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Abstract

Little theory exists in the field of software system measurement. Concepts such as complexity,
coupling, cohesion or even size are very often subject to interpretation and appear to have
inconsistent definitions in the literature. As a consequence, there is little guidance provided to the
analyst attempting to define proper measures for specific problems. Many controversies in the
literature are simply misunderstandings and stem from the fact that some people talk about different
measurement concepts under the same label (complexity is the most common case).

There is a need to define unambiguously the most important measurement concepts used in
the measurement of software products. One way of doing so is to define precisely what
mathematical properties characterize these concepts, regardless of the specific software artifacts to
which these concepts are applied. Such a mathematical framework could generate a consensus in
the software engineering community and provide a means for better communication among
researchers, better guidelines for analysts, and better evaluation methods for commercial static
analyzers for practitioners.

In this paper, we propose a mathematical framework which is generic, because it is not
specific to any particular software artifact, and rigorous, because it is based on precise
mathematical concepts. This framework defines several important measurement concepts (size,
length, complexity, cohesion, coupling). It does not intend to be complete or fully objective; other
frameworks could have been proposed and different choices could have been made. However, we
believe that the formalisms and properties we introduce are convenient and intuitive. In addition,
we have reviewed the literature on this subject and compared it with our work. This framework
contributes constructively to a firmer theoretical ground of software measurement.

1 . Introduction

Many concepts have been introduced through the years to define the characteristics of the artifacts
produced during the software process. For instance, one speaks of size and complexity of software
specification, design, and code, or cohesion and coupling of a software design or code. Several
techniques have been introduced, with the goal of producing software which is better with respect
to these concepts. As an example, Parnas [P72] design principles attempt to decrease coupling
between modules, and increase cohesion within modules. These concepts are used as a guide to
choose among alternative techniques or artifacts. For instance, a technique may be preferred over
another because it yields artifacts that are less complex; an artifact may be preferred over another
because it is less complex. In turn, lower complexity is believed to provide advantages such as
lower maintenance time and cost. This shows the importance of a clear and unambiguous
understanding of what these concepts actually mean, to make choices on more objective bases. The
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definition of relevant concepts (i.e., classes of software characterization measures) is the first step
towards quantitative assessment of software artifacts and techniques, which is needed to assess
risk and find optimal trade-offs between software quality, schedule and cost of development.

To capture these concepts in a quantitative fashion, hundreds of software measures have
been defined in the literature. However, the vast majority of these measures did not survive the
proposal phase, and did not manage to get accepted in the academic or industrial worlds. One
reason for this is the fact that they have not been built using a clearly defined process for defining
software measures. As we propose in [BMB94(b)], such a process should be driven by clearly
identified measurement goals and knowledge of the software process. One of its crucial activities is
the precise definition of relevant concepts, necessary to lay down a rigorous framework for
software engineering measures and to define meaningful and well-founded software measures.
The theoretical soundness of a measure, i.e., the fact that it really measures the software
characteristic it is supposed to measure, is an obvious prerequisite for its acceptability and use. The
exploratory process of looking for correlations is not an acceptable scientific validation process in
itself if it is not accompanied by a solid theory to support it. Unfortunately, new software measures
are very often defined to capture elusive concepts such as complexity, cohesion, coupling,
connectivity, etc. (Only size can be thought to be reasonably well understood.) Thus, it is
impossible to assess the theoretical soundness of newly proposed measures, and the acceptance of
a new measure is mostly a matter of belief.

To this end, several proposals have appeared in the literature [LJS91, TZ92, W88] in
recent years to provide desirable properties for software measures. These works (especially
[W88]) have been used to "validate" existing and newly proposed software measures.
Surprisingly, whenever a new measure which was proposed as a software complexity measure did
not satisfy the set of properties against which it was checked, several authors failed to conclude
that their measure was not a software complexity measure, e.g., [CK94, H92]. Instead, they
concluded that their measure was a complexity measure that does not satisfy that set of properties
for complexity measures. What they actually did was provide an absolute definition of a software
complexity measure and check whether the properties were consistent with respect to the measure,
i.e., check the properties against their own measure.

This situation would be unacceptable in other engineering or mathematical fields. For
instance, suppose that one defines a new measure, claiming it is a distance measure. Suppose also
that that measure fails to satisfy the triangle inequality, which is the characterizing property of
distance measures. The natural conclusion would be to realize that that is not a distance measure,
rather than to say that it is a distance measure that does not satisfy the conditions for a distance
measure. However, it is true that none of the sets of properties proposed so far has reached so
wide an acceptance to be considered "the" right set of necessary properties for complexity. It is our
position that this odd situation is due to the fact that there are several different concepts that are still
covered by the same word: complexity.

Within the set of commonly mentioned software characteristics, size and complexity are the
ones that have received the widest attention. However, the majority of authors have been inclined
to believe that a measure captures either size or complexity, as if, besides size, all other concepts
related to software characteristics could be grouped under the unique name of complexity.
Sometimes, even size has been considered as a particular kind of complexity measure.

Actually, these concepts capture different software characteristics, and, until they are
clearly separated and their similarities and differences clearly studied, it will be impossible to reach
any kind of consensus on the properties that characterize each concept relevant to the definition of
software measures. The goal of this paper is to lay down the basis for a discussion on this subject,
by providing properties for a—partial—set of measurement concepts that are relevant for the
definition of software measures. Many of the measure properties proposed in the literature are
generic in the sense that they do not characterize specific measurement concepts but are relevant to
all syntactically-based measures (see [S92, TZ92, W88]). In this paper, we want to focus on
properties that differentiate measurement concepts such as size, complexity, coupling, etc. Thus,
we want to identify and clarify the essential properties behind these concepts that are commonplace
in software engineering and form important classes of measures. Thus, researchers will be able to
validate their new measures by checking properties specifically relevant to the class (or concept)
they belong to (e.g., size should be additive). By no means should these properties be regarded as
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the unique set of properties that can be possibly defined for a given concept. Rather, we want to
provide a theoretically sound and convenient solution for differentiating a set of well known
concepts and check their analogies and conflicts. Possible applications of such a framework are to
guide researchers in their search for new measures and help practitioners evaluate the adequacy of
measures provided by commercial tools.

We also believe that the investigation of measures should also address artifacts produced in
the software process other than code. It is commonly believed that the early software process
phases are the most important ones, since the rest of the development depends on the artifacts they
produce. Oftentimes, the concepts (e.g., size, complexity, cohesion, coupling) which are believed
relevant with respect to code are also relevant for other artifacts. To this end, the properties we
propose will be general enough to be applicable to a wide set of artifacts.

The paper is organized as follows. In Section 2, we introduce the basic definitions of our
framework. Section 3 provides a set of properties that characterize and formalize intuitively
relevant measurement concepts: size, length, complexity, cohesion, coupling. We also discuss the
relationships and differences between the different concepts. Some of the best-known measures are
used as examples to illustrate our points. Section 4 contains comparisons and discussions
regarding the set of properties for complexity measures defined in the paper and in the literature.
The conclusions and directions for future work come in Section 5.

2 . Basic Definitions

Before introducing the necessary properties for the set of concepts we intend to study, we provide
basic definitions related to the objects of study (to which these concepts can be applied), e.g., size
and complexity of what?

Systems and modules

Two of the concepts we will investigate, namely, size (Section 3.1) and complexity (Section 3.3)
are related to systems, in general, i.e., one can speak about the size of a system and the complexity
of a system. We also introduce a new concept, length (Section 3.2), which is related to systems. In
our general framework—recall that we want these properties to be as independent as possible of
any product abstraction—, a system is characterized by its elements and the relationships between
them. Thus, we do not reduce the number of possible system representations, as elements and
relationships can be defined according to needs.

Definition 1: Representation of Systems and Modules
A system S will be represented as a pair <E,R>, where E represents the set of elements of S, and
R is a binary relation on E (R ⊆ E × E) representing the relationships between S's elements.

Given a system S = <E,R>, a system m = <Em,Rm> is a module of S if and only if
Em ⊆  E, Rm ⊆  E × E, and Rm ⊆  R. As an example, E can be defined as the set of code
statements and R as the set of control flows from one statement to another. A module m may be a
code segment or a subprogram.

