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Quantum switching networks are analogs of classical switching networks

in which classical switches are replaced by quantum switches. These networks

are used to switch quantum data among a set of quantum sources and receivers.

They can also be used to efficiently switch classical data, and help overcome some

limitations of classical switching networks by utilizing the unique properties of

quantum information systems, such as superposition and parallelism. In this the-

sis, we design several such networks which can be broadly put in the following

three categories:

1. Quantum unicast networks: We give the design of quantum Baseline network

(QBN) which is a self-routing and unicast quantum packet switch that uses

the Baseline topology. The classical version of the network blocks packets

internally even when there are no output contentions and each input packet

is addressed to a different output. The QBN uses the principles of quantum

superposition and parallelism to overcome such blocking. Also, for assign-



ments that have multiple input packets addressed to an output, this net-

work creates a quantum superposition of all these packets on that output,

ensuring that all packets have non-zero probabilities of being observed on

that output.

2. Quantum concentrators: We introduce a new network called quantum con-

centrator, which is a key component of our quantum multicasting network

design. This concentrator is also an n × n quantum switching network,

to be denoted by n-QC, and which, for any m, 1 ≤ m ≤ n, routes arbi-

trary quantum states on any m of its inputs to its top m outputs. This net-

work usesO(n log n) quantum gates, and has a gate level depth ofO(log2 n).

We also give several variations of this network, the main ones being order-

preserving and priority quantum concentrators.

3. Quantum multicast networks: We first design a quantum multicasting net-

work, called a generalized quantum connector (GQC) which can be used to

multicast quantum information from n input sources to n outputs. Since

general quantum states cannot be copied due to the no-cloning theorem [1],

this network actually multicasts superposed classical information packets,

contained in a finite number of qubits at each input. Copying needed for

such multicasting is obtained by Wootters and Zurek’s quantum copying

machines [1] [2] or controlled-not gates. This n-input and n-output (n × n)

network, to be denoted by n-GQC, is recursively constructed using n/2-

GQCs and uses O(n log2 n) quantum gates. The time complexity of this



network in terms of gate level depth is O(log3 n). We also give two vari-

ations of this network which improve its behavior when routing multicast

assignments that have multiple input packets contending for same outputs.
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Chapter 1: Introduction

Quantum information science is an emerging area of research that seeks to

use special properties of quantum systems such as parallelism and entanglement

to develop efficient solutions for classically intractable problems. Research in

this area has been spurred by some key algorithms that have shown that quan-

tum systems could be used to solve some important exponentially complex prob-

lems with speedups that are impossible in classical computing. Examples include

Shor’s polynomial time algorithm [19] for finding the prime factors of a compos-

ite number and Grover’s search algorithm [20] that can find an element in an

unstructured database containing n elements in O(
√
n) time.

Building quantum systems would require means to transport quantum in-

formation from one place to another. Several architectures are being considered

to build quantum wires over which quantum data can be transmitted. Primary ex-

amples are quantum swapping and teleportation-based architectures for building

quantum wires as described in [21]. For n quantum sources that wish to commu-

nicate with one another by sharing quantum information, O(n2) quantum wires

are needed. This complexity can be greatly reduced using advanced switching

architectures. The relationship between quantum circuits and permutation maps

was identified in [7] and it was shown that any permutation map can be real-
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ized by a quantum circuit consisting of 6 layers of controlled-not gates. However,

this result requires a different quantum circuit for each permutation map to be

realized. It was also shown in [7] that the classical components of a qubit can be

replicated using controlled-not gates. This copying was used in [8] to implement

both unicasting and multicasting of qubits using directed graph representations

of the desired maps. However, this approach also requires that each multicast

assignment be realized by a separate quantum circuit, and cannot be viewed as a

quantum switching network that can realize multiple or all maps.

In [5] and [6], we presented a self-routing O(n log n) quantum baseline net-

work that can be used to permute quantum packets from n inputs to n outputs.

We also showed that this network can also be used to resolve internal block-

ing when transmitting classical packets by creating a superposition of packets

whenever they contend for the same wire in the network. However, this net-

work can realize only nn/2 permutations between n inputs and n outputs out of

n! total possible permutations. Recently, Cheng and Wang [9] proposed a quan-

tum merge sorting-based switching network that can realize all n! permutations

using O(n log2 n) quantum gates. More recently, [10] described a non-blocking

quantum switch with O(n2) quantum gates. This design relies on quantum cir-

cuit representations of unicast and multicast maps given in [7] and [8]. The net-

works in [5, 6, 9, 10] are limited to satisfying one-to-one or unicast assignments

between inputs and outputs. We presented a O(n log2 n) quantum multicasting

network called n-generalized quantum connector in [3] which can be used to mul-

2



ticast both superposed classical packets and arbitrary quantum states, provided

the assignments are non-contending, i.e., no two packets in an assignments are

addressed to the same output.

Our work on quantum unicasting, the quantum baseline network, is de-

scribed in Chapter 3. In Chapters 5 and 6, we give our work on quantum mul-

ticasting networks, the generalized quantum connector, and its variants that im-

prove its behavior when packets have output contentions. We also design quan-

tum concentration networks which can be used to multiplex sparse quantum data

from a large number of inputs to a small number of outputs. These networks are

given in Chapter 4. Next, we give brief introductions to these three types of quan-

tum switching networks.

1.1 Quantum Unicast Networks

A quantum unicast switching network routes quantum data from a set of

input sources to a set of outputs, where each input source connects to at most one

output. In Chapter 3, we give the design of an n × n quantum unicast network

called the quantum Baseline network (QBN) which realizes nn/2 permutations

between the n inputs and outputs when routing quantum data. When routing

classical packets encoded in quantum states, this network uses quantum super-

position to resolve internal blocking such that when two packets contend for the

same output at an internal switch, it creates a superposition of these packets on

3



that output. If we make a measurement on the outputs of QBN, every input

packet has a non-zero probability of being observed at its desired output. Addi-

tionally, we characterize the permutations which can be self-routed through the

QBN without internal blocking by using the concepts of balanced matrices and

frames introduced in [22] and [23] respectively. We then describe a method which

determines the distribution of sub-permutations generated from a permutation

assignment which suffers internal blocking while being self-routed through the

QBN.

An unicast switching network is said to be non-blocking if it can route all

possible one-to-one input-output mappings. For an n × n network, these map-

pings are the n! permutations of the output addresses. A network which cannot

route at least one of these n! input-output mappings is said to be blocking. Many

non-blocking interconnection networks exist in the literature [24], but either their

crosspoint complexity is high [14, 25–27], or they do not have simple routing

schemes [28]. Therefore, networks which are blocking but have the desirable

properties of simple decentralized routing along with lower crosspoint complex-

ity have been investigated. Examples of such networks are the Baseline, Banyan,

Omega, Butterfly, Delta networks [29–35]. These networks are most suited for

realizing quantum unicast networks because of their self-routing property.

An n × n (usually n = 2p) Baseline network is composed of log2 n stages,

each having n/2 2 × 2 switches. This network is self-routing, i.e., the routing

decision for a packet at any stage in the network is made solely on the basis

4



of the output address in that packet’s header [24, 29, 30]. Thus, the routing is

local, decentralized and easy to implement. Since there are (n/2) log2 n 2 × 2

switches in the network, it can have 2(n/2) log2 n = nn/2 states and because this

network provides a unique path between an input-output pair, this is also equal

to the number of unique input-output permutation maps it can route. As a result,

a baseline network cannot route n! − nn/2 permutation maps, and contentions

for outputs can occur between the input packets at an internal switch. These

contending packets either buffered or dropped in the classical implementations

of the baseline network.

Using quantum superposition, two contending packets can be sent together

to their desired output (without any increase in bandwidth or additional lines)

when the packets are encoded using qubits. In a classical network, sending both

packets on the same output wire would require either multiple parallel outputs or

higher bandwidth outputs, both of which have a higher cost. Consider packets

P1 and P2 input to a 2 × 2 switch S with outputs O1 and O2. Both packets are

addressed to a single output, say O1. In a classical network, either we buffer

or drop one randomly chosen packet and route the other. But using quantum

superposition a state of the form 1/
√

2(|P1, P2〉 + |P2, P1〉) can be created at the

outputs of the switch. The two entries in each ket (|〉) correspond to packets at

O1 and O2 respectively. We can see that both P1 and P2 are present at O1 and

a simple measurement in computational basis (|0〉 , |1〉) on each qubit will give

either P1 or P2 at O1, each with probability 1/2. Thus, blocking does not occur

5



until the measurement is made. One implication of this is that packets can be

routed to their destinations without incurring any time overhead to resolve the

contentions between them. Other clever measurements can be devised that lead

to different results by yielding information about both the packets. Also, the

superposition created in this way can be used to process the packets in parallel.

QBN uses the above concept to resolve internal blocking. For an input as-

signment that undergoes internal blocking, the output of QBN is a superposi-

tion of correctly realized subsets of the input assignment, which can be routed

through the network without blocking. In Chapter 3, we also give a method to

characterize all such subsets using concepts of balanced matrices and frames.

1.2 Quantum Multicasting

Multicasting or generalized connection networks have been extensively stud-

ied in the classical information domain [36–40]. A survey of these networks is

given in [41]. These networks can be widely classified into three classes. The first

class contains multicast networks based on the three stage Clos network. Net-

works in this class require complex routing algorithms and are not self-routing

in general. Consequently, these networks cannot easily be implemented using

quantum circuits. The second class consists of networks in which multicasting

is decomposed into two stages. In the first stage, all the required copies of the

input packets are created. The second stage routes these copies to their desired

6



outputs. The third class of multicasting networks, introduced by Nassimi and

Sahni [42], are based on recursive decomposition of generalized connectors into

smaller ones. Nassimi and Sahni’s generalized connector, however, requires a

parallel computer model connected in cube or perfect shuffle topology for com-

puting routes. Lee and Oruç used a similar approach in their O(n log2 n) general-

ized connector in which routes are determined locally at internal nodes by using

local packet headers [14] [41]. Thus, their network is self-routing.

As in the case of quantum Baseline or merge-sorting networks, we begin

with a meaningful interpretation of multicasting in a quantum network. In a

classical multicasting network, packets at inputs are routed to outputs under the

assumption that a packet at any given input may be routed to one or more out-

puts. One restriction that is often applied is that such multicast assignments may

not direct more than one packet to a given output. Furthermore, assignments in

a classical multicast network can only be issued one assignment at a time even

though they can be overlapped by pipelining. In contrast, in a quantum multi-

cast network, packets themselves are made out of quantum bits and as such they

represent a superposition of possible assignment patterns of packets that may

be routed through such a network all at once through the principle of quantum

parallelism. It is this quantum parallelism aspect of multicasting that is explored

in our work. We extend Lee and Oruç’s approach to the domain of quantum

information processing to design an n × n generalized quantum connector, also

called n-GQC. Since it is impossible to copy arbitrary quantum states due to the

7



no-cloning theorem, multicasting of quantum states is also impossible. However,

a certain set of orthogonal states can be copied by Wootters and Zurek’s copy-

ing machine [1, 2]. For example, a controlled-not gate transforms the two-qubit

state (α |0〉+ β |1〉) ⊗ |0〉 to α |00〉 + β |11〉, which can be interpreted as follows:

If a source has bit |0〉 that is to be copied with probability |α|2 and bit |1〉 to be

copied with probability |β|2 then the above operation does the required copying.

We extend this to a controlled-not gate-based copy node that copies quantum in-

formation from a set of qubits to another set of qubits each of which is initialized

to the blank state |0〉. This copying operation however, amounts to the copying

of classical packets contained as a probabilistic superposition in a multi-qubit

quantum state. Therefore, the n-GQC essentially multicasts superposed classical

packets that will be referred to as quantum packets in this paper.

1.3 Quantum Concentrators

In the course of designing a quantum generalized connector (n-GQC), we

introduce another quantum network, called an n × n quantum concentrator (n-

QC). This network maps quantum states on any m of its inputs to its top m out-

puts, for any m, 1 ≤ m ≤ n. The n-QC is a self-routing multistage network

that uses O(n log n) quantum gates, and has a gate-level depth of O(log2 n). It

plays a key role in the decomposition of a generalized quantum connector into

smaller ones. As there is no copying involved in a concentrator, it can concentrate

both arbitrary quantum states and superposed classical packets. The only other
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quantum concentrator in literature is the (n,m)-sparse crossbar quantum concen-

trator [4]. This network is based on classical sparse-crossbar concentrators given

in [11, 12]. Its complexities in terms of number of gates and gate-level depth are

O(n(n−m+ 1)) and O(n+m) respectively.

It is known theoretically that a classical n × n concentrator can be con-

structed using O(n) crosspoints and O(log n) delay [43–45]. However, explicit

constructions either use sparse crossbars [11, 12, 46, 47] or O(n log n) multistage

networks which are either based on binary sorting [48] or recursive decomposi-

tion of an n-concentrator into smaller ones [14,49]. Sparse crossbar based designs

are not well suited for quantum information domain as they require external rout-

ing algorithms. The well known AKS sorting network [50] sorts in O(log n) time

on an O(n log n) network. However, the constants involved in the complexity

expressions are very large for small values of n. Chien and Oruç [48] give an

adaptive binary sorting network which has O(n log n) cost and O(log2 n) routing

time. Lee and Oruç [14] have given an n-concentrator design which is self-routing

and has the same cost and routing delay as the Chien and Oruç’s concentrator.

This network uses a splitting stage which distributes the input packets equally

onto two n/2-concentrators whose outputs are then merged using a shuffle stage

to achieve the concentration operation. Due to its self-routing property this net-

work is most suitable for being used in the quantum information domain.

The n-QC is constructed by modifying Lee and Oruç’s classical concentra-

tor. The main bottleneck in transforming their concentrator to the quantum do-
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main is the balancer network used in their design to distribute m packets from

n input ports onto two n/2-input networks such that each n/2 network gets m/2

packets, for any m, 1 ≤ m ≤ n. Their balancer network is based on a binary

tree on which bits are propagated in both forward and backward directions. We

propose a reversible balancer called, an n-quantum balancer, on which data is

propagated only in the forward direction. This quantum balancer then facilitates

the design of the n-QC.

We also give several variations of n-QC. The order-preserving n-QC con-

centrates quantum packets while keeping them in the same order in which they

appear on the inputs. The priority n-QC concentrates two classes of packets such

that packets in one class are always above the ones in the other at the outputs. We

also design a superposing quantum concentrator that uses quantum superposi-

tion to ensure that all input packets have non-zero probabilities of being concen-

trated among a fixed number of its top outputs. These quantum concentrators

are used to introduce new features in n-GQC, and improve its routing behav-

ior when realizing multicast assignments that have output contentions between

packets. In the next section, we give a formal summary of the contributions made

in this thesis, and discuss their significance.
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1.4 List of Contributions and Significance

We explore the application of quantum information processing and comput-

ing concepts to the solutions of congestion and routing problems in interconnec-

tion networks, and design quantum switching networks that route both classical

and quantum data. Some of our key contributions are listed below:

1. Quantum packet switching model: We introduce a framework to describe quan-

tum packet switching network operations [3]. This model was used in [4]

to illustrate the functioning of the sparse quantum crossbar concentrator.

We introduce the concepts of quantum packets, assignment patterns, and

assignments; and describe how they are routed by quantum switching net-

works.

2. Quantum Baseline network (QBN): This is the first quantum switching net-

work that appears in the literature, and it was introduced by us in [5]. We

presented an improved version of this network that requires significantly

less auxiliary qubits in [6]. Prior to our work, there have been some results

that map permutation and multicast assignments to quantum circuits [7,8].

Although related to switching qubits, these results cannot be viewed as

quantum switching networks since they map each choice of permutation or

multicast assignment to a different quantum circuit. The QBN is obtained

by replacing the 2× 2 switches in the classical Baseline network with quan-

tum 2 × 2 switches that can work in a superposition of through and cross
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states. This network routes all feasible packet permutations of a classical

Baseline network in parallel. This is done without adding any extra routing

or hardware complexity on top of the QBN. When routing classical packets,

output contention at any internal switch is resolved by creating a superpo-

sition of both straight and through settings for that switch. Thus, the output

quantum state of the network is a superposition of all the permutations that

can be possibly generated by the classical Baseline network.

The QBN usesO(n log n) quantum gates, and its gate level depth isO(log n).

When routing general quantum states, the QBN can realize only nn/2 per-

mutation assignments. After our work, other quantum unicast networks

have been designed that have higher cost in terms of both number of gates

and gate level depth, but can realize all permutation assignments when

routing quantum states [9, 10].

3. Quantum concentrators: We introduced the concept of a quantum concen-

trator in [3]. A quantum concentrator is the quantum analogue of a classi-

cal concentrator, and routes quantum data on some of its input to its top

outputs. We designed a self-routing concentrator called n-QC that uses

O(n log n) quantum gates, and has a gate level depth of O(log2 n). The only

other quantum concentrator design was given in [4], which is based on a n

input-m output sparse-crossbar of [11,12]. This network usesO(n(n−m+1))

quantum gates, and has a gate level depth of O(n + m). The n-QC is used

to do a recursive decomposition of the GQC into smaller ones. We also give
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several variations of the n-QC. The order-preserving QC (OPQC) concen-

trates input quantum packets to its top outputs consecutively while retain-

ing their input order. The priority-QC (PQC) concentrates two classes of

packets such that packets in one class are above the ones in the other at the

outputs. The concepts introduced in these QC variations also apply to clas-

sical versions of these concentrators. The PQC is used to construct the prior-

ity generalized quantum connector (PGQC). We also introduce and design

an (n, n/2)-superposing QC that uses the principle of quantum superposi-

tion to ensure that every input packet has a non-zero probability of being

concentrated among its top n/2 outputs.

4. Generalized quantum connector (GQC): This is the first quantum multicasting

network in the literature, and it was introduced by us in [3]. This network

usesO(n log2 n) quantum gates, and has a gate-level depth ofO(log3 n). The

quantum merge-sorting network given in [9] has the same complexity in

terms of number of gates, and has O(log2 n) gate-level depth, but it real-

izes only unicast assignments. The only other result related to quantum

multicasting is given by Tsai and Kuo [8]. However, their result cannot be

viewed as a switching network, as it requires a different quantum circuit for

every multicast assignment. Another work on quantum multicasting, [13],

explores the benefits of network coding while multicasting quantum states,

and does not design a switching network.
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The GQC is designed based on the classical generalized connector given

in [14]. The main challenge in transforming this network to the quantum

domain was the construction of a quantum concentrator. The concentrator

used in [14] has both forward and backward propagation of data, which

cannot be done in a quantum network. The GQC multicasts superposed

classical packets contained in qubits, and used controlled-not gate based

copiers to generate copies of the packets. We also analyze the behavior

of GQC when routing multicast assignments that have output contentions,

and show that the GQC is not work-conserving when routing such assign-

ments, i.e., some outputs may not receive any packets even when there are

input packets addressed to them. We then give two variations of GQC that

improve its behavior when routing contending assignments. The prior-

ity GQC (PGQC) introduces prioritized routing in GQC, and ensures that

higher priority packets reach their outputs in case of output contentions.

The superposing-GQC (SGQC) creates superpositions of contending pack-

ets on their desired output, such that every packet has a non-zero probabil-

ity of reaching its desired output. The GQC can also be used to do approx-

imate multicasting of general quantum states by using advanced quantum

copiers [2,15–18] which can generate imperfect copies of any general quan-

tum state.
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Chapter 2: Quantum Information Processing and Packet

Switching

Much of the findings of this thesis rests on the quantum information pro-

cessing field that has been developed during the last two decades. In this chapter,

we review and describe the quantum information processing concepts that will

be used in the rest of the thesis. We also review some of the recent results in

quantum copying which form the basis of quantum multicasting. Finally, we in-

troduce our quantum switching network model, and give the terminology that

will be used to describe the operation of our networks.

2.1 Background on Quantum Information Processing

We start out with an introduction to a quantum bit or a qubit and some basic

quantum gates.

2.1.1 Qubits and Superposition

The indivisible unit of classical information is the bit which can take either

one of two values: 0 or 1. The corresponding unit of quantum information is the
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quantum bit or qubit which can simultaneously be both 0 and 1. In general, a

qubit’s state is an unit vector in two-dimensional complex Hilbert space and can

be expressed as |ψ〉 = α |0〉+ β |1〉, where α, β ∈ C and |α|2 + |β|2 = 1. Vectors |0〉

and |1〉 are called computational bases. State |ψ〉 is also represented as a column

vector [α β]T . On measurement, in which the qubit’s state is projected onto the

computational basis, the qubit is observed to be found either in state |0〉 or in state

|1〉 with probability |α|2 and |β|2 respectively. This act of measurement collapses

the qubits state to either |0〉 or |1〉 depending on the outcome of the measurement.

The state of an n-qubit system is a vector in a 2n-dimensional complex

Hilbert space which is a tensor product of the two-dimensional spaces associ-

ated with individual qubits. In general, we can express an n-qubit state in a

2n-dimensional complex Hilbert space as

∣∣ψ̄
〉

= α0 |00 · · · 0〉+ α1 |00 · · · 1〉+ · · ·+ α2n−1 |11 · · · 1〉 ,

where αi ∈ C and
2n−1∑

i=0

|αi|2 = 1. (2.1)

where the n-bit vectors |00 · · · 0〉 , · · · , |11 · · · 1〉 constitute the bases of the space

and are called computational bases. State
∣∣ψ̄
〉

can also be represented as a column

vector: [α0 α1 · · · α2n−1]
T .

Similar to the case of a single qubit system, if all the qubits in the n-qubit

system are measured by projecting onto the computational bases, n-bit string |̄i〉

is observed with probability |αi|2, where i = 0, · · · , 2n−1. We use the bar notation
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∣∣ψ̄
〉

to denote a multi-qubit vector or bit string in this thesis. A single qubit state

is denoted without the bar as |ψ〉.

2.1.2 Quantum Gates

The state of qubits can be transformed via quantum gates and circuits made

using such gates. These gates are linear and unitary transformations in the state

space of the qubits. A general n-qubit quantum gate is represented by an unitary

transformation matrix U (where UHU = UUH = I , UH denotes the conjugate

transpose of U ) in the 2n-dimensional complex Hilbert space associated with n

qubits. This gate transforms an n-qubit quantum state
∣∣ψ̄
〉

as:

∣∣ψ̄′
〉

= U
∣∣ψ̄
〉

(2.2)

Unitarity implies that quantum gates are reversible, i.e., it is possible to uniquely

identify the input state from a given output state. An n-qubit quantum gate

that maps one computational basis state to another, should be one-to-one due

to reversibility. This means that a quantum gate, which transforms by map-

ping among computational bases, should transform every n-bit input string to

an unique n-bit output. Linearity implies that an n-qubit state
∣∣ψ̄
〉

=
∑
αi
∣∣φ̄i
〉
,

is transformed to
∑2n−1

i=0 αiU
∣∣φ̄i
〉
. This property of quantum gates is a source

of massive parallelism, since all of the 2n components of a general n-qubit state

are transformed simultaneously by an n-qubit quantum gate. Most of the well
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known quantum algorithms exploit this parallelism to obtain speedups that are

not possible in classical domain.

