
ABSTRACT

Title of thesis: HUMAN ROBOT INTERACTION
ON GESTURE CONTROLLED DRONE:
METHODS OF GESTURE ACTION RECOGNITION

Siqin Li
Master of Science, 2018

Thesis directed by: Professor Yiannis Aloimonos
Department of Computer Science

Today, the interaction between robots and human is mostly based on remote

controller. However this interaction could be more natural, just like we humans in-

teract with each others through speech, body movements, facial expressions, and so

on. We propose gesture and body language as an alternative to interact with robots,

particularly Unmanned Aerial Vehicles(UAVs) also known as drones. In this thesis,

we developed action recognition methods for the interaction with drones. Specifi-

cally, we developed approaches to recognize human gestures for the communication

with drones.

Automatic detection and classification of dynamic actions in real-world system

intended for human robot interaction is challenging because: 1) there is large vari-

ation in how people perform actions, making detection and classification difficult;

2) the system must work online in order to avoid a noticeable delay in the interac-

tion between the human and the drone. In this work, we address these challenges

through the combination of a real-time skeleton detection library and deep learning

techniques. Our methods perform dynamic actions or gestures classification from

skeleton data.

HUMAN ROBOT INTERACTION
ON GESTURE CONTROLLED DRONE:

METHODS OF GESTURE ACTION RECOGNITION

by

Siqin Li

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2018

Advisory Committee:
Professor Yiannis Aloimonos, Chair/Advisor
Professor Gang Qu
Dr. Cornelia Fermuller

c© Copyright by
Siqin Li

2018

Acknowledgments

I owe my gratitude to all the people who have made this thesis possible and

because of whom my graduate experience has been one that I will cherish forever.

First and foremost I’d like to thank my advisor, Professor Yiannis Aloimonos

for giving me an invaluable opportunity to work on challenging and extremely inter-

esting projects over the past year. He has always made himself available for help and

advice. It has been a pleasure to work with and learn from such an extraordinary

individual.

I would also like to thank my co-advisor, Dr. Cornelia Fermuller. Without her

extraordinary theoretical ideas and computational expertise, this thesis would have

been a distant dream. Thanks are due to Professor Gang Qu for agreeing to serve on

my thesis committee and for sparing his invaluable time reviewing the manuscript.

My colleagues at the Autonomy Robotics Cognition laboratory and Computer

Vision laboratory have enriched my graduate life in many ways and deserve a special

mention. They provided me a relax and pleasant working environment.

I would also like to acknowledge help and support from all of my friends.

My discussion and interaction with them has been very fruitful. Without their

encouragement, this thesis can’t be happened in the past year.

I owe my deepest thanks to my family - my mother and father who have always

stood by me and guided me through my career, and have pulled me through against

impossible odds at times. Words cannot express the gratitude I owe them.

It is impossible to remember all, and I apologize to those I’ve inadvertently

ii

left out.

Lastly, thank you all.

iii

Table of Contents

Acknowledgements ii

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1
1.1 Background . 2

1.1.1 Definition of Gesture and Gesture Recognition 2
1.1.2 Gesture Category . 3

1.2 System Overview and Thesis Outline 3
1.3 Contribution . 4

2 Related Work 6
2.1 Input Modality . 6
2.2 Hand Detection . 7
2.3 Gesture Recognition . 9

3 Datasets 10
3.1 NTU-RGBD Dataset . 10

3.1.1 Introduction . 10
3.1.1.1 Data Modalities . 10
3.1.1.2 Action Classes . 11
3.1.1.3 Subjects . 11
3.1.1.4 Views . 11

3.1.2 Benchmark Evaluations . 11
3.1.2.1 Cross-Subject Evaluation 12
3.1.2.2 Cross-View Evaluation 12

3.2 Helicopter Marshalling Dataset 12
3.2.1 Description of the ChaLearn Dataset 13
3.2.2 Benchmark Evaluation of ChaLearn 13

iv

3.2.3 Data Collection Procedure . 14
3.2.4 Data Formats . 14
3.2.5 Evaluation Protocol . 14

4 Human Pose Estimation and Hand Pose Detection 16
4.1 Introduction to OpenPose Library 16

4.1.1 Human Pose Estimation . 17
4.1.1.1 Architecture and Details 18

4.1.2 Hand Keypoint Estimation . 19
4.2 Performance Evaluation . 20

4.2.1 Runtime . 21

5 Recognition Methodology 22
5.1 Temporal Convolutional Network with Residual Connections 22

5.1.1 Overview of Temporal Convolutional Neural Networks 23
5.1.2 Architecture of TCNs with Residual Connections (Res-TCN) 24
5.1.3 Model Parameters Analysis 25
5.1.4 Experiments and Evaluation 27

5.1.4.1 Implementation Details 28
5.1.4.2 Performance Evaluation 29

5.1.5 Conclussion . 29
5.2 Multi-modal network with modality hallucination 30

5.2.1 Overview of the Hallucination Model 30
5.2.2 Network Architecture . 31
5.2.3 Implementation and Optimization 32
5.2.4 Experiments and Evaluation 35

5.2.4.1 Base Network . 35
5.2.4.2 Training Parameters 35
5.2.4.3 Evaluation . 36

5.3 Long Short Term Recurrent Neural Network 36
5.3.1 Introduction . 37
5.3.2 Overview of LSTM . 38
5.3.3 Model Architecture . 40
5.3.4 Experiments and Evaluation 41

5.4 Comparison and Discussion . 42

6 Conclusion 43
6.1 Limitations and Future Work . 44

Bibliography 45

v

List of Tables

5.1 Comparison of 2D and 3D input on NTU RGB-D dataset with Cross-
Subject and Cross-View settings in accuracy (%) 29

5.2 Comparison of Hallucination network and the base networks on NTU
RGB-D dataset in accuracy (%) . 36

5.3 Comparison of LSTM network and the Temporal Convolutional Net-
works on Helicopter Marshalling dataset in accuracy (%) 41

vi

List of Figures

1.1 System Overview . 4

3.1 Output Format . 15

4.1 Overall pipeline for human pose estimation 17
4.2 Architecture of the two-branch multi-stage CNN 18
4.3 Multiview Bootstrapping . 20

5.1 Res-TCN model architecture . 26
5.2 Hallucination model architecture . 31
5.3 Testing Stage Hallucination Architecture 33
5.4 The structure of a LSTM memory cell 39
5.5 The unfolded diagram of the LSTM model 40

vii

List of Abbreviations

TCN Temporal Convolution Neural Network
Res-TCN Temporal Convolution Network with Residual Connection
UAV Unmanned Aerial Vihecle
HRI Human Robot Interaction

viii

Chapter 1: Introduction

Human-Robot Interaction (HRI) has recently received considerable attention

in the academic community, in labs, in technology companies, and through the me-

dia. Interaction, also know as communication between human and robot, can be split

into two general categories: remote interaction and proximate interaction. These

two forms are influenced by whether the human and the robot are in close proximity

to each other or not. In this thesis, we decide to develop a remote interaction system

between a human and an Unmanned Aerial Vehicle (UAV).

