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This dissertation focuses on energy transfer (rotational, vibrational, and elec-

tronic) of CH2 in its ground and first excited electronic states (X̃ 3B1 and ã 1A1),

by collisions with the helium atom.

Initially we investigate energy transfer within the two electronic states sepa-

rately. We carry out ab initio calculations to determine the potential energy surfaces

for the interaction of He with CH2 in these two states. The PES for He–CH2(ã)

is more anisotropic than for He–CH2(X̃). In the former case we perform quantum

scattering calculations and report state-to-state and overall removal cross sections,

from which we compute room temperature rate constants.

For He–CH2(X̃) we determined the dependence of the PES on the CH2 bending

degree of freedom. By averaging over the bending vibrational wave functions, we

were able to investigate collisional relaxation of both rotation and the molecular



bending. The PES of the X̃ state is less anisotropic than that of the ã state, resulting

in a less efficient relaxation process. Vibrational relaxation is very inefficient, with

cross sections less than 1% of those for rotational relaxation.

By taking into account the weak spin-orbit coupling between the ã and X̃

states, we explore collision-induced electronically inelastic processes. We invoke,

the mixed-state model, in which transitions are due entirely to the mixing of nearly-

degenerate pairs of rotational levels. We compare the computed removal rate con-

stants with experimental results by Hall and Sears at Brookhaven.

Finally, we simulate the time evolution of the singlet-triplet relaxation of CH2

by solving the relaxation master equation. The simulation shows that relaxation

occurs in three stages: immediate re-distribution between the two mixed states, fast

rotational relaxation within the ã state and a much slower relaxation within the X̃

state. Eventually, most of the population relaxes to the X̃ state.
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separations corresponding to the location of the global minimum . . . 88

5.4 Dependence of potential energies on φ when θ = 90◦ for CH2(X̃, ã)–He. 89
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Chapter 1: Overview

The subject of this dissertation is collisions of CH2 molecules with He. The

goal is the investigation of collision-induced relaxation within and between the two

lowest electronic states of CH2: the ground X̃3B1 state and the first excited ã1A1

state. First, we investigate relaxation within each state separately. We then model

electronic energy transfer between these two states by including the weak spin-orbit

coupling between them.

The triatomic molecule CH2 is an important intermediate in organic synthe-

sis [1–3], chemical combustion [4, 5] and atmospheric photochemistry [6–8]. The ã

and the X̃ states of CH2 should be considered as two different species because of

their significantly different reactivities [9]. Collisional transfer between these states

is crucial to understanding the chemistry of CH2. Bley and Temps [10] applied the

“mixed-state model” to study this intersystem crossing, determining the degree of

mixing for pairs of accidentally degenerate rotational levels. Hall, Sears and co-

workers [11–14] studied experimentally the role of these mixed states in collisions of

CH2 with noble gases. Recent measurements by Gannon, Seakins and co workers [15]

further support the assumptions of the “mixed-state model”. Since spectroscopists

designate transitions between states of different multiplicity as “intersystem cross-

1



ing” [16], we shall designate the collisional analogue as “collision-induced intersystem

crossing”.

Prior to the description of our three major research projects (Chapters 4, 5,

6), we include two introductory chapters. The first, Chapter 2 reviews briefly the

electronic structure and ro-vibrational level structure of the 3X̃ and 1ã states of

CH2, the “mixed-state model” for collision-induced transitions between these two

states, and, in conclusion, a review of relevant experiments. Chapter 3 introduces

the methods we used for the ab initio calculations of the CH2−He potential energy

surfaces and the subsequent quantum scattering calculations.

Motivated by work in the group of Hall and Sears at Brookhaven, we initially

investigated (Chapter 4) rotationally inelastic collisions of CH2(ã) with the helium

atom. [17] We determined accurate potential energy surfaces (PES) for the inter-

action between CH2(ã) and He, treating the CH2 molecule as rigid with a fixed

bond length and a fixed bending angle. We then carried out quantum scattering

calculations of state-to-state and the overall inelastic cross sections. From these,

we calculated room temperature rate constants as a thermal average of the energy

dependence of these cross sections.

Following the study of the ã state, we investigated (Chapter 5) rotational

energy transfer within the ground X̃3B1 state. [18] In contrast to our study of

CH2(ã), because of the low barrier to linearity in the CH2(X̃) state, [19] we allowed

the bond angle to vary in the ab initio calculations. We then averaged the PES over

the bond angle, weighting by the square of the bending wave function.

For the X̃ state, we carried out separate scattering calculations for rotational

2



transitions within each of the four lowest bending vibrational manifolds (0,v2,0) [v2 =

0, 1, 2, 3]. From this we determined the dependence of the rotational inelasticity

(both state-to-state cross sections and room-temperature rate constants) on the

bending vibrational quantum number. Both the cross sections, and, consequently,

the rate constants, were found to be smaller than those of the ã state.

Subsequently, again for the X̃ state, we included the small coupling between

rotational levels associated with different bending vibrational levels to investigate

the ro-vibrational relaxation, also described in Chapter 5. Ro-vibrational relaxation

of CH2(X̃) was found to be several orders of magnitude less efficient than rotational

relaxation within a given bending vibrational manifold.

In Chapter 6 we present results on collision-induced transitions between the ã1

state and the X̃3 state. To treat collision-induced intersystem crossing, we adopted

the “gateway” model [10]. The spin-orbit coupling between the ã and X̃ states of

the isolated CH2 molecule is weak. Nevertheless, this coupling becomes significant

whenever the energy gap between two levels of the same rotational quantum number

in the two electronic states is less than the magnitude of this spin-orbit coupling.

The mixing between a pair of nearly degenerate “gateway” (or mixed) states allows

transitions between the full rotational manifolds of both the ã and the X̃ states.

Subsequently, we solve the relaxation master equation to simulate the time-

dependent relaxation of these coupled singlet-triplet manifolds. This multilevel re-

laxation encompasses three distinct steps: (i) immediate re-distribution among the

two mixed states, (ii) fast rotational relaxation within the ã state, and (iii) slower

rotational relaxation within the X̃ state.
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Finally, following the technical material in Chaps. 4–6, we conclude with a

short summary and discussion. Some technical material is contained in Appendices

A and B.

The two studies on rotational inelastic collisions within the two electronic

states, Chap. 4 and a major fraction of Chap. 5 of this dissertation, have been

published in the Journal of Chemical Physics (JCP):

[1] L. Ma, M. H. Alexander and P. J. Dagdigian, Theoretical investigation of rota-

tionally inelastic collisions of CH2(ã) with helium, J. Chem. Phys. 134, 154307

(2011). [17]

[2] L. Ma, P. J. Dagdigian and M. H. Alexander, Theoretical investigation of rota-

tionally inelastic collisions of CH2(X̃) with helium, J. Chem. Phys. 136, 224306

(2012). [18]
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Chapter 2: Methylene

2.1 General Considerations

Methylene (CH2), a small molecule with only six valence electrons, is an impor-

tant intermediate in organic synthesis [1–3], chemical combustion [4,5] and planetary

photochemistry [6–8]. The molecule is the simplest carbene, one of the most reactive

intermediates in organic chemistry. [1] The highest two filled molecular orbitals of

CH2 are, in linear geometry, the non-bonding 2px and 2py atomic orbitals on the C

atom (we assume that the linear molecule defines the z axis). In singlet CH2 one of

these orbitals is doubly occupied, and the other unoccupied, so that it can react as

either an electron donor or an electron acceptor. In the ground triplet state, each

of these orbitals is singly occupied. The ground state behaves as a diradical which

can dimerize and quickly form ethylene. In both insertion and addition reactions

(to multiple bonds), the mechanisms for reactions of the singlet and triplet carbenes

are quite distinct. [2, 3]

In combustion environments, the ã state CH2 reacts rapidly with radicals

as well as with many stable molecules, including but not limited to O2 [20–22],

NO [21, 22], N2 [21], CO [21], CH4 [21, 23, 24] and H2 [20, 21, 23, 25]. The X̃ state

reacts only with a few very reactive species like O, O2 [22, 26, 27], NO [26, 28] and

5



C2H2 [29], but at a slower rate compared to the singlet. [4, 5, 9]

In planetary atmospheres, methylene is a common product of the photochem-

ical destruction of methane. On the outer Jovian planets (Jupiter, Saturn, Uranus

and Neptune), CH2, in both singlet and triplet states, forms by Lyman α dissoci-

ation of methane. On these planets the more reactive ã state reacts rapidly with

H2 to produce another reactive radical: CH3. The less reactive X̃ state reacts

with this CH3. The CH2 molecule also acts as an intermediate in the reforming of

hydrocarbons.

By contrast, on planets with nitrogen atmospheres (Titan, for example) the

hydrocarbon cycle completes in a significantly different way. Here, collisions of the ã

state with N2 lead to rapid intersystem crossing, so that the ã state CH2 radicals are

no longer available to react with H2. This affects the entire hydrocarbon cycle. [7,8]

Since the reactivities of CH2 in its ground triplet and first excited singlet states

are so different, [9,30] these two states are often treated as distinct species in kinetic

simulations. Thus, understanding the collisional relaxation of each electronic state,

as well collision-induced intersystem crossing between them, is essential in a proper

modeling of reaction networks involving methylene.

2.2 Structure and Rotational Levels of CH2

2.2.1 Electronic Structure

The structure of CH2 is similar to that of one of our most familiar molecules:

H2O. A triatomic with two equivalent H atoms, CH2 molecule is planar with a C2

6
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Figure 2.1: Geometry of the CH2 molecule. The x axis is assumed to be the C2 symmetry
axis. The molecule lies in the xz plane.

axis, as shown in Fig. 2.1. The molecular plane (xz plane) contains the principal C2

axis which is also a σv reflection plane. Both the ground state and the first excited

state of CH2 are bent. This geometry will be assumed by default here in this thesis,

unless pointed out specifically.

Another σv plane (the xy plane) intersects perpendicularly the molecular

plane. With one C2 axis and two σv planes, bent CH2 belongs to the C2v point

group.

For a C2v molecule, all molecular orbitals correspond to the four characters:

a1, a2, b1 and b2. Table 2.1 lists the symmetries of these four types with respect to

the three C2v symmetry operations, as well as (trivially) to the identity operator.

The 1s, 2s and 2px orbitals of the carbon atom belong to a1 symmetry (fully

symmetric). The 2py and 2pz orbitals, have, respectively, b1 and b2 character. Molec-

ular orbitals are formed as linear combinations of the carbon orbitals with the

symmetric (1sa + 1sb; a1 symmetry) and antisymmetric (1sa − 1sb; b2 symmetry)

7



Table 2.1: Character table for a C2v point group

C2v E C2(x) σv(xz) σv(xy)

a1 +1 +1 +1 +1

a2 +1 +1 −1 −1

b1 +1 −1 −1 +1

b2 +1 −1 +1 −1

combinations of the 1s orbitals on the two H atoms. Thus the 5 C atomic orbitals

and 2 H atomic orbitals combine to form 7 molecular orbitals, 4 of a1 symmetry, 2

of b2 symmetry and 1 of b1 symmetry.

The relative energies of these molecular orbitals are shown in Fig. 2.2. At very

low energy (not shown on the figure) lies the 1a1 orbital which is essentially the

C 1s orbital. The second and third orbitals of a1 symmetry are combinations of the

carbon 2s and 2px orbitals and the positive linear combination of the 1s orbitals of

the hydrogen. The 1b2 orbital, also bonding, is a combination of the 2pz orbital on

the C and the negative linear combination of the 1s orbitals of the hydrogen. The

out-of-plane 2py orbital on the C forms the non-bonding 1b1 orbital.

As shown in Fig. 2.3, in the lowest singlet state of CH2 all MO’s up to and

including the 3a1 orbital are doubly filled. This state is a classic example of Walsh’s

rules . In linear geometry, the 3a1 and 1b1 orbitals are non-bonding, corresponding,

respectively, to the 2px and 2py orbitals on the C atom. As the molecule bends, the

3a1 orbital becomes a bonding orbital, while the 1b1 orbital remains non-bonding.
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C H

CH2

2pz2px 2py

2s

1s

2b2

4a1

1b1

3a1

1b2

2a1

    C

    H    H

    C

    H    H

    C

    H
    H

Figure 2.2: Relative energies of the molecular orbitals of H, C, and CH2. The 1a1 (1s)
orbital lies at much lower energy and is not shown. The contour plots of the 1b2, 3a1 and
1b1 orbitals are also shown (below or above the levels, in blue and red).

Thus, CH2 in the ã state is strongly bent. Because all the MOs are doubly filled in

this singlet state, designated ã, is fully symmetric (A1). At slightly lower energy lies

the X̃ state. This is a triplet-coupled di-radical (multiplicity 3), in which the one

electron is transferred from the 3a1 orbital to the 1b1 orbital. The overall symmetry

of this state is then B1.

