following logic has played a key role in all microscopic traffic simulation 

models to describe drivers’ car-following behavior.  However, as reviewed in the 

previous sections, current car-following experimental studies and models have some 

important limitations, which make those models inconsistent with naturalistic driving 
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behavior under car-following situations.  The following is a summary of the problems 

and limitations of current car-following experimental studies and models. 

• The research philosophy of most previous car-following models was to conjure up 

a simple model first, and then to use field data using uncertain experimental 

methods to calibrate it. 

• Only certain elements, such as relative speed and spacings, have been considered 

as causal mechanisms.  As a result, limitations in the kinds and amounts of data 

that could be collected made it more reasonable to conjecture a simple model 

form, and then to use limited data to calibrate that model. 

• The design of experimental studies in existing car-following models has the 

obvious limitation that it may not capture normal driving behavior.  Furthermore, 

the variation of following behavior both within and across drivers is not provided.   

• The current car-following models are memoryless, in that they do not consider the 

past sequences of car motions or events that produced a current state to determine 

the future state. 
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Chapter 3: Data Collection System 

 

As part of this research effort, a new data collection system using an instrumented 

test vehicle, equipped with three sets of measurement instrumentation, has been 

developed and tested: (1) to observe and analyze the car-following behavior of subjects 

who do not know they are part of an “experiment,”  (2) to capture the following behavior 

of a diverse population of drivers to identify and distinguish the variability in car-

following behavior across and within drivers, (3) to capture various critical factors such 

as human characteristics, traffic and road characteristics, and environmental 

characteristics, affecting the driving behavior of the following vehicles, (4) to identify 

and investigate driving maneuvers that unfold over an interval of time, (5) to easily 

collect a sufficient quality and quantity of data.  Furthermore, a synchronized user 

interface program has been developed to interact with the status of each device and 

concurrently store the information transferred from each device to the laptop computer. 

In our experiments, the instrumented test vehicle is the lead vehicle, which 

experiment participants drive.  The driver of the test vehicle can be any normal driver 

who can drive legally.  While the lead vehicle is driving, the following vehicle (whatever 

vehicle happens to be following, which we have no control over) is monitored by 

automatic equipment and a second experimenter.  All equipment was disguised so the 

experimental vehicle was not a visual distraction. 

The system architecture, including hardware and software, of the new data 

collection system is described in the first section.  The second section presents a 

preliminary test of the rear-facing infrared radar sensor concerning the reliability of its 
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data quality.  The third section describes a somewhat tangential exercise concerning the 

radar range sensor, namely the dropout problem at curve transitions.  This problem is 

relevant to our experiments for retaining track of a following vehicle around curves, but 

the more general application is forward-facing sensors used for ACC, so that is the 

context in which the analysis is presented.    

 

3.1 System Architecture 

 

3.1.1 Hardware 

The instrumented test vehicle is an Infiniti Q45.  It was modified to collect car-

following data on roadway traffic and was equipped with four sets of measurement 

instrumentation, including an infrared radar sensor (the type normally used for ACC), a 

DGPS/inertial Distance Measuring Instrument, vehicle computer, and a digital video 

camera, as shown in Figure 2.  A laptop computer was installed to store the synchronized 

data collected from the different devices.  The test vehicle and infrared radar sensor were 

donated by Nissan Technical Center North America, Inc.  The functions of these 

equipment are described briefly in Table 1.  
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Figure 2. Test vehicle apparatus and connectivity diagram 

 

Table 1. Functions of data collection equipment 

Name Function 

Infrared radar sensor 
(AR211, Omron) 

Measure distance, relative speed and curvature between the 
lead and the following vehicles.  When combined with DMI 
information, this produces position, speed, and acceleration 
of the following vehicle.  

Distance Measuring 
Instrument 

(SL3000DX, Sun-Lab) 

Predict the position, speed, acceleration of the test vehicle 
(lead vehicle) integrated with Differential Global System 
(DGPS) and inertial navigation. 

Video camera 
(DCR-TRV33, Sony) 

Record the following driver’s characteristics, such as gender 
and in-vehicle activities; identify and distinguish different 
following maneuvers; and to verify and disambiguate data 
from the DMI and infrared sensor. 

Laptop computer Store time-synchronized data from each device. 

Vehicle Computer 
Provide independent speed measurements, as well as brake 
pressure and status indicators necessary for the radar sensor 
to function properly.  
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1) Infrared Radar Sensor 

The infrared sensor makes it possible to measure the distance and relative velocity 

between the leading and the following vehicle, as well as the curvature of the road, by 

combining tangential velocity with an internal yaw rate sensor.  The sensor is identical to 

what is used for production adaptive cruise control (ACC)-equipped vehicles.  Our model 

was donated for the purpose of this study by Nissan North America.   

The infrared sensor has 5 beams, transmitting with a typical wavelength of 850nm.  

The sensor can detect relevant targets in the range of 2 to 150m in distance and -20 to 

60m/s in relative velocity, with a measured accuracy of ±1.0m and ±0.3m/s respectively.  

It operates from 10V to 16V supply, so we simply connected it to the vehicle power bus 

through a fuse.  The sensor has been mounted on the metal frame of the back bumper and 

connects to the power of 12V of the test vehicle. 

Figure 3 shows the back view of the test vehicle where the infrared sensor has 

been mounted.  The sensor was installed level to the ground, and we used a target board 

at various distance to calibrate the other two angular degrees of freedom.  The infrared 

sensor originally has been developed for looking forward.  In our experiments, however, 

the sensor was installed on the rear of the test vehicle for looking backward so that the 

sensor should be mounted upside-down to get appropriate returns.  The sensor was not 

mounted upside-down, but we programmed the software, pretending that it was mounted 

upside-down.  

The infrared sensor is a Controller-Area-Network (CAN) device, meaning that it 

is designed to operate as a node in the internal communications network common to 

certain brands of newer cars.  It was important, however, not to connect the device to the 
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in-vehicle CAN, since it was not being used for ACC purposes and would therefore 

confuse the vehicle.  Instead, we used two independent CAN connections to our laptop 

computer – one coming directly from the vehicle and the other to the range sensor.  A 

small amount of message traffic is necessary between the two to ensure proper calibration 

and operation – this was implemented in our software with our computer as an 

intermediary.  The hardware used was a commercially available PCMCIA CAN interface 

(CANcardX) and CAN connection cable (CANcab251opto). Figure 4 shows a 

CANcardX with its two I/O ports and CANcab with transceiver, I/O connector and D-

Sub CAN connector.  Figure 5 presents brief circuitry diagram of CANcardX interfaced 

with test vehicle and infrared sensor.  It is able to communicate at a rate of 1Mbit/second, 

which is adequate because the infrared sensor communicates at a rate of 500 kbit/second.  

It was important, however, to use a programming language that compiled into sufficiently 

fast code to keep up with the communications – our software is written in Visual C++.   

 

 

 

Figure 3. Infrared sensor mounted on the back bumper of the test vehicle 
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Figure 4. CANcardX with its two I/O ports and CANcab 
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Figure 5. Circuitry diagram of CANcardX interfaced with test vehicle and infrared sensor 
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2) Distance Measuring Instrument (DMI) 

The DMI uses a combination of inertial and GPS technologies to predict the 

position and speed of the test vehicle, which serves as the lead vehicle.  The model we 

have used is SL3000DX, which is the DMI integrated with precision Differential Global 

Position System (DGPS) made by Sun-Lab Technologies, Inc. and is shown in Figure 6.  

As an added benefit, the fact that GPS is present in the data collection equipment gives us 

a sufficiently accurate time standard on which to base the synchronization of the devices.  

The DMI has a distance accuracy calibrated to ±1.0 ft/mile and the DGPS accuracy is less 

than 1 meter Circular Error Probable (CEP).  The vehicle speed signal is transmitted to 

the DMI via Sun-Lab sensor control module – Model SCM-8.  The DMI connects to the 

laptop computer via the RS-232 serial port and “speaks” the standard NMEA protocols 

common to GPS receivers.  The DMI/GPS is operating from 10V to 15V DC @ 1.0A and 

connects to the power of 12V of the test vehicle. 

 

 
Figure 6. Distance Measurement Instrument (DMI) 

 

3) Video Camera 

The digital video camera was mounted facing backwards, and was used to 

monitor the driving behavior of the following vehicle and additional information such as 

gender and other visually noticeable conditions (for example, whether he/she was using 
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cellular phone while driving).  The video camera was used to help identify and 

distinguish different following maneuvers to tell when lane-changing behind the lead 

vehicle occurred, and also to verify and disambiguate data from the DMI and infrared 

sensor.  The model we have used is a DCR-TRV33 made by Sony Corporation.  The 

video camera connects to the laptop computer via the USB 1.0 port and live images are 

transferred to the laptop computer.  The video camera has been installed next to the brake 

light on the back seat.  The video camera was hidden in a black box and camouflaged 

with children’s toys so as not to be a visual distraction, as shown in Figure 7.  

 

 

Figure 7. Video camera hidden in a black box 

 

4) Laptop Computer 

The laptop computer stores the time-synchronized data collected from each device.  

It was powered from the vehicle so that experiments longer than the battery life could be 

conducted reliably.  
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3.1.2 Software 

A synchronized user interface program (Visual C++) has been developed to check 

the status of each device and concurrently store the information transferred from each 

device to the laptop computer.  Figure 8 shows the main screen of the user interface 

program.  Since the infrared sensor is a Controller-Area-Network (CAN) device, we have 

developed our own CAN application incorporated with two separate CAN networks: the 

one already in the car, and a separate, small one that consists only of our laptop computer 

and the infrared sensor.  The reasons for separating the two CAN networks are as 

follows: (1) there are too much data from the test vehicle, (2) the infrared sensor requires 

specific data not available in non-ACC car, (3) it is unwise to confuse the car with extra 

unexpected CAN node.     

 

 

Figure 8. Main screen of user interface program 
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  Figures 9 and 10 show the block diagram and the flow chart of the user interface 

program, respectively.  A list of CAN data, including the transmit cycle of each CAN 

message, is described in Table 2.  As seen in Figure 9, 23D, 2D1, and 321 CAN messages 

are retrieved from the test vehicle CAN and are re-transmited to the infrared radar sensor 

and 506, 507, and 520 messages from the infrared radar sensor are stored and processed 

in the laptop computer.  In the diagram, the infrared sensor uses brake pressure in 321 

messages for calibration of yaw rate included in the unit and judges whether vehicle stops 

or not, based on the brake pressure values and vehicle speed.  However, since the test 

vehicle was not being used for ACC purposes, the 321 messages were not available.  

Hence, we retrieved 793 messages (equivalent to 321 messages) from the test vehicle 

CAN, reformatted them as 321 messages and transmitted to the infrared sensor.    

 

Figure 9. Block diagram of user interface program 
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Figure 10. Flow Chart of user interface program 
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Table 2. CAN data explanation 

ID Name Content Transmit 
Cycle 

23D Message counter Increases by one at every transmit cycle 10ms 

2D1 Vehicle speed 
Configuration 

Own vehicle speed   
Configuration of own vehicle (31hex fixed value) 10ms 

321 

Brake pressure 
Order of operation 
Upside down 
Offset 
 
Height 

Brake pressure 
Range sensor execute measurement in accordance with this flag 
Range sensor is upside down or not. 
Offset distance between center of sensor and longitudinal 
vehicle center axis 
Height of sensor from the ground 

100ms 

506 

Distance 
Relative velocity 
ODV 
OTYP 
Change counter 
 
Curvature 
Message counter 

Distance of relevant target 
Relative velocity of relevant target 
Sensor detects relevant target or not. 
Relevant target is stationary or not. 
Increases by one at every timing that relevant target changes to 
new one 
Curvature estimated by range sensor 
Increases by one at every transmit cycle 

100ms 

507 

Yaw rate 
Support_R 
 
Support_L 
Cut in_R 
Cut in_L 
Center 
Message counter 

Yaw rate measured by yaw rate sensor in range sensor 
Distance of the nearest object detected by right side support 
beam 
Distance of the nearest object detected by left side support beam 
Distance of the nearest object detected by right side cut in beam 
Distance of the nearest object detected by left side cut in beam 
Distance of the nearest object detected by center beam 
Increases by one at every transmit cycle 

100ms 

520 

Dirt 
High temp 
Sun light 
Low temp 
Failure 
Initial phase 
Gyro offset 
Operational 
 

Performance degradation due to obstacle is diagnosed. 
Abnormal temperature rise of range sensor is diagnosed. 
Performance degradation due to sun light is diagnosed. 
Abnormal temperature fall of range sensor is diagnosed. 
Failure of range sensor is diagnosed. 
Sensor initialization is over and result is OK. 
Gyro offset is available or not. 
Range sensor is working and measuring normally or not. 
according to order of operation. 

100ms 
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3.2 Preliminary Test of Infrared Radar Sensor 

There were several issues concerning the feasibility of the data collection 

apparatus, particularly regarding the rear-facing infrared radar sensor.  Originally, the 

infrared sensor was developed for looking forward and was expected to receive strong 

reflection from the reflectors of the rear of the lead vehicle.  However, for our purposes, 

the sensor was installed on the rear of the test vehicle so that the sensor did not receive 

the strong reflection from the front of the following vehicle and the detectable distance 

from the sensor was reduced.  Furthermore, as each vehicle class has a different frontal 

shape, rather than a pretty standard back, it was uncertain if the sensor beams would 

function properly.  Hence, a preliminary test, regarding the proper height and working 

offset (or angle) of the sensor was conducted to investigate reliable radar returns from 

following vehicles and to properly design the experimental studies that need to take place 

in real traffic conditions.  A mobile station was built to collect data for the preliminary 

test of the sensor, as shown in Figure 11. 

 

 

Figure 11. Mobile station equipment for the preliminary test 
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3.2.1 Sensor configuration effect on infrared radar sensor data quality 

It is very important to strategically determine certain parameters about how the 

sensor should be mounted, and what range it will have when data are being collected on 

the freeway.  The range and sensitivity of the sensor change with the height at which it is 

mounted on the vehicle.   

 Field experiments were conducted for six types of vehicles, as shown in Figure 12, 

at different heights of the sensor (e.g., 30, 40, and 50cm) and different orthogonal 

distances (e.g., 5, 10, 15m, etc.) from the target vehicles.  Tables 3, 4 and 5 show the 

comparisons between the actual distance and the measured distance from the infrared 

radar sensor at different heights, and distance measurement accuracy is presented visually 

in Figures 13, 14 and 15. 

For short distances, the sensor was quite accurate.  At some threshold (around 

45m), however, a discrepancy appeared, meaning that the sensor was targeting a different 

object.  It was also found that when the sensor was around 50m away from the vehicle at 

the sensor height of 40 and 50cm, the sensing system occasionally failed.  This resulted 

either in a zero distance measurement, or perhaps the tracking of a nearby stationary 

object such as a tree.  From these results, we were able to determine which distances  

from the lead vehicle would generate reliable radar returns from following vehicles, i.e., a 

limitation on traffic density conditions in designing the experimental studies, which was 

about 50m between the lead and following vehicles. 
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(1) Toyota                                                  (2) Chevrolet 

       

(3) Mazda                                                       (4) Toyota 

       

(5) Chevrolet                                                 (6) Volkswagen 

 

Figure 12. Six vehicles used for infrared sensor data quality 
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Table 3. Sensor measured distance vs. actual distance for each vehicle at height 30cm 

Unit: meter 
Measured distance from the infrared radar sensor Actual 

distance Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Vehicle 5 Vehicle 6 

5 5 5 5 4 5 4 

10 10 10 9 10 10 10 

15 15 15 15 15 15 14 

20 20 20 20 20 20 19 

25 25 25 25 25 25 25 

30 30 30 29 30 30 30 

35 35 35 35 35 35 34 

40 40 40 40 40 40 39 

45 45 45 44 15 15 45 

50 50 50 49 51 50 54 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 13. Distance measurement accuracy at height 30cm 
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Table 4. Sensor measured distance vs. actual distance for each vehicle at height 40cm 

Unit: meter 
Measured distance from the infrared radar sensor Actual 

distance Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Vehicle 5 Vehicle 6 

5 4 5 5 5 5 4 

10 9 10 9 9 10 10 

15 14 15 15 15 15 15 

20 20 20 20 20 20 19 

25 25 25 25 25 25 24 

30 30 30 29 30 30 30 

35 35 35 34 35 35 34 

40 40 40 39 40 40 39 

45 45 45 44 45 45 44 

50 65 0 49 50 50 49 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. Distance measurement accuracy at height 40cm 
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Table 5. Sensor measured distance vs. actual distance for each vehicle at height 50cm 

Unit: meter 
Measured distance from the infrared radar sensor Actual 

distance Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Vehicle 5 Vehicle 6 

5 5 5 5 5 5 5 

10 10 10 10 10 10 10 

15 15 15 15 15 15 15 

20 20 20 20 20 20 20 

25 25 25 25 25 25 24 

30 30 30 30 30 30 30 

35 35 35 35 35 35 35 

40 40 40 40 40 40 39 

45 45 45 44 45 45 44 

50 65 0 49 50 50 49 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 15. Distance measurement accuracy at height 50cm 
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In order to determine the best height at which to place the sensor, the Root Mean 

Square Error (RMSE) was used to calculate the error between the actual and the 

measured distances.  From the RMSE graph shown in Figure 16, it was clearly best to 

place the sensor at 30cm above the ground. 

 

 

 

 

 

 

 

 

 

 

Figure 16. Comparison of Root Mean Square Error 
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3.2.2 Angular sensitivity of multi-beam infrared radar sensor 

The infrared radar sensor is composed of five individual beams that collect data 

on the distance between them and any object in their paths.  Schematically, they are 

typically shown to be adjacent and non-overlapping, with well-defined borders, as shown 

in Figure 17.  In practice, however, this is not possible - the beams may overlap or there 

may be gaps between them ("underlap").  The beams may not be symmetrical; e.g., the 

left cut-in beam may fail to register a target at a different angle than the right cut-in 

beam.  Each of the beams may have effective angles that vary with distance, and may 

have different overall ranges.  Hence, it was necessary to determine the lateral and 

longitudinal range of each of the five beams that comprise the infrared sensor.  As a 

result, we knew at what range (angular and distance) targets were reliably acquired in the 

same and adjacent lanes behind our test vehicle, which enabled us to properly design the 

location of the sensor on the rear bumper to get the best performance. 

 

 
 

Figure 17. Schematics of five beams of the sensor  



 

 48

Field experiments were conducted for three types of vehicles at different 

orthogonal distances (e.g., 5, 10, 15m, etc.) from target vehicles.  Table 6 shows one 

example of the working offsets and angles for each of the five beams, from left cut-in to 

right cut-in.  In the top portion of the table, the first number gives the distance to the right 

for the point where the beam failed.  The second number gives the distance to the left for 

the point where the beam failed.  In the bottom portion of the table, Θ1 represents the 

angle of the beam to the left of the center, while Θ2 shows the angle of the beam to the 

right of the center.  Figure 18 shows the shape of each of the five beams at the different 

distance intervals 5m to 50m. 

