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1. INTRODUCTION

Over the past few years there has been considerable interest in stochastic recursive algorithms.
In such schemes, the current output to the algorithm affects the (probabilistic) transition mechanism
of a “noise” or “state” process which in turn drives the algorithm in-the next iteration. Typically

thesc algorithms produce a sequence of iterates {7,, n = 0,1,...} through a recursion

Mn41 = .(/n(nm/Yn-{»-]) n=20,1,. (11)

for some Borel measurable mapping ¢, : G X S — & where G and S are Borel subsets of some Eu-
clidean spaces. The evolution of the S-valued state process {X,, n = 0,1,...} is then characterized
by the conditional probability distribution fi,41 of X4y given Xo, 10, X1,..., X0, 0.

Of particular interest in this class of algorithms are the schemes first introduced by Robbins
and Monro in [15] and known as Stochastic Approximation algorithms. In their simplest form,

these algorithms take the form

Nat1 = N + f’/nf(nm-"(n-}-l)

n=0,1,...(1.2)
no € RP

for some Borel measurable mapping f : IRP x5 — RP, where the sequence of decreasing step sizes
{an, n =0,1,...} satisfies the standard conditions (2.2).
More recently, it has been neccessary to consider projected versions of (1.2), in which case the

recursion (1.2) takes the form

T+t = HG{nn + afnf(nn’ AXn-H)}
n=10,1,...(1.3)

m €G

where G is a compact convex subset of IR?, I denotes some projection operation on G and f is
now a Borel mapping G x § — RP. Usually Il is the nearest-point projection on G, but other
choices have proved useful [8].

As pointed out earlier, a complete specification of the algorithms (1.2) and (1.3) requires that
the one-step transition probability distributions {u,, » = 1,2,...} of the state process {X,, n =
0,1,...} be postulated. For instance, the classical Robbins-Monro algorithm [15] corresponds (with

G = IR?) to the “i.i.d.” case in that

P[X 41 € Bl Xo0,1m0, X1y oo Xy ] = 1y, (B) n=0,1,...(14)
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for every Borel subset &3 of S, where {y,, 1 € G} is a family of probability measures on §. However,
motivated by applications, some of which arc briefly discussed in Section 3, increasingly complex
probabilistic structures have been considered. In particular, Markov dependencies have been found

useful in a variety of contexts. This amounts to requiring
P[Xn+1 € B[XO, 770, Xl, ey Xn, 7]n] = Ky, (_'Yn; B) n = 0, 1, . (15)

for every Borel subsct B of §, where {41, 7 € G} is a family of one-step probability iransition

kernels on 5. This situation is conveniently referred to as the Markovian case.

The central question in the theory of Stochastic Approximations is concerned with the con-
vergence properties of the iterate sequence {7,, n = 0,1,...}. In the i.i.d. case (1.2), martingale
arguments have been given by Gladyshev [6] to establish a.s. convergence. IHowever in more com-
plex situations, such a direct approach does not work and the so-called ODE method needs to be
used. In all its variants, the ODE method proceeds in two separate steps. The first step relies
on the Kushner-Clark Lemma in order to identify a deterministic ODE, the stability properties of
which determine the limit points of {n,, n = 0,1,...}. The second step is probabilistic in nature
and depends on the algorithm being considered; its purpose is to show that asymptotically (in the
mode of convergence of interest) the output sequence to the original algorithm behaves like the

solution to the ODE.

In their monograph 8], Kushner and Clark give general conditions for successfully completing
this second step. In more structured situations, Kushner has proposed weak convergence meth-
ods which require that various tightness properties be established; this leads to convergence in
probability of {n,, n = 0,1,...}. In the Markovian case, Metivier and Priouret [13] establish a.s.
convergence by making use of properties of the Poisson equation associated with the transition
kernels {u,, 7 € G} appearing in (1.5). Key to their analysis are properties of Lipschitz continuity
(in 7) of the solution to this Poisson equation.

Unfortunately, in all these references, the conditions underlying the second step are given in
implicit form and are often hard to verify in specific situations. What seems required is a more
.operational convergence theory where conditions are given directly in term of the model data.
Although this can probably not be achieved in any great level of generality, it is hoped that such
a program can be successfully carried out in structured situations of interest for applications. It
is the purpose of this paper to show that a comprehensive convergence theory is available in the

Markov case when the state space S is finite and G is a compact convex set of RP. In that case
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(1.5) reduces to
P[Xn+1 = :’/I/‘{0> 7707‘)(11 O ’/\’n, 77n] = ])X,,y(nn) n = 0, 1, .. .(1.6)

for all y in § for some family {P(y), n € G} of onc-step probability matrices on § with P(n) =
(poy(n)) [13]. Here, under mild conditions on the mappings 1 — pgy(n), the methodology of
Metivier and Priouret is shown to lead to a result on a.s. convergence. Moreover the specific
structure of the model at hand allows for great simplifications in their original arguments.