The elements of a module are connected to the elements of the rest of the system by
incoming and outgoing relationships. The set InputR(m) of relationships from elements outside
module m = <Em,Rm> to those of module m is defined as

InputR(m) = {<e1,e2> ∈ R| e2 ∈ Em and e1 ∈ E - Em}

The set OutputR(m) of relationships from the elements of a module m = <Em,Rm> to those of the
rest of the system is defined as

OutputR(m) = {<e1,e2> ∈ R| e1 ∈ Em and e2 ∈ E - Em}
◊
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We now introduce inclusion, union, intersection operations for modules and the definitions of
empty and disjoint modules, which will be used often in the remainder of the paper. For notational
convenience, they will be denoted by extending the usual set-theoretic notation. We will illustrate
these operations by means of the system S = <E,R> represented in Figure 1, where
E = {a,b,c,d,e,f,g,h,i,j,k,l,m} and R = {<b,a>,<b,f>,<c,b>,<c,d>,<c,g>,<d,f>,<e,g>,<f,i>,
<f,k>,<g,m>,<h,a>,<h,i>,<i,j>,<k,j>,<k,l>}. We will consider the following modules

- m1 = <Em1,Rm1> = <{a,b,f,i,j,k},{<b,a>,<b,f>,<f,i>,<f,k>,<i,j>,<k,j>} (area filled
with )

- m2 = <Em2,Rm2> = <{f,j,k},{<f,k>,<k,j>} (area filled with )
- m3 = <Em3,Rm3> = <{c,d,e,f,g,j,k,m},{<c,d>,<c,g>,<d,f>,<e,g>,<f,k>,<g,m>,

<k,j>}> (area filled with )
- m4 = <Em4,Rm4> = <{d,e,g},{<e,g>}> (area filled with )

Inclusion. Module m1 = <Em1,Rm1> is said to be included in module m2 = <Em2,Rm2>
(notation: m1 ⊆ m2) if Em1 ⊆ Em2 and Rm1 ⊆ Rm2. In Figure 1, m4 ⊆ m3.

Union. The union of modules m1 = <Em1,Rm1> and m2 = <Em2,Rm2> (notation: m1 ∪ m2)
is the module <Em1 ∪ Em2,Rm1 ∪ Rm2>. In Figure 1, the union of modules m1 and m3 is
module m13 = <{a,b,c,d,e,f,g,i,j,k,m}, {<b,a>,<b,f>,<c,d>,<c,g>,<d,f>,<e,g>,<f,i>,
<f,k>,<g,m>,<i,j>,<k,j>} (area filled with  or  or ).

Intersection. The intersection of modules m1 = <Em1,Rm1> and m2 = <Em2, Rm2> (notation:
m1 ∩ m2) is the module <Em1 ∩ Em2,Rm1 ∩ Rm2>. In Figure 1, m2 = m1 ∩ m3.

Empty module. Module <∅,∅> (denoted by ∅) is the empty module.

Disjoint modules. Modules m1 and m2 are said to be disjoint if m1 ∩ m2 = ∅. In Figure 1,

m1 ∩  m4 = ∅ .
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Figure 1. Operations on modules.

Since in this framework modules are just subsystems, all systems can theoretically be decomposed
into modules. The definition of a module for a particular measure in a specific context is just a
matter of convenience and programming environment (e.g., language) constraints.
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Modular systems

The other two concepts we will investigate, cohesion (Section 3.4) and coupling (Section 3.5), are
meaningful only with reference to systems that are provided with a modular decomposition, i.e.,
one can speak about cohesion and coupling of a whole system only if it is structured into modules.
One can also speak about cohesion and coupling of a single module within a whole system.

Definition 2: Representation of Modular Systems
The 3-tuple MS = <E,R,M> represents a modular system if S = <E,R> is a system according to
Definition 1, and M is a collection of modules of S such that

∀  e ∈  E  ( ∃ m ∈  M (m = <Em,Rm> and e ∈  Em) ) and

∀ m1,m2 ∈ M (m1 = <Em1,Rm1> and m2 = <Em2,Rm2> and Em1 ∩ Em2 = ∅)

i.e, the set of elements E of MS is partitioned into the sets of elements of the modules.
We denote the union of all the Rm's as IR. It is the set of intra-module relationships. Since

the modules are disjoint, the union of all OutputR(m)'s is equal to the union of all InputR(m)'s,
which is equal to R-IR. It is the set of inter-module relationships.

◊

As an example, E can be the set of all declarations of a set of Ada modules, R the set of
dependencies between them, and M the set of Ada modules.

Figure 2 shows a modular system MS = <E,R,M>, obtained by partitioning the set of
elements of the system in Figure 1 in a different way. In this modular system, E and R are the
same as in system S in Figure 1, and M = {m1,m2,m3}. Besides, IR = {<b,a>,<c,d>,<c,g>,
<e,g>,<f,i>,<f,k>,<g,m>,<h,a>,<i,j>,<k,j>,<k,l>}.
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Figure 2. A modular system.

It should be noted that some measures do not take into account the modular structure of a system.
As already mentioned, our concepts of size and complexity (defined in Sections 3.1 and 3.3) are
such examples, i.e., in a modular system MS = <E,R,M>, one computes size and complexity of
the system S = <E,R>, and M is not considered.

We have defined concept properties using a graph-theoretic approach to allow us to be
general and precise. It is general because our properties are defined so that no restriction applies to
the definition of vertices and arcs. Many well known product abstractions fit this framework, e.g.,
data dependency graphs, definition-use graphs, control flow graphs, USES graphs,
Is_Component_of graphs, etc. It is precise because, based on a well defined formalism, all the
concepts used can be mathematically defined, e.g., system, module, modular system, and so can
the properties presented in the next section.
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3. Concepts of Measurement and Properties

It should be noted that the concepts defined below are to some extent subjective. However, we
wish to assign them intuitive and convenient properties. We consider these properties necessary
but not sufficient because they do not guarantee that the measures for which they hold are useful or
even make sense. On the other hand, these properties will constrain the search for measures and
therefore make the measure definition process more rigorous and less exploratory [BMB94(b)].
Several relevant concepts are studied: size, length, complexity, cohesion, and coupling. They do
not represent an exhaustive list but a starting point for discussion that should eventually lead to a
standard definition set in the software engineering community.

3.1 . Size

Motivation

Intuitively, size is recognized as being an important measurement concept. According to our
framework, size cannot be negative  (property Size.1), and we expect it to be null when a system
does not contain any elements (property Size.2). When modules do not have elements in common,
we expect size to be additive (property Size.3).

Definition 3: Size
The size of a system S is a function Size(S) that is characterized by the following properties Size.1
- Size.3.

◊

Property Size.1: Non-negativity
The size of a system S = <E,R> is non-negative

Size(S) ≥ 0 (Size.I)
◊

Property Size.2: Null Value
The size of a system S = <E,R> is null if E is empty

E = ∅  ⇒  Size(S) = 0 (Size.II)
◊

Property Size.3: Module Additivity
The size of a system S = <E,R> is equal to the sum of the sizes of two of its modules
m1 = <Em1,Rm1> and m2 = <Em2,Rm2> such that any element of S is an element of either m1
or m2

(m1 ⊆  S and m2 ⊆  S and E = Em1 ∪  Em2 and Em1 ∩  Em2 = ∅ )
⇒ Size(S) = Size(m1) + Size(m2) (Size.III)

◊

For instance, the size of the system in Figure 2 is the sum of the sizes of its three modules
m1,m2,m3.

The last property Size.3 provides the means to compute the size of a system S = <E,R> from the
knowledge of the size of its—disjoint—modules me = <{e},Re> whose set of elements is
composed of a different element e of E1.

1For each me, it is either Re = ∅ or Re = {<e,e>}.
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Size(S) = ∑
e∈E

Size(me)     (Size.IV)

Therefore, adding elements to a system cannot decrease its size (size monotonicity property)

(S' = <E',R'> and S" = <E",R"> and E' ⊆  E") ⇒  Size(S') ≤ Size(S")  (Size.V)

From the above properties Size.1 - Size.3, it follows that the size of a system S = <E,R> is not
greater than the sum of the sizes of any pair of its modules m1 = <Em1,Rm1> and
m2 = <Em2,Rm2>, such that any element of S is an element of m1, or m2, or both, i.e.,

(m1 ⊆ S and m2 ⊆ S and E = Em1 ∪ Em2) ⇒  Size(S) ≤ Size(m1) + Size(m2) (Size.VI)

The size of a system built by merging such modules cannot be greater than the sum of the sizes of
the modules, due to the presence of common elements (e.g., lines of code, operators, class
methods).

Properties Size.1 - Size.3 hold when applying the admissible transformation of the ratio scale
[F91]. Therefore, there is no contradiction between our concept of size and the definition of size
measures on a ratio scale.

Examples and counterexamples of size measures

Several measures introduced in the literature can be classified as size measures, according to our
properties Size.1 - Size.3. With reference to code measures, we have: LOC, #Statements,
#Modules, #Procedures, Halstead's Length [H77], #Occurrences of Operators, #Occurrences of
Operands, #Unique Operators, #Unique Operands. In each of the above cases, the representation
of a program as a system is quite straightforward. Each counted entity is an element, and the
relationship between elements is just the sequential relationship.