It was observed that the beams of the infrared radar sensor were asymmetrical; 

each beam had a different working angle at the different distance intervals.  For example, 

the angle of the left cut-in is smaller than that of the right cut-in.  The effective beam 

edges were also non-linear.  As the distance increased, the shape of the beams began to 

fluctuate.  Due to the minute changes in offset failing distances for some beams, it was 

determined that some of the beams may overlap.  

Furthermore, the results show that the failure point for the beams were similar for 

each vehicle tested.  For instance, the cut-in beams fail at 20m, the support beams fail 

around 30m and the center beams fail around 50m.  This conforms to the schematic 

diagram of Figure 17. 
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Table 6. One example of the working offsets and angles for each of the five beams 

CAR 1 
Working Offset (m) 

Distance (m) 
Left Cut-In Left Support Center Right Support Right Cut-In 

5 1.09 0.54 0.97 0.75 0.87 0.94 0.55 1.21 0.52 1.47 
10 1.55 0.68 1.26 0.75 1.02 0.82 0.95 0.98 0.92 1.58 
15 1.90 0.79 1.24 1.10 1.21 1.38 1.20 1.44 0.92 1.93 
20 2.27 0.79 1.40 1.17 0.98 1.76 0.68 2.11 0.20 2.49 
25   2.09 0.21 1.09 0.79 0.39 1.90   
30   1.95 0.34 1.23 0.87 0.85 1.20   
35     0.99 1.43     
40     1.54 0.85     
45     0.62 0.82     
50           

  
Working Angle (Radians) 

Distance (m) 
Θ1 Θ2 Θ1 Θ2 Θ1 Θ2 Θ1 Θ2 Θ1 Θ2 

5 0.215 0.108 0.192 0.149 0.172 0.186 0.110 0.237 0.104 0.286
10  0.154 0.068 0.125 0.075 0.102 0.082 0.095 0.098 0.092 0.157
15  0.126 0.053 0.082 0.073 0.080 0.092 0.080 0.096 0.061 0.128
20  0.113 0.039 0.070 0.058 0.049 0.088 0.034 0.105 0.010 0.124
25      0.083 0.008 0.044 0.032 0.016 0.076     
30      0.065 0.011 0.041 0.029 0.028 0.040     
35          0.028 0.041         
40          0.038 0.021         
45          0.014 0.018         
50            

 

 

 

 Left Cut-In          Left Support             Center            Right Support       Right Cut-In   

 
Figure 18. Lateral and longitudinal range of five beams 
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3.3 Dropout in Range Sensors at Curve Transitions  

In our field experiments, when collecting car-following data at the transition from 

a tangent section to a curved section, it is possible for the instrumented test vehicle with a 

rear-facing infrared radar sensor to lose track of a following vehicle in car-following 

mode.  This occurs because the test vehicle enters the curve and its path diverges from 

the axis of the following vehicle, yet the following vehicle is still on the tangent section.  

This is a temporary situation, but one that could have an impact on the quality of car-

following data collected.  Hence, it is very important to investigate the specific 

circumstances under which the infrared sensor dropouts can occur at curve transitions and 

that must be carefully handled when collecting car-following data using our data 

collection methods. 

It is also an important problem for a forward-facing range sensor used in adaptive 

cruise control (ACC) system.  One of the interesting challenges of ACC control lies in the 

fact that when both the subject vehicle and the target vehicle are on a curve, the target 

vehicle is not directly in front of the subject vehicle, as measured along its own axis.  

This is illustrated in Figure 19.  To counter this, most ACC sensors have the ability to 

deflect their beams at appropriate angles.  The determination of the proper angle requires 

an estimate of the curvature of the road being traversed, which is accomplished via a 

combination of an on-board yaw rate sensor and feedback from the vehicle’s speed 

sensor.  What is assumed in this calculation, however, is that the subject vehicle is 

currently on the curve, allowing it to measure its own lateral acceleration.  During the 

transition from a tangent section to a curved section, however, the lead vehicle enters the 

curve first, and it might be possible for it to turn out of the path of the sensor beam before 
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the following vehicle is even aware that a curve is coming (Domsch and Sandkuhler, 

2000).  In their report (General Motors Corporation, 2002) on a major demonstration 

project in the U.S., General Motors acknowledges that curve entry-exit transitions present 

a challenge to target acquisition and tracking in an ACC system.  The issue is more 

complicated than simply losing track of the vehicle - from the perspective of the 

rangefinder in the following vehicle (if it is of the multi-beam variety equipped to take 

such measurements), this maneuver might just as easily resemble a lane change.  As a 

result, if the following vehicle were traveling below its desired speed, it might interpret 

this as a circumstance where it would be safe to accelerate back to its desired speed.  In 

fact, however, it would soon discover, once it was on the curve, that the lead vehicle did 

not change lanes, and therefore because of its own acceleration, the safe following 

distance had been compromised. 

In this section, we present a methodology for determining the specific 

circumstances under which range sensor dropouts can occur at curve transitions.  

Examples are given using typical values of roadway and vehicle parameters.  The 

methodological portion of this section is concerned with the issue of temporarily losing 

track of a lead vehicle at a curve transition from the perspective of ACC.  The geometric 

procedure can be applied in reverse to the problem of maintaining track of a following 

vehicle using a rear-facing sensor. 
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Figure 19. Target determination in circular curve section 

 

3.3.1 Geometric derivation 

In this section, we present the geometry of this situation in a way that enables us 

to determine, as a function of the speed of the vehicles (and therefore the safe following 

distance), the distance and time that the following vehicle is on the tangent, after losing 

track of the target vehicle, but before entering the curve where it might re-acquire.  It is 

this interval that is most dangerous, and it might be wise not to attempt to accelerate 

during this time, in an ACC application.  In our application, we avoided drawing 

conclusions from the data under these circumstances.  Presumably, similar computations 

are being made internally for some of the more robust ACC systems; the details of their 

operations are not provided in the open literature, however. 

It is assumed that the horizontal alignment consists only of a smooth series of 

connected tangent sections and circular curves.  While clothoid spirals are also used 

frequently for curve transitions, they do not lend themselves to closed-form geometric 

calculations (Lovell, 1999).  Furthermore, their effect is to reduce the rate of change of 

curvature and spread it over a longer distance, giving a following vehicle more time to 

enter the curve and become aware of the new circumstances.  Thus, the worst-case 
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scenario is a direct tangent-to-circular arc transition, so spirals will not be considered in 

this section.  Figure 20 shows the geometry of tangent and circular curve sections.  In the 

derivation that follows, coordinates are shown in vector representation for conciseness. 

The origin of the coordinate system in the figure is at the point PC, which is the 

point of curvature, or transition from the tangent to the circular curve.  The circular arc 

has radius r.  The safe following distance between the two vehicles is given by d, which 

is then partitioned into a ld d d= + , where da is the distance along the arc of the center of 

the vehicle travel lane, and dl is the remaining distance, which is apportioned to the 

tangent.  While d might be given exogenously, we will also show an example where it is 

a commonly used function of the vehicle speed v. 

The included angle ∆ , on the circular arc, between its start and the location of the 

lead vehicle, is given by 

 2
2

a

w

d
r l

∆ =
+

 (13) 

where wl  is the lane width.  Throughout this analysis, all angles are given in radians. 

The point A is the middle of the driving lane at the curve transition; it is given by 

 
T

0
2
wl =   

A  (14) 

The point B is the middle of the driving lane at the rear of the lead vehicle.  To find this 

point, first we find the length c , of the chord AB: 

 ( )2 sin 2 sin
2 2 2
w a

w
w

l dc r r l
r l

 ∆ = + = +    +   
  (15) 
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Figure 20. Geometry of tangent and circular curve sections 

 

The point B is then determined by  

 [ ]T( ) 0 1cR δ= +B A  (16) 

where ( )R δ  is the transformation matrix that effects a counter-clockwise rotation about 

the origin through an angle of δ  radians (for examples of this form of vector algebra for 

highway design purposes, see (Lovell et al., 1999, 2001), and is given by 
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cos sin

( )
sin cos

R
δ δ

δ
δ δ

− 
=  
 

 (17) 

and δ  is the deflection angle (measured in radians, counter-clockwise from the positive 

abscissa) of the line that is tangent to the circular curve.  This can also be written  

 1cos x
c

δ −  =  
 

 (18) 

where 

 sin
2
wlx r = + ∆ 

 
 (19) 

Hence ( )R δ  is given by 
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 (20) 

Simplifying and combining then yields 
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Removing the intermediate variables c and x then leaves   
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Assuming that the edge of the sensor beam is effective all the way to the right rear corner 

of the vehicle (point D in Figure 20), that point is derived as follows: 
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0
12 2

wvR π   = + ∆ −      
D B  (23) 

where vw is the assumed width of the lead vehicle.  This is less likely to be true in rear-

facing situations when the aerodynamic shape of the front of the following vehicle 

produces less clear radar returns.  The transformation matrix ( )2R π∆ −  can be 

simplified: 

 
cos sin

sin cos2 2
cos sin2

sin cos
2 2

R

π π
π

π π

    ∆ − − ∆ −     ∆ ∆       ∆ − = =   − ∆ ∆        ∆ − ∆ −    
    

 (24) 

Hence the coordinate of the right rear corner of the lead vehicle in terms of basic 

parameters is given by 

( )
2 2

2 22 sin sin cos
2 2 2 2 2 2

2sin
2 2 2

w a w a w a
w

w w w

w w a

w

l d l d v dr l r
r l r l r l

l v dr
r l

           − + − + +          + + +         =  
   + +    +    

D  (25) 

The other point of interest is then the point E, which is the front middle of the following 

vehicle.  This can be given as 

 2
w

a

l

d d

 
 =
 

− 

E  (26) 

With the knowledge of the two points D and E, we can determine the angle α  between 

the center axis of the following vehicle and the right rear corner of the lead vehicle.  

More importantly, if we equate that angle to 2θ  , we are determining the angle at which 

the lead vehicle departs the sensing region of the range sensor.  Thus, 
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         + − + − + +         + + +         
=

  − + + +    +   
 (27) 

In this equation, the quantities lw and vw, can be assumed to be constant values 

determined a priori.  For particular circumstances, a value of r can be chosen, although 

from the perspective of the ACC control logic, it must be expected that a range of curve 

radii can be encountered.  The speed is not known ahead of time, and that has an impact 

on both the curve radius r and the following distance d.  Nevertheless, we posit that the 

most appropriate use of (27) is to choose values for all of these parameters, as well as for 

the sensor angle θ , and then solve for da.  Knowing da, one can then also determine 

l ad d d= − , which is the distance over which the car must travel after having lost the 

range signal, until it enters the curve and can then bend its sensor beam and re-acquire.  It 

is clear from Figure 20 that a front-facing and rear-facing sensor would experience the 

same yaw, but that the appropriate direction to bend the beam is opposite.  This can be 

corrected for the rear-facing sensor either by treating velocity as negative, or (as we have 

done), pretending that the sensor is mounted upside-down, so it makes this correction 

itself.  Combined with the speed, this gives the time during which the vehicle is 

vulnerable to conditions outside the expectations of the sensing system.  Equation (27) 

cannot be solved for da in closed form; in the examples that follow, we used the non-

linear root finder in Matlab to solve the equation numerically. 
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3.3.2 Example 

In this example, we solved for da as a function of v, assuming that some of the 

other parameter values can be fixed, and the remaining variables can be chosen also to be 

single-valued functions of v.  For example, we chose as standardized parameter values lw 

= 12 feet, and vw = 7 feet.  In the latter case, this is the design vehicle width for a typical 

passenger car (AASHTO, 2001).  We chose θ  = 10 degrees = 0.1745 radians, which is 

the included angle for the center beam of the Omron AR211 unit used in Nissan ACC 

systems.  Finally, we chose r = 800 feet.  This last choice was arbitrary but acceptable; 

the same analysis can be conducted with any other value. 

The safe following distance maintained between vehicles when the ACC is in 

following mode can be represented by the car-following stopping distance, which 

includes perception/reaction and braking distance and is given in consistent units by 

 
2

2 ( )
vd vt

g f G
= +

+
 (28) 

where t  is the perception-reaction time for ACC system, which typically has a value of 

the order of 0.5 s (Rajamani and Zhu, 2002).  This is a much shorter reaction time than is 

expected in manual driving, which is typically around 2-3 seconds (Roess et al., 1998).  

The denominator of the 2nd term of the right hand side of (28) contains all modifiers to 

the effect of gravity, including the coefficient of friction f and the grade of the road G in 

dimensionless form.  If we assume g  is 32.2 ft/sec2, f is 0.30, G is zero and v is 73.33 

ft/sec (approximately 50 mph) for both vehicles in this example, then (28) yields ≅d  

314.5 feet.  By moving all terms of (27) to one side of the equality, we turn the problem 

of solving for da into a root-finding exercise, which Matlab can do with standard 
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numerical techniques.  For the values given in this example, this yields 221.5ad =  feet.  

Thus, l ad d d= − =  93 feet.  At the speed of 73.33 ft/sec, this means that the vehicle is 

“driving blind” for approximately 1.27 seconds.  At least for the values given in this 

example, it seems wise to suggest that the ACC control unit pause at least a second or 

two before accelerating to the driver’s desired speed, in order to distinguish between a 

situation where it is in fact safe to do so because the previously obstructing vehicle has 

left the lane in question, and a case where it only appears to be safe because of the effects 

of road curvature. 

 

3.3.3 Sensitivity analysis 

In this section, we show how dl varies with marginal changes to other parameters 

such as the included angle of sensor, the radius of circular curve and vehicle speed, using 

as our nominal state the data from the analysis.  Because of the number of dimensions 

involved, we cannot hope to completely characterize the behavior of (27) with this 

analysis, but it can serve to illustrate the shape of its partial derivatives, and reinforce the 

reasonableness of these relationships.   

The relation between dl and θ  is approximately linear in this range of values, as 

shown in Figure 21.  Sensors with included angles between 4 and 12 degrees are 

considered.  As the angle of sensor increases, the dl decreases which means that the blind 

time is decreasing.  However, we have to make sure that increasing the sensor angle 

increases the likelihood of false readings from adjacent lanes, particularly at curves. 
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Figure 21. Effect of the range sensor included angle 

 

While we chose a specific value of the curve radius r for the example, it is also 

fair to say that it depends in some measure on the speed v, which is presumably within 

the range of the design speed for the facility in question.  It is not reasonable, however, to 

tie equation (27) to a specific relationship between speed and curve radius, since the 

vehicles are not necessarily traveling at the design speed, and because any such relation 

only gives a minimum value of the curve radius anyway.  Beyond that, ample room is left 

for trading off curve radius versus superelevation, and designers can always choose 

larger-than-necessary curve radii to improve comfort, aesthetics, and other considerations.  

Figure 22 shows how a range of curve radii affects the computation of dl.  All radii are 

greater than the minimum required for a speed of 50mph.  With the same speed, but 

decreasing curvature, the lead vehicle does not deviate from the following vehicle’s axis 

as drastically, so the blind time decreases.   
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Figure 22. Effect of curve radius 

 

Figure 23 shows how d and dl are affected by v, via equations (27) and (28), 

together with factors to transform speed to the more customary units of miles per hour.  

We chose the minimum curve radius for each speed range and safe following distance as 

increasing functions of velocity.  Intuitively, blind time should decrease with curve radius, 

but increase with stopping distance.  It is clear from this figure that the latter effect is 

more pronounced, so the blind time increases.  Of course, there are limits to the range of 

the range sensor. 

None of the highway design standards are set in stone.  They are all derived from 

assumptions about human driving behavior.  The main point of ITS is that machines 

might do more and humans less.  Hence, we should be on the lookout for situations where 

our design criteria should evolve, as a higher level of automation is present.  In this 

section, we have described a condition that must be carefully handled when collecting 
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car-following data using the methods of this dissertation, but that also informs ITS 

applications such as ACC.  As such systems become more prevalent, it will be useful to 

periodically re-evaluate the assumed models of driver behavior and adjust them if 

machines do things differently. 
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Figure 23. Effect of the velocity of the lead vehicle 
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Chapter 4: Data Collection 

 

As discussed in the literature review, previous car-following experiments may not 

capture normal car-following behavior.  Moreover, the driving behavior exhibited by the 

previous models may be artificial due to the biases of experimental studies.  For the study 

of car-following behavior, the main key would be how precisely we can capture real car-

following behavior under naturalistic driving, in which following vehicles do not know 

they are under observation.  While developing and testing the new data collection system, 

a preliminary survey was conducted to observe real car-following behavior on roadways 

and to identify some driving maneuvers and evidence that would be observed in 

congested traffic conditions.  Some findings from the preliminary survey are described in 

the first section.  The second section presents field measurements on car-following.   

 

4.1 Preliminary Survey 

The preliminary survey was mostly conducted on I-295 in Maryland near the 

Washington D.C. area, which has two lanes for each direction during the morning and 

afternoon peak hours.  A video camera was installed on the back of the test vehicle to 

record following vehicles’ behavior and observe various following maneuvers.  The 

driver of the test vehicle drove normally.  

Through the preliminary survey, we were able to observe a diverse population of 

members and following maneuvers such as acceleration, deceleration, and lane-changing 

in reaction to the test (lead) vehicle.  Also, although all possible maneuvers were not 

investigated in the preliminary survey, it was found that various following maneuvers 
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that are common under real car-following situations were identified and distinguished.  

Figures 24 and 25 show typical examples that were observed repeatedly under congested 

traffic conditions.  Figure 24 shows a case in which a vehicle cut in between the lead and 

following vehicles.  The following vehicle did not respond promptly even when the new 

lead vehicle cut in to the driving lane, probably because the new lead vehicle performed 

another lane change in the same direction almost immediately.  The driver of the 

following vehicle stayed at his previous speed without taking any aggressive reaction.  

Figure 25 shows a similar maneuver of the following vehicle to a different action of the 

new lead vehicle.  In this case, the new leader cut in to the driving lane of the following 

vehicle and stayed in the lane.  However, the follower did not respond evasively, but 

drove carefully without making any immediate deceleration. 

In both cases, traditional car-following models would have predicted an 

aggressive response to the loss of spacing in front of the following vehicle.  The scenario 

in Figure 24 is simply a situation the model was not designed to accommodate.  Given 

the brevity of the interruption and considering a typical reaction time, omitting such a 

case from models might not be a huge mistake, but this should be checked.  The scenario 

in Figure 25 is more problematic, as the myopic scope of existing models offers no 

explanation for the lack of a response from the follower. 