The paper is organized as follows: The sct-up of the Stochastic Approximation algorithm
studied here is described in Section 2, together with the basic results of the paper (Theorems 2.1-
2.2). Section 3 presents several examples from the theory of Markov decision processes (MDPs)
which illustrate the usefulness of the convergence theory established in this paper. These examples
deal mainly with implementation issues which arise in the problem of “steering the cost to a given
value” and in the theory of constrained MDPs; this provides the intuition behind the proposed
adaptive algorithm. The required regularity properties are derived in Section 4 under minimal
conditions and the main estimate that underlies the use of the ODE method is developed in Section

5 which contains the proof of Theorem 2.2.

A {ew words on the notation used throughout the paper: The set of all real numbers is denoted
by IR, and I(A) stands for the indicator function of a set A. Unless stated otherwise, the notation

lim, and lim, are understood with n going to infinity.

2. THE STOCHASTIC APPROXIMATIONS: SET-UP AND RESULTS

The Stochastic Approximation

Assume the state space to be a finite set .S of cardinality d and let the parameter space G be a
compact convez subset of IRP. A family of stochastic matrices {P(n), 7 € G} on § is assumed given
by specifying for all ¢ and y in S, a Borel mapping 7 — pay(#) on G such that 0 < p,y(n) < 1 and
2 Pey(n) = 1. Sometimes it will be convenient to use the notation P(n) where P(y) = (Pay(m))-

All random variables (RVs) are defined on some sample space Q which for convenience is taken

.to be the Cartesian product £ := (5 x G)™ with generic element w = (29, Y0, 21,¥14+..). The
coordinate mappings { X, 9, n = 0,1,...} are defined by setting X,(w) := 2, and gp(w) := yn
for every w in Q and all n = 0, 1,.... This sample space 2 is equipped with the o-field F 1= VL, Fn

where F, = 0{Xo,%0, X1y, Xnynn} for all n = 0.1,..., so that X, and 7, are both RVs on

(Qa .7:)'



The Stochastic Approximations of interest in this paper is the algorithm that produces the

G-valued iterates {9, n = 0,1,...} through the recursion

Mntt = HG’{Tln + anf(")m 1Yn+])}
n=0,1,...(2.1)

1 €G

where f is a Borel measurable mapping G x S — IRP, and Il denotes the the nearest-point

projection on G [8]. The sequence of step sizes {a,, n = 0,1,...} satisfies the usual conditions

o0 X0
0<a,l0, Z a, = 00, Z ai < 00. (2.2)
. = n=0

The probabilistic evolution of the state process {X,, n = 0,1,...} is characterized by
P[‘Xn'}-l = yl -7:71] = P.\'..y(nn) n= Oa 1, v (23)

for all y in S.

Let 4 be a probability measure on §. The requirements (2.1)~(2.3) defining the Stochastic
Approximation algorithm induce a unique probability measure P on F such that Xy is distributed
according to p under P. Moreover, for every n in G, it is convenient to introduce a probability

measure P7 on F such that X, is again distributed according to 4 under P” and
P Xpt1 =yl Ful = px,4(0) n=01,...(24)

for all y in 5, while the iterates {n,, n = 0,1,...} are still governed by (2.1). The existence and
uniqueness of the measures P and {P",n € G} follow from the Kolmogorov Extension Theorem.
The expectation operators under P and P7" are denoted by £ and E7, respectively.

Note from (2.4) that for cach  in G, the RVs {X,, »n = 0,1,...} form a Markov chain under

P, As customary this Markov chain is identified with its matrix P(n) of one-step probabilities
(Pzy(M)).
The assumptions

The purpose of this paper is to provide mild conditions under which the iterates {1,, n =
0,1,...} generated through (2.1) converge a.s. under P to a (non-random) limit, and to characterize

this limit. The assumptions of intercst are stated below as conditions (C1)-(C4).
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(C1) For cach 5 in ¢, under P", the RVs {X,,, n = 0,1,...} form an aperiodic Markov chain
with a single recurrent class;

(C2) For all z and y in 9, the transition probabilities 1 — pyy(n) are Lipschitz continuous on
G

(C3) Forall z in 5, the mapping G — IR? : o — f(n,2)is Lipschilz continuous on G.

Note that the properties of Lipschitz continuity stated in (C2) and (C3) are independent of
the norms equipping IR and IRP. Tor the sake of definitencss the discussion is carried out with
the understanding that the Euclidean spaces considered here are all equipped with the Euclidean

norm. To fix the notation, let || denote the Buclidean norm of any element 2 any space R

Under (C1), for each 5 in G, the Markov chain {X,, n = 0,1,...} is positive recurrent under

P7 (since S is finite), and therefore possesses a unique invariant measure 7(5) = (7(n,2)). Set

F(n):= ) m(m:2)f(n,2) (2.5)

with the obvious interpretation that F(n) is the expectation of f(7n, X') where X denotes a generic
S-valued RV distributed according to #(n). Now for  and F in RP, define the projection on G of
the vector (field) F originating at 5 by

HUs{n+ hF} -7

- (2.6)

Hc(n, F) = limhw

The ODE
4

o) = Og(n(t), F(n(t))), t=>0, n(0)in G (2.7)

is the one associated with the algorithm (2.1)-(2.2) by the Kushner—Clark lemma (8, Thm. 5.3.1, pp.
191). The existence and uniqueness of solutions to (2.7) is readily guaranteed under the conditions
(C1)-(C3). Indeed, by (4.10) and Theorem 4.3 the mapping n — F(n) is Lipschitz continuous on
G in view of (C3), and it is a simple exercise to check that the mapping n — Ig(n, F(n)) is also
Lipschitz continuous on G. It will be crucial to require some form of stability for the ODE (2.7).