Since the 3a1 orbital – the orbital which strongly favors bent geometry – is

only singly-occupied in the X̃ 3B1 state, the bending minimum occurs at a larger

HCH angle (134o for the X̃ state [31] compared with 102o for the ã state [32] and
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~

Figure 2.3: (Left Panel) Electron occupancy in the ground X̃3B1 state of
CH2 [1a1

22a1
21b2

23a1
11b1

1], and (Right Panel) in the the first-excited ã1A1 state
[1a1

22a1
21b2

23a1
2].

the barrier to bending inversion is much smaller in the X̃ state (∼1900 cm−1 [19] as

compared to > 8000 cm−1 for the ã state [33]).

The marked difference in reactivity CH2 in its two lowest electronic states can

be explained by their different orbital occupancies. In the ã state, the empty 1b1

orbital perpendicular to the plane of the triatomic can act as an electron “acceptor”

when another atom or molecule approaches perpendicular to the xz plane in Fig. 2.1,

or, alternatively as an electron donor when the attacking species approaches along

the x axis. Contrastingly, this Lewis acid-base amphoterism is absent in the X̃

state.

2.2.2 Rotational Structure: General Considerations

2.2.2.1 Rotational Motion of a Rigid Molecule

To understand the rotational motion of an asymmetric top molecule, let us

first consider the rotational motions of a rigid ellipsoid. An ellipsoid centered at the

10



origin of a Cartesian coordinate system satisfies the equation

x2

a2
+
y2

b2
+
z2

c2
= 1, (2.1)

where a, b, and c are the length of its semi-principal axes along the x, y, and z axes.

In treating the rotation of a non-linear molecule with non-uniform density, we will

replace the semi-principal axes by the moments of inertia. [34]

In a coordinate system with origin at the center-of-mass of the molecule, the

moments of inertia about the three Cartesian axes of a rigid-rotor are

Ixx =
∑
i

mi(y
2
i + z2i )

Iyy =
∑
i

mi(x
2
i + z2i )

Izz =
∑
i

mi(x
2
i + y2i ),

(2.2)

while the products of inertia are

Ixy = −
∑
i

mixiyi

Iyz = −
∑
i

miyizi

Ixz = −
∑
i

mixizi.

(2.3)
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The inertia tensor is a symmetric matrix of these quantities defined as

I =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 , (2.4)

The three principal axes of inertia can be identified by diagonalizing this ma-

trix. The eigenvalues, designated Ia, Ib, and Ic, are the new moments of inertia

along the principal axes. The latter are defined by the eigenvectors. By convention,

one orders these three principal moments of inertia from lowest to highest, in other

words, Ia ≤ Ib ≤ Ic. The top of highest symmetry is called a spherical top. It has

three equal moments of inertia Ia = Ib = Ic. Methane (CH4) is an example. When

two of the moments of inertia are equal, but different from the third, the molecule

is called a symmetric top (NH3 as an example). As illustrated in Fig. 2.4, there are

two cases: the prolate symmetric top with Ia < Ib = Ic and the oblate symmetric

top with Ia = Ib < Ic. Finally, when all three moments of inertia differ, the molecule

c

a b

a

b
c

Figure 2.4: (Left Panel) Schematic rendition of a prolate symmetric top; the moments of
inertia along the b and c axes are equal (a > b = c). (Right Panel) Similar rendition of an
oblate symmetric top; the moments of inertia along the a and b axes are equal (a = b > c).
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is called an asymmetric top. Often, an asymmetric top will be either close to the

prolate limit, with Ib ≈ Ic, or close to the oblate limit, with Ib ≈ Ia.

The rotational Hamiltonian of a rigid rotor is [34]

Hr =
1

2
Ia ω

2
a +

1

2
Ib ω

2
b +

1

2
Ic ω

2
c , (2.5)

where ωi(i = a, b, c) are angular velocities about the corresponding principal axes.

We can write this rotational Hamiltonian in terms of angular momenta:

Hr =
na

2

2Ia
+
nb

2

2Ib
+
nc

2

2Ic
, (2.6)

where the angular momentum ~ni is the product of the moment of inertia and the

angular velocity, namely ~ni = Ii~ωi. In quantum mechanics, the expression is analo-

gous, but involving angular momentum operators, n̂2, n̂2
a, etc.

The operator for the magnitude of the total angular momentum n̂2, where

~n = ~na + ~nb + ~nc, commutes with each of its Cartesian components, in other words

[n̂2, n̂i] = 0. Thus, the rotational Hamiltonian Ĥr commutes with n̂2 = n̂2
a + n̂2

b + n̂2
c

since [n̂2, n̂a] = [n̂2, n̂b] = [n̂2, n̂c] = 0. However, Ĥr does not commute with n̂i

unless the other two moments of inertia are identical. For example,

[Ĥr, n̂a] = i~ (
1

2Ic
− 1

2Ib
) (n̂bn̂c + n̂cn̂b). (2.7)

The rotational Hamiltonian will commute with n̂a if and only if Ib = Ic. Similarly,

[Ĥr, n̂b] = 0 if and only if Ia = Ic and [Ĥr, n̂c] = 0 if and only if Ia = Ib.
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The rotational spectrum of rigid molecular tops are constrained by these con-

siderations. Specifically, we have

a) Spherical top

For a spherical top, Ia = Ib = Ic = I, so the rotational Hamiltonian is

Ĥr = n̂2/(2I)

The eigenvalues (rotational energies) are then

En = ~2n(n+ 1)/(2I) ≡ Bn(n+ 1)

where n is the rotational quantum number and B = ~2/(2I) is the rotational con-

stant. Since all the principal axis moments of inertia are the same, Ĥr commutes

with each one, and the projection of the rotational angular momentum along any

one (but only one) of the principal axes is also a good quantum number.

n̂2 |nk〉 = ~2n(n+ 1) |nk〉

n̂c |nk〉 = ~k |nk〉 (2.8)

b) Symmetric top

For a prolate symmetric top, Ib = Ic, so that [Ĥr, n̂a] = 0 [Eq. (2.7)]. Since n̂a

commutes with the rotational Hamiltonian, its eigenvalue ka, the projection of

the rotational angular momentum on the a axis, is also a good quantum number.
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Thus, for a prolate top

n̂2 |nka〉 = ~2n(n+ 1) |nka〉

n̂a |nka〉 = ~ka |nka〉 (2.9)

In addition, the rotational Hamiltonian of a prolate top [Eq. (2.6)] can be rewrit-

ten as

Ĥr =
n̂2

2Ib
+ n̂2

a(
1

2Ia
− 1

2Ib
), (2.10)

By combining Eqs. (2.9) and (2.10) we find

Ĥr |nka〉 =

[
~2n(n+ 1)

2Ib
+ ~2k2a(

1

2Ia
− 1

2Ib
)

]
|nka〉. (2.11)

Thus the rotational energies for a prolate top are given by

Er,pro(n, ka) = Bn(n+ 1) + (A−B)k2a, (2.12)

where A designates the rotational constant for rotation around the a axis, namely

~2/(2Ia).

Entirely similarly, the rotational energies of an oblate top have energies of

Er,ob(n, kc) = Bn(n+ 1) + (C −B)k2c . (2.13)

where kc is the projection of the rotational angular momentum on the c axis,
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C = ~2/(2Ic) (A ≥ B ≥ C, since Ia ≤ Ib ≤ Ic), and n̂c |nkc〉 = ~kc |nkc〉.

c) Asymmetric top

In an asymmetric top none of the principal axis moments of inertia are equal.

Thus, as Eq. (2.7) reveals, the projection of the angular momentum along any

principal axis is not a good quantum number. There are no simple expressions

for the rotational energies. These can be obtained only by diagonalizing Ĥr

in a basis of symmetric top (|nk〉) functions. (Note, however, that the total

rotational angular momentum n is still a good quantum number). Thus, the

wave functions for a given n are linear combinations of the |nkc〉 (oblate) or

|nka〉 (prolate) functions.

The so-called Ray asymmetry parameter κ [35]

κ =
2B − A− C
A− C

. (2.14)

is a measure of the degree of deviation from symmetric top behavior. The value

of κ varies from −1 (prolate tops, B = C) to +1 (oblate tops, A = B). When κ is

very close to +1 or −1, the molecule is also called a slightly symmetric top. The

energies are then well predicted by the appropriate symmetric top expressions.

The rotational levels of an asymmetric top are designated as nkakc (or nkpko),

where ka and kc are the projection quantum numbers in the prolate and oblate

limits. The CH2 molecule in its ã and X̃ states is near prolate, so that the

rotational wave function is most compactly expanded in terms of the prolate
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symmetric top functions

|nkakc〉 =
∑
ka

Ckakc|nka〉

where the coordinate-space representations of the |nka〉 are Wigner rotation ma-

trix elements. [36]

2.2.2.2 Spin Multiplets

For molecules with non-zero electronic spin, the spin angular momentum vector

couples with ~n to form the total angular momentum ~j, in other words ~j = ~n+~s. For

a triplet state, s = 1 so that j = n+ 1, n and n− 1, which are labeled, respectively,

F1, F2, and F3. [37] The largest coupling is due to the dipolar interaction between

the spins of the two unpaired electrons. The full Hamiltonian is then diagonalized in

a set of spin-rotation prolate top functions. These are written as linear combinations

of the |nk〉 and |sks〉 states,

|nsjkj〉 =
∑
ka ks

(nkasks|jkj)|nka〉|sks〉 (2.15)

where (....|..) is a Clebsch-Gordan coefficient, and, for simplicity, we are assuming

that the projection quantum numbers of both ~s and ~j refer to the same inertial axis

system as ~n.

Experimental work by Sears et al. shows that the splittings between the three

spin-multiplets are on the order of only several tenths of a wavenumber (see Table
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VIII of Ref. [37]), much smaller than the splittings between the rotational levels.

2.2.2.3 Nuclear Permutation Symmetry

As discussed in more detail in Appendix A, for a triatomic hydride HMH

(where M designates a heavy atom), the total Hamiltonian is anti-symmetric with

respect to interchange of the two H atoms. The spins of the two hydrogen atoms

can be coupled to form either an I = 1 state (statistical weight of 3) which is

symmetric with respect to interchange or an I = 0 state (statistical weight of 1)

which is antisymmetric with respect to interchange. (Here, I designates the total

nuclear spin).

As with the diatomic molecule H2, the overall requirement that the system

be a fermion, imposes restrictions on which rotational states of the molecule can be

combined with which nuclear spin isomer (I = 0 or I = 1). The two sets of rotation-

nuclear spin isomers are denoted ortho and para, with the former designating the

state of larger statistical weight. Appendix A presents a more complete discussion

of this topic.

2.2.3 Rotational Structure of CH2

For a highly symmetric molecule like CH2, there is a simple method to identify

the principal axes. As depicted in Fig. 2.5, we adopt the coordinate system of

Fig. 2.1, but centered at the center-of-mass. This is the coordinate system in which,

later, we will expand the CH2–He PES for our scattering calculations (see Secs. 3.2
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and 4.2 for details). Because of symmetry, and the positioning of the origin, the

products of inertia [Eq. (2.3)] are all zero. Thus, the three principal axes are just

the CH2 Cartesian axes shown in Fig. 2.5.

x

y

z

R

yy

R

φ

θ

H

C

He

H

Figure 2.5: Body-frame coordinate system used to specify the orientation of the helium
atom with respect to the center of mass of the CH2 molecule. The body-frame z axis is
defined to lie along the a inertial axis of the molecule. The molecule lies in the xz-plane,
shown here in light green. Note that the origin is at the center of mass, which is displaced
(slightly) toward negative x from the C atom.

For H2, permutation of the two H nuclei corresponds, for the electronic degrees

of freedom, to an inversion of the coordinate system. In the case of CH2, permuta-

tion of the two H nuclei corresponds to a 180◦ rotation around the molecular axis.

The electronic wave function for the ã1A1 state is symmetric with respect to this

operation, while that for the X̃3B1 state is antisymmetric. Thus, the attribution of

which rotational levels are associated with the two (I = 1 and I = 0) nuclear spin
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species reverses for these two states. For the ã state, rotational level nkakc is a para

level if and only if ka + kc = even (or, equivalently, if ka and kc are both even or

both odd), but is an ortho level when ka +kc = odd. For the X̃ state, an even value

of ka + kc corresponds to an ortho level while an odd value of ka + kc corresponds

to a para level. The details of this assignment are explained in Appendix A.
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Figure 2.6: Rotational levels of ortho (dashed) and para (solid) CH2(ã) (Left Panel) and
CH2(X̃) (Right Panel). The rotational constants for the ã state are A = 20.118 cm−1,
B = 11.205 cm−1 and C = 7.069 cm−1, [38, 39] while for the X̃ state, A = 73.811 cm−1,
B = 8.450 cm−1 and C = 7.184 cm−1. [40] We set the energy of the lowest rotational level
of the (0,0,0) origin of the ã state to zero.