It was observed that car-following behavior was affected by several factors such 

as human characteristics (e.g., environmental conditions such as telephoning or vehicle 

occupancy, which contributes to a distraction level), and traffic and road characteristics 

(e.g., type of vehicle or geometric condition).  For example, when a driver of the 

following vehicle was telephoning or talking with his companions, as shown in (a) and 
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Figure 24. The new lead vehicle cuts in and leaves 

           

          

Figure 25. The new lead vehicle cuts in and stays  
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(b) of Figure 26, he did not concentrate on his driving and responded slower than normal 

to the action of the lead vehicle.  It was also observed that the following behavior of 

trucks, shown in (c), was different from that of autos.  He had relatively longer following 

distances and slow responses to the change of the lead vehicle, compared to autos. 

 From the preliminary survey, we had better understanding for real car-following 

behavior under naturalistic driving situations.  In addition, it gave us some insights into 

how to design data collection plan, such as the data to be observed, including some 

important causal factors which can affect car-following behavior and strategies to better 

capture driver human characteristics using a digital video camera. 

 

                

          (a) Distraction by other occupants           (b) Distraction by in-vehicle activities  
such as telephoning 

 

(c) Following behavior of truck 

Figure 26. Several factors affecting car-following behavior 
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4.2 Field Measurements on Car-Following 

The car-following data collection was undertaken during rush and non-rush hour 

periods in December, 2004 and March, 2005 on freeways, including I-495 and I-295, 

which mostly have four lanes and two lanes for each direction, respectively, near the 

Washington D.C. area. 

The following parameters were measured or calculated for each car-following 

time series:  

• Duration time spent in car-following situation 

• Following distance between the lead and following vehicles 

• Driving distance, speed and acceleration of the lead vehicle  

• Driving distance, speed and acceleration of the following vehicle 

• Relative speed between the lead and following vehicles 

• Time gap between the lead and following vehicles  

• Human characteristics of the driver of following vehicles such as  

- Gender (e.g., male or female) 

- In-vehicle activities like talking, telephoning, and eating  

- Vehicle occupancy as distraction level 

• Traffic and geometric conditions such as  

- Following vehicle type (e.g., auto or truck)  

- Road type (e.g., I-295 or I-495)  

- Number of lanes (e.g., 2 lanes or 4 lanes) 

- Location of driving lane (lane 1 or lane 2) 

- Traffic condition (e.g., traffic density – low or heavy) 
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• Environmental conditions such as  

- Weather (e.g., dry or wet)  

- Time of day (e.g., day or night) 

- Day of week 

 

4.2.1 Baseline statistics 

This section shows summary of baseline statistics that somehow characterize the 

data collected through the field measurements.  A more detailed analysis is described in 

the next Chapter.  A total of 387 car-following situations in which each of these 

represents an individual following vehicle, were attempted over ten days (12/09, 12/13-

12/17, 3/15-3/18) and finally 301 car-following time series were successful for data 

analysis.  A number of 167 (55%) time series were collected under uncongested traffic 

condition, while 134 (45%) under congested traffic condition, as shown in Figure 27. 
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Figure 27. Frequency histogram by traffic condition 
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Figure 28 shows a frequency histogram of duration times that each individual 

vehicle spent in car-following situation for all 301 car-following time series.  We observe 

that the number of duration times between 60 and 90 seconds exceed 55% of the total, i.e., 

the number was 174 (58%).  The minimum, average, and maximum duration times were 

24, 99 and 492 seconds.   

In order to investigate causes of terminating the car-following situation for each 

time series, we classified the possible causes into 7 cases as follows;  

• Case 1: lane changing of following vehicle 

• Case 2: cut-in of new lead vehicle 

• Case 3: too far following distance  

• Case 4: lane changing (or exit) of lead vehicle 

• Case 5: infrared sensor capability degradation caused by sunlight, headlight at 

night and adverse weather such as rain  

• Case 6: dropout of infrared sensor in curve sections 

• Case 7: complete stop of following vehicle under heavy congested condition 

Figure 29 shows the number of terminations of the car-following situation by each 

case.  It was observed that Case 1, lane changing of the following vehicle was 

represented by a number of 94 (31% of total data) and Case 4, lane changing or exit of 

lead (test) vehicle followed next as 74 (25%) because the lead (test) vehicle sometimes 

changed lanes to investigate the difference of car following behavior by each lane. 
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Figure 28. Duration times spent in car-following situation 
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Figure 29. Termination of car-following situation by case 
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Figure 30 presents a relationship between speed and following distance for a total 

of 301 car-following time series.  Although there are significant variations in following 

distances along the whole speed range, there is a clear trend that the following distance 

increases as speed increases, which is expected.  In addition, it is more evident from 

Figure 30 that following distances show more variability in higher speed ranges than 

lower speed ranges.  The reason could be that when driving at low speeds, it is easier for 

drivers to estimate the distance to the lead vehicle and keep the desired following 

distance because of the shorter inter-vehicle distance.  However, at high speeds, it 

becomes more difficult for drivers to accurately estimate the distance and keep the 

desired following distance because of the larger distance and the higher speed involved.  

This would result in drivers making more errors in estimating the distance, and would 

increase the variability of the distance gaps.  Another factor to consider is that the data 

include vehicles who recently became followers after a lane change, but who might have 

settled into a longer following distance in a steady state.  Thus, the separation deemed 

appropriate for lane changes may not vary as much with speed, particularly from behind, 

if the driver fully expects to relax that distance once the lane change is completed. 

A detailed understanding of driver behavior in choosing inter-vehicle separation 

has become more essential for both the design and assessment of advanced driver 

assistance systems such as adaptive cruise control and stop/go control.  Time gap (the 

difference in passage time between the rear bumper of one vehicle and the front bumper 

of a following vehicle) and headway (the difference in passage time between the front 

bumpers of two consecutive vehicles) are two measures that are widely used to assess 

such driver behavior.  In this study, time gap was used for the analysis since the time gap 



 

 72

can be easily regenerated with following distance and the speed of the following vehicle, 

obtained by the instrumented test vehicle.   

Figure 31 shows a relationship between time gap and following vehicle speed for 

a total of 301 car-following time series.  Time gaps were relatively stable within 3 

seconds at high speeds, but there were significant variations from 1 to more than 20 

seconds in time gaps at low speeds.  Moreover, the variation of the time gaps decreased 

drastically as speed increased along the whole speed ranges.  There are relatively fewer 

data points past 90 km/h, so no solid inferences can be drawn from this section of the plot.  

This result indicates that considerable care must be taken in determining a desirable 

threshold in longitudinal driver assistance systems, since many current models have been 

adopted with constant time gap during adaptive cruise control (Wang and Rajamani, 

2004).  It seems that it is a reasonable assumption to adopt the constant time gap for car- 

following at high speeds, but it is not quite true at lower speeds.   

Figure 32 shows a distribution of time gaps.  It was shown that time gaps between 

1.0 and 1.5 seconds represented about 60% of total number of time gaps and an average 

time gap was 1.59 seconds in the data. 
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Figure 30. Speed vs. following distance for all car-following time series 
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Figure 31. Relationship between time gap and speed 
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Distribution of time gaps
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Figure 32. Distribution of time gaps 

 

In our field experiments, we tried to collect as many causal factors that affect car-

following behavior as possible.  In order to distinguish the difference of car-following 

behavior by vehicle type, we classified the vehicle type as auto and truck.  To keep thing 

simple, we classified pick-up trucks, minivans, and SUVs as auto, while heavy trucks like 

semi-trailer and buses as truck.  Figure 33 shows a frequency histogram of each vehicle 

type in the data collected.  As shown in the figure, the auto and the truck represented the 

number of 269 (89%) and 32 (11%) of all the data, respectively. 

We classified the data according to location of driving lane, such as lane one or 

lane two (from right to left lanes) on I-295, to investigate the effect of different location 

of driving lane on car-following behavior.  Figure 34 presents the number of frequency 

according to the driving lanes in the data collected.  Especially, lane four on I-495 

(mostly 4 lanes on each direction) has relatively small frequency, compared to other lanes. 
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The data were also classified, according to human characteristics of following 

drivers, such as gender and several distraction factors (e.g., occupancy and in-vehicle 

activities like telephoning or smoking), to identify the effect of those factors on driving 

behavior of following vehicles. We extracted the information related to the human 

characteristics from video data, recorded by digital video camera.  However, sometimes, 

it was difficult to notice the inside of following vehicle and distinguish the number of 

people or in-vehicle activities, especially from video data recorded at night or under 

cloudy weather condition.  Hence, only a number of 102 time series that one can notice 

the inside of following vehicle and distinguish the gender and in-vehicle activities were 

extracted.  A number of 72 (71%) people were male and 30 (29%) were female, as shown 

in Figure 35.  
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Figure 33. Frequency histogram by vehicle type 
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Figure 34. Frequency histogram by driving lane 
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Figure 35. Frequency histogram by gender 
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 Figure 36 shows two frequency histograms, classified by the number of people in 

following vehicles (or occupancy) and in-vehicle activities.  In the first case, the data 

(102 time series) were categorized into two groups as occupancy one and more than one.  

As shown in the figure, more than 90% of the total following vehicles had an occupancy 

one, while only 9 vehicles (9%) had occupancy more than one.  In the second case, the 

data was divided by cases with in-vehicle activities (e.g., telephoning, smoking or taking 

coffee) and cases without in-vehicle activities.  A number of 80 (78%) drivers drove 

without any in-vehicle activities, while 22 drivers (22%) drove with in-vehicle activities 

that had different effects on car-following behavior, which was described in detail in the 

next Chapter.  

We classified the total data (301 time series), according to various environmental 

conditions such as time of day (e.g., day or night) and weather conditions (e.g., dry or 

wet), to investigate any potential differences in car-following behavior under different 

conditions.  It should be noted that the performance of infrared sensor was drastically 

reduced when data collection was conducted under bad weather condition like rain 

because water drops stuck on the window of infrared sensor.  Therefore, some of data 

points in time series were missing or had unreasonable values.  As a result, only small 

numbers of time series (only 3 cases) under rainy condition in the data were appropriate 

for data analysis, as shown in Figure 37.  A number of 298 time series (99%) were 

collected under dry condition, while 3 time series (1%) were collected under wet 

condition. 
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(a) Classification by occupancy 
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(b) Classification by in-vehicle activities  

 

Figure 36. Frequency histogram by distraction factors 
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Figure 37. Frequency histogram by weather condition 

 

In addition, when sunlight hit on the window of the infrared sensor, the infrared 

sensor had a possibility of performance degradation.  Especially, night time data 

collection worked poorly because the headlights of the following vehicle interfered with 

the infrared sensor, just as sunlight.  Therefore, some of the data in various time series 

collected at night were missing or had unreasonable values.  Hence, relatively small 

numbers of time series were available, compared to those at daytime.  Figure 38 shows a 

frequency histogram between day and night.  A number of 263 time series (87%) were 

collected at day time, while 38 time series (13%) were collected at night time. 

 The extent of car-following time series data collected over ten days is briefly 

summarized in Table 7 and the detailed information of car-following data set for each day 

is shown in Appendix A.   
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Figure 38. Frequency histogram by time of day 
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Table 7. Car-following time series data collected over ten days 

Vehicle type 
(cases) 

Road type 
(cases) 

Driving lane  
(cases) 

Traffic condition 
(cases) 

Weather 
(cases) 

Time of day 
(cases) 

Date #  of 
cases 

Avg. 
Durat 
-ion 

(sec.) Auto Truck I-295 I-495 1 2 3 4 Uncong
-ested 

Cong-
ested Dry Wet Day Night

Day  of 
week 

12/9 4 62 1 3 - 4 1 2 1 - 1 3 1 3 4 - Thur. 

12/13 9 174 8 1 9 - 4 5 - - 9 - 9 - 9 - Mon. 

12/14 10 82 9 1 4 6 5 4 1 - 5 5 10 - 10 - Tue. 

12/15 11 87 9 2 4 7 5 6 - - 7 4 11 - 11 - Wed. 

12/16 14 89 13 1 5 9 3 7 4 - 12 2 14 - 14 - Thur. 

12/17 36 88 34 2 19 17 6 17 13 - 32 4 36 - 36 - Fri. 

3/15 33 128 32 1 5 28 8 10 12 3 15 18 33 - 17 16 Tue. 

3/16 57 104 55 2 21 36 22 19 13 3 21 36 57 - 57 - Wed. 

3/17 57 90 51 6 27 30 20 26 9 2 34 23 57 - 35 22 Thur. 

3/18 70 95 57 13 30 40 19 36 13 2 31 39 70 - 70 - Fri. 

Sum 301 99 269 32 124 177 93 132 66 10 167 134 298 3 263 38 - 
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Chapter 5: Data Analysis 

 

The data analysis for these experiments, including data handling, archiving, and 

reduction, was a very demanding task, particularly since information was collected from 

a set of synchronized measurement instruments. Basically, time series data were 

extracted from the laptop computer (to which is connected the DMI, the infrared radar 

sensor and vehicle computer) and video camera.  The data collected by the DMI and 

infrared radar sensor were regenerated to calculate the speed, acceleration or deceleration, 

and spacing between the lead and following vehicles, as shown in Figure 39.  These data 

were used, in conjunction with video records and the judgment of the experimenters, to 

define a set of distinguishable following maneuvers.   

The data from the video camera were extracted, to capture the duration of time 

spent in car-following situations, and the following drivers’ characteristics such as gender, 

in-vehicle activities (e.g., whether he or she was using cellular phone), vehicle occupancy 

(perhaps a proxy for distraction level), and type of vehicle.  With the data from the video 

camera and additional information such as type of roadway, geometric condition, 

congestion level, and weather condition, etc., we have investigated and attempted to 

distinguish the relationships between those factors and the following vehicle’s behavior 

under various maneuvers, and to categorize the range of each critical factor based on the 

differences of behavioral characteristics.   

Research findings from the data analysis are described in the following sections. 
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Figure 39. Generation of car-following data  

 

s(t*) + nL + ( ∆ )nD t*, t  = 1( )nD t*, t+ ∆  + s(t*+∆t) + nL                                        (29) 

1( )nD t*, t+ ∆  = s(t*) - s(t*+∆t) + ( ∆ )nD t*, t  
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where  )(txn = position of the lead vehicle at time t 

)(1 txn+ = position of the following vehicle at time t  

            s(t) = spacing between the lead and the following vehicle at time t (which can be 

obtained from the infrared sensor) 

( ∆ )nD t*, t  = driving distance of the lead vehicle during time interval [t*, t*+ ∆t ] 

(which can be obtained from the DMI installed in the lead vehicle)    

 1( )nD t*, t+ ∆  = driving distance of the following vehicle during time interval  

[t*, t*+ ∆t ] 

  nL  = length of the lead vehicle 

  ∆t = time increment  
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5.1 Behavioral Analysis   

  

5.1.1 Oscillatory (or “drift”) process in car-following  

Illustrative examples of a single car-following time series under congested 

condition are displayed in Figures 40 to 42.  This is the case of No. 8 collected on 

December 14, 2004 in the Appendix A.  In the course of this 176-second sample, the 

following vehicle remained behind the test vehicle.  We observe that the following 

distance varies from 3 meters to 15 meters, and the speed of the lead and following 

vehicles from 4 m/s (≈ 14 km/h) to 15 m/s (≈ 54km/h), as shown in Figures 40 and 41,  

respectively.  Figure 42 shows that there is an oscillatory (or “drift”) process in keeping 

the desired following distance.  This pattern is typical of the majority of leader-follower 

interactions captured in these experiments. One way to describe these data 

chronologically is as follows; a driver slowly approaches the lead vehicle until he is close 

to his desired following distance and the relative speed is zero.  However, he is not able 

to do this accurately because he is not able to perceive small speed differences and it is 

very hard to control his speed sufficiently well.  As a result, the driver decelerates slightly 

to regain the desired following distance, and the spacing again increases.  When the 

driver finds himself drifting away from the desired point, he accelerates and tries again to 

achieve the desired spacing and the whole oscillatory process, which appears as a 

sequence of parabolic shapes, is repeated, as shown in Figure 42.  Some details of the 

oscillatory process vary, depending on driver characteristics, vehicle types and conditions 

in traffic and geometry and so on.  
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Figure 40. Following distance over a car-following time series 

 

Speed

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171

Time

Sp
ee

d 
(m

/s
)

Leader
Follower

 

Figure 41. Speed of the lead and following vehicles 
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Relative Speed vs. Following Distance
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Figure 42. Trajectory of an oscillatory process in car-following behavior 

 

5.1.2 Traffic hysteresis phenomenon in car-following 

 Traffic hysteresis is a phrase used to describe the phenomenon that the 

acceleration and deceleration processes have different speed-density curves, which are 

asymmetric; the phase trajectories therefore form a hysteresis loop.  It should be said that 

this does not capture exactly the definition of the word hysteresis in the fields from which 

it was borrowed, but the existence of a different return trajectory seems to be common 

enough ground to cause a lot of researchers to use the phrase.  It was first recognized 

theoretically by Newell (1965) and he hypothesized that drivers respond to certain stimuli 

differently in different traffic phases, i.e., acceleration and deceleration.  He proposed a 

model that contained the hysteresis loop.  After that, some researchers explored traffic 

hysteresis using bivariate relationship plots (e.g., speed-density plot), obtained from 

experimental data or simulation results (Treiterer and Myers, 1974, Zhang, 1999, Zhang 
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and Kim, 2005).  It is clear from Figure 43 that there are patterns that might be coined 

“hysteresis loops” in this car-following time series, after plotting following distances 

(between the lead and following vehicles) with speeds of the following vehicle.  This 

time series is the case of No. 23 collected on March 18, 2005 in the Appendix A. 
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Figure 43. Traffic hysteresis phenomenon 

 

5.1.3  Variability in following distance 

From the results of the baseline statistics in Chapter 4, we found that the 

following distance between the lead and following vehicles increased as speed increased, 

although there were significant variations in following distances along the whole speed 

range.  This section presents that there are stochastic characteristics in following behavior 

across different drivers and even within the same driver. 
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1)  Following distance across drivers 

Figure 44 shows the relationship between following distance and speed for five 

randomly chosen auto drivers (No. 12, 15, 16, 23, and 25 in the Appendix A) under 

congested conditions on March 16, 2005.  Car-following time series were divided into 5 

km speed intervals in which each data point is an average value for the speed interval.  As 

we may expect, the following distances consistently increase as speed increases for all 

five drivers.  What is interesting is that there are significant variations in following 

distances across different drivers as shown in Figure 44.  It is more evident at higher 

speed ranges than at lower speed ranges.  This finding suggests that the desired following 

distance is an individual driver characteristic and that what drivers believe to be safe 

following distances vary.  This analysis confirms that every individual driver has his or 

her own driving rule, rather than keeping a deterministic and strict driving law.     
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Figure 44. Variability in following distance across drivers 
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2)  Following distance within the same driver 

We observed in the previous section that an individual driver has his or her own 

driving rule, rather than keeping a deterministic and strict driving law.  It has been also 

shown that drivers tend to retain their personalities, in the sense that each driver tends to 

maintain his driving attributes, and in some instances, drivers return to their attributes 

after being forced by a traffic disturbance to alter them temporarily (Cassidy and 

Windover, 1998).  Figure 45 shows the relationship between following distance and 

speed within the same driver for two time series data (No. 25 for auto driver and No. 42 

for truck driver on March 16, 2005 in the Appendix A).  The following distance varies 

from 4 to 16 meters at the speed of 11 km/h in the case of auto and 12 to 21 meters at 20 

km/h for truck.  This result indicates that although an individual driver has his own 

driving behavior or attribute, the following distance may differ over time and space under 

different driving maneuvers and conditions, such as traffic, geometric, or environmental 

conditions.   
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(a) Auto case 
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(b) Truck case 

 

Figure 45. Variability in following distance within same driver 
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5.1.4 Natural driving behavior with historical state aspects in car-following  

As discussed in the literature review in Chapter 2, a common assumption in car-

following models, representing the following vehicle’s responses, is that the reaction of a 

following vehicle lags the lead vehicle consistently by a constant delay.  That situation 

we call the “current state,” and note that these models assume that there is no dependence 

on the past sequences of car motions that produced the current state.  Thus, one might call 

this process “memoryless.”  It is our hypothesis that, for certain instantaneous states, the 

most natural following responses differ, depending on how those states are reached.  This 

section shows from the field data analysis that there is variability in following vehicles’ 

reactions with the same instantaneous states under different driving maneuvers and also 

discloses that common following driving maneuvers exist in car-following under 

naturalistic driving situations. 