'This is the content of assumption (Cd).

(C4) The ODE (2.7) is (Liapunov) asymptotically stable in G, and its stable point is ™.

Recall that an ODE is said to be Liapunov asymptotically stable in a region G, with n* as the

attracting point, if (i) starting at any point in G the solution converges to %, and (ii) for any
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€ > 0 there exists 6 > 0 such that starting in a é-ucighborhood of *, the solution remains in the

e-neighborhood of n* for all t > 0.

The results
The main result of this paper can now be stated.

Theorem 2.1 Under the assumplions (C1)-(C4), the sequence of ilerales {n,,n = 0,1,...} con-
verges w.s. under P, i.e.,

lim, 5, = 7" P - a.s. (2.8)

The approach adopted here for establishing the convergence (2.8) uses an ODE argument based
on the deterministic lemma of Kushner and Clark [8] as presented by Metivier and Priouret in [13].
The key result for the analysis is probabilistic in nature and is given in the next proposition whose

r

proof is delayed till Section 5. To state the result, consider the RVs {Y,, n = 0,1,...} given by

Y, = f(nm )(n-H) -~ F(nn) n=0,1,.. -(29)
and for every T > 0, posc
k-1
m(n,T) := max{k > n: Z a; <T}. n=0,1,...(2.10)
i=n

Theorem 2.2 Under the assumptions (C1)-(C3), the convergence

k
lim, ( sup | Z «;Y; |> =0 P-ua.s. (2.11)
n<k<m(n,T)

i=n

takes place.

Proof of Theorem 2.1. As explained by Metivier and Priouret [13], the convergence (2.11)
underlines the P-a.s. convergence of {1,, n = 0,1,...} to #*. The reader is invited to consult
[8,13] for a complete exposition of the arguments which are now bricfly summarized: Interpolate
the estimate sequence {7,, n = 0,1,...}, say by a piecewise linear function 70 1 [0,00) - RP
anchored in 7, at time t,, = Z?__fola;, i.e., n9(t,) = n, for all n = 0,1,..., and define a sequence
of left shifts n"™(t) = 9O (t - t,,) which bring the “asymptotic part” of {n,, n =0,1,...} back to
a neighborhood of the time origin.

Now observe from (2.9) that the recursion (2.1) can be written in the form

M+l = HG{UN + ay [Yn + F‘(7711)]}' n=20,1,.. (212)
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From any convergent subsequence {77(’”)(-), m = 0,1,...} a further convergent subsequence

{n(™»)(), p=0,1,...} can then be extracted by standard boundedness and equicontinuity argu-
ments. It is then easy to see from (2.11) and (2.12) that its limit 7(.), and for that matter the limit
of any convergent subsequent, satisfies the ODE (2.7) which is asymplotically stable with a unique

stable point 5*, as a consequence of (C4).

A simple shifting argument now implics n(t) = »* for all £ > 0 and this completes the proof.

These arguinents are now standard and are omitted here in the interest of brevity. O

3. APPLICATIONS AND EXAMPLES

Many questions concerning MDPs can be reduced to scarching for Markov stationary policies
which satisfy certain constraints (or optimality) conditions. However, the resulting Markov sta-
tionary policies are usually not readily implementable [10], sometimes in spite of strong structural
properties. This is so because the values of the model parameters may not be available [9,17], and
even if they were available, the policy may still not be implementable due to computational difficul-
ties inherent to its definition [17]. In some cases, these difficulties can be alleviated by considering
alternatives based on a Stochastic Approximation algorithm of the type (2.2). This point is now

developed in this section.

The MDP model

To set up the discussion, consider an MDP (5, U, P) as defined in the literature [16] where
the state space § is a finite set and the action space U is an arbitrary measurable space. The
one-step transition mechanism P is defined through the one-step transition probability functions
Pzy(+) : U — IR which are assumed to be Borel measurable and to satisfy the standard properties
0 < pry(u) <1 and Eypxy(u) = 1{for all 2 and y in §, and all v in U. The space of probability

measures on U (when equipped with its natural Borel ¢-field) is denoted by IM.

Here the canonical sample space for the MDD (5,U, P) is the Cartesian product  := § X
(U x §)°° with generic element w = (2¢, ug, ¥1,...). Set Up(w) i= u, and Xp(w) := @, for every
win Q and all » = 0,1,.... The sample space Q is equipped with the o-field F := V324 Fn where
Fn 1= o{H,} and H, = (Xo,Uo, X1,...,Up-1,Xy) for all n = 0,1,..., so that U, and X, are
both RVs.

An admissible control policy v is defined as any collection {yn,n = 0,1,...} of measurable
mappings ¥ : S X (U x X)* — M with the interpretation that for all n = 0,1,..,, (3 Hy) is

the probability distribution of selecting the control value U, given the feedback information H,.
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Denote the collection of all such admissible policies hy T.

