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Abstract

Consider a discrete-time, linear time-invariant plant, two sensors and one controller. The plant’s state is observed

in the presence of noise by the sensors, which are connected to the controller via links that feature erasure. If a link

transmits successfully then a finite-dimensional vector of real numbers is conveyed from the sensor to the controller.

If an erasure event occurs, then any information conveyed over the link is lost. This paper addresses the problem

of designing the maps that specify the processing at the controller and at the sensors to minimize a quadratic cost

function. When the information is lost over the links either in an independent and identically distributed (i.i.d.) or

(time-homogeneous) Markovian fashion, we derive necessary and sufficient conditions for the existence of maps such

that the plant is stabilized in the bounded second moment sense. We also solve the optimal design problem in the

presence of delayed noiseless acknowledgment signals at the sensors from the controller for any arbitrary packet drop

pattern. We provide explicit recursive schemes to implement our solution. We also indicate how our approach can

be extended to situations when more than two sensors are available, when the sensors can cooperate and when the

acknowledgment link features erasure. The analysis also carries over to the case when each point-to-point erasure

link connecting the sensors and the controller is replaced by a network of erasure links.

I. INTRODUCTION

Recently, significant attention has been directed towards networked control systems in which components com-

municate over wireless links or communication networks that may also be used for transmitting other unrelated

data (see, e.g., [2], [6], [21] and the references therein). The estimation and control performance in such systems is

severely affected by the properties of the communication channels. Communication links introduce many potentially

detrimental phenomena, such as quantization error, random delays, data loss and data corruption to name a few,

that may lead to performance degradation or even stability loss.

In this work, we are specifically interested in the problem of estimation and control across communication links

that exhibit data loss. We consider a dynamical process evolving in time that is being observed by two sensors.

The sensors need to transmit the data over communication links to a remote node, which can either be an estimator

or a controller. However information transmitted over the links is erased stochastically. Preliminary work in this

area has largely concentrated on the case when only one sensor is present. Within the one-sensor framework, both
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stability [38], [46] and performance [26], [38] have been analyzed. Approaches to compensate for the data loss to

counteract the degradation in performance have also been proposed. As some representative examples, Hadjicostis

and Touri [17] proposed applying zero control if sensor data is lost, Nilsson [32] proposed using the previous

control input or time-updating the previous estimate in case of data loss, Ling and Lemmon [26] posed the problem

as a filter-design through a non-linear optimization for scalar observations and Smith and Seiler [40] proposed a

sub-optimal but computationally efficient estimator for packet drops occurring according to a Markov chain. Also

relevant are the works of Azimi-Sadjadi [3], Schenato et al. [37] and Imer et al. [22] who looked at controller

structures to minimize quadratic costs for systems in which both sensor-controller and controller-actuator channels

exhibit erasure. The related problem of optimal estimation across an erasure link was considered by Sinopoli et al.

in [39] for the case of one sensor and erasures occurring in an i.i.d. fashion, while Gupta et al. [14] considered

multiple sensors and more general erasure models.

Most of the above designs aimed at designing a packet-loss compensator. The compensator accepts those packets

that the link successfully transmits and propagates an estimate of the plant’s state when data sent over the link

is lost. If the estimator is used inside a control loop, the estimate is then used by the controller. We take a more

general approach to the control of networked control systems. It has often been recognized that typical network

/ communication data packets have much more space for carrying information than required inside a traditional

control loop. For instance, the minimum size of an ethernet data packet is 72 bytes, while a typical data point will

only consume 2 bytes [11]. Many other examples are given in Lian et al. [25]. Moreover, many of the devices used in

networked control systems have processing and memory capabilities on account of being equipped to communicate

across wireless channels or networks. Thus the question arises if we can use this possibility of pre-processing

information prior to transmission and transmission of extra data to combat the effects of packet delays, loss and

so on and improve the performance of a networked control system. In Gupta et al. [16] it was shown that pre-

processing (or encoding) information before transmission over the communication link can indeed yield significant

improvements in terms of stability and performance. Moreover, for a given performance level, it can also lead to

a reduced amount of communication. The benefits incurred become even more apparent when the communication

link is replaced by a network of communication links [15]. This effect can also be seen in the recent works on

receding horizon networked control, in which a few future control inputs are transmitted at every time step by the

controller and buffered at the actuator to be used in case subsequent control updates are dropped by the network

and do not arrive at the actuator(s), see, e.g., [12], [13], [23], [29], [30].

In this work, we extend this idea to the case when multiple sensors are present. Suppose a process is observed using

two sensors that transmit the data over erasure links to a controller. If the sensors can share their measurements, there

is effectively only one sensor. We look at the case when cooperation between the sensors is either not permitted, or

occurs over erasure links. We obtain necessary and sufficient conditions of stabilizability in terms of the state-space

representation of the plant and the probability of erasure at the links. We also give optimal performance achieving

algorithms, under the assumption that the sensors have access to noiseless acknowledgment regarding the erasure

process at the links connecting them to the controller. If acknowledgment signals are not present or if they are
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conveyed via erasure links then we give algorithms that, though not optimal, still perform better than the case when

sensors transmit measurements without any processing.

The problem involving the presence of multiple sensors transmitting data in an aperiodic fashion is much more

complicated than the problem involving only a single sensor. The problem of finding optimal encoding algorithms

for the multi-sensor case and analyzing their performance is similar to the problems of fusion of data from multiple

sensors and of track-to-track fusion that have long been open. A usual starting point for the works that address

these problems is an attempt to decentralize the Kalman filter as, e.g., in [43]. However this approach requires

that data about the global estimate be sent from the fusion node to the local sensors. This difficulty was overcome

in [9], [41] and further in [18] where both the measurement and time update steps of the Kalman filter were

decentralized. Alternative approaches for data fusion from many nodes include using the Federated filter [7],

Bayesian methods [10], a scattering framework [24], algorithms based on decomposition of the information form

of the Kalman filter [33] and so on.

However all these approaches assume a fixed communication topology among the nodes where a link, if present, is

perfect (no erasure). In our case, information is lost randomly by the erasure links. This random loss of information

reintroduces the problem of correlation between the estimation errors of various nodes [4] and renders the approaches

proposed in the literature as sub-optimal. An approach to solve this problem was proposed in [5] in the context of

track-to-track fusion through exchange of state estimates based on each sensor’s own local measurements but the

specific scheme that was used was not proved to be optimal. It was subsequently proved in [8] that the technique

was based on an assumption that was not met in general. There are special cases for which the solution is known,

e.g., when the process noise is absent [44] or when one of the sensors transmits data over a channel that does

not erase information [16]. However, as stated earlier, in general, the problem is still open. Owing to a separation

principle that we present, our results also carry over to the multi-sensor fusion problem.

The paper is organized as follows. We begin in the next section by describing the problem set-up and our

notation. In Section III, we present a summary of the stabilizability results for the case when two sensors transmit

data over erasure channels. In Section IV, we present a separation principle that allows us to consider an alternative

estimation problem. For the case when the sensors have access to acknowledgments from the controller, we provide a

recursive algorithm which is optimal with respect to every possible realization of the erasure process in Section V-A.

Stability analysis of this algorithm allows us to prove the necessity of the stabilizability conditions in Section V-B.

In Section V-C, we then prove that the conditions are sufficient as well, by presenting a sub-optimal algorithm

that stabilizes the system even when acknowledgments from the controller are not available. Section VI generalizes

the results in various directions. The case of more than two sensors being present is treated in Section VI-A.

Section VI-B considers the case when the sensors transmit information to the controller over networks of erasure

links. This also allows us to treat the case when the sensors can co-operate over erasure channels. In Section VI-C,

we present an algorithm that can be used if the acknowledgments from the controller are also transmitted over an

erasure channel. Although the algorithm is not optimal, it yields performance that is continuous with respect to the

erasure probabilities. Finally, in Section VI-D we analyze the case when the channel erasures are correlated in time
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and can be described by a Markov chain. We finish with some possible directions for future work.

II. FRAMEWORK DESCRIPTION AND PROBLEM FORMULATION

A. Modeling Assumptions
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Fig. 1. Basic framework for output feedback using two remote sensors, in the presence of erasure channels. The process and measurement

noises at the plant are represented by w(k) and v1 or 2(k), respectively. The erasure process, in the links connecting the sensors to the controller,

is governed by r1 or 2(k).

Consider the set-up of Fig 1, and the following associated assumptions regarding the plant, the external sources

of randomness and the erasure links that connect the sensors to the controller.

The plant is described by a discrete-time state-space representation of the following type:

x(k + 1) = Ax(k) +Bu(k) + w(k), k ≥ 1 (1)

where x(k) ∈ R
n is the process state, u(k) ∈ R

l is the control input and w(k) is the process noise assumed to be

white, Gaussian, zero mean with covariance Rw > 0. The initial state x(0) is a zero mean and Gaussian random

variable with covariance matrix P(0). The process state is observed using two sensors that generate measurements

of the form

y1(k) = C1x(k) + v1(k), k ≥ 0 (2)

y2(k) = C2x(k) + v2(k), k ≥ 0 (3)

where y1(k) ∈ R
m1 and y2(k) ∈ R

m2 . The measurement noises v1(k) and v2(k) are also assumed to be white,

Gaussian, zero mean with positive definite covariance matrices Σv,1 and Σv,2 respectively. For ease of notation, we

adopt the concatenation v(k)T def
= [v1(k)T v2(k)T ]T and denote the covariance matrix of v(k) by Rv. Similarly,

we define

C =

⎡
⎣ C1

C2

⎤
⎦ y(k) =

⎡
⎣ y1(k)

y2(k)

⎤
⎦ .
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In addition, we adopt the following assumption for simplicity.