This same property of quantum gates allows us to do a probabilistic multi-

plexing of packets in quantum switching networks. We can form a superposition

of several packet assignments at the inputs of a quantum switching network, and

all of these assignments can be realized simultaneously due to quantum paral-

lelism [6]. The quantum switching network functions in different configuration

for different packet assignments in the superposition.

The simplest example of an one-qubit quantum gate is the NOT gate which

transforms state |0〉 to |1〉 and state |1〉 to |0〉. Due to linearity, a general quantum

state α |0〉 + β |1〉 is transformed by the NOT gate to state α |1〉 + β |0〉. Next, we

describe some quantum gates which will be used in this thesis.

Another one-qubit gate that is often used to create superposition of quan-

tum states is a Hadamard gate. This gate transforms the basis vectors |0〉 and |1〉

as:

|0〉 → 1√
2

(|0〉+ |1〉) , |1〉 → 1√
2

(|0〉 − |1〉) . (2.3)

Therefore, its transformation matrix can be expressed as:

H =
1√
2




1 1

1 −1


 (2.4)

Due to linearity, the Hadamard gate transforms a general state α |0〉 + β |1〉 to
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H

(a)

x
H

c

(b)

|x〉

|c1〉

|c2〉

|c1〉

|c2〉

|(c1c̄2) ⊕ x〉

(c)

Figure 2.1: Quantum gates: (a) Hadamard gate; (b) controlled-Hadamard gate;
(c) A controlled-controlled not gate.

α+β√
2
|0〉+ α−β√

2
|1〉. This gate is shown in Figure 2.1(a).

Any quantum gate can be extended by adding one or more control qubits so

that the gate operates on its input or target qubits when the control qubits are in a

certain state. Otherwise, it passes the target qubits unchanged. The control qubits

always remain in their original state. Such gates are called controlled quantum

gates.

As an example, a controlled-not gate having two control qubits (c1 and c2)

is shown in Figure 2.1(c). This gate does the following operation

|c1, c2, x〉 CC−NOT−−−−−−→ |c1, c2, (c1.c̄2)⊕ x〉 (2.5)

i.e., it inverts x when c1 = 1 (indicated by solid circle) and c2 = 0 (indicated by

open circle). Therefore, it maps basis vector |100〉 to |101〉 and |101〉 to |100〉. Rest

of the basis vectors are passed unchanged. We follow this notation of solid and

open circles to indicate the functioning of control qubits in the rest of the thesis.

Similarly, a controlled-Hadamard gate shown in Figure 2.1(b) applies the
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Hadamard transformation to the target qubit x when the control qubit is in state

|1〉, otherwise it leaves the target qubit unchanged. Thus, input states |0〉c |0〉x

and |0〉c |1〉x are not affected by this gate. However, states |1〉c |0〉x and |1〉c |1〉x are

transformed as

|1〉c |0〉x → 1/
√

2 (|1〉c |0〉x + |1〉c |1〉x)

|1〉c |1〉x → 1/
√

2 (|1〉c |0〉x − |1〉c |1〉x) (2.6)

As an example, if qubit c is in state α |0〉 + β |1〉, and qubit x is in state |1〉,

then the controlled-Hadamard gate transforms input state (α |0〉+β |1〉)c⊗|1〉x as

α |01〉+ β |11〉 → α |01〉+
β√
2
|10〉 − β√

2
|11〉 (2.7)

Unlike controlled-not gate, it is not possible to express the transformation

of a Hadamard or a controlled-Hadamard gate using simple logical operations.

This is why we have left out output symbols in Figures 2.1(a) and (b).

The basic building block of quantum switching networks is a multi-qubit

gate called a controlled-swap gate or switch gate, which is shown in Figure 2.2(a)

[6] [51] [52]. It swaps two quantum packets or sets of qubits when a control qubit

c is |1〉, otherwise it passes them unchanged. Therefore, it can be used as a 2 × 2

switch for routing quantum information. The transformation performed by this
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c

|x̄〉

|ȳ〉
(a)

c2

|x̄〉
|ȳ〉

c1

(b)

Figure 2.2: Switch gate: (a) Switch gate representations; (b) Switch gate with
multiple control qubits.

gate can be expressed as

|0〉c |x̄〉 |ȳ〉
SWG−−−→ |0〉c |x̄〉 |ȳ〉

|1〉c |x̄〉 |ȳ〉
SWG−−−→ |1〉c |ȳ〉 |x̄〉 (2.8)

where |x̄〉 and |ȳ〉 are equal-length binary strings. A switch gate can have multiple

control inputs. For example, the switch gate shown in Figure 2.2(b) swaps its

input packets when control qubits c1 and c2 are |0〉 and |1〉 respectively, otherwise

it passes them.

The switch gate can also be used to superpose the packets that contend

for one output of a 2 × 2-switch and to route the superposition on that out-

put [5] [6]. For example, when n = 1, if the control qubit of the gate is set

in an equal superposition of states |0〉 and |1〉 then the action of the gate is:

1√
2

(|0〉+ |1〉) |x〉|y〉 −→ 1√
2

(|0〉|x〉|y〉+ |1〉|y〉|x〉). Thus an equal superposition

(probability of observation = 1/2) of packets x and y is created at both the out-

puts. Also, if we observe packet x at one of the outputs then packet y will be

21



observed with certainty at the other and vice-versa.

While quantum switch gates are essential to perform permutation maps, we

need quantum copiers to replicate either quantum states or the classical compo-

nents of multi-qubit quantum states. Before describing the quantum copiers used

in this thesis, we introduce the density matrix representation of quantum states

which makes it easier to characterize quantum copying operations.

2.1.3 Density Matrix Representation of Quantum States

There is another useful formulation for representing quantum states, called

the density matrix or density operator representation, which will be used in our

work to describe quantum copying operations in a quantum multicasting net-

work. This representation is also very useful to describe the behavior of a subset

of qubits in a large quantum system. Suppose that a system of qubits is in pure

quantum state |ψ〉 then its density matrix is given by the outer product |ψ〉 〈ψ|,

where 〈ψ| is the complex conjugate transpose of |ψ〉. If we represent an n qubit

state |ψ〉 in computational basis as |ψ〉 =
∑2n−1

i=0 ai |i〉, then the corresponding

density matrix can be expressed as:

ρ = |ψ〉 〈ψ| =
2n−1∑

i=0

2n−1∑

j=0

aia
∗
j |i〉 〈j| (2.9)

On the other hand, if the state of a quantum system is not completely known
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and it is only known that it exists in state |ψi〉with probability pi, then we express

the density matrix of this system as:

ρ =
∑

i

pi |ψi〉 〈ψi| (2.10)

The density operator is always positive, i.e., for an arbitrary vector ψ, 〈ψ| ρ |ψ〉 ≥

0. Also, trace of the density operator is always equal to 1. If the combined density

matrices of two quantum systems A and B is ρAB, then the density matrix of

system A can be obtained by taking the partial trace of ρAB over system B, i.e.,

ρA = TrB (ρAB) (2.11)

The evolution of a quantum system by unitary operator U transforms its density

matrix ρ as:

ρ′ = UρU † (2.12)

where U † is the conjugate transpose or hermitian of U . For a detailed description

of quantum information systems we refer the reader to [52] and [51].

2.1.4 No-Cloning Theorem and Quantum Copying

A key requirement for a quantum multicasting networks is a copy node,

which can produce an identical copy of a quantum packet or an arbitrary quan-

tum state |ψ〉. Such a node does not exist due to Wootters and Zurek’s no-cloning
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theorem [1] which states that an arbitrary quantum state cannot be cloned, i.e., it

is impossible to have an unitary operation that can do following transformation:

|ψ〉 |s〉 −→ |ψ〉 |ψ〉 (2.13)

for a pure state |ψ〉 and a ‘blank paper’ state |s〉. This theorem has been extended

to arbitrary mixed states as well [53]. However, it has been recently shown by

Bužek and Hillery that approximate cloning of quantum states is possible [2].

A copying network made using quantum gates which produces two imperfect

copies of an arbitrary qubit has also been proposed by Bužek et. al. [15]. In this

section, we give a brief description of these quantum copying approaches. Before

doing that, we discuss some performance measures which are used to quantify

the quality of copies produced.

2.1.4.1 Performance Measures for Quantum Copying

Bužek and Hillery used the Hilbert-Schmidt distance between the density

matrices of the output states produced by a quantum copier and the states that

would be produced by an ideal quantum copier [2]. They showed that it is a good

measure in the sense that if two one-qubit quantum states are closer in terms

the Hilbert-Schmidt distance then their measurement probability distributions

for an arbitrary observable are also close. Hilbert-Schmidt norm of an operator
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or density matrix ρ is defined as

‖ρ‖2 =
(
Tr(ρ†ρ)

)1/2 (2.14)

Using this norm, the distance between two density matrices ρ1 and ρ2 is defined

as

D(ρ1, ρ2) = (‖ρ1 − ρ2‖2)2 (2.15)

The Hilbert-Schmidt distance, however, is not a very good measure to com-

pare density matrices in higher dimensions, i.e., for multi-qubit density matrices.

Another measure that is widely used is the fidelity of quantum states [54, 55]. For

two density matrices ρ1 and ρ2, fidelity is defined as:

F (ρ1, ρ2) = Tr

((
ρ

1/2
1 ρ2ρ

1/2
1

)1/2
)

(2.16)

It ranges between 0 and 1 and is equal to 1 when ρ1 = ρ2. These performance

measures are used to study the performance of quantum multicasting networks

in Chapter 5.

2.1.4.2 Wootters and Zurek’s Quantum Copying Machine

Wootters and Zurek’s quantum copying machine (WZQCM) [1, 2] copies a

certain set of orthogonal basis states perfectly, but produces imperfect copies of
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any other states. This machine transforms basis states |0〉a and |1〉a of a qubit a as:

|0〉a |Q〉x −→ |0〉a |0〉b |Q0〉x

|1〉a |Q〉x −→ |1〉a |1〉a |Q1〉x (2.17)

where |Q〉x is the initial state of the copier and x〈Q|Q〉x = x〈Q0|Q0〉x = x〈Q1|Q1〉x =

1. Qubit b is the copy qubit. A general state |ψ〉a = α |0〉a + β |1〉a is copied as:

|ψ〉a |Q〉x → α |0〉a |0〉b |Q0〉x + β |1〉a |1〉b |Q0〉x (2.18)

However, if qubit b was an ideal copy of a then the final state of the two qubits

should have been α2 |0〉a |0〉b+αβ |0〉a |1〉b+αβ |1〉a |0〉b+β2 |1〉a |1〉b, which is clearly

not the case. By computing the density matrix of the resulting state on the right

hand side of (2.18), and then taking partial trace over qubit a and copier x, the

density matrix of qubit b is (assuming α and β are real):

ρb = α2 |0〉b 〈0|b + β2 |1〉b 〈1|b (2.19)

which is also equal to the density matrix of qubit a after copying operation. Thus,

we see that the off-diagonal elements in the density matrix of both qubits a and

b are destroyed by this copier. The Hilbert-Schmidt distance between the density

matrices of the original and copy qubits is [2]:

Da = 2α2β2 (2.20)
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which shows that the WZQCM copies states |0〉 and |1〉 perfectly and generates

error for any other source state. The error is also variable and dependent on

source state. Also, WZQCM creates a strong entanglement between source and

copy qubits, and a measurement on one of them collapses the state of the other

as well, which should not happen for an ideal quantum copier.

In our quantum multicasting networks, we mainly route classical packets

encoded using qubits. For such networks, we do not need to copy general quan-

tum states, and only the classical components of these states need to be repli-

cated. This is done by using a collection of controlled-not gates, as shown in

Figure 2.3(a) by which a set of source qubits are copied to a set of target qubits

initialized to state |0〉. We represent these gates collectively as one controlled-

not gate using bold lines, as shown in Figure 2.3(b). The copying operation per-

formed by this gate is: |x̄〉s |0̄〉t
COP−−−→ |x̄〉s |x̄〉t. As an example, two source qubits

in state 1/
√

2 |00〉s + 1/2 |10〉s + 1/2 |11〉s are transformed as:

(
1√
2
|00〉s +

1

2
|10〉s +

1

2
|11〉s

)
|00〉t

COP−−−→ 1√
2
|00〉s |00〉t+

1

2
|10〉s |10〉t+

1

2
|11〉s |11〉t

(2.21)

that shows that a copy of each component of a quantum state is created. This

copier, which is essentially a WZQCM, is exactly what we need when multicast-

ing superposed classical data using a quantum switching network.
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|x̄〉|0̄〉

|x̄〉 s

(b)

Figure 2.3: Quantum copier: (a) Controlled-not gates based quantum copier; (b)
Compact representation of the quantum copier.

2.1.4.3 Universal Quantum Copying Machine (UQCM)

Bužek and Hillery proposed an universal quantum copying machine (UQCM)

which copies all one qubit states equally well. The transformation implementing

UQCM is:

|0〉a |Q〉x →
√

2

3
|00〉ab |↑〉x +

√
1

3
|+〉ab |↓〉x

|1〉a |Q〉x →
√

2

3
|11〉ab |↓〉x +

√
1

3
|+〉ab |↑〉x (2.22)

where |+〉ab = 1√
2

(|10〉ab + |01〉ab), |−〉ab = 1√
2

(|10〉ab − |01〉ab), |↑〉 and |↓〉 are two

orthonormal basis states in two dimensional state space and |Q〉x is the initial

copier state.

The transformation parameters of UQCM have been chosen in such a way

that the Hilbert-Schmidt distance between the density matrices of copy qubit b

and the source qubit a is constant, irrespective of the source state. These param-

eters ensure that the Hilbert-Schmidt distance between density matrices ρoutab and
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|0〉a2

|0〉a3

|ψ〉a1

R(θ1) R(θ3)

R(θ2)

Figure 2.4: Quantum circuit for UQCM.

ρidab is also independent of the source state, where ρoutab is the density matrix of the

output state of UQCM and ρidab is the output density matrix of an ideal quantum

copier. If the source qubit state is |ψ〉a = α |0〉a + β |1〉a then the reduced density

matrix of both the source and copy qubits at the output of UQCM is:

ρa =
5

6
|ψ〉a 〈ψ|a +

1

6
|ψ⊥〉a 〈ψ⊥|a (2.23)

where |ψ⊥〉a = β∗ |0〉a−α∗ |1〉a. This shows that UQCM retains 5/6 of the original

state in both source and copy qubits. However, the resulting source and copy

qubits are highly entangled, and a measurement on one of the qubits affects the

state of the other [2].

A quantum network that implements UQCM has also been proposed [15].

Figure 2.4 shows this network which is formed using controlled-NOT gates and

single qubit rotation gates. A single qubit rotation gate R(θ) with rotation angle
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θ performs the following transformation:

|0〉 → cos(θ) |0〉+ sin(θ) |1〉

|1〉 → − sin(θ) |0〉+ cos(θ) |1〉 (2.24)

The UQCM network consists of two parts. The first part prepares two qubits a2

and a3 in a specific state by choosing parameters θ1, θ2 and θ3 appropriately. The

second part is the copying stage that copies the source state |ψ〉a1
from qubit a1. It

was shown in [15] that by setting θ1 = θ3 = π/8 and θ2 = − sin−1
(
1/2−

√
2/3
)1/2

this network behaves as UQCM and the two copies at the output are qubits a2

and a3 respectively.

2.2 Quantum Packet Switching

In this section, we introduce the terminology that will be used to describe

how both classical and quantum data is routed through quantum packet switch-

ing networks. We develop a framework to represent quantum packets and as-

signments and discuss how they are switched via such networks. Each input of

a quantum packet switching network may contain multiple classical packets in a

quantum superposition where each packet is present with a certain probability.

The switching elements in a quantum switching network function in a probabilis-

tic superposition of multiple settings, and route these packets on different routes.

Before giving a description of such networks, we introduce stochastic networks
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Figure 2.5: States of a deterministic 2x2 unicast switch.

Figure 2.6: States of a stochastic 2x2 unicast switch.

which are classical analogues of quantum switching networks.

2.2.1 Stochastic Switching

Switching operations can generally be viewed as mappings from a set of

callers to a set of receivers. When this mapping is such that each caller is mapped

to at most one receiver then it is referred as a deterministic switching map. Other-

wise, it called a non-deterministic or stochastic switching map. There exist (1 + m)n

deterministic switching maps between n callers and m receivers, and 2mn − (1 +

m)n stochastic switching maps. For n = m = 2, there are 9 deterministic maps

and 7 stochastic maps, which are shown in Figures 2.5 and 2.6 respectively.
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There are two interpretations of one caller connecting to two receivers in a

stochastic switch. One is that the the caller may call only one of the two receivers

randomly with certain probabilities, but not both. The second interpretation is

that the caller multicasts to both outputs. In either case, the set of callers that

can reach a given receiver can be expressed by using the connection matrix of a

stochastic switch. For a n×m stochastic switch, the connection matrix is an n×m

matrix in which jth element in the ith row is 1 if receiver i can be reached by

caller j. For example, the connection matrix for the second stochastic switch in

the middle row of Figure 2.6 is 


1 1

0 1




Defining matrix multiplication as union of intersections, the set of inputs

that can reach the top and bottom outputs can be computed as




1 1

0 1







a

b


 =




a,b

a


 (2.25)

A stochastic multistage switching networks consists of several stages of stochastic

switches connected using deterministic connection patterns. An example of such

a network is shown in Figure 2.7. The connection matrix of a stage of a multistage

stochastic network can be expressed by placing the connection matrices of the

stochastic switches in the stage along the diagonals and filling other entries with
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0. For example, the connection matrix of the first stage of the shown network is




1 0 0 0

1 1 0 0

0 0 1 1

0 0 1 1




(2.26)

Shuffle

a

b

c

d

A

C

D

B

Stage 1 Stage 2

Figure 2.7: A stochastic multistage network.

The connection matrix for the overall stochastic network can be computed

my multiplying the connection matrices of its stages and the deterministic con-

nections between the stages, where matrix multiplication is defined as union of

intersections.




1 1 0 0

1 1 0 0

0 0 0 1

0 0 0 1




︸ ︷︷ ︸
stage2




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




︸ ︷︷ ︸
shuffle




1 0 0 0

1 1 0 0

0 0 1 1

0 0 1 1




︸ ︷︷ ︸
stage1

=




1 0 1 1

1 0 1 1

0 0 1 1

0 0 1 1




(2.27)
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The possible mappings realized by this network are computed as




1 0 1 1

1 0 1 1

0 0 1 1

0 0 1 1







a

b

c

d




=




a, c, d

a, c, d

c, d

c, d




(2.28)

The connection matrix representation of a stochastic network can be used to

specify which inputs can reach a given output. In quantum switching networks,

internal switching elements can work in a superposition of different settings of

stochastic switches. Consequently, connection matrices can be employed to spec-

ify all packets that exists in a superposition at a given output. Connection ma-

trices do not identify all of the mappings that can realized by the network. For

example, the mapping (c, d, c, d) can never be realized by the shown stochastic

network.

The most general 2× 2 stochastic 2× 2 switch is the one shown in the third

row of Figure 2.6 in which both callers can reach both receivers. If each caller

in this switch independently chooses its receiver then there is a probability of

blocking or congestion. We can avoid such collisions by setting the stochastic

switch only in non-blocking states. For example, the stochastic switch may be

set in through or cross states only, as shown in Figure 2.8(a). Similarly, the switch

may be set in one of the multicast states only with probabilities ε and 1 − ε as

shown in Figure 2.8(b). In the most general case, the switch may be set in one of
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ǫ 1− ǫ

0 0

(a)

ǫ 1− ǫ

(b)

ǫ1 ǫ2

ǫ3 ǫ4

(c)

Figure 2.8: Non-blocking 2× 2 stochastic switches: (a) Unicast: sets in through or
cross state (b) Multicast: sets in one of the two multicast states (c) General 2 × 2
non-blocking stochastic switch.

the two unicast states, or two multicast states with probabilities ε1, ε2, ε3 and ε4

respectively, as shown in Figure 2.8(c), where ε1 + ε2 + ε3 + ε4 = 1.

Quantum circuits can not only realize such stochastic switches, but can also

operate in a superposition of the shown non-blocking states simultaneously. For

example, following quantum transformation realizes the stochastic switch shown

in Figure 2.8(a).

|ab〉 → α |ab〉+ β |ba〉 (2.29)

where α and β are chosen such that |α|2 = ε and |β|2 = 1 − ε. When both inputs

35



of the switch consist of one bit only, following 2-qubit quantum gate realizes this

switch for ε = 1/2:

|00〉 → |00〉 , |11〉 → |11〉

|01〉 → 1√
2

(|01〉+ |10〉)

|10〉 → 1√
2

(|01〉 − |10〉) (2.30)

This gate can be constructed using hadamard and control-not gates, as shown

in Chapter 3. Quantum circuit realization of the 2×2 multicast stochastic switches

shown in Figures 2.8(b) and 2.8(c) is not trivial, and auxiliary qubits are needed

to accomplish copying in such switches.

2.2.2 Quantum Packet Switching Definitions

In this section, we define quantum packets, assignments and assignment

patterns which would be used to describe the operation of quantum packet switches.

We also provide a high level description of our quantum packet switching model

using these terms.

2.2.2.1 Quantum Packets and Assignments

A quantum packet consists of two sets of qubits, called the address field and

data qubits, respectively, and an extra qubit, called a routing qubit that indicates
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the presence (when set to |1〉) or absence (when set to |0〉) of a quantum packet

on the corresponding address field and data qubits. The address field contains

routing information that is used to route the data qubits.

Definition 2.1 (Quantum packet). A quantum packet, consisting of k classical pack-

ets in which packet i has routing bit ri, address field āi and data d̄i, for i =

0, 1, · · · , k − 1, is represented as:

k−1∑

i=0

αi
∣∣ri, āi, d̄i

〉
(2.31)

where each
∣∣ri, āi, d̄i

〉
denotes a classical packet with probability |αi|2 and it is to

be multicast to the set of outputs specified by its address field āi when ri is 1. The

set of outputs specified by the address field āi is called the fanout set of packet i

and is represented as Fi. The size of the fanout set is called the fanout of the packet

i. When ri is 0, packet
∣∣ri, āi, d̄i

〉
is considered to be empty, i.e., even though the

packet exists, a quantum switching network routing this packet will ignore its

address and data bits.

We give an example to make the definition of a quantum packet more clear.

Consider a 4 × 4 network, in which an input has two packets A and B, which

are to be routed with probabilities 3/4 and 1/4, respectively. Suppose that the

fanout sets of A and B are {1, 3} and {1} respectively. We use a 4-bit address

field, o0o1o2o3, where oi is set to 1 when the fanout set of a packet contains output

i. The quantum packet on this input is a superposition of two classical packets,
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expressed as:
√

3

2
|1, 0101, A〉+

1

2
|1, 0010, B〉 (2.32)

In general, at least n bits are needed to specify the destinations of an input in an

n×n multicast network, as noted in [14]. This is because an input can have up to

2n destination patterns.

There is more than one possible interpretation of this quantum packet rep-

resentation. We mention two such interpretations. One is that if A and B denote

the same packet then this packet will likely be routed to outputs 1 and 3 with

probability 3/4 and to output 2 with probability 1/4. The second interpretation

is that the input source is likely to generate one of two different packets. One

of these two packets is generated and routed to outputs 1 and 3 with probabil-

ity 3/4 and the other is generated and routed to output 2 with probability 1/4.