Let p be a fixed probability distribution on §. For cvery admissible policy 4 in T, the Kol-
mogorov Extension Theorem guarantees the existence and uniqueness of a probability measure P

on the o-field F so that under P7, the RV X, has distribution g and
Pl X1 =yl Fnl= / Yol(du; I1)px, y () n=0,1,...(3.1)
U

for all ¥ in 5. The expectation operator associated with 7 is denoted by L7,

A policy 7 in T is said to be a Markov or memoryless policy il there exists a family {g,, n =
0,1,...} of mappings g : S — M such that v,(:; /[,) = ga(; X,) PY —a.s. for all n = 0,1,...
In the event the mappings {gn, n = 0,1,...} are all identical to a given mapping g : § — M,
the Markov policy is termed stationary and is identified with the mapping ¢ itself. Under any
Markov stationary g, the state process {X,, n = 0,1,...} evolves according to a Markov chain

with one-step transition probability matrix P(g) = (pgy(g)) given by

Pry(9) :=L7)ry(1t)g(duyx) (3.2)

for all 2 and y in §.

Steering the cost

For any mapping ¢ : § — IR, define the corresponding long-run average cost functional J, :

I' = R by posing

Jo(7) = lim,, E”

1 n
— Z% c(X;)] (3.3)

for every admissible policy v in I'. The problem of interest here is to find a Markov stationary policy
g such that J.(¢) = V for some constant V" determined possibly through design considerations. The

discussion assumes the existence of two implementable Markov stationary policies g and g such that
Jo(7) < V < Je(g), (3.4)

i.e., the Markov stationary policy 7 (resp. g) undershoots (resp. overshoots) the requisite perfor-
mance level V. As discussed below, this situation arises naturally in the solution of constrained

MDPs via Lagrange arguments.



For every 7 in the unit interval [0,1], the policy f” obtained by simply randomizing between the
two policies § and g with bias 7 is the Markov stationary policy determined through the mapping
g": 5 — M where

g"(52) = ngl52)+ (L-n)7(5 %) (3.5)
for all z in 5. Note that for » = 1 (resp. # = 0), the randomized policy 97 coincides with g (resp.
g). Owing to the condition (3.4), if the mapping n — J.(¢") is continuous on the interval [0,1],
then the equation

J(g") =V, nin[0,1] (3.6)

has at least one solution, say n*, and g = ¢ thus stecrs (3.3) to the value V.

The implementation problem

Solving the (highly) nonlinear equation (3.6) for the bias value n* is usually a non-trivial
computational task, even in the simplest of situations [14]. This computational problem is further
compounded by the parameter uncertainties that are inherent in the modeling of any system.
Despite these difficulties, as illustrated by the examples below it is often possible to determine
g and g. In that case, a direct solution of (3.6) may be avoided by using an alternate policy

a = {anp, n=0,1,...} of the form
an(+3 Hp) 1= 10 g5 Xn) + (1 = 70) 5(+; Xn) n=0,1,...(3.7)

for some sequence of [0,1]-valued RVs {7,,, n = 0,1,...} which act as “estimates” for the bias value

n*. This policy @ constitutes an acceptable implementation of g provided J.(a) = J(g).

In many applications, the mapping n — J.(¢”) is monotone, say monotone increasing for sake of
definiteness. The search for n* can then be interpreted as finding the zero of the monotone function
7 — J.(g") — V and this brings to mind ideas from the theory of Stochastic Approximations. The
Robbins-Monro version of these algorithms suggests that the sequence of bias values {g,, n =

0,1,...} be generated through the recursion

M4l = H[O,l] {nn + (ln(‘/ - C(:'Yn.*_l))} n = 0, ]., .. .(3.8)

with 7 given in [0,1], where the sequence of step sizes {an, 7 = 0,1,...} satisfies the conditions
(2.2). This scheme (3.6)-(3.8) can be interpreted either as an cstimation procedure, where the
estimated parameter is defined through (3.6), or as an adaptive implementation scheme, where the

controls are generated “on line” through (3.8).
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Theorem 2.1 easily applies to the algorithm (3.7)-(3.8) under fairly mild conditions. A possible

set of conditions are the assumptions (D1)-(D2), where

(D1) Under each one of the policies § and g, the RVs {X, n = 0,1,...} form an aperiodic

Markov chain with a single recurrent class;
(D2) The mapping [0,1] — IR : 9 — J.(g") is strictly monotone increasing,
The main properties of the implementation « are summarized in Theorem 3.1,
Theorem 3.1 Assume (3.4). Under the assumptions (D1)-(D2), the following hold.
(i): The equation
Je(g") =V, nin|0,1}, (3.9)
has a unique solution n* in (0,1);

(ii): The sequence of estimates {n,, n = 0,1,...} is strongly consisient under P?, i.e.,

lim,n, =7n* P* — a.s. (3.10)

(iii): The policies g and « achieve the same cost, i.e.,
Je(a) = Je(g) = V. (3.11)

Proof. Since for all  and y in §, pzy(7) 1= pry(97) = Mp2y(g) + (1 — 7)pay(7) for every 5 in [0,1],
the mapping 7 — pzy(n) is linear (and thus Lipschitz continuous) on [0,1]. By Lemma 4.2 and
(4.7), the mapping {0,1] = IR : » — J.(¢") is Lipschitz continuous on [0, 1], so that (3.6) admits at
least one solution #* in view of (3.4) and exactly one solution by virtue of (D2).