Assumption 1. The pairs (A,C1) and (A,C2) are not observable. In addition, we assume that the overall system

is observable, i. e., the pair (A,C) is observable.

Assumption 1 corresponds to the more difficult scenario where the controller might have to combine the infor-

mation gathered from y1 and y2. Later we show that the stability analysis, for the case where (A,C1) and (or)

(A,C2) are observable, constitutes a particular case of our analysis, indicating that our Assumption 1 comes at no

loss of generality.

Definition II.1. (Erasure Link Model ) Consider that {r1(k)}∞k=0 and {r2(k)}∞k=0 represent Bernoulli stochastic

processes taking values in the set {1, ∅} and characterized by a probability mass function of the following type:

pi,j
def
= Pr (r(k) = (i, j)) , (i, j) ∈ {1, ∅}2

where r(k)
def
= (r1(k), r2(k)). The process r(k) governs the state of the links that connect the sensors to the

controller. More specifically, the relationship between sensor i’s output s i(k) and the controller’s input zi(k) is

described by:

zi(k) =

⎧⎪⎨
⎪⎩
∅ if ri(k) = ∅
si(k) if ri(k) = 1

, i ∈ {1, 2} (4)

where we adopt the symbol ∅ to represent erasure, i.e., it indicates that the information sent from sensor i to the

controller was lost.

Note that, in general, we do not assume that the erasure events in the channels are independent. However, we

presuppose that the sources of randomness x(0), {r(k)}∞
k=0, {v(k)}∞k=0 and {w(k)}∞k=0 are mutually independent.

We consider sensors with the following functional structure:

Definition II.2. ( Sensor map classes Sq and S
NAK
q ) For any given positive integer q, we define Sq as the set

containing all sensor maps with the following structure:

si(k) =

⎧⎪⎨
⎪⎩
S (k,yi(0), . . . ,yi(k), r(0), . . . , r(k − 1)) k ≥ 1

S (0,yi(0)) k = 0
(5)

where i is in the set {1, 2} and si(k) takes values in R
q . Notice that we assume that {r(i)}i=k−1

i=0 is made available

to the sensor via noiseless acknowledgments. In addition, we consider another set S
NAK
q of sensor maps with the

following structure:

si(k) =

⎧⎪⎨
⎪⎩
SNAK (k,yi(0), . . . ,yi(k)) k ≥ 1

SNAK (0,yi(0)) k = 0
(6)

where i is in the set {1, 2} and si(k) takes values in R
q . Notice that S

NAK
q is the subset of Sq consisting of the

sensor structures that do not rely on the knowledge of past values of the erasure process {r(i)} i=k−1
i=0 . Equivalently,
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S
NAK
q can be specified as the set of sensor maps for which the sensor does not have access to acknowledgment

signals.

In the sequel, we will also refer to the choice of the sensor maps S1 and S2 as an encoding algorithm or an

information processing algorithm and to the sensors as encoders.

Definition II.3. ( Controller class ) Consider stochastic processes z1(k) and z2(k) taking values in R
q
⋃{1, ∅}.

We define the controller class K as the set of all controllers with the following structure:

u(k) = K(k, z1(0), z2(0), . . . , z1(k), z2(k)) (7)

where u(k) takes values in R
l and l is the dimension of the control input to the plant specified in (1).

B. Problem formulation

Given the description of the plant and the erasure link statistics, specified by the probability mass function p i,j ,

we want to minimize a quadratic cost function using controllers and sensor maps, in the classes S q or S
NAK
q and

investigate conditions for the existence of such controllers and sensor maps that stabilize the plant in the following

sense.

Definition II.4. ( Cost Function and Stability Criterion ) Consider the set-up of Figure 1 and assume that the

matrices A, B, C1, C2 and the erasure link statistics pi,j are given. We wish to find the integer q, controller K (in

the specified class Sq or S
NAK
q ) and sensor maps S1 and S2 that minimize the familiar quadratic cost function

JK =
K∑

k=0

Eβ(k),x(0)[x(k)TQx(k) + u(k)TRu(k)], (8)

where Q andR are positive definite matrices, x(k) is the state of the plant and the set β(k)
def
= {x(0),v(i),w(i)}i=k

i=0

is used to indicate that the expectation is taken with respect to the initial condition, the process noise and the

measurement noises. Further, a selection of controller K, integer q and sensor maps S1 and S2 is stabilizing if and

only if

Eri [J∞]
def
= lim

K→∞
Eri

[
JK

K

]
<∞, (9)

where Eri [.] indicates that the expectation is further taken with respect to the erasure events.

We wish to point out that the expectation in equation (8) is not taken with respect to the erasure processes r(i);

the design we propose will often be optimal for any realization of the packet dropping process. For future reference,

we will denote the minimal cost achieved in equation (8) by using the optimal controller for a particular encoding

algorithm A as J�,A
K . Finally, for a comparison between our framework and existing work on stabilizability of

decentralized control under data-rate constraints see Section III-A.
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III. NECESSARY AND SUFFICIENT CONDITIONS FOR STABILITY

In this section, we state the necessary and sufficient conditions for stabilization, in terms of the state space

representation of the plant and the probabilistic description of the erasure process at the links that connect the

sensors to the controller. The proofs of the results will be constructed in several stages, going from the proof of

a separation principle in Section IV to the description of the optimal control algorithm in Section V. We will rely

on the following Proposition, regarding the state space representation of linear systems of the form (1)-(3) that is

proved in the Appendix.

Proposition III.1. Consider an n dimensional linear and time-invariant system satisfying Assumption 1 and let

y1(k) and y2(k), taking values in R
m1 and R

m2 , constitute a bi-partition of the system’s output. We can always

construct a state-space representation with the structure (1)-(3), where the matrices A ∈ R
n×n, B ∈ R

n×l,

C1 ∈ R
m1×n and C2 ∈ R

m2×n are written in one and only one of the following forms, which we refer to as type

I and type II. The first possibility, denoted as type I, is given by:

A =

⎡
⎣ A1,1 A1,2

0n2×n1 A2,2

⎤
⎦ (10)

C1 =
[
0m1×n1 C1,2

]
(11)

C2 =
[
C2,1 0m2×n2

]
(12)

where Ai,j ∈ R
ni×nj , Ci,j ∈ R

mi×nj and n1 + n2 = n.

The following is the second possibility (type II) :

A =

⎡
⎢⎢⎢⎣
A1,1 A1,2 A1,3

0n2×n1 A2,2 A2,3

0n3×n1 0n3×n2 A3,3

⎤
⎥⎥⎥⎦ (13)

C1 =
[
0m1×n1 C1,2 C1,3

]
(14)

C2 =
[
C2,1 0m2×n2 C2,3

]
(15)

where Ai,j ∈ R
ni×nj , Ci,j ∈ R

mi×nj and n1 + n2 + n3 = n.

Remark III.1. In the above representations (of types I or II), A1,1 describes the dynamics of the state subspace

that is not observable from y1(k), while the modes that are not observable by y2(k) follow the dynamics of A2,2.

If the representation is of type II, then A3,3 specifies the dynamics of the modes that are observable by both

y1(k) and y2(k). Such representations are particularly convenient for the purposes of this paper. Alternative modal

decomposition for decentralized systems are also possible, see, for instance, [1].

Using the representation above, we can state the necessary conditions for stabilizability of the system as follows.

The proof is provided in Section V-B.
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Theorem III.2. (Necessary Conditions for Stabilizability) Consider the scheme of Fig 1 and let A ∈ R
n×n,

B ∈ R
n×l, C1 ∈ R

m1×n and C2 ∈ R
m2×n be given matrices specifying the state-space representation for the

plant. In addition, assume that the plant satisfies Assumption 1 and that the statistics of the erasure links is specified

by a given probability mass function Pr(r(k) = (i, j)), with (i, j) ∈ {1, ∅}2 that is independent of the time index

k. Suppose that the state-space representation can be written as in (10)-(12) (type I). There exists a controller in

the class K, a positive integer q and sensors in the class Sq such that the closed loop system is stable only if the

following inequalities hold:

�(A1,1)2Pr(r2(k) = ∅) < 1 (16)

�(A2,2)2Pr(r1(k) = ∅) < 1 (17)

where �(Ai,i) represents the spectral radius of the matrix Ai,i. If, instead, the state-space representation is of

type II, i. e. of the form (13)-(15), then necessary conditions for stabilization also include the following additional

inequality:

�(A3,3)2Pr (r(k) = (∅, ∅)) < 1 (18)

Remark III.2. The case when Assumption 1 does not hold and the system is observable using only one sensor has

already been considered in the literature [16]. Our results can be applied to this case if we adopt the convention

that the spectral radius of an empty matrix is 0. Thus, e.g., if the entire state is observable from y1(k), then the

spectral radius of A1,1 is assumed to be 0. A similar statement can be said about the sufficiency conditions given

below as well. Thus we will assume that Assumption 1 holds in our analysis from now on.

It turns out that the above conditions are also sufficient for stabilizability for sensors in the class S
NAK
q (and

hence in the class Sq). We have the following result that will be proved in Section V-C.

Theorem III.3. (Sufficient conditions for stabilizability) Consider the set-up of Figure 1 and let A ∈ R
n×n,

B ∈ R
n×l, C1 ∈ R

m1×n and C2 ∈ R
m2×n be given matrices specifying the state-space representation for the plant.