Some other measures that have been introduced as size measures do not satisfy the above
properties. Instances are the Estimator of length, and Volume [H77], which are not additive when
software modules are disjoint (property Size.3). Indeed, for both measures, the value obtained
when two disjoint software modules are concatenated may be less than the sum of the values
obtained for each module, since they may contain common operators or operands. Note that, in
this context, the graph is just the sequence of operand and operator occurrences. Disjoint code
segments are disjoint subgraphs.

On the other hand, other measures, that are meant to capture other concepts, are indeed size
measures. For instance, in the object-oriented suite of measures defined in [CK94], Weighted
Methods per Class (WMC) is defined as the sum of the complexities of methods in a class.
Implicitly, the program is seen as a directed acyclic graph (a hierarchy) whose terminal nodes are
methods, and whose nonterminal nodes are classes. When two classes without methods in
common are merged, the resulting class's WMC is equal to the sum of the two WMC's of the
original classes (property Size.3 is satisfied). When two classes with methods in common are
merged, then the WMC of the resulting class may be lower than the sum of the WMC's of the two
original classes (formula Size.VI). Therefore, since all size properties hold (it is straightforward to
show that properties Size.1 and Size.2 are true for WMC), this is a class size measure. However,
WMC does not satisfy our properties for complexity measures (see Section 3.3). Likewise, NOC
(Number Of Children of a class) and Response For a Class (RFC) [CK94] are other size
measures, according to our properties.
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3.2. Length

Motivation

Properties Size.1 - Size.3 characterize the concept of size as is commonly intended in software
engineering. Actually, the concept of size may have different interpretations in everyday life,
depending on the measurement goal. For instance, suppose we want to park a car in a parallel
parking space. Then, the "size" we are interested in is the maximum distance between two points
of the car linked by a segment parallel to the car's motion direction. The above properties Size.1 -
Size.3 do not aim at defining such a measure of size. With respect to physical objects, volume and
weight satisfy the above properties. In the particular case that the objects are unidimensional (or
that we are interested in carrying out measurements with respect to only one dimension), then these
concepts coincide.

In order to differentiate this measurement concept from size, we call it length. Length is
non-negative (property Length.1), and equal to 0 when there are no elements in the system
(property Length.2). In extreme situations where systems are composed of unrelated elements this
property allows length to be non-null. If a new relationship is introduced between two elements
belonging to the same connected component2 of the graph representing a system, the length of the
new system is not greater than the length of the original system (property Length.3). The idea is
that, in this case, a new relationship may make the elements it connects "closer" than they were.
This new relationship may reduce the maximum distance between elements in the connected
component of the graph, but it may never increase it. On the other hand, if a new relationship is
introduced between two elements belonging to two different connected components, the length of
the new system is not smaller than the length of the original system. This stems from the fact that
the new relationship creates a new connected component, where the maximum distance between
two elements cannot be less than the maximum distance between any two elements of either
original connected component (property Length.4). Length is not additive for disjoint modules.
The length of a system containing several disjoint modules is the maximum length among them
(property Length.5).

Definition 4: Length
The length of a system S is a function Length(S) characterized by the following properties
Length.1 - Length.4.

◊

Property Length.1: Non-negativity
The length of a system S = <E,R> is non-negative

Length(S) ≥ 0 (Length.I)
◊

Property Length.2: Null Value
The length of a system S = <E,R> is null if E is empty

(E = ∅ ) ⇒  (Length(S) = 0) (Length.II)
◊

Property Length.3: Non-increasing Monotonicity for Connected Components
Let S be a system and m be a module of S such that m is represented by a connected component of
the graph representing S. Adding relationships between elements of m does not increase the length
of S

2Here, two elements of a system S are said to belong to the same connected component if there is a path from one to
the other in the non-directed graph obtained from the graph representing S by removing directions in the arcs.
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(S = <E,R> and m = <Em,Rm> and m ⊆  S
and m "is a connected component of S" and

S' = <E,R'> and R' = R ∪  {<e1,e2>} and <e1,e2> ∉  R
and e1 ∈ Em1 and e2 ∈ Em1) ⇒  Length(S) ≥ Length(S')  (Length.III)

◊

Property Length.4: Non-decreasing Monotonicity for Non-connected Components
Let S be a system and m1 and m2 be two modules of S such that m1 and m2 are represented by two
separate connected components of the graph representing S. Adding relationships from elements of
m1 to elements of m2 does not decrease the length of S

(S = <E,R> and m1 = <Em1,Rm1> and m2 = <Em2,Rm2>
and m1 ⊆ S  and m2 ⊆ S "are separate connected components of S" and

S' = <E,R'> and R' = R ∪  {<e1,e2>} and <e1,e2> ∉  R
and e1 ∈ Em1 and e2 ∈ Em2) ⇒  Length(S') ≥ Length(S)  (Length.IV)

◊

Property Length.5: Disjoint Modules
The length of a system S = <E,R> made of two disjoint modules m1, m2 is equal to the maximum
of the lengths of m1 and m2

(S = m1 ∪  m2 and m1 ∩  m2 = ∅  and E = Em1 ∪  Em2) ⇒  
Length(S) = max{Length(m1),Length(m2)} (Length.V)

◊

Let us illustrate the last three properties with systems S, S', S", represented in Figure 3. We will
assume that m1 = m'1 = m"1, m2 = m'2 = m"2, and m3 = m'3 = m"3. The length of system
S, composed of the three connected components m1, m2, and m3, is the maximum value among
the lengths of m1, m2, and m3 (property Length.V). System S' differs from system S only because
of the added relationship <c,m> (represented by the thick dashed arrow), which connects two
elements already belonging to a connected component of S, m3. The length of system S' is not
greater than the length of S (property Length.III). System S" differs from system S only because
of the added relationship <b,f> (represented by the thick solid arrow), which connects two
elements belonging to two different connected components of S, m1 and m2. The length of system
S" is not less than the length of S (property Length.IV).

Properties Length.1 - Length.5 hold when applying the admissible transformation of the
ratio scale. Therefore, there is no contradiction between our concept of length and the definition of
length measures on a ratio scale.

Examples of length measures

Several measures can be defined at the system or module level based on the length concept. A
typical example is the depth of a hierarchy. Therefore, the nesting depth in a program [F91] and
DIT (Depth of Inheritance Tree—which is actually a hierarchy, in the general case) defined in
[CK94] are length measures.

3.3 . Complexity

Motivation

Intuitively, complexity is a measurement concept that is considered extremely relevant to system
properties. It has been studied by several researchers (see Section 4 for a comparison between our
framework and the literature). In our framework, we expect complexity to be non-negative
(property Complexity.1) and to be null (property Complexity.2) when there are no relationships
between the elements of a system. However, it could be argued that the complexity of a system



University of Maryland CS-TR-3368 - 10

whose elements are not connected to each other does not need to be necessarily null, because each
element of E may have some complexity of its own. In our view, complexity is a system property
that depends on the relationships between elements, and is not an isolated element's property.  The
complexity that an element taken in isolation may—intuitively—bring can only originate from the
relationships between its "subelements." For instance, in a modular system, each module can be
viewed as a "high-level element" encapsulating "subelements." However, if we want to consider
the system as composed of such "high-level elements" (E), we should not "unpack" them, but only
consider them and their relationships, without considering their "subelements" (E'). Otherwise, if
we want to consider the contribution of the relationships between "subelements" (R'), we actually
have to represent the system as S = <E', R∪R'>.
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Figure 3. Properties of length.
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Complexity should not be sensitive to representation conventions with respect to the direction of
arcs representing system relationships (property Complexity.3). A relation can be represented in
either an "active" (R) or "passive" (R-1) form. The system and the relationships between its
elements are not affected by these two equivalent representation conventions, so a complexity
measure should be insensitive to this.

Also, the complexity of a system S should be at least as much as the sum of the
complexities of any collections of its modules, such that no two modules share relationships, but
may only share elements (property Complexity.4). We believe that this property is the one that
most strongly differentiates complexity from the other system concepts. Intuitively, this property
may be explained by two phenomena. First, the transitive closure of R is a larger graph than the
graph obtained as the union of the transitive closures of R' and R'' (where R' and R'' are
contained in R). As a consequence, if any kind of indirect (i.e., transitive) relationships between
elements is considered in the computation of complexity, then the complexity of S may be larger
than the sum of its modules' complexities, when the modules do not share any relationship.
Otherwise, they are equal. Second, merging modules may implicitely generate between the
elements of each modules. (e.g., definition-use relationships may be created when blocks are
merged into a common system). As a consequence of the above properties, system complexity
should not decrease when the set of system relationships is increased (property Complexity.4).