The assumption (D1) implies that under each one of the policies g7, 0 < 5 < 1, the state
sequence {X, n = 0,1,...} form an aperiodic Markov chain with a single recurrent class. Indeed,
this follows readily from the definitions of irreducibility and aperiodicity once it is observed that if
for some k£ = 0,1,... and some pair of states z and y in ., either p(xlﬁ,)(y') >0 or pg,-g)(g) > 0, then
pg;,)(g") > 0 for all 0 < < 1. Consequently F(n) =V = J:(g"), 0 < 57 £ 1, by standard results
from the theory of Markov chains [5]. By the strict monotonicity assumption (D2), the projected

ODE (2.6) can now be reduced in this scalar situation to
B(t) =V = J(g"D), >0, n(0)in [0,1]. (3.12)

That this ODE is asymptotically stable and that #* is its unique stable point, follows from (D2)

and (i). Part (ii) is now an immediate consequence of Theorem 2.1.
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The result (3.11) on the cost is a simple consequence of the parameter convergence (3.10) and

of a generalization [18] of a result by Mandl [12]. ()

If the mapping n — J.(g") were monotone decreasing, then the Stochastic Approximation
algorithm (3.8) would be modified by replacing V — ¢(Xn41) with ¢(X,41) =V, and the assumption

(D2) would be changed accordingly.

Constrained optimization

Constrained MDPs provide a rich class of situations where the idecas given above have an
immediate application. Let ¢ and d be two cost functions 5 — IR, and let J,(v) and J4(7) denote
the corresponding long-run average costs (3.3) incurred under an arbitrary policy 4 in I'. With

Iy :={y €T :J.(y) >V} for some V in R, consider the constrained oplimization problem
Maximize Jg(-) over Ty.

In the event ¢ < 0 and d > 0, the problem has the natural interpretation of maximizing the reward
subject to a bound on the cost. Assume henceforth that I'y is non-empty and strictly contained in
', so that the problem is feasible but not trivial.

Beutler and Ross [4] have shown that under mild recurrence conditions, if U is compact and
if the mappings u — pgy(u) are continuous for all 2 and y in 9, then there exist two Markov
deterministic policies g and g so that (3.4) holds. Moreover, if g7 is given by (3.5), then n — J.(¢")
is continuous, and if »* solves (3.6), then ¢ = g™ is a solution to the constrained optimization
problem.

Applying Theorem 3.1, it follows that if n — J.(¢") satisfies condition (D2), then the policy o
defined through (3.7)-(3.8) satisfies J.(a) = J.(g) = V. Similarly, Jg(a) = J4(g) and «a solves the

constrained optimization problem.

In applications arising in queuing models, the control policies g and g are often simple to

obtain, as the following examples illustrate.
Flow control

Consider a discrete-time queue AM/A[/1 queue with a finite buffer of size M (including the
customer in service). Service completions and arrivals are modeled by two independent Bernoulli

sequences. The controller implements a flow control mechanism by deciding whether or not to
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admit an arriving customer into the queue, with the understanding that a rejected customer is lost.

Let X, denote the number of customers in the system at timen = 0,1,....

Under a variety of cost structures ¢ and d, the optimal policy for the constrained problem
has been shown to be of threshold type [9,7], i.e., if an arriving customer finds 2 customers in the
system, it is accepted if 2 < L for some threshold L and it is rejected if L < z. If 2 = L, then
a coin with bias n* is flipped, and the arriving customer is accepted or rejected according to the
outcome. Define 7 (resp. g) to be the policy that rejects customers when & > L (resp. ¢ > L+ 1
respectively), and define g7 through (3.5).

When the cost function ¢ that defines the constraint is strictly monotone, coupling arguments
can be used to show strict monotonicity of the cost function  — J.(¢"). Consequently, the optimal
policy for the constrained problem is obtained by solving (3.9), and the scheme (3.7)-(3.8) solves the
constrained optimization problem. Note that this implementation is insensitive to small modeling
errors and as long as the correct threshold value remains L, the optimal bias is estimated on-line,

In fact, it is possible to generate an estimate of the optimal threshold L so that a fully adaptive
scheme is obtained in the sense that no a priori knowledge of the model parameters is required: To

this end, consider the recursion

Nn+1 = H[O,AJ] {nn + an (V - C(Xn+1))} n= 0, 1, ‘e (313)

with the interpretation that at time n, the threshold value |7, ] (i.e., the largest integer value in 7,,)
and the bias 7, — {7,] are used. The monotonicity of J.(y7) is again established through coupling
arguments, whereas the Lipschitz continuity of the one-step transition probabilities are seen to hold
by direct inspection. The result (3.11) is then established through an extension [18] of Mandl’s

result [12].
Resource allocation

As a final example, consider a discrete-time system of I infinite-capacity queues that compete
for the service attention of a a single resource or server. The assumptions are the ones used in [2,3],
i.e., service completions are modeled by Bernoulli RVs which are independent of the i.i.d. arrival
batch process. Altman and Shwartz [1], and Nain and Ross [14] have studied the situation where
the costs ¢ and d are positive and linear in the queue sizes. It follows from their results that the
optimal control in the presence of a constraint is obtained by randomizing (as in (3.5)) between two

strict priority policies. In that case the policies g and 7 are easy to find in terms of the problem
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parameters. However, evaluating the optimal randomization bias 5* is computationally prohibitive
since calculating J.(¢g") for 0 < < 1 involves solving a Riemann-Iilbert problem.