In addition, assume that the plant is controllable and that it satisfies Assumption 1. In addition, let the statistics of

the erasure link, given by the probability mass function Pr(r(k) = (i, j)) , (i, j) ∈ {1, ∅}2, be given. Consider that

the state space representation can be written as in (10)-(12) (type I). There exists a controller of class K, a positive

integer q and sensors of class S
NAK
q such that the feedback system is stable, if the following two inequalities hold:

�(A1,1)2Pr(r2(k) = ∅) < 1 (19)

�(A2,2)2Pr(r1(k) = ∅) < 1 (20)

where �(Ai,i) represents the spectral radius of the matrix Ai,i. If the state-space representation is of type II, i.e. it

is of the form (13)-(15), then stability is assured by requiring that the following additional inequality also holds:

�(A3,3)2Pr (r(k) = (∅, ∅)) < 1 (21)
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Remark III.3. The inequalities in Theorems III.2 and III.3 are identical. However, notice that Theorem III.3 states

that if such inequalities hold then stabilization is achievable by using sensors of class S
NAK
q , while Theorem III.2

characterizes the necessary condition for stabilization by allowing sensors of class Sq . This subtle difference, and

the fact that S
NAK
q ⊂ Sq , lead to the interesting conclusion that the use of acknowledge signals {r(i)} i=k−1

i=0 at the

sensors does not impact stabilizability. The use of {r(i)}i=k−1
i=0 is crucial, however, in the optimal control strategy

that will be identified in Section V-A.

Remark III.4. The stabilizability conditions make intuitive sense. The quantity �(A1,1)2 measures the rate of

increase of the second moment of the modes that are observable using only sensor 2. To keep the estimate error

covariance of these modes bounded, we need the information from sensor 2 to arrive at a large enough rate.

Equation (16) formalizes this relation. Similarly, the inequality in (17) places a constraint on the drop rate of

information from sensor 1 in terms of the rate of increase of the modes that are observable solely through sensor 1.

Finally, the relation in (18) places a constraint on the arrival rate of information from at least one of the sensors

in terms of the modes that are observable from either sensor.

If the erasure processes r1(k) and r2(k) are independent, then the inequalities in Theorems III.2 and III.3 lead

to a log-convex stabilizability region, in terms of the erasure probabilities (see Fig 2).

2logρ(A1,1)

-log( p1 )

-log( p2 )

2logρ(A2,2)

2logρ(A3,3)

2logρ(A3,3)

STABILITY R
EG

IO
N

0

Fig. 2. Log-convex stabilizability region in terms of p1 = Pr(r1(k) = ∅) and p2 = Pr(r2(k) = ∅), under the assumption that r1(k) and

r2(k) are independent.

A. Comparison with existing results on decentralized stabilizability under data-rate constraints

The authors of [28], [31], [42], [45] have derived necessary and sufficient conditions under a similar framework,

but considering finite data-rate communication links. It is interesting to note that [42, Fig 3.] also defines a convex

stabilizability region, in terms of data-rates, which is similar to our Fig 2. However, we must stress that our result

cannot be derived from the finite data-rate framework of any of these works because of the following main reasons.

April 25, 2007 DRAFT



10

1) The work of [28], [31], [42], [45] considers communication links featuring deterministic and finite data-rate

constrains. Their results are derived based on information theoretic ideas and counting arguments. In contrast,

our results cannot be derived using information theoretic or counting arguments because our erasure links

have infinite capacity (in the information theoretic sense), provided that the probability of erasure at the links

is strictly less than one1. Existing work for finite data-rate (stochastic) erasure channels addresses only a

single link and it does not provide guarantees of optimality [27], [35].

2) Our work considers measurement noise and disturbances while the authors [28], [31], [42], [45] focus on

autonomous asymptotic stability.

3) We also derive optimal control strategies, while the work of [42], [45] addresses solely stabilizability.

IV. A SEPARATION PRINCIPLE IN THE PRESENCE OF NOISE FREE ACKNOWLEDGMENTS

We begin by presenting a separation principle that allows us to consider an equivalent estimation problem instead

of the control problem formulated above. At any time k, define the time-stamp corresponding to sensor i as

ti(k) = max{j ∈ {0, 1, 2, . . .} | j ≤ k, ri(j) = 1}.

Thus the time-stamp denotes the latest time at which transmission was possible from sensor i. Using the time-stamp,

we can define the maximal information set Imax
i (k) for each sensor as

Imax
i (k) = {yi(0),yi(1), · · · ,yi(ti(k)), ri(0), ri(1), · · · , ri(k)}.

The maximal information set is the largest set of measurements from sensor i that the controller can possibly have

access to at time k. For any encoding algorithm A followed by the sensors, we will also define the information set

corresponding to sensor i at time k as

IA
i (k) = {si(0), si(ti(1)), si(ti(2)), . . . , si(ti(k))},

where si(k) is the output of the sensor i at time k, when the algorithm A is followed at sensor i. From the definition

of the time stamp ti(k) it follows that IA
i (k) comprises the time-samples of si(k) which can be recovered at the

controller via the output of the erasure link from sensor i. For any encoding strategy followed by the sensors, the

following inclusion holds:

I
A
i (k) ⊆ I

max
i (k).

where I
A
i (k) and I

max
i (k) are the smallest sigma algebras (filtrations) generated by IA

i (k) and Imax
i (k), respectively.

Consider two encoding algorithms A1 and A2 that guarantee at every time step

I
A1
1 (k) ⊆ I

A2
1 (k), I

A1
2 (k) ⊆ I

A2
2 (k).

1As explained in the Introduction, we assume that quantization error is not an issue since typically a communication packet will assign a

large number of bits for the data transmitted by the sensors.
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With the optimal controller design for the two algorithms, the values of cost JK achieved using the two algorithms

will satisfy

J�,A1
K ≤ J�,A2

K .

Now consider an algorithm Ā under which, at every time step k the encoder for sensor i transmits the set

Si(k) = {yi(0),yi(1), · · · ,yi(k), ri(0), ri(1), · · · , ri(k)}.

Note that the algorithm Ā does not specify valid sensor maps Sq since the dimension of the transmitted vectors

cannot be bounded by any constant q. However, if algorithm Ā is followed, at any time step k, the decoder (and

the controller) would have access to the maximal information sets I max
1 (k) and Imax

2 (k). This implies that for any

other encoding algorithm A, the cost function

J�,Ā
K ≤ J�,A

K .

Thus, in particular, one way to achieve the optimal value of JK is through the combination of an encoding algorithm

that makes the information sets Imax
i (k)’s available to the controller and a controller that optimally utilizes the

information set. Further, one such information processing algorithm is the algorithm Ā described above. However,

this algorithm relies on the transmission of real vectors whose dimension increases linearly over time. In the sequel,

we show that this difficulty can be avoided in the presence of noiseless acknowledgments. In particular, we prove

that optimal performance can be achieved by using sensors of the class S q , where q is a finite constant quantifying

the dimension of the transmitted vectors.

To this end, we begin by a statement of the familiar separation principle when algorithm Ā is used. For any

random variable α(k), denote by α̂ (k|β(k)) the minimum mean squared error (mmse) estimate of α(k) given the

information β(k).

Proposition IV.1. [Separation Principle] Consider the problem defined in section II-B. Suppose that the encoding

algorithm Ā as described above is followed, so that the controller has access to the maximal information sets

Imax
i (k)’s at every time step k. Then, for an optimizing choice of the control, the control and estimation costs

decouple. Specifically, the optimal control input at time k is calculated by using the relation

u(k) = ûLQ

(
k|Imax

1 (k), Imax
2 (k), {u(t)}k−1

t=0

) def
= E

[
u(k)|Imax

1 (k), Imax
2 (k), {u(t)}k−1

t=0

]
,

where uLQ(k) denotes the optimal LQ control law corresponding to the cost function (8).

Proof: The proof is along the lines of the standard separation principle (see, e.g., [20, Chapter 9]; see also [16])

and is omitted for space constraints.

There are two reasons this separation principle is useful to us:

1) We recognize that the optimal controller does not need to have access to the information sets I max
i (k)’s at

every time step k. The encoders and the decoder only need to ensure that the controller receives the quantity

ûLQ

(
k|Imax

1 (k), Imax
2 (k), {u(t)}k−1

t=0

)
, or equivalently, x̂

(
k|Imax

1 (k), Imax
2 (k), {u(t)}k−1

t=0

)
.
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2) If we can ensure that the controller has access to this quantity, the controller design part of the problem is

solved. The optimal controller is the solution to the LQ control problem.

Our next result allows us to make another simplification in the problem by separating the dependence of the

estimate on measurements from the effect of the control inputs. In the context of our problem, this is useful since the

encoders do not have access to the control inputs2. Thus, the effect of the previous control inputs has to be included

by the controller that has access to all previous control inputs. To this end, we state the following Proposition.

Proposition IV.2. [Separation of Control and Measurement Effects] Consider the problem formulation as defined

in section II-B. The quantity ûLQ

(
k|Imax

1 (k), Imax
2 (k), {u(t)}k−1

t=0

)
, can be calculated as the sum of two quantities

ûLQ

(
k|Imax

1 (k), Imax
2 (k), {u(t)}k−1

t=0

)
= x̄(k) + ψ(k),

where x̄(k) depends only on the information sets Imax
i (k)’s (and not on the control inputs {u(t)}k−1

t=0 ) and ψ(k)

depends only on the control inputs (but not on the information sets).

Proof: Assume, without loss of generality that t1(k) ≤ t2(k). We will denote the error covariance in calculating

the estimate of x(k) using measurements from sensor 1 till time j, from sensor 2 till time m and previous control

inputs till time k − 1 by P(k|j,m).