However, it has been argued that it is not always the case that the more relationships
between the elements of a system, the more complex the system. For instance, it has been argued
that adding a relationship between two elements may make the understanding of the system easier,
since it clarifies the relationship between the two. This is certainly true, but we want to point out
that this assertion is related to understandability, rather than complexity, and that complexity is
only one of the factors that contribute to understandability. There are other factors that have a
strong influence on understandability, such as the amount of available context information and
knowledge about a system. In the literature [MGB90], it has been argued that the inner loop of the
ShellSort algorithm, taken in isolation, is less understandable than the whole algorithm, since the
role of the inner loop in the algorithm cannot be fully understood without the rest of the algorithm.
This shows that understandability improves because a larger amount of context information is
available, rather than because the complexity of the ShellSort algorithm is less than that of its inner
loop. As another example, a relationship between two elements of a system may be added to
explicitly state a relationship between them that was implicit or uncertain. This adds to our
knowledge of the system, while, at the same time, increases complexity (according to our
properties). In some cases (see above examples), the gain in context information/knowledge may
overcome the increase in complexity and, as a result, may improve understandability. This stems
from the fact that several phenomena concurrently affect understandability and does not mean in
any way that an increase in complexity increases understandability.

Last, the complexity of a system made of disjoint modules is the sum of the complexities of
the single modules (property Complexity.5). Consistent with property Complexity.4, this property
is intuitively justified by the fact that the transitive closure of a graph composed of several disjoint
subgraphs is equal to the union of the transitive closures of each subgraph taken in isolation.
Furthermore, if two modules are put together in the same system, but they are not merged, i.e.,
they are still two disjoint module in this system, then no additional relationships are generated from
the elements of one to the elements of the other.

The properties we define for complexity are, to a limited extent, a generalization of the
properties several authors have already provided in the literature (see [LJS91, TZ92, W88]) for
software code complexity, usually for control flow graphs. We generalize them because we may
want to use them on artifacts other than software code and on abstractions other than control flow
graphs.

Definition 5: Complexity
The complexity of a system S is a function Complexity(S) that is characterized by the following
properties Complexity.1 - Complexity.5.

◊
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Property Complexity.1: Non-negativity
The complexity of a system S = <E,R> is non-negative

Complexity(S) ≥ 0 (Complexity.I)
◊

Property Complexity.2: Null Value
The complexity of a system S = <E,R> is null if R is empty

R = ∅  ⇒  Complexity(S) = 0 (Complexity.II)
◊

Property Complexity.3: Symmetry
The complexity of a system S = <E,R> does not depend on the convention chosen to represent
the relationships between its elements

(S=<E,R> and S-1=<E,R-1>) ⇒ Complexity(S) = Complexity(S-1) (Complexity.III)
◊

Property Complexity.4: Module Monotonicity
The complexity of a system S = <E,R> is no less than the sum of the complexities of any two of
its modules with no relationships in common

(S = <E,R> and m1 = <Em1,Rm1> and m2 = <Em2,Rm2>
and m1 ∪  m2 ⊆  S and Rm1 ∩  Rm2 = ∅ )

⇒ Complexity(S) ≥ Complexity(m1)+Complexity(m2) (Complexity.IV)
◊

For instance, the complexity of the system shown in Figure 4 is not smaller than the sum of the
complexities of m1 and m2.

a

b

c

d
e

f g

h

i

j

k

l

m

m1 m2

Figure 4. Module monotonicity of complexity.

Property Complexity.5: Disjoint Module Additivity
The complexity of a system S = <E,R> composed of two disjoint modules m1, m2 is equal to the
sum of the complexities of the two modules

(S = <E,R> and S = m1 ∪  m2 and m1 ∩  m2 = ∅ )
⇒ Complexity(S) = Complexity(m1) + Complexity(m2) (Complexity.V)

◊
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For instance, the complexity of system S in Figure 2 is the sum of the complexities of its modules
m1, m2, and m3.

As a consequence of the above properties Complexity.1 - Complexity.5, it can be shown
that adding relationships between elements of a system does not decrease its complexity

(S' = <E,R'> and S" = <E,R"> and R' ⊆  R")
⇒ Complexity(S') ≤ Complexity(S") (Complexity.VI)

Properties Complexity.1 - Complexity.5 hold when applying the admissible transformation of the
ratio scale. Therefore, there is no contradiction between our concept of complexity and the
definition of complexity measures on a ratio scale.

Comprehensive comparisons and discussions of previous work in the area of complexity
properties are provided in Section 4.

Examples and counterexamples of complexity measures

In [O80], Oviedo proposed a data flow complexity measure (DF). In this case, systems are
programs, modules are program blocks, elements are variable definitions or uses, and relationships
are defined between the definition of a given variable and its uses. The measure in [O80] is simply
defined as the number of definition-use pairs in a block or a program. Property Complexity.4
holds. Given two modules (i.e., program blocks) which may only have common elements (i.e., no
definition-use relationship is contained in both), the whole system (i.e., program) has a number of
relationships (i.e., definition-use relationships) which is at least equal to the sum of the numbers of
definition-use relationships of each module. Property Complexity.5 holds as well. The number of
definition-use relationships of a system composed of two disjoint modules (i.e., blocks between
which no definition-use relationship exists), is equal to the sum of the numbers of definition-use
relationships of each module. As a conclusion, DF is a complexity measure according to our
definition.

In [McC76], McCabe proposed a control flow complexity measure. Given a control flow
graph G = <E,R> (which corresponds—unchanged—to a system for our framework),
Cyclomatic Complexity is defined as

v(G) = |R| - |E| + 2p

where p is the number of connected components of G. Let us now check whether v(G) is a
complexity measure according to our definition. It is straightforward to show that, except
Complexity.4, the other properties hold. In order to check property Complexity.4, let G = <E,R>
be a control flow graph and G1 = <E1,R1> and G2 = <E2,R2> two non-disjoint control flow
subgraphs of G such that they have nodes in common but no relationships. We have to require that
G1 and G2 be control flow subgraphs, because cyclomatic complexity is defined only for control
flow graphs, i.e., graphs composed of connected components, each of which has a start node—a
node with no incoming arcs—and an end node—a node with no outgoing arcs. Property
Complexity.4 requires that the following inequality be true for all such G1 and G2

|R| - |E| + 2p ≥ |R1| - |E1| + 2p1 + |R2| - |E2| + 2p2

i.e., 2(p1 + p2 - p) ≤ |E1| + |E2| - |E|, where p1 and p2 are the number of connected
components in G1 and G2, respectively. This is not always true. For instance, consider Figure 5.
G has 3 elements and 1 connected component; G1 and G2 have 2 nodes and 1 connected
component apiece. Therefore, the above inequality is not true in this case, and the cyclomatic
number is not a complexity measure according to our definition. However, it can be shown that
v(G)-p satisfies all the above complexity properties. From a practical perspective, especially in
large systems, this correction does not have a significant impact on the value of the measure.
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G1
G2

G

Figure 5. Control flow graph.

Henry and Kafura [HK81] proposed an information flow complexity measure. In this context,
elements are subprogram variables or parameters, modules are subprograms, relationships are
either fan-in's or fan-out's. For a subprogram SP, the complexity is expressed as length.(fan-
in.fan-out)2, where fan-in and fan-out are, respectively, the local (as defined in [HK81])
information flows from other subprograms to SP, and from SP to other subprograms. Such local
information flows can be represented as relationships between parameters/variables of SP and
parameters/variables of the other subprograms. Subprograms' parameters/variables are the system
elements and the subprograms' fan-in and fan-out links are the relationships. Any size measure can
be used for length (in [HK81] LOC was used). The justification for multiplying length and (fan-
in.fan-out)2 was that "The complexity of a procedure depends on two factors: the complexity of the
procedure code and the complexity of the procedure's connections to its environment." The
complexity of the procedure code is taken into account by length; the complexity of the
subprogram's connections to its environment is taken into account by (fan-in.fan-out)2. The
complexity of a system is defined as the sum of the complexities of the individual subprograms.
For the measure defined above, properties Complexity.1 - Complexity.4 hold. However, property
Complexity.5 does not hold since, given two disjoint modules S1 and S2 with a measured
information flow of, respectively, length1.(fan-in1.fan-out1)2 and length2.(fan-in2.fan-out2)2, the
following statement is true:

length.(fan-in.fan-out)2 ≥ length1.(fan-in1.fan-out1)2 + length2.(fan-in2.fan-out2)2

where length = length1 + length2, fan-in = fan-in1 + fan-in2, and fan-out = fan-out1 + fan-out2.
However, equality does not hold because of the exponent 2, which is not fully justified,

and multiplication of fan-in and fan-out. Therefore, Henry and Kafura [HK81] information flow
measure is not a complexity measure according to our definition. However, fan-in and fan-out
taken as separate measures, without exponent 2, are complexity measures according to our
definition since all the required properties hold.