In this case, the state space S is not finite, so that Theorem 3.1 does not apply, but the scheme
(3.7)-(3.8) is still of interest. For the case K = 2, Shwartz and Makowski [17] have obtained
the results of Theorem 3.1 for this system, but where the convergence (3.10) holds in probability,
rather than in the a.s. scnse. However, the basic ideas of the present paper can be extended to
this countable state system under appropriate moments conditions on the model data. This was
done in [11] by Makowski and Shwartz who developed a method for proving a.s. convergence. The

steering property (3.11) is established there via the results of [18].

4, SOME REGULARITY RESULTS

The proof of the convergence (2.8) is based on the ODE method as presented by Metivier
and Priouret [13]. This approach hinges crucially on the fact that several quantities of interest
are Lipschitz continuous (in the variable 5) and it is the purpose of this section to establish the
requisite regularity properties in some detail. In what follows, it will be convenient to view any
mapping f : S — IR as a d x 1 column vector (f(z)) (still denoted by f). Therefore, with this
convention, any mapping f : § — R” can be represented as a d X p matrix (fi,..., fp). Also, let
I; denote the d x d identity matrix and let 04 stand for the 1 X d row vector with zero entries.
Similarly, any mapping f : G x § — IR can be viewed as a mapping f : G — R? through the
convention f(n) = (f(n,2)) introduced earlier. A similar convention is used to represent mappings
f:GxS —RP.

Under (C1), the Markov chain P(#) is positive recurrent for all 77 in G (since S is finite) and
its unique invariant measure 7(7) is interpreted as a 1 X d row vector (7(n,z)). It is well known

that this invariant vector w(n) is the unigue solution to the system of equations
r=7wP(n), weq=1 (4.1)

in the variable 7 = (7 (z)) in IR?*? with ¢4 denoting the d x 1 column vector with all entries equal
to unity.

. The next Lemma is useful for establishing the required regularity results. Throughout the
discussion, the Lipschitz property of a matrix-valued mapping is understood entrywise.

Lemma 4.1 If the mapping G — X4y — A(n) = (Azy(m)) is Lipschitz with the property that
the inverse A™1(n) of A(n) exists for every 1 in G, then the mapping G — A% : - A~1(y) is

Lipschitz on G.
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Proof. By standard results from Lincar Algebra, there exist d® 4+ 1 polynomial functions rg :
2 2 L L .
R* — IR and Toy % — IR, with z and y ranging in S, in ¢? variables A = (Agy) such that

A7 () = 22 (4.2)

ro(A(n))

for all 2 and y in S and all n in G. Ilere, these polynomial functions are of degree at most d and
the relation 7o(A(n)) = det A(n) # 0 holds for all 7 in G.

It now follows from the expression (4.2) that the mapping n — A~(n)y, is rational for all z
and y in S, thus locally Lipschitz at each point of G, except possibly at a finite number of points
where the function may exhibit poles. Hlowever, ro(A(%)) is Lipschitz in  and has no zero, so that
the assumed Lipschitz continuity of the mapping n — A(7) precludes the existence of poles for each
one of the mappings 7 — A™}(7)zy for all z and y in S. The result now follows from the fact that
the function [a,b] — R : & — z~! is Lipschitz continuous whenever @ > 0 and that a product of

Lipschitz continuous functions is also Lipschitz continuous. M
The smoothness of the components of (%) can now be investigated.

Lemma 4.2 Under (C1)-(C2), the mapping G — R : 7 — m(n, z) is Lipschitz continuous for every

zins.

Proof. The equations (4.1) satisfied by the invariant vector can be rewritten more compactly as
7Q(n) =[0¢ 1] (4.3)
where Q(7) is the d X (d + 1) matrix given by

Q(n) = Iy~ P(n) ea]. (4.4)

Consider the d x d matrix @(#) obtained from Q(n) by removing its first column. Since the
invariant measure is uniquely determined by (4.1), it is plain that m(n) is the unique solution to the
vector equation 7Q(7) = [0g—1 1] with an obvious interpretation for 04..;. Consequently Q(n) is
‘invertible and

n(n) = [0g-1 1]Q(m)7" . (4.5)

The mapping 7 — Q(#) is clearly Lipschitz on G due to (C2) and the result readily follows from
Lemma 4.1. O



It is worth pointing out that under (C1), the relation

lim, E7

- i_ ; ; 1[X; = IL]} =m(n,z) (4.6)

holds for all « in § (independently of the initial distribution) by the standard Mean Ergodic
Theorem for finite state Markov chains. Consequently, with f : & x .§ — IR? appearing in (2.1),
the definitions (2.5) and (3.3) entail

1

— 1i 7
Jfk(n) - hmn E n + 1

DS, X)) =3 w(ma)fln,e)=: Fy(n) . (47)

for all 1 < k < p. The notation F(n) = (Fi(n),..., Fp(n)) is used from now on.