  

1) Variability in following vehicle’s reactions under different driving maneuvers 

Drivers behave differently under different driving maneuvers, although they have 

exactly the same (current) instantaneous states, such as speeds of the lead and following 

vehicles and following distances.  Figure 46 shows two examples for a single car-

following time series (No. 32 on March 18, 2005 in the Appendix A), where the same 

instantaneous states were produced under very different causes (or driving maneuvers), 

and hence very different effects to the following vehicle were generated.  As shown in 

Figure 46 (a), for both cases (i) and (ii), the same leader speeds (14.1 km/h), follower 

speeds (14.1 km/h), and following distances (10 m) were produced under very different 

driving maneuvers: the former is a deceleration event and the latter is an acceleration 



 

  92

event.  From the perspective of traditional car-following models with a myopic definition 

of the state, the reactions of the following vehicle at the next time should be the same.  

However, the reactions of the following vehicles that incorporate more history into the 

definition of state were totally different, as shown in Figure 46 (b), which only contains 

the acceleration (or reaction) profile of the following vehicle until 50 seconds to illustrate 

more clearly.  In the first case (i) in Figure 46 (b), the following vehicle decelerates with 

respect to the current state, which was produced under a deceleration event.  In the 

second case (ii) in Figure 46 (b), the following vehicle accelerates nearly immediately 

because the same spacing and speed resulted from an acceleration event. This result 

indicates that individual drivers don’t follow a deterministic or a fixed driving rule, and it 

is more important to investigate sequences of car motions for determining following 

behavior than instantaneous states.   
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(a) Same instantaneous states under different driving maneuvers 
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(b) Different reactions of the following vehicle 

Figure 46. Different reactions caused by different driving maneuvers 
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2) Common following vehicle’s reactions under the same driving maneuvers  

In Section 5.1.3, we observed that an individual driver has his own driving rule 

and tends to maintain his driving attributes.  Hence, we might assume that the following 

vehicle’s reactions to the lead vehicle, such as acceleration and deceleration profiles, are 

expected to remain almost the same for each driver, and that car-following behavior for 

each driver may not be completely random in nature but rather demonstrate some 

temporal consistency.  There should be some patterns in which the past car-following 

behavior repeats itself under the same driving maneuvers.  Figure 47 shows examples 

where the common following vehicle’s reactions under the same driving maneuvers exist 

in car-following behavior for a single time series (No. 59 on March 18, 2005 in the 

Appendix A).  As shown in Figure 47 (a), both cases (i) and (ii) imply the time lines at 

which the same instantaneous states, i.e., the same leader speeds (19.4 kph), follower 

speeds (19.4 kph), and following distances (10 m), were produced under the same driving 

maneuver, which is an acceleration event.  In this situation, the reactions of the following 

vehicle at the next time for both cases were exactly the same: the following vehicle 

accelerates nearly immediately because the current instantaneous states resulted from an 

acceleration event, as shown in Figure 47 (b), which displays only the acceleration profile 

of the following vehicle from 60 to 130 seconds.  This result indicates that the reactions 

of the following vehicle caused by the same driving maneuvers in car-following 

situations can repeat itself over time and space and also confirms that car-following 

behavior for a driver is a series of common following vehicle’s reactions under the 

various driving maneuvers. 
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(a) Same instantaneous states under same driving maneuvers 
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(b) Same reactions of the following vehicle 

Figure 47. Existence of common following driving maneuvers 
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5.2 Effects of Various Causal Factors on Car-Following Behavior   

 There are numerous factors that might influence car-following behavior, such as 

various human characteristics (e.g., gender, in-vehicle activities like telephoning and 

talking, vehicle occupancy (distraction level)), traffic and road characteristics (e.g., type 

of vehicle, congestion level, and number of lanes or location of driving lane), and 

environmental characteristics (weather condition, time of day or day of week).  We have 

investigated and identified the relationships between those factors and the following 

vehicle’s behavior and described some findings for each critical factor based on the 

differences of behavioral characteristics. 

 

5.2.1 Vehicle types (auto vs. truck) 

Different types of vehicles, such as auto and truck, might have different car-

following behavior.  Figure 48 shows two randomly chosen car-following time series for 

an auto and a truck, presenting the relationship between relative speed and following 

distance.  It is very clear from the figure that the variations in following distance and in 

relative speed of the truck are much wider than those of the auto; i.e., the following 

distance and the relative speed for the truck vary from about 7 to 70 meters and –6 to +4 

m/s, compared to 8 to 18 meters and –2 to +2 m/s for auto, respectively.  This suggests 

that truck drivers are more careful when driving behind a lead vehicle, because the truck 

has a longer stopping distance than an auto.  Also, the response of the truck to the action 

of the lead vehicle is slower than the auto, i.e., trucks accelerate or decelerate slowly 

because of the poorer operating capabilities than autos. 
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Relative Speed vs. Following Distance
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(a) Auto case 
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(b) Truck case  

 

Figure 48. Relationship of relative speed vs. following speed by vehicle type 
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 Figure 49 shows the distribution of following time gaps for a total of 301 car-

following time series for both auto and truck.  A number of 269 time series were auto, 

while 32 were truck, respectively.  We notice that the distributions of the time gaps differ, 

depending on vehicle types.  Autos have a more focused distribution around a smaller 

mean time gap, while truck gaps have a larger mean and longer tail.  In order to observe 

the effect of vehicle types on car-following behavior, all the car-following time series 

were divided into 5 km/h speed intervals.  After that, we classified the data points in each 

speed interval according to each individual driver and calculated a mean speed of each 

individual driver.  Figure 50 shows the difference of following distance between auto and 

truck along the whole speed range in which each data point is an average value of drivers 

who belong to each speed interval.  It seems visually that the average following distances 

of truck are longer than auto along most of the speed range, except for the highest and 

lowest speed ranges from 1 to 10 and 81 to 105 km/h in which the two are mostly 

indistinguishable.  The lower speeds correspond to periods of greater congestion, so 

behavioral differences between the types of vehicles should manifest themselves more 

distinctly.  At the very lowest speeds, of course, traffic is likely at jam density.  Figure 51 

shows the standard deviations of following distances for auto and truck in each speed 

range.  The standard deviations of trucks are larger than autos along the whole speed 

range, with very few exceptions.  For the middle speed range in which the two are 

distinct, this suggests that trucks have more variability in keeping their desired following 

distance within each speed range. 
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Figure 49. Distributions of following time gaps by vehicle types 
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Figure 50. Speed vs. following distance by vehicle types 
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Standard Deviation of Following Distance
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Figure 51. Standard deviations of following distances by vehicle types 

 

Figure 52 shows how the accepted time gaps for each type of vehicle vary with 

speed.  Generally, the time gaps decrease as speeds increase for both auto and truck and 

the average time gaps for trucks are longer than for autos along most of the speed range.  

This result suggests that truck drivers tend to have longer time gaps than auto.  

Furthermore, the standard deviations of time gaps for trucks are larger than for autos for 

most of the speed range, as shown in Figure 53.  This tends to confirm both that truck 

drivers are more careful while following the lead vehicle and tend to adopt large time 

gaps in order to avoid rear end collisions and that their precise control of these gaps is not 

as good as autos, owing perhaps to performance differences between the two types of 

vehicles.  To compare the different effects of vehicle types on car-following behavior, 

one-way ANOVA was used to identify the differences in following distances between 

auto and truck.  The F-test results show that there are statistically significant differences 
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in following distances (at significance level 0.05) for the speed ranges from 11 to 55 

km/h and 71 to 80 km/h, as shown in Table 8.  The significant rows are highlighted in 

gray. 
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Figure 52. Speed vs. time gap by vehicle types 
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Figure 53. Standard deviations of time gaps by vehicle types 

 

Table 8. ANOVA: effect of vehicle types on car-following behavior 

Sample Size Speed Range d.f Auto Truck F P-value 

1-5 1, 50 49 3 0.369 0.5464 
6-10 1, 69 63 8 0.204 0.6528 

11-15 1, 81 73 10 7.166 0.0090 
16-20 1, 97 87 12 8.563 0.0043 
21-25 1, 101 90 13 7.179 0.0086 
26-30 1, 98 87 13 4.496 0.0365 
31-35 1, 90 78 14 6.673 0.0114 
36-40 1, 89 79 12 7.545 0.0073 
41-45 1, 87 77 12 7.423 0.0078 
46-50 1, 80 74 8 26.952 1.55E-06 
51-55 1, 80 74 8 4.913 0.0295 
56-60 1, 84 79 7 1.697 0.1963 
61-65 1, 93 86 9 1.273 0.2622 
66-70 1, 102 97 7 0.205 0.6518 
71-75 1, 115 106 11 5.361 0.0224 
76-80 1, 146 134 14 3.988 0.0477 
81-85 1, 144 131 15 0.219 0.6407 
86-90 1, 131 121 12 0.015 0.9020 
91-95 1, 97 92 7 0.612 0.4359 
96-100 1, 40 38 4 0.647 0.4260 

101-105 1, 19 20 1 0.006 0.9397 
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5.2.2 Number of lanes (4 lanes vs. 2 lanes) 

The effect of different roadways, which have different number of lanes, on the 

car-following behavior was investigated.  The data were taken from 4-lane segments of I-

495 and 2-lane segments of I-295.  As autos and trucks have different car-following 

behavior, as shown in the previous section, and also because not much truck traffic was 

on I-295 compared to I-495, only car-following time series for autos were considered in 

this analysis.  Therefore, 113 time series for I-295 and 148 time series for I-495 were 

extracted.  Figure 54 shows the differences in following distances between two roadways 

along the whole speed range.  Although there are small differences in following distances 

in each speed range, it seems visually that there are no significant differences in the 

following distances between the two roadways, except perhaps for the speed ranges from 

51 to 75 km/h and 96 to 105 km/h.  Hence, one-way ANOVA was used to identify 

statistically the differences in following distances.  The F-test results in Table 9 show that 

there are statistically significant differences in following distances at significance level 

0.05 for the speed ranges from 51 to 55 km/h and 61 to 65 km/h.  The significant rows 

are shown in gray.  The highways are different in ways other than the number of lanes, so 

some care should be taken drawing inferences here.  For example, I-495 has much more 

curvature that the relatively straight I-295, so sight distance concerns might cause drivers 

to tend to adopt longer following distances. 
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Speed vs. Following Distance
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Figure 54. Speed vs. following distance by number of lanes 

 

Table 9. ANOVA: effect of number of lanes on car-following behavior 

Sample Size Speed Range d.f 2 lanes 4 lanes F P-value 

1-5 1, 47 13 36 0.098 0.7553 
6-10 1, 59 17 44 2.9E-05 0.9957 

11-15 1, 69 21 50 0.231 0.6324 
16-20 1, 82 27 57 0.001 0.9720 
21-25 1, 85 29 58 0.149 0.7005 
26-30 1, 82 33 51 2.102 0.1509 
31-35 1, 73 28 47 1.440 0.2340 
36-40 1, 75 28 49 0.288 0.5934 
41-45 1, 73 26 49 0.104 0.7482 
46-50 1, 71 23 50 0.989 0.3235 
51-55 1, 71 24 49 4.331 0.0410 
56-60 1, 76 28 50 3.893 0.0521 
61-65 1, 82 28 56 4.872 0.0301 
66-70 1, 93 43 52 2.864 0.0939 
71-75 1, 102 50 54 1.584 0.2111 
76-80 1, 128 68 62 0.653 0.4205 
81-85 1, 125 71 56 0.270 0.6042 
86-90 1, 114 71 45 0.965 0.3279 
91-95 1, 85 54 33 0.088 0.7679 
96-100 1, 33 25 10 3.017 0.0917 

101-105 1, 16 17 1 0.435 0.5191 
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5.2.3 Location of driving lanes 

We hypothesize that the location of the driving lane might have a different effect 

on car-following behavior, beyond any differences resulting from the number of total 

lanes on roadways.  For example, driving behavior in the left-most lane (or fast lane) on a 

two-lane roadway should be different from that in the right-most lane (or slow lane) in 

which drivers have additional interference from on-ramps and off-ramps. 

In order to investigate the effect of driving lane on car-following behavior, the 

car-following time series for autos only were grouped according to their driving lane, for 

different roadways (I-295 and I-495).  Therefore, 269 time series for autos were extracted 

for this analysis.  The numbering convention for driving lanes will be 1 for the right-most 

lane, and increasing for each lane to the left.  Thus, the left-most lane on I-295 is lane 2, 

while the left-most lane on I-495 is lane 4.  In particular, accidental distance gaps around 

exits (usually at the right-most lane) were excluded in this analysis.  Figures 55 and 56 

show the differences in following distances and time gaps between lane one (the right 

lane) and lane two (the left lane) on I-295 along the whole speed range.  It is very clear 

that following distances and time gaps in lane one are longer than in lane two along the 

whole speed range except for the highest and lowest speed ranges.  This seems 

reasonable, since vehicles in the right-most lane presumably are leaving gaps for merging 

vehicles, and since some of the longer spacings might result from vehicles departing the 

lane at off-ramps. The one-way ANOVA results show that there are statistically 

significant differences (significance level 0.05) in following distances between the two 

lanes for most of the speed range, as shown in Table 10.  Figure 57 shows the standard 

deviations of following distances for lane one and lane two at each speed range.  
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Generally, the standard deviations of lane one are larger than those of lane two for most 

speed ranges, although there are few speed ranges at the extremes where this is not true.  

For the middle ranges, this confirms that lane one has more interference from things such 

as lane changing from on-ramps and off-ramps that might produce more variability in 

following distance within these speed ranges. 
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Figure 55. Speed vs. following distance by driving lanes on I-295 
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Speed vs. Time Gap

0

2

4

6

8

10

12

14

16

18

1-
5

6-
10

11
-1

5

16
-2

0

21
-2

5

26
-3

0

31
-3

5

36
-4

0

41
-4

5

46
-5

0

51
-5

5

56
-6

0

61
-6

5

66
-7

0

71
-7

5

76
-8

0

81
-8

5

86
-9

0

91
-9

5

96
-1

00

10
1-

10
5

10
6-

11
0

Speed (kph)

Ti
m

e 
G

ap
 (s

ec
on

d)

Lane 1
Lane 2

 

Figure 56. Speed vs. time gap by driving lanes on I-295 

 

Table 10. ANOVA: effect of location of driving lane on car-following behavior on I-295 

Sample Size Speed Range d.f Lane 1 Lane 2 F P-value 

1-5 1, 11 7 6 0.552 0.4730 
6-10 1, 15 9 8 0.690 0.4193 

11-15 1, 19 11 10 0.560 0.4635 
16-20 1, 25 14 13 1.529 0.2278 
21-25 1, 27 14 15 4.643 0.0403 
26-30 1, 30 16 16 7.136 0.0121 
31-35 1, 26 12 16 9.878 0.0041 
36-40 1, 26 12 16 12.780 0.0014 
41-45 1, 24 9 17 10.308 0.0037 
46-50 1, 21 7 16 4.645 0.0429 
51-55 1, 22 9 15 5.110 0.0340 
56-60 1, 26 13 15 3.999 0.0561 
61-65 1, 26 12 16 2.147 0.1548 
66-70 1, 41 19 24 8.920 0.0047 
71-75 1, 48 24 26 6.714 0.0126 
76-80 1, 66 33 35 4.259 0.0430 
81-85 1, 69 31 40 6.023 0.0166 
86-90 1, 69 27 44 5.811 0.0186 
91-95 1, 52 14 40 5.069 0.0286 
96-100 1, 16 4 14 1.462 0.2442 

101-105 1, 15 2 15 0.103 0.7532 
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Standard Deviation of Following Distance
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Figure 57. Standard deviations of following distances by driving lanes on I-295 

 

The following deals with the same subject for the case of I-495.  Again, car-

following time series for autos were considered, to exclude the effects of trucks.  

