
Compiler Optimizations for Eliminating Cache Conflict Misses

Gabriel Rivera Chau-Wen Tseng

Department of Computer Science
University of Maryland

College Park, Maryland 20742

Abstract

Limited set-associativity in hardware caches can cause conflict misses when multiple data items map to the same cache
locations. Conflict misses have been found to be a significant source of poor cache performance in scientific programs,
particularly within loop nests. We present two compiler transformations to eliminate conflict misses: 1) modifying
variable base addresses, 2) padding inner array dimensions. Unlike compiler transformations that restructure the
computation performed by the program, these two techniques modify its data layout. Using cache simulations of a
selection of kernels and benchmark programs, we show these compiler transformations can eliminate conflict misses
for applications with regular memory access patterns. Cache miss rates for a 16K, direct-mapped cache are reduced by
35% on average for each program. For some programs, execution times on a DEC Alpha can be improved up to 60%.

1 Introduction

The increasing disparity between processor and memory speeds has motivated in modern microprocessors a memory
hierarchy, where higher levels (e.g., registers, primary cache) are fast and small, while lower levels (e.g., secondary
cache, memory) are slow and large. For microprocessors such as the DEC Alpha or the MIPS R10000, data in primary
(on-chip) cache can be accessed in a few cycles, secondary (off-chip) cache accesses take 10–20 cycles, and local
memory accesses take 60–100 cycles.

Applications that do not use caches effectively thus spend most of their time waiting for memory accesses. Scientific
programs tend to be particularly memory-intensive and dependent on the memory hierarchy. A simulation study by
Mowry et al. discovered scientific programs approximate spend from a quarter to half of overall execution time waiting
for data to be fetched from memory during sequential execution [18].

In order to exploit the greater speed of higher levels of the memory hierarchy, applications must possess data
locality, where an application reuses data. Reuse may be in the form of temporal locality, where the same data is
accessed multiple times, or spatial locality, where nearby data is accessed together. Fortunately, scientific applications
tend to have large amounts of reuse [4].

Due to speed constraints, hardware caches tend to have limited set associativity, where memory addresses can only
be mapped to one of k locations in a k-way associative cache. On-chip primary caches typically are direct-mapped
(1-way set associative). Because of the limited set associativity of hardware caches, programs may be unable to exploit
reuse actually present in the application.

Conflict misses may occur when too many data items map to the same set of cache locations, causing cache lines to
be flushed from cache before they may be reused, despite sufficient capacity in the overall cache. Conflict misses have
been found to be a significant source of poor performance in scientific programs, particularly within loop nests [17].
In this paper, we show that compiler transformations can be very effective in eliminating conflict misses for scientific
programs with regular access patterns.

1.1 Motivating Examples

We begin by providing some simple examples to motivate the need for eliminating conflict misses. Consider the loop
performing a vector dot product in Figure 1. Unit-stride references by B(i) and C(i) provide spatial locality, leading
to cache reuse. Consider what happens if the cache is direct mapped and the base addresses of B and C are separated
by a multiple of the cache size. Every access to C(i) will be mapped to the same cache line as the previous access to
B(i) and vice versa, causing every reference to be a conflict miss. Conflict misses between variables thus eliminate

1



real S, B(N), C(N) --> real B(N), DUMMY(PAD), C(N)
do i = 1,N
S = S + B(i)*C(i)

Figure 1 Inter-Variable Padding (Change Base Address)

real A(N,N), B(N,N) --> real A(N,N), B(N+PAD,N)
do j = 1,N
do i = 1,N
A(i,j) = 0.25 * (B(i+1,j)+B(i-1,j)+B(i,j+1)+B(i,j-1))

Figure 2 Intra-Variable Padding (Change Column Dimension)

spatial reuse. A technique for eliminating the conflict misses in such cases is to change the base address of statically
allocated variables such as B and C so that they no longer cause conflicts. The base addresses may be directly modified
in the linker, or through the compile-time transformation of inter-variable padding, as shown in Figure 1.

In a similar fashion, consider the Jacobi iteration kernel in Figure 2. It is a stencil computation used to iteratively
solve partial differential equations. There is much temporal and spatial reuse found in the group of references to B.
If B is a large array, where each column is a multiple of the cache size, then different columns of B will be mapped
to the same cache lines, causing conflict misses. Cache effects thus eliminates spatial reuse within a variable. One
method for eliminating such conflict misses is to change internal layout of the array B so that they no longer cause
conflicts. This change requires a compile-time transformation such as intra-variable padding, as shown in Figure 2.
By increasing the size of the inner dimension, columns no longer map onto each other.

These two examples demonstrate cases of severe conflict misses, both between variables and within variables.
These misses are severe because they occur on each loop iterations. In such cases, the conflict occurs so quickly after
each reference that locality is lost. Cache lines are flushed out of cache before data on the cache line can be reused.
Both examples demonstrate loss of spatial locality, but temporal locality can be lost as well.

2 Data Layout Optimizations

This paper investigates the effectiveness of compiler transformations for eliminating conflict misses in scientific
programs. We are optimistic, since compilation technology has already advanced to the point where users can run
their programs efficiently without excessive concern with other details of the underlying hardware architecture such
as vector registers, multiple functional units, out-of-order issue, and instruction-level parallelism.

Previous research has shown that compilers can automatically restructure programs to improve the data locality
of applications [4, 22]. Example optimizations include loop permutation, tiling, loop fission, and loop fusion. These
computation-reordering optimizations are generally based on changing the order iterations of a loop nest are executed.
However, for the motivating examples shown, program transformations that reorder computation would have little or
no effect on reducing conflict misses.