We treat the CH2 molecule in its ã state as a rigid-rotor with a C−H bond

length of 1.11 Å and an H−C−H bending angle of 102◦ [32]. From Eq. (2.2), we

can calculate the moments of inertia of CH2(ã) along the three moments of inertia

20



[Eq.(2.2)]. We find (in atomic units) Ixx = 9761, Iyy = 15242 and Izz = 5481. As

discussed earlier, for the highly symmetric CH2 radical, the coordinate system of

Fig. 2.5 does define the principal axis frame, with a→ z, b→ x, and c→ y.

The situation for the X̃ state is more complicated. The arrangement of the

principal inertia axes is identical to that of the ã state, namely a → z, b → x,

c→ y. But, as we discussed briefly in Chap. 1, we cannot treat CH2(X̃) as a rigid

molecule, due to a low barrier to linearity (more details in Chap. 5). In describing

the potential energy surface for the interaction of He with CH2(X̃) we have to

consider the variation with respect to the HCH angle. Then, in carrying out the

scattering calculations, we have to average over this degree of freedom, weighting

by the square of the bending vibrational wave function.

2.2.4 Singlet-Triplet Mixing in CH2

As stated earlier in this dissertation, the difference in electronic structures of

the ã and X̃ states CH2 leads to significantly different reactivities. In addition, as

our work (Chaps. 4, 5 and 6) will show, rotational relaxation within the ã state is

2∼3 times faster than within the X̃ state. [17, 18] Because the two states lie close

in energy, collisional transfer between these states can be important.

Although CH2 contains only few-electron (light) atoms, there will be a small

spin-orbit coupling between the 3X̃ and 1ã states, on the order of a few wave num-

bers. [10] Appendix B of this thesis discusses the spin-orbit coupling in full de-

tail. The spin-orbit coupling will cause significant state mixing whenever rotation-
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vibration levels associated with these two electronic states lie within a few wave

numbers of each other. There are two further restrictions: these nearly degenerate

levels will be coupled only if they have the same total angular momentum j and

only when they correspond to the same permutation symmetry.

Since CH2 is a hydride, the rotational level distributions are sparse. Addition-

ally, only roughly half of the levels belong to a given permutation species. Thus,

the occurrence of a pair of X̃ − ã levels which are significantly mixed is rare. To

illustrate this, Fig. 2.7 shows a slice from of Fig. 2.6 at higher resolution in the

vicinity of several nearly-degenerate X̃ − ã pairs.

In developing a first-order model for collision-induced transitions between the

vibration-rotation manifolds of the two electronic states, one need consider only

couplings arising from these rare pairs of mixed levels. A kinetic model based on

this approximation was first developed by Freed and co-workers. [41–43] Because

of the availability of spectroscopic and kinetics data on the methylene radical (as

summarized in references [44] and [9]), CH2 is an ideal species to assess the accuracy

of the mixed-state model of Gelbart and Freed. [10,12,15].

In this model, intersystem crossings occur only through a few pairs of “gate-

way” (or mixed) levels. These have partial singlet and partial triplet character. For

notational simplicity, let the rovibronic (rotational-vibrational-electronic) state of

the X̃ and ã components of a mixed pair be

|ψs〉 = |χsvjksaksc〉|1A1〉 (2.16)
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Figure 2.7: Energy diagram of the four low-lying strongly-mixed “gateway” pairs in the
energy range of 250–600 cm−1, measured relative to the lowest rotational level of the
(0,0,0) origin of the ã state. This figure is a slice of Fig. 2.6 over a smaller range of energy.
The percentage mixing determined by Bley and Temps [10] are shown in light blue. This is
the square (multiplied by 100) of the sine of the mixing angle defined below in Eq. (2.20).
Note that we have ignored the spin of the X̃ state, labeling the levels in this state by the
rotational quantum number n and its projections. In reality, each of these levels will be
a triplet with j = n + 1, n and n − 1. Only one of these will have a value of j identical
to that of the nearly-degenerate level in the ã state level (where j = n). Shown are levels
from the (0,2,0) and (0,3,0) bending manifolds of the X̃ state and from the vibrational
ground state (0,0,0) of the ã state. In the energy range shown, the pair with the most
complete mixing (nearly 50:50) is the 615(j = 7) level of the (0,3,0) vibrational manifold
of the X̃ state and the 716 level of the ã state.

and

|ψt〉 = |χtvjntktaktc〉|3B1〉 (2.17)

Here, we have introduced the eponymous indices t and s for the triplet and sin-
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glet states, and have subsumed the three vibrational quantum numbers (symmetric

stretch, antisymmetric stretch, bend) into a single index. In Eqs. (2.16) and (2.17)

we have explicitly appended the electronic wave functions of the two states. Note

that although the total angular momentum j has to be the same for the two lev-

els, in the X̃ state the rotational quantum number n can be different, since three

spin-multiplets occur for all values of n ≥ 1 , namely j = n and n± 1.

The matrix element of the spin-orbit Hamiltonian, Ĥso is

Hst = 〈ψs|Ĥso|ψt〉 = 〈χsv|〈jkaskcs|〈1A1|Ĥso|3B1〉|jntkatkct〉|χtv〉

Here, 〈1A1|Ĥso|3B1〉 is the electronic spin-orbit matrix element (see Appendix B),

which is a function of the nuclear coordinates. This is then integrated over the

product of the two rotational wave functions, and, ultimately, over the product of

the vibrational wave functions. If we assume that the electronic matrix element

is a constant, then the integral over the product of rotational wave functions is a

double sum of integrals of products of rotation matrix elements. Finally, the integral

over the vibrational wave functions constitutes a multidimensional Franck-Condon

factor.

The mixing between states |ψs〉 and |ψt〉 is obtained by diagonalizing the 2×2

matrix

H =

 Es Hst

Hst Et


where Es and Et are the energies of the singlet and triplet states, defined by
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Eqs. (2.16) and (2.17). In terms of the pure singlet and triplet states, the wave

functions for the mixed states can be written as

|ψA〉 = − cos θ |ψs〉+ sin θ |ψt〉 , (2.18)

and

|ψX〉 = sin θ |ψs〉+ cos θ |ψt〉 . (2.19)

where θ, the so-called “mixing angle”, is

θ =
1

2
tan−1

(
2Hst

Et − Es

)
(2.20)

The fractional mixing, is measured by the magnitude of sin2 θ, can rise as high as

50% (0.5) when the nominal singlet and nominal triplet levels are degenerate.

Bley and Temps [10] conducted a meticulous determination of the degree of

X̃ − ã mixing in CH2 for over 100 rotational levels of the ground vibrational level of

the ã state in rotational levels up to and including n = 10 and ka = 6. They found

(Table 5 of [10]) that only 16 pairs have fractional mixings larger than 0.01, and, of

these only 5 pairs have fractional mixing larger than 0.1 (Table 2.2). In our study,

we focus on the first four pairs listed in the table. The 945[ã] and 946[X̃(020)] pair

have both high energy and large ka. They are consequently difficult to investigate

both experimentally and theoretically.

Outside of the four pairs of “mixed” or “perturbed” states, we shall assume

that all other rotation-vibration levels are unmixed by the spin-orbit coupling. As
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Table 2.2: Energies and mixing coefficients (from [10]) of the most strongly mixed pairs
in Fig. 2.7. All ã state levels are in the vibrational ground state (0,0,0). The zero of energy
is the lowest rotational level of this manifold.

o/p ã
X̃

Es(cm−1) Et(cm−1) sin2 θ
(v1v2v3) j, nkakc

para 431 (0,3,0) 4, 312 285.366 287.376 0.149

para 633 (0,3,0) 6, 616 502.132 501.302 0.138

ortho 716 (0,3,0) 7, 615 537.160 537.560 0.463

ortho 818 (0,2,0) 8, 937 567.028 568.728 0.256

ortho 945 (0,2,0) 9, 946 1042.44 1031.40 0.240

will be discussed below in Sec. 3.2 [see Eq. (3.25)], in the absence of spin-orbit

coupling we determine the cross sections for transitions between any two levels, in,

separately, either the X̃ or ã state, by fully quantum scattering calculations. For

this, we use the HIBRIDON code. [45]

Formally, the amplitude between an initial |i〉 and a final |f〉 state can be

written as

〈i|T̂ |f〉 ≡ Tif (2.21)

where T̂ denotes a generalized transition operator. In the mixed state model, the T

matrix is computed, separately, for the unmixed X̃ and ã levels. Then, Eq. (2.21)

is extended, to take into the mixed character of the pair. This will allow collision-

induced coupling between the two mixed levels in the vibrational manifolds of both

electronic states.
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In the simplest approximation, we will treat each pair of mixed levels sepa-

rately. The wavefunctions of the mixed pair are given by Eq. (2.18) and (2.19). The

transition amplitudes involving transitions to/from one or the other of the pair of

mixed states from/to any unmixed level will be straightforward linear combinations

of the T -matrix elements between the unmixed states.

For example, from the mixed level with nominal ã character, whose wave

function is given by Eq. (2.18), into an unmixed level in the singlet ã state, which

we designate |s′〉, we have

TAs′ = 〈ψA| T̂ |ψs′〉

= (− cos θ 〈ψs|+ sin θ 〈ψt|)T̂ |ψs′〉 = − cos θ 〈ψs| T̂ |ψs′〉+ sin θ 〈ψt| T̂ |ψs′〉

= − cos θ Tss′ . (2.22)

The cancellation of the 〈ψt| T̂ |ψs′〉 term in going from the 2nd to the 3rd line occurs

because we assume no coupling between the singlet and triplet rovibronic manifolds

in the absence of spin-orbit mixing. In other words, in the mixed-state model, the

weak spin-orbit coupling in the isolated CH2 molecules allows for a mixing of the

nearly-degenerate pairs. Outside of this mixing, we ignore any direct spin-orbit

coupling during the course of the collision.

Similarly, from the mixed level with nominal X̃ character, whose wave function

is given by Eq. (2.19), into an unmixed level in the singlet ã state, which we designate

|s′〉, we have

TXs′ = sin θ Tss′ (2.23)
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Also, for transitions from the mixed pair into unmixed levels in the triplet X̃ state,

we have

TXt′ = cos θ Ttt′ (2.24)

and

TAt′ = sin θ Ttt′ (2.25)

The T -matrix elements for transitions between the pair of gateway states are

more complicated. There are two terms in both Eq. (2.18) and (2.19). This gives

rise to four possible mixed T -matrix elements. Of these, two vanish because of the

absence of coupling between the unmixed ro-vibronic levels of the two states. We

then find, taking as an example the state of nominal ã character,

TAA = 〈ψa| T̂ |ψa〉

= (− cos θ 〈ψs|+ sin θ 〈ψt|)T̂ (− cos θ |ψs〉+ sin θ |ψt〉)

= cos2 θ 〈ψs| T̂ |ψs〉+ sin2 θ 〈ψt| T̂ |ψt〉 = cos2 θ Tss + sin2 θ Ttt. (2.26)

For the three other possible couplings (XX, AX and XA) we find

TXX = sin2 θ Tss + cos2 θ Ttt (2.27)

and

TXA = TAX = cos θ sin θ (−Tss + Ttt) (2.28)

We note, in passing, that the T-matrix elements between the two different com-
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ponents of a mixed pair are linear combinations of the elastic Tss and Ttt matrix

elements, which can be expected to be both large in magnitude, but certainly not

identical. Thus, the T-matrix elements connecting the two mixed states “borrow”

from the T-matrix elements for elastic transitions, which are large. Thus we antic-

ipate that the collisional transfer between the components of a mixed pair will be

efficient.

2.3 Previous Experimental Studies of Collisions of CH2 with Noble

Gases

The group of Hall and Sears at the Brookhaven National Laboratory have in-

vestigated experimentally the role of mixed states in the kinetics of the thermaliza-

tion CH2 with both Ar and He as the collision partner. [12,14,46] Photodissociation

of ketene at 308 nm produces singlet CH2 in nearly unit yield. [47] The nascent CH2

molecules are translationally hot, with a rotational rotational distribution that can

be well described as a Boltzmann distribution at 700–800 K.

Hall and Sears measured the time dependence of the populations of selected

ortho- and para-CH2(ã) levels. As the molecules cool to a room temperature Boltz-

mann distribution, the population of each individual CH2 rotational level exhibited

a double exponentially decay. Hall and Sears discovered that initially the rotational

levels with higher energies depleted faster than those with lower energies. In fact, the

latter showed initial increases in populations, followed by slow depletion at longer

times. Eventually all levels decayed at the same rate.
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Hall and Sears also reported that the decays of the 818 level of the ã and the

937(020) level of the X̃ state quickly exhibited identical time dependence. These

two levels constitute one of the mixed pairs listed in Table 2.2. The 716 and 615

pair in this table is nearly completely mixed. As a consequence, it was difficult to

distinguish experimentally the relaxation of the the two components. The other two

pairs in Tab.2.2 have low fractional mixings (∼ 15%). This is too small to allow as

clean an analysis as was possible for the 818–937 pair. Hall and Sears concluded that

to explain their results, collisional interconversion of the two levels of this mixed

pair needed to be at least ten times more efficient than rotational inelastic collisions

between other levels. Accordingly, in Chap. 6 below, we shall focus on the 818–937

pair.