Unexpectedly, no data points were available for the speed range from 56 to 60 km/h for 

lane four on I-495. As shown in Figures 58, it is difficult to find any general trend among 

lanes, but evident that there are significant variations in choosing following distances by 

each lane.  What is interesting from the figure is that the following distances of lane four 

were relatively shorter than those of other lanes for the middle speed ranges from 31 to 

55 km/h.  The ANOVA results in Table 11 suggest that there are statistically significant 

differences in following distances among lanes for the lowest speed ranges from 1 to 20 

km/h.  Furthermore, the standard deviations in Figure 59 shows that the variability in 

choosing desired following distances exists by each lane, which suggests that drivers in 

each lane have different car-following behavior, rather than keeping a deterministic 
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driving rule among lanes.  Especially, there was a trend that the standard deviations of 

lane four were smaller than those of other lanes, for the lower speeds (below 50 km/h), 

which suggests that drivers in lane four have less variability in following distances within 

these speed ranges.   
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Figure 58. Speed vs. following distance by driving lanes on I-495  
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Table 11. ANOVA: effect of location of driving lane on car-following behavior on I-495 

Sample Size Speed 
Range d.f Lane 1 Lane 2 Lane 3 Lane 4 F P-value 

1-5 3, 32 11 6 16 3 3.408297 0.029206
6-10 3, 40 13 9 19 3 3.851083 0.016388

11-15 3, 46 14 13 20 3 3.399774 0.025445
16-20 3, 53 15 16 23 3 3.139297 0.032825
21-25 3, 54 19 16 20 3 1.513043 0.221553
26-30 3, 47 15 15 19 2 1.288558 0.289303
31-35 3, 43 13 17 15 2 0.240919 0.86731
36-40 3, 45 15 17 15 2 0.40562 0.749676
41-45 3, 45 13 18 16 2 0.88887 0.454173
46-50 3, 46 15 17 17 1 0.946382 0.426058
51-55 3, 45 14 17 17 1 1.216397 0.314698
56-60 2, 47 16 18 16 - 0.987018 0.380278
61-65 3, 52 17 20 18 1 0.658919 0.581053
66-70 3, 47 14 19 16 2 0.168481 0.917121
71-75 3, 50 10 24 16 4 0.257289 0.855781
76-80 3, 58 10 27 19 6 0.388235 0.761887
81-85 3, 52 7 22 20 7 1.030466 0.386794
86-90 3, 41 4 16 19 6 1.498115 0.229331
91-95 3, 29 4 10 14 5 1.357214 0.275387
96-100 3, 5 2 2 4 1 2.138912 0.213879
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Figure 59. Standard deviations of following distances by driving lanes on I-495 



 

  111

5.2.4 Traffic conditions (rush vs. non-rush hour) 

There might be some differences in car-following behavior between rush and non-

rush hour periods.  Rush hours usually mean that there is relatively heavy traffic, 

especially near metropolitan areas.  Our study areas, such as I-495 and I-295, are in the 

vicinity of  Washington D.C. and suffer from recurrent congestion during the rush hour 

periods, and sometimes even in non-rush hour periods.  For this analysis, all the car-

following time series, except data collected at night, were categorized into two groups: 

rush hours (7-9 am and 4-6 pm) and non-rush hours.  Therefore, 263 time series collected 

at daytime were extracted and divided by rush hour data (179 time series) and non-rush 

hour data (84 time series).  Figures 60 and 61 show the difference in following distances 

and time gaps between rush and non-rush hours along the whole speed range.  Clear 

differences between different traffic conditions can be distinguished visually.  It was 

observed that except perhaps for the speed ranges from 1 to 15 km/h and 96 to 100 km/h, 

following distances and time gaps in rush hour periods are longer than those in non-rush 

hour periods.  The ANOVA results in Table 12 confirm that the differences were 

statistically significant between two traffic conditions for the speed ranges from 41 to 45 

km/h and 61 to 95 km/h.  This result suggests that drivers have a tendency to have 

relatively larger following distances and longer time gaps in rush hour periods within 

these speed ranges, compared to car-following in non-rush hours.  Because these are 

situations in which there is relatively heavy traffic, there might be a greater possibility for 

the lead vehicle to accelerate or decelerate suddenly because of the unstable traffic 

conditions in rush hours.  However, it is also frequently claimed that rush hour drivers are 

more familiar and proficient than non-rush drivers, which might suggest greater 
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willingness to accept smaller time gaps and distances.  This result, therefore, while clear 

from the data, was not fully expected.  It is also confirmed from Figure 62 that the 

standard deviations of following distances in rush hour periods at each speed range are 

generally larger than those in non-rush hours, with very few exceptions.  This indicates 

that drivers in rush hour periods have more variability in keeping their desired following 

distance than those in non-rush hour periods. 
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Figure 60. Speed vs. following distance by traffic conditions 
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Speed vs. Time Gap
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Figure 61. Speed vs. time gap by traffic conditions 

 

Table 12. ANOVA: effect of different traffic conditions on car-following behavior 

Sample Size Speed Range d.f Non-rush Rush F P-value 

1-5 1, 47 8 41 0.083 0.7747 
6-10 1, 66 12 56 0.922 0.3404 

11-15 1, 78 14 66 0.109 0.7419 
16-20 1, 95 15 82 1.291 0.2587 
21-25 1, 98 16 84 0.766 0.3836 
26-30 1, 96 15 83 3.017 0.0856 
31-35 1, 89 14 77 1.107 0.2956 
36-40 1, 87 12 77 2.174 0.1439 
41-45 1, 85 14 73 4.528 0.0362 
46-50 1, 76 14 64 2.905 0.0924 
51-55 1, 75 13 64 2.077 0.1537 
56-60 1, 76 15 63 2.985 0.0881 
61-65 1, 82 20 64 5.627 0.0200 
66-70 1, 79 21 60 7.525 0.0075 
71-75 1, 89 25 66 13.551 0.0004 
76-80 1, 116 46 72 15.490 0.0001 
81-85 1, 115 55 62 15.937 0.0001 
86-90 1, 111 60 53 18.439 3.77E-05 
91-95 1, 86 56 32 5.784 0.0183 
96-100 1, 37 32 7 0.005 0.9420 

101-105 1, 19 19 2 3.863 0.0642 
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Standard Deviation of Following Distance
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Figure 62. Standard deviations of following distances by traffic conditions 
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5.2.5 Day of the week distribution  

The effect of day of the week distribution on car-following behavior was investigated.  

In order to identify any potential differences in following behavior, all the car-following 

time series, except data collected at night, were categorized into each day under the two 

different roadways.  Rush hour data for Monday and Tuesday on I-295 were not available 

in the data collected, and no data were available for Monday on I-495. 

As shown in Figures 63 and 64, the following distances increase as speed 

increases by each day for both roadways, which is expected.  One can easily identify that 

there are significant variations in following distances across days and it is more evident in 

non-rush hour periods, compared to rush hour periods for both roadways.  There could be 

various explanations for these differences.  On Fridays, for example, tend to be more 

early weekend travelers than normal, which might offset some amount of commuter 

familiarity.  In the Washington, D.C. area, it is common for federal government 

employees to work only 9 days every two weeks, with Friday the most common 

“compressed day.”  It is not possible to test any of these hypotheses using the data 

sources from this dissertation, and this would be extremely difficult in any event.  It must 

suffice, therefore, to observe the results but without a clear causal relationship. 
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(a) Non-rush hour 
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(b) Rush hour 

 

Figure 63. Speed vs. following distance by days on I-295 
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(a) Non-rush hour 
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(b) Rush hour 

 

Figure 64. Speed vs. following distance by days on I-495 
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5.2.6 Gender  

 There might be different driving behavior between male and female drivers.  To 

identify these differences, we extracted car-following time series in which we could 

visually distinguish the gender of the drivers.  Only autos were considered in this analysis 

since all the truck drivers were male, and differences between trucks and autos would 

confound the results. Furthermore, drivers doing some in-vehicle activities such as 

telephoning and talking were excluded to remove the effects of other distractions to the 

following drivers.  These effects are studied in the next section.  Therefore, 44 time series 

for male and 20 time series for female were considered in this analysis. 

Figure 65 shows the difference in following distances between male and female 

drivers along the whole speed range.  It seems visually that there are no differences at 

lower speed ranges, but perhaps clear differences exist for speeds greater than 40 km/h.  

However, the F-test results of one-way ANOVA in Table 13 show that there are no 

significant differences in following distance at significance level 0.05 for most of the 

speed range, except for the speed range from 81 to 85 km/h.  It is interesting from Figure 

66 that the standard deviations of following distance of male drivers at each speed range 

are generally larger than those of female drivers, with very few exceptions, which 

indicates that male drivers have more variability in keeping desired following distance 

than female drivers.  Of course, the data contain no additional factors that might suggest 

causal relations, and it is unwise to speculate. 
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Figure 65. Speed vs. following distance by gender 
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Figure 66. Standard deviations of following distances by gender 
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Table 13. ANOVA: effect of gender on car-following behavior 

Sample Size Speed Range d.f Female Male F P-value 

1-5 1, 10 7 5 0.352 0.5662 
6-10 1, 12 8 6 0.324 0.5797 

11-15 1, 15 8 9 0.176 0.6811 
16-20 1, 19 9 12 0.064 0.8026 
21-25 1, 22 10 14 0.170 0.6841 
26-30 1, 23 11 14 0.003 0.9574 
31-35 1, 21 10 13 0.355 0.5575 
36-40 1, 23 11 14 0.030 0.8632 
41-45 1, 21 9 14 0.569 0.4590 
46-50 1, 22 10 14 0.949 0.3406 
51-55 1, 24 12 14 2.249 0.1468 
56-60 1, 25 10 17 2.138 0.1561 
61-65 1, 25 12 15 2.177 0.1526 
66-70 1, 26 10 18 0.313 0.5807 
71-75 1, 27 7 22 0.711 0.4066 
76-80 1, 31 7 26 2.347 0.1357 
81-85 1, 30 5 27 5.588 0.0248 
86-90 1, 26 4 24 1.800 0.1913 
91-95 1, 16 4 14 0.285 0.6010 
96-100 1, 2 2 2 13.235 0.0679 
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5.2.7 Distraction factors  

While following a lead vehicle, various environmental conditions (or distraction 

factors) exhibited in the following vehicle such as occupancy and telephoning.  Vehicle 

occupancy could be a potential distraction to the driver of the following vehicle, which 

may influence car-following behavior and driving safety.  One could hypothesize that 

drivers with passengers allow greater distances in passive recognition of their own 

distraction, they feel more responsible for safe driving with passengers on board, etc.  Of 

course, none of these can be readily tested.  In order to investigate the effect of vehicle 

occupancy on the car-following behavior, we considered only auto car-following time 

series in which we can clearly see the inside of vehicle and distinguish the number of 

people.  Also, drivers who have other distraction factors such as telephoning were not 

considered in this analysis.  To keep things simple, we have only distinguished between 

drivers driving alone and those with passengers in the car.  Therefore, 64 time series with 

driving alone and 9 time series with passengers in the car were extracted for this analysis.   

Figures 67 shows the differences in following distances according to the number 

of people in the car.  It seems visually that there are not much differences in the following 

distances between the two groups, except for several speed ranges.  Hence, one-way 

ANOVA was used to identify statistically the differences in following distances.  Table 

14 shows the F-test results, in which there are no significant differences in following 

distances at significance level 0.05 along the whole speed range.  Figure 68 shows the 

standard deviation of following distances partitioned by occupancy.  In general, the 

standard deviations of following distances increase with speed for both situations.  

However, it is interesting that the standard deviations with greater occupancy are nearly 
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uniformly smaller than those with less occupancy for most speed ranges.  This finding 

suggests that although there are no significant differences in choosing desired following 

distances between two groups, they are more careful and cautious to the change of the 

lead vehicle.  Hence, they react very promptly to the action of the lead vehicle, which 

may result in decreasing variability in choosing following distances. 
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Figure 67. Speed vs. following distance by occupancy 



 

  123

Standard Deviation of Following Distance
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Figure 68. Standard deviations of following distances by occupancy 

 

Table 14. ANOVA: effect of different occupancy on car-following behavior 

Sample Size Speed Range d.f Occ 1 Occ 2+ F P-value 

11-15 1, 18 17 3 0.012 0.9137 
16-20 1, 24 21 5 0.523 0.4766 
21-25 1, 27 24 5 0.001 0.9695 
26-30 1, 28 25 5 0.169 0.6845 
31-35 1, 26 23 5 0.790 0.3821 
36-40 1, 27 25 4 0.032 0.8589 
41-45 1, 25 23 4 0.004 0.9474 
46-50 1, 27 24 5 0.0002 0.9887 
51-55 1, 29 26 5 0.028 0.8688 
56-60 1, 30 27 5 0.084 0.7737 
61-65 1, 32 27 7 0.025 0.8764 
66-70 1, 33 28 7 0.003 0.9546 
71-75 1, 33 29 6 0.037 0.8477 
76-80 1, 37 33 6 0.054 0.8173 
81-85 1, 34 32 4 0.701 0.4083 
86-90 1, 28 28 2 0.071 0.7914 
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The following deals with a similar subject, but with different distraction factor, 

i.e., telephoning activity while following the lead vehicle.  The car-following time series 

in which we can identify the in-vehicle activities and distinguish telephoning activity 

were extracted and drivers who have other distraction factors except telephoning were 

excluded.  Therefore, 9 time series for driving with telephoning activity and 64 time 

series for driving without telephoning were considered in this analysis.  As shown in 

Figures 69, while there are small differences in following distances between driving with 

telephoning and without telephoning along the whole speed range, there is no general 

trend between the two situations.  The drivers who are telephoning perhaps take relatively 

larger following distances for some speed ranges, especially lower speed ranges, but take 

smaller following distances for some speed ranges.  The F-test results of the one-way 

ANOVA in Table 15 suggest that there are no significant differences in following 

distances at significance level 0.05 along the whole speed range.  Figure 70 compares the 

standard deviations of following distances between the two situations.  Interestingly, the 

same result as with occupancy occurs here.  The standard deviations with telephoning 

activity are smaller than without telephoning for most speed ranges.  This finding again 

suggests that drivers with more distractions like telephoning are more careful and 

attentive to the situations of the lead vehicle, react very quickly to the change of the lead 

vehicle, and furthermore try to stay in relatively stable following distances.  Of course, 

this defies the conventional wisdom concerning the distractive influence of telephoning, 

and other data suggest that accidents are more likely with such activity than without (Alm 

and Nilsson, 1995). 
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Figure 69. Speed vs. following distance by telephoning activity 
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Figure 70. Standard deviations of following distances by telephoning activity 

 



 

  126

Table 15. ANOVA: effect of telephoning activity on car-following behavior 

Sample Size Speed Range d.f No Telephoning Telephoning F P-value 

1-5 1, 12 12 2 0.676 0.4269 
6-10 1, 15 14 3 0.205 0.6568 

11-15 1, 19 17 4 0.218 0.6462 
16-20 1, 24 21 5 0.288 0.5966 
21-25 1, 27 24 5 0.236 0.6310 
26-30 1, 28 25 5 0.277 0.6029 
31-35 1, 26 23 5 1.244 0.2749 
36-40 1, 28 25 5 0.434 0.5153 
41-45 1, 25 23 4 0.003 0.9592 
46-50 1, 23 24 1 0.174 0.6802 
51-55 1, 25 26 1 0.008 0.9279 
56-60 1, 26 27 1 0.103 0.7510 
61-65 1, 26 27 1 0.824 0.3724 
66-70 1, 28 28 2 0.004 0.9528 
71-75 1, 29 29 2 0.054 0.8172 
76-80 1, 34 33 3 0.0003 0.9855 
81-85 1, 34 32 4 0.592 0.4471 
86-90 1, 30 28 4 0.743 0.3956 
91-95 1, 19 18 3 1.680 0.2104 
96-100 1, 4 5 1 0.447 0.5403 

 

 

5.2.8 Time of day (day vs. night)  

There might be different driver behavior and traffic characteristics between day 

and night.  One would normally expect that low visibility at night would greatly increase 

the following distance, compared to daytime.  The effect of time of day on car-following 

behavior was investigated. Car-following time series under non-rush hours were 

considered and categorized into the two groups as day and night.  Especially, night time 

data collection worked poorly because the headlights interfaced with the infrared sensor.  

Therefore, some of the data in various time series collected at night were missing or had 

unreasonable values.  Hence, relatively small numbers of time series were available, 

compared to those at daytime.  Therefore, 38 time series for night and 84 time series for 
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day were considered in this analysis.  Figures 71 and 72 show the differences in 

following distances and time gaps between day and night.  We can easily identify the 

differences in the following distances between day and night along the whole speed range, 

except for the lowest speed ranges from 1 to 25 km/h.  Table 16 shows the one-way 

ANOVA results in which the differences in the following distances between day and 

night are statistically significant at significance level 0.05 for the higher speed ranges, 

particularly over 40 km/h.  Figure 73 shows the standard deviation of following distances 

between day and night in each speed range.  In general, the standard deviations of 

following distances increase as speed increases for both day and night.  The standard 

deviations during the night are smaller than those during the day at lower speed regions 

below 75 km/h, while a different trend exists at higher speed regions over 75 km/h.  We 

hypothesize from this result that drivers are more careful while following the lead vehicle 

and more sensitive to the action of the lead vehicle at night.  Hence, they will react 

promptly to the acceleration or deceleration of the lead vehicle, especially at lower speed 

ranges since it is easier for drivers to estimate the distance to the lead vehicle and keep 

their desired following distance because of the shorter inter-vehicle distance.  However, 

at higher speeds, it becomes more difficult to accurately estimate the distance and keep 

the desired following distance at night, which may increase variability in choosing 

desired following distances. 
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Figure 71. Speed vs. following distance by time of day 
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Figure 72. Speed vs. time gaps by time of day 
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Table 16. ANOVA: effect of time of day on car-following behavior 

Sample Size Speed Range d.f Day Night F P-value 

1-5 1, 9 8 3 0.492 0.5006 
6-10 1, 13 12 3 0.002 0.9663 

11-15 1, 15 14 3 0.036 0.8525 
16-20 1, 15 15 2 0.262 0.6164 
21-25 1, 17 16 3 0.014 0.9057 
26-30 1, 15 15 2 1.870 0.1916 
31-35 1, 13 14 1 2.169 0.1646 
36-40 1, 12 12 2 4.098 0.0658 
41-45 1, 14 14 2 10.952 0.0052 
46-50 1, 16 14 4 5.871 0.0276 
51-55 1, 16 14 4 5.897 0.0273 
56-60 1, 21 15 8 2.029 0.1691 
61-65 1, 29 20 11 7.551 0.0102 
66-70 1, 42 21 23 10.247 0.0026 
71-75 1, 49 25 26 20.241 4.21E-05 
76-80 1, 74 46 30 28.303 1.06E-06 
81-85 1, 82 55 29 47.967 8.93E-10 
86-90 1, 78 60 20 29.518 6.11E-07 
91-95 1, 64 56 10 10.620 0.0018 
96-100 1, 31 32 1 4.567 0.0406 
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Figure 73. Standard deviations of following distances by time of day 
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5.2.9 Weather conditions (dry vs. wet)   

It is common that drivers take more caution while driving under adverse weather 

conditions than under normal conditions.  Hence, there might be some differences in 

following behavior between dry and wet conditions.  Since we did not collect any other 

data under weather conditions such as ice or snow, only data in rainy condition were 

considered in this analysis.  During the data collection under rainy weather, there was a 

limitation that the infrared range sensor performance reduced drastically when obstacles 

such as mud or water drops stuck on the windows of the range sensor, especially under 

heavy rain.  Therefore, some of the data in various time series were missing or had 

unreasonable values.  Hence, only small numbers of time series in rainy condition were 

available for data analysis.  As the data in rainy condition were collected only on I-495 

during non-rush hour periods, only car-following time series on I-495 under non-rush 

periods were considered.  As a result, 3 time series in rainy condition and 37 time series 

in dry condition were extracted.  Figures 74 and 75 show the differences in following 

distances and time gaps between dry and wet conditions.  It is visually very clear that 

there are significant differences in the following distances and time gaps between dry and 

wet conditions along the whole speed range, except for the speed ranges from 1 to 5 km/h 

in the figure 75.  This result seems to suggest that drivers in rainy conditions tend to have 

larger following distances (or longer time gaps) than under dry conditions.  However, no 

solid inferences can be drawn from this result, since very fewer data points were 

available in rainy condition.   
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Figure 74. Speed vs. following distance by weather conditions 
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Figure 75. Speed vs. time gaps by weather conditions 
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Chapter 6: Conclusions 

 

The main goal of this dissertation has been to contribute to the better 

understanding of car-following behavior, and more specifically, on the variability in car-

following behavior that is commonly observed in naturalistic driving situations.  Efforts 

have been made to disclose the problems and the limitations in previous experimental 

studies and models on car-following behavior, to build a new data collection system, 

including hardware and software architectures, and to investigate and discover the 

characteristics of real driving behavior while following a lead vehicle. 