To begin with, note that

x̂
(
k|Imax

1 (k), Imax
2 (k), {u(t)}k−1

t=0

)
= x̂

(
k|{y1(t)}t1(k)

t=0 , {y2(t)}t2(k)
t=0 , {u(t)}k−1

t=0

)
.

The quantity on the right hand side can be calculated using the Kalman filter in three steps.

1) First calculate x̂
(
t1(k)|{y1(t)}t1(k)

t=0 , {y2(t)}t1(k)
t=0 , {u(t)}t1(k)−1

t=0

)
by processing the measurements from both

the sensors and the control inputs from time m = 0 to t1(k) − 1 as follows:

Measurement Update for the Kalman filter:

(P(m|m,m))−1 = (P(m|m− 1,m− 1))−1 + CT R−1
v C (22)

(P(m|m,m))−1 x̂
(
m|{y1(t)}m

t=0, {y2(t)}m
t=0, {u(t)}m−1

t=0

)
= (P(m|m− 1,m− 1))−1 x̂

(
m|{y1(t)}m−1

t=0 , {y2(t)}m−1
t=0 , {u(t)}m−1

t=0

)
+ CT R−1

v y(m).

Time Update for the Kalman filter:

P(m|m− 1,m− 1) = AP(m− 1|m− 1,m− 1)AT + Rw (23)

x̂
(
m|{y1(t)}m−1

t=0 , {y2(t)}m−1
t=0 , {u(t)}m−1

t=0

)
= Ax̂

(
m|{y1(t)}m−1

t=0 , {y2(t)}m−1
t=0 , {u(t)}m−2

t=0

)
+Bu(m− 1).

2Note that we do not assume knowledge of even the cost function at the encoders.
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The initial conditions for the Kalman filter are given by x̂ (0|y1(−1),y2(−1),u(−1)) = 0 and P(0|−1,−1) =

P(0).

2) Calculate x̂
(
t2(k)|{y1(t)}t1(k)

t=0 , {y2(t)}t2(k)
t=0 , {u(t)}t2(k)−1

t=0

)
by processing the measurements from sensor 2

and the control inputs from time m = t1(k) to m = t2(k) − 1 again using the Kalman filter equations, but

only considering new measurements to arrive from sensor 2.

3) Construct the estimate x̂
(
k|{y1(t)}t1(k)

t=0 , {y2(t)}t2(k)
t=0 , {u(t)}k−1

t=0

)
as

x̂
(
k|{y1(t)}t1(k)

t=0 , {y2(t)}t2(k)
t=0 , {u(t)}k−1

t=0

)

= Ak−t2(k)x̂
(
t2(k)|{y1(t)}t1(k)

t=0 , {y2(t)}t2(k)
t=0 , {u(t)}j

t=0

)
+

k−t2(k)−1∑
i=0

AiBu(k − i− 1). (24)

The effect of the control inputs appears linearly and can be considered separately. To see this, calculate the quantity

x́(j|{y1(t)}t1(k)
t=0 , {y2(t)}t2(k)

t=0 ) using the measurements from sensor 1 from time 0 to j1 and sensor 2 from time 0

to j2 according to a modified Kalman filter.

1) First calculate x́
(
t1(k)|{y1(t)}t1(k)

t=0 , {y2(t)}t1(k)
t=0

)
by processing the measurements from both the sensors.

Measurement Update for the modified Kalman filter:

(P(m|m,m))−1 = (P(m|m− 1,m− 1))−1 + CT R−1
v C (25)

(P(m|m,m))−1 x́(m|{y1(t)}m
t=0, {y2(t)}m

t=0)

= (P(m|m− 1,m− 1))−1 x́(m|{y1(t)}m−1
t=0 , {y2(t)}m−1

t=0 ) + CT R−1
v y(m),

Time Update for the modified Kalman filter:

P(m|m− 1,m− 1) = AP(m− 1|m− 1,m− 1)AT + Rw (26)

x́(m|{y1(t)}m−1
t=0 , {y2(t)}m−1

t=0 ) = Ax́(m− 1|{y1(t)}m−1
t=0 , {y2(t)}m−1

t=0 ).

The initial conditions are given by x́ (0|y1(−1),y2(−1)) = 0 and P(0|−1,−1) = P(0). Note that calculation

of the terms P(m|m,m) and P(m|m − 1,m − 1) does not require knowledge of either the measurements

yi(m)’s or the control inputs u(m)’s and these terms can even be calculated offline. The equations for the

modified Kalman filter are identical to the ones for the Kalman filter given in (22) and (23) except that the

control input u(m) is assumed to be 0.

2) Calculate x́
(
t2(k)|{y1(t)}t1(k)

t=0 , {y2(t)}t2(k)
t=0

)
by processing the measurements from sensor 2 again using

the modified Kalman filter equations, but only considering new measurements to arrive from sensor 2.

3) Include the effect of the control inputs through the term ψ̃(j) that evolves as

ψ̃(m) = Bu(m− 1) + Γ(m− 1)ψ̃(m− 1),

where

Γ(m) =

⎧⎪⎨
⎪⎩
A (P(m− 1|m− 1,m− 1))−1 P(m− 1|m− 2,m− 2) m ≤ t1(k) + 1

A (P(m− 1|t1(k),m− 1))−1 P(m− 1|t1(k),m− 2) otherwise,
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and the initial condition is ψ̃(0) = 0.

It can readily be verified that

x̂
(
t2(k)|{y1(t)}t1(k)

t=0 , {y2(t)}t2(k)
t=0 , {u(t)}k−1

t=0

)
= x́

(
t2(k)|{y1(t)}t1(k)

t=0 , {y2(t)}t2(k)
t=0

)
+ ψ̃(t2(k) + 1). (27)

The estimate at time step k can then once again be calculated using (24). Comparing the two methods, we see that

x̂
(
k|{y1(t)}t1(k)

t=0 , {y2(t)}t2(k)
t=0 , {u(t)}k−1

t=0

)
= Ak−t2(k)x́

(
t2(k)|{y1(t)}t1(k)

t=0 , {y2(t)}t2(k)
t=0

)

+Ak−t2(k)ψ̃(t2(k)) +
k−t2(k)−1∑

i=0

AiBu(k − i− 1),

where the term x́(.|., .) depends only on the measurements and the terms ψ̃(.) and u(.) depend only on the control

inputs. To complete the proof, we simply identify

x̄(k) = Ak−t2(k)x́
(
t2(k)|{y1(t)}t1(k)

t=0 , {y2(t)}t2(k)
t=0

)

ψ(k) = Ak−t2(k)ψ̃(t2(k)) +
k−t2(k)−1∑

i=0

AiBu(k − i− 1).

As mentioned above, the advantage of separating the effects of measurements and the control inputs is that the

sensors do not need access to the control inputs. The controller (which has access to all the control inputs) can

calculate ψ(k) and, in turn, the estimate of the state. Finally, note that the term x̄(k) that the network needs to

deliver is, in fact, the mmse estimate of the state x(k) of a process evolving as

x(k + 1) = Ax(k) + w(k), (28)

given the measurements y1(0), y1(1), · · · , y1(t1(k)) and y2(0), y2(1), · · · , y2(t2(k)) that are assumed to originate

from sensors of the form (3).

Thus consider an alternative estimation problem. A process of the form (28) is observed by sensors of the

form (3). The sensors transmit data across channels with the erasure link models defined in Definition II.1. The

sensor maps are also as defined above. There is an estimator across the links that needs to estimate the state x(k)

of the process in the mmse sense at every time step k. We can once again define the information set I i(k) that

contains the information from the sensor i that the controller has access to at time k and the corresponding maximal

information set Imax
i (k). What are the optimal sensor maps that allow the estimator to calculate the estimate of

x(k) based on the information sets Imax
i (k)’s? By the arguments above, the optimal sensor maps in the original

control problem and this estimation problem are identical. The stability criterion presented in Definition II.4 for the

control problem corresponds to the condition that for the estimate x̂(k) of the estimator at step k,

sup
k≥0

Eσ(k),x(0)

[
(x(k) − x̂(k))T (x(k) − x̂(k))

]
<∞. (29)

For the presentation of the algorithm and analysis of its properties, we consider this equivalent estimation problem

while keeping in mind that, to solve the original control problem the controller can then calculate ψ(k) to include
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the effect of the previous control inputs and finally compute the new control input u(k) by utilizing the separation

principle.

V. OPTIMAL ALGORITHM AND PROOF OF THE NECESSARY AND SUFFICIENT CONDITIONS FOR

STABILIZABILITY

In this section, we will first present a recursive encoding algorithm for sensors in the class S q that allows the

estimator to calculate the estimate x̂ (k|Imax
1 (k), Imax

2 (k)) and is thus optimal. We will then analyze the stability

of the algorithm which shall prove Theorem III.2. Finally, we shall prove that the conditions required for stability

using the optimal algorithm are sufficient for a particular algorithm in the sensor class S
NAK
q , which shall prove

Theorem III.3.

A. A Recursive Algorithm for Optimal Performance

In this section, we consider the sensor class Sq and present an optimal encoding algorithm for the sensors. To

begin with, we note the following result.

Proposition V.1. Consider a process of the form (28) being observed by two sensors of the form (3). Let x̂i(k|l)
denote the mmse estimate of x(k) based on all the measurements of sensor i up to time l. Denote the corresponding

error covariance by Pi(k|l). The estimate x̂(k|l,m) of the state based on measurements from sensor 1 till time l

and sensor 2 till time m can be calculated using a relation of the form

x̂(k|l,m) = f (I1,l,m(k), I2,l,m(k)) ,

where I1,l,m(k) does not depend on measurements from sensor 2 and I2,l,m(k) does not depend on measurements

from sensor 1.