Subsequent to relaxation to a room-temperature distribution, Hall and Sears

investigated the saturation recovery of ortho-CH2. These experiments involve bleach-

ing a single rotational level and monitoring the return of the population in that level.

This is kinetically equivalent to watching the total removal rate in an experiment in

which only the initial rotational level is populated. [48] They carried out saturation

recovery experiments for bleaching of both components of the 818–937 pair as well

as for some other ka = 1 rotational levels of the ground vibrational level of the

ã state. [14] As predicted, the most efficient saturation recovery occurs when one

of a pair of mixed-pair levels is initially depleted. Subsequent equilibration of the

population of the mixed-pair is then very fast. The collisional recovery of bleached

unmixed levels is much slower.

In another recent study on CH2, Gannon, Seakins and co-workers investigated
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experimentally some predictions of the gateway model and estimated the accuracy of

the mixed state model. [15]. Among the five strongest mixed pairs predicted by Bley

and Temps, and listed in Table 2.2, the two pairs for the para nuclear spin species

occur at lower energy than the remaining three pairs, which correspond to rotational

levels of o-CH2. Thus, at low temperature, where the lower rotational populations

are preferentially populated, one would expect gateway-induced relaxation of p-CH2

to be faster than that of o-CH2. As the temperature increases, we might expect

this preference to decrease. Gannon et al. observed a para vs. ortho preference

for 1956 T 6298 K, but not at higher temperatures. They conjectured that other

mixed pairs, accessible only at high temperature, might not yet have been identified.

Gannon and Seakins also analyzed the dependence of the para/ortho removal

rate on the size of collider. In the gateway model the spin-orbit coupling between

the nearly-degenerate pairs of ã and X̃ rotational levels is assumed unchanged dur-

ing the collision. Thus, to a first approximation, one might expect the efficiency

of the gateway to be independent of the collision partner, at least for the noble

gasses. In contrast, experimentally they detected significant changes in the ratio of

the para/ortho removal rates with various noble gas colliders at low temperature.

They suggested that since the collision will cause transient changes in the energy

separations of the CH2 rotational states, the mixing between the nearly-degenerate

pairs will vary during the course of the collision, and not necessarily remain fixed

at its asymptotic value.

We might argue, in response, that the effect of the mixing is most manifest

in the intra-pair couplings, in which differences in the elastic T -matrix elements
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intervene [see Eqs. (2.26)-(2.28)]. The elastic scattering of CH2 will be quite depen-

dent on the collision partner, especially the phases of the elastic T -matrix elements.

Thus, we would not necessarily anticipate a lack of dependence on the identity of

the collision partner.

Gannon and Seakins concluded that their observations strongly supported the

gateway model, but suggested that some small modifications to the model might be

necessary.
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Chapter 3: Theoretical Methods

3.1 Potential Energy Surfaces and ab initio Calculations

To investigate the collision-induced relaxation of CH2 we solve the time-independent

Schrödinger equation

ĤΨ(Q,q) = EΨ(Q,q), (3.1)

for the He−CH2 system, where E is the total energy. Here, Q and q denote the

coordinates of, respectively, the nuclei and the electrons. Under the assumption

that all nuclei and electrons are point masses, the Hamiltonian [49] of a polyatomic

system is

Ĥ(Q,q) =T̂N(Q) + T̂e(q) + V̂NN(Q) + V̂eN(Q,q) + V̂ee(q) + Ĥso

=− ~2

2
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∑
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e2

rij
+ Ĥso

(3.2)

The indices α, β refer to the nuclei, while the indices i, j refer to the electrons. The

first five terms are, respectively, the operators for the kinetic energy of the nuclei

(T̂N), of the electrons (T̂e), the operator for the repulsive nuclear-nuclear interaction
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(VNN), the attractive electron-nuclear interaction (VeN), and the repulsive electron-

electron interaction (Vee). For the time being we ignore the spin-orbit coupling Ĥso.

Our goal is to simplify the equation and eventually find the approximate solutions

of this Schrödinger equation.

Due to the presence of the electron-nuclear interaction VeN term, the elec-

tronic and nuclear motions of the system are not separable. To accomplish this

separation, and thereby simplify the problem, we introduce the Born-Oppenheimer

approximation. [50] Under the Born-Oppenheimer approximation, we can separate

the electronic motion of the system, obtaining the electronic Schrödinger equation:

Ĥe(Q,q)Φ(k)
e (Q,q) = E(k)

e (Q)Φ(k)
e (Q,q), (3.3)

where the electronic Hamiltonian is defined as

Ĥe(Q,q) = T̂e(q) + V̂eN(Q,q) + V̂ee(q), (3.4)

In Eq. (3.3) the superscript index k designates a particular electronic state (in our

case k = 1 or 2 designates, respectively, the 3X̃ or 1ã states of CH2). The electronic

wavefunction Φ
(k)
e is a function of the electronic coordinates but depends also on the

position of the nuclei Q. The total wave function of Eq. (3.1) is

Ψ(k)(Q,q) = Φ(k)
e (Q,q)Φ

(k)
N (Q). (3.5)

In our research, at each set of nuclear coordinates Q, we carry out ab initio
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calculations for the electronic wave functions Φ
(k)
e (Q,q) and the electronic energies

E
(k)
e (Q). By performing ab initio calculations at various Q, we obtain the electronic

energy of state k as a function of the positions of the nuclei. This defines the

potential energy (or potential energy surface, PES) which subsequently governs the

motion of the nuclei. For these ab initio calculations we used the MOLPRO program

suite [51], versions 2009.1 and 2010.1.

The PES is the sum of the electronic energy as a function of relative positions

of the nuclei as well as the repulsion between the nuclei themselves. For a diatomic

system, besides the three coordinates used to locate the position of the center of

mass and two angles to specify the orientation of the bond axis, a final distance R is

needed to specify the distance between the two nuclei. The potential of a diatomic

system is only a function of this latter, as shown in Fig. 3.1.
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Figure 3.1: Schematic plot of the dependence of the potential energy potential on the
atom-atom distance for a diatomic system. R0 is the extent of the repulsive interaction
and De is the depth of the potential.

In general, 3M coordinates are necessary to characterize the location of the

nuclei in a nonlinear M−atom system, of which three coordinates define the location
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of the overall center of mass, and another three specify the orientation of the system.

Consequently there are 3M − 6 internal degrees of freedom. The complexity of the

ab initio calculation and the extent of the PES will increase swiftly with the increase

of the size of the molecules. In the case of He–CH2, if the two C−H bond lengths

and the H−C−H bending angle are fixed, the relative position of the He atom with

respect to the center-of-mass of the CH2 can be described by three spherical polar

coordinates R, θ and φ.[Fig. (3.2)] For a grid of R, θ and φ values, we perform ab

initio calculations and obtain the accurate potential energy surfaces for interaction

of He with the first excited (ã) state of CH2. In the case of the ground (X̃) state, we

allow the bending angle to vary, in which case the grid of coordinates is extended

to include this degree of freedom.
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Figure 3.2: (Left Panel) Demonstrative plot of the CH2(X̃)−He potential energy as a
function of spherical coordinates θ and φ, at a separation distance of R(CH2,He) = 6.0
bohr. (Right Panel) The corresponding contour plot. The PES was calculated by averaging
the bending-dependent PESs over the bending probability (see details in Chapter 5).

All our ab initio calculations were carried out with the CCSD(T) method [52,

53], a simplified coupled-cluster(CC) expansion of the electronic wave function. In
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the configuration-interaction (CI) approach, the electronic wave function of a system

is represented by a full set linear combination of products of single-particle functions

(or molecular orbitals). If |Φ(0)
e 〉 designates the dominant electron configuration,

then the wave function can be written, formally, as a linear combination of |Φ(0)
e 〉,

along with all single, double, triple, up to N -electron excitations (where N = 10 for

the CH2He system), namely (for any chosen electronic state) [54]

Φe = Φ(0)
e +

∑
Si

|Φ(1)
e 〉+

∑
Di

|Φ(2)
e 〉+

∑
Ti

|Φ(3)
e 〉+ . . . , (3.6)

Here, S, D and T denote, respectively, single, double and triple excitations. In the

CCSD(T) method, the single- and double-excitation corrections are determined with

an exponential cluster operator while the triple-excitation contribution is determined

perturbatively. [52]

The relative (or interaction) energy between CH2 and He is computed as the

difference between the energy of the complex (CH2−He) and the energy of the

separate CH2 and He fragments [55,56]

VCH2He(Q) = ECH2He(Q)− ECH2 − EHe. (3.7)

If only a finite atomic orbital basis is used to construct the molecular orbitals, then

the description of the CH2 and He components in the CH2–He might be better than

in the separated fragments (for example, the presence of the CH2 atomic orbitals

provides, in principle, a more complete basis for the He wave function than a similar
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calculation of just the He fragment). This Basis Set Superposition Error (BSSE)

can be eliminated by subtracting from the energy of CH2–He at a given geometry

the energy of the separated He and CH2, computed at the same geometry with the

full (called supermolecular) atomic orbital basis, namely [57]

VCH2He(Q) = ECH2He(Q)− ECH2He(Q)− ECH2He(Q). (3.8)

Here the overline indicates that the calculation is done with the full atomic orbital

basis but without the presence of the nuclei of the overlined moiety. Note that this

equation applies to CH2 in either electronic state, so that, in complete generality,

we should refer to the potential energy surface as V
(k)
CH2He(Q). We chose the zero of

energy so that this potential vanishes as the CH2 – He distance goes to infinity.

In our calculations we use the standard augmented correlation consistent po-

larized quadruple zeta (aug-cc-pVQZ) atomic orbital basis function sets. [58]. We

also add a set of additional atomic orbitals (without any accompanying nuclear

charges) centered at the midpoint of ~R, which joins the center of mass of CH2 with

He. Addition of these “mid-bond functions” has been found to improve accuracy in

the calculation of weak non-bonded interactions. [59,60]

3.2 Time-Independent Scattering Calculations

Once we have solved the electronic Schrodinger equation [Eq. (3.3)], we proceed

to solve Eq. (3.5) for the nuclear wavefunction, namely
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[
T̂N(Q) + E(k)

e (Q) + VNN(Q)
]

Φ
(k)
N (Q) =

[
T̂N(Q) + V

(k)
N (Q)

]
Φ

(k)
N (Q) = EΦ

(k)
N (Q)

(3.9)

where E
(k)
e is the CH2–He electronic energy when CH2 is in electronic state k. The

nuclear repulsion does not, of course, depend on the electronic state of the molecule.

Equation (3.9) also introduces the potential energy surface, V
(k)
N (Q), which governs

the motion of the nuclei. This PES is the sum of the electronic energy in state k,

E
(k)
e (Q)), and the nuclear repulsion, VNN(Q).

In reality, we carry out separate calculations for scattering of CH2 in each

electronic state. As outlined in Sec. 2.2.4, we allow for electronic state mixing, by

a transformation of the T matrix elements for the pure-state scattering. Thus, for

notational simplicity, from here on we will drop the electronic state index k, except

where explicitly needed.

The solutions to Eq. (3.9) correspond to the unbound (scattering) motion

of the He atom relative to the CH2 molecule. To obtain these we use a “close-

coupling” (CC) method, [61] which entails expanding in a set of functions which

span all nuclear coordinates, except for the separation coordinate R between the

centers-of-mass of He and CH2. This results in converting the partial differential

equation (3.9) to a set of coupled ordinary differential equations – hence the term

“close-coupling”.

Let us represent all the nuclear coordinates save R as s ≡ {θ, φ,Ω, rv}. Here

θ and φ are the orientation of ~R, Ω is the orientation of the CH2 molecule with
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respect to its principal axis, and rv designates, collectively, the three vibrational

coordinates of CH2. We shall designate by ξm(s) the complete set of functions that

span the internal space of the He–CH2 system which we will use in the expansion.

These are orthogonal and assumed normalized with respect to integration over s.

The CC expansion is

Φ(R, s) =
∑
m

Cm(R)

R
ξm(s), (3.10)

Substitution of Eq. (3.10) into Eq. (3.9), premultiplication by an arbitrary one of

the complete set, ξm′ say, and integration over the internal space, gives

∫
ξ∗m′(s)

[
T̂N(R, s) + V̂N(R, s)

]
ξm(s)ds = E

∫
ξ∗m′(s)ξm(s)ds (3.11)

The kinetic energy operator is (in atomic units, where ~ = 1)

T̂ (R, s) = − 1

2µR2

[
∂

∂R

(
R
∂

∂R

)
+ l̂2

]
+ ĤCH2(rv) (3.12)

Here l̂ is the operator for the orbital angular momentum of the He around the CH2,

with

~l ≡ ~J − ~n (3.13)

and ~J and ~n being the total angular momentum and the angular momentum of the

CH2 molecule. Here, we will follow Sec. 2.2.2 in using n to denote the rotational

angular momentum of the CH2 in the absence of electronic spin. Note, that we will
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ignore, unless explicitly stated otherwise – in particular in Chap. 6 – the spin of

CH2 in the X̃ state.

