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Abstract

Recently, the authors introduced the “guardian map” approach as
a unifying tool in the study of robust generalized stability questions
for parametrized families of matrices and polynomials. Real matrices
and polynomials have been emphasized in previous reports on this ap-
proach. In the present note, the approach is discussed in the context
of complex matrices and polynomials. In the case of polynomials,
some algebraic connections with other recent work are uncovered.

1 Introduction

In a recent paper [1], the authors developed the “guardian map” approach
to the study of generalized stability of families of matrices and polynomials.
The case of real matrices and polynomials was emphasized in [1]. For some
applications however, such as network realizability and filter design, the
stability tests involve polynomials and matrices with complex coeflicients
(see [2-4] and the references therein). The aim of this note is to explicate
the results of [1] for problems involving complex matrices and polynomials.
A systematic procedure for finding guardian and semiguardian maps for the
complex case is given. We specialize the results to the Hurwitz and Schur
stability of families of polynomials, and proceed to uncover algebraic con-
nections between constructions of Bose [2] and the guardian maps employed
here.
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2 Guardian Maps and Robust Stability

The guardian map approach was introduced in {1,5] as a unifying tool for
the study of generalized stability of parametrized families of matrices and
polynomials. In this section we summarize the elements of this approach.

2.1 Notation

s*: Conjugate of the complex number s
[¢]

C_,C_ : Open, closed left-half complex plane

D,8D: Closure, boundary of set D

Af: Conjugate transpose of matrix A

o(A): Eigenvalues of matrix A (counting multiplicities)

Z(p): Zeros of polynomial p (counting multiplicities)

P,: Set of all monic complex polynomials of degree n.

C(p): Companion matrix associated with polynomial p

®,@: Kronecker product, Kronecker sum (A@ B=A@ I+ 1® B)

S(R2): Set of all n x n complex matrices with spectrum inside Q2. Also
denotes the set of all polynomials in P,, with zeros inside Q.

2.2 Guardian and Semiguardian Maps

The notions of guardian, semiguardian and polynomic map are recalled in
the next definition [1].

Definition 1. Let X be either the set of n X n complex matrices, or the set
of all monic polynomials of degree n with complex coefficients , and let S be
an open subset of X'. Let ¥ map X into €. We say that v is semiguarding
for S if for all z € S, the implication

r€dS = v(z)=0 (1)

holds. Moreover, v guards S if the converse implication also holds. The
map v is said to be polynomic if it is a polynomial function of the entries
(matrix case) or coefficients (polynomial case) of its argument and of their
complex conjugates.!

In [1], guardian and semiguardian maps are exhibited for a large variety
of sets of interest, the focus of the representation being the case of real ma-
trices and polynomials. Analogous maps for corresponding sets of compler
matrices and polynomials are constructed in a straightforward manner. For

IComplex conjugates are not explicit in the definition given in [1], as
that paper focuses on the case of real matrices and polynomials.
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example, the map v : A4 + det (4 @ Af) guards the set of n x n Hur-
witz stable complex matrices. This map is obtained by noting that the
spectrum of the Kronecker sum of two square matrices A and B counsists
of all pairwise sums of eigenvalues of A and B (see, e.g., [6]). Note that
this same result also yields a guardian map for the Hurwitz stable complex
polynomials, namely v(p) = det(C(p) ® CH(p)).

Let © be an open subset of the complex plane. Of particular importance
are sets S of the form S(£2), where S(Q2) is given, for matrix stability
problems, by

S ={AeC":0(4) CQ}, (2)

and, for polynomial stability problems, by
S(Q)={peP,: Z(p) CQ}. (3)

Such sets S(§2) are referred to as (generalized) stability sets.

The example above dealing with Hurwitz stable families is a particular
case of a more general result given next. This result gives a systematic
procedure for constructing semiguardian and guardian maps for a large
class of stability sets, corresponding to domains of the complex plane with
polynomial boundaries.