To eliminate conflict misses, a new class of data layout optimizations are needed. Data layout optimizationssuch as
inter and intra-variable padding modify how variables in a program are laid out in memory, with the goal of improving
spatial locality and avoiding adverse memory effects such as conflict misses or false sharing in parallel programs [1,
5, 15]. In this paper, we focus on data layout transformations to eliminate conflict misses for sequential programs.

Most data layout optimizations can be applied at compile time, but link-time and run-time optimizations (for heap-
allocated objects) are also possible. As with many compiler transformations, the effect of data layout optimizations
may be uncertain. Transformations to eliminate cache conflicts may actually cause new conflict and capacity misses.
As a result sophisticated compiler algorithms and precise analyses may be needed. In this paper, we explore the
effectiveness two data layout optimizations: inter and intra-variable padding. We first describe properties of each
transformation, then describe basic optimization algorithms implemented in a prototype compiler.

2



2.1 Inter-variable Padding (Modifying Base Addresses)

Inter-variable padding simply changes the base address of statically allocated variables. The order variables are laid
out in memory can be changed, and unused variables (pads) inserted. Inter-variable padding may also be applied to
fields of large structure/records (such as Fortran common blocks), changing their order and inserting unused fields
(pads) where necessary.

The most important effect is to modify the difference between base addresses of two variables so that they no longer
cause cache conflicts. Other potential uses include co-locating related variables to exploit spatial locality and aligning
variables to cache lines and pages to improve spatial locality. Disadvantages include wasted memory for pads. Base
addresses of global variables may be modified by the linker. Compiler intervention is needed to modify addresses of
local variables and fields of structures or common blocks.

2.2 Intra-variable Padding (Modifying Array Dimensions)

Inter-variable padding can eliminate conflict misses between different variables or fields of a structure, but does not
affect conflict misses caused by different references to a single array. Another transformation, intra-variable (array)
padding, is required. Intra-variable padding differs from modifying variable base addresses in that it increases internal
array dimension sizes, changing the relative layout for higher dimensions of the array [2, 19]. Intra-array padding can
thus eliminate conflict misses between different sections of the same array. Because it also changes the size of an
array, intra-array padding also changes base addresses of variables and may achieve benefits similar to inter-variable
padding. Disadvantages include extra memory for pads within the array and fragmentation of the useful data in the
array. Array padding must be performed at compile time. It is interesting to note that in many scientific applications,
users have already padded arrays by hand to avoid conflict misses.

3 Prototype Compiler Implementation

The data layout optimizations were implemented as passes in the Stanford SUIF compiler [13, 20]. SUIF is a compiler
infrastructure designed to support research in both optimizing and parallelizing compilers. Independently developed
compilation passes work together by using a common intermediate format to represent programs. SUIF has been tested
and validated on a large number of programs. It takes as input Fortran or C programs, and can generate transformed
C, Fortran, or assembly code output for a variety of processors.

3.1 Globalization Preprocessing

In order to enable setting of variable base addresses at compile time, SUIF performs a number of transformations.
First, it promotes local array/structure variables into the global scope. Actual parameters to functions cannot and do
not need to be promoted, since they represent variables declared elsewhere. Second, SUIF splits the fields of structures
and Fortran common blocks so that individual fields or variables may be optimized. Finally, it takes array/structure
global variables and make them into fields of suifmem, a large structured variable (or common block in Fortran).
Preprocessing thus results in a single global variable containing all of the variables to be optimized, as shown in
Figure 3. SUIF can now modify the base addresses of variables as needed by reordering fields in the suifmem
structure, inserting pad variables if needed.

3.2 Intra-variable Padding

The compiler next applies intra-variable padding. The current implementation only considers padding of the lowest-
order array dimension (columns for Fortran arrays). Because interprocedural analysis is not currently performed,
dimensions of arrays passed as procedure parameters (whole or part) are not padded (since padding must be consistent
across procedures to be safe). Two simple intra-variable padding heuristics were implemented:

All-pad A parameter n is provided. All lowest-order array dimensions are padded by n elements unconditionally,
provided safety conditions are satisfied.

3



int A[100]; --> struct _globmem {
foo() { ...

int B[100]; int A[100];
for (i) int B[100];

A[i] = B[i]; ...
} } _suifmem;

foo() {
for (i)

suifmem.A[i] = suifmem.B[i];
}

Figure 3 Globalization Preprocessing Output

Calc-pad A target cache size and a desired minimum-distance (in bytes) are provided as parameters. The heuristic
decides the amount to pad a given array as follows. If the size of the lowest-order dimension (say, the column size) is
within minimum-distance of a multiple of the cache size, or, in the case that the column size is less than the cache size,
if twice or three times the column size is within minimum-distance of the cache size, then increase the column size as
necessary to eliminate this condition.

3.3 Inter-variable Padding

Finally, padding between arrays and other variables is performed. Variables are first partitioned into groups with
members of equal size. Groups are sorted by element size, then passed individually to a procedure which assigns each
variable in the group a final base address at some location beyond the storage for the previously assigned variable.
Two heuristics are implemented for choosing the address for each member of a group. A target cache size is provided
as parameter.

Min-pad A parameter minimum-distance (number of cache lines) is provided. The heuristic attempts to pad variables
in a group so that they remain minimum-distance apart in the cache. To do so, the candidate set of base addresses
is restricted to multiples of minimum-distance. Then, for each variable in the current group, whenever possible the
heuristic choses the next available address from this set which does not map to the same cache location as any of the
previously assigned base addresses of variables in the group. If no such address remains, the next available address
from this set is selected irrespective of previous assignments. The resulting assignment of base addresses is such that
all variable base addresses are separated by a distance of at least minimum-distance on the cache. Multiple variables
from a group of n members can occupy a single region only when n > cache-size / minimum-distance, which is rare
for small enough minimum-distance.