Nonetheless, in both interpretations, either a packet appears at both outputs 1

and 3 with probability 3/4 or at output 2 only with probability 1/4. Therefore, for

consistency of our statements, we shall assume the second interpretation.

Definition 2.2 (Assignment pattern and quantum assignment). An assignment

pattern over an n× n quantum switching network is a sequence of classical pack-

ets, each of which belongs to a quantum packet on a distinct input of the network

from top to bottom. We say that an assignment pattern is non-contending when

no two classical packets with routing bits of 1 in the pattern are addressed to the

same output. A quantum assignment on an n × n quantum switching network is

a superposition of a set of assignment patterns. A quantum assignment is called
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(a) (b)

(c) (d)

Figure 2.9: Assignment patterns: (a) non-contending assignment pattern; (b) con-
tending assignment pattern; Quantum assignments: (solid and dashed lines show
two assignment patterns) (c) non-contending quantum assignment; (d) contend-
ing quantum assignment.

non-contending if and only if all of its assignment patterns are non-contending;

and called contending otherwise. These definitions are illustrated in Figure 2.9. An

assignment pattern is said to be unicast when each classical packet is addressed to

at most one output, otherwise, it is said to be multicast. A non-contending unicast

assignment pattern in which every input is paired with some output is said to be

a permutation assignment pattern.

Definition 2.3 (Quantum M -assignment). A quantum assignment consisting of

a superposition of a set of M assignment patterns on an n×n quantum switching

network is called a quantum M -assignment and can be expressed as:

M−1∑

k=0

βk
∣∣(rk,0, āk,0, d̄k,0) · · · (rk,n−1, āk,n−1, d̄k,n−1)

〉
(2.33)
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where assignment pattern
∣∣P̄k
〉

= |(rk,0, āk,0, d̄k,0), · · · , (rk,n−1, āk,n−1, d̄k,n−1)〉 is a

sequence of classical packets in which (rk,i, āk,i, d̄k,i) is the classical packet on in-

put i. The probability with which the kth assignment pattern is realized is |βk|2,

where
∑M−1

k=0 |βk|2 = 1.

When all the inputs have quantum packets of the form given in (2.31), the

expression for the corresponding quantum assignment can be obtained by taking

the tensor product of all the input quantum packets.

We illustrate this by considering the example of a 4 × 4 network in which

input 0 issues the quantum packet
√

3
2
|1, 0101, A〉 + 1

2
|1, 0100, B〉, input 1 has no

packet, input 2 issues the quantum packet |1, 0010, D〉 and input 3 issues the

quantum packet 1√
2
|1, 1001, E〉 + 1√

2
|1, 1000, F 〉. Then, the quantum assignment

is

(√
3

2
|1, 0101, A〉+

1

2
|1, 0100, B〉

)
⊗ |0, 0000, C〉⊗

|1, 0010, D〉 ⊗
(

1√
2
|1, 1001, E〉+

1√
2
|1, 1000, F 〉

)
(2.34)

which can be written as a superposition of four multicast assignment patterns

√
3

2
√

2
|(1, 0101, A), (0, 0000, C), (1, 0010, D), (1, 1001, E)〉+

√
3

2
√

2
|(1, 0101, A), (0, 0000, C), (1, 0010, D), (1, 1000, F )〉+

1
2
√

2
|(1, 0100, B), (0, 0000, C), (1, 0010, D), (1, 1001, E)〉+

1
2
√

2
|(1, 0100, B), (0, 0000, C), (1, 0010, D), (1, 1000, F )〉 (2.35)
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It is seen that the first assignment pattern in the above quantum assignment

is contending because packets A and E in this pattern are addressed to output 3.

The rest of the three assignment patterns are non-contending. Next we define a

sub-pattern of an assignment pattern:

Definition 2.4 (sub-pattern). An assignment pattern
∣∣P̄ ′
〉

= |(r′0, ā′0, d̄′0), · · · ,

(r′n−1, ā
′
n−1, d̄

′
n−1)〉 is called a sub-pattern of another assignment pattern

∣∣P̄
〉

=

|(r0, ā0, d̄0), · · · , (rn−1, ān−1, d̄n−1)〉 if, for every i, 0 ≤ i ≤ n− 1, r′i = 1 implies that

ri = 1, d̄′i = d̄i and F ′i ⊆ Fi. A non-contending sub-pattern
∣∣P̄ ′
〉

of
∣∣P̄
〉

is said to

be maximal if the fanout sets ∪n−1
i=0 {F ′i : r′i = 1} and ∪n−1

i=0 {Fi : ri = 1} are equal.

2.2.2.2 Quantum Packet Switching Model

Classical packet switches are often constructed using non-blocking switch-

ing networks. Even in an internally non-blocking switch, output contentions may

occur when multiple input packets are addressed to the same output. To resolve

these contentions, packets are either buffered at some place in the network or

dropped. A widely studied buffering scheme uses n infinite length FIFO queues

on each input of the n × n network, as shown in Figure 2.10(a). In this scheme,

however, if there are some queues with their head packets addressed to the same

output then only one of these queues can be served. This problem, known as

head-of-line (HOL) blocking, limits the maximum throughput which can be ob-

tained in such a network. Karol et. al. showed that the maximum achievable

throughput on this network is 2 −
√

2 = 0.586, which is obtained under some
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ideal arrival conditions and large n [56]. Several techniques have been suggested

for reducing HOL blocking using non-FIFO queues. One such technique is to ex-

amine the first k packets in a FIFO queue, where k > 1 [57]. It is possible to avoid

HOL blocking completely by using virtual output queuing (VOQ) scheme [58]

which uses n2 input queues called virtual output queues. In this scheme, each in-

put has n FIFO queues, where each queue holds packets which are addressed to

only one output as shown in Figure 2.10(b). It was shown by Mckeown et. al. [58]

that it is possible to achieve 100% throughput using VOQ scheme and maximum

weight matching based scheduling. However, finding maximum weight match-

ing is complex (O(n3)) and several scheduling algorithms which approximate

maximum weight matching have also been proposed [59–64]. All these algo-

rithms rely on the fact that the queue lengths vary slowly from one time slot to

the next time slot so that choosing the previous matching and a randomly gener-

ated matching can be used to achieve high throughput.

The above discussion was about unicast switches in which each packet is

addressed to at most one output. In case of multicast switches, it is not possible

to use the VOQ scheme to remove HOL blocking, because each input packet can

be addressed to one of 2n possible output patterns. Therefore, we would need

2n queues at each input, which is not feasible. Several algorithms that use finite

number of queues on each input and aim to maximize the throughput using some

heuristic based scheduling, have been proposed [65] [66] [67].

Quantum systems can provide a novel approach to serve packets on an
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Figure 2.10: Input queued classical switches: (a) Each input having one queue (b)
Virtual output queuing.

input-queued switch using quantum superposition and parallelism. Instead of

using a centralized scheduling algorithm to determine which packets to route

from the input queues, we can create a superposition of certain number of pack-

ets in a queue to form a quantum packet, which can then be routed by a quantum

packet switching network. This is the model of quantum packet switching that

is explored in this thesis, and is shown in Figure 2.11. The classical-to-quantum

(C/Q) converters select some packets from the input queues and creates their

superposition by assigning appropriate probabilities. These probabilities can

be chosen suitably to shape the incoming traffic in order to maximize overall

throughput. The quantum packets created by C/Q converters form a quantum

assignment which is realized by a quantum packet switch. This switch routes

all assignment patterns in the assignment simultaneously. The output state of

the quantum packet switch is also a superposition of assignment patterns, where
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Figure 2.11: Quantum packet switching model.

classical packets in every pattern are at their desired outputs. Consequently, each

output contains superposition of packets that were addressed to that output. In

this thesis, we give the design of such quantum packet switches. The problem of

scheduling classical packets from the input queues, and assigning them proba-

bilities such that a certain traffic pattern in served or overall throughput is maxi-

mized, is not studied in this thesis.

Quantum packet switches are categorized based on the possible assign-

ment patterns they can realize. An n × n quantum packet switch is said to

be non-blocking if it transforms any non-contending assignment pattern to an-

other pattern in which to another pattern in which all the classical packets are

at their desired outputs. A set of auxiliary qubits is usually needed to construct

such a switch. Non-blocking quantum packet switches can be categorized fur-
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ther as unicast or multicast depending on whether they can realize only unicast

non-contending assignments or all of them. A non-blocking multicast quantum

packet switch is also called a generalized quantum connector. Our design of gen-

eralized quantum connector is given in Chapter 5.

A contending assignment pattern, by definition, has multiple packets ad-

dressed to some outputs of the switch. For such a pattern, a classical non-blocking

packet switch can route at most one packet to each output, and others are blocked.

In contrast, a quantum packet switch can route all contending packets to their

desired output by creating their superposition on that output. This can be done

by breaking the contending assignment patterns into non-contending ones using

quantum superposition, as conflicts arise while these patterns are routed through

the switch. The contending packets are distributed among the resulting sub-

patterns to ensure that these sub-patterns are non-contending. The probability

coefficient of the contending pattern is distributed among the sub-patterns. We

modify the n-GQC design to accomplish this behavior in Chapter 6

Quantum packet switches that cannot realize all non-contending assign-

ment pattern are said to be blocking. In such switches, even when there is no

contention for final outputs, internal conflicts may arise because of topology lim-

itations. The above approach of creating superposition of conflicting packets by

breaking the assignment patterns can be applied to such switches as well, and

this is explored in the next chapter for the quantum Baseline network, which is a

blocking quantum packet switch.
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Chapter 3: Quantum Baseline Network

In this chapter, we present the design a self-routing quantum packet switch

called quantum Baseline network [6]. This quantum packet switch is an im-

proved version of a similar switching network presented by us in [5]. For an input

assignment pattern that undergoes internal blocking or has output contentions,

it creates a superposition of a set of output patterns containing all maximum size

sub-patterns of the input assignment pattern which can be routed through the

Baseline network without internal blocking. This cannot be achieved by any clas-

sical self-routing switching network that is internally blocking. We also give a

method to characterize the output state of the switch using the concepts of frames

and balanced matrices.

The chapter is organized as follows. In section 3.1, we give a brief intro-

duction to the classical Baseline network. In Section 3.2, we present the design

of a 2 × 2 quantum switch that is capable of creating a superposition of its input

packets in the case of an output contention. In Section 3.3, we present the design

of the self-routing quantum Baseline network (QBN). We discuss the output state

of the QBN for permutation assignment patterns in Section 3.4.
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3.1 Classical Baseline Network

An n input and n output Baseline network has p = log2 n stages, each having

n/2 two input-two output switches that can be set either in through state or in cross

state. The switches in each stage are numbered 0, · · · , n/2− 1 from top to bottom

using p − 1 bit binary numbers. The input and output ports of each stage are

labeled 0, · · · , n− 1 from top to bottom using p bit binary numbers. Output port

o1 · · · on of the mth stage is connected to the input port i1 · · · in of the m+ 1th stage

(1 ≤ m ≤ p−1) where binary number i1 · · · in is obtained by doing a right circular

shift on lower p−m + 1 bits of binary number o1 · · · op. Switch b1b2 · · · bp−1 in the

mth stage is connected to the switches b1 · · · b′m · · · bp−1 and b1 · · · b′′m · · · bp−1 in the

m + 1th stage, where b′m = 0, b′′m = 1 and 1 ≤ m ≤ p − 1. The 16 × 16 baseline

network is shown in Figure 3.1.

Packets can be self routed in the baseline network in following manner. Sup-

pose the output addresses of the input packets of a 2 × 2 switch in mth stage

(1 ≤ m ≤ p) are binary numbers a1a2 · · · ap and b1b2 · · · bp. This switch is set in

through state if am = 0 and bm = 1 and in cross state if am = 1 and bm = 0. When

both am and bm are same there is a contention and one of the packets has to be

either dropped or buffered. Next, we discuss some connection properties of the

baseline network which are used later.

Consider the mth stage of the n-input baseline network, where 2 ≤ m ≤ p.

Divide the inputs of the 1st stage into 2p−m consecutive disjoint sets of size 2m each
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and number these sets 1, · · · , 2p−m from top to bottom. A 2× 2 switch b1b2 · · · bp−1

in the mth stage of the baseline network can be reached only by the inputs in the

input set number k, where k is binary number bm · · · bp−1. Switches in the last

stage of the network can be reached by every input. Also, any self routed packet

reaching switch b1b2 · · · bp−1 in themth stage should have its topm−1 address bits

as b1 · · · bm−1.
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Figure 3.1: 16× 16 Baseline Network.

3.2 Quantum Switch

We gave a simple design for a 2 × 2 quantum switch in [5]. The quantum

circuit of this switch is shown in Figure 3.2. Two sets of qubits of size nd each con-
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Figure 3.2: A 2× 2 Quantum Switch.

tain the data parts of input packets. The address bits that determine the switch

setting are a1 and a2 respectively. These address bits are not switched along with

remaining packet content, and are discarded after use. P̄1 and P̄2 denote the re-

maining bits in the input packets after excluding a1 and a2. An auxiliary qubit s

initialized to state |0〉 is employed to act as a control input to the switch gate that

performs the actual switching.

When a1 = a2, i.e., when the input packets are contending for one of the

outputs, one of the Hadamard gates changes the state of s to 1√
2

(|0〉+ |1〉) and

the switch gate creates an equal superposition of P̄1 and P̄2. If a1 is |1〉 and a2 is

|0〉 then the NOT gate sets s to state |1〉, and the switch gate is set in cross state.

When a1 is |0〉 and a2 is |1〉, s remains in state |0〉 and the switch gate is set in

through state. Thus, representing the state of the system by |a1, a2, P̄1, P̄2〉, the
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function of the switch is described as

|0, 0, P̄1, P̄2〉 |0〉s −→
1√
2

(
|0, 0, P̄1, P̄2〉 |0〉s + |0, 0, P̄2, P̄1〉 |1〉s

)

|0, 1, P̄1, P̄2〉 |0〉s −→ |0, 1, P̄1, P̄2〉 |0〉s

|1, 0, P̄1, P̄2〉 |0〉s −→ |1, 0, P̄2, P̄1〉 |1〉s (3.1)

|1, 1, P̄1, P̄2〉 |0〉s −→
1√
2

(
|1, 1, P̄1, P̄2〉 |0〉s + |1, 1, P̄2, P̄1〉 |1〉s

)

Even though this switch creates a superposition of the contending packets at

the desired output, a complementary superposition is created on the other output

as well, which is undesirable. In a baseline network made using this switch, the

outputs of the network might receive packets that are not addressed to them.

Also, it will not be possible to verify whether the received packet on an output

was intended for that output or not because the address bits are removed by the

network. This problem was solved in [5] by swapping undesired superposition

with dummy packets, which are distinguishable from other data packets. This

approach is costly and requiresO(log n) extra qubits for each 2×2 switch. We can

simply include a routing qubit in quantum packets as defined in Section 2.2.2.1,

and set the routing bit on the output to which no packet should go to 0, which

can be used to ignore these packets while determining switch setting further in

the network.

A 2 × 2 quantum switch that requires that each packet should contain a

routing bit, and sets this bit to 0 for the packets in the undesirable superposition,
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Figure 3.3: Improved 2 × 2 Quantum Switch: (a) quantum circuit for the 2 × 2
switch; (b) its block representation.

is shown in Figure 3.3(a). The switch ignores the address bits of any input packet

that has a routing bit of 0.

Qubit c is used to set the switch gate in a through or cross or an equal super-
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position of through and cross states depending on the values of the address and

routing bits of packets on the upper and lower inputs. These qubits are labeled

a1, r1 and a2, r2 respectively for the two packets. The routing bits are switched

along with the packets whereas the address bits are discarded. Whenever an out-

put contention occurs, one of the first two controlled Hadamard gates changes

the state of qubit c to 1/
√

2(|0〉+ |1〉), otherwise they do not affect c and it remains

in state |0〉. Note that a NOT operation on state 1/
√

2(|0〉 + |1〉) does not affect it.

When there is no contention, qubit c is set in state |0〉 or |1〉 depending on the val-

ues of a1, r1, a2 and r2 according to the following table. This gives c = a1r1 + ā2r2,

0: Through state

00 01

a1a2

v1v2

00

01

11

10

x

1

x

0 0

0

0

x x x

11

0 1

x

11 10

1 1: Cross state

which is done in the quantum circuit using reversible logic. This logic does not

affect the state of c when it is in state 1/
√

2(|0〉+ |1〉). Finally, in case of contention

the routing bits of the packets on unused output are set to 0. Qubit c and other

two auxiliary qubits used in the reversible logic a1r1 + ā2r2 remain in their orig-

inal state |0〉 and can be ignored because a measurement on them does not have

any effect on the functioning of the circuit. Only the auxiliary qubits x1 and x2

may end up in an altered state. Denoting the packets as (ri, ai, P̄i), i = 1, 2, the
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functioning of the switch when both the input packets are valid is:

|(1, 0, P̄1), (1, 0, P̄2)〉 −→

1√
2

(
|(1, 0, P̄1), (0, 0, P̄2)〉+ |(1, 0, P̄2), (0, 0, P̄1)〉

)

|(1, 0, P̄1), (1, 1, P̄2)〉 −→|(1, 0, P̄1), (1, 1, P̄2)〉

|(1, 1, P̄1), (1, 0, P̄2)〉 −→|(1, 0, P̄2), (1, 1, P̄1)〉 (3.2)

|(1, 1, P̄1), (1, 1, P̄2)〉 −→

1√
2

(
|(0, 1, P̄1), (1, 1, P̄2)〉+ |(0, 1, P̄2), (1, 1, P̄1)〉

)

When only one of the two input packets has routing bit of 0, the switch is

simply set to route the other packet. Also, the switch can be set in any state when

both the input packets have routing bits of 0. A block schematic diagram for this

switch is shown in Figure 3.3(b).

3.3 Quantum Baseline Network Construction

The 2 × 2 quantum switch given in Figure 3.3 is used to form the quantum

baseline network (QBN). An n input (n = 2p) QBN has p/2 stages of 2×2 quantum

switches connected in baseline topology described in Section 3.1. In this section,

we give an example of 4× 4 QBN shown in Figure 3.4 to explain its functionality.

Suppose inputs 0, 1, 2 and 3 have classical packets P3, P2, P0 and P1 destined
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for outputs 3, 2, 0 and 1 respectively. We represent the data part of these packets

as d3, d2, d0 and d1 respectively. The packets are represented as tuple (r, a1a2, d),

where a1a2 is the binary number equal to the output address of the packet. We

write the state of the quantum wires at locations marked in Figure 3.4 by vertical

dotted lines. The order of the components in ket-notation |W1,W2, · · · ,Wn〉, cor-

responds to the order in which we encounter the wires as we traverse the circuit

from top to bottom.

The input assignment pattern is |(1, 11, d3), (1, 10, d2) (1, 00, d0), (1, 01, d1)〉.

The contentions for outputs at both the switches in the first stage cause them to

create a superposition of four patterns at location B in the figure (representing

packets at this location as tuple (r, a2, d)):

1

2

[∣∣(0, 1, d3)(1, 0, d2)(1, 0, d0)(0, 1, d1)
〉

+

∣∣(0, 0, d2)(1, 1, d3)(1, 0, d0)(0, 1, d1)
〉

+

∣∣(0, 1, d3)(1, 0, d2)(1, 1, d1)(0, 0, d0)
〉

+

∣∣(0, 0, d2)(1, 1, d3)(1, 1, d1)(0, 0, d0)
〉]

After the shuffle, the state at C is obtained by interchanging the middle two pack-

ets in each of the four patterns. All the address bits of the packets are used by the

networks at the end of the second stage and a packet at the output is represented

as (r, d). There is no contention in any pattern at any of the switches in the sec-

ond stage because one packet at the inputs of both the 2 × 2 switches (for every
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pattern) is an invalid packet and has routing bit of 0. Thus the output state of the

switch is

1

2

[
|(1, d0)(0, d3)(1, d2)(0, d1)〉+

|(1, d0)(0, d2)(0, d1)(1, d3)〉+

|(0, d3)(1, d1)(1, d2)(0, d0)〉+

|(0, d2)(1, d1)(0, d0)(1, d3)〉
]

If we do a computational basis measurement at the outputs of the switch, we will

observe one of the patterns in the above expression with probability 1/4. The

ith component of a tuple is the packet at the ith output. Thus, the probability of

observing a valid packet Pi, i = 0, 1, 2, 3, at output i is 1/2. Also, we will observe

valid and correctly routed packets only at any two of the outputs. The other two

outputs will have invalid packets.

An n × n quantum baseline network for larger values of n is formed in

similar way. A 2× 2 quantum switch at stage m of this network uses mth address

qubits of its input packets for routing. In the next section, we develop methods

to express the output quantum state of an n× n QBN for any given permutation

assignment pattern.
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Figure 3.4: 4× 4 Quantum Baseline Network.

3.4 The Output State of QBN

In this section, we discuss the structure of the output quantum state of a

n× n QBN. Given any permutation assignment pattern, we give formulae for all

the patterns in the output quantum state and their coefficients or probabilities.

We use the concepts of balanced matrices and frames used by various authors

and most recently by Çam [23]. We start with some definitions.

Definition 3.1. Permutation Matrix: A permutation assignment pattern π in an

n × n (n = 2p) switch is represented by an n × p permutation matrix Π, where

Π(i, j) is the jth most significant bit in the output address of the packet on input i.
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Figure 3.5: 16×4 Frame and permutation matrices: (a) A 16×4 frame; (b) A 16×4
permutation matrix which fits the frame; (c) A 16 × 4 permutation matrix which
does not fit the frame.

Definition 3.2. Balanced Matrix: An n × p binary matrix B is balanced if and only

if no p bit binary number appears more than once in its rows.

Definition 3.3. Frame is a set consisting of following 2m × m sub-matrices of an

n × p matrix, where 1 ≤ m ≤ p. Columns 1 to m (where 1 ≤ m ≤ p) of the n × p

matrix are divided into 2p−m consecutive blocks (2m ×m sub-matrices) from top

to bottom, each block having 2m rows. The set of all these sub-matrices is called

a Frame. A frame for n = 16 is shown in Fig 3.5a.

Definition 3.4. A n × p permutation matrix is said to fit an n × p frame if each

sub-matrix in the Frame is balanced.
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A permutation matrix which fits the 16 × 4 frame is shown in Fig 3.5b. A

permutation matrix that does not fit this frame is shown in Fig 3.5c. For example,

the highlighted sub-matrices are not balanced.

Theorem 3.1. A permutation assignment pattern can be self-routed in an n×n baseline

network without blocking if and only if its permutation matrix fits into an n× p frame.

Proof: First, suppose that the n × p permutation matrix of the assignment

pattern does not fit the n× p frame. Then for some 1 ≤ m < p, an m column sub-

matrix (of size 2m×m) in the frame is not balanced. Note that m can not be equal

to p since a permutation matrix is always balanced. There are two packets on the

2m inputs corresponding to this sub-matrix that have their top m output address

bits same, let these bits be a1 · · · am. Let the input ports of these two packets be

i1 · · · ip−mip−m+1 · · · ip and i1 · · · ip−mjp−m+1 · · · jp. The top p − m bit in the input

addresses are the same because the two inputs belong to the same block of size

2m. Using the self routing described in section 3.1, both the packets get routed to

the same switch a1a2 · · · am−1i1 · · · ip−m in the mth stage. Since the address bit am

for both input packets at this switch is same there is a contention and the input

permutation cannot be routed without blocking.