Different from the traditional mouse and keyboard, recent trends on user in-

terface, including multi-touch interfaces and camera-based systems, have gained

significant popularity among consumers. They made the interaction between hu-

man and computer more natural and effortless. Most of them allow users to use

their hands or body actions to directly manipulate virtual objects which is very

similar to how humans interact with each other.

Considering the significant potential and demand for natural interaction, we

propose using gesture and body language as the purveyor passing information from

human to UAVs. Instead of recognizing static gesture and body pose in the old

paradigm, our interactions are more versatile and can recognize a sequence of ges-

1

tures and the trajectory. In this thesis, we addressed the following questions: What

types of gestures do people conduct? What are the important features needed for

understanding a gesture? How to detect and track on the human body? How should

a recognition model be designed and trained?

1.1 Background

To design a gesture controlled system, it is important to understand the def-

inition and form of human gestures. In this section, we are going to discuss the

background of gesture research and the different gesture categories.

1.1.1 Definition of Gesture and Gesture Recognition

According to the description in [18], gesture is a form of non-verbal commu-

nication or non-vocal communication in which visible bodily actions communicate

particular messages, either in place of, or in conjunction with, speech. However,

in human robot interaction, human gestures are mostly designed as sign language

carrying different meanings. Users can use simple gestures to control or interact

with devices without physically touching them.

Gesture recognition is a topic in computer science and robotics with the goal

of interpreting human gestures via mathematical algorithms. Many approaches have

been developed using cameras and computer vision algorithms. With the popularity

of deep learning and neural networks, modern computer vision techniques heavily

rely on deep learning to learn from a huge dataset and find patterns which can then

2

make predictions. In this thesis, deep learning is the primary technique used to

solve the problem.

1.1.2 Gesture Category

A way to distinguish gesture is to differentiate between communicative gestures

and informative gestures. Communicative gestures are those gestures produced

with intentionality of meaning. Speakers consciously use them to communicate

something about themselves or someone else. However, informative gesture are

passive gestures that the speaker is not about to communicate with. These gestures

can occur during speech, but they may also occur independent of communication.

In computer interfaces, we consider communicative gesture.

As an emerging type of technology in relation to gesture control, touchless

user interface is the process of commanding the computer or robot without physi-

cally touching a device. A number of applications have started utilizing this type of

interface mostly in gaming software (e.g. Microsoft’s Kinect). We believe that es-

tablishing such a interface between computer vision and robotics will be a promising

application.

1.2 System Overview and Thesis Outline

Our gesture control system consists of two modules: the hand and body pose

detection and the gesture action recognition (Figure 1.1). At each time step, the

hand and body pose detection module takes a frame from the video as input, then

3

estimates the human body and hand location, and outputs the keypoints of the

body and hand joints to the recognition module. The gesture recognition module

estimates the current most likely gesture label based on the input stream of key-

points.

Figure 1.1: System Overview

In the detection module, we adopted a powerful open-source library which

provides the body keypoints with accurate and online detection performance. In

the recognition module, we investigate a state-of-the-art network, then come up

with two different networks to improve the gesture recognition accuracy and user

experience. The main focus and contributions of this work are the action and gesture

recognition.

1.3 Contribution

The main contribution of this thesis include:

• I created a new dataset called ”helicopter marshalling” dataset that includes

2D skeleton sequences for helicopter marshelling. This dataset can be used to

evaluate our system and other gesture recognition systems, and it will be used

to study drone communication and control in the future.

4

• I developed two different techniques to recognize human gesture from 2D input

which were shown to outperform the state-of-the-art algorithms taking 3D

information as input.

5

thesis

Chapter 2: Related Work

There are three essential components in the gesture control pipeline: input

modality, keypoint detection, gesture action recognition. This section discusses

some literatures on recent developments in each area.

2.1 Input Modality

The first step in the pipeline is to decide on the input to the system. The

sensor used to capture information is closely related to the project’s objective and

the system performance.

The work from [21] uses stereo RGB cameras to detect hands from background

based on skin color and input from registered 3D data. Oka et al. [22] use ther-

mal images for hand segmentation in complex backgrounds relying on the hand’s

temperature which is always distinct from the background.

In recent years, a number of innovative sensors such as depth camera and the

Leap Motion sensor that provides 3D data of the scene, have contributed a lot to

body detection and action recognition. Depth cameras allow to obtain a complete

3D description of the scene while the Leap Motion sensor is a device explicitly

targeted for hand gesture recognition and provides only a limited set of relevant

6

points. Molchanov et al. [23] use multi-modal dynamic hand gesture data captured

with depth, color and stereo-IR sensors to achieve online detection and classification.

Considering the feasibility of putting cameras on UAVs, we decided to use

a regular RGB color camera as sensor for capturing the scene. The input to our

system are RGB videos. We demonstrate that the system is competitive with those

using extra sensors.

2.2 Hand Detection

The next step in the pipeline is to detect the human bodies and hands in

the scene. This step is essential for for the recognition pipeline. However, vision-

based hand detection is challenging due to the wide range of configurations and

appearances it can assume and possible occlusions.

Hand detection has been studied by a number of works. For instance, Van den

Bergh et al. [24] introduced a novel hand detection algorithm based on depth and

color. Kölsch et al. [25] presented a frequency analysis-based method for instanta-

neous estimation of class separability. In [26], Ohn-Bar et al. proposed a framework

that provides a robust hand localization by partitioning visible and depth images ito

disjoint sub-regions. Later, Mittla et al. [27] proposed a detector using a two-stage

hypothesis and classificatoin framework. This method is able to detect hands and

their orientation in unconstrained images.

However, the above works mostly focus on detecting the hand palms excluding

arms and limbs. In real life, there is no way to attain gesture interaction without

7

moving arms and limbs. Thus, we consider human upper body detection of signifi-

cance in this scenario.

The recent development of deep learning based approaches revolutionized re-

search on visual detection. The domain of face detection and pedestrian detection

are well researched. A number of works have started solving one of the longest-

lasting problems in computer vision, articulated body pose estimation, which aims

at recovering the pose of an articulated body. Body pose estimation has applications

in many areas including assisted living, character animation, intelligent driver assis-

tance systems and video games. Human pose estimation is closely related to hand

detection. The direction pointing from the elbow to the wrist and the length of the

fore arm give us adequate knowledge to infer the direction and the size of the hands.

Spurred by the MPII and COCO human pose benchmarks, human pose estimation

has been advanced significantly in recent years. The convolutional neural network

architecture of Toshev et al. [28] regresses 2D cartesian coordinates from color im-

ages as input directly. Work from [14] regresses keypoint score maps. More recently,

novel convolutional neural network architectures such as the stacked hourglass [29]

have been proposed to capture the various spatial relationships associated with a

human body. Zimmermann et al. [30] employed the body pose estimation technique

in [14] to detect hand poses. We use an open source library called OpenPose that

can achieve real-time human pose estimation as well as hand pose estimation on

RGB frames.

8

2.3 Gesture Recognition

Many previous works on gesture recognition have focused on single categories.

Gesture can be static or dynamic, and some gestures have both static and dynamic

elements, such as sign languages. There are different tools for gesture recognition.