Max-pad The second mode of operation for the inter-variable padding pass is similar, except that the next power
of two equal to or exceeding cache-size / n is used in place of minimum-distance, again where n is the number of
variables in the group. Provided this value is big enough to avoid address alignment problems, each variable in the
group can occupy its own cache region.

4 Experimental Evaluation

To evaluate the effectiveness of our data layout optimizations, we used SUIF to transform a number of scientific kernels
and applications written by hand or taken from the SPEC92 and NAS benchmarks suites, as shown in Table 1. For each
program tested, multiple optimized versions were generated by varying several parameters to the optimization pass.
These parameters specified the target cache size and the combination of heuristics involved in the padding decisions.
The original and optimized versions of each program were then both timed and simulated. Timings were made on
275MHz DEC Alpha 20064 processors with 16KB direct-mapped primary caches with 32B cache lines. Application
cache behavior was also simulated for a number of cache parameters using the ATOM binary rewriting tool. The

4



Program Lines Description
KERNELS

adi32 63 2D ADI Integration Fragment (Liv8)
dot256 32 Vector Dot Product (Liv3)
erle64 612 3D Tridiagonal Solver

expl512 59 2D Explicit Hydrodynamics (Liv18)
irr500k 196 Relaxation over Irregular Mesh

jacobi512 52 2D Jacobi with Convergence Test
linpackd 791 Gaussian Elimination with Pivoting
mult300 29 Matrix Multiplication (Liv21)
rb512 52 2D Red-Black Over-Relaxation

shal512 227 Shallow Water Model

Program Lines Description
SPEC92 BENCHMARKS

doduc 5334 Thermohydraulical Modelization
fpppp 2718 2 Electron Integral Derivative

hydro2d 4392 Navier-Stokes
mdljdp2 4316 Molecular Dynamics (double precision)
mdljsp2 3885 Molecular Dynamics (single precision)

ora 373 Ray Tracing
su2cor 2514 Quantum Physics

swm256 487 Vector Shallow Water Model
tomcatv 195 Mesh Generation

NAS BENCHMARKS

appbt 4457 Block-Tridiagonal PDE Solver
applu 3417 Lower-Upper triangular PDE Solver
appsp 3516 Scalar-Pentadiagonal PDE Solver
buk 305 Bucket Sort

embar 265 Monte Carlo
fftpde 773 2D Fast Fourier Transform

Table 1 Scientific Programs in Study

resulting measurements demonstrated the potential effectiveness of data layout optimizations and which combinations
of heuristics can be most worthwhile.

4.1 Cache Miss Rates

We begin by simulating application miss rates for a DEC Alpha primary cache, a 16KB direct-mapped cache with 32
byte cache lines. Figure 4 compares cache miss rates for the original and best optimized versions of each program.
These results demonstrate the usefulness of compiler optimizations for eliminating conflict misses.

Table 2 presents a more detailed look at the effect of data layout optimizations on simulated cache miss rates. Miss
rates are presented for the original program (orig) and various combinations of optimization parameters. The first
four versions resulted from applying only inter-variable padding using various minimum-distances (2,4,8 lines) or a
compiler-calculated distance (calc) using the Maxpad heuristic. Two versions resulted from applying only intra-array
padding, using either a fixed 4-element pad (4 elems) or a compiler-calculated pad (calc). The last version (both)
combined inter-array padding with minimum-distance of 4 cache lines and intra-array padding with a 4-element fixed
pad. The difference between the best miss rate achieved and the original miss rate are shown in the second-to-last
column (diff). The percent decrease is listed in the final column (%). Figures 5 and 6 presents the miss rate for each
program graphically.

Our results identify no consistently superior inter-variable padding heuristic. The Minpad algorithm generally
outperformed Maxpad Padding between arrays by 2,4, and 8 cache lines seems to usually yield the same performance
for Minpad, with minor perturbations. Padding by 2 cache lines performs very poorly for adi32. Padding by 4 cache
lines is bad for mdljdp2. Padding by 8 cache lines causes mdljdp2 and appsp to degrade slightly. Large inter-variable
pads selected by the Maxpad algorithm generally performed the same or slightly worse than the Minpad, except for
three programs (mult300, mdljsp2, buk).

Out of the 25 programs used, improvements were observed in 17 of the best optimized versions. In 11 of these,
the decrease in the miss rate exceeded 50%. Among the 6 without improvement, 2 exhibited no change, 2 underwent
increases in the miss rate less than 2%, and the remaining 2 underwent increases less under 5%. Overall, among
intra-variable and inter-variable padding, the optimization with the greatest impact was inter-variable padding. Intra-
variable padding offered comparatively little benefit except for erle64, where a fixed 4-element pad was necessary to
reduce the miss rate from 17.8% to to 5%. Later we see that intra-variable padding becomes more important as the
ratio of array size to cache size increases.

Overall, the average cache miss rate for all programs can be reduced from 19% to 9% using the best optimization
heuristic, a reduction of 10%. On average, cache miss rates are reduced by 35% for each program. For many programs,
the cache miss rate is reduced by 70-80%.