Similar measures have been used in [C90] and referred to as structural complexity (SC) and
defined as:

SC = 

∑
i∈[1..n]

fan-out2(subroutinei)

n

Once again, property Complexity.5 does not hold because fan-out is squared in the formula.

A metric suite for object-oriented design is proposed in [CK94]. A system is an object
oriented design, modules are classes, elements are either methods or instance variables (depending
on the measure considered) and relationships are calls to methods or uses of instance variables by
other methods. These measures are validated against Weyuker's properties for complexity
measures, thereby implicitely implying that they were complexity measures. However, none of the
measures defined by [CK94] is a complexity measure according to our properties:
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- Weighted Methods per Class (WMC) and Number Of Children of a class (NOC) are size
measures (see Section 3.1);

- Depth of Inheritance Tree (DIT) is a length measure (see Section 3.2);
- Coupling Between Object classes (CBO) is a coupling measure (see Section 3.4);
- Response For a Class (RFC) is a size and coupling measure (see Sections 3.1 and 3.5);
- Lack of COhesion in Methods (LCOM) cannot be classified in our framework. This is

consistent with what was said in the introduction: our framework does not cover all
possible measurement concepts.

This is not surprising. In [CK94], it is shown that all of the above measures do not satisfy
Weyuker's property 9, which is a weaker form of property Complexity.4 (see Section 4).

3.4 . Cohesion

Motivation

The concept of cohesion has been used with reference to modules or modular systems. It assesses
the tightness with which "related" program features are "grouped together" in systems or modules.
It is assumed that the better the programmer is able to encapsulate related program features
together, the more reliable and maintainable the system [F91]. This assumption seems to be
supported by experimental results [BMB94(a)]. Intuitively, we expect cohesion to be non-negative
and, more importantly, to be normalized (property Cohesion.1) so that the measure is independent
of the size of the modular system or module. Moreover, if there are no internal relationships in a
module or in all the modules in a system, we expect cohesion to be null (property Cohesion.2) for
that module or for the system, since, as far as we know, there is no relationship between the
elements and there is no evidence they should be encapsulated together. Additional internal
relationships in modules cannot decrease cohesion since they are supposed to be additional
evidence to encapsulate system elements together (property Cohesion.3). When two (or more)
modules showing no relationships between them are merged, cohesion cannot increase because
seemingly unrelated elements are encapsulated together (property Cohesion.4).

Since the cohesion (and, as we will see in Section 3.5, the coupling) of modules and entire
modular systems have similar sets of properties, both will be described at the same time by using
brackets and the alternation symbol '|'. For instance, the notation [A|B], where A and B are
phrases, will denote the fact that phrase A applies to module cohesion, and phrase B applies to
entire system cohesion.

Definition 6: Cohesion of a [Module | Modular System]
The cohesion of a [module m = <Em,Rm> of a modular system MS | modular system MS] is a
function [Cohesion(m)|Cohesion(MS)] characterized by the following properties Cohesion.1-
Cohesion.4.

◊

Property Cohesion.1: Non-negativity and Normalization
The cohesion of a [module m = <Em,Rm> of a modular system MS = <E,R,M> | modular system
MS = <E,R,M>] belongs to a specified interval

[ Cohesion(m) ∈ [0,Max] | Cohesion(MS) ∈ [0,Max] ] (Cohesion.I)
◊

Normalization allows meaningful comparisons between the cohesions of different
[modules|modular systems], since they all belong to the same interval.
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Property  Cohesion.2: Null Value.
The cohesion of a [module m = <Em,Rm> of a modular system MS = <E,R,M> | modular system
MS = <E,R,M>] is null if [Rm|IR] is empty

[ Rm = ∅ ⇒ Cohesion(m) = 0 | IR = ∅  ⇒ Cohesion(MS) = 0 ] (Cohesion.II)

(Recall that IR is the set of intra-module relationships, defined in Definition 2.)
◊

If there is no intra-module relationship among the elements of a (all) module(s), then the module
(system) cohesion is null.

Property  Cohesion.3: Monotonicity .
Let MS' = <E,R',M'> and MS" = <E,R",M"> be two modular systems (with the same set of
elements E) such that there exist two modules m' = <Em,Rm'> and m" = <Em,Rm"> (with the
same set of elements Em) belonging to M' and M" respectively, such that R' - Rm' = R" - Rm", and
Rm' ⊆ Rm" (which implies IR' ⊆ IR"). Then,

[ Cohesion(m')≤Cohesion(m") | Cohesion(MS')≤Cohesion(MS") ] (Cohesion.III)
◊

Adding intra-module relationships does not decrease [module|modular system] cohesion. For
instance, suppose that systems S, S', and S" in Figure 3 are viewed as modular systems MS =
<E,R,M>, MS' = <E',R',M'>, and MS" = <E",R",M"> (with M = {m1,m2,m3}, M' =
{m' 1,m'2,m'3}, and M" = {m"1,m"2,m"3}). We have [Cohesion(m'3) ≥ Cohesion(m3) |
Cohesion(MS') ≥ Cohesion(MS)].

Property Cohesion.4: Cohesive Modules.
Let MS' = <E,R,M'> and MS" = <E,R,M"> be two modular systems (with the same underlying
system <E,R>) such that M" = M' - {m'1,m'2} ∪ {m"}, with m'1 ∈ M', m'2 ∈ M', m" ∉ M', and
m" = m'1 ∪ m'2. (The two modules m'1 and m'2 are replaced by the module m", union of m'1 and
m'2.) If no relationships exist between the elements belonging to m'1 and m'2, i.e., InputR(m'1) ∩
OutputR(m'2) = ∅ and InputR(m'2) ∩ OutputR(m'1) = ∅, then

[ max{Cohesion(m'1),Cohesion(m'2)} ≥ Cohesion(m") |
Cohesion(MS') ≥ Cohesion(MS") ] (Cohesion.IV)

◊

The cohesion of a [module|modular system] obtained by putting together two unrelated modules is
not greater than the [maximum cohesion of the two original modules|the cohesion of the original
modular system].
Properties Cohesion.1 - Cohesion.4 hold when applying the admissible transformation of the ratio
scale. Therefore, there is no contradiction between our concept of cohesion and the definition of
cohesion measures on a ratio scale.

Examples of cohesion measures

In [BMB94(a)], cohesion measures for high-level design are defined and validated, at both the
abstract data type (module) and system (program) levels. For brevity's sake, the term software part
here denotes either a module or a program. A high-level design is seen as a collection of modules,
each of which exports and imports constants, types, variables, and procedures/functions. A widely
accepted software engineering principle prescribes that each module be highly cohesive, i.e., its
elements be tightly related to each other. [BMB94(a)] focuses on investigating whether high
cohesion values are related to lower error-proneness, due to the fact that the changes required by a
change in a module are confined in a well-encapsulated part of the overall program. To this end,
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the exported feature A is said to interact with feature B if the change of one of A's definitions or
uses may require a change in one of B's definitions or uses.

In the approach of the present paper, each feature exported by a module is an element of the
system, and the interactions between them are the relationships between elements. A module
according to [BMB94(a)] is represented by a module according to the definition of the present
paper. At high-level design time, not all interactions between the features of a module are known,
since the features may interact in the body of a module, and not in its visible part. Given a software
part sp, three cohesion measures NRCI(sp), PRCI(sp), and ORCI(sp) (respectively, Neutral,
Pessimistic, and Optimistic Ratio of Cohesive Interactions) are defined for software as follows

NRCI(sp) = 
#KnownInteractions(sp)

#MaxInteractions(sp)-#UnknownInteractions(sp)

PRCI(sp) = 
#KnownInteractions(sp)

#MaxInteractions(sp)

ORCI(sp) = 
#KnownInteractions(sp)+#UnknownInteractions(sp)

#MaxInteractions(sp)

where #MaxInteractions(sp) is the maximum number of possible intra-module interactions between
the features exported by each module of the software part sp. (Inter-module interactions are not
considered cohesive; they may contribute to coupling, instead.) All three measures satisfy the
above properties Cohesion.1 - Cohesion.4.