Finally, ĤCH2 is the Hamiltonian for the vibration-rotation motion of the CH2

molecule (see Sec. 2.2.2). Notably,

ĤCH2|nk〉|v〉 = εnkv|nk〉|v〉

where εn is the energy of the nkvth vibration-rotation state of CH2 (remember that

v is a composite index).

The coordinate space representation of the rotational motion of the CH2

molecule in the state |nk〉 is proportional to a rotation matrix elementDn
mnk

∗(Ω). [36]

Here k is the projection of ~n about the principal axis, mn is the projection of ~n about

an (arbitrary) external z axis, centered on the center-of-mass of the CH2, and Ω is

the orientation of the CH2 principal axis with respect to this external coordinate

frame. In this external coordinate frame, the rotational motion of He around CH2

can be described completely by an expansion in spherical harmonics Yl,ml
(θ, φ),

where the angles again refer to the external (or space-fixed) axis system centered on

the center-of-mass of the CH2 molecule. Here, the quantum number l corresponds

to the angular momentum defined in Eq. (3.13).

It is convenient to couple the vectors ~n and ~l to form the total angular mo-

mentum ~J [see Eq. (3.13)]. The coupled states are standard transformations of the
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uncoupled product states |nkmn〉|lml〉, namely

|nklJM〉 =
∑
mn,ml

(nmnlml|JM)|lml〉|nmnk〉

=
∑
mnml

(nmnlml|JM)Ylml
(θ, φ)Dn

mnk
∗(Ω) (3.14)

where (....|..) is a Clebsch-Gordan coefficient. In this set of coupled states both n,

the rotational angular momentum of the CH2, and l, the orbital angular momen-

tum of the He–CH2 pair, are good quantum numbers, along with the total angular

momentum J and its space-fixed projection M .

In terms of this coupled, space-frame basis, the wave function is expanded as

Φ(k)(Q) =
∑
nklJM

∑
v

CvnklJM(R)

R
|v〉 |nklJM〉 , (3.15)

In the absence of external fields, both the total angular momentum and its projec-

tion are conserved, so that the wave function and the expansion coefficients can be

indexed in J and M . These indices can be removed from the summation. We have

Φ(JM)(Q) =
∑
vnkl

CJM
vnkl(R)

R
|v〉 |nklJM〉 , (3.16)

We then insert this expansion into Eq. (3.9), premultiply by one of the internal

functions 〈n′k′l′J ′M ′|〈v′|, and integrate over all the internal coordinates (angular

and vibrational). The expansion functions are eigenfunctions of l̂2 (because l is a

good quantum number) as well as eigenfunctions of ĤCH2 . Thus, the matrix of T̂

[Eq. (3.12)] is diagonal. The matrix of the potential VN is block-diagonal in J and
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M , and also independent of M (since the scattering can’t depend on the orientation

of the entire system).

The CC equations are then

[
− d2

dR2
+
l(l + 1)

R2
− 2µ(E − Enkv)

]
CJ

vnkl(R) = −2µ
∑

v′n′k′l′

V J
v′n′k′ l′ ,vnkl

(R)CJ
v′n′k′l′(R),

(3.17)

where the matrix elements of the coupling potential are

V J
v′n′k′l′ ,vnkl

(R) = 〈n′k′l′JM |〈v′|V (Q)|v〉|JMnkl〉. (3.18)

In scattering calculations, each |v〉|nkl〉 state included in the wave function expan-

sion is called a “channel”. If we use a single index m to designate each channel,

then Eq. (3.18) can be written as:

[
− d2

dR2
+
lm(lm + 1)

R2
− 2µ(E − Em) + 2µVmm(R)

]
CJ
m(R) = −2µ

∑
m′ 6=m

Vm′m(R)CJ
m′(R) ,

(3.19)

It is cleaner to use a matrix representation of Eq. (3.19), namely

{
I
d2

dR2
+ 2µ

[
E−VJ(R)− l(R)

]}
CJ(R) = 0, (3.20)

Here E and l(R) are diagonal matrices with, respectively, elements E − Em (Em

being the internal energy of the mth rovibational state) and lm(lm + 1)/R2.

If we define

WJ(R) = 2µ
[
E−VJ(R)− l(R)

]
, (3.21)
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the CC equations become

[
I
d2

dR2
+ WJ(R)

]
CJ(R) = 0, (3.22)

Since the interaction potential goes to zero when R is infinitely large,

lim
R→∞

W J
m′m(R) = 2µ(E − Em)δm′m = 2µE

(m)
col δm′m = k2m (3.23)

where km is the wave vector of the mth channel, which is proportional to the relative

translational momentum of the collision of He with CH2 in its mth vibration-rotation

state at total energy E . At large R, the diagonal elements of the W matrix are

proportional to the collision energy in the mth channel.

The mth column of the CJ matrix corresponds to the expansion coefficients for

a collision of He with CH2 initially in its vibration-rotation state |nmkm〉|vm〉 and

with orbital and total angular momenta lm and J . This solution matrix is matched

to the boundary conditions

lim
R→∞

CJ(R) = e−ikR − SJeikR, (3.24)

where exp(±ikR) are diagonal matrices with elements exp(±ikmR). Here, SJ is

the scattering matrix. The (mm′)th element of SJ corresponds to the probability

amplitude that a collision of CH2, initially in vibration-rotation state |nmlm〉|vm〉

with He, with orbital angular momentum lm and total angular momentum J , will

end up in state |nm′km′〉|vm′〉 with orbital angular momentum lm′ at the same total
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angular momentum.

A collision between structureless particles is characterized by the energy E and

the impact parameter b. Classically, ~l = ~r × ~p = µvb. [62] Each collision is thus

characterized by a single orbital angular momentum l. In the case of an inelastic

collision, for a given value of the total angular momentum J and for a given value

of the rotational angular momentum n of the CH2 molecule, multiple values of both

the initial and final orbital angular momenta will contribute.

The integral cross section for a transition from an initial level nkv to a final

level n′k′v′, summed over all values of the initial and final orbital angular momenta,

and averaged over the 2n+ 1 degeneracy of the initial rotational level, can then be

calculated from

σnkv→n′k′v′ =
π

(2n+ 1)k2

∑
J,l,l′

(2J + 1)
∣∣T Jvnkl,v′n′k′l′

∣∣2 (3.25)

where the transition matrix TJ is

TJ = I− SJ . (3.26)

We use the Hibridon [45] code to calculate cross sections for the scattering of He

with CH2, by solution of the close-coupled equations.

Since CH2 is an asymmetric top, the rotational levels for a given n are linear

combinations of all the k projection states (see Chap. 2). The same linear combi-

nations are the states used for the CC expansion. We note that the crucial vector
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coupling presented in Eq. (3.14) is independent of k, and will thus be preserved for

an asymmetric top.

The potential matrix in the asymmetric top basis is then an orthogonal trans-

formation (since the number of states and their orthonormality is preserved) of

Eq. (3.18). The diagonal E matrix is also transformed, so that each matrix element

corresponds to the vibation-rotational energy of the asymmetric top levels. Once

this is done, the CC equations are solved, exactly as in the case of a symmetric

top, to yield an S matrix whose entries are probability amplitudes for transitions

between the various asymmetric top levels.

In the discussion of this section, we have assumed that the angular momentum

of the CH2 molecule is due only to its rotational motion in space, with quantum

numbers n, k, and mn. In the absence of spin, the total angular momentum of the

molecule, j, is thus just equal to n. In Chaps. (4) and (5) we treat collisions of

He with CH2 in, respectively the 1ã state, in which there the spin is 0, and in the

3X̃ state, in which the spin is 1. However, since the multiplet splittings due to the

electronic spin in the X̃ state are very small (see Table VIII of Ref. [37]), and since

the interaction potential contains no spin-dependent terms, in Chap. 5 we treat the

CH2 molecule in the X̃ state as a spin-free (S=0) system. This approximation will

certainly be justified if future experiments probing energy transfer in this state are

unable to resolve the spin-multiplets.

Chapter 6 treats collisional coupling between the ã and X̃ states, within the

framework of the mixed-state model introduced in Sec. 2.2.4. In this Chapter, we

still use Eq. (3.25) to determine inelastic cross sections but for transitions involving

46



one (or two) of the mixed state levels, the T -matrix elements are modified following

Eqs. (2.22)–(2.28). Since the mixing angle [Eq. (2.20)] is a function only of the

properties of the isolated CH2 molecule, Eqs. (2.22)–(2.28) can be used without

change in all the terms in the summation over the initial and final orbital angular

momenta l and l′ as well as over the total angular momentum J .

In Chap. 6, specifically in Sec. 6.3.3, we expand the scattering calculation to

determine cross sections for transitions between the three spin-multiplets of each

rotational level of CH2(X̃), namely j = n − 1, n, n + 1. We will find a strong

∆j = ∆n propensity rule: almost all the collision flux occurs for transitions in

which the relative orientation of ~n and ~S is preserved.

3.3 Fitting the CH2−He Potential Energy Surface

To calculate the matrix elements of the interaction potential [Eq. (3.18)] we

expand the PES in a set of orthogonal functions. We fit the expansion coefficients

to the results of our ab initio calculations, which is a set of numerical values of the

electronic energy on a grid which spans the coordinate space. As seen explicitly

in Eq. (3.18), this coordinate space includes the rotational motion of the CH2, the

vibrational motion of the CH2, and the motion of the He atom around the center-

of-mass of the CH2. It is simplest to assume a rigid CH2 molecule, in which case

the innermost integration in Eq. (3.18) (the integration over the vibrational motion)

is just a delta function corresponding to a rigid molecule in a particular bending
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vibrational state. In other words, we assume

〈v′|V (Q)|v〉 ≈ δvv′V (Qe)

Because the CH2 molecule in the X̃ state is floppy, we determine the dependence of

the interaction potential on the bending vibrational coordinate, and then integrate

over this coordinate, weighting by the the square of the bending vibrational wave

function. We then have a vibrationally-averaged interaction potential Vv′v.

We then expand the vibrationally-averaged potential or the interaction poten-

tial evaluated at Qe in a basis consisting of spherical harmonics, for which the z

axis is the principal axis of the CH2 molecule. Earlier studies of the scattering of

He with the spherical top NH3 molecule, [63] also used an expansion in spherical

harmonics, but oriented with respect to the C3 axis.

We have

V (R, θ, φ) =
∑
λµ

vλµ(R)Yλµ(θ, φ). (3.27)

As discussed in Sec. 2.2.1, the CH2 molecule has two reflection planes: xz and xy

in Fig. 2.5. The interaction potential must be symmetric with respect to reflection

in these planes. Or, mathematically

V (R, θ, φ) = V (R, θ,−φ) = V (R, π − θ, φ). (3.28)

Because [64,65]

Yλµ(θ,−φ) = (−1)µYλ−µ(θ, φ)
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and

Yλµ(π − θ, φ) = (−1)λ+µYλµ(θ, φ)

the xz and xy reflection symmetries may be satisfied by restricting the summation

in Eq. (3.27) to terms with (λ+ µ) even. We then have

V (R, θ, φ) =
∑

λ,0≤µ≤λ

vλµ(R) [1 + δµ0]
−1 [Yλµ(θ, φ) + (−1)µYλ−µ(θ, φ)] , (3.29)

Chapters 4 and 5 give more detail on the range of λ and µ included in the expansion

of the CH2(ã)–He and CH2(X̃)–He PES’s.

3.4 Thermal Rate Constants and the Master Equation

The inelastic cross sections given by Eq. (3.25) are functions of the collision

energy, which is the total energy minus the internal energy of the mth channel. Here,

since the He atom is structureless, the internal energy is the rotational-vibrational-

electronic (rovibronic) energy of level nkv. Alternatively, the cross section is a

function of the initial relative velocity between the He atom the the CH2 in level

nkv, namely

vm =
[
2µE

(m)
col

]1/2
. (3.30)

Multiplication by the collision velocity gives a flux (number per unit time per unit

area). If we then multiply by the number density of He, we would obtain the rate

(number per unit time) that CH2 would be converted from level nkv to level n′k′v′.

Thus, the product of the collision velocity times the cross section is the rate constant
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at relative collision velocity v.