Proof: Proof is based on the algorithm proposed in [16]. Assume, without loss of generality, that l ≤ m. The

quantity I1,l,m(k) is calculated using the following algorithm. At each time step j ≤ k,

1) Obtain the estimate x̂1(j|j) and P1(j|j) through a Kalman filter. For j ≤ l, use the measurement y1(j). For

j > l, assume that the sensor 1 did not take any measurement at time step j.

2) Calculate

λ1(j) = (P1(j|j))−1 x̂1(j|j) − (P1(j|j − 1))−1 x̂1(j|j − 1).

3) Calculate global error covariance matrices P(j|j, j) and P(j|j − 1, j − 1) using the relation

(P(j|j, j))−1

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(P(j|j − 1, j − 1))−1 + (C1)
T (Σv,1)

−1 (C1) + (C2)
T (Σv,2)

−1 (C2) j ≤ l

(P(j|j − 1, j − 1))−1 + (C2)
T (Σv,2)

−1 (C2) l < j ≤ m

(P(j|j − 1, j − 1))−1 otherwise,

April 25, 2007 DRAFT



16

P(j|j − 1, j − 1) = AP(j − 1|j − 1, j − 1)AT + Rw.

4) Obtain

γ(j) = (P(j|j − 1, j − 1))−1
AP(j − 1|j − 1, j − 1).

5) Finally calculate

I1,l,m(j) = λ1(j) + γ(j)I1,l,m(j − 1), (30)

with I1,l,m(−1) = 0.

The quantity I2,l,m(k) is calculated by a similar algorithm except using the local estimates x̂2(j|j) and covariance

P2(j|j). Finally, the estimate x̂(k|l,m) is calculated using the relation

(P(k|k, k))−1 x̂(k|l,m) = I1,l,m(k) + I2,l,m(k), (31)

where P(k|k, k) is calculated as above. That x̂(k|l,m) is indeed the mmse estimate given all the measurements

from sensor 1 till time l and from sensor 2 till time m can be proved by utilizing the block diagonal structure of

the matrix Rv as in the proof of Theorem 2 in [16].

The above result identifies the quantities that need to be transmitted by the two sensors to calculate the mmse

estimate of x(k). The quantities depend only on local measurements at the sensors; however, an implicit assumption

is that each sensor is informed about the times l and m.

Using this result, we can now provide the optimal encoding algorithm for the sensor class S q . Let P(k|l,m)

denote the error covariance of the mmse estimate of the state x(k) calculated using measurements from sensor 1

till time l and from sensor 2 till time m. Now consider the following algorithm denoted for future reference as the

algorithm Aack. At each time step k

• Encoder for Sensor 1: Because of the noiseless acknowledgments, sensor 1 can calculate the time stamp

t2(k − 1) as

t2(k − 1) = max j such that r2(j) = 1.

Encoder 1 calculates and transmits two quantities: I1,k,k(k) and I1,k,t2(k−1)(k).

• Encoder for Sensor 2: Sensor 2 calculates and transmits I2,k,k(k) and I2,t1(k−1),k(k).

• Decoder at the Estimator: The estimator maintains three quantities.

– the estimate x̂dec(k) with the initial value x̂dec(−1) = 0,

– a vector Idec
1 (k) for the contribution from sensor 1 with the initial value I dec

1 (−1) = 0.

– a vector Idec
2 (k) for the contribution from sensor 2 with the initial value I dec

2 (−1) = 0.

At every time step k, it faces one of four situations.

1) r1(k) = r2(k) = ∅: The decoder calculates

Idec
1 (k) = (P(k|t1(k − 1), k))−1

A (P(k − 1|t1(k − 1), k − 1)) Idec
1 (k − 1)

Idec
2 (k) = (P(k|k, t2(k − 1)))−1

A (P(k − 1|k − 1, t2(k − 1))) Idec
2 (k − 1)

x̂dec(k) = Ax̂dec(k − 1).
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2) r1(k) = ∅, r2(k) = 1: The decoder calculates

Idec
1 (k) = (P(k|t1(k − 1), k))−1

A (P(k − 1|t1(k − 1), k − 1)) Idec
1 (k − 1)

Idec
2 (k) = I2,k,k

x̂dec(k) = P(k|t1(k), k)
(
Idec
1 (k) + I2,t1(k−1),k(k)

)
.

3) r1(k) = 1, r2(k) = ∅: The decoder calculates

Idec
1 (k) = I1,k,k

Idec
2 (k) = (P(k|k, t2(k − 1)))−1A (P(k − 1|k − 1, t2(k − 1))) Idec

2 (k − 1)

x̂dec(k) = P(k|k, t2(k))
(
I1,k,t2(k−1)(k) + Idec

2 (k)
)
.

4) r1(k) = r2(k) = 1: The decoder calculates

Idec
1 (k) = I1,k,k

Idec
2 (k) = I2,k,k

x̂dec(k) = P(k|k, k) (I1,k,k(k) + I2,k,k(k)) .

We can state the following result.

Theorem V.2. In the algorithm Aack, x̂dec(k) = x̂ (k|Imax
1 (k), Imax

2 (k)) , where Imax
i (k)’s are the maximal

information sets defined earlier.

Proof: The proof is straight-forward given Proposition V.1. At any time step k, the term I dec
1 (k) equals

I1,t1(k),k(k) and Idec
2 (k) equals I2,k,t2(k)(k). For any of the four possibilities of channel outputs, it can be verified

that the estimate is calculated according to equation (31).

Note that the algorithm is optimal, yet involves a constant amount of transmission and processing. Each sensor

can calculate the terms it transmits using a recursive algorithm of the form outlined in equation (30).

Remark V.1 (Optimality for any Drop Sequence and the ‘Washing Away’ Effect). So far, we have made no

assumptions on the realization of the erasure process nor on the knowledge of the statistics of the erasure events at

any of the nodes. The algorithm provides the optimal estimate for an arbitrary realization of the erasure process,

irrespective of whether the erasure process can be modeled as i.i.d. or as a more sophisticated model like a Markov

chain. The algorithm results in the optimal estimate at every time step for any realization of the erasure process,

not merely in the optimal average performance. Also note that if data is received from sensor i at any time step k,

the effect of all previous erasures from that sensor is ‘washed away’. The estimate at the receiving node becomes

identical to the case when all measurements yi(0), yi(1), · · · , yi(k) were available, irrespective of which previous

data had been lost (erased).
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B. Necessary Conditions for Stabilizability

By analyzing the stability of the optimal algorithm Aack, we can obtain necessary conditions for stability for

any encoding algorithm in the class Sq (and, in turn, S
NAK
q ). We shall need the following result that can be proved

along the lines of Theorem 4 in [14].

Proposition V.3. Consider the system in equation (28) being observed by a sensor of the form

ȳ(k) = C̄x(k) + v̄(k),

where v̄(k) is white Gaussian noise with zero mean and covariance R. Let f(X) denote the Ricatti recursion

corresponding to this sensor as applied on the matrix X , thus,

f(X) = AXAT + Rw − AXC̄T
(
C̄XC̄T +R

)−1
C̄XAT . (32)

Further, let fm(X) denote the above Ricatti recursion applied m times on the matrix X , i.e.,

fm(X) = f (f (· · · f (X) · · · ))︸ ︷︷ ︸
f applied m times

. (33)

Finally, let p be a scalar. Then, the sum

S = X + pf(X) + p2f2(X) + p3f3(X) + · · · + pmfm(X), (34)

is bounded as m→ ∞ if and only if

p | �(Ā) |2< 1,

where �(Ā) is the spectral radius of the state subspace that is unobservable from ȳ(k). In particular, if the matrix

C̄ = 0, so that the Ricatti recursion (32) corresponds to the Lyapunov recursion

f(X) = AXAT + Rw,

then the sum (34) converges if and only if

p | �(A) |2< 1,

where �(A) is the spectral radius of matrix A.

Proof: Omitted for space constraints.

Proof of Theorem III.2: To begin with, note that because of the separation principle stated in Propositions IV.1

and IV.2 and the optimality of the algorithm Aq as proved in Theorem V.2, we can consider the stability of the error

covariance of the equivalent estimation problem, assuming that the process evolves as in (28) and algorithm A q is

used. For ease of notation, we define the Ricatti operators f1(.), f2(.) and f∅(.) in a fashion similar to equation (32)

when sensor 1, sensor 2 and no sensor is used, respectively. We also define f m
1 (.), fm

2 (.) and fm
∅ (.) analogously.

Finally we define M(k) to be the error covariance of the mmse estimate of x(k + 1) when all the measurements

from sensors 1 and 2 till time step k are available. Because of the assumption on observability of (A,C), M(k)

converges exponentially to a steady-state value denoted by M �.
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For ease of notation, we will consider the stability of the expected error covariance E[P(k)] of the estimate of

the state x(k+1) as calculated at time k. The conditions required for stabilizability of the error covariance E[P(k)]

are identical to those required for stabilizability of the expected error covariance of the estimate of the state x(k)

calculated at time k. We will condition the expected error covariance on events Emn where the subscript m denotes

the time at which the last transmission was successfully received from sensor 1 and n denotes the time at which

the last transmission was successfully received from sensor 2. Obviously 0 ≤ m,n ≤ k. We also allow the indices

to attain the value −1 to denote the event when transmission from the corresponding sensor was never possible till

time k. Denote the error covariance conditioned on the event Emn happening by Pmn. Due to Theorem V.2, Pmn

is the error covariance in estimating x(k+ 1) based on measurements y1(0), y1(1), · · · , y1(m) from sensor 1 and

y2(0), y2(1), · · · , y2(n) from sensor 2. Let pmn be the probability of the event Emn occurring.