Of interest here are the Poisson equations associated with the Markov chains P(7), 7 in G,
with forcing function f: G x § — RP. More precisely, for each  in G, a mapping h : § — R? and

a vector J (in R?) solve the Poisson equation associated with P(n) and forced by f(7) if
hi(2) + Ji = fe(n,z) + Zypxy(ﬂ)hk(y), 1<k<p (4.8a)
for all z in 8, or in equivalent matrix form,

hi + Jreq = fi(n) + P(nhg, 1<k<p (4.8b)

It is clear that if the pair (J,h) solves (4.8) so does {J,h + ega) for every 1 X p row vector a.
Moreover, it is well known that if the pairs (J,2) and (J, k) both solve (4.8), then

Ji = Ji = lim,, E"

1 n
m—— 33 4" <'< .
nH;fL(n,h)], 1<k<p (4.9)

and h — h is constant on the recurrent classes of P(7).

It is plain that the solutions to the Poisson equation (4.8) depends on 5. The remainder of
lthis section is devoted to the study of the regularity properties of these solutions as a function of
5. As pointed out earlier, the Markov chain P(n) has a single positive recarrent class under (C1)
(for cach 7 in G), in which case the Poisson equation (-1.8) has exactly one solution (J(7),h(n))

where k() : § — IR is determined up to an additive constant vector {19, Thm. 4.1]. A particular
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representative, still denoted A{7), is now described. Before giving this definition, it is convenient

to observe that

. . 1<
u(n) = limn B | e > fu(n, Xi)| = Fe(m), 1<k<p (4.10)
1=0 ’
as a result of (4.7) and (4.9).
For each 7 in @, define the stochastic matrix P*(n) by
* : 1 . i
P*(n) := lim, T ; P(n)*. (4.11)

This limit exists under (C1) by virtue of elementary results in the theory of Markov chains [5].
Since P(n) has a single recurrent class, it is plain from (4.6) that all the rows of P*(7) are identical
to m(n), so that

P*(n) = eqm(n) (4.12)

for all nin G.

It is now a simple exercise to see that the eigenvectors of P*(7) coincide with those of P(%),
and that the matrix G(9) := P(n) — P*(n) has spectral radius strictly less than unity, whence
I; — G(n) is invertible. For all 5 in G, the mapping h(7n) : § — IR? is now defined by

hi(n) := [la = G La = P*(M)fi(n), 1<k <p. (4.13)

Simple algebraic manipulations show that the pair (Jx(n), hx(n)) given by (4.10) and (4.13) solves
the Poisson equation (4.8), since Ji(n)eq = eqm(n) fu(n) = P*(n) fi(n) by virtue of (4.7) and (4.12).
Theorem 4.3 Under the assumption (C1)-(C3), the solution pair to the Poisson equation (4.8)
given by (4.10) and (4.13) is Lipschitz on G, i.e., the mappings G — RP : n— J(n) and G — R? :
7 — h(n,'m), with x ranging over S, are all Lipschitz conlinuous.
Proof. Since S is finite, the Lipschitz continuity of the mapping n — J(7) is an immediate
consequence of Lemma 4.2 in view of (4.7) and (4.10).

The matrix-valued function 3 — P*(n) is Lipschitz on G as a result of the representation
(4.12) and of Lemma 4.2. It is now plain that the mappings 7 — Iy — P*(n) and 7 — Iy — G(n)
are both Lipschitz continuous on G, and the result now follows from Lemma 4.1 since the product

of Lipschitz functions is clearly Lipschitz continuous. O
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As a conscquence of Theorem 4.3, since §' is finite, there exists a positive constant K such that

|7(n) = J(@)| < Kln—4]  and  sup, |h(n,2) - h(ih,2)| < K|n— i) (4.14)

for all 5 and 7 in G.

5. A PROOF OF THEOREM 2.2

This section is devoted to the proof of the a.s. convergence result (2.11). It is plain from

Theorem 4.3 that for each x in S, the mapping 7 — A(7,z) is continuous on the compact set G,

thus bounded and therefore

B := sup,, sup, | h(n,z) |< o0

since S is finite. Moreover, the Poisson equation (4.8) easily implies that
E"[h(n, Xn+1) l ]:n] = h(n’Xn) + J(U) - f(77v /Yn)
for all » in G, whence

| E"[h(n, Xns1) | Fn] - Ef’[h(ﬁ,Xn+1) | Fn] |
= | h(n, Xn) = (i}, X)) + J(m) = J() | < 2K | n—17j|

for some K > 0 by making use of (4.14).
It follows from (2.9), (4.8) and (4.10) that

Ya = f(nn, Xug1) — J(mn)
= h(nn’ -Xn+1) - Enﬂ [h(Um‘Xn-}-?) I J‘-n+1]

Set
Z0) = Wty Xng1) = E™ [B(0ny Xng1) | Fu)
Z = E™[h(n, Xng1) | Fal = E™ (01, Xnga) | Frpa]
and

Zw(zs) = BT {A(n1, Xnt2) | fn+1] - B {,1(7771,Xn+2) | fn-i-l]