 

6.1 Summary of Research Findings 

This dissertation includes a thorough review of the literature in this area.  Chapter 

2 describes some important limitations of current car-following experimental studies and 

models, which make them inconsistent with naturalistic driving behavior under car-

following situations.  Due to the absence of modern technologies at the time the previous 

car-following models were developed, the research approach adopted in most previous 

car-following models was to propose an extremely simple and uniform model of driver 

response (such as collision avoidance or maintaining safe following distances), and then 

to use the necessarily crude experimental methods of the time to calibrate the small 

number of parameters involved in the model.  Furthermore, only certain elements, such as 

relative speed and spacings, have been considered as causal mechanisms, although there 

are numerous other factors besides basic kinematics that influence car-following behavior.  

Therefore, it is in question whether the car-following behavior adopted by the above 
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research approach, is in any way “natural.”  In particular, there are not enough modern 

data sets collected under appropriate experimental conditions to make this determination.  

As a result, limitations in the kinds and amounts of data that could be collected made it 

more reasonable to conjecture a simple model form, and then to use limited data to 

calibrate that model.  However, it was possible in this dissertation to collect better data 

and to let these data speak for themselves, without the temptation necessarily to hasten to 

simple models.   

The design of experimental studies in existing car-following models had the 

obvious weakness that it could not capture what normal drivers do under normal 

conditions.  The knowledge gained from those limitations in the design of experimental 

studies made it possible to propose a new data collection system that can overcome 

shortcomings of previous data collection methods.  Section 2.4 shows that it is essential 

to investigate sequences of car motions for determining following behavior rather than 

instantaneous states because the most natural following response differ, depending on 

how that state was reached.  This is in contrast to current car-following models, treat the 

dynamic evolution of cars at a given state as a “memoryless” process.   

Chapter 3 describes a new data collection system using an instrumented test 

vehicle, equipped with four sets of measurement instrumentation (e.g., infrared radar 

sensor (the type normally used for ACC), DGPS/inertial Distance Measuring Instrument, 

vehicle computer, and video camera). Furthermore, a synchronized user interface 

program incorporated with two separate CAN networks has been developed to check the 

status of each device and concurrently store the information transferred from each device 

to the laptop computer.  This chapter also offers several issues concerning the feasibility 
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of the data collection apparatus.  In particular, some issues were highlighted concerning 

the rear-facing infrared radar sensor, because the sensor originally was developed for 

looking forward.  The preliminary test, regarding the proper height and working offset (or 

angle) of the sensor was conducted to investigate reliable radar returns from following 

vehicles and to determine which distance away from the lead vehicle will generate 

reliable radar returns from following vehicles, i.e., a limitation on traffic density 

conditions for properly designing the experimental studies that need to take place in real 

traffic conditions. Section 3.3 describes some geometric analysis of the specific 

circumstances under which the range sensor used in this study can be obfuscated at curve 

transitions.  These results are valid for data collection purposes similar to those described 

in this study, as well as when the sensor is used in its intended application as a forward-

facing rage sensor for adaptive cruise control (ACC).  

While developing and testing the new data collection system for the purpose of 

our research, a preliminary survey was conducted to observe real car-following behavior 

on roadways and furthermore to identify driving maneuvers that would be observed in 

car-following situations.  Some findings from the preliminary survey were described in 

Section 4.1 of Chapter 4.  From the preliminary survey, we had better understanding for 

real car-following behavior under naturalistic driving situations.  In addition, it gave us 

some insights on how to design the data collection plan, such as the data list to be 

observed, including some important causal factors, which can affect car-following 

behavior, and strategies to better capture driver human characteristics using digital video 

camera.  This chapter also presents the field data collection with the new data collection 

system.  The field data collection was conducted over ten days during rush and non-rush 
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hour periods on freeways, including I-495 and I-295 near the Washington D.C. area.  A 

total of 301 car-following time series with an average length of 99 seconds were collected.  

Section 4.2 shows a summary of baseline statistics that characterize in various ways the 

data collected through the field measurements.  The detailed information such as duration 

of time, human, traffic and roadway characteristics, and environmental conditions for 

each car-following time series were summarized in Appendix A.    

  Chapter 5 describes the research findings through the data analysis for the 

collected car-following time series data.  Basically, time series data collected by the DMI 

and infrared radar sensor were regenerated to calculate the speed, acceleration or 

deceleration, and spacing between the lead and following vehicles.  These data were used, 

in conjunction with video records and additional information such as type of roadway, 

geometric condition, congestion level, and weather condition, etc., to investigate driving 

behavior of the following vehicles, to distinguish the relationships between various causal 

factors and the following vehicles’ behavior, and to categorize the range of each critical 

factor based on the differences of behavioral characteristics.  Section 5.1 presents some 

findings related to behavioral characteristics in car-following behavior under naturalistic 

driving conditions.  There was an oscillatory (or “drift”) process in car-following 

behavior, which appears as a sequence of parabolic shapes in keeping desired following 

distance. This pattern was typical of the majority of leader-follower interactions captured 

in these experiments.  It was also shown that traffic hysteresis exists in car-following 

behavior, which is the phenomenon that drivers’ acceleration and deceleration have 

different speed-density curves and in which the phase trajectories form a hysteresis loop. 
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 There were significant variations in following distances across different drivers.  

This result suggests that the desired following distance is an individual driver 

characteristic and that what drivers believe to be safe following distances vary.  It 

confirms that each individual driver has his or her own driving rule, rather than keeping a 

deterministic and strict driving law.  It was also found that although an individual driver 

has his own driving behavior or attribute, the following distance for the individual driver 

differs over time and space under different driving maneuvers and conditions, such as 

traffic, geometric, or environmental conditions. 

Drivers behave differently under different driving maneuvers, although they have 

exactly the same (current) instantaneous states, such as speeds of the lead and following 

vehicles and following distances.  It was also found that the reactions of the following 

vehicle caused by the same driving maneuvers in car-following situations repeat 

themselves over time and space, which indicates that car-following behavior for a driver 

is a series of common following vehicle’s reactions under the various driving maneuvers. 

Those results gave us insights that it is more important to investigate sequences of car 

motions for determining following behavior than instantaneous states.  This type of 

information should help guide the construction of more realistic car-following models.  

Section 5.2 describes the effects of various causal factors, such as human 

characteristics, traffic and road characteristics, and environmental characteristics, on the 

car-following behavior and the statistical differences in following behavior.  It was 

evident from the analysis that different traffic and road characteristics, such as vehicle 

type (e.g., auto vs. truck), number of lanes (e.g., 4 lanes vs. 2 lanes), the location of the 

driving lane (e.g., lane 1 vs. lane 2 on I-295), and traffic condition (rush vs. non-rush) 
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have different effects on car-following behavior.  Clear differences in following distances 

and time gaps between different traffic and road characteristics were found visually.  

Moreover, ANOVA confirmed that a large number of there were statistically the 

differences in following behavior. For example, truck drivers were more careful when 

driving behind a lead vehicle because trucks commonly have longer stopping distance 

than auto, and the response of truck to the action of the lead vehicle was slower than the 

auto, i.e., trucks accelerated or decelerated slowly because of the poorer operating 

capabilities than autos. Drivers had a tendency to have relatively larger following 

distances or longer time gaps in rush hour periods, compared to car-following in non-rush 

hours, under the situations in which there are relatively heavy traffic and more possibility 

for the lead vehicle to accelerate or decelerate suddenly because of the unstable traffic 

conditions in rush hours. 

Obviously, different human characteristics, such as gender (e.g., male vs. female) 

and distraction factors (e.g., occupancy or in-vehicle activities like telephoning), had 

different effects on car-following behavior.  From the data analysis, it was found that the 

standard deviations of following distance of male drivers at each speed range were 

generally larger than those of female drivers along most speed ranges, which suggests 

that male drivers have more variability in keeping desired following distance than female 

drivers.  For the effects of distraction factors, it was found that although there are no 

significant differences in choosing desired following distances between drivers with more 

occupancy or telephoning activity and those with less occupancy or no telephoning 

activity, drivers with more distractions are more careful and attentive to the situations of 

the lead vehicle, react very quickly to the change of the lead vehicle, and furthermore try 
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to stay in relatively stable following distances, which may result in decreasing variability 

in choosing following distances. 

Different environmental characteristics, such as time of day (e.g., day vs. night) 

and weather (dry vs. wet), had different effects on car-following behavior. It should be 

noted that the performance of infrared sensor was drastically reduced when data 

collection was conducted under bad weather conditions like rain because water drops 

stuck on the window of infrared sensor.  Therefore, some of data points in time series 

were missing or had unreasonable values.  Moreover, night time data collection worked 

poorly because the headlights of the following vehicle interfered with the infrared sensor.  

The results of the data analysis demonstrated that there were statistically clear differences 

in following distances between day and night for the higher speed ranges, particularly 

over 40 km/h, which is expected.  It was also shown that drivers under rainy condition 

tend to have larger following distances (or longer time gaps) than under dry condition, 

because drivers take more caution while driving under adverse weather conditions than 

under normal conditions.  

 

6.2 Future Research 

This research has sought a greater understanding of driving behavior while 

following a lead vehicle in car-following situations.  This study has also examined the 

effects of various causal factors on car-following behavior.  We hope that the findings of 

this dissertation will provide clues to guide the construction of more realistic car-

following models.  This should help improve the realism of microscopic traffic 
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simulators, for which car-following logic is the core, with new high-fidelity data, and it 

might also be used to develop more appropriate ACC algorithms and control strategies.   

Further research needs to be followed to examine whether the research findings 

from this dissertation are transferable to car-following behavior in other areas.  More data 

collection and analysis with different locations or roadways is required to address the 

above issue.  It is possible to evaluate and validate numerous previous car-following 

models, making use of the new high-fidelity field data, since most previous models were 

developed with the necessarily crude experimental methods of the time to calibrate the 

small number of parameters involved in the model.  It is necessary to investigate special 

cases of car-following, which were not dealt with in this dissertation, such as the process 

of cut-in of a new lead vehicle between a stable following pair, and its effects on the 

following driver.  An adequate description of this process may have instant application in 

the design of devices such as ACC or control algorithms.  

Finally, one of the important contributions of this dissertation is the development 

of a method to collect high-resolution driving behavior data using contemporary 

technology. We believe that this approach is realistic, accurate, and relatively inexpensive 

and may be the only method that can produce a sufficient quality and quantity of data on 

real driving behavior.  The instrumented test vehicle designed in this dissertation should 

be deployed in a wide range of experiments for a better understanding of the dynamic 

characteristics of traffic flow, including lane changing and stop/go traffic.  



 

  140

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Appendix A. 

Summary of car-following data sets 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

  141

Summary of car-following data set (12/09/04) 

Human characteristics Traffic and road characteristics Environmental characteristics 

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane #

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time 
of day

Day of 
week 

Note 

1 13:33:35 – 
13:34:45 71 N/A N/A N/A Truck 2 4 Low I-495 Dry Day Thur. ① 

2 13:38:07 – 
13:39:11 65 N/A N/A N/A Auto 3 4 Heavy I-495 Wet 

(Rain) Day Thur. ⑤ 

3 13:42:12 – 
13:42:50 39 N/A N/A N/A Truck 2 4 Heavy I-495 Wet 

(Rain) Day Thur. ② 

4 13:44:39 – 
13:45:52 74 N/A N/A N/A Bus 1 4 Heavy I-495 Wet 

(Rain) Day Thur. ② 

 
Note: Causes of terminating car-following situation  

① Case 1: lane changing of following vehicle 

② Case 2: cut-in of new lead vehicle 

③ Case 3: too far following distance  

④ Case 4: lane changing (or exit) of lead vehicle 

⑤ Case 5: infrared sensor capability degradation caused by sunlight, headlight at night and adverse weather such as rain  

⑥ Case 6: dropout of infrared sensor in curve sections 

⑦ Case 7: complete stop of following vehicle under heavy congested condition 
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Summary of car-following data set (12/13/04) 

Human characteristics Traffic and road characteristics Environmental characteristics 

No. Time 
Period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane #

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time 
of day

Day of 
week 

Note 

1 15:30:24 – 
15:33:12 169 N/A N/A N/A Auto 1 2 Low I-295 Dry Day Mon. ① 

2 15:33:52 – 
15:34:41 50 N/A N/A N/A Auto 1 2 Low I-295 Dry Day Mon. ③ 

3 15:34:59 – 
15:36:24 86 N/A N/A N/A Auto 1 2 Low I-295 Dry Day Mon. ③ 

4 15:37:00 – 
15:40:08 189 N/A N/A N/A Van 2 2 Low I-295 Dry Day Mon. ③ 

5 15:40:37 – 
15:43:56 200 N/A N/A N/A Van 2 2 Low I-295 Dry Day Mon. ③ 

6 15:46:13 – 
15:49:24 192 N/A N/A N/A Truck 1 2 Low I-295 Dry Day Mon. ⑤ 

7 16:04:52 – 
16:08:03 192 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Mon. ③ 

8 16:09:02 – 
16:15:38 398 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Mon. ① 

9 16:16:02 – 
16:17:30 89 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Mon. ③ 
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Summary of car-following data set (12/14/04) 

Human characteristics Traffic and road characteristics Environmental characteristics 

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane #

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time 
of day

Day of 
week 

Note 

1 15:04:32 – 
15:05:15 44 N/A N/A N/A Van 2 2 Low I-295 Dry Day Tue. ⑤ 

2 15:09:32 – 
15:10:40 69 N/A N/A N/A Auto 1 2 Low I-295 Dry Day Tue. ③ 

3 15:25:56 – 
15:26:56 61 N/A N/A N/A Van 1 2 Low I-295 Dry Day Tue. ③ 

4 15:27:34 – 
15:29:55 142 N/A N/A N/A Van 1 2 Low I-295 Dry Day Tue. ③ 

5 15:46:43 – 
15:47:55 73 N/A N/A N/A Auto 1 4 Heavy I-495 Dry Day Tue. ① 

6 15:48:16 – 
15:49:50 95 N/A N/A N/A Auto 1 4 Heavy  

Low I-495 Dry Day Tue. ④ 

7 15:50:02 – 
15:50:50 49 N/A N/A N/A Truck 2 4 Heavy 

Low I-495 Dry Day Tue. ① 

8 15:51:07 – 
15:54:02 176 N/A N/A N/A Auto 2 4 Heavy I-495 Dry Day Tue. ① 

9 15:54:32 – 
15:55:30 59 N/A N/A N/A Auto 2 4 Low I-495 Dry Day Tue. ① 

10 15:56:44 – 
15:57:33 50 N/A N/A N/A Van 3 4 Heavy I-495 Dry Day Tue. ① 
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Summary of car-following data set (12/15/04) 

Human characteristics Traffic and road characteristics Environmental characteristics 

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane #

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time 
of day

Day of 
week 

Note 

1 15:06:48 – 
15:09:52 185 N/A N/A N/A Van 2 4 Low I-495 Dry Day Wed. ⑥ 

2 5:12:28 – 
15:13:31 64 N/A N/A N/A Auto 1 4 Heavy I-495 Dry Day Wed. ⑦ 

3 15:14:10 – 
15:15:24 75 N/A N/A N/A Auto 1 4 Heavy I-495 Dry Day Wed. ⑤ 

4 15:19:13 – 
15:20:18 66 N/A N/A N/A Auto 2 4 Low I-495 Dry Day Wed. ① 

5 15:25:52 – 
15:26:42 51 N/A N/A N/A Auto 2 4 Low I-495 Dry Day Wed. ② 

6 15:26:47 – 
15:27:12 26 N/A N/A N/A Bus 2 4 Low I-495 Dry Day Wed. ④ 

7 15:31:02 – 
15:31:33 32 N/A N/A N/A Auto 1 2 Low I-295 Dry Day Wed. ① 

8 15:36:06 – 
15:37:45 100 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Wed. ① 

9 15:42:22 – 
15:45:15 174 N/A N/A N/A Truck 2 2 Heavy I-295 Dry Day Wed. ① 

10 15:45:25 – 
15:46:58 94 N/A 1 N/A Auto 2 2 Heavy I-295 Dry Day Wed. ④ 

11 15:51:28 – 
15:52:53 86 N/A N/A N/A Auto 1 4 Low I-495 Dry Day Wed. ① 
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Summary of car-following data set (12/16/04) 

Human characteristics Traffic and road characteristics Environmental characteristics 

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane #

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time 
of day

Day of 
week 

Note 

1 13:41:55 – 
13:42:39 45 N/A 1 N/A Auto 1 4 Low I-495 Dry Day Thur. ⑤ 

2 13:44:22 – 
13:44:58 37 N/A 1 N/A Auto 1 4 Low I-495 Dry Day Thur. ② 

3 13:59:37 – 
14:03:40 244 N/A 1 N/A Truck 3 4 Low I-495 Dry Day Thur. ① 

4 14:04:12 – 
14:07:00 169 N/A N/A N/A Auto 1 4 Low I-495 Dry Day Thur. ① 

5 14:10:22 – 
14:11:05 44 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Thur. ① 

6 14:11:22 – 
14:12:27 66 N/A N/A N/A Van 2 2 Low I-295 Dry Day Thur. ① 

7 14:15:57 – 
14:17:20 84 N/A 1 N/A Van  2 3 Low I-295 Dry Day Thur. ① 

8 14:22:01 – 
14:23:38 98 N/A 2 N/A Auto 2 2 Low I-295 Dry Day Thur. ① 

9 14:24:02 – 
14:24:59 58 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Thur. ⑥ 

10 14:41:42 – 
14:43:37 116 N/A 2 N/A Auto 3 4 Heavy I-495 Dry Day Thur. ⑤ 

11 14:45:27 – 
14:46:37 71 N/A N/A N/A Van 3 3 Heavy I-495 Dry Day Thur. ⑤ 

12 14:48:17 – 
14:49:00 44 N/A N/A N/A Auto 3 4 Low I-495 Dry Day Thur. ① 

13 14:49:52 – 
14:52:10 139 N/A N/A N/A Auto 3 4 Low I-495 Dry Day Thur. ① 

14 14:53:01 – 
14:53:37 37 N/A N/A N/A Auto 2 4 Low I-495 Dry Day Thur. ① 
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Summary of car-following data set (12/17/04) 