We can thus write

E[P(k)] =
k∑

m=−1

k∑
n=−1

pmnPmn.

Since each term in the above summation is positive semi-definite, a necessary condition for the sum to be bounded

is that any sub-sequence in the sum is bounded. We will consider three particular sub-sequences and show that the

conditions in (16-18) are necessary for stabilizability. First consider the sequence

S1(k) =
k∑

m=0

pmkPmk

= Pr(r1(k) = 1)Pr(r2(k) = 1)
(
M(k) + Pr(r1(k) = ∅)f2 (M(k − 1))

+(Pr(r1(k) = ∅))2f2
2 (M(k − 2)) + · · · + (Pr(r1(k) = ∅))kfk

2 (M(0))
)
.

Since M(k) converges exponentially to M � as k → ∞, we can substitute M � for the conditional error covariances

to study the convergence. Thus, we obtain

lim
k→∞

S1(k) = Pr(r1(k) = 1)Pr(r2(k) = 1)
∞∑

m=0

(Pr(r1(k) = ∅))mfm
2 (M�) .

Thus, using Proposition V.3, we can prove that this sum converges only if (16) holds.

In a similar fashion, we can prove that the condition in (17) is necessary by considering the sub-sequence

S2(k) =
k∑

n=0

pknPkn.

Finally, the sub-sequence

S2(k) =
k∑

n=0

pnnPnn

yields the necessary condition

�(A)2Pr (r(k) = (∅, ∅)) < 1. (35)

Since �(A) = max{�(Ai,i)}, there are two cases.

1) If �(A) = �(A3,3), equation (35) reduces to equation (18) and the proof is complete.
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2) If either �(A) = �(A1,1) or �(A) = �(A2,2), equation (35) is subsumed by either equation (17) or equa-

tion (16). Moreover, equation (35) implies equation (18). Thus, the proof is complete in this case as well.

C. Sufficient Conditions for Stabilizability

We now present the proof of Theorem III.3 by considering a particular algorithm in the class S
NAK
q . Note that

we have proved the separation principle only for an encoding/decoding algorithm that guarantees that the controller

can estimate the state given the maximal information sets Imax
i (k)’s. However, even for other encoding/decoding

algorithms, we note that

1) If an encoding and decoding algorithm guarantees that the state x(k) of the process evolving as in (1) can

be estimated at the controller with bounded second moment error, then any controller of the type

u(k) = F x̂(k)

with

� (A+ F ) < 1,

where x̂(k) is the estimate of state at time k, will guarantee stability of the closed loop system.

2) Moreover, since all the previous control inputs are known to the controller, the encoding algorithm only needs

to ensure that the state x(k) of a process evolving as in (28) when observed by sensors of the form (3) can

be estimated at the controller end using sensors of the form S
NAK
q .

We shall now propose such an algorithm, denoted by Anack for future reference. Due to Proposition III.1, we can

consider the system to be either of type I or of type II. We can also partition the state space x(k) of the process

in one of two ways.

1) If the system is of type I, denote

x(k) =

⎡
⎣ x1(k)n1×1

x2(k)n2×1

⎤
⎦ . (36)

2) If the system is of type II, denote

x(k) =

⎡
⎢⎢⎢⎣

x1(k)n1×1

x2(k)n2×1

x3(k)n3×1

⎤
⎥⎥⎥⎦ . (37)

Now consider the following algorithm. At each time step k

• Encoder for Sensor 1:

– If the system is of type I, sensor 1 calculates and transmits the estimate x̂loc,1
2 (k) of the modes x2(k) of

the process using its local measurements y1(0), y1(1), · · · , y1(k).

– If the system is of type II, sensor 1 calculates and transmits the estimate x̂loc,1
2 (k) and x̂loc,1

3 (k) of the

modes x2(k) and x3(k) of the process using its local measurements y1(0), y1(1), · · · , y1(k).
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• Encoder for Sensor 2:

– If the system is of type I, sensor 2 calculates and transmits the estimate x̂loc,2
1 (k) of the modes x1(k) of

the process using its local measurements y2(0), y2(1), · · · , y2(k).

– If the system is of type II, sensor 2 calculates and transmits the estimate x̂loc,2
1 (k) and x̂loc,2

3 (k) of the

modes x1(k) and x3(k) of the process using its local measurements y2(0), y2(1), · · · , y2(k).

• Decoder:

– If the system is of type I, the decoder maintains an estimate x̂1(k) of the modes x1(k) and x̂2(k) of the

modes x2(k). At every time step k, the decoder takes the following actions.

1) If r1(k) = ∅, x̂1(k) = Ax̂1(k − 1), else x̂1(k) = x̂loc,2
1 (k).

2) If r2(k) = ∅, x̂2(k) = Ax̂2(k − 1), else x̂2(k) = x̂loc,1
2 (k).

It then constructs the estimate x̂(k) by stacking the estimates x̂1(k) and x̂2(k).

– If the system is of type II, the decoder maintains estimates x̂1(k), x̂2(k) and x̂3(k) of the modes x1(k),

x2(k) and x3(k) respectively. At every time step k, the decoder takes one of the following actions:

1) If (r1(k), r2(k)) = (1,1),

x̂1(k) = x̂loc,2
1 (k)

x̂2(k) = x̂loc,1
2 (k)

x̂3(k) = x̂loc,1
3 (k).

2) If (r1(k), r2(k)) = (1, ∅),

x̂1(k) = x̂loc,2
1 (k)

x̂2(k) = Ax̂2(k − 1)

x̂3(k) = x̂loc,1
3 (k).

3) If (r1(k), r2(k)) = (∅,1),

x̂1(k) = Ax̂1(k − 1)

x̂2(k) = x̂loc,1
2 (k)

x̂3(k) = x̂loc,2
3 (k).

4) If (r1(k), r2(k)) = (∅, ∅),

x̂1(k) = Ax̂1(k − 1)

x̂2(k) = Ax̂2(k − 1)

x̂3(k) = Ax̂3(k − 1).

It then constructs the estimate x̂(k) by stacking the estimates x̂1(k), x̂2(k) and x̂3(k).
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We shall now prove that under the conditions (19-21), the estimate x̂(k) of the state x(k) is stable in the sense

of (29).

Proof of Theorem III.3 We give the proof if the system is of type II. The proof for type I is similar. By

construction, the estimates x̂loc,1
2 (k), x̂loc,2

1 (k), x̂loc,1
3 (k) and x̂loc,2

3 (k) are stable. Denote the corresponding error

covariance matrices by K1(k), K2(k), K3(k) and K4(k) respectively.

1) For the modes x3(k), the error covariance evolves as follows:

P3(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K3(k) with probability Pr(r1(k) = 1)

K4(k) with probability Pr(r1(k) = ∅)Pr(r2(k) = 1)

A3,3P3(k − 1)AT
3,3 + Rw,3 with probability Pr(r(k) = (∅, ∅)),

where Rw,3 is covariance matrix of the process noise entering the evolution of the modes x 3(k). Thus if (21)

is satisfied, then the error for the modes x3(k) will remain stable.

2) For the modes x2(k), the error covariance in estimating the modes x3(k) can thus be considered to be

additional noise with bounded covariance. The error covariance for these modes evolves as

P2(k) =

⎧⎪⎨
⎪⎩
K2(k) with probability Pr(r1(k) = 1)

A2,2P2(k)AT
2,2 + Rw,2 with probability Pr(r1(k) = ∅),

where Rw,2 denotes the covariance of noise and error incurred through the estimation of modes x 3(k). Thus

if (20) is satisfied, the error for the modes x2(k) will be stable.

3) A similar argument shows that if (19) is satisfied, the error for the modes x 1(k) will be stable.

In the next section, we consider some generalizations of the results that we have presented above.

VI. EXTENSIONS AND GENERALIZATIONS

A. Case of Multiple Sensors

It is fairly obvious that the proof techniques of Theorems III.2 and III.3 can be generalized to the case when N

sensors are present. We present the following stability result while omitting the proof.

Proposition VI.1. Consider the process in (1) being observed by N sensors, such that the i-th sensor generates

measurements according to the model

yi(k) = Cix(k) + vi(k), 1 ≤ i ≤ N.

The sensors transmit data over erasure channels, with the event of erasure in the i-th channel being denoted by

ri = ∅. Consider the 2N possible ways of choosing m out of the N sensors, for all values of m between 0 and N .

For the j-th such way, let the sensors chosen be denoted by n1, n2, · · · , nj and sensors not chosen by m1, m2,

· · · , mN−j . Denote by Cj the matrix formed by stacking the matrices Cm1 , Cm2 , · · · , CmN−j . Finally, denote by

�j the spectral radius of the unobservable part of matrix A when the pair (A, C j) is put in the observer canonical
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form. A necessary and sufficient condition for the existence of a positive integer q, an encoding algorithm of either

the type Sq or S
NAK
q and a controller that stabilize the process is that the following 2N inequalities be satisfied:

Pr
(
rn1 = ∅, rn2 = ∅, · · · , rnj = ∅) | �j |2< 1, 1 ≤ j ≤ 2N .

The optimal encoding strategy for the class S
NAK
q can also be identified as in the case of 2 sensors. However, it

turns out to involve transmitting exponentially (in the number of sensors) increasing amount of data. This observation

has also been made in [36].