For the converse, if there is a contention at one of the 2 × 2 switches in mth

stage 1 ≤ m < p, then the top m address bits of the two input packets at this

switch should be the same since any packet reaching switch b1 · · · bp−1 in the mth

stage should have its top m− 1 address bits as b1 · · · bm−1. Also, these two inputs

belong to the same input block of size 2m. Thus, there is an unbalanced 2m ×m
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sub-matrix in the frame. Hence the permutation matrix does not fit the n × p

frame.‖

A similar theorem for reverse baseline network is given in [23]. Here we

have proved that the same condition ensures a non-blocking routing in a baseline

network as well. It can be verified that the permutation shown in Fig 3.5b passes

the baseline network without any contention while the one in Fig 3.5c does not.

For any input permutation assignment pattern, the output state of an n × n

QBN is in general as superposition of patterns

M∑

i=1

αi
∣∣(ri0, di0)(ri1, di1) · · · (rin−1, d

i
n−1)

〉
(3.3)

where
∑M

i=1 |αi|2 = 1; and rij , dij (0 ≤ j ≤ n − 1) respectively are the routing

bit and data part of the packet at output j of the QBN in the ith output patten.

On measurement the ith pattern is observed with probability |ai|2. The smallest

value of M can be 1, as given in the following theorem which follows directly

from theorem 1.

Theorem 3.2. Let π = (o0, · · · , on−1) be a permutation of numbers 0, · · · , n− 1 where

n = 2p, and in a given permutation assignment pattern, input i of a QBN have a packet

Poi
destined to output oi, where 0 ≤ i ≤ n − 1. If the permutation matrix of π fits the

n× p frame then the output quantum state of the QBN is |(1, d0), · · · , (1, dN−1)〉, where

di is the data part of packet Pi.

If a permutation assignment pattern does not fit in the n× p frame, it is bro-
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ken into sub-patterns each having some packets with routing bits of 0, as shown

in the example given in Section 3.3. Thus the value ofM will be more than one for

such an assignment. The exact number of packets with routing bits of 0 in each

resulting output pattern, and the number of patterns present in output quantum

state can be given by using the concepts of frame and fitting discussed earlier.

For this we first make a n× p permutation matrix fit into n× p frame by marking

some of the rows as invalid using the following procedure called balancing.

Definition 3.5. Balancing a permutation matrix: First for m = 1, the row corre-

sponding to one of each repeated 1 bit number in each 2 × 1 sub-matrix of the

frame is marked invalid. Next, for 2 ≤ m ≤ p, check only the valid rows and

make the row corresponding to one of each repeated m bit binary number (if

any) in every 2m × m sub-matrix of the frame as invalid. A permutation matrix

which is obtained by this process is called a balanced permutation matrix. ‖

Note that there are many possible balanced matrices that can be generated

by the balancing procedure as there are many choices of rows that can be marked

invalid in each step of the balancing procedure. The output state of the QBN is a

superposition of every balancing outcome, as described next.

Theorem 3.3. Let π = (o0, · · · , on−1) be a permutation of numbers 0, · · · , n − 1 (n =

2p) which does not fit an n × p frame. Consider a permutation assignment pattern in

which input i has packet Poi
destined to output oi, where 0 ≤ i ≤ n − 1. Suppose that

M balanced matrices can be generated by balancing the permutation matrix of π. Let

Ij ⊂ {0, · · · , n − 1} be the set of inputs corresponding to the invalid rows of the jth
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balanced matrix, where 1 ≤ j ≤M . Then the output state of the QBN is:

M∑

j=1

αj
∣∣(rj0, dj0)(rj1, dj1) · · · (rjn−1, d

j
n−1)

〉
(3.4)

where rji is 1 if π−1(i) /∈ Ij and 0 if π−1(i) ∈ Ij , 0 ≤ i ≤ n− 1. Also, dji is the data part

of packet Pi if π−1(i) /∈ Ij , and invalid if π−1(i) ∈ Ij , 0 ≤ i ≤ n− 1. Furthermore,

αj =

(
1√
2

)|Ij |
(3.5)

where |Ij| is the cardinality of set Ij .

Proof: The 2 × 1 frames in the permutation matrix contain the address bits

that determine the settings of the 2 × 2 switches in the first stage. Consequently,

an unbalanced 2 × 1 frame indicates an output contention on the corresponding

first stage switch. Similarly, as shown earlier in the proof of Theorem 3.2, input

packets corresponding to identical rows in an unbalanced 2m ×m frame contend

at a 2 × 2 switch in the mth stage of the network. Also, it can be observed that

there can be at most two rows having same values in a 2m ×m frame if the two

2m−1 × (m − 1) frames have been balanced. Therefore, a 2 × 2 switch in the mth

stage receives at most two contending packet if the earlier stages of the network

have balanced the permutation matrix until the m − 1th step of the balancing

procedure.

The above observations imply that the switching operation of the mth stage

of the network is equivalent to the mth step of the balancing procedure, where
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0 ≤ m ≤ p− 1. One of the rows in every pair of identical rows in a 2m ×m frame

is marked invalid by setting the routing bit of one of the contending packets at

the corresponding 2× 2 switch to 0. For an input pattern to the mth stage, if there

are k switches in the stage that have contending input packets then the input pat-

tern is broken into 2k output patterns, with k of the contending packets replaced

by the ones with routing bits of 0 in each output pattern. The stage introduces

a coefficient multiplier of (1/
√

2)k into each output pattern. These output pat-

terns correspond to the possible outcomes of the mth step of balancing procedure

applied to the matrix representing incoming pattern. Consequently, the network

generates all possible outcomes of the balancing procedure, and also routes the

input packets corresponding to the valid rows in each resulting balanced matrix

to their outputs. Other outputs receive packets with routing bits of 0. The output

pattern that corresponds to the jth balanced matrix outcome has |Ij| packets with

routing bits of 0, and thus has undergone |Ij| contentions. Hence its coefficient is

(1/
√

2)|Ij |. ‖

On a computational basis measurement on all outputs, one of the patterns

in the output quantum state will be observed, and the probability of finding the

pattern having Ij packets with routing bits of 0 and n − Ij packets with routing

bits of 1 is (1/2)|Ij |. This is desirable as the output patterns having larger number

of packets with routing bits of 1 have higher probability of being measured. Prob-

ability of finding any packet at its desired output can be obtained by summing

the probabilities of the output patterns in which that packet has routing bit of 0.
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Chapter 4: Quantum Concentrators

A quantum concentrator is a quantum switching network that transforms

an input assignment pattern in which only the routing bits matter and the ad-

dress fields are ignored. The packets with routing bits of 1 are routed consecu-

tively to the top outputs of the network in some non-specifiable order. The rest

of the packets (with routing bits of 0) are routed to the remaining outputs. When

presented with general quantum states on its inputs, where the presence of a

quantum state on an input is indicated by setting the routing qubit on that input

to |1〉, a quantum concentrator would route these states to its top outputs.

4.1 Quantum Concentrator Definitions

In this section, we introduce different types of quantum concentrators and

define them in terms of quantum transformations. These concentrators are con-

structed using quantum circuits later in the chapter. Since output addresses are

not needed in a concentrator, we combine the address and data bits and represent

a classical packet as (r, p̄) in this chapter, where p̄ denotes the data part.

Definition 4.1 (Quantum concentrator of first type). An n-quantum concentrator

of first type (denoted as n-QC1) is an n× n quantum packet network which trans-
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forms an assignment pattern such that data parts of all classical packets having

routing bits of 1 are concentrated to the top outputs in some non-specifiable or-

der. The routing bits are not concentrated and are passed to the outputs, i.e.,

routing bit on input i is passed to output i, for i = 0, 1, · · · , n − 1. Also, two or

more assignment patterns having the same number of coinciding routing bits of

1 are concentrated by applying the same permutation to their data parts. ‖

We first show that n-QC1 represents a reversible quantum transformation.

Since the routing bits r0, · · · , rn−1 are copied to the outputs by an identity map-

ping, two input assignment patterns having different sequences of routing bits

cannot be mapped to the same output pattern. Therefore, we need to show that

there is a one-to-one mapping for the assignment patterns having the same se-

quence of routing bits. In this case, since the routing bits are the same, we can only

check if two different assignment patterns having different packets are mapped

to the same output pattern. Without loss of generality, consider two different

packets with routing bits of 1 on a given input. Since both packets will have to

be routed to the same output as the permutations are fixed for a given sequence

of routing bits, the two input assignments which differ on only this input cannot

be mapped to the same output pattern. This completes the proof that the n-QC1

is reversible. We list the set of all input patterns and the corresponding output

patterns for a 2-QC1 in Table 4.1(a) for d = 1.

The n-QC1 would work well as a stand-alone quantum concentrator. How-

ever, in some switching networks in which quantum concentrators are used as
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Input Output

r0 p0 r1 p1 r0 p0 r1 p1

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 1 0 0 0 1 0 0

0 1 0 1 0 1 0 1

0 0 1 0 0 0 1 0

0 0 1 1 0 1 1 0

0 1 1 0 0 0 1 1

0 1 1 1 0 1 1 1

1 0 0 0 1 0 0 0

1 0 0 1 1 0 0 1

1 1 0 0 1 1 0 0

1 1 0 1 1 1 0 1

1 0 1 0 1 0 1 0

1 0 1 1 1 0 1 1

1 1 1 0 1 1 1 0

1 1 1 1 1 1 1 1

(a)

Input Output

row index r0 p0 r1 p1 r0 p0 r1 p1

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 1 0 0 0 1 0 0

3 0 1 0 1 0 1 0 1

4 0 0 1 0 1 0 0 0

5 0 0 1 1 1 1 0 0

6 0 1 1 0 1 0 0 1

7 0 1 1 1 1 1 0 1

8 1 0 0 0 1 0 0 0

9 1 0 0 1 1 0 0 1

10 1 1 0 0 1 1 0 0

11 1 1 0 1 1 1 0 1

12 1 0 1 0 1 0 1 0

13 1 0 1 1 1 0 1 1

14 1 1 1 0 1 1 1 0

15 1 1 1 1 1 1 1 1

(b)

Table 4.1: 2-input reversible and non-reversible transformation tables: (a) 2-QC1

transformation table; (b) A non-reversible 2-input transformation table.

building blocks, it may be required that the routing qubits are also concentrated

along with the packets. This will invalidate the reversibility of the quantum con-

centrator unless some auxiliary qubits are used. As an example, for n = 2 and

d = 1, the following two assignment patterns get mapped to the same output
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pattern:

|(0, 0)(1, 0)〉 → |(1, 0)(0, 0)〉

|(1, 0)(0, 0)〉 → |(1, 0)(0, 0)〉 (4.1)

A complete list of input and output patterns is shown in Table 4.1(b). It

is seen that a number of pairs of input patterns are mapped to the same out-

put pattern in the table. These input patterns are shaded and correspond to row

pairs (4, 8), (5, 10), (6, 9) and (7, 11) in the table. Obviously, this makes the table

non-reversible. Still, the table exhibits a concentrator behavior in all the rows. A

desirable goal is to maintain the concentrator property of the table for as many

rows as possible while making it reversible. There are two ways to ensure re-

versibility. The first approach is to use a certain number of auxiliary qubits which

will be discussed later in this section. The second approach is to change the data

parts of the packets whose routing bits are set to 0, since these packets belong to

the unused inputs and may be considered as empty packets. While this leads to a

reduction of the number of allowable input patterns, it ensures that all concentra-

tion assignments are still realized. To accomplish this, we fix the data parts of the

input packets with routing bits of 0 and only allow the input packets with routing

bits of 1 to have arbitrary data parts. Assuming that the data part consists of d

qubits, the number of allowable packets on each input is 1+2d, one packet for the

routing bit of 0 and 2d packets for the routing bit of 1. Therefore, the total num-
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ber of distinct concentration assignment patterns, in which every packet with a

routing bit of 0 has a fixed data part, is (1 + 2d)n. The concentration operation

is defined only for these (1 + 2d)n input assignment patterns. In order to ensure

reversibility, we can modify the data parts of the packets with routing bit of 0 to

break ties whenever two such assignment patterns are mapped to the same out-

put pattern. As will be shown below, this requirement imposes a constraint on

the minimum number of data bits which must be used in each input packet. We

denote this minimum number of data bits by dmin and define a second type of

quantum concentrator. We first have following definitions:

Definition 4.2. Two assignment patterns are said to be similar if they have the

same sequences of routing bits and have the same data parts at inputs having

routing bits of 1. Otherwise, they are said to be distinct. ‖

Definition 4.3. A set of assignment patterns ζ is said to be a concentration set if

no two assignment patterns in this set are similar and for any assignment pattern

∣∣P̄ ′
〉

which is not in ζ , there is an assignment pattern
∣∣P̄
〉
∈ ζ , such that

∣∣P̄
〉

and

∣∣P̄ ′
〉

are similar. ‖

For a given sequence of n routing bits in which m bits are 1, where 0 ≤

m ≤ n, there are 2md distinct assignment patterns, because each input with a

routing bit of 1 can have 2d possible data parts. There are
(
n
m

)
sequences of rout-

ing bits having m bits set to 1, therefore, the number of distinct assignment pat-

terns having m packets is
(
n
m

)
2md. Consequently, the size of a concentration set

is
∑n

m=0

(
n
m

)
2md = (1 + 2d)n. Also, any of the

(
n
m

)
2md distinct patterns described
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above can be chosen in 2(n−m)d ways because packets on an input with routing bit

of 0 can have one of the 2d possible data parts. This leads us to conclude that there

are
∏n

m=0 2(n−m)d(n
m)2md

= 2nd(1+2d)n−1 different concentration sets. Also, any two

concentration sets ζ and ζ ′ are similar in the sense that for every pattern
∣∣P̄
〉
∈ ζ ,

there is an unique
∣∣P̄ ′
〉
∈ ζ ′ such that

∣∣P̄
〉

and
∣∣P̄ ′
〉

are similar.

Next, we define a quantum concentrator which, unlike n-QC1, also concen-

trates routing bits along with the packets. This network modifies the data parts

of the unused inputs in order to obtain reversibility.

Definition 4.4 (Quantum concentrator of second type). An n×n quantum switch-

ing network is called an n-quantum concentrator of second type for a concentration

set ζ (denoted as n-QC2), if for any m = 0, 1, · · · , n − 1, an assignment pattern

∣∣P̄
〉
∈ ζ in which m packets have routing bits of 1, is transformed such that these

packets are routed to the top m outputs along with the routing bits, where the

order of these packets on the top outputs is non specifiable. Two or more assign-

ment patterns in ζ , which have coinciding routing bits of 1, are concentrated by

applying the same permutation to the packets with routing bits of 1. The bottom

n−m outputs have packets with routing bits of 0. The data parts of these packets

are set such that overall transformation is reversible. ‖

The n-QC2 concentrates only the assignment patterns contained in set ζ .

The remaining 2n(d+1)− (1+2d)n input assignment patterns can be mapped to the

same number of remaining output patterns one an one-to-one basis in any order.

Also, if we can construct an n-QC2 for concentration set ζ , then we can construct
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an n-QC2 for any other concentration set ζ ′ by mapping an assignment pattern

∣∣P̄ ′
〉
∈ ζ ′ to output pattern

∣∣QC2(P̄ )
〉
, where

∣∣P̄
〉

is the assignment pattern in ζ

which is similar to
∣∣P̄ ′
〉
. To this end, in Section 4.2, we construct an n-QC2 for a

specific concentration set called zero-concentration set, which is defined next.

Definition 4.5. An assignment pattern
∣∣P̄
〉

= |(r0, p̄0), · · · , (rn−1, p̄n−1)〉 is called a

zero-assignment pattern if for every i, 0 ≤ i ≤ n − 1, ri = 0 implies p̄i = 0̄. Also,

the set of all zero-assignment patterns is called the zero-concentration set and is

denoted as ζ0 now onward.

As noted earlier, the data parts of the outputs with routing bits of 0 are used

to obtain reversibility in an n-QC2. This can be done only if the data part of each

packet has sufficient number of bits. We denote the minimum number of these

bits as dmin. Before computing dmin for a general n, we point out that for a 2-QC2,

dmin = 1. It can be seen that the reversible transformation shown in Table 4.2

is a 2-QC2 transformation for the zero-concentration set ζ0. There are nine zero-

assignment patterns (shown by shaded rows in the table) in this set, and they

are concentrated as desired. These nine patterns cover all the concentration as-

signments for n = 2. It can be observed in the table that the data bits of some of

the packets with routing bits of 0 are modified to ensure reversibility. For exam-

ple, two zero-assignment patterns |(0, 0), (1, 0)〉 and |(1, 0), (0, 0)〉 in rows 4 and 8,

which were mapped to the same output pattern in Table 4.1(b), are now mapped

to output patterns |(1, 0), (0, 0)〉 and |(1, 0), (0, 1)〉 respectively. In order to ensure

that these two assignment patterns are not mapped to the same output pattern,
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Input Output

Row index r0 p0 r1 p1 r0 p0 r1 p1

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 1 0 0 0 1 0 0

3 0 1 0 1 0 1 0 1

4 0 0 1 0 1 0 0 0

5 0 0 1 1 1 1 0 0

6 0 1 1 0 0 0 1 0

7 0 1 1 1 0 0 1 1

8 1 0 0 0 1 0 0 1

9 1 0 0 1 0 1 1 0

10 1 1 0 0 1 1 0 1

11 1 1 0 1 0 1 1 1

12 1 0 1 0 1 0 1 0

13 1 0 1 1 1 0 1 1

14 1 1 1 0 1 1 1 0

15 1 1 1 1 1 1 1 1

Table 4.2: 2-QC2 transformation table in which shaded rows show the zero-

assignment patterns.

packet (0, 0) is modified to (0, 1) for the second input pattern.

Theorem 4.1. At least dlog2 ne bits are needed in the data parts of input packets in order

to realize an n-QC2, that is, dmin = dlog2 ne. ‖

Proof: without loss of generality, we will work with the zero-concentration

set ζ0. We have already shown using the example in Table 4.2 that for n = 2,
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we have dmin = 1. For n > 2, we first observe that, for a given m > 0, there

are
(
n
m

)
zero-assignment patterns which are mapped to an output pattern of the

form |(1, p̄0)(1, p̄1), · · · , (1, p̄m−1), (0, p̄m+1), · · · , (0, p̄n−1)〉 in which p̄0, · · · , p̄m−1

are fixed. This is because there are
(
n
m

)
sequences of routing bits in which m

routing bits are set to 1, and for each such sequence, there is only one zero-

assignment pattern which is mapped to the above output pattern. The reason for

this is that for the zero-assignment patterns having a fixed sequence of routing

bits, the order in which m input packets appear on the top m outputs is the same,

irrespective of packet contents. Also, for m = n, there is only one input pattern

which can be mapped to a given output pattern |(1, p̄0) · · · , (1, p̄n−1)〉, therefore,

we only need to ensure reversibility for m < n. For 0 ≤ m ≤ n − 1, the outputs

p̄m+1, p̄m+2, · · · , p̄n−1 should be different for each of these
(
n
m

)
zero-assignment

patterns in order to ensure reversibility. Since these outputs have (n −m)d bits,

we require that

2(n−m)d ≥
(
n

m

)
or d ≥

⌈
1

n−m

⌈
log2

(
n

m

)⌉⌉
for every 0 ≤ m ≤ n− 1 (4.2)

Denoting the following expression as dm

dm =
1

n−m

⌈
log2

(
n

m

)⌉
where 0 ≤ m ≤ n− 1 (4.3)

we show that dm is maximum for m = n− 1. This is because dm+1 > dm, for every
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0 ≤ m ≤ n− 2. To show this, we express dm+1 as:

dm+1 =
1

n−m− 1

⌈
log2

(
n

m+ 1

)⌉
=

1

n−m− 1

⌈
log2

(
n

m

)
+ log2

(
n−m
m+ 1

)⌉

≥ 1

n−m log2

(
n

m

)
+

1

n−m

(
n−m

n−m− 1
− 1

)
log2

(
n

m

)
+

1

n−m− 1
log2

(
n−m
m+ 1

)

=
1

n−m log2

(
n

m

)
+

1

(n−m)(n−m− 1)

[
log2

(
n

m

)
+ (n−m) log2

(
n−m
m+ 1

)]

(4.4)

From (4.3), we have dm ≤ 1
n−m log2

(
n
m

)
+ 1

n−m or 1
n−m log2

(
n
m

)
≥ dm − 1

n−m .

Using this in (4.4), we have

dm+1 ≥ dm −
1

n−m +
fm

n−m where fm =
1

n−m− 1
log2

[(
n

m

)(
n−m
m+ 1

)n−m]

(4.5)

Therefore, to show that dm+1 > dm, we need to establish that fm > 1 for

0 ≤ m ≤ n−2. Expressing fm as: fm = 1
n−m−1

log2(cm), where cm =
(
n
m

) (
n−m
m+1

)n−m,

we need to show that cm > 2n−m−1 for 0 ≤ m ≤ n − 2. We observe that for

m = n− 2, cn−2 = 2n
n−1

> 2 = 2n−m−1. Next,

cm
cm+1

=

[
(m+ 2)(n−m)

(m+ 1)(n−m− 1)

](n−m−1)

>

(
n−m

n−m− 1

)n−m−1

=

(
1 +

1

n−m− 1

)n−m−1

≥ 1 +
n−m− 1

n−m− 1
= 2 (4.6)
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Since cm > 2cm+1 and cn−2 > 2, we have cm > 2n−m−1 for 0 ≤ m ≤ n − 2.

Therefore, fm > 1 for every 0 ≤ m ≤ n−2. This completes the proof of dm+1 > dm

for 0 ≤ m ≤ n− 2. Therefore, from (4.2), we conclude that it is necessary to have

d ≥ ddn−1e = dlog2 ne.

We now show that d ≥ dlog2 ne is also sufficient. Two zero-assignment pat-

terns with different values of m are always mapped to different output patterns,

because the routing bits of the top m packets in the output pattern are 1. For a

given m, the
(
n
m

)
2dm zero-assignment patterns are mapped to uniquely identifi-

able output patterns by choosing different p̄m+1, · · · , p̄n−1 sequences for each of

them. This can be done since d ≥ dlog2 ne. Having uniquely mapped all (1 + 2d)n

zero-assignment patterns, rest of the 2n(d+1) − (1 + 2d)n assignment patterns can

be mapped in a one-to-one fashion to the remaining output patterns. Therefore,

we have dmin = dlog2 ne. ‖

The n-QC2 has an undesirable constraint that each input packet must have

a minimum number of qubits which is dependent on n. Also, for the construction

of the n-GQC given in this paper, we require a quantum concentrator in which

there is no restriction on the data bits contained in the input packets, since we

need to use the output of one quantum concentrator as an input to another. This

cannot be done using an n-QC2 since the output assignment pattern of an n-QC2

is not necessarily an allowable input assignment for another n-QC2. Therefore,

we require a quantum concentrator which concentrates arbitrary assignment pat-

terns and also sends the routing bits along with input packets. A certain number
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of auxiliary qubits initialized to state |0〉 are needed to ensure reversibility in such

a concentrator. As an example, when n = 2 and d = 1, we can design such a con-

centrator with one auxiliary qubit, using the following quantum transformation:

|(0, p0)(0, p1)〉 |x〉aux → |(0, p0)(0, p1)〉 |x〉aux

|(1, p0)(1, p1)〉 |x〉aux → |(1, p0)(1, p1)〉 |x〉aux

|(0, p0)(1, p1)〉 |0〉aux → |(1, p1)(0, p0)〉 |p0 ⊕ p1〉aux

|(0, p0)(1, p1)〉 |1〉aux → |(0, p0)(1, p1)〉 |p0 ⊕ p1〉aux

|(1, p0)(0, p1)〉 |0〉aux → |(1, p0)(0, p1)〉 |p0 ⊕ p1〉aux

|(1, p0)(0, p1)〉 |1〉aux → |(0, p1)(1, p0)〉 |p0 ⊕ p1〉aux (4.7)

This transformation works as desired when the auxiliary qubit is initialized to

state |0〉. It is seen that we trivially have one-to-one mapping when r0 = r1. For

r0 6= r1, we list all the input and output patterns in Table 4.3. For a given output

pattern |(1, q0)(0, q1)〉, there are two possible input patterns: |(0, q1), (1, q0)〉 and

|(1, q0), (0, q1)〉. These two input patterns are differentiated at the output using the

auxiliary qubit. Therefore, we have reversibility. Next, we define such a quantum

concentrator for the general case.