Based on statistical modeling, some approaches such as PCA, HMMs [31], [32],

Kalman filter, particle filter [34] [35], and condensation algorithms have been em-

ployed. Computer vision and pattern recognition techniques, involving feature ex-

traction, object detection, clustering, and classification have been successfully used

for many gesture recognition systems.

Deep learning enabled researcher to explore many approaches to action recog-

nition. Hierarchical recurrent neural network of [8] combines features of different

body parts hierarchically. The work by [16] introduces a part-aware LSTM model,

body joints are grouped together based on their spatial context. The work of [9]

leverages on a similar intuition, namely that co-occurrence of joints is a strong dis-

criminative feature. [5] proposed a version of a temporal convolutional network that

learns both spatial and temporal attention. These methods demonstrate the success

of deep networks on skeleton based action recognition.

9

Chapter 3: Datasets

In this chapter, we describe the datasets used to perform the experiments in

this thesis.

3.1 NTU-RGBD Dataset

3.1.1 Introduction

The NTU-RGBD dataset [16] is a publicly available large dataset containing

recordings of labeled human activities. This dataset consists of 56,880 action samples

containing 4 different modalities (RGB videos, depth map sequences, 3D skeletal

data, infrared video) for each sample. Video samples have been captured by 3

Microsoft Kinect v.2 cameras concurrently.

3.1.1.1 Data Modalities

As being introduced before, the dataset consists of four major data modalities:

depth maps, 3D joint information, RGB frames, and IR sequences. Depth maps

are sequences of two dimensional arrays of depth values in millimeters. The 3D

joint information consists of the spacial location of 25 major body point, and the

10

corresponding pixels on RGB frames and depth maps are also provided for each

joint and every frame.

3.1.1.2 Action Classes

There are 60 action classes in total, which are divided into three major groups:

40 daily actions, 9 health-related actions, and 11 mutual actions.

3.1.1.3 Subjects

40 distinct subjects participated in the data collection. The ages of the subjects

varied from 10 to 35 years.

3.1.1.4 Views

This dataset was collected by three cameras capturing three different horizon-

tal views at the same time. The three cameras were at the same height but pointing

with different angles: −45◦, 0◦, 45◦. Subjects were asked to perform each action

twice facing towards the left and the right cameras separately. For each subject and

every action, the data has two front views, one left side view, one right view, one

left side 45◦ view and one right side 45◦.

3.1.2 Benchmark Evaluations

The NTU-RGBD dataset provides a standard evaluation protocol for all the

reported results. There are two precise criteria for two types of action classification

11

evaluation, the classification accuracy should be reported in percentage.

3.1.2.1 Cross-Subject Evaluation

In the cross-subject evaluation, the 40 subjects are split into training and

testing groups. Each groups consists of 20 subjects. In this thesis, since we only

consider the skeleton data that can be detected on the RGB frames, the training

and testing sets have 39,315 and 16,148 samples respectively.

3.1.2.2 Cross-View Evaluation

In the cross-view evaluation, all the samples captured by camera 1 are used for

testing and samples from cameras 2 and 3 are used for training. Thus the training

set consists of front and two side views of the actions, while the testing set includes

left and right 45◦ view of the actions. For this evaluation, the training sets have

36,838 samples, the testing sets have 18,625 samples.

3.2 Helicopter Marshalling Dataset

As this project is going to be implemented on unmanned aerial vehicles with

several command gestures, we collected a new dataset named Helicopter Marshalling

dataset which we generated from the ChaLearn dataset. This dataset contains 9

classes of helicopter signal gestures: HoldOver, Land, LiftOff , MoveDownward,

MoveForward, MoveLeft, MoveRight, MoveUpward, ReleaseSlingLoad. The

training sets, validation sets and test sets have 1399, 200 and 300 samples respec-

12

tively.

3.2.1 Description of the ChaLearn Dataset

The ChaLearn dataset [17] consists of two large video multi-modal datasets

for RGB and RGBD gesture recognition. One is the Chalearn LAP RGB-D Isolated

Gesture Dataset (IsoGD) and the other is the Continuous Gesture Dataset (ConGD).

The complete dataset has a total of 249 gesture labels. In this thesis, we only use the

IsoGD dataset. There are 47,933 samples. Each RGB-D video features one gesture

instance, and the gesture actions are performed by 21 different individuals.

3.2.2 Benchmark Evaluation of ChaLearn

The ChaLearn dataset provides training, validation and test sets. All three

sets include data from different subjects, which means that the gestures of a specific

subject in the validation and test sets will not appear in the training set. For

the IsoGD dataset, a recognition rate r is used as the evaluation criteria which is

calculated as:

r =
1

n

n∑
i=1

δ(pl(i), tl(i)) (3.1)

where n is the number of samples; pl is the predicted label; tl is the ground truth;

δ(j1, j2) = 1, if j1 = j2, otherwise δ(j1, j2) = 0.

13

3.2.3 Data Collection Procedure

The IsoGD dataset provides us a set of helicopter signals as RGB videos. To

generate the 2D skeleton data, we first extracted the helicopter subset from the

IsoGD dataset. Secondly, we run OpenPose on each of the RGB video frames and

annotated each frame with the video label. Since our task is to recognize gestures,

we only require the upper body skeleton and the hand keypoints for classification.

Thirdly, we sort out the data with a specific format. The details of the data will be

described in the next section.

3.2.4 Data Formats

The data from the OpenPose library is recorded in form of 2D image coor-

dinates for each body parts. The skeleton data contains the joint positions for 18

body keypoints and 2× 21 hand keypoints. The order of the body part defined by

the COCO keypoints is described in Fig 3.1 (left). We extract 0 − 7 keypoints for

the upper body. The hand keypoints are described in Fig 3.1 (right). We simply

concatenate those keypoint coordinates into a vector.

3.2.5 Evaluation Protocol

Since this dataset is obtained from the ChaLearn Dataset, we inherited the

protocol provided in ChaLearn. The accuracy in percentage is used to evaluate the

system performance.

14

Figure 3.1: Output Format

Left: Pose Output Format; Right: Hand Output Format

15

Chapter 4: Human Pose Estimation and Hand Pose Detection

Human pose estimation is the process of estimating the configuration of the

body pose from a single image. Human pose estimation is a key problems in com-

puter vision that has been studied, and many applications can benefit from such a

technology.

In this project, the detection and estimation for human body and hand key-

point is of significance. Instead of recognizing human action from image frames,

skeleton-based action recognition is more effective and well-behaved, because skele-

ton keypoint coordinates can be a type of very crucial representation of human pose

and movement. In the next section, a powerful techniques adopted here will be

analyzed in detail. The evaluation for the performance is discussed later.

4.1 Introduction to OpenPose Library

OpenPose is a library that implements a real-time system to jointly detect

human body, hand, and facial keypoints in single images. It is able to detect the

2D pose of multiple people efficiently. The algorithm and implementation of the

OpenPose system will be discussed here.