Let p(z,y) be a real bivariate polynomial of the form

p(e,y) = Y peezy’. (4)
kL

Denote by €2 the subset of the complex plane

Q={s==z+jy: p(x,y) <0}, (5)

and associate with p the complex polynomial

R (6)

= Y A+ p)Fr -t (7)

kL

Cke = (—j)l (%)kHPkL (8)

g ) =) gt (9)
k.t

Here

Rewrite (6) as



4 L. SAYDY, A.L. TITS AND E.H. ABED

With this notation,  and 9Q have the alternative expressions

Q = {AeC: ¢AX)<0}, (10)
9 = {AeC: ¢(AA\)=0). (11)

il

Throughout the remainder of this section we focus on the matrix case
with the understanding that similar considerations apply in the polyno-
mial case. For example, we may specialize any general matrix result to
companion matrices, as in the example above.

Consider the mapping F: €"*" — o’ given by

F(A) =Y qredF @ (47)". (12)
k.t

Let 0(A) = {A1,...,An}. Then Stéphanos’ Theorem [1,6,7] implies that
o(F(A) ={q¢(X:) A7) 4,7=1,...,n}. (13)
As direct consequences of this fact, we have the following two results.
Theorem 1. ([1]) The map v given by
v: A~ detF(A) (14)
is polynomic semiguarding for S(Q).

Proposition 2. ([1]) The map v of Eq. (14) guards S() if and only if q
satisfies the condition

gq(A A7) <0 and q(p,p*) <0 = ¢\ p*)#0. (Condition C)

Condition C is in general difficult to check. A sufficient condition for it
to hold is given by the next proposition.

Proposition 3. ([1]) Assume that
qrr >0, forallk>1, (15)

ket = —Qik, for all k # f, ke # 0. (16)
Then q satisfies Condition C.
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2.3 Robust Stability

The robust stability problem for parametrized families of matrices or poly-
nomials may be stated as follows. Let r = (r1,...,7) € U, where U is a
pathwise connected subset of IR, and let z(r) be an element of X' which
depends continuously on the parameter vector r. Given an open subset S
of X, we seek basic conditions for z(r) to lie within & for all values of r
in U. The next theorem gives a basic necessary and sufficient condition
for this problem both for guarded and semiguarded sets &. Typically, § is
a stability set of the form S(2) where Q2 is a given subset of the complex
plane.
Given a continuous map v : XY — €, define the critical set

Uer :={relU: v(z(r)) =0}. (17)

Theorem 4. ([1]) Assume that the family ® := {x(v) : r € U} is nomi-
nally stable relative to S, i.e., assume that z(r°) € S(Q2) for some r° € U.
Then: (i) if S(Q) is guarded by v, then ® is stable relative to Q if and only
if Ur = 0, (i1) if S(Q) is semiguarded by v, then ® is stable relative to Q
if and only if £(r) € S() for allr € Uey.

In the case of polynomic guardian or semiguardian maps, unless Ug is
all of U, 1t is finite and the theorem above yields computable conditions
for robust stability of parametrized families of matrices or polynomials [1].
The guardian or semiguardian maps obtained in Section 2.2 are all of the
polynomic type. It is not surprising that results analogous to those obtained
for one- and two-parameter families of real matrices or polynomials in [1]
hold for complex families . We give special attention to the cases of Hurwitz
and Schur stability of families of complex polynomials, uncovering algebraic
connections between recent results of Bose [2] and those which follow from
the present approach.

3 Families of Polynomials

Let {p(r) : r € U} be a polynomic family of polynomials in P, and let £ be
a given open subset of the complex plane. We seek conditions under which
this family is stable relative to .

Theorem 4 states that if v is a polynomic guardian map for S(2) and at
least one polynomial p(7), ¥ € U, is stable relative to €2, then a necessary
and sufficient condition for the entire family to be stable relative to § is
that the polynomial v(p(r)) have no zeros in U. In the cases of Hurwitz
and Schur stability, this translates into the polynomials

det (C(p(r) @ C¥ (p(r))) (18)
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det (C(p(r)) @ €™ (p(r)) — 1) (19)
having no zeros in U.