Human characteristics Traffic and road characteristics Environmental characteristics 

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane #

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time 
of day

Day of 
week 

Note 

1 9:51:25 – 
9:53:47 143 N/A N/A N/A Auto 1  2 Low I-295 Dry Day Fri. ④ 

2 9:53:53 – 
9:58:33 281 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Fri. ① 

3 9:58:36 – 
9:59:31 56 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Fri. ① 

4 10:00:23 – 
10:00:59 37 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Fri. ④ 

5 10:01:34 – 
10:02:47 74 N/A N/A N/A Auto 1 2 Low I-295 Dry Day Fri. ① 

6 10:06:34 – 
10:08:40 127 N/A N/A N/A Van 1 2 Low I-295 Dry Day Fri. ② 

7 10:08:43 – 
10:09:40 58 N/A N/A N/A Van 1 2 Low I-295 Dry Day Fri. ① 

8 10:09:51 – 
10:10:34 44 N/A N/A N/A Auto 1 3 Low I-295 Dry Day Fri. ① 

9 10:19:58 – 
10:20:47 50 N/A N/A N/A Auto 3 3 Low I-295 Dry Day Fri. ① 

10 10:21:13 – 
10:22:00 48 N/A N/A N/A Auto 3 3 Low I-295 Dry Day Fri. ① 

11 10:26:22 – 
10:27:43 82 N/A N/A N/A Auto 1 2 Low I-295 Dry Day Fri. ④ 

12 10:27:48 – 
10:28:28 41 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Fri. ⑤ 



 

  147

Human characteristics Traffic and road characteristics Environmental characteristics 

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane #

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time 
of day

Day of 
week 

Note 

13 10:51:49 – 
10:53:17 89 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Fri. ④ 

14 10:54:24 – 
10:58:30 247 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Fri. ① 

15 10:59:24 – 
11:00:28 65 N/A 1 N/A Auto 2 2 Low I-295 Dry Day Fri. ④ 

16 11:02:07 – 
11:03:02 56 N/A N/A N/A Auto 2 3 Low I-295 Dry Day Fri. ① 

17 11:06:22 – 
11:07:30 69 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Fri. ④ 

18 11:08:23 – 
11:12:02 220 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Fri. ① 

19 11:12:52 – 
11:14:47 116 N/A 1 N/A Auto 2 2 Low I-295 Dry Day Fri. ④ 

20 11:16:57 – 
11:17:56 60 N/A N/A N/A Truck 2 4 Low I-495 Dry Day Fri. ④ 

21 13:27:47 – 
13:28:50 64 N/A N/A N/A Van 2 4 Low I-495 Dry Day Fri. ① 

22 13:29:57 – 
13:31:45 109 N/A N/A N/A Auto 3 4 Low I-495 Dry Day Fri. ⑥ 

23 13:40:52 – 
13:41:35 44 N/A 1 N/A Auto 3 4 Low I-495 Dry Day Fri. ① 

24 13:45:17 – 
13:46:00 44 N/A N/A N/A Auto 3 4 Low I-495 Dry Day Fri. ① 

25 13:46:47 – 
13:48:10 84 N/A 1 N/A Auto 3 4 Low I-495 Dry Day Fri. ④ 
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Human characteristics Traffic and road characteristics Environmental characteristics 

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane #

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time 
of day

Day  
of 

week 

Note 

26 13:49:02 – 
13:50:32 91 N/A N/A N/A Auto 2 4 Low I-495 Dry Day Fri. ④ 

27 13:53:12 – 
13:54:02 51 N/A 1 N/A Auto 3 4 Low I-495 Dry Day Fri. ① 

28 13:57:20 – 
13:58:18 59 N/A N/A N/A Van 3 4 Low I-495 Dry Day Fri. ① 

29 14:01:33 – 
14:02:15 43 N/A 1 N/A Auto 2 4 Low I-495 Dry Day Fri. ① 

30 14:09:37 – 
14:10:16 40 N/A N/A N/A Truck 2 4 Low I-495 Dry Day Fri. ① 

31 14:10:37 – 
14:11:23 47 N/A N/A N/A Van 2 4 Low I-495 Dry Day Fri. ④ 

32 14:17:47 – 
14:20:27 161 N/A 1 N/A Auto 3 4 Heavy I-495 Dry Day Fri. ⑦ 

33 14:20:45 – 
14:22:10 86 N/A 1 N/A Auto 3 4 Heavy I-495 Dry Day Fri. ⑦ 

34 14:24:02 – 
14:25:28 87 N/A N/A N/A Auto 3 3 Heavy I-495 Dry Day Fri. ② 

35 14:25:33 – 
14:28:03 151 N/A 1 N/A Auto 3 3 Heavy I-495 Dry Day Fri. ① 

36 14:30:02 – 
14:31:02 61 N/A 1 N/A Auto 3 4 Low I-495 Dry Day Fri. ④ 
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Summary of car-following data set (3/15/05) 

Human characteristics Traffic and road characteristics Environmental characteristics

No. Time 
period 

Duration 
(sec.) Gender Occup-

ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane # 

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time of 
day 

Day 
of 

week

Note 

1 17:06:10 – 
17:06:51 42 N/A 1 N/A Auto 3 4 Low I-495 Dry Day Tue. ⑥ 

2 17:07:18 – 
17:09:08 111 Female 1 Normal Auto 3 4 Heavy I-495 Dry Day Tue. ⑦ 

3 17:10:30 – 
17:16:29 360 N/A 1 N/A Auto 3 4 Heavy I-495 Dry Day Tue. ⑥ 

4 17:16:44 – 
17:18:08 85 N/A 1 N/A Auto 3 4 Heavy I-495 Dry Day Tue. ⑦ 

5 17:37:42 – 
17:39:40 119 N/A 1 N/A Auto 3 4 Heavy I-495 Dry Day Tue. ② 

6 17:39:47 – 
17:41:20 94 N/A N/A N/A Auto 3 4 Heavy I-495 Dry Day Tue. ① 

7 17:41:27 – 
17:42:30 64 N/A N/A N/A Auto 3 4 Heavy I-495 Dry Day Tue. ① 

8 17:42:37 – 
17:48:55 379 N/A 1 N/A Auto 3 4 Heavy I-495 Dry Day Tue. ① 

9 17:49:02 – 
17:51:59 178 N/A 1 N/A Auto 3 4 Heavy I-495 Dry Day Tue. ⑦ 

10 17:52:15 – 
17:54:16 122 N/A 1 N/A Auto 3 4 Heavy I-495 Dry Day Tue. ⑦ 

11 17:54:29 – 
17:57:17 169 N/A 1 N/A Auto 3 4 Heavy I-495 Dry Day Tue. ⑦ 

12 17:57:42 – 
18:00:51 190 N/A N/A N/A Auto 4 4 Heavy I-495 Dry Day Tue. ⑥ 

13 18:01:29 – 
18:03:20 112 N/A N/A N/A Auto 4 4 Heavy I-495 Dry Day Tue. ① 

14 18:04:52 – 
18:07:07 136 N/A 1 N/A Auto 4 4 Heavy I-495 Dry Day Tue. ④ 

15 18:07:15 – 
18:10:20 186 N/A N/A N/A Auto 3 4 Heavy I-495 Dry Day Tue. ④ 
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Human characteristics Traffic and road characteristics Environmental characteristics

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane # 

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time of 
day 

Day 
of 

week

Note 

16 18:14:37 – 
18:16:00 84 N/A N/A N/A Auto 1 4 Heavy I-495 Dry Day Tue. ⑤ 

17 18:17:57 – 
18:19:25 89 N/A N/A N/A Auto 1 4 Heavy I-495 Dry Day Tue. ④ 

18 19:07:12 – 
19:08:12 61 N/A N/A N/A Auto 1 4 Heavy I-495 Dry Night Tue. ⑤ 

19 19:10:17 – 
19:10:50 34 N/A N/A N/A Auto 2 4 Low I-495 Dry Night Tue. ① 

20 19:13:44 – 
19:14:46 63 N/A N/A N/A Auto 1 4 Heavy I-495 Dry Night Tue. ⑤ 

21 19:18:07 – 
19:18:40 34 N/A N/A N/A Auto 1 4 Low I-495 Dry Night Tue. ① 

22 19:21:39 – 
19:22:02 24 N/A N/A N/A Auto 2 4 Low I-495 Dry Night Tue. ② 

23 19:28:32 – 
19:29:12 41 N/A N/A N/A Auto 2 4 Low I-495 Dry Night Tue. ④ 

24 19:32:07 – 
19:36:17 251 N/A 1 N/A Auto 2 2 Low I-295 Dry Night Tue. ① 

25 19:37:07 – 
19:42:15 309 N/A N/A N/A Auto 2 2 Low I-295 Dry Night Tue. ④ 

26 19:42:23 – 
19:43:24 62 N/A N/A N/A Auto 1 2 Low I-295 Dry Night Tue. ⑥ 

27 19:43:45 – 
19:45:08 84 N/A N/A N/A Auto 1 2 Low I-295 Dry Night Tue. ① 

28 19:51:48 – 
19:55:34 227 N/A N/A N/A Auto 1 2 Low I-295 Dry Night Tue. ① 

29 20:05:51 – 
20:07:10 80 N/A N/A N/A Auto 2 4 Low I-495 Dry Night Tue. ⑤ 

30 20:07:22 – 
20:08:50 89 N/A N/A N/A Auto 2 4 Low I-495 Dry Night Tue. ⑥ 
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Human characteristics Traffic and road characteristics Environmental characteristics

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane # 

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time of 
day 

Day 
of 

week

Note 

31 20:10:39 – 
20:12:24 106 N/A N/A N/A Truck 2 4 Low I-495 Dry Night Tue. ① 

32 20:17:47 – 
20:18:32 46 N/A N/A N/A Auto 2 4 Low I-495 Dry Night Tue. ⑥ 

33 20:18:46 – 
20:21:47 182 N/A 1 N/A Auto 2 4 Low I-495 Dry Night Tue. ④ 
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Summary of car-following data set (3/16/05) 

Human characteristics Traffic and road characteristics Environmental characteristics

No. Time 
period 

Duration 
(sec.) Gender Occup-

ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane # 

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time of 
day 

Day 
of 

week

Note 

1 7:21:09 – 
7:22:08 60 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Wed. ④ 

2 7:22:57 – 
7:25:20 144 N/A N/A N/A Auto 1 2 Low I-295 Dry Day Wed. ④ 

3 7:25:30 – 
7:28:40 191 N/A N/A N/A Bus 2 2 Low I-295 Dry Day Wed. ① 

4 7:28:57 – 
7:30:47 111 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Wed. ① 

5 7:30:57 – 
7:33:14 138 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Wed. ④ 

6 7:37:38 – 
7:38:11 34 N/A N/A N/A Auto 1 2 Low I-295 Dry Day Wed. ④ 

7 7:40:47 – 
7:48:58 492 N/A 1 N/A Auto 2 2 Heavy I-295 Dry Day Wed. ② 

8 7:49:04 – 
7:52:23 200 N/A N/A N/A Auto 2 2 Heavy I-295 Dry Day Wed. ① 

9 7:55:02 – 
7:56:15 74 N/A 1 N/A Auto 1 4 Low I-495 Dry Day Wed. ① 

10 7:58:22 – 
8:00:26 125 N/A N/A N/A Auto 3 4 Heavy I-495 Dry Day Wed. ⑦ 

11 8:01:47 – 
8:02:56 70 N/A 1 N/A Auto 3 4 Heavy I-495 Dry Day Wed. ⑦ 

12 8:03:02 – 
8:05:40 159 N/A 1 N/A Auto 3 4 Heavy I-495 Dry Day Wed. ⑦ 

13 8:06:31 – 
8:07:51 81 N/A 1 N/A Auto 3 4 Heavy I-495 Dry Day Wed. ⑦ 

14 8:12:52 – 
8:13:22 31 N/A 1 N/A Auto 2 4 Heavy I-495 Dry Day Wed. ⑤ 

15 8:14:32 – 
8:15:35 64 N/A 1 N/A Auto 2 4 Heavy I-495 Dry Day Wed. ⑦ 
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Human characteristics Traffic and road characteristics Environmental characteristics

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane # 

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time of 
day 

Day 
of 

week

Note 

16 8:16:02 – 
8:19:25 204 N/A 1 N/A Auto 2 4 Heavy I-495 Dry Day Wed. ① 

17 8:19:47 – 
8:20:46 60 N/A N/A N/A Van 2 4 Heavy I-495 Dry Day Wed. ② 

18 8:24:00 – 
8:25:35 96 N/A N/A N/A Auto 2 4 Heavy I-495 Dry Day Wed. ① 

19 8:25:52 – 
8:26:53 62 N/A N/A N/A Auto 2 4 Heavy I-495 Dry Day Wed. ④ 

20 8:41:28 – 
8:42:13 46 N/A N/A N/A Auto 2 4 Low I-495 Dry Day Wed. ② 

21 8:45:52 – 
8:46:55 64 N/A N/A N/A Auto 1 4 Low I-495 Dry Day Wed. ② 

22 16:22:30 – 
16:23:29 60 N/A N/A N/A Auto 1 2 Heavy I-295 Dry Day Wed. ⑦ 

23 16:23:35 – 
16:24:45 72 N/A N/A N/A Auto 1 2 Heavy I-295 Dry Day Wed. ② 

24 16:24:52 – 
16:25:53 62 N/A 1 N/A Auto 1 2 Heavy I-295 Dry Day Wed. ② 

25 16:26:01 – 
16:27:36 96 N/A N/A N/A Auto 1 2 Heavy I-295 Dry Day Wed. ⑦ 

26 16:27:51 – 
16:32:23 263 N/A N/A N/A Auto 1 2 Heavy I-295 Dry Day Wed. ⑦ 

27 16:32:25 – 
16:35:35 190 N/A N/A N/A Auto 1 2 Heavy I-295 Dry Day Wed. ② 

28 16:36:53 – 
16:37:39 47 N/A N/A N/A Auto 1 2 Heavy I-295 Dry Day Wed. ④ 

29 16:37:47 – 
16:40:39 173 N/A N/A N/A Auto 2 2 Heavy I-295 Dry Day Wed. ⑤ 

30 16:41:05 – 
16:41:46 42 N/A N/A N/A Auto 2 2 Low I-295 Dry Day Wed. ① 
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Human characteristics Traffic and road characteristics Environmental characteristics

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane # 

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time of 
day 

Day 
of 

week

Note 

31 16:43:34 – 
16:49:40 367 N/A N/A N/A Auto 1 2 Heavy I-295 Dry Day Wed. ④ 

32 16:51:46 – 
16:53:30 105 N/A N/A N/A Auto 1 2 Low I-295 Dry Day Wed. ① 

33 16:53:47 – 
16:56:43 177 N/A N/A N/A Auto 1 2 Low I-295 Dry Day Wed. ② 

34 17:04:04 – 
17:05:23 80 N/A N/A N/A Auto 1 2 Low I-295 Dry Day Wed. ⑤ 

35 17:08:17 – 
17:08:56 40 N/A 1 N/A Auto 2 4 Heavy I-495 Dry Day Wed. ② 

36 17:09:17 – 
17:09:43 27 N/A 1 N/A Auto 3 4 Heavy I-495 Dry Day Wed. ② 

37 17:09:47 – 
17:10:40 54 N/A 1 N/A Auto 3 4 Heavy I-495 Dry Day Wed. ① 

38 17:10:57 – 
17:11:42 46 N/A 1 N/A Auto 3 4 Low I-495 Dry Day Wed. ⑥ 

39 17:12:26 – 
17:13:38 73 N/A 1 N/A Auto 3 4 Low I-495 Dry Day Wed. ④ 

40 17:13:45 – 
17:14:15 31 N/A N/A N/A Auto 4 4 Low I-495 Dry Day Wed. ① 

41 17:15:02 – 
17:17:30 149 N/A 1 N/A Auto 4 4 Low I-495 Dry Day Wed. ④ 

42 17:17:56 – 
17:19:31 96 N/A N/A N/A Truck 3 4 Heavy I-495 Dry Day Wed. ⑦ 

43 17:20:12 – 
17:21:58 107 N/A 1 N/A Auto 3 4 Heavy I-495 Dry Day Wed. ⑥ 

44 17:22:11 – 
17:23:03 53 N/A 1 N/A Auto 3 4 Heavy I-495 Dry Day Wed. ④ 

45 17:26:20 – 
17:27:17 58 N/A N/A N/A Auto 1 4 Heavy I-495 Dry Day Wed. ② 
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Human characteristics Traffic and road characteristics Environmental characteristics

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane # 

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time of 
day 

Day 
of 

week

Note 

46 17:27:32 – 
17:28:52 81 N/A 1 N/A Auto 1 4 Heavy I-495 Dry Day Wed. ⑥ 

47 17:29:59 – 
17:30:40 42 N/A 1 N/A Auto 1 4 Low I-495 Dry Day Wed. ② 

48 17:31:07 – 
17:33:05 119 N/A 1 N/A Auto 1 4 Heavy I-495 Dry Day Wed. ① 

49 17:33:27 – 
17:34:53 27 N/A 1 N/A Auto 2 4 Heavy I-495 Dry Day Wed. ⑤ 

50 17:35:41 – 
17:36:47 67 N/A N/A N/A Auto 3 4 Heavy I-495 Dry Day Wed. ⑤ 

51 17:38:12 – 
17:39:01 50 N/A 1 N/A Auto 4 4 Low I-495 Dry Day Wed. ⑤ 

52 17:39:42 – 
17:43:12 211 N/A 1 N/A Auto 2 4 Heavy I-495 Dry Day Wed. ④ 

53 17:43:19 – 
17:45:28 130 N/A N/A N/A Auto 3 4 Heavy I-495 Dry Day Wed. ① 

54 17:47:24 – 
17:48:19 56 N/A N/A N/A Auto 1 4 Heavy I-495 Dry Day Wed. ② 

55 17:55:28 – 
17:56:14 47 N/A N/A N/A Auto 2 4 Low I-495 Dry Day Wed. ② 

56 17:59:37 – 
18:01:02 86 N/A 1 N/A Auto 1 4 Heavy I-495 Dry Day Wed. ② 

57 18:01:12 – 
18:01:47 36 N/A 1 N/A Van 1 4 Low I-495 Dry Day Wed. ④ 
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Summary of car-following data set (3/17/05) 

Human characteristics Traffic and road characteristics Environmental characteristics