16

4.1.1 Human Pose Estimation

According to the introduction in [13], there are two broad approaches for

tackling the multi-person pose estimation problem. Bottom-up, in which keypoint

proposals are detected and grouped together into person instances, and top-down, in

which a pose estimator is applied to the bounding box of each detected person. The

approach of Cao et al. [12], which is adopted by OpenPose advocates the bottom-

up approach. It combines a variation of the unary joint detector architecture from

convolutional pose machines [14] with a part affinity field regression to enforce inter-

joint consistency. Then they employ a greedy algorithm to generate person instance

proposals in a bottom-up fashion. Figure 4.1 illustrates the overall pipeline of this

method.

Figure 4.1: Overall pipeline for human pose estimation

(a) The entire image as the input for the network (b) predict confidence maps for

body part detection (c) part affinity fields for parts association (d) using bipartite

matchings to parse associated body part candidates (d) final output for all people

in the image

17

4.1.1.1 Architecture and Details

The idea of this network architecture is to predict detection confidence maps

and affinity fields simultaneously. The network consists of two branchesthesis, as

shown in Figure 4.2. The upper branch predicts the confidence maps and the lower

branch predicts the part affinity fields. Each branch is an iterative architecture to

refine the predictions over successive stages. Intermediate supervision is adopted

between every two stages.

Figure 4.2: Architecture of the two-branch multi-stage CNN

The confidence map is a 2D representation of the probability that a particular

body part occurs at each pixel location. To generate the ground truth confidence

map for a part, the map is formulated as a Gaussian distribution centered at the true

position. At testing time, the body part candidates can be obtained by performing

non-maximum suppression on predicted confidence maps.

After the body part locations are provided, the part affinity fields (PAF) is

18

computed assemble the body part locations. The part affinity field is a 2D vector

field for each limb. It can preserve both location and orientation information across

the region of support of the limb. Specifically, each pixel in the area belonging

to a particular limb will be assigned a 2D vector encoding the direction from one

body part to the others. The integral over the PAF measures provides the associa-

tion between two body parts. During testing, the predicted PAF with the possible

connected limb is aligned and measured.

Once the measurement is defined, in this scenario, parsing multiple people in

the image is solved as a K-partite graph matching problem which is NP-hard. Later,

a greedy relaxation that consistently produces high quality matches is adopted.

With two relaxations, the optimization problem is simplified. Therefore, all limb

connection candidates can be assembled into full-body poses of multiple people.

4.1.2 Hand Keypoint Estimation

For the hand keypoint estimation, OpenPose implements a robust approach

introduced in [15]. This approach is called multiview bootstrapping: which uses a

multi-camera system to train fine-grained detectors for keypoints that are prone to

occlusion, such as the joints of a hand. This approach boost the performance of a

given keypoint detector. It allows a weak detector, trained on a small annotated

dataset, to localize subsets of keypoints in good views and use robust 3D triangu-

lation to filter out incorrect detections. It generates an approach which can label

images that are difficult to annotate due to occlusion in single views. As for the

19

detection architecture, the hand bounding box detection is the first step. The hand

location can be approximately cropped from the extension along the forearm direc-

tion. The position of the wrist and the elbow is decided by the approach described

above. After the bounding box is cropped out, the work follows the approach intro-

duced in [14], which can generate a confidence map for each keypoint, representing

the keypoint’s location as a Gaussian centered at the true position. The location of

each keypoint is produced by locating the maximum peak in each confidence map.

Figure 4.3: Multiview Bootstrapping

(a) A multiview system provides views of the hand (b) the 3D position of the

keypoints (c) failure case (d) annotated failure case by 3D reprojection (e)

retrained and improved detector

4.2 Performance Evaluation

This network is evaluated on two benchmarks for pose estimation. It won the

COCO 2016 keypoints challenge. Here we analyse the running time.

20

4.2.1 Runtime

According to paper [12], the runtime is due to two major parts: one is the CNN

processing time O(1) which constant with varying number of people and another

one is the multi-person parsing time O(n2), n is the number of people in the scene.

OpenPose running on one NVIDIA GeForce GTX-1080 GPU can achieve 8.8fps for

a video with 19 people

21

Chapter 5: Recognition Methodology

Human activity and gesture action analysis is a crucial yet challenging task

in computer vision. Applications of human activity and gesture action recognition

range from video surveillance over human computer interaction to robotics and skill

evaluation. As mentioned in related work, most prior work focuses on recognizing 3D

skeleton based action sequences. Since accurate depth information can be obtained

only in a limited range of distance, and the agility of the unmanned aerial vehicle

is very sensitive to the weight and the size of the camera, we decided to develop a

framework for recognizing action from commercial RGB cameras.

In this research, three different kinds of architectures are implemented which

are a Temporal Convolutional Network with residual connections (Res-TCN), Multi-

Modal network with modality hallucination, and an LSTM network. This chapter

gives details about these architectures.

5.1 Temporal Convolutional Network with Residual Connec-

tions

Many approaches have been proposed for the task of understanding human

actions from video. Temporal Convolutional Network (TCN) [1] is one of them,

22

which has been proposed to solve the action segmentation problem in an RGB video.

As an extension or modification of the TCN, Res-TCN [5] is a new framework to

deal with human action recognition using as input skeleton sequences from RGB-

D sensors. Instead of taking 3D skeletons input from RGB-D sensors, we propose

to feed into the network with the raw skeleton pose detected from RGB frames.

This architecture demonstrates that for most of the human action recognition tasks,

depth information is redundant as it does not lead to improved performance.

5.1.1 Overview of Temporal Convolutional Neural Networks

In this section, we briefly introduce the structure of a Temporal Convolution

Network (TCN) as provided in the original paper [1]. The original TCN is designed

for temporal action segmentation in video and it follows a convolutional encoder-

decoder design. This approach uses a single set of computational mechanisms - 1D

convolutions, pooling, and channel-wise normalization - to hierarchically capture

low-, intermediate- and high-level temporal information. Here, we adopt the encoder

portion of the network for action recognition.

The input to an original TCN is a sequence of video features. Let Xt ∈ RF0

be the input feature vector of length F0 for time step t for t ≤ T . Note that T is

the number of the frames in a video and it may vary for each sequence. Denote the

number of time steps in each layer as Tl. The true action label for each frame is

yt ∈ {1, ..., C}, where C is the number of classes.

In the part of the encoder, there are L convolutional layers. A set of 1D filters

23

is applied, which captures how the input signals evolve over the course of an action.

The filters for each layer are parameterized by tensor W (l) ∈ RFl×d×Fl−1 and biases

b(l) ∈ RFl , where l ∈ 1, ..., L is the layer index and d is the filter length. Given an

output Xl−1 of the previous layer, the l-th layer output, Xl is

Xl = σ(W (l) ? Xl−1), (5.1)

Note here, the j-th feature vector in W (l) ? Xl−1 can be represented as:

(W (l) ? Xl−1)j =

Fl−1∑
i=1

Xl−1,i ∗W (l)
i,j + b(l), (5.2)

where σ is a non-linear activation function ReLU. The whole network is trained with

back-propagation. In an attempt to further improve the interpretability of TCN,

the residual connections architecture of [4] is adopted.