5



0

10

20

30

40

50

60

70

80
ad

i3
2

do
t2

56

er
le

64

ex
pl

51
2

ir
r5

00
k

ja
co

bi
51

2

li
np

ac
kd

m
ul

t3
00

rb
51

2

sh
al

51
2

do
du

c

fp
pp

p

hy
dr

o2
d

m
dl

jd
p2

m
dl

js
p2 or

a

su
2c

or

sw
m

25
6

to
m

ca
tv

ap
pb

t

ap
pl

u

ap
ps

p

bu
k

em
ba

r

ff
tp

de

ca
ch

e 
m

is
s 

ra
te

best opt

orig

Figure 4 Cache Miss Rate for Original and Best Optimizated Codes

Miss rates (%) for 16K cache, direct-mapped, 32B lines

Program orig inter-array intra-array both best improv
2 lines 4 lines 8 lines calc calc 4 elems diff (%)

adi32 59.65 27.98 15.57 15.57 15.57 64.49 59.66 24.76 44.08 73.90
dot256 66.06 16.73 16.73 16.73 16.73 66.06 66.06 16.73 49.33 74.67
erle64 20.96 17.82 17.82 17.83 17.82 17.82 5.14 5.25 15.82 75.48

expl512 77.40 13.90 13.90 13.90 22.79 77.42 72.29 14.01 63.50 82.04
irr500k 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.80 0.00 0.00

jacobi512 28.93 8.80 8.80 8.80 8.78 28.93 28.94 8.80 20.15 69.65
linpackd 10.14 10.14 10.14 10.14 10.14 10.15 10.15 10.14 0.00 0.00
mult300 10.41 10.40 10.40 10.41 9.77 10.40 10.10 10.10 0.64 6.15

rb512 17.77 17.83 17.83 17.83 17.83 17.83 17.90 17.90 -0.06 -0.34
shal512 30.70 5.03 5.03 5.03 7.15 32.18 32.74 5.06 25.67 83.62
doduc 4.59 5.56 5.56 5.56 5.56 4.80 4.70 5.02 -0.11 -2.40
fpppp 3.59 4.01 4.01 4.01 4.01 0.73 0.80 5.51 2.86 79.67

hydro2d 13.21 13.92 13.92 13.92 14.08 13.42 13.42 13.51 -0.21 -1.59
mdljdp2 3.31 4.51 6.21 5.23 3.57 3.33 3.33 6.20 -0.02 -0.60
mdljsp2 7.69 3.57 3.57 3.57 1.86 2.00 2.00 3.57 5.83 75.81

ora 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
su2cor 39.94 19.62 19.65 19.87 23.08 39.89 39.78 19.68 20.32 50.88

swm256 3.90 3.89 3.89 3.89 6.67 3.90 4.03 4.04 0.01 0.26
tomcatv 18.62 8.17 8.22 8.30 18.71 18.27 9.20 9.33 10.45 56.12

appbt 3.65 4.33 4.33 4.33 4.37 3.86 3.83 4.37 -0.18 -4.93
applu 4.40 4.30 4.30 4.30 4.33 4.63 4.32 4.40 0.10 2.27
appsp 27.30 16.30 16.19 17.05 16.84 32.39 32.42 16.33 11.11 40.70
buk 8.33 1.47 1.47 1.47 0.69 2.11 2.11 1.47 7.64 91.72

embar 0.66 0.67 0.65 0.67 0.67 0.67 0.67 0.67 0.01 1.52
fftpde 9.20 8.97 8.97 8.97 8.97 9.28 9.28 8.98 0.23 2.50

Average 18.97 9.27 8.84 8.85 9.75 18.73 17.47 8.79 10.66 35.71

Table 2 Effect of Optimizations on Cache Miss Rates

6



adi32

0 10 20 30 40 50 60 70
orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

dot256

0 10 20 30 40 50 60 70

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

erle64

0 5 10 15 20 25

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

expl512

0 10 20 30 40 50 60 70 80

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

irr500k

0 1 2 3 4 5

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

jacobi512

0 5 10 15 20 25 30

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

linpackd

0 2 4 6 8 10 12

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

m
ult300

0 2 4 6 8 10 12

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

rb512

0 2 4 6 8 10 12 14 16 18

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

doduc

0 1 2 3 4 5 6

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

shal512

0 5 10 15 20 25 30 35

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

fpppp

0 1 2 3 4 5 6

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

hydro2d

0 2 4 6 8 10 12 14 16

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

m
dljdp2

0 1 2 3 4 5 6 7

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

m
dljsp2

0 1 2 3 4 5 6 7 8

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

F
igure

5
C

ache
M

iss
R

ate
forO

ptim
izations

7



ora

0 1 2 3 4 5

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

su2cor

0 5 10 15 20 25 30 35 40

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

sw
m

256

0 1 2 3 4 5 6 7

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

tom
catv

0 2 4 6 8 10 12 14 16 18 20

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

appbt

0 1 2 3 4 5

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

x

applu

0 1 2 3 4 5

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

appsp

0 5 10 15 20 25 30 35

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

buk

0 1 2 3 4 5 6 7 8 9

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

em
bar

0 1 2 3 4 5

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

fftpde

0 1 2 3 4 5 6 7 8 9 10

orig

2 lines

4 lines

8 lines

max-pad

calc-pad

4 elems

both

optim
izations

cache miss rates

F
igure

6
C

ache
M

iss
R

ate
forO

ptim
izations

8



Miss rates (%) 32B lines

Program 16K direct 16K 4-way 4K direct 4K 4-way
orig opt orig opt orig opt orig opt