We now proceed to show that (i) the results of [2] are particular cases
of Theorem 4, and (ii) the corresponding “resultant-based” guardian maps
are in fact identical to (18) and (19). The Hurwitz case is treated first.

Following [2], we associate with any complex polynomial

p(s) = po+pis+pasi+.. Fpu_18"" 48" (20)

the pair of polynomials
ap(5) 1= 5 (b(5) + (=57 (21)

Br(5) = 5 ((5) — (bl =5"))"). (22

Also, given two polynomials ¢ and y with degrees n and m respectively,
the resultant of  and y is the determinant of the (m+n) x (m + n) matrix
R(x,y) given by??

- -

Tp Tn_1 . . . Lo 0 . . . 0
0 Tn LTn-1 . . . Lo 0 . . 0
Zo 0

0 =z, z,_1 . .. o

0 Yn Um-1 - . w0 |. (23)
0 Um YUm-1 . Yo 0
0 Yn  Ym—1 - - Yo 0 . . .0
| Ym  Ym-—1 . . yw O . . .. 0]

Proposition 5. The set of Hurwitz stable complez monic polynomials is
guarded by the (polynomic) map & given by

8(p) = detR(ap, Bp). (24)

o —
Proof. Let p € S(C.), i.e., assume p has all its zeros in €©_. Then we
have

6(p) =0 & a, and B, have a common zero
& p(s) = (p(=5"))" = 0.

2A vanishing resultant signals that z and y have a common zero.
%Eq. (23) corresponds to the case n = m + 1.
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Since p has all its zeros in T_, it follows that

6(p)=0 < p(s)=0forsomese€ aC._
& pEe 65(003_).
Q.E.D.

In the light of this proposition, an alternate necessary and sufficient
condition for the convex hull of two polynomials p° and p' to be Hurwitz
stable, given that p° is Hurwitz stable, is that the polynomial §((1 —r)p° +
rp!) in the indeterminate r be nonzero for all r € (0,1] This appears as
Theorem 1 of [2].*

The question now arises as to the relationship between guardian maps
(18) and (24). It turns out that, essentially, these maps are identical, as is
shown next.

Proposition 6. Let p € P,. Then the following identily holds:

n(n—l!
det (C(p) ®CH(p)) = (=1)" 7 2"R(ap,Bp). (25)
Proof. Recall [2] that if £ and y are polynomials with zeros given by
v;, t=1,...,nand wg, k = 1,...,m, respectively, then
n{n-1 i m
detR(z,y) = (-1)" 2z 2l'yh, H (v; — wg). (26)
i=1k=1

Here, the #;’s and y;’s denote the coeflicients of z and y respectively. Note
that this can also be written as

detR(z,y) = (1) T2 [ ul(w)- (27)
i=1

Since ap(s) + Bp(s) = p(s), it follows from (21)-(22) that at least one of
ap(s) and B,(s) has degree n. Without loss of generality, assume a,(s)
has degree n and denote by a, the coefficient of the highest power. Let
Z(p) = {z1,.. 2z}, Z(op) = {a1,...,an} and Z(By) =: {B1,...,Fn.},
where ny denotes the degree of p. Now let v(p) = det(C(p)®CH (p)). Since

c(Cp)@CE(p)) ={z+2: i,k=1,... n}, (28)

*The additional condition given in [2] on the polynomial coefficients is
apparently superfluous.
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we can write

v(p)=[[ ]G+ #). (29)
i=1k=1
It also follows that "
v(p) = (=1 [] (=), (30)
1=1
where
p(s) := (p(=s"))" (31)
With this notation, Egs. (21), (22) may be rewritten as
0p(5) = 5 (p(s) + F(s)), (32)
By(s) = 5 (0(s) — 7(5)). (33
Eq. (33) implies that p(z;) = ——2,3,,( i), 1=1,...,n, whence
— _1)n2 H i)\(zz) — H (zt (34)

From the fact that a,(s) + 8,(s) = p(s), we have ap(z;) = —=fp(x), ¢ =
1,...,n. Hence