B. Communication over Networks of Erasure Channels

We can also consider the case when sensors transmit information not over erasure channels, but over networks,

in which each link is modeled using the erasure model described above. It is fairly obvious that the algorithms

used for proving the necessity of the stabilizability conditions in Theorem III.2 and for proving the sufficiency

in Theorem III.3 can be generalized to this case, provided there is a provision for time-stamping the transmitted

vectors. As an example, consider the algorithm used to prove sufficiency.

• If the networks connecting the two sensors to the controller are disjoint, each link in the two networks carries

two quantities as above.

1) Sensor 1 calculates and transmits the estimates x̂loc,1
1 (k) and x̂loc,1

3 (k) at every time step. Similarly,

sensor 2 calculates and transmits the estimates x̂loc,2
2 (k) and x̂loc,2

3 (k) at every time step. The time-

stamps correspond to the latest measurements used in calculating these estimates.

2) Every node in the network checks the time-stamp of data received over the incoming edges and the

estimate in its memory. It chooses the data with the latest time-stamp, transmits it along outgoing links

and stores it in the memory for the next time step.

3) The controller constructs the estimate in the same way as in the two-channel case.

• If the networks share links, however, each link carries four quantities. While the sensors calculate and transmit

local estimates, each node in the network transmits data corresponding to the latest received values of all

the four estimates: x̂loc,1
1 (.), x̂loc,1

3 (.), x̂loc,2
2 (.) and x̂loc,2

3 (.). Using this data, the controller can calculate the

estimate.

Note that the intermediate nodes in the network do not need acknowledgments from the controller.

Moreover, we can use the techniques used in [15] for the case when only one sensor is present and extend the

stability conditions to this case. We state the following result without proof.

Proposition VI.2. Consider the set-up of Figure 1 with the erasure links being replaced by networks in which each

link is modeled as a erasure link with given probability of erasure. Let A ∈ R
n×n, B ∈ R

n×l, C1 ∈ R
m1×n and

C2 ∈ R
m2×n be given matrices specifying the state-space representation for the plant. In addition, assume that the

plant is observable and controllable and that its state-space representation is of type I or type II. If the state space

representation is of type I, then there exists a controller of class K, a positive integer q and sensors of class S q or
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S
NAK
q such that the feedback system is stable if and only if the following inequalities hold

�(A1,1)2pmaxcut,2 < 1 (38)

�(A2,2)2pmaxcut,1 < 1, (39)

where �(Ai,i) represents the spectral radius of the matrix Ai,i. If the state-space representation is of type II then

the necessary and sufficient conditions for stabilizability include the following additional inequality:

�(A3,3)2pmaxcut,12 < 1. (40)

In the above inequalities, the terms pmaxcut,i denote the max-cut probabilities of the network. For the case when

the erasure over distinct links are independent events, they can be calculated as follows:

1) To calculate pmaxcut,1, form a cut by partitioning the node set of the network connecting sensor 1 and the

network into two sets: the source set containing the sensor 1 and the sink set containing the controller. For

this cut, consider the edges going from the source set to the sink set and calculate the cut-probability by

multiplying the erasure probabilities for these edges. The maximum such cut-probability yields pmaxcut,1.

2) To calculate pmaxcut,2, proceed as above. However, the source set now contains sensor 2 instead of sensor

1.

3) To calculate pmaxcut,12, proceed as above. However, the source set now contains both sensor 1 and sensor

2.

A special case of the network arises when each sensor transmits data over a single link to the controllers. However,

in addition, the sensors can cooperate by communicating with each other over a link. If the link is perfect (i.e.,

does not exhibit erasure), then the two sensors, in effect, form one sensor and the results of [16] apply. However,

if this link also exhibits erasure, then we obtain the following stability conditions:

Corollary VI.3 (Sensors cooperating over a erasure link). Consider the set-up of Figure 1 with an additional

bidirectional link connecting the two sensors. Let A ∈ R
n×n, B ∈ R

n×l, C1 ∈ R
m1×n and C2 ∈ R

m2×n be given

matrices specifying the state-space representation for the plant. In addition, assume that the plant is observable

and controllable and that its state-space representation is of type I or type II. Let the event of erasure over the

link connecting sensor 1 to the controller be denoted as before by r1(k) = ∅, over the link connecting sensor 2

to the controller by r2(k) = ∅, and over the link connecting the two sensors by r3(k) = ∅. If the state space

representation is of type I, then there exists a controller of class K, a positive integer q and sensors of class S q or

S
NAK
q such that the feedback system is stable if and only if the following inequalities hold

�(A2,2)2 max (Pr(r1(k) = ∅), P r(r2(k) = ∅, r3(k) = ∅)) < 1 (41)

�(A1,1)2 max (Pr(r2(k) = ∅), P r(r1(k) = ∅, r3(k) = ∅)) < 1, (42)
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where �(Ai,i) represents the spectral radius of the matrix Ai,i. If the state-space representation is of type II then

the necessary and sufficient conditions for stabilizability include the following additional inequality:

�(A3,3)2Pr(r1(k) = ∅, r2(k) = ∅) < 1. (43)

C. Performance Analysis in the Presence of Noisy Acknowledgments

While we were able to propose an algorithm that achieves the optimal performance in the presence of acknowl-

edgments, there are no such guarantees for the algorithm Anack. The problem of identifying the algorithm that

achieves the optimal performance when acknowledgments are not available is largely open and the solution is

known only for special cases. As an example, the case when there is no process noise entering the system in (1)

was considered in [44]. Similarly, the case when one of the links does not exhibit erasure was considered in [16].

The algorithm Aack can be extended to another such special case. Consider the arrangement in which the sensors

are of class SNAK , i.e., acknowledgments are not available, however, the two sensors transmit information over the

same channel. Thus, at each time step, either both sensors transmit successfully or they both suffer erasure. In this

case, we can state the following.

Proposition VI.4. Consider a process evolving as in (28) being observed by two sensors of the form (3) that

transmit information to an encoder over erasure links of the type described in Definition II.1. Further, let the

erasure in the links be described by a single variable, so that r1(k) = r2(k) at all time steps. Let A ∈ R
n×n,

B ∈ R
n×l, C1 ∈ R

m1×n and C2 ∈ R
m2×n be given matrices specifying the state-space representation for the

plant. Suppose that the following encoding algorithm is carried out at every time step.

1) Each sensor i calculates the information vector Ii,k,k(k).

2) The decoder maintains a variable x̂dec(k) with the initial value x̂dec(−1) = 0. If r1(k) = r2(k) = ∅, the

variable is updated as

x̂dec(k) = Ax̂dec(k − 1),

otherwise, it is updated as

x̂dec(k) = P(k|k, k) (I1,k,k(k) + I2,k,k(k)) ,

where P(k|k, k) is the mmse error covariance in estimating x(k) evolving as in (1) given the variables y1(0),

· · · , y1(k), y2(0), · · · , y2(k).

Then, x̂dec(k) = x̂ (k|Imax
1 (k), Imax

2 (k)) , where Imax
i (k)’s are the maximal information sets.

Proof: Omitted for space constraints.

In general, however, when the links’ erasure events are independent and noiseless acknowledgments are not

available at every time step, the optimal algorithm is not known. We now consider the case when acknowledgments

are transmitted over a erasure link. We propose an algorithm whose performance improves as the probability of

the acknowledgment erasure decreases (for given probabilities of erasure in the channels from the sensors to the
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decoder) or as the probability of erasures decreases (for a given probability of acknowledgment erasure). The

algorithm still requires a constant amount of transmission and memory at the encoders, even though the memory

requirement at the decoder can be high if one of the channels is much worse than the other.

Denote the stochastic event of acknowledgment being received at the sensors at time step k by r ack(k) = 1 and

the event of acknowledgment being not received by r ack(k) = ∅. We shall once again consider the state space

representation of the system to be partitioned as in either (36) or (37) according to the process being of type I or

type II. The algorithm proceeds as follows. At each time step k

• Encoder for Sensor 1: The encoder for sensor 1 maintains an estimate t̂2(k) of the last time step at which

sensor 2 was able to communicate to the decoder. The estimate is updated as

t̂2(k) =

⎧⎪⎨
⎪⎩
k − 1 if r2(k − 1) = 1 and rack(k − 1) = 1

t̂2(k − 1) otherwise,

with t̂2(0) = −1. Similar to the algorithm Aack, the encoder then calculates two quantities: I1,k,k(k) and

I1,k,t̂2(k)(k). Note that both these quantities can be calculated recursively. Finally, the sensor also calculates

the estimate x̂loc,1
2 (k) of the modes x2(k) of the process using its local measurements y1(0), y1(1), · · · ,

y1(k). The sensor then transmits four quantities: t̂2(k), I1,k,k(k), I1,k,t̂2(k)(k) and x̂loc,1
2 (k).

• Encoder for Sensor 2: In a similar fashion, the encoder for the sensor 2 calculates and transmits the quantities

t̂1(k), I2,k,k(k), I2,t̂1(k),k(k) and x̂loc,2
1 (k).

• Decoder:

– The decoder maintains two sets S1 and S2 that are updated as follows. If r1(k) = 1, then take the

following actions:

S1(k) = {I2,k,t̂2
(k)}

S2(k) = F2,k (S2(k − 1))
⋃
I1,k,k(k).

Similarly, if r2(k) = 1, then take the following actions:

S2(k) = {I1,t̂1(k),k(k)}

S1(k) = F1,k (S1(k − 1))
⋃
I2,k,k(k).