5.1.2 Architecture of TCNs with Residual Connections (Res-TCN)

In the work of [5], the original TCN is re-designed by factoring out the deeper

layers into additive residual terms which yields both interpretable hidden represen-

tations and model parameters. For the purpose of 3D human activity recognition,

the input to the model X0 are the frame-wise 3D skeleton features concatenated

temporally across the entire RGB-D video sequence. Let xt ∈ RF0 be the skeleton

features extracted from an RGB-D video frame t. xt(d) is the d-th dimension of the

feature with the interpretable meaning associated with it. Res-TCN stacks build-

ing blocks called Residual Units as introduced in [4] and adapts the pre-activation

24

scheme of [6]. Each unit in layer l performs the following computation:

Xl = Xl−1 + F (W (l), Xl−1) (5.3)

F (Wl, Xl−1) = W (l) ? σ(Xl−1), (5.4)

F denotes the residual unit. For the l-th layer, Xl−1 denotes the input, Wl is the

set of learnable parameters and σ is a ReLU activation function. In the first layer,

Res-TCN takes raw skeleton as input and generates the activation map X1 which is

then passed to the later layers. For a Res-TCN with N residual units, the hidden

representation after N residual units is:

XN = X1 +
N∑
i=2

W (i) ? σ(Xi−1) (5.5)

X1 = W (1) ? X0, (5.6)

where W (1) represents a set of filters applied to the raw skeleton input X0. X1 is

the resulting activation map. The operation ? can be seen as a 1D convolution over

a tensor and a matrix. The details of how it works will be discussed in the next

section.

For classification, average pooling over the temporal sequence is applied and a

softmax layer with the number of neurons equal to the number of classes, is attached.

5.1.3 Model Parameters Analysis

Res-TCN has been shown to perform well on the large scale NTU-RGBD

dataset. To better interpret the information in a 2D sequence, we adjust the original

25

Figure 5.1: Res-TCN model architecture

Res-TCN architecture. The modified model architecture is shown in Figure 5.1. In

this section, we analyze each filter and what it represents.

Consider the first convolution layer W (1) ∈ Rfl×F0×F1 , with F1 filters W
(1)
j ∈

Rf1×F0 , j = 1, ..., F1. Each of the filters consists of F0 1D filter elements W
(1)
j,i ∈ Rf1 ,

i = 1, 2, ..., F0 where f1 is the length of the 1D filter elements. W
(1)
j computes 1D

convolution over X0 ∈ RT×F0 . We denote this 1D convolution operation on the

input feature map as ?.

X1 = W (1) ? X0 (5.7)

for the j-th feature vector X1,j can be considered as:

X1,j =

F0∑
i=1

W
(1)
j,i ∗X0,i + bj1, j = 1, 2, ..., F1 (5.8)

where 1 is the identity vector in RT .

26

An important property of W (1) is, for each feature dimension d ∈ F0, it can

learn the explainable meaning associated with it, since the d-th dimension of the

skeleton feature xt(d) represents a spatial configuration of a particular joint at time

t.

Let us now move our analysis to deeper layers in the model. In a Res-TCN

formulation, we adopt residual learning to every stacked deeper layer. Formally, we

consider the l-th layer with input Xl−1 and output Xl. The residual unit can be

defined as:

Xl = F (W (l), Xl−1) +Xl−1 (5.9)

This operation F + Xl−1 is performed by a shortcut connection and element-wise

addition. For example, consider the two sets of residual unit in the second layer, they

both take the feature maps X1 ∈ RT×64 as input, and generate two sub-feature-maps

F
′

and F
′′ ∈ RT×32. The full feature map is the concatenation, F = [F

′
F
′′
]. The

second layer output can be simply computed by element-wise addition X2 = F+X1.

This technique can avoid the vanishing gradient problem during optimization.

5.1.4 Experiments and Evaluation

This network architecture is evaluated on the skeleton based human activity

recognition dataset of NTU [16]. And this approach is validated as a both inter-

pretable and discriminative.

27

5.1.4.1 Implementation Details

We follow the skeleton feature extraction procedure as introduced in [16]. The

original dataset contains 3 dimensinal locations of 25 major body joints in the scene.

The corresponding pixels on RGB frames and the depth maps are also provided for

each joint and every frame. Even though the Res-TCN architecture is designed

for 3D skeleton based action recognition, our goal is to recognize actions from only

RGB frames sequences. Thus, in order to evaluate the robustness and generality,

we trained the network on both 3D skeleton data and 2D skeleton data.

For 3D skeleton data, we normalize the raw (X, Y, Z) values of each skeleton

joint and concatenate all values to form a skeleton feature as a vector per frame.

Knowing that there are at most 2 subjects in the scene and there are 25 joints per

skeleton, a skeleton feature is a 2× 25× 3 = 150 dimensional vector. Then we ran

the deep learning framework on Keras [19] on top of Tensorflow [20]. We use the

base learning rate of 0.01, and decrease the learning rate by a factor of 10 when the

testing loss plateaus for more than 3 epochs. To avoid overfitting, we add a dropout

layer of rate 0.3 after each activation layers. We use stochastic gradient descent and

nesterov acceleration with a momentum of 0.9. For all convolution layers, we apply

an L-1 regularizer with a weight of 1e−4. The experiments are run on two Nvidia

GeForce GTX TITAN X GPUs.

For 2D skeleton data, we perform the same preprocessing steps as the 3D data.

Since the dimensionality is reduced, a skeleton feature per frame is a 2×25×2 = 100

dimensional vector.We set the base learning rate as 0.01 and decrease it by a factor

28

of 5 with 10 epochs plateaus. We use 0.5 dropout rate, SGD with 0.9 momentum,

an L-1 regularizer with 1e−4 weight.

5.1.4.2 Performance Evaluation

The reason that the Res-TCN formulation yields explainable spatio-temporal

representation is elaborated in [5]. And it is validated that the model is able to

produce discriminative spatio-temporal features for 3D human action analysis. Here,

we compare the performance on 2D action versus 3D action in Table 5.1.

Cross-Subject Cross-View

3D 76.1% 77.1%

2D 73.0% 73.5%

Table 5.1: Comparison of 2D and 3D input on NTU RGB-D dataset with Cross-

Subject and Cross-View settings in accuracy (%)

Even though the results with 3D input still outperform the one with 2D in-

put, we find that 2D input gives an unexpectedly good performance. This means

depth that can provide only limit improvement in this classification settings with

60 categories.

5.1.5 Conclussion

In this section, we discussed the architecture of Res-TCN and explain the

interpretability of model parameters. We compared the performance on two types

29

of inputs format and showed that there is room to enhance action recognition on

RGB video sequences.

5.2 Multi-modal network with modality hallucination

Although Res-TCN performs excellently on 2D skeleton data, we cannot deny

that 3D data does provide more useful information. Another question came to our

mind: can we learn the depth information from RGB image? The intuition behind

is quiet straight-forward as humans appear to infer depth from RGB images using

experience. Thus, spurred by this idea, a hallucination model is proposed to improve

the RGB performance by learning the depth information at the training stage.