adi32 59.65 15.57 14.70 14.95 60.16 18.23 15.37 14.95
dot256 66.06 16.73 16.50 16.50 66.26 17.40 16.50 16.50
erle64 20.96 17.82 4.63 4.63 22.45 20.83 4.64 4.64

expl512 77.40 13.90 60.79 13.73 79.81 47.33 60.96 13.99
irr500k 3.80 3.80 2.23 2.23 25.49 25.50 24.95 24.97

jacobi512 28.93 8.80 8.71 8.71 72.26 52.33 14.49 14.49
linpackd 10.14 10.14 8.33 8.33 15.81 15.81 15.17 15.17
mult300 10.41 10.40 8.39 8.39 14.68 14.61 14.00 13.75
rb512 17.77 17.83 17.77 17.76 70.73 70.69 26.60 26.65

shal512 30.70 5.03 30.19 5.11 60.67 6.33 46.30 23.35
doduc 4.59 5.56 2.87 2.39 15.63 12.38 10.46 7.26
fpppp 3.59 4.01 0.20 0.21 14.87 24.37 9.69 9.54

hydro2d 13.21 13.92 10.71 10.68 16.09 16.19 12.02 12.41
mdljdp2 3.31 6.21 1.90 6.24 12.73 14.97 6.27 9.10
mdljsp2 7.69 3.57 1.09 1.09 14.24 9.58 3.64 2.95

ora 0.00 0.00 0.00 0.00 0.27 0.26 0.00 0.00
su2cor 39.94 19.65 41.18 20.09 66.39 59.73 42.66 23.32

swm256 3.90 3.89 4.06 3.66 45.77 5.94 40.08 4.98
tomcatv 18.62 8.22 8.25 7.99 71.28 23.55 34.86 12.11

appbt 3.65 4.33 2.91 3.08 6.18 6.71 4.11 4.27
applu 4.40 4.30 3.67 3.58 6.77 6.71 3.95 3.86
appsp 27.30 16.19 14.75 10.30 28.29 20.13 16.55 13.59
buk 8.33 1.47 0.50 1.13 2.79 2.89 1.46 3.23

embar 0.66 0.65 0.65 0.65 0.70 0.76 0.65 0.65
fftpde 9.20 8.97 2.30 2.32 9.78 9.91 3.24 3.22

Average 18.97 8.84 10.69 6.95 32.00 20.13 17.14 11.16

Table 3 Effect of Cache Size and Associativity

4.2 Cache Parameters

Table 3 presents the effect of cache size and associativity on simulated cache miss rates. For each cache configuration,
we provide the cache miss rate of the original program (orig) and a version with inter-variable padding of 4 cache
lines (opt). Results for the 16K cache show that data layout optimizations eliminate conflict misses sufficiently so that
for most applications, overall cache miss rates of optimized programs (8.8%) are comparable to those on a 4-way set
associative cache (6.9%).

For a few applications, 4-way associativity is not sufficient to eliminate conflict misses. These applications
(expl512, shal512, su2cor, appsp) benefit significantly from data layout optimizations even for a 4-way associative
cache, heavily influencing the observed overall drop in cache miss rates from 10.7% to 6.9%. The level of miss rates
exhibited in these programs are such that miss rates for optimized programs on the direct-mapped cache (8.8%) are
actually lower than miss rates for unoptimized programs on the 4-way set associative cache (10.7%).

Comparing 16K with 4K caches, we see while overall cache miss rates increase for 4K caches, data layout
optimizations are still important for eliminating conflict misses. Programs such as swm256 which previously have no
conflict misses for 16K caches suddenly experience conflicts for 4K caches. However, data layout optimizations are
less able to eliminate conflict misses for a 4K cache, as shown by the greater difference between overall cache miss
rates of optimized programs (20.1%) and those for a 4-way associative cache (11.2%).

9



Miss rates (%) for 16K cache, direct-mapped, 32B lines

Program data set orig inter-array intra-array both best improv
size 4 lines calc 4 elems calc diff (%)

256x256 3.90 3.89 6.67 4.03 3.90 4.04 0.01 0.26
swm 512x512 14.83 4.09 7.05 4.29 14.83 4.28 10.74 72.42

1024x1024 44.89 4.99 7.58 5.22 44.89 5.22 39.90 88.88
256x256 18.62 8.22 18.71 9.20 18.27 9.33 10.40 55.85

tomcatv 512x512 31.90 10.88 19.36 12.70 31.34 10.90 21.02 65.89
1024x1024 81.96 22.45 28.67 15.35 30.86 11.81 70.15 85.59

Table 4 Effect of Data Set Size

DEC Alpha with 16K cache, direct-mapped, 32B lines

Time (seconds)
Program data set original optimized improve (%)

adi32 8.30 6.70 19.28
dot256 10.10 8.70 13.86
expl512 32.30 19.50 39.63

jacobi512 11.90 4.50 62.18
mult300 50.00 46.50 7.00
shal512 43.40 31.80 26.73
fpppp 58.70 54.00 8.01
su2cor 165.30 123.80 25.11
swm 256x256 25.30 22.80 9.88
swm 512x512 36.10 30.90 14.40

tomcatv 256x256 33.00 29.00 12.12
tomcatv 512x512 61.50 36.50 40.65

Table 5 Effect of Optimizations on Execution Times

4.3 Data Set Size

Table 4 presents the effect of application data set size on the impact of data layout optimizations. Swm256 and tomcatv,
two applications from SPEC92, and their data sets increased by a factor of four and sixteen. We see that as data set
sizes increased, more conflict misses result. The impact of data layout optimizations is thus increased. This effect is
similar to our previous observation that conflict misses increase as cache size decreases.