In the above equations, the initial conditions are S1(−1) = ∅ and S2(−1) = ∅. The operation F2,k(S)

for a set S denotes that every element of S that is of the type I1,j,k−1(k − 1) is converted to I1,j,k(k).

The operation F1,k(.) is similarly defined. It is easily verified that the sets S1(k) and S2(k) only have

elements of the type I2,j,k(k) and I1,k,j(k) respectively.

– The decoder also maintains two variables that it updates as follows.

α(k) =

⎧⎪⎨
⎪⎩

t̂2(k) if r1(k) = 1

α(k − 1) otherwise.
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β(k) =

⎧⎪⎨
⎪⎩
t̂1(k) if r2(k) = 1

β(k − 1) otherwise.

The initial values are α(0) = β(0) = 0. Once again, it may be verified that the sets S1(k) and S2(k) at

any time step k contain the elements I2,k,α(k)(k) and I1,β(k),k(k) respectively.

– The decoder faces one of four possibilities.

1) If r1(k) = 1 and r2(k) = 1, the decoder calculates the estimate as

x̂dec(k) = P(k|k, k) (I1,k,k(k) + I2,k,k(k)) ,

where P(k|k, k) is the mmse error covariance in estimating x(k) evolving as in (28) given the variables

y1(0), · · · , y1(k), y2(0), · · · , y2(k).

2) If r1(k) = ∅ and r2(k) = ∅, the decoder updates its previous estimate as

x̂dec(k) = Ax̂dec(k − 1).

3) If r1(k) = 1 and r2(k) = ∅, the decoder calculates

x̂dec,t(k) = P(k|k, α(k))
(
I1,k,α(k)(k) + I2,k,α(k)(k)

)
,

where the term I1,k,α(k)(k) has been transmitted by the sensor 1 and the term I1,k,α(k)(k) can be

obtained from the set S2(k). The estimates for the modes x2(k) and x3(k) can now be isolated from

x̂dec,t(k) by accessing the last n2 + n3 elements. Also, the decoder uses the estimate x̂dec(k − 1) to

evaluate the estimate of the modes x1(k−1) by isolating the first n1 components. It can then calculate

x̂1(k) = A1,1x̂1(k − 1),

and concatenate this estimate of the modes x1(k) with the estimates for the modes x2(k) and x3(k)

to obtain x̂dec(k).

4) The case when r2(k) = 1 and r1(k) = ∅ can be treated similarly.

Note that when rack(k) ≡ ∅ at all time steps, the above algorithm is a version of the algorithm Anack

presented earlier. As k → ∞, it is fairly obvious that the algorithm yields optimal performance for the case when

acknowledgments are always available. As noted earlier, The stability conditions are unaffected by the availability

of acknowledgments.

D. Markov Drops

While the algorithm Aack was optimal for arbitrary realizations of the erasure process, the stability analysis so

far assumed that erasure events were i.i.d.. This condition can be relaxed. A popular model for the bursty nature

of packet drops in a wireless channel is according to a Markov chain. The simplest such model is the classical

Gilbert-Elliot channel model. In this model, the channel is assumed to exist in one of two possible modes: state

0 corresponding to a packet drop and state 1 corresponding to no packet drop. The channel transitions between
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the two states according to a Markov chain. Suppose that erasures in the each of the two links in our model be

described by such a Markov chain. Let the variable r1(k) be governed by a Markov chain with transition probability

matrix Q1 and the variable r2(k) by a Markov chain with transition probability matrix Q 2. Further, for simplicity,

let the erasure events at the two links be independent. We have the following result.

Proposition VI.5. (Necessary and sufficient conditions for stabilizability for Markovian packet drops) Consider

the set-up of Figure 1 and let A ∈ R
n×n, B ∈ R

n×l, C1 ∈ R
m1×n and C2 ∈ R

m2×n be given matrices specifying

the state-space representation for the plant. In addition, assume that the plant is observable and controllable and

that its state-space representation is of type I or type II. In addition, let the statistics of the erasure links 1 and 2

be described by Markov chains with transition probability matrices Q1 and Q2 respectively, with the element q00,i

denoting the probability of two consecutive erasures in the i-th link. Finally, let the erasures over the two channels

be independent. If the state space representation is of type I, then there exists a controller of class K, a positive

integer q and sensors of class Sq or S
NAK
q such that the feedback system is stable if and only if the following

inequalities hold

�(A1,1)2q00,2 < 1 (44)

�(A2,2)2q00,1 < 1 (45)

where �(Ai,i) represents the spectral radius of the matrix Ai,i. If the state-space representation is of type II then

stability is assured if and only if the following additional inequality also holds:

�(A3,3)2q00,1q00,2 < 1 (46)

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of controlling a plant using measurements from multiple sensors.

The information from the sensors to the controller is transmitted over links where erasure (data loss) is governed

by a stochastic process. We identified necessary and sufficient conditions for the stabilizability of a linear and

time-invariant plant, in a mean square sense. The allowable stabilization policies at the sensors are constrained to

place vectors of constant dimension for possible transmission over the erasure links. Under the assumption that

the controller is able to transmit acknowledgments back to the sensors, we identified an encoding algorithm that

minimizes a quadratic cost. We also considered various extensions, such as when sensors are able to co-operate

over an erasure link, and/or when acknowledgments are transmitted from the controller to the sensors via an erasure

channel. In this paper, we have also proved a multi-sensor version of the separation principle, which makes our

results relevant also to sensor fusion problems.

There are various directions in which the present work may be extended. Our algorithm can be extended for the

case when more than 2 sensors are present; however, this requires an exponentially increasing size of the memory

required at the encoders and of the transmission required. It would be interesting to explore algorithms that require
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less data to be transmitted, possibly with a more relaxed notion of optimal performance. It would also be important

to compute the performance of the sub-optimal encoding algorithm that was proposed in Section VI-C. We are

currently also looking at finding the optimal encoding algorithms for other channels such as AWGN or discrete

memoryless channels.
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APPENDIX

Proof of Proposition III.1 Consider that we are given a linear and time-invariant system with the properties

specified in the statement of the Proposition and whose state-space representation is specified by matrices A s0 ∈
R

n×n, Bs0 ∈ R
n×l, Cs0

1 ∈ R
m1×n and Cs0

2 ∈ R
m2×n. Here Cs0

1 and Cs0
2 represent a bipartition of the output

and s0 stands for stage zero. Below we outline a procedure, comprising three stages, that will lead to an equivalent

state-space of type I or type II, as defined in the statement of the Proposition.

First stage Since, from Assumption 1, the system is not observable from y 1(t) alone, or equivalently the pair

(A(s0), C
(s0)
1 ) is not observable, we can use the canonical structure theorem [34, page 340, eq. (22)] to conclude

that there exists a transformation P 0→1 ∈ R
n×n such that the matrices A(s1) def

= P 0→1A(s0)
(
P 0→1

)−1
and

C
(s1)
1

def
= C

(s0)
1

(
P 0→1

)−1
have the following structure:

A(s1) =

⎡
⎣ A

(s1)
1,1 A

(s1)
1,2

0n′
1×n1 A

(s1)
2,2

⎤
⎦ (47)

C
(s1)
1 =

[
0m1×n1 C

(s1)
1,2

]
(48)

where n1 + n′
1 = n, A(s1)

2,2 ∈ R
n′

1×n′
1 and C(s1)

1,2 ∈ R
m1×n′

1 . Notice that n1 is a strictly positive integer because the

pair (A(s0), C
(s0)
1 ) is not observable. The remaining matrices defining the new state-space representation are given

by C(s1)
2

def
= C

(s0)
2

(
P 0→1

)−1
and B(s1) def

= P 0→1B(s0).

Second stage We start by partitioning C (s1)
2 in the following way:

C
(s1)
2 =

[
C

(s1)
1,1 C

(s1)
1,2

]
(49)

where C(s1)
1,2 ∈ R

m2×n′
1 . We can now apply, once again, the canonical structure theorem [34, page 340, eq. (22)]

to show the existence of a transformation P 1→2 ∈ R
n′

1×n′
1 such that the matrix C (s2)

2,2

def
= C

(s1)
2,2

(
P 1→2

)−1
features
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one of the following structures below:

C
(s2)
2,2 =

⎧⎪⎨
⎪⎩

[
0m2×n2 C

(s3)
2,3

]
, C

(s3)
2,3 ∈ R

m2×n3 , n2 + n3 = n′
1 if C(s2)

2,2 is not zero (type II)

0m2×n′
1 otherwise (type I)

(50)

Similarly, for the matrix A(s2)
2,2

def
= P 0→1A(s1)

(
P 0→1

)−1
the following holds:

(system is type II) =⇒ A
(s2)
2,2 =

⎡
⎣ A

(s3)
2,2 A

(s3)
2,3

0n3×n2 A
(s3)
3,3

⎤
⎦ (51)

where A(s3)
2,2 ∈ R

n2×n2 and A(s3)
3,3 ∈ R

n3×n3 . Recall that according to Assumption 1 the system is not observable

from y2 alone, implying that n2 is a nonzero positive integer.

Third stage Consider the following state transformation:

P
def=

⎡
⎣ I 0n1×n′

1

0n′
1×n1 P 1→2

⎤
⎦P 0→1 (52)

We can now use the previous analysis to show, by inspection, that the state-space representation given by the

matrices A(s3) def
= PA(s0)P−1, B(s3) def

= PB(s0) , C(s3)
1

def
= C

(s0)
1 P−1 and C

(s3)
2

def
= C

(s0)
2 P−1 is in the form

specified by (10)-(12) if the system is type I and that otherwise the matrices will have the structure (13)-(15).
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