5.2.1 Overview of the Hallucination Model

2D skeleton data and depth skeleton data offer different and often complemen-

tary information. The fusion of multimodal data in networks has been successfully

demonstrated in various applications, including object recognition, object detection

and segmentation. However, it is challenging to collect more than two modalities

of data for the same action. Since RGB image capturing devices are very common,

but depth capturing devices are much less prevalent. This means that many recog-

nition tasks will need to perform well using only RGB images. Thus, we adopt

a modality hallucination architecture for the 2D skeleton based action recognition

model which incorporates depth side information at training time. The convolu-

tional hallucination network takes the 2D skeleton data as input and is taught to

30

mimic the convolutional features from the 3D network. The multimodal data will

be fused to classify the action labels. At testing time, the 2D skeleton data will be

jointly processed through the 2D network and the hallucination network to improve

the action recognition performance.

5.2.2 Network Architecture

In this section we are going to describe the deep network architecture, which

uses temporal convolution network to learn a 3D representation from the 2D skeleton

data.

Figure 5.2: Hallucination model architecture

Figure 5.2 illustrate the training architecture for the hallucination model. The

network has 3 sections: a 2D network, a hallucination network and a 3D network.

31

For simplicity and efficiency, we choose Res-TCN as our base network architecture

to extract feature representations from 2D data or 3D data and do the classification

respectively. In this architecture, the hallucination network is taught to learn the

relationship between the other two networks. It mimics the 3D mid-level features

during the training stage. To force the 3D module to share information with the 2D

module through this hallucination network, we add a regression loss between the

paired hallucination and 3D layers, in order to minimize the difference between their

representations. Thus, the hallucination network is able to generate representations

in the higher layers similar to the 3D network. Notice that the parameters of the

hallucination network are independent of both the 2D network and the 3D network.

The details about choosing the regressing loss and the mid-level feature extraction

layer will be discussed in the next section.

In the testing stage, the 3D module can be removed when only 2D skeleton

input is available. We feed the 2D skeleton input to both the 2D network and the

hallucination network to produce two scores, then the two scores are fused and we

take the softmax to get the final decision. The testing model can be found in Figure

5.3.

5.2.3 Implementation and Optimization

In this section, we introduce the implementation and optimization details for

this architecture. At the training stage, we are given access to 2D and 3D input

pairs and category labels for the skeleton sequences. We trained the 2D network

32

Figure 5.3: Testing Stage Hallucination Architecture

and the 3D network independently using the Res-TCN architecture with the corre-

sponding input. Then, we added the hallucination network into it and initialized

it with the parameters from the pre-trained 2D network. Next, we fine tuned the

overall network by introducing hallucination loss and joint classification losses.

Hallucination Loss

To regularize the distance between the representations from the hallucination net-

work and from the 3D network, we added a Euclidean loss between their activations.

The loss is defined as follow:

L
(l)
hallucination = ‖σ(A

(l)
hallucination)− σ(A

(l)
3D)‖22 (5.10)

where Ahallucination is the hallucination activation and A3D is the 3D activation. σ is

the sigmoid activation function. We can apply the hallucination loss after any layer

in the network and optimize it directly. To determine which layer should be chosen

to compute mid-level regression loss, we extracted outputs from layers in Block C

33

in the Res-TCN architecture. The highest overall performance was achieved when

we added the hallucination loss before the average pooling layer.

Combined Loss Function

To further optimize the network, we applied the cross-entropy loss to the outputs

of all the three networks. Combined with the hallucination loss, we trained the

model with balanced multiple losses. Precisely, we applied 6 total losses, 5 softmax

cross entropy losses using action category labels and one hallucination loss which

matches the mid-layer activations from the hallucination branch to those from the

3D branch. The general form of the loss function is given as:

Loverall = α L
(l)
hallucination+β L2D

softmax+γ LHalsoftmax+δL3D
softmax+π LHal2Dsoftmax+η L2D3D

softmax

(5.11)

where α, β, γ, δ, π, η are the loss weights with respect to the corresponding loss

functions. The determination of the weights is determined empirically after some

iterations. We adopted the methodology in [7], where the weight in the hallucina-

tion loss depends on the scale of the loss function. When choosing the value we

consider the layer from which the hallucination loss is extracted. To avoid that the

hallucination loss dominates the overall loss, we heuristically set the weight of the

hallucination loss α around 5 times the contribution on the other losses. Since at

testing stage, the performance is determined by the joint softmax output from the 2D

network and the hallucination network, we set the softmax loss weight π = η = 2.0,

then β = γ = δ = 1.0. The weights can be determined by running a few training

iterations in practice.

34

5.2.4 Experiments and Evaluation

Since the hallucination model requires two kinds of input in different modal-

ities, we evaluated this architecture on the NTU RGB-D dataset as well. We took

the 2D skeleton data and 3D skeleton data as the inputs to train the network. Then

we used 2D data only at test time.

5.2.4.1 Base Network

In our experiments, we chose Res-TCN as the base network architecture for all

the three modules. The 2D module and the hallucination module are initialized with

2D weights trained by ourselves. The 3D module was initialized with the pretrained

3D weights for Res-TCN.

5.2.4.2 Training Parameters

The overall network is optimized using the Keras deep learning framework [19]

with Tensorflow backend [20]. We set the initial learning rate of 0.001. Except for the

frozen layers in the 3D module, all layers can be updated with the unified learning

rate. We use Stochastic Gradient Descent to optimize the objective function. We

use a momentum of 0.9 and a weight decay of 0.0005. The network is trained in 100

iterations.

35

5.2.4.3 Evaluation

Using the pre-trained model of Res-TCN network for initialization, we trained

our hallucination network with one euclidean loss and five cross-entropy loss. The

hallucination network surpasses performance of Res-TCN with 2D input. Further-

more, in the cross-view setting, the hallucination network even outperforms the

network with 3D input. Table 5.2 reports the performance of the hallucination

network compared to the Res-TCNs.

Cross-Subject Cross-View

Res-TCN with 3D 76.1% 77.1%

Res-TCN with 2D 73.0% 73.5%

Hallucination 75.5% 77.7%

Table 5.2: Comparison of Hallucination network and the base networks on NTU

RGB-D dataset in accuracy (%)

5.3 Long Short Term Recurrent Neural Network

In the previous sections we saw that Res-TCN with an hallucination model can

perform better in RGB data. However, since they both conduct temporal convolu-

tion over a fixed-length time interval, real-time inference is not possible. Therefore,

we provide another method using LSTM to solve this limitation.

36

5.3.1 Introduction

Even though Res-TCN provides us a way to explicitly learn readily inter-

pretable spatio-temporal representations for action recognition, it requires a fixed

time length skeleton sequence as the input in order to do the temporal convolution.

This limitation put a ceiling on the real-time performance of the network. One of

the most important evaluation standards in human robot interaction is the reaction

time, i.e. the time between the robot being presented with an instruction and the

robot initiating a response. Recurrent neural networks (RNNs) offer themselves as

good tools to achieve the online recognition task.