Definition 4.6. An n×n quantum network is called an n-quantum concentrator (n-

QC) if, for each 0 ≤ m ≤ n, and any subsequence i0, i1, · · · , im−1 of 0, 1, · · · , n−1, it

transforms an assignment pattern
∣∣P̄
〉

= | (r0, p̄0) (r1, p̄1) · · · (rn−1, p̄n−1)〉 in which

ri0 , ri1 , · · · , rim−1 are 1 and rest of the routing bits are 0, and a set of da auxiliary
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Input Output

r0 p0 r1 p1 x r0 p0 r1 p1 x

0 0 1 0 0 1 0 0 0 0

0 0 1 1 0 1 1 0 0 1

0 1 1 0 0 1 0 0 1 1

0 1 1 1 0 1 1 0 1 0

1 0 0 0 0 1 0 0 0 1

1 0 0 1 0 1 0 0 1 0

1 1 0 0 0 1 1 0 0 0

1 1 0 1 0 1 1 0 1 1

(a)

Input Output

r0 p0 r1 p1 x r0 p0 r1 p1 x

0 0 1 0 1 0 0 1 0 1

0 0 1 1 1 0 0 1 1 0

0 1 1 0 1 0 1 1 0 0

0 1 1 1 1 0 1 1 1 1

1 0 0 0 1 0 0 1 0 0

1 0 0 1 1 0 1 1 0 1

1 1 0 0 1 0 0 1 1 1

1 1 0 1 1 0 1 1 1 0

(b)

Table 4.3: Table for transformation in (4.7) when r0 6= r1, concentration occurs for

input auxiliary qubit |x〉 = |0〉: (a) Input |x〉 = |0〉; (b) Input |x〉 = |1〉.

qubits initialized to state |0̄〉, as:

∣∣P̄
〉
|0̄〉aux

n-QC−−−→
∣∣QC(P̄ )

〉 ∣∣Φ(P̄ )
〉
aux

=
∣∣ (1, p̄j0)︸ ︷︷ ︸

output 0

· · ·
(
1, p̄jm−1

)
︸ ︷︷ ︸
output m−1

(0, p̄k0)︸ ︷︷ ︸
output m

· · ·
(
0, p̄kn−m−1

)
︸ ︷︷ ︸

output n−1

〉 ∣∣Φ(P̄ )
〉
aux

(4.8)

where j0, j1, · · · , jm−1 is a permutation of the indices i0, i1, · · · , im−1 and k0, · · · ,

kn−m−1 is a permutation of the rest of the indices in 0, 1, · · · , n − 1. These per-

mutations are fixed for all the assignment patterns having the same sequence of

routing bits. The output state
∣∣Φ(P̄ )

〉
aux

of the auxiliary qubits is a da-bit binary

string such that for any two input assignment patterns
∣∣P̄1

〉
and

∣∣P̄2

〉
for which

∣∣QC(P̄1)
〉

=
∣∣QC(P̄2)

〉
, we have

∣∣Φ(P̄1)
〉
aux
6=
∣∣Φ(P̄2)

〉
aux

.

Also, due to linearity, a quantum assignment
∑M−1

k=0 βk
∣∣P̄k
〉

is transformed
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as (
M−1∑

k=0

βk
∣∣P̄k
〉
)
|0̄〉aux

n-QC−−−→
M−1∑

k=0

βk
∣∣QC(P̄k)

〉 ∣∣Φ(P̄k)
〉
aux

(4.9)

i.e., all the assignment patterns in the quantum assignment are individually con-

centrated in parallel. ‖

Theorem 4.2. At least dmin
a auxiliary qubits are needed in order to realize an n-QC, that

is da ≥ dmin
a , where

dmin
a =

⌈
log2

(
n⌈
n
2

⌉
)⌉

(4.10)

Proof: Using similar arguments as given in the proof of Theorem 4.1, we ob-

serve that there are
(
n
m

)
assignment patterns which are mapped to a fixed output

pattern |(1, p̄0) · · · (1, p̄m−1) (0, p̄m) · · · (0, p̄n−1)〉, where 0 ≤ m ≤ n. The output

state of the auxiliary qubits should be different for each of these patterns, there-

fore, we require that da ≥
⌈
log2

(
n
m

)⌉
for every 0 ≤ m ≤ n − 1. Since

(
n
m

)
is

maximum for m =
⌈
n
2

⌉
, we have da ≥

⌈
log2

(
n

dn
2 e
)⌉

.

To show that da ≥
⌈
log2

(
n

dn
2 e
)⌉

is also sufficient, we observe that two input

assignment patterns with different values of m are always mapped to different

output patterns, which are uniquely identifiable by the output routing bits. For

any fixed m, we have already shown that the output patterns can be uniquely

identified by the auxiliary qubits if da ≥
⌈
log2

(
n

dn
2 e
)⌉

. Having uniquely mapped

the 2n(d+1) input patterns which have all of the auxiliary qubits set to |0〉, we can

map the remaining (2da − 1)2n(d+1) possible input patterns in which initial state

of auxiliary qubits is different from |0〉, to the remaining (2da − 1)2n(d+1) output
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patterns in a one-to-one fashion in any order. Therefore, dmin
a =

⌈
log2

(
n

dn
2 e
)⌉

. ‖

Observe that
⌈
log2

(
n

dn
2 e
)⌉

is O(n), therefore an n-QC requires at least O(n)

auxiliary qubits. We can construct an n-QC from an n-QC1 using exactly n auxil-

iary qubits as shown in Figure 4.1. The auxiliary qubits are labeled as c0, · · · , cn−1

and are initialized to |0〉. Using controlled-not gates, copies of the routing qubits

are created on the auxiliary qubits. These auxiliary qubits are then used as rout-

ing qubits in the n-QC1. The input packets to the n-QC along with their routing

qubits form the input packets for the n-QC1. At the output side, the routing

qubit outputs of the n-QC1 become the auxiliary outputs for the n-QC. It can be

verified that the overall circuit is an n-QC, and for an input assignment pattern

∣∣P̄
〉

= |(r0, p̄0) · · · (rn−1, p̄n−1)〉 in which ri0 , ri1 , · · · , rim−1 are 1, its concentration

operation can be expressed as:

∣∣P̄
〉
|0̄〉aux

c-not−−→ | (r0, (r0, p̄0))︸ ︷︷ ︸
input 0

, · · · , (rn−1, (rn−1, p̄n−1))︸ ︷︷ ︸
input n−1

〉 n-QC1−−−→

| (r0, (rj0 , p̄j0))︸ ︷︷ ︸
output 0

· · ·
(
rm−1, (rjm−1 , p̄jm−1)

)
︸ ︷︷ ︸

output m−1

(rm, (rk0 , p̄k0))︸ ︷︷ ︸
output m

· · ·
(
rn−1, (rkn−m−1 , p̄kn−m−1)

)
︸ ︷︷ ︸

output n−1

〉

−→ | (rj0 , p̄j0)︸ ︷︷ ︸
output 0

· · · (rjm−1 , p̄jm−1)︸ ︷︷ ︸
output m−1

(rk0 , p̄k0)︸ ︷︷ ︸
output m

· · · (rkn−m−1 , p̄kn−m−1)︸ ︷︷ ︸
output n−1

〉 |r0, · · · , rn−1〉aux

(4.11)

where indices j0, · · · , jm−1 and k0, · · · , kn−m−1 are as defined for n-QC1. This is

clearly an n-QC transformation. We give a recursive construction of n-QC using

O(n log n) auxiliary qubits in Section 4.2. Also, since the n-QC operation is de-
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auxiliary

n-QC1

I/P

n − 1

O/P

n − 1

I/P

0 0

O/P

|0〉

|0〉

(r0, p̄0)

(rn−1, p̄n−1)

cn−1

c0

n-QC
outputs

n-QC

outputs

Figure 4.1: Construction of n-QC using an n-QC1.

fined as a permutation of the packets in an assignment pattern, it is easy to verify

that the n-QC routes arbitrary quantum states on any m of the inputs to its top

m outputs [68]. This can be accomplished by setting the routing qubits on the

inputs which have quantum states to be concentrated to |1〉.

4.2 Quantum Concentrator Construction

We present an n-QC (n being a power of 2) using the classical n-concentrator

given by Lee and Oruç [14] [41] as a starting point. A key component of the classi-

cal concentrator is a balancer network, which, when combined with an odd-even

splitter network, is used to divide the packets in an assignment pattern into two

equal sets. This balancer network, as presented in [14] [41], however, requires

both forward and backward propagation of routing bits, which is not suitable

for implementation using quantum gates. In this section, we first present a re-

cursive quantum balancer network which is designed using controlled-not gates

and does not require backward data propagation. This quantum balancer is used
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to obtain a quantum odd-even splitter which divides the packets with routing

bits of 1 in an assignment pattern equally between its odd and even numbered

outputs. The packets on odd and even sets of outputs are then recursively con-

centrated by two n/2-QCs and are finally merged using a shuffle stage to obtain

an n-QC. In what follows, we give a detailed description of this concentrator and

its key building blocks.

4.2.1 Quantum Balancer

An n-quantum balancer, denoted as n-QB, is an n-qubit quantum gate which

transforms a computational basis vector or bit-string |b0b1 · · · bn−1〉, in which m

bits are 1, to an output bit-string with bm/2c of these bits converted to 0 and

dm/2e left unchanged, where 1 ≤ m ≤ n. The bits bi which are 0, can be converted

to either 0 or 1 so that the overall mapping is reversible, i.e., there is a one-to-one

mapping between the 2n input and output bit-strings. We show by induction that

it is possible to construct an n-QB.

For n = 1, an identity gate works as a 1-QB. For n = 2, the following trans-

form, which is a controlled-not gate, works as a 2-QB: |00〉 → |00〉, |01〉 → |01〉,

|10〉 → |11〉, |11〉 → |10〉. For n > 2, suppose that we have a reversible k-QB

for every k < n. Choose non-zero n1 and n2 such that n1 + n2 = n. The first n1

qubits are balanced using an n1-QB and the rest of the qubits are balanced us-

ing an n2-QB. Suppose that there are m1 ones in string b0 · · · bn1−1 and m2 ones
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in bn1 · · · bn−1. We complement every output of the n2-QB if m1 is odd, other-

wise we leave them unchanged. To see that we now have a n-QB: if m1 is even,

bm1/2c+bm2/2c = b(m1 +m2)/2c of the ones are converted to zeros. Ifm1 is odd,

bm1/2c + dm2/2e = b(m1 +m2)/2c of the ones are converted to zeros. Next, we

verify that this network is reversible. Since n1-QB is reversible, we can uniquely

determine b0 · · · bn1−1 from the top n1 outputs, from which we can obtain m1. We

complement the bottom n2 output bits if m1 is odd, otherwise we leave them un-

changed. Hence, we can uniquely determine bn1 · · · bn−1 using the resulting bits,

since n2-QB is reversible. Therefore, we can construct an n-QB for any n ≥ 1

using the procedure that has been described.

For n being a power of 2, i.e., n = 2p, we can recursively construct an

O(log n) depth n-QB by choosing n1 = n2 = n/2. We present a quantum circuit

realization of the n-QB using this procedure in Figure 4.2. We place an additional

requirement on the n-QB that its last or bottom-most output bit is always equal to

the parity of the input string |b1b2 · · · bn〉, while satisfying the functionality of an

n-QB given in the above definition. This network consists of two similar n/2-QB

gates followed by an (n/2 + 1)-input controlled-not gate which complements the

output bits of the bottom n/2-QB when the parity output of the top n/2-QB is 1,

otherwise it does not affect any of the outputs. Next, we show that this network

is an n-QB.

Theorem 4.3. The recursive network shown in Figure 4.2(a) is an n-QB (for n being a

power of 2, i.e., n = 2p) in which the last output is the parity of the input bits.
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is the parity)

n/2-QB

n/2-QB

(last output

is the parity)
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Figure 4.2: Quantum balancer: (a) An n-quantum balancer in which the last out-
put bit is 1 if the inputs have odd parity and is 0 if the input bits have even parity;
(b) 8-quantum balancer; (c) Inverse 8-QB.

Proof: For p = 1, input sequences 00, 01, 10 and 11 are mapped to 00, 01,

11 and 10 respectively by a controlled-not gate, therefore it is a 2-QB and it also

satisfies the parity requirement. For p > 1, since the (n/2 + 1)-input controlled-

not gate complements all the outputs of the lower n/2-QB when the last output

of upper n/2-QB is 1, it is sufficient to show that the bottom-most or last output

bit of n-QB represents the parity of its input bits. Suppose that 2p-QB satisfies this
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condition. Assuming that m1 and m2 are the number of input bits that are 1 in

the upper and lower halves of a 2p+1-QB respectively, we have the following four

cases for the 2p+1-network.

1. Both m1 and m2 are even: In this case, the (2p + 1)-input controlled-not gate

is not active since the parity output of the top 2p-QB is 0. The output parity

bit is 0 since the parity output of bottom 2p-QB is 0.

2. m1 even and m2 odd: Again, the controlled-not gate is not active and the

output parity bit is 1 since the parity output of lower 2p-QB is 1.

3. m1 odd and m2 even: In this case, the controlled-not gate is active since the

parity output of top 2p-QB is 1. It complements all the output bits of the

bottom 2p-QB. Thus, the output parity bit becomes 1.

4. Both m1 and m2 odd: In this case also, the controlled-not gate complements

all the output bits of the bottom 2p-QB. Thus, the output parity bit becomes

0.

Therefore, the parity requirement is satisfied for the 2p+1-QB, and this com-

pletes the proof. ‖

It can be easily verified that the mirror image of the n-QB, as shown in Fig-

ure 4.2(c), restores the output qubits of the quantum balancer to their initial state.

This network is needed for restoring some of the auxiliary qubits used in the

quantum odd-even splitter to their initial state as explained in the next section.
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Figure 4.3: Quantum odd-even splitter: (a) 8-input quantum odd-even splitter;
(b) Splitter switch (SWi).

4.2.2 Quantum Odd-Even Splitter

An n-quantum odd-even splitter is an n × n switching network, which per-

mutes an input assignment pattern in which m packets have routing bits of 1,

such that dm/2e of these packets appear on the even outputs and remaining ap-

pear on the odd outputs, where 1 ≤ m ≤ n−1. A set of auxiliary qubits initialized

to |0̄〉 are used to ensure reversibility.
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Our construction of an 8-input odd-even splitter is shown in Figure 4.3.

The n-quantum odd-even splitter network consists of n/2 splitter switches, SW0,

SW1, · · · , SWn/2−1 driven by control qubits c0, c1, · · · , cn/2−1, respectively. For a

given assignment pattern, switch SWi is said to be balanced if it has packets on

both of its inputs or no packets at all, i.e., r2i = r2i+1. The address and data

fields of the packets in the assignment pattern are collectively represented as p̄i

in the figure. Using the n/2-QB on qubits c0, c1, · · · , cn/2−1, half of the packets

at the unbalanced switches are routed to the even numbered outputs and the

other half are routed to the odd numbered outputs of quantum odd-even splitter.

The packets on the balanced switches are always equally distributed between the

odd and even numbered outputs, irrespective of the switch settings. Therefore,

the quantum odd-even splitter equally distributes the input packets between the

odd and even outputs. A brief description of the quantum circuit follows.

Using two controlled-not gates, qubit ci is set in state |1〉 if switch SWi is

unbalanced otherwise it is set in state |0〉. The n/2-QB balances the control qubits

ci, i = 0, · · · , n/2 − 1, which control the splitter switches. The quantum circuit

for a splitter switch is shown in Figure 4.3(b). This switch uses one extra qubit si,

called switching qubit, which was not shown in Figure 4.3(a). By setting this qubit

appropriately, and using switch gates as shown in the figure, the input packet on

an unbalanced switch is routed to the upper (or even) output when the control

qubit ci is |1〉, otherwise it is routed to the lower (or odd) output. A balanced

splitter switch may be set either way without affecting the splitting property of
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Figure 4.4: Recursive construction of n-QC.

the odd-even splitter.

The quantum gates and the inverse n/2-QB shown on the right side of

switches SWi in Figure 4.3(a) are used for restoring qubits ci to |0〉. Even though

the routing bits may have been switched by the splitter switches along with the

input packets, they would still maintain their balanced or unbalanced status.

Therefore, these qubits can be used to restore the control qubits ci to their original

state |0〉 as shown in the figure, so that decoherence on qubits ci does not have

any effect on the performance of the network. Only the switching qubits si have

not been restored to their initial state.

4.2.3 Construction of n-QC

We can recursively realize an n-QC by using an n-quantum odd-even split-

ter and two n/2-QCs as shown in Figure 4.4. Using a Banyan connection pattern,

the even outputs of the odd-even splitter are connected to the upper n/2-QC and

the odd outputs are connected to the lower n/2-QC. The outputs of n/2-QCs are
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connected alternately to the final n outputs using a shuffle connection pattern.

Theorem 4.4. The network shown in Figure 4.4 is an n-QC.

Proof: For n = 2, a splitter switch in which the control input is set to |1〉,

works as a 2-QC. For n = 2p, where p > 1, consider an input assignment pattern

in which m packets have routing bits of 1, where 0 ≤ m ≤ n. The odd-even split-

ter transforms it to an assignment pattern in which dm/2e of these packets are at

the inputs of the upper n/2-QC and bm/2c are at the inputs of the lower n/2-QC.

The n/2-QCs concentrate their input assignment patterns and these packets are

concentrated at their top dm/2e and bm/2c outputs respectively. These packets

are routed to the top m outputs of the n-QC using the shuffle connection. There-

fore by induction, the packets having routing bits of 1 are concentrated to the top

m outputs and the packets with routing bits of 0 are sent to the bottom n − m

outputs.

We now show that when an n-QC maps the packets in two or more input

assignment patterns with the same number of coinciding routing bits of 1, it ap-

plies same permutation to all of them. Since the sequence of routing bits is fixed

for all assignment patterns, the settings of the splitter switches in the odd-even

splitter are fixed, therefore, the sequences of routing bits at the inputs of the up-

per and lower n/2-QCs are also fixed. This inductively implies that the setting of

every splitter switch in the network is fixed. Consequently, same permutation is

applied to all assignment patterns having the same sequence of routing bits.
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Next, we show that if two different assignment patterns
∣∣P̄1

〉
and

∣∣P̄2

〉
are

mapped to the same output pattern
∣∣QC(P̄1)

〉
=
∣∣QC(P̄2)

〉
, then

∣∣φ(P̄1)
〉
aux
6=

∣∣φ(P̄2)
〉
aux

. Since the control qubits are restored to their initial state, only the

switching qubits constitute as auxiliary qubits. We need to show that the output

state of at least one of the switching qubits is different for these two input assign-

ment patterns. Clearly,
∣∣P̄1

〉
and

∣∣P̄2

〉
must have the same number of packets with

routing bits of 1. Also, since any two assignment patterns with coinciding rout-

ing bits of 1 are concentrated using the same permutation, there must be at least

one input at which the routing bits in
∣∣P̄1

〉
and

∣∣P̄2

〉
are different. Therefore, this

input would be connected to one of the top m outputs for one pattern and one

of the bottom n −m outputs for the other pattern. Hence, the overall n × n per-

mutations applied to concentrate
∣∣P̄1

〉
and

∣∣P̄2

〉
must be different. The topology

of the n-QC is easily seen to provide a unique path between each input and each

output. Therefore, for the two permutations to be different, at least one of the

2× 2 splitter switches must be set in through state for one of the assignment pat-

terns and in cross state for the other. Consequently, the output states of the two

assignments are different when the switching qubits si are taken into account and

we have
∣∣φ(P̄1)

〉
aux
6=
∣∣φ(P̄2)

〉
aux

. ‖

To illustrate the concentration operation done by n-QC, we give an example

for n = 4. An expanded quantum circuit for the 4-QC is shown in Figure 4.5. The

input quantum assignment pattern has three classical packets A, B and C on

inputs 1, 2 and 3 respectively. Input 0 has no packet, i.e., r0 = 0. The address
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Figure 4.5: 4-QC quantum circuit.

and data fields of this input are denoted as x in the figure. Eight auxiliary qubits

labeled c0, · · · , c3 and s0, · · · , s3 are used. All of them are initialized to state |0〉.

For clarity, we have not used the ket notation in the figure. The transformation

done by the 4-QC in this example is expressed as:

|(0, x)(1, A), (1, B), (1, C)〉 |0̄〉aux
4-QC−−−→

|(1, A)(1, C), (1, B), (0, x)〉 |0c00c10c20c31s00s10s21s3〉aux

It is seen that the input packets are concentrated on the top three outputs of the

4-QC. Control qubits ci are restored to |0〉, whereas some of the switching qubits

si are not restored.

In the next section, we modify the n-QC given in this section to design an

order-preserving quantum concentrator. We show later in Chapter 5 that if we

use the order-preserving quantum concentrator to design an n-GQC then it is

easier to characterize the routing of contending assignment patterns through the
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Figure 4.6: Order-preserving quantum concentrator: (a) Splitter switch used in
the order preserving n-splitter; (b) Order preserving n-quantum concentrator.

n-GQC. This concentrator is also used to construct the priority quantum concen-

trator given in Chapter 6.

4.3 Order-preserving Quantum Concentrator

An n-QC is called an order-preserving n-quantum concentrator (n-OPQC) if it

concentrates the input packets in an assignment pattern to the top outputs while

maintaining the order in which they appear on the inputs. In other words, when

the sequence of indices j0, j1, · · · , jm−1 is the same as the sequence i0, i1, · · · , im−1

in the n-QC definition given in Definition 4.6, the n-QC is called an n-OPQC. For
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an n-OPQC, the output pattern given in Definition 4.6 becomes

∣∣ (1, p̄i0)︸ ︷︷ ︸
output 0

· · ·
(
1, p̄im−1

)
︸ ︷︷ ︸
output m−1

(0, p̄k0)︸ ︷︷ ︸
output m

· · ·
(
0, p̄kn−m−1

)
︸ ︷︷ ︸

output n−1

〉
(4.12)

We can construct an n-OPQC using the n-QC design given in Section 4.2.3

by modifying the quantum odd-even splitter stage such that, for 0 ≤ k ≤ m,

packet (1, pik) is sent to the top output of its splitter switch if k is even, otherwise

it is send to the bottom output. We call this odd-even splitter an order-preserving

n-splitter. It can be constructed by introducing a small modification in the splitter

switches of the n-quantum odd even splitter. The new splitter switch routes its

input packets in the following way:

• If the switch is unbalanced, then it works in exactly the same way as the

n-QC splitter switch.