At thermal equilibrium there will be a Maxwellian distribution of collision

velocities. The thermal rate constant, for a transition from level m to level m′ is

then

kmm′(T ) =

∫ ∞
0

vσmm′(v)f(v)dv

where f(v) is the Maxwell velocity distribution [66]

f(v) =

(
µ

2πkBT

)3/2

4πv2 exp
(
−µv2/2kBT

)
.

Here kB is the Boltzmann constant. From the relation between the collision energy

and the relative velocity [Eq. (3.30)], we can convert the integral over velocity to an

integral over collision energy, obtaining [67]

kmm′(T ) =

(
8

πµ(kBT )3

)1/2 ∫ ∞
0

σm→m′(Ec)Ec exp (−Ec/kBT ) dEc, (3.31)

In practice, cross sections are calculated on a dense grid of total energies E .

For a given initial state this grid is shifted, by the internal energy of the initial state,

into a grid of collision energies. Interpolation of this data allows us to determine

the rate constants at temperature T by numerical integration of Eq. (3.31).

Now consider the relaxation of a manifold of M rotational levels. The time

dependence of population in each level is governed by a master equation of dimen-
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sionality M . We write this in matrix notation as

dN

dt
= ρKN (3.32)

Here N is a column vector of the populations, namely (here we save space by giving

the transpose of this column vector)

NT =
[
Ns1 · · · NA · · ·Nsp Nt1 · · ·NX · · · Ntq

]

Note that we are here using n as a single index for a set of rotation-vibration levels

(which have quantum numbers n, k, and v). The ijth element of the matrix of rate

constants K is the rate constant, at temperature T for a transition from level j to

level i (note the ordering). The kij and kji rate constants satisfy detailed balance,

namely

gi exp (−Ei/kBT )ki→j = gj exp (−Ej/kBT )kj→i, (3.33)

where gi is the degeneracy of the ith level, kB is the Boltzmann constant and Ei is

the internal energy of the ith level. The diagonal element kii is equal to the inelastic

loss rate for level i, namely

ki = −
∑
j 6=i

kji

In other words the diagonal elements are the negative of the sum of all the off-

diagonal elements in the same column, or, equivalently, each column of the rate

constant matrix K adds to zero.

51



Alexander, Dagdigian, and Hall [48] have shown how the master equation

can be solved by transforming to diagonalizing the problem by working in a basis

of linear combinations of the level populations. Each one of these sets of popu-

lations decays exponentially, with a rate constant equal to the diagonal elements

of the transformed rate matrix. The lowest eigenvalue is zero. The corresponding

eigenvector is the Boltzmann equilibrium population. Thus, any arbitrary initial

population will always decay to a Boltzmann distribution.
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Chapter 4: Rotationally Inelastic Collisions of CH2(ã) with Helium

This chapter reports our investigation of rotationally inelastic collisions of

CH2(ã) with the helium atom. We give the details and results of the ab initio

calculations for He−CH2(ã), done with the CCSD(T) method and MOLPRO suite

of programs, [51] both discussed in Chap. 3. As mentioned above in Sec. 2.2.1,

in the ã state there is a lone pair of electrons in the 3a1 orbital and an empty

non-bonding orbital perpendicular to the molecular plane. The strongly-anisotropic

electron density gives rise to a strongly-anisotropic PES. Hence, we expect significant

rotational inelasticity within the ã state.

We first fit the calculated interaction energy, for a rigid CH2 structure, with an

expansion in spherical harmonics. We then carried out scattering calculations using

the HIBRIDON suite of programs. [45] We present and analyze the state-to-state

and total removal cross sections for transitions at a collision energy of 300 cm−1. We

attempt to correlate the size of various terms in the expansion with the magnitude of

the cross sections. We calculate the room temperature rate constant by averaging

the cross sections over a Maxwellian distribution of collision energy. Finally, we

compare the computed rate constants for overall depletion of selected ka = 1 levels

with experimental results from Komissarov, Hall and Sears. [12]
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The following part of this chapter is reproduced with some changes from our

published paper: L. Ma, M. H. Alexander and P. J. Dagdigian, Theoretical inves-

tigation of rotationally inelastic collisions of CH2(ã) with helium, J. Chem. Phys.

134, 154307 (2011). [17] As a consequence, some of the introductory material as well

as the general descriptions of the calculations, contain material that has already be

presented in Chapters 2 and 3 of this dissertation.

In this, as well as in our second published paper on collisions of He with

CH2(X̃), [18] we did not explicitly include the spin. We used j to designate the

rotational angular momentum of the CH2 molecule. Here, we prefer to use j for the

total molecular angular momentum (including the spin), and n for the rotational

angular momentum of CH2. This allows us, specifically in Chap. 6, to include spin,

vector-coupling ~S with ~n to form ~j.

4.1 Introduction

Rotational energy transfer is an important collisional process in many environ-

ments and plays a key role in thermalizing non-equilibrium rotational state distri-

butions. Molecular beam and laser techniques, [68, 69] as well as double-resonance

experiments in cells, [70–75] have provided state-to-state integral and differential

rotationally-inelastic cross sections, and inelastic rate constants, for a large number

of diatomic molecules. Concurrently, there have been many quantum scattering cal-

culations of these cross sections and rate constants, based on high-quality ab initio

potential energy surfaces (PESs). [70–72,75–78]
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By contrast, there has been less study of state-to-state collision-induced rota-

tional transitions in triatomic and larger molecules. Dagdigian [79] and Dearden et

al. [80] studied collisional rotational energy transfer in NH2 in its ground X̃2B1 and

Ã2A1 excited electronic states, respectively. Two groups have carried out state-to-

state molecular beam studies of collisions of NH3 with Ar, [81, 82] and comparison

has been made with quantum scattering calculations. [83] Nesbitt and co-workers

have utilized direct infrared absorption with a high-resolution laser in molecular

beam studies of state-to-state rotational transitions in CH4 and H2O in collisions

with rare gases. [84,85] They found reasonable agreement of their measured integral

cross sections with the results of quantum scattering calculations on the CH4–He

and H2O–Ar systems.

This chapter addresses rotationally inelastic collisions in singlet methylene,

CH2(ã). Although it has only 6 valence electrons, methylene has a rich spectroscopy

and complex collision dynamics. The ground triplet X̃3B1 and low-lying singlet ã1A1

electronic states have dramatically different reactivities, so that these states must

be considered as separate chemical species in combustion modeling. [86] Compli-

cating an understanding of the reactivity of these states is facile collisional X̃–ã

intersystem crossing, which proceeds through “gateway” rotational levels of mixed

electronic character. [10,12,14,15] Collisional relaxation of methylene involves these

intersystem gateways, as well as rapid rotational energy transfer within, separately,

the ã and X̃ electronic states.

Sears, Hall, and their co-workers used the technique of Doppler resolved tran-

sient frequency modulation absorption spectroscopy to study the collision-induced
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thermalization, intersystem crossing, and chemical reaction of CH2(ã). [12,14] This

technique has recently been extended to allow the study of state-resolved collisional

rotational energy transfer from specified rotational levels by saturation recovery ex-

periments, in particular for collisions of CH2(ã) with helium and argon. [12, 14] In

these experiments the population in a particular CH2(ã) rotational level is initially

depleted by electronic excitation with a pulsed laser. Using frequency modulation

absorption spectroscopy, Sears, Hall, and their co-workers follow the time-dependent

repopulation of this level. The rate constant for this process is identical to the rate

constant for collision depletion of the level in question.

There has been significant interest in the detection of collisional changes in

the orientation and alignment moments of m-state populations. In principle, these

can provide additional insight into the collision dynamics beyond that provided by

measurement of changes in state populations. [87–93] This chapter is organized as

follows: the next section presents the details of the ab initio calculation of the

CH2(ã)−He PES and a fit of the computed points to a form suitable for quantum

scattering calculations. Sec. 4.3 describes the methodology of the scattering calcu-

lations. We report in Sec. 4.4 state-to-state cross sections and rate constants and

discuss propensity rules. In Sec. 4.5 we compare our calculated rate constants with

the experimental results of Sears, Hall, and co-workers.
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4.2 Potential Energy Surfaces

The description of the potential energy surface for the interaction of a nonlinear

triatomic molecule with an atom has been presented previously. [63,94] The potential

energy depends upon the orientation (θ, φ) and the distance R with respect to the

center-of-mass of the molecule. With the molecule placed in the xz plane and the

z -axis lying along the a inertial axis, the interaction can be conveniently expressed

in terms of spherical harmonics as (see, also, Sec. 3.3)

V (R, θ, φ) =
∑
λ,µ

vλµ(R)(1 + δµ0)
−1 [Yλµ(θ, φ) + (−1)µYλ,−µ(θ, φ)] (4.1)

This body-frame coordinate system is illustrated in Fig. 2.5.

Our choice of this frame differs from the convention of Green and co-workers,

[95] who defined the z axis to lie along the C2 symmetry axis, which corresponds

to the x axis in Fig. 2.5 and which is perpendicular to the a inertial axis. In the

interaction of a nonlinear symmetric AB2-type triatomic molecule with an atom,

with our choices of axes the only nonzero terms in the expansion in Eq. (4.1) have

λ + µ even. The expansion of the potential with our choice of frame requires more

terms than for the frame used by of Green and co-workers, but the expressions for

the rotational wavefunctions are more diagonally dominant.

The ab initio calculations of the CH2(ã)−He potential energy surface were

carried out with the MOLPRO 2009.1 suite of computer codes. [51] Since we are

interested in rotational excitation at relatively low collision energies, we determined
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the potential energy surface (PES) by means of coupled cluster calculations with

inclusion of single, double, and (perturbatively) triple excitations (CCSD(T)). [53,

96] The bond length and bond angle of the CH2(ã) molecule were held fixed at R =

2.101 bohr and θ = 101.77◦. These values were computed by Petek et al. [32] using

the Ae and Be rotational constants obtained from analysis of infrared absorption

spectra of CH2(ã) in the hydride stretch region. An atom-centered, avqz atomic-

orbital basis was used, [58] with the addition of a set of bond functions located at

the mid-point of ~R. [59, 60]

The calculations were carried out on a grid of 19 values of the atom-molecule

separation [R (in bohr) = 3.5 – 10 in steps of 0.5; 11, 12, 13, 15, and 20] and 190

distinct orientations [19 values of θ, evenly spaced over between 0◦ and 90◦ , and

10 values of φ, evenly spaced between 0◦ and 180◦ , for a total of 3610 points. The

potential energy at other orientations can be related by symmetry to values within

the calculated range of orientations. The computed potential energies as a function

of R and the orientation were fitted with the expansion given in Eq. (4.1), as in

our recent work on H2O–He collisions. [97] In the angular expansion we included all

terms with λ ≤ 6 and µ ≤ 2.

The global minimum of the PES has an energy ∼ 134 cm−1 The minimum

lies at R = 4.58 bohr, θ = 90◦, φ = 100.8◦. Figure 4.1 presents a contour plot of

the dependence of the potential energy upon the orientation at the atom-molecule

separation at R = 4.58 bohr, corresponding to the global minimum. We see that the

PES is strongly anisotropic. In the most attractive orientation, the helium atom

lies above (or, by symmetry, below) the molecular plane. At this atom-molecule
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Figure 4.1: Dependence of the potential energy (in cm−1) on the orientation of the
helium with respect to the CH2(ã) molecule for an atom-molecule separation R = 4.58
bohr. Repulsive energy contours are drawn in red, attractive energy contours in blue.

separation, there is a large barrier to move the helium atom from the potential

minimum on one side of the molecule to the other, keeping the angle θ fixed at 90◦.

It is interesting to compare the topology of the CH2(ã)−He PES with that of

H2O−He. [98] The CH2(ã)−He PES is much more strongly anisotropic. Moreover,

the most attractive orientation for the former system has the helium atom perpen-

dicular to, rather than in, the molecular plane. In addition, the well depth for the

CH2(ã)−He PES is significantly larger than that for H2O−He [134 vs. 35 cm−1], and

the atom-molecule separation at the minimum of the PES is significantly smaller

[4.58 vs. 5.92 bohr].

We can understand the differences in the topology of these two PESs from

considerations of electronic occupancy. In linear geometry, the lowest-energy singlet

state of CH2 has ∆g symmetry, which corresponds in terms of Cartesian orbitals to
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H H

Figure 4.2: Contour plot of the highest-occupied molecular orbital (3a1) of the CH2(ã)
molecule. This is the higher in energy of the two bonding molecular orbitals (1b2 and
3a1).

the electron occupancies πxy and πx2−y2 . As the molecule bends, the degeneracy of

this state is lifted. In the lower component of this Renner-Teller pair, designated

the 1ã state, the two electrons occupy the orbital which corresponds to the in-plane

distortion of the linear π orbital. This orbital is shown in Fig. 4.2. The lowest

unoccupied orbital is the out-of-plane π orbital.