For swm256, inter-array padding was not needed for the original 256x256 data set, but reduces miss rates for the
larger 512x512 and 1024x1024 data sets. All instances of tomcatv benefit from inter-array padding, but intra-array
padding becomes necessary only for the 1024x1024 data set. These results indicate that data layout optimizations may
be more important for real applications, which have larger data sets than benchmark programs.

4.4 Execution Times

Table 4 presents the effectiveness of data layout optimizations on program performance. We compared program
execution times of the original program and best optimized version on a DEC Alpha. Programs not included did not
change in performance. We see that small improvements in primary cache miss rates as measured by the simulator
generally did not affect execution times (probably due to the secondary cache). However, programs with large data
sets are significantly impacted by reduction in conflict misses. This effect is apparent for the versions of swm and
tomcatv with different data set sizes. In fact, timings for the largest versions of swm and tomcatv were not provided
because the unoptimized versions took too long to execute!

10



real*8 za(512, 512), zb(512, 512) ... zz(512, 512)
do 30 k = 2, N - 1
do 30 j = 2, N - 1
zu(j,k) = zu(j,k) + s * (za(j,k) * (zz(j,k) - zz(j+1,k))
- za(j-1,k) * (zz(j,k) - zz(j-1,k)) - zb(j,k) * (zz(j,k)
- zz(j,k-1)) + zb(j,k+1) * (zz(j,k) - zz(j,k+1)))

zv(j, k) = zv(j,k) + s * (za(j,k) * (zr(j,k) - zr(j+1,k))
- za(j-1,k) * (zr(j,k) - zr(j-1,k)) - zb(j,k+1) * (zr(j,k)
- zr(j,k-1)) + zb(j,k+1) * (zr(j,k) - zr(j,k+1)))

30 continue

Figure 7 Key Loop Nest in Expl512

4.5 Discussion

From these results, we see that even the simple heuristics implemented in the prototype compiler were able to eliminate
cases of severe conflict misses. In general, inserting small inter-variable pads using the Minpad heuristic is sufficient to
eliminate the worst of the severe conflict misses. Intra-variable padding is rarely needed for the benchmark programs
examined, but becomes more important as the ratio of array size to cache size increases. Programs with regular
access patterns benefit the most from data layout optimizations. The five programs with irregular data access patterns
(irr500k,mdljdp2,mdljsp2,buk,fftpde) either did not benefit or experienced random effects. Programs with few array
accesses (ora,embar) were generally unaffected. Only a few programs were greatly improved, but the impact is
significant enough that data layout optimizations should be applied.

4.6 Case Study

Our experimental results reveal both the promise and pitfalls of data layout optimizations. Overall, significant
improvements are achieved through simple heuristics, but the best combinations of heuristics vary from program to
program. A more detailed look at one case illustrates why simple heuristics usually succeed but sometimes fail, and
suggests the likely benefits of more sophisticated analyses and more informed heuristics.

The kernels tested in our experiments exhibit many of the characteristics of the larger benchmarks used, but are
simpler to understand and summarize. Consider expl512, an explicit hydrodynamics stencil kernel from the Livermore
Loops. Figure 7 displays the key loop nest in expl512. Each array referenced inside the loop has dimensions 512 by
512. Clearly, if the arrays are laid out adjacently in memory as declared below, all array base addresses will coincide
on any typical cache of size less than 512KB.

One consequence is that references pairs of the form zz(j,k), zb(j,k) will collide inside the loop body,
resulting in conflict misses. Because cache lines contain multiple array elements, collisions may result whenever
references are made to memory locations less than two cache lines apart, modulo the cache size. Hence, references
such as za(j-1,k) will potentially also cause misses for subsequent accesses to zz(j,k).

These cache effects provide the motivation for inter-array padding. Our experiments demonstrate that pads of 2, 4,
or 8 cache lines succeed in reducing the miss rate from 77.4% to 13.9%. However, one of our inter-variable padding
heuristics, Maxpad, proves considerably less effective, reducing miss rates only to 22.8%. Examining the output code
for this heuristic offers insight into why more precise analysis is required.

During optimization, the Maxpad algorithm is applied to a single group containing all nine arrays (za, zb, ... zz).
Since 16 is the smallest power of 2 greater than or equal to 9, Maxpad spaces the arrays 16384=16 = 1024 bytes apart
on the cache. One new and significant unintended consequence is the alignment between columns of different arrays
on the cache. With the Minpad heuristic, the sum of all array pads inserted totaled at most 9 times the size of 8 cache
lines, or 9*8*32 = 2304 bytes. Since the column of each array is 4096 bytes in size, references pairs of the form
A(j,k), B(j,k+1) could never collide, but under the Maxpad heuristic, several such pairs exist.

Because conflicts between different array columns, the resulting miss rate is thus higher than when applying
Minpad heuristic. However, Minpad would in fact produce the same undesirable effects given a small enough column

11



size. The common weakness is that neither current inter-variable padding heuristics analyze loop nests. Instead, they
assume loop nests access different arrays consistently at similar offsets. Though this assumption holds to a large extent
for many scientific programs, it will not always be valid. Our techniques will thus benefit from improved compile-time
analysis and more sophisticated heuristics.

5 Improving Compiler Heuristics

The heuristics currently implemented in the prototype compiler are simple and do not perform much compiler analysis.
Experimental results indicate that they eliminate the worst cases of severe conflict misses, but are somewhat unstable,
causing small perturbations in cache miss rates. In some cases transformations can significantly reduce program
performance. More precise compiler analysis can be used to avoid performance degradation, and possibly eliminate
additional conflict misses.