• If the switch is balanced and both the input packets have their routing bits

set to 1, then it works in through state if its control input is 0, otherwise it

works in cross state. A balanced splitter switch in which both input packets

have routing bits of 0 can be set in either state.

The quantum circuit for this splitter switch is shown in Figure 4.6(a). To

show that the resulting odd-even splitter is an order-preserving n-splitter, we

first observe the following for our n-QB construction:
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Theorem 4.5. The n-QB (where n = 2p) given in Figure 4.2 transforms an input string

|b0, · · · , bn−1〉 such that

1. Bit b0 is not modified.

2. For 1 ≤ k ≤ n − 1, bit bk is complemented if string b0, · · · , bk−1 contain odd

number of ones otherwise it is left unchanged. ‖

Proof: We can prove this inductively using Figure 4.2(a). For n = 2, controlled-

not gate transformation |00〉 → |00〉, |01〉 → |01〉, |10〉 → |11〉, |00〉 → |00〉 satisfies

above. For n = 2p+1, we assume that the two 2p-QB transformations satisfy the

above property. Since the top 2p outputs of the 2p+1-QB are the same as those of

the upper 2p-QB, they satisfy the above property. Bits b2p , · · · , b2p+1−1 are balanced

by the bottom 2p-QB, with bit b2p serving as b0. Since these outputs are comple-

mented by the controlled-not gate when string b0, · · · , b2p−1 has odd number of

ones and left unchanged otherwise, the property given in the theorem is satisfied

for the bottom 2p outputs of the 2p+1-QB as well. ‖

We now have the following:

Theorem 4.6. The odd-even splitter of Figure 4.3(a) in which the modified splitter switches

of Figure 4.6(a) are used, works as an order preserving n-splitter.

Proof: Splitter switch SWbi0/2c, which has input packet (1, pi0) is either the

topmost splitter switch (when i0 = 0 or 1), or is preceded by bi0/2c balanced

switches having packets with routing qubit set to 0. Therefore, using the above
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theorem, the control input for this switch is not modified by the n-QB. If SWbi0/2c

is balanced then its control input is 0 and it works in through state. In this case, i0

is the top input, and therefore, packet (1, pi0) is sent to the top output of SWbi0/2c.

If SWbi0/2c is unbalanced then its control input is 1 and (1, pi0) is sent to the top

output.

For an even k, where k > 0, if packet (1, pik) is on the top input of its splitter

switch SWbik/2c, then this switch is preceded by an even number of unbalanced

switches. Consequently, using Theorem 4.5, its control input is not modified by

the n-QB. Using similar arguments as given above for SWbi0/2c, we observe that

(1, pik) is routed to the top output of switch SWbik/2c. If (1, pik) is on the bottom

input of SWbik/2c, then this switch is preceded by an even number of unbalanced

switches if it is unbalanced otherwise it is preceded by an odd number of such

switches. In either case, the control input of SWbik/2c is 1, therefore, (1, pik) is sent

to the top output.

For an odd k, if (1, pik) is on the top input of its splitter switch SWbik/2c, then

this switch is preceded by an odd number of unbalanced switches. In this case,

the control input is complemented by n-QB and it is 1 if SWbik/2c is balanced and

0 otherwise. Therefore, (1, pik) is sent to the bottom output. If packet (1, pik) is on

bottom input, SWbik/2c is preceded by an even number of unbalanced switches if

it is balanced, otherwise it is preceded by an odd number of unbalanced switches.

Therefore, the control input to switch SWbik/2c is 0 and (1, pik) is routed to the

bottom output. This completes the proof of the fact that the new odd-even splitter
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is an order-preserving n-splitter. ‖

Theorem 4.7. The recursive network shown in Figure 4.6(b) is an n-OPQC.

Proof: The proof is by induction. For n = 2, an order-preserving 2-splitter

works as a 2-OPQC. For n = 2p, where p > 1, the order-preserving n-splitter

routes an assignment pattern
∣∣P̄
〉

= | (r0, p̄0) (r1, p̄1) · · · (rn−1, p̄n−1)〉 in which ri0 , ri1 ,

· · · , rim−1 are |1〉, such that packets (1, pik) with even k are routed to the upper

n/2-OPQC and appear at its inputs in increasing order of k from top to bot-

tom. Packets (1, pik) with odd k are sent to the bottom n/2-OPQC and appear

at its inputs in increasing order of k. These packets are concentrated to the top

outputs of the n/2-OPQCs in the same order in which they appear on their in-

puts. Therefore, the packets on the top dm/2e outputs of the upper n/2-OPQC are

(1, pi0), (1, pi2), · · · , (1, pi2(dm/2e−1)
) and the output packets on the top bm/2c pack-

ets of the lower n/2-OPQC are (1, pi1), (1, pi3), · · · , (1, pi2bm/2c+1). The shuffle stage

routes these packets alternately to the top m outputs, therefore, the packets on

the top m outputs are (1, pi0), (1, pi1), · · · , (1, pim−1) in that order. This proves that

the overall network is an n-OPQC. ‖

In the next section, we give a construction for n-QC2. This network is ob-

tained by modifying the n-QC to restore all auxiliary qubits to their initial states

using the data parts of the packet with routing bits of 0.
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i .

4.4 Quantum Concentrator of Second Type (n-QC2)

In Theorem 4.1, given in Section 4.1, we showed that we can construct an n-

QC2 for zero-concentration set ζ0 if the data part of each input packet has at least

dmin = dlog2 ne bits. For n = 2p, we have dmin = p, which is equal to the number of

stages in the n-QC construction given in Section 4.2.3. Assuming that each packet

has at least p data bits, we show that an n-QC2 for the zero-concentration set ζ0

can be realized by modifying the splitter switches used in the n-QC.

The quantum circuit for the modified splitter switch SW j
i , which is the ith

splitter switch in the jth stage of the network, is shown in Figure 4.7, where 0 ≤

i ≤ n
2
− 1 and 0 ≤ j ≤ p − 1. Similar to the splitter switches used in n-QC, SW j

i

works in through state when it is balanced and the switching qubit sji remains in

state |0〉. When SW j
i is unbalanced, we restore sji to |0〉 by swapping it with the

jth data bit of the packet with routing bit of 0. Denoting the jth data bits of the

two input packets as dj2i and dj2i+1 respectively, the functionality of SW j
i , when it
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is unbalanced, is described as follows:

Case 1: When (rj2i, d
j
2i) = (0, 0) or (rj2i+1, d

j
2i+1) = (0, 0): This always holds for

zero-assignment patterns because the jth data bit of the packet with routing bit

of 0 is not modified in any of the previous stages. In this case, the splitter switch

works similar to the n-QC splitter switch. Only the quantum gates in stages a, c

and d of the circuit operate. If sji is 1 after stage b, i.e., the switch is set in cross

state, then sji is swapped with the jth data bit of the packet with routing bit of 0, in

stage d. Therefore, sji is restored to |0〉. The quantum gates in stages a and d work

only in Case 1 and not in the next case in which the input packet with routing bit

of 0 does not have its jth data bit set to 0.

Case 2: When (rj2i, d
j
2i) = (0, 1) or (rj2i+1, d

j
2i+1) = (0, 1): This may happen

only those assignment patterns which are not in ζ0. In this case when cji is 0/1,

we send the packet with routing bit of 1 to the bottom/top output and the packet

with routing bit of 0 to the top/bottom output. The jth data bit of the packet

having routing bit of 0 is reset to 0. All of this is accomplished by stages b and c.

Finally, stage e resets sji to |0〉 if it was set to 1 in stage b. The quantum gates in

stages b and e work only in Case 2 and not in Case 1.

We now have the following:

Theorem 4.8. An n-QC which uses splitter switches SW j
i shown in Figure 4.7, for

0 ≤ i ≤ n
2
− 1 and 0 ≤ j ≤ p, is an n-QC2 for the zero-concentration set ζ0. ‖

Proof: Since switching qubits are always restored to state |0〉, all the auxiliary
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qubits are restored to their initial state of |0〉 for every assignment pattern. Also,

for a zero-assignment pattern, the data part of any packet having a routing bit

of 1 is not altered and all such packets are concentrated to the top outputs in the

same way as in n-QC.

For a given zero-assignment pattern
∣∣P̄
〉

having m packets, we can express

the output pattern
∣∣QC2(P̄ )

〉
as
∣∣QC2(P̄ )m, (0, p̄

′
m), · · · , (0, p̄′n−1)

〉
, whereQC2(P̄ )m

denotes the packets on top m outputs, each having a routing bit of 1. An input

packet having a routing bit of 0 is sent to one of the bottom n−m outputs, and its

jth data bit at the output of the network is 1 if the splitter switch in its path at the

jth stage of the network was set in a cross state, otherwise, it is 0, where 0 ≤ j ≤

p−1. Therefore, the first p bits of the data part of an output packet (0, p̄′k),m ≤ k ≤

n − 1, uniquely identify its input address. String (0, p̄′m), · · · , (0, p̄′n−1) uniquely

identifies all of the inputs which have packets with routing bits of 0, consequently,

this string is unique for all assignment patterns having a fixed sequence of routing

bits. As we have shown earlier, two zero-assignment patterns
∣∣P̄1

〉
and

∣∣P̄2

〉
hav-

ingm packets for whichQC2(P̄1)m = QC2(P̄2)m must have different sequences of

routing bits, which implies that string (0, p̄′m), · · · , (0, p̄′n−1) is different for these

patterns. Therefore, for any
∣∣P̄1

〉
,
∣∣P̄2

〉
∈ ζ0, we have

∣∣QC2(P̄1)
〉
6=
∣∣QC2(P̄2)

〉
,

which completes the proof. ‖
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4.5 Complexity Analysis

In this section, we compute the complexities of our n-QC design in terms of

the total number of quantum gates and the gate level depth. Representing these

complexities as Cqc(n) and Dqc(n) respectively, we have

Cqc(n) = 2Cqc(n/2) + Csplit(n) (4.13)

Dqc(n) = Dqc(n/2) +Dsplit(n) (4.14)

whereCsplit(n) andDsplit(n) are the corresponding complexities for an n-quantum

odd-even splitter. Since an n-QB has n− 1 controlled-not gates, and each splitter

switch has a constant number of controlled-not gates, Csplit(n) is O(n). Also, the

depth of the n-quantum odd-even splitter is mainly determined by the depth of

n-QB, which is equal to log2 n. Consequently, Dsplit(n) is O(log n). Thus, we have

Cqc(n) = O(n log n) and Dqc(n) = O(log2 n).
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Chapter 5: Quantum Multicasting

In this chapter, we give our work on the design of a quantum multicas-

ting network called generalized quantum connector (GQC) [3]. Since general

quantum states cannot be replicated, this network multicasts classical packets

contained in quantum states. Copying needed for such multicasting is obtained

using controlled-not gate based copier described in Section 2.1.4.2. The GQC is

constructed recursively using the n-QC given in Chapter 4. We also study the

behavior of GQC when routing contending assignment patterns. We start out by

defining this network in terms of how it transforms multicast assignment pat-

terns.

5.1 Generalized Quantum Connector

A classical switching network is called a generalized connector if it realizes

any non-contending multicast assignment pattern between its inputs and out-

puts. In this section, we extend this definition to the quantum domain for multi-

casting quantum packets. We go back to the notation introduced in Section 2.2.2.1

to represent quantum assignment patterns, in which an input classical packet is

represented by the 3-tuple (r, ā, p̄) where ā and p̄ are ma and md bit binary strings

respectively.
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An n-generalized quantum connector or n-GQC is an n × n quantum switch-

ing network which transforms any non-contending assignment pattern
∣∣P̄
〉

=

|(r0, ā0, d̄0), · · · , (rn−1, ān−1, d̄n−1)〉 such that, for i = 0, · · · , n− 1, if ri = 1 then the

data d̄i of the packet on input i is copied onto the data fields of all the outputs in

its fanout set. The routing bits on these outputs are set to 1. The routing bit of an

output to which no input packet is addressed is set to 0. Each output consists of

routing and data qubits only and does not contain address qubits. We represent

this transformation as:

∣∣P̄
〉
|0̄〉aux

n-GQC−−−−→
∣∣GQC(P̄ )

〉 ∣∣Ψ(P̄ )
〉

=
∣∣(r′0, d̄′0), · · · , (r′n−1, d̄

′
n−1)

〉 ∣∣Ψ(P̄ )
〉

(5.1)

The auxiliary qubits on the left hand side are needed for two reasons: to ensure

reversibility and to create copies of the input packets. The auxiliary and address

qubits are transformed to a state
∣∣Ψ(P̄ )

〉
such that, for any two different input

assignment patterns
∣∣P̄1

〉
and

∣∣P̄2

〉
for which

∣∣GQC(P̄1)
〉

=
∣∣GQC(P̄2)

〉
, we have

∣∣Ψ(P̄1)
〉
6=
∣∣Ψ(P̄2)

〉
. Again, due to the linearity of quantum networks, an n-GQC

simultaneously realizes all the assignment patterns in a non-contending quantum

assignment, i.e., a quantum assignment
∑M−1

k=0 βk
∣∣P̄k
〉
, in which every assignment

pattern is non-contending, is transformed as:

(
M−1∑

k=0

βk
∣∣P̄k
〉
)
|0̄〉aux

n-GQC−−−−→
M−1∑

k=0

βk
∣∣GQC(P̄k)

〉 ∣∣Ψ(P̄k)
〉

(5.2)

The address bits in our quantum packet representation denote the outputs
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of the n-GQC and they are not needed once the packets have reached their de-

sired n-GQC outputs. When the n-GQC is used as a part of a larger network and

the packets are to be routed further, extra address bits are needed. In our repre-

sentation, these address bits can be included in the data parts of the packets and

they are not discarded by the n-GQC.

Before giving our n-GQC construction, we describe the addressing schemes

that we use to represent address fields in quantum packets.

5.1.1 Addressing Schemes

As mentioned in Section 2.2.2.1, since there are 2n possible fanout sets for

each input in an n×n network, at least n bits are needed per input to address these

patterns. The most straightforward way to code these fanout sets is to allocate

n bits o0, o1, · · · , on−1 for each input, in which oj is set to 1 when that input is

paired with output j. In this paper, we use a (2n− 2)-bit addressing scheme that

is more suitable for quantum circuit realization of a multistage n-GQC. Both of

these addressing schemes were introduced in [14].

In the (2n − 2)-bit addressing scheme, where n is a power of 2, each input

uses a binary address of the form b00b01, b10b11b12b13, · · · , bp−1,0bp−1,1 · · · bp−1,n−1 to

specify the outputs it is paired with, where p = log2 n. The first two bits specify

whether the packet at an input is routed to the upper half or lower half or both

upper and lower halves of outputs or not routed at all. The next group of four
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Figure 5.1: Generalized quantum connector.

bits is then used to resolve the location of the same packet within each half of

the upper and lower halves of outputs, and this is inductively extended. More

specifically, for k = 0, · · · , p − 1, the outputs are divided into 2k+1 sets of size

2p−k−1 of the form i2p−k−1 ≤ j ≤ (i + 1)2p−k−1 − 1, where i = 0, · · · , 2k+1 − 1. For

a given input, an address bit bki is set to 1 when that input is paired with at least

one output in set i2p−k−1 ≤ j ≤ (i+ 1)2p−k−1 − 1.

We use the (2n − 2)-bit addressing scheme in this paper since it leads to a

simpler quantum circuit implementation. These bits collectively form the address

field āi in the representation of a quantum packet given in (2.31).

5.1.2 Construction of n-GQC

In this section, we present a multistage quantum network realization of n-

GQC, where n = 2p. It is a recursive network consisting of a distribution stage
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Figure 5.2: Copy node: (a) Quantum circuit for a copy node; (b) Division of the
address field at a copy node for the (2n− 2)-bit addressing scheme.

followed by two n-QCs and two n/2-GQCs, as shown in Figure 5.1. The distribu-

tion stage consists of n copy nodes, labeled 0 to n− 1 from top to bottom. Given

an input assignment pattern for the distribution stage, a copy node does one of

the following:

• It creates copies of its input packet on both of its outputs if the fanout set

of the packet contains at least one output from both top and bottom n/2

outputs of the n-GQC. For the (2n− 2)-bit addressing scheme, this happens

when b00b01 = 11.
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• It routes the input packet on its upper output if that input packet has at

least one output from the top n/2 outputs but no output from the bottom

n/2 outputs of the n-GQC in its fanout set. No packet is sent to the bottom

half of outputs in this case. This happens when b00b01 = 10.

• It routes the input packet on its lower output if that input packet has at

least one output from the bottom n/2 outputs but no output from the top

n/2 outputs of the n-GQC in its fanout set. No packet is sent to the top half

of outputs in this case. This happens when b00b01 = 01.

• It divides the remaining address bits between the two outputs using the

scheme shown in Figure 5.2(b). Consequently, the size of the address fields

in the packets received by the n/2-GQCs in Figure 5.1 is n − 2. The same

addressing scheme is recursively followed in the subsequent stages and a

copy node always uses the first two address bits of its input packet to de-

termine its settings, irrespective of its stage.

The address bits b00b01 are never set to 00 for an input packet with routing bit

of 1. Consequently, the routing and data bits of an input packet having b00b01 = 00

can be passed to either of the outputs without affecting the n-GQC functionality.

The quantum circuit implementation of a copy node is shown in Figure 5.2(a).

When b00 and b01 are 00, routing and address bits are passed to the upper output

by convention. When b00 and b01 are 10, the routing and data bits are passed to

the upper output. When they are 01, the routing and data bits of the input packet
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are sent to the lower output by swapping them with a blank quantum packet

initialized in state |0̄〉, using the switch gate as shown. When b00 and b01 are 11,

copies of the routing and data bits are created on both outputs of the copy node

by using the multi-qubit quantum copier gate. The remaining address bits are

divided between the two outputs as described earlier.

The routing and data qubits on an output to which no packet is sent are set

to |0〉. The top n/2 outputs of the two n-QCs are connected to two n/2-GQCs in

the next stage, as shown in Figure 5.1. The bottom n/2 outputs of the n-QCs are

dropped. We now have the following theorem:

Theorem 5.1. The network shown in Figure 5.1 is an n-GQC.

Proof: For a non-contending assignment pattern of size n, a maximum of n/2

packets are assigned to be routed to the top as well as to the bottom n/2 outputs

of the n-GQC. Therefore, the output of the distribution stage is an assignment

pattern of size 2n, which is a concatenation of two n-assignment patterns at the

inputs of the two n-QCs, each pattern having a maximum of n/2 packets with

routing bits of 1. These packets are concentrated on the top n/2 outputs of the

n-QCs. The bottom n/2 outputs of the n-QCs receive no packets. These outputs

are in state |0̄〉 and are dropped. Therefore, all the auxiliary qubits used in the

distribution stage are restored to their initial state. The two n/2-GQCs receive

non-contending assignment patterns of size n/2 each, which are inductively re-

alized. For n = 2, a copy node works as a 2-GQC. Consequently, the shown

quantum network is an n-GQC by induction, where n is a power of 2.
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An expanded version of n-GQC is shown in Figure 5.3 for n = 8. For sim-

plicity, we have not expanded the quantum concentrators in the figure. We de-

note the 2p−k-QCs in the kth concentrator stage of the n-GQC as QCk,0, QCk,1, · · · ,

QCk,2k+1−1 from top to bottom, where p = log2 n and 0 ≤ k ≤ p − 1. The set

of outputs of n-GQC which can be reached from QCk,j is represented as Ok,j =

{j2p−k−1, · · · , (j + 1)2p−k−1 − 1}, where 0 ≤ j ≤ 2k+1 − 1.

Figure 5.3 also illustrates how a quantum multicast assignment is realized

by the 8-GQC. The input quantum packets to the network are shown in the fig-

ure. We use subscripts to show the output addresses in a quantum packet. For

example, input 2 has quantum packet
√

3
2
B(1,2) + 1

2
C(1,2,6), where packet B having

fanout set {1, 2} is to be routed with probability 3/4 or packet C having fanout set

{1, 2, 6} is to be routed with probability 1/4. Inputs 1, 3, 4 and 7 do not have any

packets. The corresponding quantum assignment is a superposition of four as-

signment patterns with coefficients
√

3/
√

8,
√

3/
√

8, 1/
√

8 and 1/
√

8 respectively,

which are shown in the figure by grey vertical columns on the input side with co-

efficients on top. This quantum assignment is non-contending since all the four

assignment patterns are non-contending. The figure illustrates how the four as-

signment patterns are realized by the 8-GQC, by showing the output quantum

state at each stage of the network. On measurement, one of the four patterns

shown at the output will be observed with probabilities 3/8, 3/8, 1/8 and 1/8

respectively. Therefore, packets D, A and A reach outputs 0, 3 and 5 with prob-

ability 1. Packet B is observed on outputs 1 and 2 with probability 3/4. With
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probability 1/4, packet C is observed on these two outputs. The probability of

observing a packet on output 6 is 1/4 and on output 7 is 1/2.

We now count the number of auxiliary qubits used in the n-GQC. Every

copy node requires md + 1 auxiliary qubits as a blank packet, where md is the

number of bits in the data part of a packet. Consequently, the total number of

auxiliary qubits used in the distribution stages of the network is (md + 1)n log2 n.

Also, since an n-QC uses n
2

log2 n auxiliary qubits, the total number of auxiliary

qubits used in the concentration stages of the n-GQC is

p−1∑

k=0

2k+1n/2
k

2
log2(n/2

k) =
n

2
(log2 n+ 1) log2 n (5.3)

Therefore, the n-GQC uses O(n log2 n) auxiliary qubits.

It is always possible to restore all of the auxiliary qubits used in a switching

network to their initial state once the desired switching operation has been com-

pleted, i.e., the data fields of the input packets have reached their desired destina-

tions. This can be accomplished by the inverse of the switching network, which

uses routing, address and auxiliary qubits. However, it is desirable that the aux-

iliary qubits are restored as early as possible so that they can be reused, and also

their decoherence does not affect the switching operation [51] [52]. We adhere

to this policy by restoring all of the auxiliary qubits used in the n-QC except the

switching qubits. For non-contending assignment patterns, the switching qubits

used in the quantum concentrators are the only auxiliary qubits which are not
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restored in an n-GQC. These can always be restored afterwards using the inverse

of n-GQC as described earlier.

So far, we have seen that an n-GQC realizes a non-contending assignment

pattern without any blocking. In the next section, we describe how blocking oc-

curs when a contending assignment pattern is routed through the n-GQC design

given in this section.