Other examples of cohesion measures can be found in [BO94], where new functional
cohesion measures are introduced. Given a procedure, function, or main program, only data
tokens (i.e., the occurrence of a definition or use of a variable or a constant) are taken into account.
The data slice for a data token is the sequence of all those data tokens in the program that can
influence the statement in which the data token appears, or can be influenced by that statement.
Being a sequence, a data slice is ordered: it lists its data tokens in order of appearance in the
procedure, function or main program. If more than one data slice exists, some data tokens may
belong to more than one data slice: these are called glue tokens. A subset of the glue tokens may
belong to all data slices: these are called super-glue tokens. Functional cohesion measures are
defined based on data tokens, glue tokens, and super-glue tokens. This approach can be
represented in our framework as follows. A data token is an element of the system, and a data slice
is represented as a sequence of nodes and arcs. The resulting graph is a Directed Acyclic Graph,
which represents a module. ([BO94] introduces functional cohesion measures for single
procedures, functions, or main programs.) Given a procedure, function, or main program p, the
following measures SFC(p) (Strong Functional Cohesion), WFC(p) (Weak Functional Cohesion),
and A(p) (adhesiveness) are introduced

SFC(p) = 
#SuperGlueTokens

#AllTokens

WFC(p) = 
#GlueTokens
#AllTokens

A(p) = 

∑
GT∈GlueTokens

#SlicesContainingGlueTokenGT

#AllTokens.#DataSlices

It can be shown that these measures satisfy the above properties Cohesion.1 - Cohesion.4.
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3.5 . Coupling

Motivation

The concept of coupling has been used with reference to modules or modular systems. Intuitively,
it captures the amount of relationship between the elements belonging to different modules of a
system. Given a module m, two kinds of coupling can be defined: inbound coupling and outbound
coupling. The former captures the amount of relationships from elements outside m to elements
inside m; the latter the amount of relationships from elements inside m to elements outside m.

We expect coupling to be non-negative (property Coupling.1), and null when there are no
relationships among modules (property Coupling.2). When additional relationships are created
across modules, we expect coupling not to decrease since these modules become more
interdependent (property Coupling.3). Merging modules can only decrease coupling since there
may exist relationships among them and therefore, inter-module relationships may have
disappeared (property Coupling.4, property Coupling.5).

In what follows, when referring to module coupling, we will use the word coupling to
denote either inbound or outbound coupling, and OuterR(m) to denote either InputR(m) or
OutputR(m).

Definition 7: Coupling of a [Module | Modular System]
The coupling of a [module m = <Em,Rm> of a modular system MS|modular system MS] is a
function [Coupling(m)|Coupling(MS)] characterized by the following properties Coupling.1 -
Coupling.5.

◊

Property Coupling.1: Non-negativity
The coupling of a [module m = <Em,Rm> of a modular system|modular system MS] is non-
negative

[ Coupling(m) ≥ 0 | Coupling(MS) ≥ 0 ] (Coupling.I)
◊

Property Coupling.2: Null Value
The coupling of a [module m = <Em,Rm> of a modular system|modular system MS = <E,R,M>]
is null if [OuterR(m)|R-IR] is empty

[ OuterR(m)=∅ ⇒ Coupling(m)=0 | R-IR=∅ ⇒ Coupling(MS)=0 ] (Coupling.II)
◊

Property Coupling.3: Monotonicity
Let MS' = <E,R',M'> and MS" = <E,R",M"> be two modular systems (with the same set of
elements E) such that there exist two modules m' ∈ M', m" ∈ M" such that R' - OuterR(m') = R" -
OuterR(m"), and OuterR(m')  ⊆ OuterR(m"). Then,

[ Coupling(m')≤Coupling(m") | Coupling(MS')≤Coupling(MS") ] (Coupling.III)
◊

Adding inter-module relationships does not decrease coupling. For instance, if systems S, and S"
in Figure 3 are viewed as modular systems (see Section 3.4), we have [Coupling(m"1) ≥
Coupling(m1) | Cohesion(MS") ≥ Cohesion(MS)].

Property Coupling.4: Merging of Modules
Let MS' = <E',R',M'> and MS" = <E",R",M"> be two modular systems such that E' = E", R' =
R", and M" = M' - {m'1,m'2} ∪ {m"}, where m'1 = <Em'1,Rm'1>, m'2 = <Em'2,Rm'2>, and m"
= <Em",Rm">, with m'1 ∈ M', m'2 ∈ M', m" ∉ M', and Em" = Em'1 ∪ Em'2 and Rm" = Rm'1 ∪
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Rm'2. (The two modules m'1 and m'2 are replaced by the module m", whose elements and
relationships are the union of those of m'1 and m'2.) Then

[ Coupling(m'1) + Coupling(m'2 ) ≥ Coupling(m") |
Coupling(MS') ≥ Coupling(MS") ] (Coupling.IV)

◊

The coupling of a [module|modular system] obtained by merging two modules is not greater than
the [sum of the couplings of the two original modules|coupling of the original modular system],
since the two modules may have common inter-module relationships. For instance, suppose that
the modular system MS12 in Figure 6 is obtained from the modular system MS in Figure 2 by
merging modules m1 and m2 into module m12. Then, we have [Coupling(m1) + Coupling(m2) ≥
Coupling(m12) | Coupling(MS) ≥ Coupling(MS12)].
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Figure 6. The effect of merging modules on coupling.

Property Coupling.5: Disjoint Module Additivity
Let MS' = <E,R,M'> and MS" = <E,R,M"> be two modular systems (with the same underlying
system <E,R>) such that M" = M' - {m'1,m'2} ∪ {m"}, with m'1 ∈ M', m'2 ∈ M', m" ∉ M', and
m" = m'1 ∪ m'2. (The two modules m'1 and m'2 are replaced by the module m", union of m'1 and
m'2.) If no relationships exist between the elements belonging to m'1 and m'2, i.e., InputR(m'1) ∩
OutputR(m'2) = ∅ and InputR(m'2) ∩ OutputR(m'1) = ∅, then

[ Coupling(m'1) + Coupling(m'2) = Coupling(m") |
Coupling(MS') = Coupling(MS") ] (Coupling.V)

◊

The coupling of a [module|modular system] obtained by merging two unrelated modules is equal to
the [sum of the couplings of the two original modules|coupling of the original modular system].

Properties Coupling.1 - Coupling.5 hold when applying the admissible transformations of the ratio
scale. Therefore, there is no contradiction between our concept of coupling and the definition of
coupling measures on a ratio scale.

Examples and counterexamples of coupling measures

Fenton has defined an ordinal coupling measure between pairs of subroutines [F91] as follows:

C(S, S') = i + 
n

 n+1
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where i is the number corresponding to the worst coupling type (according to Myers' ordinal scale
[F91]) and n the number of interconnections between S and S', i.e., global variables and formal
parameters. In this case, systems are programs, modules are subroutines, elements are formal
parameters and global variables. If coupling for the whole system is defined as the sum of coupling
values between all subroutine pairs, properties Coupling.1 - Coupling.5 hold for this measures and
we label it as a coupling measure. However, Fenton proposes to calculate the median of all the pair
values as a system coupling measure. In this case, property Coupling.3 does not hold since the
median may decrease when inter-module relationships are added. Similarly for Coupling.4, when
subroutines are merged and inter-module relationships are lost, the median may increase.
Therefore, the system coupling measure proposed by Fenton is not a coupling measure according
to our definitions.

In [BMB94(a)], coupling measures for high-level design are defined and validated, at both
the module (abstract data type) and system (program) levels. They are based on the notion of
interaction introduced in the examples of Section 3.4. Import Coupling of a module m is defined as
the extent to which m depends on imported external data declarations. Similarly, export coupling of
m is defined as the extent to which m's data declarations affect the other data declarations in the
system. At the system level, coupling is the extent to which the modules are related to each other.
Given a module m, Import Coupling of m (denoted by IC(m)) is the number of interactions
between data declarations external to m and the data declarations within m. Given a module m,
Export Coupling of m (denoted by EC(m)) is the number of interactions between the data
declarations within m and the data declarations external to m. As shown in [BMB94(a)], our
coupling properties hold for these measures.

Coupling Between Object classes (CBO) of a class is defined in [CK94] as the number of
other classes to which it is coupled. It is a coupling measure. Properties Coupling.1 and
Coupling.2 are obviously satisfied. Property Coupling.3 is satisfied, since CBO cannot decrease
by adding one more relationship between features belonging to different classes (i.e., one class
uses one more method or instance variable belonging to another class). Property Coupling.4 is
satisfied: CBO can only remain constant or decrease when two classes are grouped into one.
Property Coupling.4 is also satisfied.

Response For a Class (RFC) [CK94] is a size and a coupling measure at the same time (see
Section 3.1). Methods are elements, calls are relationships, classes are modules. Coupling.3
holds, since adding outside method calls to a class can only increase RFC and Coupling.4 holds
because merging classes does not change RFC's value since RFC does not distinguish between
inside and outside method calls. Similarly, when there are no calls between the classes' methods,
Coupling.5 holds. This result is to be expected since RFC is the result of the addition of two terms:
the number of methods in the class, a size measure, and the number of methods called, a coupling
measure.

3.6 . Comparison of Concept Properties

We want to summarize the important differences and similarities between the system concepts
introduced in this paper. Table 1 uses only criteria that can be compared across the concepts of
size, length, complexity, cohesion, and coupling. First, it is important to recall that coupling and
cohesion are only defined in the context of modular systems, whereas size, length and complexity
are defined for all systems.