The strongly anisotropic, attractive nature of the PES is due to the interaction

of the electrons on the helium atom with this unoccupied orbital. In chemical terms,

CH2 in the ã state behaves as a Lewis acid when He approaches in the plane of the

molecule, but as a Lewis base when He approaches perpendicular to the plane of

the molecule. By contrast, in H2O, where the central atom has two more electrons,

the orbital perpendicular to the molecular plane is doubly occupied, so that its

interaction with helium is more isotropic and, simultaneously, less attractive than

for CH2(ã).

Figure 4.3 presents plots of the largest expansion coefficients vλµ as a function
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Figure 4.3: Dependence on the He−CH2(ã) distance of the larger of the expansion coef-
ficients vλµ [defined in Eq. (4.1)].

of the atom-molecule separation R for the CH2(ã)–He PES in the region of the

van der Waals well. As an indication of the strong anisotropy of this surface, the

minimum in the isotropic v00 term occurs at R = 7.19 bohr, whereas the global

minimum occurs at R = 4.58 bohr. We see in Fig. 4.3 that the coefficients vλµ for

µ ≥ 1 are comparable in magnitude to those for µ = 0.

At smaller values of R than shown in Fig. 4.4, the v22(R) and the v31(R) terms

are (as in Fig. 4.3) also the largest. The dominance of these two terms is easy to

understand by reference to the contour plot shown in Fig. 4.1. The dependence on

θ, φ of the λ = µ = 2 term in Eq. (4.1) is

V22(R, θ, φ) ∼ cos 2φ sin2 θ. (4.2)

This term is largest for θ = 90◦. The variation in φ corresponds to the alternation

in the PES along this line between the wells at φ = 90◦ and 270◦ and the relative
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in Fig. 2.5.

maxima at θ = 0◦, 180◦, and 360◦. It is this variation which is a reflection of

the amphoteric Lewis acid/base behavior of CH2 as He approaches in the plane

of the molecule or perpendicular to this plane. Thus, this electronic asymmetry

dominates the anisotropy of the CH2–He interaction. Except for large atom-molecule

separations (R > 7 bohr), the orientation of the most attractive interaction at a

given value of R has θ = 90◦ and φ ≈ 100◦ and ≈ 260◦. The dependence of the

potential energy upon the angle φ for θ = 90◦ is plotted in Fig. 4.4 for several values

of the atom-molecule separation R. We see that the value of φ at the most attractive

Lewis-base orientation varies only slightly with R.

The θ, φ dependence of the λ = 3, µ = 1 term in Eq. (4.1) is

V31(R, θ, φ) ∼ cosφ sin 2θ(1− 5 cos2 2θ). (4.3)
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This term is largest for θ = 60◦ and 150◦ with φ = 180◦, which corresponds, closely,

to the positions of the two H atoms. Thus, the large v31 term reflects the anisotropy

of the CH2(ã)–He PES due to the presence of the two H atoms.

The µ ≥ 1 coefficients couple directly rotational levels differing in values of the

body-frame projection quantum number ka. In the discussion below, we will use the

relative magnitudes of the vλµ terms to explain the propensities for collisional change

in this projection quantum number that emerge from our scattering calculations.

4.3 Scattering Calculations

Full close-coupling scattering calculations of the collision of specified rota-

tional levels of CH2(ã) with helium were performed with the Hibridon suite of pro-

grams. [45] We have recently expanded Hibridon to include collisions of a closed-shell

asymmetric top with a closed-shell atom. [97] Care was taken to include a sufficient

number of both energetically closed channels and partial waves to ensure conver-

gence of the cross sections.

Rotational energies and wave functions were computed with a rigid rotor asym-

metric top Hamiltonian, using rotational constants A = 20.118 cm−1, B = 11.205

cm−1,, and C = 7.069 cm−1, taken from spectroscopic analysis [39] absorption spec-

trum [38] of CH2.

To compute rate constants, the cross sections were computed over a grid of

collision energies, up to total energies of 2400 cm−1, and averaged over a room-

temperature (T = 298 K) Maxwellian distribution of relative collision energies Ec

63



[see also Eq. (3.31)]. [67]

ki→f (T ) =

(
8

πµ(kBT )3

)1/2 ∫ ∞
0

σi→f (Ec)Ec exp (−Ec/kBT ) dEc, (4.4)

where kB is the Boltzmann constant.

4.4 Results

We will attempt to correlate the magnitude of the cross sections for collision-

induced rotational transitions in CH2(ã) with the quantum numbers and energies of

the rotational levels. For an asymmetric top, the rotational levels are labeled by the

rotational angular momentum n, which is a good quantum number, as well as by the

prolate-limit body-frame projection quantum number ka, which is an approximate

quantum number that becomes exact in linear geometry. Usually, the levels of an

asymmetric top are also labeled [99] by the oblate-limit quantum number kc.

In CH2, as in other symmetrical bent triatomic molecules, the Hamiltonian

is invariant with respect to permutation of the two terminal nuclei (in this case,

H nuclei). In Fig. 4.5 we show the positions of the lower rotational energy levels

of CH2(ã), designating the ortho and para nuclear spin modifications by solid and

dashed lines, respectively. Collisions with helium will not lead to transitions between

levels of ortho and para permutation symmetry.

For ka = 0, levels with even and odd values of the rotational angular momen-

tum n correspond, distinctly, to para and ortho permutation symmetry, respectively.

For higher values of ka, each rotational level is present for both permutation sym-
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metries. For even values of n, the lower (upper) level of this pair belongs to the

ortho (para) nuclear spin modification. The opposite labeling occurs for odd values

of n. In a symmetric top (such as NH3) the ortho and para levels are nearly degen-

erate. However, we see in Fig. 4.5 that even for CH2(ã), which is a near-prolate top,

there is a large splitting between levels of the same n. This so-called asymmetry

splitting [99] between levels of the same n is largest for ka = 1 and increases with

increasing n. As we will see below, these unequal energy spacings lead to interesting

propensities in the cross sections for collision-induced rotational transitions.
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4.4.1 State-to-State Rotationally Inelastic Collisions
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Figure 4.6: Bar plot of the cross sections for rotationally inelastic scattering of para
CH2(ã) in the n = 4 and 5, ka = 1 levels by collision with He at a collision energy of 300
cm−1. The red square denotes the initial level.

In collisions of a diatomic molecule, inelastic energy transfer can occur only

by changes in the rotational angular momentum n. A number of models have been

developed which relate the size of the cross section to the magnitude of either the

energy gap between the initial and final rotational levels or to the absolute value of

the change in rotational angular momentum |∆n|. [100] In collisions of a polyatomic

top, collisions can cause a change in both n and its body-frame projection. To

gain some insight into the relative ease of these two inelastic events, we compare in
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Fig. 4.6 the state-to-state cross sections for transitions out of the para ka = 1, n = 4

and 5 levels for a collision energy of 300 cm−1, which is approximately the average

collision energy at room temperature. Figure 4.7 makes the same comparison for

the ortho ka = 1, n = 4 and 5 levels.
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Figure 4.7: Bar plot of the cross sections for rotationally inelastic scattering of ortho
CH2(ã) in the n = 4 and 5, ka = 1 levels by collision with He at a collision energy of 300
cm−1. The red square denotes the initial level.

We see in Figs. 4.6 and 4.7 that the transitions which conserve ka (specifically,
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the ka = 1 → ka = 1 transitions), show a dependence upon the final rotational

angular momentum n′ similar to that usually observed in collisions of diatomic

molecules: These cross sections decrease monotonically as |∆n| increases. Tran-

sitions into other ka manifolds display significant cross sections for a range of n′,

centered roughly about the initial rotational angular momentum n. The transitions

that make the dominant contribution to the larger total removal cross section for

the para n = 4 and ortho n = 5 levels are the ∆ka = 0, ∆n = +1 and ∆ka = +2

transitions. For the ortho n = 4 and para n = 5 levels, the largest cross section is

for the ∆ka = 0, ∆n = −1 transition.

In part, we can understand the dependence of the cross sections for the ∆ka =

0, ∆n = +1 transition upon n by reference to the energy level diagram in Fig. 4.5

For ortho CH2 the energy gap between the ka = 1, n = 5 and 6 levels is 42 cm−1,

but rises to 176 cm−1 between the corresponding n = 4 and 5 levels. Similarly, the

energy gaps between the n and n+1 levels are much smaller for odd- vs. even-n ortho

ka = 1 levels and for even- vs. odd-n para ka = 1 levels. We note that the potential

coupling matrix elements between n and n+1 levels in the same ka manifold do not

depend strongly upon n, and in particular do not alternate in magnitude between

even and odd initial n.

We turn now to a discussion of the ∆ka = +2 transitions. We observe in Fig.

4.5 that the energy gap for the ∆ka = +2, ∆n = 0 transition is nearly the same for

the ortho ka = 1, n = 4 and 5 levels (the 414 → 431 and 514 → 532 transitions). More

generally, for both ortho and para CH2(ã) the energy gaps for ∆ka = +2, n → n′

transitions do not vary significantly when textitn changes from even to odd. Thus,
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the explanation for the even-odd alternation in the magnitude of the cross sections

for the ∆ka = +2 transitions seen in Figs. 4.6 and 4.7 lies not in a variation in the

energy gaps but rather in the magnitude of the coupling matrix elements between

initial and final levels.

The µ = 2 terms in the angular expansion of the PES [Eq. (4.1)] are the

lowest-order terms which can directly couple the ka = 1 and 3 levels. As discussed

earlier, and as seen in Fig. 4.3, the largest of these terms is v22. In a body-frame

expansion of the potential, the matrix of the coupling potential is block-diagonal in

k, the body-frame projection of the total angular momentum J. [63] Evaluation of

the matrix elements of these terms shows that for ka = 1 → 3, n → n′ transitions

between ortho states, the matrix elements of the v22 term are largest for n odd. For

comparable transitions between para states, the matrix elements of the v22 term are

largest for n even. This is consistent with the variation in the ∆ka = +2, ∆n =0

cross sections shown in Figs. 4.6 and 4.7.

Thus, the most apparent propensities in the inelastic scattering of CH2(ã) by

He are the result of both the large asymmetry splitting in the rotational levels in the

ka = 1 stack, and the dominance of the v22 term in causing ka changing transitions.

This latter is due to the marked electronic anisotropy of CH2 in the ã state.

As mentioned earlier, there have been a number of papers in the literature

in which the relative magnitude of cross sections for rotationally-inelastic collisions

of a diatomic molecule have been modeled entirely by a (negative) exponential or

inverse power-law dependence on the magnitude of the energy gap. To investigate

the applicability of this model here, we display in Fig. 4.8 the same inelastic cross
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CH2(ã) in the n = 4, ka = 1 level by collision with He at a collision energy of 300 cm−1,
plotted here against the energy gap, with ∆E = E(n′k′a)−E(nka). The red square denotes
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sections as shown in the upper panel of Fig. 4.7 [cross sections out of the n = 4,

ka = 1 level of ortho CH2(ã)], but here plotted against the energy gap. Even though

the strong even-odd, ortho-para propensities seen in Figs. 4.6 and 4.7 correlate, at

least partially, with the energy gaps within the ka = 1 ladder, overall, rotationally-

inelastic collisions in a bent triatomic, at least in the case of CH2(ã)–He collisions,

cannot be fit by either an exponential or power-law dependence on the energy gap.

This conclusion is entirely similar to that of Green, in an earlier examination of

inelastic scattering in linear and bent rotors. [101]

In Table 4.1 we list the total cross section for inelastic removal of the initial

state, [defined in Eq. (4.7) below], as well as the average values of |∆n| and |∆ka|,

weighted by the magnitude of the state-to-state cross sections, for transitions out of
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Table 4.1: Overall inelasticity of n = 4 and 5, ka = 1 rotational levels of para and ortho
CH2(ã) in collision with He at a collision energy of 300 cm−1.

ortho para

Quantity n = 4 n = 5 n = 4 n = 5

σ(R)/ Å2 14.2 21.8 22.9 13.7

< |∆n| > 1.1 1.2 1.1 1.3

< |∆ka| > 0.71 0.85 0.73 0.69

the n = 4 and 5, ka = 1 levels. These averages are defined by

< |∆n| >=
∑
n′k′a

|n′ − n|σnka→n′k′a/
∑
n′k′a

σnka→n′k′a (4.5)

and similarly for < |∆ka| >. We observe a dramatic variation in the total removal

cross sections going from n = 4 to n = 5. This is the cumulative effect of both the

asymmetry splitting of the rotational energy levels and the dominance of the v22

term in the potential, both discussed in the previous section.