5.2 Behavior of n-GQC for Contending Assignments

A substantial amount of recent research on multicast switching has been fo-

cused on developing scheduling algorithms which aim to maximize the through-

put of an input-queued multicast switch [69] [65] [70] [71]. A number of such

algorithms require that the packets in a contending assignment are routed using

a fanout-splitting policy, where a multicast packet can be sent to a subset of the

outputs in its fanout set. The rest of the fanout set is realized in subsequent at-

tempts. It is usually desired that the multicast switch has the capability to do

such a fanout-splitting internally. It is also desired that the multicast switch be

work-conserving, which means that if an output is in the fanout set of at least one

of the packets in a contending assignment, then it should not happen that this

output does not receive any packet. In this section, we show that, due to internal

blocking in case of contending assignment patterns, the n-GQC works in fanout-

splitting fashion. However, it is not work-conserving.
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Consider a contending assignment pattern to an n-GQC that has m classical

packets, out of which mu are addressed to only upper n/2 outputs, ml are ad-

dressed to only lower n/2 outputs and mb are addressed both upper and lower

n/2 outputs. Then, in the recursive construction of n-GQC, the upper n-QC re-

ceivesmu+mb packets and lower n-QC receivesml+mb packets. Since a contend-

ing assignment can have more than n/2 packets addressed to the top n/2 outputs,

mu + mb can be more than n/2. In this case, mu + mb − n/2 packets are blocked

or dropped since only n/2 outputs of the n-QC are connected to the next stage.

Similarly, if ml + mb > n/2 then ml + mb − n/2 packets are dropped at the lower

n-QC. It is easily seen that, for such blocking to occur at either of the n-QCs, it is

necessary but not sufficient that m > n/2. This is because when ml = mu = 0,

mb has to be greater than n/2 for blocking. Also, for a contending assignment,

such a blocking will certainly occur at one of the quantum concentrators in the n-

GQC. Thus, we see that the n-GQC realizes a subset of the set of output addresses

for every packet in a contending multicast assignment pattern. This subset can

also be empty, which means that some of the packets may be blocked entirely.

Therefore, the n-GQC works in a fanout-splitting fashion.

This is illustrated by an example of a 4-GQC, as shown in Figure 5.4. The

contending assignment pattern has four packets A, B, C and D with the fanout

sets shown in the figure. Packets C and D are blocked at the 4-QCs. The fanout

set of A is fully realized, but the fanout set of B is partially realized, since a copy

of B is blocked at the bottom 2-QC in the final stage.

109



A(0)

1

2

3

2

3

0

1

stage

Distribution

A(0,3)

B(1,2,3)

4-QC

4-QC

2-QC

2-QC

2-QC

2-QC

stage

Distribution

D(0,1,3)

C(2)

B(1)

D(0,1)

A(3)

B(2,3)

C(2)

D(3)

A(0) A(0)

B(1)

D(0,1)

A(3)

B(2,3)

C(2)

D(3)

A(3)

B(2)

B(3)

B(1)

B(2)

A(3)

B(3)

A(0)

B(1)

0

Figure 5.4: Contending assignment through a 4-GQC.

Because of blocked packets on the unused outputs of the intermediate quan-

tum concentrators, the n-GQC is not robust against decoherence on these outputs

when realizing a contending quantum assignment. Such a decoherence would

collapse the quantum assignment to only those assignment patterns that contain

the observed packets on these outputs. This problem does not arise when realiz-

ing a non-contending quantum assignment. This is because the unused outputs

of the intermediate concentrators are always empty for every assignment pat-

tern in the assignment, as explained earlier in Section 5.1.2. Next, we define the

work-conserving property for an n-GQC.

An assignment pattern
∣∣P̄ ′
〉

= |(r′0, ā′0, d̄′0), · · · , (r′n−1, ā
′
n−1, d̄

′
n−1)〉 is called a

sub-pattern of another assignment pattern
∣∣P̄
〉

= |(r0, ā0, d̄0), · · · , (rn−1, ān−1, d̄n−1)〉

if, for every i, 0 ≤ i ≤ n − 1, r′i = 1 implies that ri = 1, d̄′i = d̄i and F ′i ⊆ Fi. A

non-contending sub-pattern
∣∣P̄ ′
〉

of
∣∣P̄
〉

is said to be maximal if the fanout sets

∪n−1
i=0 {F ′i : r′i = 1} and ∪n−1

i=0 {Fi : ri = 1} are equal.

110



An n-GQC is called work-conserving if it realizes a maximal non-contending

sub-pattern of every contending multicast assignment pattern. It is seen that a

contending multicast assignment pattern can have several maximal non-contending

sub-patterns and a work-conserving n-GQC realizes one of these sub-patterns.

We have the following for the n-GQC design given in this paper:

Theorem 5.2. The n-GQC shown in Figure 5.1 is not work-conserving.

Proof: This is seen by considering a contending multicast assignment pat-

tern having n classical packets, in which the fanout set of every packet on the top

n − 1 inputs is {1, · · · , n − 1} and the fanout set of the packet on the nth input is

{0}. Copies of all the packets on top n− 1 inputs and the packet on the nth input

are routed to the upper n-QC. The packet with fanout {0} is concentrated to the

nth output of the n-QC, and is therefore dropped. Thus, no packet is routed to

output 0. Which means that the n-GQC is not work-conserving.

As the example in Figure 5.4 shows, there are some contending assignment

patterns which do get routed in a work-conserving fashion by the n-GQC. For

a given contending assignment, this happens when no fanout loss occurs at any

of the quantum concentrators in the n-GQC. In other words, at any quantum

concentrator, the fanout-set union of the output packets on top half of outputs is

equal to fanout-set union of input packets, where the unions are restricted to the

outputs reachable by the quantum concentrator.

Also, if we were able to construct an n-QC which concentrates in such a
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way that it always maximizes the union of the fanout sets of its top n/2 output

packets when receiving more than n/2 input packets, then the n-GQC constructed

using such n-QCs will be work-conserving. Designing such an n-QC is a potential

approach towards the realization a work-conserving n-GQC.

Finally, we observe that the results given in this section for contending

assignments also hold for the classical version of generalized connector given

in [14], i.e., this network works in a fanout-splitting manner and is not work-

conserving. This is due to the fact that the classical generalized connector is func-

tionally similar to the n-GQC and realizes a classical non-contending assignment

in the same fashion as n-GQC without any blocking. In the next section, we mod-

ify the n-GQC such that it creates a superposition of contending packets on their

desired outputs when realizing contending assignment pattern.

5.3 Complexity Analysis

In this section, we compute the complexities of the n-GQC in terms of the

total number of quantum gates and the gate level depth. Representing these com-

plexities for the n-QC as Cgqc(n) and Dgqc(n) respectively, we have

Cgqc(n) = 2Cgqc(n/2) + 2Cqc(n) + Cdist(n) (5.4)

Dgqc(n) = Dgqc(n/2) +Dqc(n) +Ddist(n) (5.5)
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where Cdist(n) and Ddist(n) are the corresponding costs for the distribution stage,

and Cqc(n), Dqc(n) are the corresponding complexity for the n-QC . From Chap-

ter 4, we have Cqc(n) = O(n log n) and Dqc(n) = O(log2 n). It is easy to verify that

Cdist(n) = O(n) because each copy node uses a constant number of gates, and

Ddist(n) = O(1). Thus, we have Cgqc(n) = O(n log2 n) and Dgqc(n) = O(log3 n).
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Chapter 6: Priority and Superposing Generalized Quantum

Connectors

In this chapter, we give variations of the n-GQC to improve its behavior

when routing contending assignments. First, we introduce prioritized routing in

this network. The input assignment patterns consist of packets belonging to two

classes. For contending assignment patterns, the network gives priority to pack-

ets in one class over the ones in the other class such that these packets are more

likely to reach their desired outputs. In the second variation, we use quantum

superposition to ensure that all packets in a contending assignment pattern have

non-zero probabilities of reaching all of the outputs in their fanout sets.

6.1 Priority Generalized Quantum Connector

We include another qubit, called priority qubit in the quantum packet, and

represent the classical component of a quantum packet as |r, t, ā, p̄〉, where t de-

notes the priority bit. A classical packet |r, t, ā, p̄〉 is called a high-priority packet if

t = 1, and low-priority otherwise. We first describe a variation of n-QC which is

used to introduce prioritized routing in an n-GQC. Again, we merge address and

data bits and represent packets as |r, t, p̄〉 when describing concentration opera-

tions.
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6.1.1 Priority Quantum Concentrator

An n-QC is is called a priority n-QC (abbreviated as n-PQC), if it concentrates

an assignment pattern such that all high-priority packets appear above the low-

priority ones at the outputs. More specifically, for any 0 ≤ m1,m2 ≤ n, where

m1+m2 ≤ n and an assignment pattern
∣∣P̄
〉

= |(r0, t0, p̄0), · · · , (r1, t1, p̄1)〉 in which

packets on inputs i0, · · · , im1−1 have both their routing and priority bits set to 1,

packets on inputs j0, · · · , jm2−1 have their routing bits set to 1 and priority bit set

to 0, and packets on inputs k0, · · · , kn−m1−m2−1 have their routing bits set to 0, is

transformed as:

∣∣P̄
〉
|0̄〉aux

n-PQC−−−→
∣∣(1, 1, p̄i′0) · · · (1, 1, p̄i′m1−1

),

(1, 0, p̄j′0) · · · (1, 0, p̄j′m2−1
), (0, tk′0 , p̄k′0) · · · (0, tk′m3−1

, p̄k′m3−1
)
〉 ∣∣Φ(P̄ )

〉
aux

(6.1)

where m3 = n − m1 − m2; sequence of indices i′0, · · · , i′m1−1 is a permutation

of i0, · · · , im1−1, sequence j′0, · · · , j′m2−1 is a permutation of j0, · · · , jm2−1, and se-

quence k′0, · · · , k′m3−1 is a permutation of k0, · · · , km3−1. These permutations are

kept the same for all assignment patterns having the same sequences of routing

and priority bits.

An n-PQC can be constructed by cascading an n-QC and an n-OPQC (order-

preserving quantum concentrator) as shown in Figure 6.1. The priority qubits are

used as routing qubits in the n-QC, which concentrates packets with priority bits

of 1 to its top outputs. Therefore, all input packets with priority bits of 1 are above
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Figure 6.1: Constructing an n-PQC using an n-OPQC and an n-QC.

the ones having priority bits of 0 at output of n-QC, irrespective of their actual

routing bits. The n-OPQC concentrates the resulting pattern using the routing

qubits. Since it concentrates the packets with routing bits of 1 to the top outputs

while preserving their input order, all the high-priority packets are concentrated

at the top outputs followed by the low-priority ones, which are then followed by

the packets with routing bits of 0.

The gate level depth of the above n-PQC is almost twice as that of the n-QC.

We can construct an n-PQC having almost the same gate-level depth as that of

the n-QC by modifying the odd-even splitter used in the n-QC such that it splits

the input packets as follows:

• If m1 is even: it routes half of the high-priority packets to the even outputs

and the other half to the odd outputs. It routes dm2/2e of the low priority

packets to the even outputs and bm2/2c to the odd outputs.

• If m1 is odd: it routes dm1/2e high-priority packets to the even outputs and
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the remaining bm1/2c to the odd outputs. In this case, bm2/2c of the low

priority packets are routed to the even outputs and the remaining dm2/2e

are routed to the odd outputs.

In order to design the above splitter, we divide the splitter switches of an

odd-even splitter into four classes depending on the priorities of their input pack-

ets. A splitter switch is said to be in:

• Class-1, if it has only one input packet and it is a high-priority one.

• Class-2, if it has only one input packet and it is a low-priority one.

• Class-3, if it has one low priority and one high-priority packet at its inputs.

• Class-4, if it has either no input packets, or two input packets having same

priorities.

These classes account for all combinations of input packet types. The set-

tings of Class-4 switches do not affect output priority order, and only Class-1, 2

and 3 switches are considered. Splitter switch SWi uses three control qubits ci1,

ci2 and ci3 initialized to state |0〉, where qubit cij is used to determine switch set-

ting if SWi is a Class-j switch. Using controlled-not gates, we transform qubit

cij to 1 if SWi is a Class-j splitter switch. The other two control qubits are left

unchanged. Bit-strings c01 · · · c(n/2−1,1), c02 · · · c(n/2−1,2) and c03 · · · c(n/2−1,3) are bal-

anced separately using three n/2-QBs. The outputs of Class-2 and Class-3 bal-

ancers are complemented using a controlled-not gate if there are odd number of
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ones in c01 · · · c(n/2−1,1), otherwise they are left unchanged. We now set the splitter

switch SWi as follows depending on its class:

• Class-1: If ci1 is 1, the input packet is sent to the top output. Otherwise, it is

sent to the bottom output.

• Class-2: If ci2 is 1, the input packet is sent to the top output. Otherwise, it is

sent to the bottom output.

• Class-3: If ci3 is 1, the high-priority input packet is sent to the top output and

the low-priority one is sent to the bottom output. Otherwise, high-priority

input packet is sent to the bottom output and the low-priority one is sent to

the top output.

We now show that the resulting stage is an n-priority odd-even splitter. As-

sume that m1 = m11 +m13 +m14 and m2 = m22 +m23 +m24, where m11, m13 and

m14 are the numbers of high priority packets on Class-1, 3 and 4 switches respec-

tively, m22, m23 and m24 are the numbers of low priority packets on Class-2, 3 and

4 switches respectively. Obviously, we have m13 = m23. Also, m14 and m24 are

always even. We now have the following cases:

• m11 even: In this case, the controlled-not gate does not complement the

outputs of Class-2 and 3 n-QBs. Hence, if:

– m1 even: m13 andm23 are even andm11/2+m13/2+m14/2 = m1/2 high
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priority packets are sent to the even outputs. Also, dm22/2e + m23/2 +

m24/2 = dm2/2e low priority packets are sent to the even outputs.

– m1 odd: m13 and m23 are odd and m11/2 + dm13/2e + m14/2 = dm1/2e

high priority packets are sent to the even outputs. dm22/2e+bm23/2c+

m24/2 = bm2/2c low priority packets are sent to the even outputs.

• m11 odd: In this case, the controlled-not gate complements the outputs of

Class-2 and 3 n-QBs. Hence, if:

– m1 even: m13 and m23 are odd and dm11/2e+ bm13/2c+m14/2 = m1/2

high priority packets are sent to the even outputs. bm22/2c+dm23/2e+

m24/2 = dm2/2e low priority packets are sent to the even outputs.

– m1 odd: m13 and m23 are even and dm11/2e+m13/2 +m14/2 = dm1/2e

high priority packets are sent to the even outputs. bm22/2c + m23/2 +

m24/2 = dm2/2e low priority packets are sent to the even outputs.

This completes the proof that the odd-even splitter using the above n-QBs

and the new splitter switches is an n-priority odd-even splitter. The quantum

circuit for splitter switch is shown in Figure 6.2(c). We can restore all of the

control qubits to their initial states by using the inverses of quantum balancers,

as described earlier in Section 4.2.2. Only the switching qubits si, where i =

0, · · · , n/2 − 1, are not restored. The n-PQC is constructed in the same way as

n-QC, by using the n-priority odd-even splitter and the recursive construction

shown in Figure 6.2(d).

119



r2i

r2i+1

t2i+1

|0〉
|0〉
|0〉

ci1

ci2

ci3

t2i

(a)

c(n/2−1,3)

n/2-QB

for

class-2

switches

n/2-QB

for

class-3

switches

n/2-QB

for

class-1

switches parity

c01

c11

c(n/2−1,1)

c02

c12

c(n/2−1,2)

c03

c13

(b)

si

r2i

t2i

ci1

ci2

ci3

r2i+1

t2i+1

p̄2i

p̄2i+1

|0〉

(c)

n/2-PQC

n− 1

0

1

0

1

n− 1

n
2
− 1

n
2

n-priority

0

1

n− 1

n− 2

odd-even
splitter

n/2-PQC

(d)

Figure 6.2: Various components of n-PQC and its recursive realization: (a) Gen-
erating control qubits; (b) Balancing the control qubits; (c) Splitter switch for n-
priority odd-even splitter; (d) Recursive construction of n-PQC.

6.1.2 Priority GQC Construction

A priority n-GQC is obtained by replacing n-QCs in the n-GQC by n-PQCs.

We denote this network as n-PGQC. Since this network remains an n-GQC, it real-

izes non-contending assignment patterns without any blocking. For contending

assignment patterns, high-priority packets are generally given precedence over
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low-priority ones when blocking occurs at the intermediate concentrators. This

is described in the results that follow.

Theorem 6.1. For a contending assignment pattern having both low and high priority

packets, the n-PGQC routes all of the high-priority ones to their desired outputs without

any blocking if and only if the sub-pattern consisting of high priority packets is non-

contending.

Proof: Since high-priority packets are always concentrated to the top outputs

of n-PQCs, and are above the low-priority ones, we can treat them as the only

ones with routing bits of 1, and the n-PGQC works as n-GQC for the sub-pattern

of high-priority packets. This sub-pattern is realized without any blocking if it is

non-contending. The converse is trivial, because if all high priority packets are

routed to all of their destinations without any blocking then the sub-pattern of

these packets must be non-contending. ‖

When the sub-pattern of high priority packets is also contending, it may

happen that some high priority packets are blocked, and low priority ones go

through. However, this is possible for only those low-priority packets that are

not contending for an output with a high-priority packet:

Theorem 6.2. For a contending input assignment pattern to an n-PGQC in which the

sub-pattern of high-priority packets is also contending, an output to which both high and

low priority are addressed, receives either a high-priority packet or none.

Proof: It is observed that in an n-GQC, any two inputs will have to be con-
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nected through to same sets of concentrators to reach a given output. Conse-

quently, if both a low and a high-priority packets are addressed to a given output

and the low-priority one reaches that output, then the high-priority packet must

have been below the low-priority one on the outputs of one of the concentrators.

This cannot happen because all the concentrators are n-PQCs. Hence either the

high-priority packet is routed to that output, or both packets are blocked. ‖

These properties of the n-PGQC are illustrated by examples given in Fig-

ure 6.3. Figure 6.3(a) shows a contending assignment pattern in which the sub-

pattern of high-priority packets is non-contending. All high priority packets

are routed to their outputs, and only the low-priority ones (D0, B3 and D2) are

blocked. A low-priority packet,B2, is also routed to its output. Figure 6.3(b) illus-

trates a contending assignment pattern in which the sub-pattern of high-priority

packets is also contending. In this case, some high priority packets (D∗1 and C∗0 )

are also blocked, and a low-priority packet B2 reaches its output. This happens

since no high-priority packet is addressed for output 2. This example also shows

that the n-PGQC is not work-conserving in general, since no packet reaches out-

put 1 even when there is a packet (D∗1) addressed to it.

6.2 Superposing Generalized Quantum Connector

An n-superposing generalized quantum connector, or n-SGQC, is a quantum

multicast network which creates superpositions of contending packets on their
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Figure 6.3: 4-PGQC examples: (a) All high-priority packets (denoted with *)
routed without blocking; (b) 4-PGQC example when sub-pattern of high-priority
packets is also contending.

desired outputs when routing contending assignment patterns. It realizes non-

contending patterns like an n-GQC. However, unlike n-GQC, it transforms a con-

tending assignment pattern to a superposition of output patterns such that every

input packet has non-zero probabilities of being observed at all outputs in its

fanout set. In order to construct our n-SGQC, we modify the n-QC as described

next.
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6.2.1 Superposing Quantum Concentrators

Definition 6.1 (Superposing quantum concentrator (SQC)). An n× n-quantum

switch is called a (n,m)-superposing quantum concentrator (wherem ≤ n), or (n,m)-

SQC, if it transforms an input assignment pattern having k packets with routing

bits of 1, where 1 ≤ k ≤ n, to a quantum superposition of a set of output patterns

such that each output patterns in this set has all k packets concentrated on top

k outputs, and if k > m then for each input packet with routing bit of 1, there

is at least one output pattern in which this packet appears on one of the top m

outputs.

The sum of probability coefficients of all output patterns that have a given

input packet among the topm outputs, is called the concentration probability of that

input packet on an (n,m)-SQC. By definition, every input packet to an (n,m)-SQC

has a non-zero concentration probability. For an assignment pattern with k ≤ m,

every input packet has a concentration probability of 1. This is because all these

packets are included in the top m outputs in every output pattern. For such a

assignment pattern, the (n,m)-SQC does not need to generate a superposition of

output patterns, and only one is sufficient. Still, having a superposition is okay

because the concentration probabilities of packets are not affected. Since each

output pattern can have at most m concentrated input packets, an (n,m)-SQC

must have at least dk/me output patterns for an input assignment pattern with

k > m.
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Figure 6.4: Superposing quantum concentrators: (a) (8, 4)-SQC; (b) (8, 4)-USQC.

We did not place any restriction on the probability coefficients that are as-

signed to the output patterns, due to which, different input packets may have

different concentration probabilities, when k > m. We next define a stronger

version of (n,m)-SQC in which every input packet has the same concentration

probability.

Definition 6.2 (Uniform superposing quantum concentrator (USQC)). An (n,m)-

SQC is said to be uniform if, for an input assignment pattern having k packets with

routing bits of 1, every packet has concentration probability of m/k when k > m,

and 1 otherwise. This concentrator is referred as (n,m)-USQC.

On a computational basis measurement at the output of the (n,m)-USQC,

any packet in the input assignment pattern is observed among them outputs with

probability m/k and among the bottom n−m outputs with probability 1−m/k.

One way to realize an (n,m)-USQC is to generate an equal superposition of
(
k
m

)

output patterns that have all the size m subsets of the set of input packets at the

top m outputs, when k > m. Both (n,m)-SQC and USQC concentrators are il-
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(a) (b)

Figure 6.5: Final stage of the 8-QC: (a) Output shuffles for n = 2, 4 and 8; (b)
Output shuffles combined.

lustrated by the examples given in Figure 6.4 for n = 8, m = 4, and an input

assignment pattern having k = 5 packets with routing bits of 1. The probability

coefficients of the output patterns are shown over them. Figure 6.4(a) shows a

network that is a (8, 4)-SQC, but not a (8, 4)-USQC. The concentration probabili-

ties of packetsA andB are α2
1 +α2

2 +α2
3 = 1 and α2

0 +α2
2 respectively, which cannot

be equal. Figure 6.4(b) shows a (8, 4)-USQC which concentrates every packet in

this input pattern among its top 4 outputs with probability 4/5. The output has

5 patterns with coefficients of 1/
√

5, and each packet appears among the top 4

outputs in four of the output patterns.

6.2.2 Construction of (n, n/2)-SQC

In this section, we modify the n-QC given in Section 4.2.3 to construct an

(n, n/2)-SQC. First, we observe that the upper outputs of the splitter switches

in the last stage of the n-QC are connected the top n/2 outputs consecutively, i.e.,

the upper output of ith splitter switch SW p−1
i is connected to the ith output, where
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Figure 6.6: Modifying n-QC to obtain (n, n/2)-SQC: (a) splitter switch circuit; (b)
its block representation.

0 ≤ i ≤ n
2
− 1. This is shown in Figure 6.5 for n = 8.

Consider an input assignment pattern to the n-QC having k classical packets

with routing bits of 1, where 1 ≤ k ≤ n−1. Since the n-QC concentrates all packets

to its top k outputs, if k ≤ n/2, all these packets appear on the upper outputs of

the top k splitter switches in the final stage. If k > n/2, the upper outputs of

all n/2 splitter switches in the final stage have packets, and remaining k − n/2

packets appear on the lower outputs of the top k − n/2 splitter switches in this

stage. These k−n/2 packets are the ones that do not reach the upper n/2 outputs,

due to which the n-QC is not an (n, n/2)-SQC.