5.1 Predicting Conflict Misses

A key requirement for better application of data layout optimizations is compile-time estimation of conflict misses.
Several models have been developed to calculate spatial and temporal locality for sequential programs [4, 7, 11, 22].
However, these models are suitable for predicting the occurrence of conflict misses. More recently, Ghosh et al.
have developed a method for detecting conflict misses by calculating cache miss equations which summarize a loop’s
memory behavior [12]. They demonstrate how cache miss equations may be used to directly compute the number of
conflict misses in a loop nest. We plan to adopt a simplified version of cache miss equations to help guide our array
padding heuristics.

To predict severe conflict misses, we propose a modification of the algorithm by Gannon et al. for calculation of
uniformly generated references [11]. Two references to the same variable are uniform if their subscripts have the same
index variables and differ only by a constant term. For instance, assuming i, j are loop index variables, A(i,j) and
A(i-1,j+2) are uniformly generated references, but A(i,j) and A(j,i) are not. The intuition is that references
in the same uniformly generated group have very similar memory access patterns that may significantly overlap. Both
Gannon et al. and Wolf and Lam use uniformly generated references as way of calculating group-reuse when estimating
cache locality [11, 8, 22]. Carr et al. utilize a similar concept called reference groups, customized for individual loops.

To check for severe conflict misses within an array, the compiler can examine members of a group of uniformly
generated references to determine whether they differ in non-contiguous array dimensions. If they do, then conflict
misses are likely if the size of intervening array dimensions is a multiple of the cache size. To check for conflict misses
between variables, the algorithm needs to be modified to allow different variables to be placed in the same group of
uniformly generated references. For instance, A(i,j) and B(i-1,j+2) should be considered together. Assuming
their array dimensions are conforming, their access patterns are sufficiently similar so that severe conflict misses can
result if the base addresses of A and B differ by a multiple of the cache size.

Once potential conflict misses are found, they may be factored into the cache cost models used to evaluate the
program. If conflict misses occur, they reduce the locality exhibited by a variable or group of variables. The cache
cost model can account for the conflict misses by eliminating all or part of the self and group reuse computed for the
references.

5.2 Improved Compiler Analysis

Once the compiler has a model for detecting conflict misses, we can use it to determine whether there are sufficient
severe conflict misses present to require data layout optimizations. Current heuristics examine the existing global data
layout and array declarations to decide whether padding should be performed. More precise analysis may be achieved
by also examining the computation and memory access patterns present in the program.

We propose that the compiler identify potential conflict misses between variables for individual loop nests. It
can then construct conflict graph in the same manner as hierarchical register allocation, weighting each loop nest by
estimated cost of conflict misses. Only arrays that actually conflict with each other are put into the same group to be
padded. Once sources of conflicts are identified, we can use current heuristics to select a small set of possible paddings,
and use our cache cost model to select between them. Our cost model should prevent significant accidental increases

12



in conflict misses, and by avoiding unnecessary changes to the data layout, we should be able to reduce low-level
performance perturbations.

We are currently in the process of incorporating a limited version of cache miss equations to detect severe conflict
misses and select array paddings [12]. Preliminary results indicate it can consistently match the best result from the
set of current compiler padding heuristics.

6 Related Work

Data locality has been recognized as a significant performance issue for both scalar and parallel architectures. Wolf
and Lam provide a concise definition and summary of important types of data locality [22]. Gannon et al. introduce
the notion of uniformly generated references as a means of discovering group reuse between references to the same
array [11]. McKinley and Temam performed a study of loop-nest oriented cache behavior for scientific programs and
concluded that conflict misses cause half of all cache misses and most intra-nest misses [17].

Most researchers exploring compiler optimizations to improve data locality have concentrated on computation-
reordering transformations derived from shared-memory parallelizing compilers [23, 24]. Loop permutation and loop
tiling are the primary optimization techniques used [4, 6, 10, 14, 22], though loop fission (distribution) and loop fusion
have also been found to be helpful [4]. Wolf and Lam use unimodular transformations (a combination of permutation,
skewing, and reversal) and tiling with estimates of temporal and spatial reuse to improve data locality. They prune their
search space by ignoring loops that do not carry reuse and loops that cannot be permuted due to legality constraints [22,
21]. Li and Pingali use linear transformations (any linear mapping from one loop nest to another loop nest) to optimize
for both data locality and parallelism [16]. They do not propose exhaustive search, since the search space becomes
infinite, but transform the loop nest based on certain references in the program. They give no details of their heuristic
to order loops for locality.

Many researchers have also examined the problem of deriving estimates of cache misses in order to help guide
data locality optimizations [3, 9, 8, 7]. These models typically can predict only capacity misses because they assume a
fully-associative cache. In comparison, Ghosh et al. can determine conflict misses by calculating cache miss equations,
linear Diophantine equations that summarize each loop’s memory behavior [12]. They demonstrate how to use cache
miss equations to select array paddings to eliminate conflict misses, and block sizes for tiling. We plan to adopt
simplified versions of cache miss equations to help guide our array padding heuristics.

Researchers have previously examined changing data layout in parallel applications to eliminate false sharing and
co-locate data and computation, have not studied its effect on sequential applications. Jeremiassen and Eggers have
performed the most extensive examination of automatically eliminating false sharing in explicitly parallel programs
in a compiler [15]. Cierniak and Li examined combining array transpose and loop transformations to improve locality
for parallel programs [5]. They use an algebraic formulation to combine nonsingular loop transformations with array
transpose, but do not discuss detailed heuristics for resolving optimization conflicts when when multiple references to
the same variable exist. Amarasinghe et al. demonstrated the utility of array reindexing for parallel applications [1].
They found it to be significant in eliminating adverse cache effects, though specialized optimizations were necessary
to reduce computation overhead for modified array subscripts.