RNNs have long been used for modeling temporal sequences. Different from

the feedforward neural networks, RNNs can use their internal memory to process

arbitrary sequences of inputs. Just as convolutional networks can readily scale to

images with large width and height, and some convolutional networks can process

images of variable size, recurrent networks can scale to much longer sequences than

would be practical for networks without sequence-based specialization. Most re-

current networks can also process sequences of variable length. Given a sequence

x, initialized with hidden state h(0), for each time step from t = 1 to t = τ , the

following update equations can be applied:

a(t) = b + Wh(t−1) + Ux(t) (5.12)

h(t) = tanh(a(t)) (5.13)

o(t) = c + Vh(t) (5.14)

37

ŷ(t) = softmax(o(t)), (5.15)

where the parameters are the bias vectors b and c along with the weight matrixes U,

V and W, respectively for input-to-hidden, hidden-to-output and hidden-to-hidden

connections.

The mathematical challenge of learning long-term dependencies in recurrent

networks is that gradients propagated over many stages tend to either vanish or

explode. The next section describe approaches to overcoming this problems.

5.3.2 Overview of LSTM

In order to alleviate the gradient vanishing problem, a typical LSTM model

is adopted. In this model, a unit is composed of 4 gates. A basic LSTM block is

shown in Figure 5.4.

An LSTM block contains an input gate it, a forget gate ft, a cell state ct, an

output gate ot and an output response ht. The forget gate decides what information

should be thrown away from the cell state using a sigmoid layer. The input gate

governs the information flow into the cell state. The output gate controls what

parts of the cell state we are going to output as ht. The cell state ensures that the

gradient can pass across many time steps without vanishing or exploding due to its

self connected architecture. At time t, the recursive computation of activations of

units is

ft = σ(Wf · [ht−1, xt] + bf) (5.16)

it = σ(Wi · [ht−1, xt] + bi) (5.17)

38

Figure 5.4: The structure of a LSTM memory cell

C̃t = tanh(WC · [ht−1, xt] + bC) (5.18)

Ct = ft ∗ Ct−1 + it ∗ C̃t) (5.19)

ot = σ(Wo · [ht−1, xt] + bo) (5.20)

ht = ot ∗ tanh(Ct) (5.21)

where σ is the sigmoid function defined as σ(x) = 1/(1 + e−x), Wα is the weight

matrix, and bα is the bias associated with α ∈ {f, i, C, o}.

The advantages of LSTMs for modeling sequential data are twofold. First,

LSTM models are straightforward to train end-to-end. Second, LSTMs are not

confined to fixed length inputs or outputs. They are able to model sequential data

of variable lengths.

39

5.3.3 Model Architecture

In this section, we describe the proposed model for action recognition. Given a

sequence of skeleton data, our goal is to generate classification labels at every single

time step and continuously update our prediction while sequences are processed.

Figure 5.5: The unfolded diagram of the LSTM model

The flowchart of the action recognition model is presented in the Figure 5.5. In

this model, the LSTM is trained by 2D skeleton sequences input x = [x1, x2, ... , xT]

and output labels y ∈ [0, ... , N − 1], where input duration T varies from sequence

to sequence. N is the number of classes. The weights of the hidden layers are

recursively updated according to equations 5.16 to 5.21. The softmax layer is used

to map the output from the LSTM to a categorical distribution over N different

classes:

P (Y = i|ht,Ws, b) = softmax(Wsht + bs), (5.22)

40

The predicted label is obtained by maximum likelihood as

ŷt = argmaxiP (Y = i|ht,Ws, b), (5.23)

Since our goal is to achieve real-time recognition rather than producing label af-

ter seeing the whole sequence, at training time every single moment in a skeleton

sequence will be labelled with the same as the label in the whole sequence. The

network is trained by backpropagation at each frame.

5.3.4 Experiments and Evaluation

To evaluate the online performance of this network necessary to implement

the interaction with drones, we use the Helicopter Marshalling Dataset. The overall

network was trained from scratch with random initialization. We also tried to add

deeper layers in the network, however we found that, they didn’t help much. We

compare the performance of LSTM with Res-TCN and the hallucination network

on the Helicopter dataset. Table 5.3 reports the result of the LSTM network.

Res-TCN Hallucination LSTM

74.0% 76.0% 90.5%

Table 5.3: Comparison of LSTM network and the Temporal Convolutional Networks

on Helicopter Marshalling dataset in accuracy (%)

On this dataset, LSTM obviously surpasses both the Res-TCN and the hal-

lucination network. However, this network is very sensitive and task-specific. Due

to simplicity, this architecture does not perform well on large-scale datasets such as

41

the NTU RGB-D dataset. To further improve this architecture, we believe deeper

layers and more trainable weights are needed.

5.4 Comparison and Discussion

In this section we proposed three different architectures to tackle the action

recognition problem. Comparison for Res-TCNs with 2D and 3D inputs convinced

us that action recognition can be done without depth. Hallucination network further

provide evidence for this assumption. Then to address the real-time demands in the

human robot interaction application, we adopted the LSTM model to accomplish a

real-time recognition framework.

42

Chapter 6: Conclusion

In this thesis, a pipeline for 2D skeleton based action recognition was proposed.

First, we adopted OpenPose to estimate human poses in real-time. Then we

implemented an evaluated 2D action recognition using as input the human poses.

We demonstrated that one of our frameworks is competitive with the 3D based

method. In order to prove its robustness and generality, this approach was trained

on a large scale action recognition dataset. Later on, we fine tuned the network

using task-specific datasets.

Another approach used the LSTM recurrent neural network. This network

makes the online recognition task possible. On our specific task, this method out-

performs the CNN based framework. It can model temporal sequences very well

and is not confined to fixed length inputs or outputs.

We also presented a new helicopter signal dataset with nine categories. This

work can be applied for UAV control as well as for helicopter marshalling.

6.1 Limitations and Future Work

Currently, we can see the valuable potential of the hallucination network.

Comparing the performance between Res-TCNs with 2D and 3D inputs, we notice

43

that Res-TCN fail to discover depth information adequately. This shortcoming put a

ceiling on the performance of the hallucination network. To further overcome this,

a better-behaved base architecture for 3D pose estimation need to be proposed.

Rather than learning from depth information, optical flow or 3D flow could be

included as side information to be learned.

Another issue is the lack of training data for natural gesture recognition. The

movements recorded in the helicopter marshalling dataset are is stiff and inflexi-

ble. When people interact with robots in everyday life, they will use more natural,

smoother movements. Future studies on natural human robot interaction need to

be done.

Also the speed of the overall system is restricted by the performance of Open-

Pose. Even though OpenPose is able to accomplish real-time pose estimation, its

speed of hand pose detection is linear in the number of hands in the scene. Since

both detection and recognition tasks are based on learning, it is possible to design

an end-to-end trainable framework which might improve both accuracy and speed.

44

Bibliography

[1] C. Lea, M.D. Flynn, R. Vidal, A. Reiter and G. D. Hager. ”Temporal convolu-
tional networks for action segmentation and detection”. In The IEEE conference
on Computer Vision and Pattern Recognition(CVPR), June 2017.

[2] Fermller, C., Wang, F., Yang, Y., Zampogiannis, K., Zhang, Y., Barranco,
F., and Pfeiffer, M. (2016). Prediction of manipulation actions. International
Journal of Computer Vision, 1-17.

[3] Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan,
S., Saenko, K. and Darrell, T., 2015. Long-term recurrent convolutional net-
works for visual recognition and description. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition (pp. 2625-2634).