No. Time 
period 

Duration 
(sec.) Gender Occup-

ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane # 

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time of 
day 

Day 
of 

week

Note 

1 16:18:52 – 
16:20:39 108 N/A N/A N/A Auto 1 4 Heavy I-495 Dry Day Thur. ② 

2 16:22:12 – 
16:23:31 80 Male 1 Normal Auto 1 4 Heavy I-495 Dry Day Thur. ① 

3 16:24:15 – 
16:25:55 101 Male 1 Telepho-

ning Auto 2 4 Heavy I-495 Dry Day Thur. ② 

4 16:26:55 – 
16:28:15 81 Male 1 Normal Truck 3 4 Heavy I-495 Dry Day Thur. ② 

5 16:29:40 – 
16:30:54 75 Male 1 Telepho-

ning Auto 4 4 Low I-495 Dry Day Thur. ④ 

6 16:32:34 – 
16:33:37 64 Male 1 Normal Truck 1 4 Heavy I-495 Dry Day Thur. ② 

7 16:34:38 – 
16:36:40 123 Male 1 Normal Auto 2 4 Heavy I-495 Dry Day Thur. ① 

8 16:37:39 – 
16:38:33 55 Male 1 Telepho-

ning Auto 4 4 Low I-495 Dry Day Thur. ④ 

9 16:38:39 – 
16:39:55 77 Male 1 Normal Auto 3 4 Low I-495 Dry Day Thur. ④ 

10 16:42:27 – 
16:43:18 52 Female 1 Normal Auto 2 2 Heavy I-295 Dry Day Thur. ⑦ 

11 16:43:31 – 
16:47:07 217 Female 1 Normal Auto 2 2 Heavy I-295 Dry Day Thur. ⑦ 

12 16:47:59 – 
16:48:58 60 Female 1 Telepho-

ning Van 1 2 Heavy I-295 Dry Day Thur. ⑦ 

13 16:49:06 – 
16:50:23 78 Female 1 Telepho-

ning Van 1 2 Heavy I-295 Dry Day Thur. ④ 

14 16:50:29 – 
16:52:37 129 Female 1 Normal Van 2 2 Heavy I-295 Dry Day Thur. ② 

15 16:52:42 – 
16:53:38 57 Female 2 Talking Auto 2 2 Heavy I-295 Dry Day Thur. ① 
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Human characteristics Traffic and road characteristics Environmental characteristics

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane # 

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time of 
day 

Day 
of 

week

Note 

16 16:54:14 – 
16:54:53 40 Female 1 Normal Auto 2 2 Low I-295 Dry Day Thur. ① 

17 16:59:00 – 
17:03:00 241 Male 1 Normal Van 2 2 Heavy I-295 Dry Day Thur. ① 

18 17:03:27 – 
17:04:20 54 Male 1 Normal Auto 1 2 Low I-295 Dry Day Thur. ④ 

19 17:04:29 – 
17:05:07 39 Male 1 Normal Auto 2 2 Low I-295 Dry Day Thur. ① 

20 17:09:12 – 
17:10:34 83 Male 1 Normal Auto 2 2 Low I-295 Dry Day Thur. ② 

21 17:10:39 – 
17:12:27 109 Male 1 Normal Auto 1 2 Low I-295 Dry Day Thur. ① 

22 17:13:05 – 
17:16:14 190 Male 1 Normal Auto 2 2 Low I-295 Dry Day Thur. ① 

23 17:16:22 – 
17:16:54 33 Male 1 Normal Auto 2 2 Low I-295 Dry Day Thur. ② 

24 17:17:59 – 
17:20:37 159 Male 3 Talking Van 2 2 Low I-295 Dry Day Thur. ④ 

25 17:20:42 – 
17:23:49 188 Female 1 Normal Auto 1 2 Heavy I-295 Dry Day Thur. ③ 

26 17:25:00 – 
17:26:10 71 Male 1 Normal Truck 2 4 Heavy I-495 Dry Day Thur. ② 

27 17:26:57 – 
17:29:05 129 Male 1 Normal Auto 2 4 Low I-495 Dry Day Thur. ④ 

28 17:32:18 – 
17:32:50 33 Male 1 Normal Auto 3 4 Low I-495 Dry Day Thur. ① 

29 17:35:12 – 
17:36:08 57 Male 2 Talking Auto 1 4 Low I-495 Dry Day Thur. ⑥ 

30 17:41:55 – 
17:43:53 119 Male 1 Normal Auto 2 4 Low I-495 Dry Day Thur. ④ 
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Human characteristics Traffic and road characteristics Environmental characteristics

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane # 

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time of 
day 

Day 
of 

week

Note 

31 17:44:05 – 
17:45:07 63 Male 1 Normal Truck 1 4 Heavy I-495 Dry Day Thur. ③ 

32 17:47:09 – 
17:47:49 41 Male 1 Normal Auto 1 4 Heavy I-495 Dry Day Thur. ③ 

33 17:50:26 – 
17:50:58 33 Female 1 Normal Auto 3 4 Heavy I-495 Dry Day Thur. ① 

34 17:53:02 – 
17:55:53 172 Female 1 Normal Auto 1 4 Heavy I-495 Dry Day Thur. ⑦ 

35 17:58:32 – 
17:59:35 64 Female 1 Normal Auto 2 4 Heavy I-495 Dry Day Thur. ③ 

36 19:00:08 – 
19:00:43 36 N/A N/A N/A Auto 1 4 Low I-495 Dry Night Thur. ① 

37 19:03:17 – 
19:04:26 70 N/A 1 N/A Auto 2 4 Low I-495 Dry Night Thur. ⑤ 

38 19:08:46 – 
19:09:14 29 N/A N/A N/A Auto 1 4 Heavy I-495 Dry Night Thur. ⑤ 

39 19:11:32 – 
19:12:45 74 N/A 2 N/A Auto 2 4 Low I-495 Dry Night Thur. ⑥ 

40 19:20:17 – 
19:21:05 48 N/A N/A N/A Bus 3 4 Low I-495 Dry Night Thur. ② 

41 19:21:09 – 
19:23:30 142 N/A N/A N/A Truck 2 4 Heavy I-495 Dry Night Thur. ① 

42 19:24:45 – 
19:26:22 98 N/A N/A N/A Auto 3 4 Heavy I-495 Dry Night Thur. ⑤ 

43 19:27:16 – 
19:29:01 106 N/A N/A N/A Auto 2 4 Low I-495 Dry Night Thur. ④ 

44 19:37:37 – 
19:39:41 125 N/A N/A N/A Auto 3 4 Low I-495 Dry Night Thur. ⑤ 

45 19:43:29 – 
19:45:43 135 N/A N/A N/A Auto 2 2 Low I-295 Dry Night Thur. ① 
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Human characteristics Traffic and road characteristics Environmental characteristics

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane # 

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time of 
day 

Day 
of 

week

Note 

46 19:45:52 – 
19:47:33 102 N/A 1 N/A Auto 1 2 Low I-295 Dry Night Thur. ② 

47 19:49:44 – 
19:50:57 74 N/A N/A N/A Auto 2 2 Low I-295 Dry Night Thur. ④ 

48 19:51:52 – 
19:52:59 68 N/A N/A N/A Auto 2 2 Low I-295 Dry Night Thur. ④ 

49 19:55:20 – 
19:55:55 36 N/A N/A N/A Auto 2 2 Low I-295 Dry Night Thur. ① 

50 19:56:52 – 
19:58:15 84 N/A N/A N/A Auto 1 2 Low I-295 Dry Night Thur. ④ 

51 20:02:51 – 
20:05:38 167 N/A N/A N/A Auto 1 2 Low I-295 Dry Night Thur. ① 

52 20:06:16 – 
20:07:31 76 N/A N/A N/A Auto 1 2 Low I-295 Dry Night Thur. ⑤ 

53 20:07:42 – 
20:08:25 44 N/A N/A N/A Auto 1 2 Low I-295 Dry Night Thur. ① 

54 20:09:30 – 
20:10:47 78 N/A N/A N/A Auto 1 2 Low I-295 Dry Night Thur. ④ 

55 20:10:53 – 
20:12:31 99 N/A 1 N/A Auto 2 2 Low I-295 Dry Night Thur. ⑤ 

56 20:17:22 – 
20:18:35 74 N/A 1 N/A Auto 3 4 Low I-495 Dry Night Thur. ⑤ 

57 20:19:45 – 
20:20:53 69 N/A 1 N/A Auto 3 4 Low I-495 Dry Night Thur. ⑤ 
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Summary of car-following data set (3/18/05) 

Human characteristics Traffic and road characteristics Environmental characteristics

No. Time 
Period 

Duration 
(sec.) Gender Occup-

ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane # 

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time of 
day 

Day 
of 

week

Note 

1 7:51:44 – 
7:53:15 92 Male 2 Talking Auto 1 4 Low I-495 Dry Day Fri. ① 

2 7:55:14 – 
7:56:22 69 Male 1 Normal Auto 3 4 Low I-495 Dry Day Fri. ④ 

3 7:56:29 – 
7:56:55 27 Male 1 Normal Truck 2 4 Low I-495 Dry Day Fri. ① 

4 7:57:54 – 
7:58:42 49 Male 1 Normal Truck 1 4 Low I-495 Dry Day Fri. ② 

5 8:01:04 – 
8:02:20 77 Female 1 Normal Auto 2 4 Heavy I-495 Dry Day Fri. ② 

6 8:02:42 – 
8:04:37 116 Female 2 Talking Auto 3 4 Low I-495 Dry Day Fri. ④ 

7 8:04:42 – 
8:05:33 52 Male 1 Normal Auto 2 4 Low I-495 Dry Day Fri. ① 

8 8:06:54 – 
8:07:27 34 Male 1 Normal Auto 1 2 Low I-295 Dry Day Fri. ⑥ 

9 8:08:24 – 
8:11:26 183 Male 1 Telepho-

ning Auto 2 2 Low I-295 Dry Day Fri. ④ 

10 8:11:32 – 
8:13:53 142 Male 1 Normal Auto 1 2 Low I-295 Dry Day Fri. ④ 

11 8:13:59 – 
8:14:47 49 Male 1 Taking 

Coffee Auto 2 2 Low I-295 Dry Day Fri. ② 

12 8:14:52 – 
8:18:20 209 Male 1 Smoking Auto 2 2 Low I-295 Dry Day Fri. ④ 

13 8:19:27 – 
8:20:15 49 Male 1 Normal Auto 1 2 Low I-295 Dry Day Fri. ④ 

14 8:24:17 – 
8:26:36 140 Female 1 Normal Auto 2 2 Low I-295 Dry Day Fri. ④ 

15 8:28:07 – 
8:29:47 101 Male 1 Normal Auto 1 2 Low I-295 Dry Day Fri. ④ 
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Human characteristics Traffic and road characteristics Environmental characteristics

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane # 

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time of 
day 

Day 
of 

week

Note 

16 8:29:53 – 
8:32:24 152 Male 1 Normal Auto 2 2 Low I-295 Dry Day Fri. ④ 

17 8:32:30 – 
8:34:07 98 Male 1 Normal Auto 1 2 Low I-295 Dry Day Fri. ⑥ 

18 8:37:04 – 
8:37:42 39 Male 1 Normal Auto 2 4 Low I-495 Dry Day Fri. ① 

19 8:39:29 – 
8:40:24 56 Male 1 Normal Auto 4 4 Low I-495 Dry Day Fri. ⑥ 

20 8:42:33 – 
8:43:24 52 Male 1 Normal Van 3 4 Heavy I-495 Dry Day Fri. ② 

21 8:44:35 – 
8:45:11 37 Male 1 Normal Truck 2 4 Heavy I-495 Dry Day Fri. ⑥ 

22 8:45:59 – 
8:47:08 70 Male 1 Normal Truck 2 4 Heavy I-495 Dry Day Fri. ③ 

23 8:48:10 – 
8:49:49 100 Female 1 Normal Auto 2 4 Heavy I-495 Dry Day Fri. ② 

24 8:50:25 – 
8:50:59 35 Male 1 Normal Auto 3 4 Heavy I-495 Dry Day Fri. ② 

25 8:59:04 – 
8:59:46 43 Male 1 Normal Auto 2 4 Low I-495 Dry Day Fri. ① 

26 9:03:22 – 
9:03:50 29 Male 1 Normal Truck 2 4 Low I-495 Dry Day Fri. ⑥ 

27 9:04:18 – 
9:05:07 50 Male 1 Normal Auto 2 4 Low I-495 Dry Day Fri. ① 

28 9:06:02 – 
9:07:22 81 Male 1 Normal Van 3 4 Heavy I-495 Dry Day Fri. ④ 

29 9:07:30 – 
9:08:40 71 Female 1 Make-up Auto 2 4 Heavy I-495 Dry Day Fri. ④ 

30 9:13:22 – 
9:14:07 46 N/A N/A N/A Truck 3 4 Low I-495 Dry Day Fri. ① 
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Human characteristics Traffic and road characteristics Environmental characteristics

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
Type 

Driving 
lane # 

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time of 
day 

Day 
of 

week

Note 

31 15:49:32 – 
15:50:05 34 Male 1 Normal Van 1 4 Heavy I-495 Dry Day Fri. ① 

32 15:50:42 – 
15:53:40 179 Male 1 Normal Auto 1 4 Heavy I-495 Dry Day Fri. ② 

33 15:54:27 – 
15:57:32 186 Male 2 Talking Auto 2 4 Heavy I-495 Dry Day Fri. ① 

34 15:58:50 – 
15:59:25 36 Female 1 Normal Auto 2 4 Low I-495 Dry Day Fri. ④ 

35 15:59:33 – 
16:00:34 62 Male 1 Normal Auto 3 4 Heavy I-495 Dry Day Fri. ① 

36 16:01:04 – 
16:04:30 207 Male 2 Talking Auto 3 4 Heavy I-495 Dry Day Fri. ④ 

37 16:04:54 – 
16:05:38 45 Female 1 Normal Auto 1 4 Low I-495 Dry Day Fri. ② 

38 16:07:27 – 
16:10:50 204 Female 1 Normal Van 2 4 Low I-495 Dry Day Fri. ④ 

39 16:10:57 – 
16:11:55 59 Male 1 Normal Truck 3 4 Low I-495 Dry Day Fri. ④ 

40 16:13:44 – 
16:14:30 47 N/A N/A N/A Auto 1 2 Heavy I-295 Dry Day Fri. ⑤ 

41 16:16:35 – 
16:18:17 103 Female 1 Telepho-

ning Auto 1 2 Heavy I-295 Dry Day Fri. ⑦ 

42 16:18:59 – 
16:19:30 32 Female 1 Telepho-

ning Auto 1 2 Heavy I-295 Dry Day Fri. ④ 

43 16:19:47 – 
16:20:26 40 Male 1 Normal Bus 2 2 Heavy I-295 Dry Day Fri. ⑤ 

44 16:20:35 – 
16:21:20 36 Male 1 Normal Bus 2 2 Heavy I-295 Dry Day Fri. ② 

45 16:21:25 – 
16:22:12 48 Male 1 Smoking Van 2 2 Heavy I-295 Dry Day Fri. ⑦ 
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Human characteristics Traffic and road characteristics Environmental characteristics

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane # 

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time of 
day 

Day 
of 

week

Note 

46 16:23:42 – 
16:27:10 209 Male 1 Normal Bus 2 2 Heavy I-295 Dry Day Fri. ② 

47 16:27:19 – 
16:27:52 34 Female 1 Normal Auto 2 2 Heavy I-295 Dry Day Fri. ① 

48 16:30:31 – 
16:31:14 44 Male 1 Normal Auto 2 2 Heavy I-295 Dry Day Fri. ② 

49 16:31:22 – 
16:37:40 380 Female 1 Normal Auto 2 2 Heavy I-295 Dry Day Fri. ④ 

50 16:38:42 – 
16:41:14 153 Male 1 Normal Auto 1 2 Heavy I-295 Dry Day Fri. ④ 

51 16:41:22 – 
16:43:30 129 Male 1 Normal Auto 2 2 Low I-295 Dry Day Fri. ④ 

52 16:43:42 – 
16:44:28 47 Male 1 Normal Auto 1 2 Heavy I-295 Dry Day Fri. ④ 

53 16:45:59 – 
16:50:58 300 Male 1 Normal Auto 2 2 Heavy I-295 Dry Day Fri. ④ 

54 16:51:07 – 
16:53:10 124 Male 1 Normal Auto 1 2 Heavy I-295 Dry Day Fri. ⑦ 

55 16:54:11 – 
16:54:53 43 Female 2 Talking Auto 2 2 Heavy I-295 Dry Day Fri. ② 

56 16:54:58 – 
16:58:08 191 Female 1 Normal Auto 2 2 Heavy I-295 Dry Day Fri. ① 

57 16:58:25 – 
17:00:12 108 Female 1 Telepho-

ning Auto 2 2 Low I-295 Dry Day Fri. ① 

58 17:00:37 – 
17:03:20 164 Male 1 Normal Auto 1 2 Heavy I-295 Dry Day Fri. ④ 

59 17:03:29 – 
17:05:45 137 Female 2 Talking Auto 2 2 Heavy I-295 Dry Day Fri. ④ 

60 17:08:26 – 
17:09:07 42 Male 1 Normal Bus 1 4 Heavy I-495 Dry Day Fri. ② 
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Human characteristics Traffic and road characteristics Environmental characteristics

No. Time 
period 

Duration 
(sec.) 

Gender Occup-
ancy 

In-
vehicle 
Activity

Vehicle
type 

Driving 
lane # 

# of 
lanes

Traffic  
condition

Road
type 

Weather 
condition

Time of 
day 

Day 
of 

week

Note 

61 17:10:22 – 
17:10:54 32 Male 1 Normal Bus 2 4 Heavy I-495 Dry Day Fri. ② 

62 17:11:07 – 
17:12:58 112 Male 1 Normal Auto 2 4 Heavy I-495 Dry Day Fri. ① 

63 17:13:07 – 
17:13:31 25 Female 1 Normal Auto 3 4 Low I-495 Dry Day Fri. ① 

64 17:17:01 – 
17:19:08 128 Male 1 Normal Auto 4 4 Low I-495 Dry Day Fri. ④ 

65 17:19:15 – 
17:19:43 29 Female 1 Normal Auto 3 4 Low I-495 Dry Day Fri. ① 

66 17:24:07 – 
17:25:02 56 Male 1 Normal Auto 1 4 Heavy I-495 Dry Day Fri. ④ 

67 17:28:00 – 
17:30:21 142 Female 1 Normal Auto 2 4 Heavy I-495 Dry Day Fri. ④ 

68 17:31:07 – 
17:34:20 194 Male 1 Normal Truck 3 4 Heavy I-495 Dry Day Fri. ② 

69 17:34:25 – 
17:35:30 66 Male 1 Normal Auto 3 4 Heavy I-495 Dry Day Fri. ④ 

70 17:35:38 – 
17:37:07 90 Male 1 Normal Van 2 4 Heavy I-495 Dry Day Fri. ④ 
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