Since the setting of a balanced splitter switch does not affect the concentra-

tion operation of the n-QC, we can set these top k − n/2 switches in a superpo-

sition of through and cross states, and convert the n-QC to an (n, n/2)-SQC, as

explained next. The quantum circuit for the modified splitter switch is shown

in Figure 6.6(a). We add a controlled-Hadamard gate to the n-QC splitter switch
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circuit shown earlier in Figure 4.3(b). This gate operates only when routing bits

of both input packets are 1, and it sets the control qubit driving the swap gates in

state 1/
√

2(|0〉 + |1〉), which creates a superposition of input packets. It does not

affect the splitter switch operation in any other case. We next show that by using

the modified splitter switches in the final stage of n-QC, we get an (n, n/2)-SQC.

Consider the 8-QC shown in Figure 6.7(a). In order to simplify the figure,

we have not shown the quantum balancers, and only the splitter switches and

the interconnections are shown. The input assignment pattern has 5 packets with

routing bits of 1. The figure shows the intermediate pattern generated at every

stage as this input assignment pattern is routed through the network. In the

output pattern, packet P4 appears on the 5th output and has zero probability of

appearing among the top 4 outputs, due to which this network is not a (8, 4)-

SQC. If we replace all of the splitter switches in the last stage of the network

with the modified splitter switch, the topmost switch in this example works in

a superposition. Consequently, we get two output patterns, each with a proba-

bility coefficient of 1/2. Now, P4 is also concentrated among the top 4 outputs,

with probability 1/2. Packets P1, P2 and P3 have concentration probabilities of

1. Packets P0 and P4 end up sharing the remaining output with concentration

probabilities of 1/2.

In general, for an assignment pattern having k > n/2 packets, this network

generates 2k−n/2 output patterns with probability coefficients of 1
2k−n/2 such that

n − k of the input packets have concentration probabilities of 1, and remaining
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Figure 6.7: Superposing quantum concentrator: (a) An 8-QC concentrating an
assignment pattern having 5 packets; (b) Using modified splitter switches in the
last stage, we get a (8, 4)-SQC; (c) Using modified splitter switches in all stages
we get more uniformity.

129



2k − n have concentration probabilities of 1/2. Since all the input have non-zero

concentration probability, this network is an (n, n/2)-SQC.

We can make the (n, n/2)-SQC more uniform by replacing all the splitter

switches in the n-QC with the modified splitter switch. This is illustrated in Fig-

ure 6.8(c). The second switch in the first stage works in a superposition, resulting

in two patterns at the output of the first stage. For both of these patterns, the top

switch in the second stage works in a superposition, resulting in 4 patterns at the

output of the second stage. For each of these patterns, the top switch in the third

stage works in a superposition. Consequently, we have 8 output patterns, each

having a probability coefficient of 1/8 and a different pattern of 5 packets at the

top 5 outputs. We observe that only P3 has a concentration probability of 1. The

concentration probabilities of P0, P1, P2 and P4 are 3/4, 7/8, 7/8 and 1/2 respec-

tively. This is because these packets respectively appear among the top 4 outputs

of the network in 6, 7, 7 and 4 of the output patterns.

In general, for an input assignment pattern having k > n/2 packets with

routing bits of 1, at least k − n/2 splitter switches in each stage of the network

are balanced, and therefore, there are at least 2(k−n/2) log2 n output concentration

patterns, as compared to 2k−n/2 for the network in which the modified splitter

switches are employed only in the last stage. This leads to more uniformity in

general. A detailed analysis of the concentration properties of this network, and

construction of an uniform superposing quantum concentrator is left as future

work.
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6.2.3 Superposing GQC Construction

As described earlier, the n-GQC blocks packets when routing a contending

assignment pattern, and these packets are dropped at the bottom halves of out-

puts at the internal quantum concentrators. Also, due to this blocking, some out-

puts may not receive any packet even when there are packets addressed to them.

We propose n-GQC variations that use the principle of quantum superposition to

create superpositions of all contending packets on their desired output, such that

every input packet has non-zero probabilities of reaching all of the outputs in its

fanout set.

Definition 6.3. An n-GQC is said to be a superposing, denoted as n-SGQC, if it

transforms any contending assignment pattern to a superposition of output pat-

terns that are n-GQC realizations of distinct non-contending sub-patterns of the

input pattern, such that for every output which has one or more packets (with

routing bit of 1) addressed to, there is at least one output pattern realizing each

of these packets.

If output i is in the fanout sets of ki input packets, where i = 0, · · · , n − 1

and 0 ≤ ki ≤ n, then an n-SGQC has to generate at least max(ki) output patterns.

The probability of observing a packet on an output in its fanout set is given by

the sum of the probability coefficients all output patterns that contain the packet

on that output. This probability is non-zero for every input packet and output

pair. The probability of observing a packet on an output is sum of probability
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Figure 6.8: Contending assignment pattern on a 4-SGQC (dropped packets at the
output stage are not shown): (a) using (n, n/2)-SQC of Figure 6.7(b); (b) using
(n, n/2)-USQCs.

coefficients of all output patterns that have a packet with routing bit of 1 on that

output. The input assignment pattern is said to be realized in a work-conserving

fashion if this probability is 1 for every output which is in the fanout set of at least

one packet. An n-SGQC is said to be work-conserving, if it is work-conserving

for all contending assignment patterns.

We construct an n-SGQC by replacing the n-QCs in the n-GQC by (n, n/2)-
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SQCs. Since every input packet has a non-zero probability of making into the

top halves of outputs of the SQCs in its path, all input packets in a contending

assignment pattern have non-zero probabilities of reaching all of the outputs in

their fanout sets. We illustrate this in Figure 6.8 which shows how a contending

assignment pattern of size n = 4 is realized in the resulting network. The figure

does not show how this pattern is routed by the 4-GQC. It can be verified that the

4-GQC blocks packets D1 (at its upper 4-QC), C0 (at top 2-QC) and C3 (at bottom

2-QC). Packets A0, B2 and B3 reach their desired outputs, and no packet is routed

to output 1.

Figure 6.8(a) shows an 4-SGQC which is constructed using the (n, n/2)-SQC

of Figure 6.4(b) (with modified splitter switches only in the last stage). We get two

patterns with coefficients of 1/
√

2 at the output of the first concentrator stage be-

cause the top splitter switch (not shown in the figure) in the final stage of the

upper (4, 2)-SQC is balanced and works in a superposition. The first pattern is

broken into four at the second concentration stage, because the topmost and bot-

tommost (2, 1)-SQC work in a superposition – sharing output 0 between A0 and

C0, and output 3 between B2 and B3. The second pattern is broken into two as

only the bottommost (2, 1)-SQC works in a superposition – routing C0, B1 and

B2 to outputs 0, 1, 2, and sharing output 3 between B3 and C3. Probabilities of

observingA0 and C0 on output 0 are 1/4 and 3/4. PacketB2 reaches output 2 with

probability 1. Packets B3 and C3 have probabilities 1/2 each of being observed at

output 3. Output 1, which does not receive any packet on the 4-GQC, receives
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Figure 6.9: 4-SGQC example showing a work-conserving realization.

packet D1 with probability 1/2. Every input packet has non-zero probability of

reaching its desired output, and overall throughput is increased because outputs

0, 2, and 3 still receive packets with probabilities 1, and output 1 also receives a

packet with probability 1/2, as opposed to none in the 4-GQC.

Figure 6.8(b) shows the same assignment pattern being routed on an n-

SGQC which uses (n, n/2)-USQC of Figure 6.7(b) which creates an equal super-

position of all n/2 size subsets of input packets on its top n/2 outputs when re-

ceiving more than n/2 packets. On this n-SGQC, we get more uniform sharing

of contending packets on their desired outputs, as packets A0 and C0 now share

output 0 equally with probabilities of 1/2. Also, the probability of observing

packet D1 on output 1 increases from 1/2 to 2/3. Consequently, the throughput is

increased even further for this assignment pattern.

The above examples cannot be generalized about either uniformity or work-

conserving property for all contending-assignment patterns. The n-SGQC may
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have less throughput than the n-GQC for some contending assignment patterns

which are realized by n-GQC in a work-conserving or close to work-conserving

manner. Also, for some contending assignment patterns, an (n, n/2)-USQC based

n-SGQC may have less uniform sharing of outputs and less throughput than

the (n, n/2)-SQC based one. Still, it is expected that for most of the assignment

patterns, we get more uniform sharing of outputs in an (n, n/2)-USQC based n-

SGQC.

The example given in Figure 6.9 illustrates these ideas. The input assign-

ment pattern is similar to the earlier examples, the only difference is that the

input locations of packets D1 and C0,3 are interchanged. It can be verified that an

4-GQC realizes this assignment pattern in a work-conserving fashion, and blocks

packets C0 and C3. By using the (n, n/2)-SQC (with modified splitter switches

only in the last stage), we retain work-conserving property, and also get uniform

sharing of outputs between contending packets on all outputs. In this case, it

happens that there is no fanout loss in any of the output patterns at the internal

quantum concentrators, and packet D1, which is the only packet addressed for

output 1, has a concentration probability of 1 on all quantum concentrators on its

route. It can be verified that the USQC-based 4-SGQC gives same output as in

Figure 6.8(b) for this assignment pattern as well, and output 1 has only a prob-

ability of 2/3 of getting packet D1. This happens because of the fanout loss in

the first output pattern at the (4, 2)-USQC stage. On the upper USQC, union of

input packet fanouts is {0, 1}, but the union of fanout sets of packets on the up-
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per half of outputs in the first output pattern is {0}. Due to this fanout loss, the

USQC based 4-SGQC does not realize the input assignment pattern in a work-

conserving fashion.

A stronger version of n-SGQC that is work-conserving and also creates an

uniform superposition of contending packets on their desired outputs, is defined

next. Construction of this network is left as future work.

Definition 6.4. An n-SGQC is said to be uniform if, for any contending assignment

pattern in which ki input packets with routing bits of 1 have output i in their

fanout sets, i = 0, · · · , n − 1, all these packets have the same probability 1/ki of

being observed at output i when ki 6= 0, and a packet is observed at this output

with with probability 1.

In order to construct an uniform n-SGQC using the n-GQC network topol-

ogy given in this thesis, we would need to construct superposing quantum con-

centrators that keep track of fanout sets of the multicast packets, and ensure no

fanout loss in any of the output patterns. Also, the concentration probabilities of

packets have to be proportional to the sizes of their fanout sets so that a packet

which is addressed to just one output does not have an unfair advantage over

one which is addressed to multiple outputs.
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Chapter 7: Conclusion and Future Work

In this chapter, we briefly describe how the quantum interconnection net-

works we have designed can be used to switch and multicast general quantum

states. We then give our concluding remarks, and list some future research direc-

tions.

7.1 Switching General Quantum States

In this thesis, we have primarily focused on unicasting and multicasting of

classical data through quantum switching networks. In this section, we describe

how the networks we have designed can be used to unicast and multicast general

quantum states as well.

7.1.1 Unicasting and Concentration of Quantum States

In both n-QC and quantum Baseline networks, the switch settings are deter-

mined using the routing and address qubits only, and are not affected by the data

parts of the packet. Consequently, these networks route two or more assignment

patterns having the same routing and address bits by applying the same permu-
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tation. Also, the final states of the auxiliary qubits are also dependent on the

routing and address bits only. Consider a 4 × 4 unicast quantum switching net-

work which permutes an unicast assignment pattern |ψ〉 = |(r0, a0, p0) (r1, a1, p1)

(r2, a2, p2) (r3, a3, p3)〉with fixed routing and address bits as:

|ψ〉 −→ Πri,ai
(|ψ〉) |φaux(ri, ai)〉 = |(r2, p2)(r1, p1)(r3, p3)(r0, p0)〉 |φaux(ri, ai)〉 (7.1)

where Πri,ai
denotes the permutation applied, and |φaux(ri, ai)〉 is the output state

of the auxiliary qubits when routing and address bits on input i are ri and ai, i =

0, · · · , 3. Without loss of generality, we assume that the address qubits become a

part of the auxiliary qubit outputs.

Suppose inputs 0, 1, 2 and 3 have quantum states α |A〉 + β |B〉, |C〉, |D〉

and γ |E〉 + δ |F 〉 respectively, and they are to be routed using the same routing

and address bits as above. We set the routing qubit on input i in state |ri〉 and

address qubit in state |ai〉. The input quantum assignment is a superposition of

four assignment patterns, and is expressed as:

αγ |(r0, a0, A)(r1, a1, C)(r2, a2, D)(r3, a3, E)〉

+ αδ |(r0, a0, A)(r1, a1, C)(r2, a2, D)(r3, a3, F )〉

+ βγ |(r0, a0, B)(r1, a1, C)(r2, a2, D)(r3, a3, E)〉

+ βδ |(r0, a0, B)(r1, a1, C)(r2, a2, D)(r3, a3, F )〉 (7.2)
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The network transforms this quantum assignment to:

|(r2, D)(r1, C)(r3, E)(r0, A)〉 |φaux(ri, ai)〉

+ |(r2, D)(r1, C)(r3, F )(r0, A)〉 |φaux(ri, ai)〉

+ |(r2, D)(r1, C)(r3, E)(r0, B)〉 |φaux(ri, ai)〉

+ |(r2, D)(r1, C)(r3, F )(r0, B)〉 |φaux(ri, ai)〉

=


|r2〉 |D〉︸ ︷︷ ︸

output 0

⊗ |r1〉 |C〉︸ ︷︷ ︸
output 1

⊗ |r3〉 (γ |E〉+ δ |F 〉)︸ ︷︷ ︸
output 2

⊗ |r0〉 (α |A〉+ β |B〉)︸ ︷︷ ︸
output 3


 |φaux(ri, ai)〉

(7.3)

Consequently, the quantum states are also routed (along with their routing

qubits) using permutation Πri,ai
. If the auxiliary qubits were dependent on the

data parts of the inputs and became entangled with the data parts, we would not

be able to separate the auxiliary output states in the above expression.

The above example can be generalized to any n×n unicast quantum switch-

ing network which routes input assignment patterns by permuting them based

on routing and address qubits only. All unicast quantum switching networks

given in this thesis – the QBN , n-QCs, and n-GQC when used as a unicast net-

work, satisfy this condition. Hence, the QBN can realize nn permutation assign-

ments without blocking when routing quantum states. The n-GQC can realize

any non-contending unicast assignment (including all permutation assignments)

when routing quantum states. The n-QC can concentrate general quantum states
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on any m of its inputs to the top m outputs, where the inputs that issue quantum

states have routing qubits of |1〉, and m = 1, · · · , n. Also, the order-preserving

and priority quantum concentrators retain their behavior when concentrating

general quantum states.

7.1.2 Multicasting Quantum States

Although copying of general quantum states is not possible due to the no-

cloning theorem, recent research demonstrates that approximate or imperfect

copying is possible [2, 15–18]. We have given a survey of such quantum copiers

in Chapter 1. One of the main copiers is the universal quantum copying machine

(UQCM) which copies all one qubit quantum states with same fidelity of 5/6. We

can use the UQCM in the copy nodes of the n-GQC, instead of the controlled-

not gate based copiers. We expect that this will enable us to do an approximate

multicasting of quantum states on the n-GQC, when routing non-contending as-

signments. For example, if the fanout of each input in the multicast assignment is

limited to 2, and inputs issue single-qubit quantum states, then each input quan-

tum state will be cloned just once as it is routed through the n-GQC, and will

appear on its intended outputs with a fidelity of 5/6. A detailed study of such

multicasting is left as future work.
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7.2 Concluding Remarks

We have given a model to describe routing in quantum packet switching

networks, and have introduced the concepts of quantum packets, assignments

and assignment patterns. We have designed a quantum unicasting network called

the quantum Baseline network (QBN) which creates a superposition of permuta-

tions of non-contending or balanced sub-patterns of an input permutation as-

signment pattern. This is done by using the routing bits in packets contending

for the same output. As a result, all packets are routed through the network with-

out blocking. We have also given a characterization of the output permutations

generated from a given input permutation and the associated probability distri-

bution. A simple measurement destroys the output superposition state and gives

only one output permutation, which is equivalent to classical routing through

a baseline network with random packet drops in case of contentions. More so-

phisticated measurements can be done to get more information about the packets

from the output state. Another advantage of the QBN over a conventional base-

line network is that there is no need to take local decisions to resolve contentions.

We have given the design of a self-routing n×nmultistage quantum switch-

ing network called quantum generalized connector (n-GQC) that can realize quan-

tum multicast assignments. The quantum packets at each input consist of a num-

ber of classical multicast packets in a probabilistic quantum superposition. We

have shown that quantum assignments can be expressed as superpositions of
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multicast assignment patterns, where each assignment pattern is a sequence of

classical packets across the inputs of the network. All the assignment patterns

are simultaneously realized by the n-GQC due to quantum parallelism. All the

packets in a non-contending assignment pattern are routed to their desired out-

puts. However, the n-GQC is not work-conserving when the input assignment

pattern is contending and it realizes a sub-pattern of such an assignment pattern

due to internal blocking.

The main motivation behind the design of n-GQC and QBN is that these

networks have inherent quantum parallelism that provides high throughput by

definition, while the packets are en route to their destinations. To give an exam-

ple, consider unicast assignments, which are a subset of multicast traffic. Uni-

cast switches with nearly 100% throughput have been reported in the literature

[58, 63], but such switches require complex scheduling algorithms. To avoid us-

ing such algorithms, one can potentially employ a multi-layer switch to route a

fixed number of packets from the head of each input queue and an n-GQC would

be a natural replacement for such a switch in the quantum domain.

The n-GQC can be used to unicast arbitrary quantum states between its n

inputs and outputs, provided that there is no output contention among the in-

put quantum states. This is due the fact that no copying would be needed at

any of the distribution stages. It can also be used to do an approximate mul-

ticasting of quantum states, as described earlier in this chapter. We have also

established that the n-GQC is not work-conserving when routing contending as-

142



signment patterns, and have given two variations of this network that improve its

behavior when routing such assignment patterns. The priority n-GQC (n-PGQC)

introduces prioritized routing in the n-GQC and it gives priority to packets in

one class over ones in another, when they contend for the same outputs. The su-

perposing n-GQC (n-SGQC) creates a superposition of all contending packets on

their desired outputs when routing contending assignment patterns.

We have also introduced and designed a new class of quantum switching

networks called quantum concentrators, which route an n-assignment pattern

having k < n packets by concentrating these k packets onto their top k outputs

in an unspecified order. The n-QC is one such network that is constructed based

on a classical concentrator given in [14]. This network plays a key role in the

construction of n-GQC. We have also given some variations of the n-QC. The

n-OPQC concentrates assignment patterns while preserving the input order of

packets. The n-PQC concentrates assignment patterns consisting of two classes

of packets, and concentrates the packets in one class on the topmost outputs fol-

lowed by the ones in the other class. The (n,m)-SQC creates a superposition of

concentrated output patterns when routing an assignment pattern having k > m

packets, such that every input packet has a non-zero probability of being concen-

trated among the topm outputs. The n-PQC and (n,m)-SQC are used to construct

n-PGQC and n-SGQC networks respectively.
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7.3 Future Work

The results presented in this thesis provide a good foundation for the design

of future quantum switching networks but several open problems remain. Some

of these are listed as follows:

• Randomization has been used in classical switching networks to minimize

congestion and improve throughput [72]. Quantum switching networks

offer inherent randomization, for example, the quantum Baseline network

given in this thesis can fully randomize its input assignment if all 2 × 2

switches are set to work in a superposition of through and cross states, and

creates a superposition of nn/2 permutations of the input assignment. We

can cascade this network with another quantum switching network which

routes a subset of these permutations without blocking, and control the ran-

domization in the QBN so that the probability coefficients of the permuta-

tions in this subset are maximized. This approach can help us realize non-

blocking switching networks which are self-routing and optimal in terms of

number of gates and gate-level depth.

• The quantum switching networks given in this thesis create a superposi-

tion of all contending packets on their desired output. A simple measure-

ment that projects onto orthonormal bases collapses the output state so that

only one of these packets is observed. More sophisticated measurement

schemes (such as Bell measurement [51]) can be developed that get more
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out of the output states of these networks by extracting some shared infor-

mation about all packets in the superposition. Also, these packet super-

positions can be fed into other quantum systems which will process these

packets in parallel.

• Realization of an uniform superposing generalized quantum connector (US-

GQC) defined in Section 6.2.3 will strengthen the quantum packet switch-

ing model proposed in this thesis. This network will obviate the need to

have a scheduler which selects packets from input queues such that these

packets form a non-contending multicast assignment while ensuring that

the inputs are served fairly. We expect that the design of a work-conserving

generalized quantum connector will be an initial step towards the realiza-

tion of an USGQC. The n-GQC given in this thesis can potentially be made

work-conserving by building a quantum concentrator which ensures that

the union of the fanout sets of packets on its top half of outputs is always

equal to the union of the fanouts of its input packets. Construction of the

(n,m)-uniform superposing concentrator defined in Section 6.2.1 is also an

open problem.

• As mentioned earlier in this chapter, an evaluation of the n-GQC perfor-

mance when multicasting general quantum states using advanced quantum

copying machines that do approximate cloning of of such states, is needed.

This performance can be measured in terms of the Hilbert-Schmidt distance

between the output state of the n-GQC and an ideal (but impossible) multi-
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casting network which produces perfect copies of the input quantum states.

Also, as in the case of quantum copying machines, there is going to be a

trade-off between the amount of entanglement in the output copies and

the above mentioned Hilbert-Schmidt distance. It would be interesting to

study how this trade-off depends on the parameters of the quantum copy-

ing nodes.

• Quantum entanglement is a powerful property exhibited by multiqubit sys-

tems, due to which two qubits can be coupled such that an operation or a

measurment on one instantly reflects on the other, and information can thus

be encoded in the correlation between two qubits. We have not exploited

this property of quantum systems in our work, and expect that it could help

build a self-routing O(n log n) quantum switching network that realizes all

n! permutation maps. Switches can be entangled with each other such that

the state of one switch affects the states of others. This way switching ele-

ments in the network can set themselves in a self-routing fashion.
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switch,” in Proceedings of the 38th Annual Conference on Information Sciences
and Systems CISS’04, Princeton, NJ, USA, March 2004, pp. 484–489.

[6] ——, “The quantum baseline network,” in Proceedings of the 39th Annual Con-
ference on Information Sciences and Systems CISS’05, Johns Hopkins University,
Baltimore, MD, March 2005.

[7] C. Moore and M. Nilsson, “Parallel quantum computation and quantum
codes,” SIAM J. Comput., vol. 31, no. 3, pp. 799–815, 2001.

[8] I. M. Tsai and S. Y. Kuo, “Digital switching in the quantum domain,” IEEE
Transactions on Nanotechnology, vol. 1, no. 3, pp. 154–164, 2002.

[9] S. T. Cheng and C. Y. Wang, “Quantum switching and quantum merge sort-
ing,” IEEE Transactions on Circuits and Systems, vol. 53, no. 2, pp. 316–325,
February 2006.

[10] C. C. Sue, “An enhanced universal n x n fully nonblocking quantum switch,”
IEEE Transactions on Computers, vol. 58, no. 2, pp. 238–250, 2009.
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