Second, the concepts appear to have the null value (second column) and monotonicity
(third column) properties based on different sets. The behavior of a measure with respect to
variations in such sets characterizes the nature of the measure itself, i.e., the concept(s) it captures.
As RFC, defined in [CK94], shows (see Sections 3.1 and 3.5), the same measure may satisfy the
sets of properties associated with different concepts. As a matter of fact, similar sets of properties
associated with different concepts are not contradictory.

Third, when systems are made of disjoint modules, size, complexity and coupling are
additive (properties Size.3, Complexity.5, and Coupling.5). Cohesion and length are not additive.
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Concepts\Properties Null Value Monotonicity Additivity
Size E = ∅ E Yes

Length E=∅ R No

Complexity R = ∅ R Yes

System Cohesion IR=∅ IR No

System Coupling R-IR=∅ R-IR Yes

Table 1: Comparison of concept properties

This summary shows that these concepts are really different with respect to basic properties.
Therefore, it appears that desirable properties are likely to vary from one measurement concept to
another.

4 . Comparison with Related Work

We mainly compare our approach with the other approaches for defining sets of properties for
software complexity measures, because they have been studied more extensively and thoroughly
than other kinds of measures. Besides, we compare our approach with the axioms introduced by
Fenton and Melton [FM90] for software coupling measures. As already mentioned, our approach
generalizes previous work on properties for defining complexity measures. Unlike previous
approaches, it is not constrained to deal with software code only, but, because of its generality,
can be applied to other artifacts produced during the software lifecycle, namely, software
specifications and designs. Moreover, it is not defined based on some control flow operations, like
sequencing or nesting, but on a general representation, i.e., a graph.

Weyuker3

Weyuker's work [W88] is one of the first attempts to formalize the fuzzy concept of program
complexity. This work has been discussed by many authors [CK94, F91, LJS91, TZ92, Z91] and
is still a point of reference and comparison for anyone investigating the topic of software
complexity.

To make Weyuker's properties comparable with ours, we will assume that a program
according to Weyuker is a system according to our definition; a program body is a module of a
system. A whole program is built by combining program bodies, by means of sequential,
conditional, and iterative constructs (plus the program and output statements, which can be seen as
"special" program bodies), and, correspondingly, a system can be built from its constituent
modules. Since some of Weyuker's properties are based on the sequencing between pairs of
program bodies P and Q, we provide more details about the representation of sequencing in our
framework. Sequencing of program bodies P and Q is obtained via the composition operation
(P;Q). Correspondingly, if SP = <EP,RP> and SQ = <EQ,RQ> are the modules representing the
two program bodies P and Q4, then, we will denote the representation of P;Q as SP;Q =
<EP;Q,RP;Q>. In what follows, we will assume that EP;Q = EP ∪ EQ and RP;Q   RP ∪ RQ, i.e.,
the representation of the composition of two program bodies contains the elements of the
representation of each program body, and at least contains all the relationships belonging to each of
the representations of program bodies. In other words, SP and SQ are modules of SP;Q.

3We will list properties/axioms by the initial of the proponents. So, Weyuker's properties will be referred to as W1,
W2, …, W9, Tian and Zelkowitz's as TZ1 to TZ5, and Lakshmanian et alii's as L1 to L9.
4 In what follows, we will use the notation SP = <EP,RP> to denote the representation of program body P.



University of Maryland CS-TR-3368 - 22

W1: A complexity measure must not be "too coarse" (1).
∃ SP, SQ Complexity(SP) ≠ Complexity(SQ)

W2: A complexity measure must not be "too coarse" (2). Given the nonnegative number c, there
are only finitely many systems of complexity c.

W3: A complexity measure must not be "too fine." There are distinct systems SP and SQ such that
Complexity(SP) = Complexity(SQ).

W4: Functionality. There is no one-to-one correspondence between functionality and complexity
∃ SP,SQ P and Q are functionally equivalent and Complexity(SP) ≠ Complexity(SQ)

W5: Monotonicity with respect to composition.
∀ SP,SQ
Complexity(SP) ≤ Complexity(SP;Q) and Complexity(SQ) ≤ Complexity(SP;Q)

W6: The contribution of a module in terms of the overall system complexity may depend on the
rest of the system.
(a) ∃ SP, SQ, ST Complexity(SP) = Complexity(SQ) and Complexity(SP;T) ≠ Complexity(SQ;T)

(b) ∃  SP, SQ, ST Complexity(SP) = Complexity(SQ) and Complexity(ST;P) ≠  Complexity(ST;Q)

W7: A complexity measure is sensitive to the permutation of statements.
∃ SP, SQ Q is formed by permuting the order of statements of P and Complexity(SP) ≠
Complexity(SQ)

W8: Renaming. If P is a renaming of Q, then Complexity(SP)=Complexity(SQ).

W9: Module monotonicity.
∃ SP, SQ Complexity(SP) + Complexity(SQ) ≤  Complexity(SP;Q)

Analysis of Weyuker's properties

W1, W2, W3, W4, W8: These are not implied by our properties, but they do not contradict
any of them, so they can be added to our set, if desired. However, we think that these properties
are general to all syntactically-based product measures and do not appear useful in our framework
to differentiate concepts.

W5: This is implied by our properties, as shown by inequality (Complexity.VI), since SP and
SQ are modules of SP;Q.

W6, W7: These properties are not implied by the above properties Complexity.1 -
Complexity.5. However, they show a very important and delicate point in the context of
complexity measure definition.

By assuming properties W6(a) and W6(b) to be false, one forces all complexity measures
to be strongly related to control flow, since this would exclude that the composition of two
program bodies may yield additional relationships between elements (e.g., data declarations) of the
two program bodies. If properties W6(a) and W6(b) are assumed true, one forces all complexity
measures to be sensitive to at least one other kind of additional relationship.

Similarly, W7 states that the order of the statements, and therefore the control flow, should
have an impact on all complexity measures. By assuming property W7 to be false, one forces all
complexity measures to be insensitive to the ordering of statements. If property W7 is assumed
true, one forces all complexity measures to be somehow sensitive to the ordering of statements,
which may not always be useful.
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W8: We analyze this property again, to better explain the relationship between complexity and
understandability. According to this property, renaming does not affect complexity. However, it is
a fact that renaming program variables by absurd or misleading names greatly impairs
understandability. This shows that other factors, besides complexity, affect understandability and
the other external qualities of software that are affected by complexity.

As for properties W1-W8, our approach is somewhat more liberal than Weyuker's. For
instance, the constant null function is an acceptable complexity measure according to our
properties, while it is not acceptable according to Weyuker's properties. It is evident that the
usefulness of such a complexity measure is questionable. We think that properties should be used
to check whether a measure actually addresses a given concept (e.g., complexity). However, given
any set of properties, it is almost always possible to build a measure that satisfies them, but is of
no practical interest (see [CS91]). At any rate, this is not a sensible reason to reject a set of
properties associated with a concept (how many sensless measures could be defined that satisfy the
three properties that characterize distance!). Rather, measures that satisfy a set of properties must
be later assessed with regard to their usefulness.

W9: This is probably the most controversial property. The above properties Complexity.1 -
Complexity.5 imply it. Actually, our properties imply the stronger form of W9, the unnumbered
property following W9 in Weyuker's paper [W88] (see also [P84])

∀ SP, SQ Complexity(SP) + Complexity(SQ) ≤  Complexity(SP;Q)

Weyuker rejects it on the basis that it might lead to contradictions: she argues that the effort needed
to implement or understand the composition of a program body P with itself, is probably not twice
as much as the effort needed for P alone. Our point is that complexity is not the only factor to be
taken into account when evaluating the effort needed to implement or understand a program, nor is
it proven that this effort is in any way "proportional" to product complexity.

Fenton

In addition to Weyuker's work, Fenton [F94] shows that, based on measurement-theoretic
mathematical grounds, there is no chance that a general measure for software complexity will ever
be found, nor even for control flow complexity, i.e., a more specific kind of complexity. We
totally agree with that. By no means do we aim at defining a single complexity measure, which
captures all kinds of complexity in a software artifact. Instead, our set of properties define
constraints for any specific complexity measure, whatever facet of complexity it addresses.

Fenton and Melton [FM90] introduced two axioms that they believe should hold for
coupling measures. Both axioms assume that coupling is a measure of connectivity of a system
represented by its module design chart (or structure chart). The first axiom is similar to our
monotonicity property (Coupling.3). It states that if the only difference between two module
design charts D and D' is an extra interconnection in D', then the coupling of D' is higher than the
coupling of D. The second axiom basically states that system coupling should be independent from
the number of modules in the system. If a module is added and shows the same level of pairwise
coupling as the already existing modules, then the coupling of the system remains constant.
According to our properties, coupling is seen as a measure which is to a certain extent dependent
on the number of modules in the system and we therefore do not have any equivalent axiom. This
shows that the sets of properties that can be defined above are, to some extent, subjective.