(5.1)

n=0,1,...(52)

n=0,1,...(53)

n=0,1,...(5.4)

(5.5a)

(5.5b)

(5.5¢)

for all n = 0,1,.... Define the RVs {S%k), n=0,1,...} for all k = 1,2,3, by posing

n—1

S,(,k) = Z (L,'Z‘(k)
i=0

1

o

n=1,2,...(5.6)



with S((,l) = S(()2) = .S'(()s) = 0. Since Y,, = Z;” + Zslz) + Zif’) for all n = 0,1,..., it suffices to show
that

i=n

¢
lim,, sup aiZm =0 P —a.s. 5.7
(nSZ_(_m(n,T) | z ' l ( )
forall 7 > 0 and all £ =1,2,3.
It is plain that the RVs {Zif), n=0,1,...} form a (P, F,) martingale-difference (taking values

in IR?), whence {5511)’ n=0,1,...} is a zero mean (P, F,)-martingale. Routine calculations show

that

n-1
Soalz

=0

sup, E[| SV [*] = sup, £

o0
< 4B*) d} (5.8)
i=0

upon using (5.1) and (2.2), and the (P, F,)-martingale {SQ), n = 0,1,...} is thus uniformly
integrable under P. By the Martingale Convergence Theorem, the RVs {5 %1) , n=0,1,...} converge
a.s. under P (to an a.s. finite limit), in which case they form a Cauchy sequence P-a.s. and (5.7)

follows for k = 1.

To prove (5.7) for k = 2, note that for all 0 < n < £, the relation

¢
Séi)l - 51(12) - ZaiZ,(?)

i=n

e
= — Z(ai_1 — a;)E"[h(ni, Xiz1) | Fi]

i=n

+ an 1 E™ (0, Xn1) | Ful — @eE" 4 [h(neg1, Xega) | Feg] (5.9)

holds. It is now plain from (5.1), (2.2) and Jensen’s inequality that

£
| S = S 1SB S (ai1 = ai) + B(an-1 + ar) (5.10)
<2Ban_y (5.11)

upon telescoping the terms in the first sum on the right handside of (5.10) and making use of the

.monotonicity of the sequence {a,, n =0,1,...}. The conclusion (5.7) for & = 2 is now immediate.
Finally for & = 3, note from (5.3) that
[ ZOY |< 2K | ny = st | - n=0,1,...(5.12)
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Since the projection & — Ilg(x) is contracting on R”, the recursion (2.1) implies the inequality
| Tt = o |< g1 | f(ny Xng1) |< Bangs n=0,1,...(5.13)
with B = sup,sup,, | f(n,z)|. Combining (5.12) and (5.13) leads to the inequality
| Z8) < 2B K anyq n=0,1,...(5.14)

and since the sequence {a,, n = 0,1,...} is decreasing, this lcads to the bound

14 m(n,T) m(n,T)
sup S @z < N | 2P < 28K Y o S2BKan(T + an) . (5.15)
n<e<m(n,T) i=n i=n i=n
The convergence (5.7) now follows from (2.2). I

6. CONCLUDING REMARKS

The results of this paper can be given the interpretation either of an estimation procedure,
where the estimated parameter is defined through F(7n) = 0, or of an adaptive implementation
scheme, as discussed in Section 3, where the controls are generated “on line” through (2.1). The

paper concludes with several extensions of the results.

The results of this paper can be obtained under regularity conditions which are weaker than

(C2)-(C3). One possible set of conditions under which the analysis carries through is stated below,

where
(C2bis) The transition probabilities n — pyy(7) are Hélder continuous for all z and y in S;
(C38bis) For all z in S, the mapping n — f(7,2) is Hélder continuous on G.

These conditions amount to requiring that there exist constants K > 0 and 0 < 8 < 1 such that
P2y (f7) = Pwy(fﬁ” < Kin - 77!" (6.1)

for all z and y in S, with a similar condition for f.
In exact parallel with the developments of Sections 5 and 6, conditions (C1), (C2bis), (C3bis)
and (C4) are sufficient to guarantee that

(i): For all  in §, the mapping # — 7(n, 2) is llélder continuous with parameter 3.
(ii): The mappings n — J(3) and 5 — h(n, ), with  ranging over 5, are all lolder continuous

with parameter 3.
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(iii): If the iterates {n,,n = 0,1,...} are produced by (2.1), then (2.8) holds.

The proofs of (i)-(ii) are identical to the ones given for Lemma 4.2 and Theorem 4.3, respec-
tively, upon observing that the class of Ilélder continuous functions with parameter g is closed
under addition and multiplication, and under composition with the function z — -;— on closed in-
tervals which do not include 0. The proofl of Theorem 2.2 carries over with a slight modification,
namely that the last term in (5.3) and (5.12) needs to be changed to 2K |n—#|?. Modifying (5.14)-
(5.15) accordingly, the last bound in (5.15) becomes 257 K a?(T + a,,), which converges to zero due
to (2.2).

If the regularity postulated in (C2bis)-(C3bis) is changed to continuous differentiability of
order r (resp. analyticity), then the same remarks show that the smoothness in (i)-(ii) will then

also be of order r (resp. analytic).
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