[4] He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 770-778).

[5] Kim, T.S. and Reiter, A., 2017. Interpretable 3D Human Action Analysis with
Temporal Convolutional Networks. arXiv preprint arXiv:1704.04516.

[6] Herath, S., Harandi, M. and Porikli, F., 2017. Going deeper into action recog-
nition: A survey. Image and Vision Computing, 60, pp.4-21.

[7] Hoffman, J., Gupta, S. and Darrell, T., 2016. Learning with side information
through modality hallucination. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 826-834).

[8] Du, Y., Wang, W. and Wang, L., 2015. Hierarchical recurrent neural network
for skeleton based action recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 1110-1118).

45

[9] Zhu, W., Lan, C., Xing, J., Zeng, W., Li, Y., Shen, L. and Xie, X., 2016,
February. Co-Occurrence Feature Learning for Skeleton Based Action Recogni-
tion Using Regularized Deep LSTM Networks. In AAAI (Vol. 2, p. 8).

[10] Li, C., Wang, P., Wang, S., Hou, Y. and Li, W., 2017, July. Skeleton-based
action recognition using LSTM and CNN. In Multimedia and Expo Workshops
(ICMEW), 2017 IEEE International Conference on (pp. 585-590). IEEE.

[11] Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan,
S., Saenko, K. and Darrell, T., 2015. Long-term recurrent convolutional net-
works for visual recognition and description. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition (pp. 2625-2634).

[12] Cao, Z., Simon, T., Wei, S.E. and Sheikh, Y., 2016. Realtime multi-person 2d
pose estimation using part affinity fields. arXiv preprint arXiv:1611.08050.

[13] Papandreou, G., Zhu, T., Kanazawa, N., Toshev, A., Tompson, J., Bregler, C.
and Murphy, K., 2017. Towards Accurate Multi-person Pose Estimation in the
Wild. arXiv preprint arXiv:1701.01779.

[14] Wei, S.E., Ramakrishna, V., Kanade, T. and Sheikh, Y., 2016. Convolutional
pose machines. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (pp. 4724-4732).

[15] Simon, T., Joo, H., Matthews, I. and Sheikh, Y., 2017. Hand Keypoint
Detection in Single Images using Multiview Bootstrapping. arXiv preprint
arXiv:1704.07809.

[16] Shahroudy, A., Liu, J., Ng, T.T. and Wang, G., 2016. NTU RGB+ D: A
large scale dataset for 3D human activity analysis. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 1010-1019).

[17] Wan, J., Zhao, Y., Zhou, S., Guyon, I., Escalera, S. and Li, S.Z., 2016. Chalearn
looking at people rgb-d isolated and continuous datasets for gesture recogni-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops (pp. 56-64).

[18] Kendon, A., 2004. Gesture: Visible action as utterance. Cambridge University
Press.

[19] Chollet, F., 2015. Keras.

[20] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Cor-
rado, G.S., Davis, A., Dean, J., Devin, M. and Ghemawat, S., 2016. Tensor-

46

flow: Large-scale machine learning on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467.

[21] Shin, M.C., Tsap, L.V. and Goldgof, D.B., 2004. Gesture recognition using
Bezier curves for visualization navigation from registered 3-D data. Pattern
Recognition, 37(5), pp.1011-1024.

[22] Oka, K., Sato, Y. and Koike, H., 2002. Real-time fingertip tracking and gesture
recognition. IEEE Computer graphics and Applications, 22(6), pp.64-71.

[23] Molchanov, P., Yang, X., Gupta, S., Kim, K., Tyree, S. and Kautz, J., 2016.
Online detection and classification of dynamic hand gestures with recurrent
3d convolutional neural network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 4207-4215).

[24] Van den Bergh, M. and Van Gool, L., 2011, January. Combining RGB and ToF
cameras for real-time 3D hand gesture interaction. In Applications of Computer
Vision (WACV), 2011 IEEE Workshop on (pp. 66-72). IEEE.

[25] Kölsch, M. and Turk, M., 2004, May. Robust Hand Detection. In FGR (pp.
614-619).

[26] Ohn-Bar, E. and Trivedi, M., 2013, June. In-vehicle hand activity recognition
using integration of regions. In Intelligent Vehicles Symposium (IV), 2013 IEEE
(pp. 1034-1039). IEEE.

[27] Mittal, A., Zisserman, A. and Torr, P.H., 2011, September. Hand detection
using multiple proposals. In BMVC (pp. 1-11).

[28] Toshev, A. and Szegedy, C., 2014. Deeppose: Human pose estimation via deep
neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (pp. 1653-1660).

[29] Newell, A., Yang, K. and Deng, J., 2016, October. Stacked hourglass networks
for human pose estimation. In European Conference on Computer Vision (pp.
483-499). Springer International Publishing.

[30] Zimmermann, C. and Brox, T., 2017. Learning to Estimate 3D Hand Pose from
Single RGB Images. arXiv preprint arXiv:1705.01389.

[31] Rabiner, L.R., 1989. A tutorial on hidden Markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2), pp.257-286.

47

[32] Yamato, J., Ohya, J. and Ishii, K., 1992, June. Recognizing human action
in time-sequential images using hidden markov model. In Computer Vision
and Pattern Recognition, 1992. Proceedings CVPR’92., 1992 IEEE Computer
Society Conference on (pp. 379-385). IEEE.

[33] Samaria, F. and Young, S., 1994. HMM-based architecture for face identifica-
tion. Image and vision computing, 12(8), pp.537-543.

[34] Arulampalam, M.S., Maskell, S., Gordon, N. and Clapp, T., 2002. A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE
Transactions on signal processing, 50(2), pp.174-188.

[35] Kwok, C., Fox, D. and Meila, M., 2003. Real-time particle filters. In Advances
in neural information processing systems (pp. 1081-1088).

48

	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background
	Definition of Gesture and Gesture Recognition
	Gesture Category

	System Overview and Thesis Outline
	Contribution

	Related Work
	Input Modality
	Hand Detection
	Gesture Recognition

	Datasets
	NTU-RGBD Dataset
	Introduction
	Benchmark Evaluations

	Helicopter Marshalling Dataset
	Description of the ChaLearn Dataset
	Benchmark Evaluation of ChaLearn
	Data Collection Procedure
	Data Formats
	Evaluation Protocol

	Human Pose Estimation and Hand Pose Detection
	Introduction to OpenPose Library
	Human Pose Estimation
	Hand Keypoint Estimation

	Performance Evaluation
	Runtime

	Recognition Methodology
	Temporal Convolutional Network with Residual Connections
	Overview of Temporal Convolutional Neural Networks
	Architecture of TCNs with Residual Connections (Res-TCN)
	Model Parameters Analysis
	Experiments and Evaluation
	Conclussion

	Multi-modal network with modality hallucination
	Overview of the Hallucination Model
	Network Architecture
	Implementation and Optimization
	Experiments and Evaluation

	Long Short Term Recurrent Neural Network
	Introduction
	Overview of LSTM
	Model Architecture
	Experiments and Evaluation

	Comparison and Discussion

	Conclusion
	Limitations and Future Work

	Bibliography