7 Conclusions

Conflict misses have been pointed out as a significant source of poor cache performance in scientific programs,
particularly within loop nests. In this paper, we present two compiler data layout optimizations to eliminate conflict
misses: 1) modifying variable base addresses, 2) padding inner array dimensions. Optimizations heuristics currently
implemented in the SUIF compiler are naive, but can be improved. Using cache simulations of a selection of kernels
and benchmark programs, we show these compiler transformations can eliminate conflict misses for many applications
with regular memory access patterns. For some programs, execution times on a DEC Alpha can be improved up to
60%. The compilation techniques and results presented in this paper should be of interest to computer vendors and
computer architects. Most importantly, by reducing the effort of achieving high performance for scientific programs,
these techniques will make computational science more attractive for scientists and engineers.

13



References
[1] J. Anderson, S. Amarasinghe, and M. Lam. Data and computation transformation for multiprocessors. In Proceedings of the

Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Santa Barbara, CA, July 1995.

[2] W. Bolosky, R. Fitzgerald, and M. Scott. Simple but effective techniques for NUMA memory management. In Proceedings
of the Twelfth Symposium on Operating Systems Principles, Litchfield Park, AZ, December 1989.

[3] D. Callahan and A. Porterfield. Data cache performance of supercomputer applications. In Proceedings of Supercomputing
’90, New York, NY, November 1990.

[4] S. Carr, K. S. McKinley, and C.-W. Tseng. Compiler optimizations for improving data locality. In Proceedings of the Sixth
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-VI), San
Jose, CA, October 1994.

[5] M. Cierniak and W. Li. Unifying data and control transformations for distributed shared-memory machines. In Proceedings
of the SIGPLAN ’95 Conference on Programming Language Design and Implementation, La Jolla, CA, June 1995.

[6] S. Coleman and K. McKinley. Tile size selection using cache organization and data layout. In Proceedings of the SIGPLAN
’95 Conference on Programming Language Design and Implementation, La Jolla, CA, June 1995.

[7] J. Ferrante, V. Sarkar, and W. Thrash. On estimating and enhancing cache effectiveness. In U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua, editors, Languages and Compilers for Parallel Computing, Fourth International Workshop, Santa
Clara, CA, August 1991. Springer-Verlag.

[8] K. Gallivan, W. Jalby, and D. Gannon. On the problem of optimizing data transfers for complex memory systems. In
Proceedings of the Second International Conference on Supercomputing, St. Malo, France, July 1988.

[9] K. Gallivan, W. Jalby, A. Maloney, and H. Wijshoff. Performance prediction of loop constructs on multiprocessor hierarchical
memory systems. In Proceedings of the 1989 ACM International Conference on Supercomputing, pages 433–442, Crete,
Greece, June 1989.

[10] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory management by global program transformations.
In Proceedings of the First International Conference on Supercomputing. Springer-Verlag, Athens, Greece, June 1987.

[11] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory management by global program transformation.
Journal of Parallel and Distributed Computing, 5(5):587–616, October 1988.

[12] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: An analytical representation of cache misses. In Proceedings
of the 1997 ACM International Conference on Supercomputing, Vienna, Austria, July 1997.

[13] M. Hall, S. Amarasinghe, B. Murphy, S. Liao, and M. Lam. Detecting coarse-grain parallelism using an interprocedural
parallelizing compiler. In Proceedings of Supercomputing ’95, San Diego, CA, December 1995.

[14] F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the Fifteenth Annual ACM Symposium on the Principles
of Programming Languages, San Diego, CA, January 1988.

[15] T. Jeremiassen and S. Eggers. Reducing false sharing on shared memory multiprocessors through compile time data transfor-
mations. In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Santa
Barbara, CA, July 1995.

[16] W. Li and K. Pingali. Accessnormalization: Loop restructuring for NUMA compilers. In Proceedingsof the Fifth International
Conferenceon ArchitecturalSupport for ProgrammingLanguagesand Operating Systems (ASPLOS-V), Boston, MA, October
1992.

[17] K. S. McKinley and O. Temam. A quantitative analysis of loop nest locality. In Proceedings of the Eighth International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-VIII), Boston, MA,
October 1996.

[18] T. Mowry, M. Lam, and A. Gupta. Design and evaluation of a compiler algorithm for prefetching. In Proceedings of the Fifth
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-V), pages
62–73, Boston, MA, October 1992.

[19] J. Torrellas, M. Lam, and J. Hennessy. Shared data placement optimizations to reduce multiprocessor cache miss rates. In
Proceedings of the 1990 International Conference on Parallel Processing, St. Charles, IL, August 1990.

[20] R. Wilson et al. SUIF: An infrastructure for research on parallelizing and optimizing compilers. ACM SIGPLAN Notices,
29(12):31–37, December 1994.

[21] M. E. Wolf. Improving Locality and Parallelism in Nested Loops. PhD thesis, Stanford, CA, August 1992.

[22] M. E. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of the SIGPLAN ’91 Conference on Programming
Language Design and Implementation, Toronto, Canada, June 1991.

[23] M. E. Wolf and M. Lam. A loop transformation theory and an algorithm to maximize parallelism. IEEE Transactions on
Parallel and Distributed Systems, 2(4):452–471, October 1991.

[24] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cambridge, MA, 1989.

14