N [ N ED) (35)
i=1
We now use the following easily proved fact: Given monic polynomials A(s)
and B(s) with zeros z1,...,2, and y1, ..., Ym, respectively,
m n
[ Aw) = (1™ I B(z»). (36)
1=1 i=1
It follows from (35) and (36) that
n
v(p) = 2"a} Hp(ozi) (37)
i=1
= 2% [] Bp(es)- (38)
i=1

On the other hand, Eq. (27) implies

6(p) = detR(ap, Bp) = (— 1) a,? Hﬁp(al)- (39)

=1
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Comparison of Eqs. (38) and (39) yields
2(=1) on n—n,
v(p) = (=1)" 7 2%z "6(p). (40)

Note that, if ny < n, then a, = p, = 1. Thus, a?~™2 = 1 both for ny = n
and for ny < n. Q.E.D.

Remark 1. As a reviewer has pointed out to the authors, the guardian
map §(p) may alternatively be written as the determinant of the Bezoutian
B(p,p), modulo a constant factor. The Bezoutian of two n*" degree polyno-
mials is an n x n matrix [8]. The reduction in dimensionality as compared to
the resultant formulation used here may lead to a savings in computation.

Finally, it can be shown that similar results hold for the case of Schur
stability where v and § now take the form

v(p) = det (C(p) ® €* (p) ~ 1) (41)

wnd 8(p) = detR(ayp, Bp). (42)
Here, polynomials o, and 8, are defined by

() = 3 (0(s) + 5" (0(1/5))"), (43)

Bp(s) 1= 5 (bls) = 5" (p(1/5"))"). (44)

The case of polynomials with real coefficients is considered in the fol-
lowing remark.

Remark 2. Bose [2] shows that if p° and p! have real coefficients and are
both Hurwitz stable, then the convex hull {p(r) = (1—-r)p°+rpt,r € [0,1]}
is Hurwitz stable if and only if 8(p(r)) has no zeros in [0, 1], where 8(p(r))
is the determinant of a resultant matrix of size (n — 1) x (n — 1), linear
in the coefficients of p. It can be easily verified that pog(p), with po as
in (20), is in fact a guardian map for the set of Hurwitz stable real monic
polynomials. Bialas’ test [9] on the other hand, corresponds to the guardian
map det H(p), where

Pn—-1 Pn-3 Pn-5 0

1 Pn-2 DPn-4 0

0 Pn-1 Pn-3 0

H(p) = 0 Pn Pn-2 0
0 . . . . P31 0

0 . . . . . Dp2 DO
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is the n x n Hurwitz test matrix associated with p, which too is linear in
the coeflicients of p. Since clearly det H(p) = po - det f](p), with H(p) an
(n — 1) x (n — 1) matrix, it is clear that Bose’s test and Bialas’ test are
identical from a computational point of view. A similar comment holds in
the Schur case regarding Bose’s test and that proposed by Ackermann and
Barmish [10].

We conclude with an example illustrating the use of Theorem 4 and
Proposition 5.

Erample 8. We test the one-parameter family of polynomials
p(r)(s) =2 +3(1—rH)s® +3s +1 - (1 = j)r

for Hurwitz stability. Clearly p(0) is stable. Using, e.g., the symbolic
manipulation system MACSYMA,’ one obtains

(p(r)(=s*))* = _%(33 +3(r -1 +3s+ (1 +5)r—1),

ap(r)(s) = -11—6(753 +27(1 — r?)s? + 21s + 9 — (9 = Tj)r),

and
1 N .
By (r)(s) = Té(953 +21(1 — r?)s? + 275 4+ 7 — (7 — 9j)r)
yielding
8(p(r)) = —884736r" + 2654208r° + 2654208+° — 5898240

—409600072 + 60948487 + 1572864r — 2097152.

The real roots of §(p(r)) are given approximately by

—0.904, -0.864,1.0,1.126

Since p(0) 1s stable, we now have that p(r) is Hurwitz stable for any r €
[—0.864,1.0]. It can be checked that p(—0.864) and p(1.0) do indeed have

zeros on the imaginary axis,
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