Zuse

In his article in the Encyclopaedia of Software Engineering [ESE94 pp. 131-165], Zuse applies a
measurement-theoretic approach to complexity measures. The focus is on the conditions that
should be satisfied by empirical relational systems in order to provide them with additive ratio scale
measures. This class of measures is a subset of ratio scale measures, characterized by the additivity
property (Theorems 2 and 3 of [ESE94]). Given the set P of flowgraphs and a binary operation *
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between flowgraphs (e.g., concatenation), additive ratio scale complexity measures are such that,
for each pair of flowgraphs P1, P2,

Complexity(P1*P2) = Complexity(P1) + Complexity(P2)

This property shows that a different concept of complexity is defined by Zuse, with respect to that
defined by Weyuker's (W9) and our properties (Complexity.4). It is our belief that, by requiring
that complexity measures be additive, important aspects of complexity may not be fully captured,
and complexity measures actually become quite similar to size measures. Considering complexity
as additive means that, when two modules are put together to form a new system, no additional
dependencies between the elements of the modules should be taken into account in the computation
of the system complexity. We believe this is a very questionable assumption for product
complexity.

Tian and Zelkowitz

Tian and Zelkowitz [TZ92] have provided axioms (necessary properties) for complexity measures
and a classification scheme based on additional program characteristics that identify important
measure categories. In the approach, programs are represented by means of their abstract syntax
trees (e.g., parse trees). To translate this representation into our framework, we will assume that
the whole program, represented by the entire tree, is a system, and that any part of a program
represented by a subtree is a module.

TZ1:  Systems with identical functionality are comparable, i.e., there is an order relation between
them with respect to complexity.
TZ2:  A system is comparable with its module(s).
TZ3:  Given a system SQ and any module SP whose root, in the abstract tree representation, is “far
enough” from the root of SQ, then SP is not more complex than SQ. In other words, "small"
modules of a system are no more complex than the system.
TZ4:  If an intuitive complexity order relation exists between two systems, it must be preserved by
the complexity measure (it is a weakened form of the representation condition of Measurement
Theory [F91]).
TZ5:  Measures must not be too coarse and must show sufficient variability.

TZ1, TZ2, TZ5 do not differentiate software characteristics (concepts) and can be used for all
syntactic product measures. TZ3 can be derived from our set of properties. TZ4 captures the basic
purpose behind the definition of all measures: preserving an intuitive order on a set of software
artifacts [MGB90].

The additional set of properties which is presented in [TZ92] is used to define a measure
classification system. It determines whether or not a measure is based exclusively on the abstract
syntax tree of the program, whether it is sensitive to renaming, whether it is sensitive to the context
of definition or use of the measured program, whether it is determined entirely by the performed
program operations regardless of their order and organization, and whether concatenation of
programs always contribute positively toward the composite program complexity (i.e., system
monotonicity).

Some of these properties are related to the properties defined in this paper and we believe
they are characteristic properties of distinct system concepts (e.g., system monotonicity). Others
do not differentiate the various concepts associated with syntactically-based measures (e.g.,
renaming).

Lakshmanian et al.

Lakshmanian et al. [LJS91] have attempted to define necessary properties for software complexity
measures based on control flow graphs. In order to make these properties comparable to ours, we
will use a notation similar to the one used to introduce Weyuker's properties. A program according



University of Maryland CS-TR-3368 - 25

to Lakshmanian et al. (represented by a control flow graph) is a system according to our definition,
and a program segment is a module. In addition to sequencing, these properties use the nesting
program construct denoted as @. "A program segment Z is said to be obtained by nesting
[program segment] Y at the control location i in [program segment] X (denoted by Y@Xi) if the
program segment X has at least one conditional branch, and if Y is embedded at location i in X in
such a way that there exists at least one control flow path in the combined code Z that completely
skips Y." "The notation Y@X refers to any nesting of Y in X if the specific location in X at which
Y is embedded is immaterial."

In what follows, X, Y, Z will denote programs or program segments; SX, SY, SZ will
denote the corresponding systems or modules according to our definition. Lakshmanian et al.
[LJS91] introduce nine properties. However, only five out of them can be considered basic, since
the remaining four can be derived from them. Therefore, below we will only discuss the
compatibility of the basic properties with respect to our properties.

L1: Non-negativity.

L1(a): Null value.
If the program only contains sequential code (referred to as a basic block B) then

Complexity(SB) = 0

L1(b): Positivity.
If the program X is not a basic block, then

Complexity(SX) > 0

◊

Property L1 does not contradict any of our properties (in particular, Complexity 1 and Complexity
2).

L5: Additivity under sequencing.
Complexity(SX;Y) = Complexity(SY) + Complexity(SX)

◊

This property does not contradict properties Complexity.4 and Complexity.5, where the equality
sign is allowed. By requiring that complexity be additive under sequencing, Lakshmanian et al take
a viewpoint which is very similar to that of Zuse.

L6: Functional independence under nesting.
Adding a basic block B to a system X through nesting does not increase its complexity

Complexity(SB@X) = Complexity(SX)

◊

L7: Monotonicity under nesting.
Complexity(SY@Xi) < Complexity(SZ@Xi) if Complexity(SY) < Complexity(SZ)

◊

These properties are compatible with our properties.

L9: Sensitivity to nesting.
Complexity(SX;Y) < Complexity(SY@X) if Complexity(SY) > 0

◊
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This property does not contradict our properties.

In conclusion, none of the above properties contradicts our properties. However, the scope of
these properties is limited to the sequencing and nesting of control flow graphs, and therefore to
the study of control flow complexity.

As for the other properties, we now show how they can be derived from L1, L5, L6, L7, and L9.

L2: Functional independence under sequencing.
Complexity(SX;B) = Complexity(SX)

This property follows from L5 (first equality below) and L1 (second equality below):

Complexity(SX;B) = Complexity(SX) + Complexity(SB) = Complexity(SX)

◊

L3: Symmetry under sequencing.
Complexity(SX;Y) = Complexity(SY;X)

This property follows from L5 (both equalities)
Complexity(SX;Y) = Complexity(SX) + Complexity(SY) = Complexity(SY;X)

◊

L4: Monotonicity under sequencing.
Complexity(SX;Y) < Complexity(SX;Z) if Complexity(SY) < Complexity(SZ)
Complexity(SX;Y) = Complexity(SX;Z) if Complexity(SY) = Complexity(SZ)

This property follows from L5:

if Complexity(SY) < Complexity(SZ), then
Complexity(SX;Y) = Complexity(SX) + Complexity(SY)

< Complexity(SX) + Complexity(SZ) = Complexity(SX;Z)
if Complexity(SY) = Complexity(SZ), then
Complexity(SX;Y) = Complexity(SX) + Complexity(SY)

= Complexity(SX) + Complexity(SZ) = Complexity(SX;Z)

◊

L8: Monotonicity under nesting.
Complexity(SY) < Complexity(SY@X)

This property follows from L1 (first inequality below, since Complexity(SX)>0—X cannot be a
basic block), L5 (equality below) and L9 (second inequality below)

Complexity(SY) < Complexity(SX) + Complexity(SY)
= Complexity(SX;Y) < Complexity(SY@X)

◊
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5. Conclusion and Directions for Future Work

In order to provide some guidelines for the analyst in charge of defining product measures, we
propose a framework for software measurement where various software measurement concepts are
distinguished and their specific properties defined in a generic manner. Such a framework is, by its
very nature, somewhat subjective and there are possible alternatives to it. However, it is a practical
framework since the properties we capture are, we believe, interesting and all the concepts can be
distinguished by different sets of properties.

For example, these properties can be used to guide the search for new product measures as
shown in [BMB94(b)]. Moreover, we hope this framework will help avoid future confusion, often
encountered in the literature, about what properties product measures should or should not have.
Studying measure properties is important in order to provide discipline and rigor to the search for
new product measures. However, the relevancy of a property to a given measure must be assessed
in the context of a well defined measurement concept, e.g., one should not attempt to verify if a
length measure is additive.

This framework does not prevent useless measures from being defined. The usefulness of a
measure can only be assessed in a given context (i.e., with respect to a given experimental goal and
environment) and after a thorough experimental validation  [BMB94(b)]. This framework is not a
global answer to the problems of software engineering measurement; it is just of the necessary
components of a measure validation process as presented in [BMB94(b)].

Future research will include the definition of more specific measurement frameworks for
particular product abstractions, e.g., control flow graphs, data dependency graphs. Also, new
concepts could be defined, such as information content (in the information theory sense).
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