In contrast, perhaps, the average changes in both the rotational quantum

number and its projection vary little between the two nuclear spin modifications

and with the parity of n. On the average, each collision results in a change in n

of roughly ~ and a change in ka of roughly 3
4
~. As can be seen in Fig. 4.9(a), the

alternation in n of the relative magnitudes of the total removal cross sections, which

is reversed between the two nuclear spin modifications, persists over a wide range

of initial states.
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4.4.2 Overall Rotational Relaxation

In their study of rotational energy transfer in collisions of with helium, Sears,

Hall, and their co-workers [12,14] have concentrated on an investigation of the ortho

levels in the ka = 1 manifold. As discussed in the Introduction, in one type of

measurement, they determined bimolecular rate constants for the refilling of a hole

in the population of a specified rotational level, prepared by pulsed laser electronic

excitation. This type of rate constant may readily be shown to be equivalent to the

rate constant for total rotationally inelastic removal. [48]

In this latter type of experiment a single rotational level in a vibrational man-

ifold is initially populated and its population is monitored as a function of time. If

backfilling into this initial level is neglected, as would be the case when the popu-

lation of the initial level is much greater than the populations of other levels, then

the time rate of change of the population in the initially populated level is

dNi

dt
= −ρNi

∑
f 6=i

ki→f = −ρNik
(R)
i (4.6)

where k
(R)
i is the bimolecular rate constant for removal of population out of this

initial level and ρ is the density of the collision partner. This rate is the Maxwellian

average [Eq. (3.31)] of the overall collisional removal cross section

σ(R)(nka;Ec) =
∑

n′,k′a 6=n,ka

σ(nka → n′k′a;Ec) (4.7)
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In the depletion experiments of Sears, Hall, and their co-workers, [12,14] we assume

that all rotational levels are in thermal equilibrium and that level i is initially

depleted. The time rate of change of population of this level in then governed by

the master equation (3.4).

dNi

dt
= ρ

∑
f 6=i

Nfkf→i, (4.8)

We have assumed that we can initially ignore collisional transitions out of the de-

pleted level since the population of level i is very low at early times. If the rotational

levels are in thermal equilibrium at temperature T, then

Nf = pfN, (4.9)

where N is the total population of the vibrational manifold under consideration and

pf is the Boltzmann probability for the population of level f. Substituting Eq. (4.9)

into (4.8) and invoking detailed balance, [67] we obtain

dNi

dt
= ρN

∑
f 6=i

pfkf→i = ρN
∑
f 6=i

piki→f = ρNik
(R)
i (4.10)

Thus, the refilling rate constant is equal in magnitude to the removal rate

constant one would measure when a single level is initially populated. In a complete

analysis of the master equation for collisional rotational relaxation, it can in fact be

shown, [48] without making any assumptions, that the removal and refilling rates

defined in Eqs. (4.6) and (4.10) are equal. [48]

We have computed total removal cross sections for the ka = 1 levels of CH2(ã)
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Figure 4.9: a) Rotationally inelastic total removal cross section for the lower ka = 1 ortho
and para rotational levels of CH2(ã) in collisions with He at a collision energy of 300 cm−1.
(b) Similar plot but for the rotationally inelastic total removal rates constants at 298 K.

in collisions with helium. With the computed energy-dependent total removal cross

sections we determined, from Eq. (3.31), thermal rate constants at T = 298 K for loss

of population of the ka = 1 levels of CH2(ã) due to rotationally inelastic collisions

with helium. These rate constants are presented in Fig. 4.9(b). The pronounced

even-odd alternation is preserved, with the modulation depth almost unchanged

from that of the cross sections at Ec = 300 cm−1, which appear in Fig. 4.9(a).

4.5 Discussion

For CH2(ã)−He collisions involving the ka = 1 levels, Fig. 4.10 compares

our computed rate constants for population removal by collision-induced rotational

transitions with those measured experimentally by Hall, Sears, and their co-workers.

[12,14] We see that the computed rate constants for removal of population by rota-
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tional transitions in collisions with helium are slightly larger than the experimental

values, by ∼ 20% for the n ≤ 6 levels. However, the variation of the rate constants

with n, in particular the enhanced rate constants for even n, is well reproduced in

the calculations.
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Figure 4.10: Rate constants for collisional removal by rotational transitions for CH2(ã)
ortho ka = 1 levels in collisions with helium. The theoretical values were computed in
the present study, while the experimental values were taken from the investigation by
Hall, Sears, and their co-workers [12, 14]. The n = 8 level of this manifold is known to
be strongly perturbed by a vibration-rotation level of the X̃ state [10]. The labels S
and T denote the experimentally observed rate constants for the two perturbed levels of
predominantly singlet and triplet character, respectively (see, also, Chap. 6).

The n = 8 (j = 8 as well for the ã state) level is a special case, since it is

strongly perturbed by a level in the CH2(X̃
3B1) state. The triplet character of

this state has been estimated [10, 39, 102] in several studies; on the basis of the

hyperfine splitting, this state is estimated [102] to have ∼ 31% triplet character,

with a corresponding fraction of singlet character in the perturbing level [the j = 8

fine-structure component of the 937 level in the X̃3B1 (020) vibrational level]. Hall,

Sears, and their co-workers were able to measure total removal rate constants for
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both of these levels. These are plotted in the same figure. It can be seen that these

rate constants are approximately equal to each other and considerably smaller in

magnitude than the computed rate constant for the n = 8 level.

Gelbart and Freed postulated that the presence of accidentally degenerate state

can provide a “gateway” between two rotational manifolds of differing multiplicity.

In previous work, Komissarov [12, 14] showed that in CH2 a pair of mixed ã/X̃

levels rapidly collisionally equilibrate their populations well before overall thermal

relaxation. We are now involved in the theoretical study of collision-induced ã→ X̃

transitions in CH2, in particular in the study of how the presence of a spin-orbit

induced electronic mixing effects rotational relaxation.

In this study, we have investigated rotationally inelastic collisions of CH2(ã)

with the helium atom. We attribute the origin of the pronounced even-odd alterna-

tion in the magnitude of the total removal rate constants to an enhanced propensity

for rotational energy transfer out of the odd-n ortho, and even-n para, levels. This

is a direct consequence of the strong electronic anisotropy of the CH2(ã)–He interac-

tion, which arises because of the absence of electrons in the out-of-place non-bonding

orbital on the C atom, of b1 symmetry.

There remain small discrepancies between the magnitudes of the calculated

and experimentally-measured rate constants. It is possible that these reflect the

approximation, made in the determination of the potential energy surface, that the

CH2 in the ã state could be treated as a rigid molecule, with a fixed bond angle. In

a more realistic description, we would calculate the interaction potential at several

values of the CH2 bending angle, and then average these values over the wavefunction
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for the lowest bending vibration. This should be done. Also, as evidenced by the

differences in the measured rate constants for the perturbed n = 8 levels, further

investigation should be made of the effect of the X̃ ∼ ã perturbations on rotational

relaxation.
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Chapter 5: Rotationally and Vibrationally Inelastic Collisions of CH2(X̃)

in Collisions with Helium

This chapter describes an investigation of rotational and vibrational relaxation

of CH2 in its ground X̃3B1 electronic state, in collisions with the helium atom. We

carried out ab initio calculations of the He–CH2(X̃) PES, by treating the CH2(X̃)

molecule as semi-rigid, with a fixed bond length and a variable bending angle. We

then average over the bending vibrational wave functions, as in Eq. (3.18), to obtain

potential energy surfaces both for scattering within a particular vibrational manifold

(v′ = v), or for collision induced transitions between rotational levels in different

vibrational manifolds (v′ 6= v).

Since the 3a1 and 1b1 orbitals are both singly occupied in the X̃ state of CH2,

the electron density, and consequently, the He–CH2 PES, is less anisotropic than in

the ã state. As a result inelastic collisions will be less efficient in the X̃ state.

We report the state-to-state and total removal cross sections for rotationally

inelastic transitions of CH2(X̃) in a given bending vibrational mode, at a collision

energy of 300 cm−1. We have also studied the variation in cross sections with the

degree of bending excitation. In particular we have compared the computed rate

constant for the 937 (j = 8) rotational level in the (0,2,0) vibrational manifold of
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the X̃ state, which is considered as the triplet component of a “gateway” pair (see

Sec. 2.2.4) with experimental results from Komissarov, Hall and Sears. [12] Both

the cross sections and the rate constants are smaller than those of the ã state.

In calculations in which several vibrational manifolds are included simultane-

ously, we show that probability of vibrational relaxation is less than 1% of that for

rotational relaxation in a single vibrational level.

Part of this chapter, the investigation on the rotational relaxation of CH2(X̃)

in a single bending manifold, is reproduced from a published paper: L. Ma, P. J.

Dagdigian and M. H. Alexander, Theoretical investigation of rotationally inelastic

collisions of CH2(X̃) with helium, J. Chem. Phys. 136, 224306 (2012). [18] Here,

we have modified the presentation of this article to include results on ro-vibrational

relaxation between different bending manifolds.

In this, as well as in our first published paper on collisions of He with CH2(ã), [17]

we did not explicitly include the spin. We used j to designate the rotational angular

momentum of the CH2 molecule. Here, we prefer to use j for the total molecular

angular momentum (including the spin), and n for the rotational angular momen-

tum of CH2. This allows us, specifically in Chap. 6, to include spin, vector-coupling

~S with ~n to form ~j.

5.1 Introduction and General Considerations

In last chapter we discussed rotationally inelastic collisions of He with the

methylene radical, CH2, in its first excited ã 1A1 state. [17] Here we extend this
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work to collisions of CH2 in its ground X̃ 3B1 state with He. The inelasticity of the

ground state will be shown to be noticeably less than that of the excited state. We

attribute this marked difference to a differing electron occupancy in the two states.

The methylene radical is an important combustion intermediate. The reactivity of

the ã state is known to be much higher than that of the ground X̃ state, [9,86] likely

also a consequence of the same difference in electron occupancy.

We use the coordinates defined in Fig. 2.5. The CH2 molecule lies in the xz-

plane with the origin defined by the CH2 center of mass. The body-frame z axis lies

along the a inertial axis of the molecule. Thus, in collinear HCH the three atoms lie

along the z axis. In this case the 2px and 2py orbitals on the C atom are degenerate.

In analogy with the isoelectronic NH molecule, the ground state is 3Σ−, with both

of these orbitals singly occupied. The next state is the degenerate 1∆ state, with

electron occupancies 2p2x–2p2y and singlet-coupled 2px2py. The third valence state

is 1Σ+ which corresponds to a 2p2x+2p2y electron occupancy. When the molecule

bends in the xz plane, (see Fig. 2.5), the 2px and 2py orbitals belong, respectively,

to the a1 and b1 characters in C2v symmetry. The first can combine with the positive

linear combination of the two 1s orbitals on the H atoms to form the bonding 3a1

molecular orbital. The 2py orbital remains non-bonding, and is the lowest orbital

of b1 character. The lowest electronic state of bent CH2 remains a triplet, with the

3a1 and 1b1 orbitals singly occupied.

Bending in the xz plane leads to a Renner-Teller [103] lifting of the degeneracy

of the 1∆ state of the linear molecule. In the lower of these singlet states the 3a1

bonding orbital is doubly occupied, while the 1b1 orbital is empty. Because of this
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hole in the 1b1 orbital, there is less electron density perpendicular to, as compared

with in, the molecular plane. This is seen in Fig. 5.1, which compares electron-

density contours for the two states of CH2. An approaching atom will be sensitive

to the Lewis amphoterism in the ã state with the result that the anisotropy of the

interaction potential will be substantially greater for interaction of the atom with

CH2 in the ã1A1 state as compared with interaction with the ground X̃3B1 state
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Figure 5.1: Electron-density contours projected onto the xy, xz, and yz planes for the
CH2 molecule in its ground X̃ 3B1 electronic state (left contours) and in its excited ã 1A1

electronic state (right contours). The geometry is defined in Fig. 2.5.

In linear geometry the 3a1 orbital is non-bonding (2px on the C atom), but

becomes strongly bonding in bent geometry. Consequently, by Walsh’s rules [104]

81



the ã state, in which the 3a1 orbital is doubly occupied, is dramatically bent. By

contrast, in the X̃ state the 3a1 orbital is only singly occupied, so that the barrier

to linearity is much smaller. This is illustrated in the left-hand panel of Fig. 5.2,

which compares the dependence on the HCH angle of the energy of these two states.

As can also be seen in Fig. 5.2, several of the lower vibrational levels of the

X̃ state lie quite close in energy to the ground (0,0,0) vibrational level of the ã

state. Experimental work has shown that accidental near degeneracies between

rotational levels of these vibrational manifolds facilitate ã→ X̃ collisional transfer.

[10,12,15,102]

In this chapter we report a theoretical investigation of collisional rotational

relaxation within the X̃ state, a process which to date has not been studied ex-

perimentally. Our work is based on a new ab initio determination of the CH2(X̃)–

He potential energy surface (PES), followed by quantum scattering calculations

of inelastic cross sections and rate constants. We shall show that the much less

anisotropic electron distribution in the X̃ state (Fig. 5.1) results in a much smaller

degree of rotational inelasticity in collisions of CH2 in this state.

In rotationally inelastic collisions of a polyatomic molecule, changes can occur

both in the total rotational angular momentum, as well as its projection along the

principal axis of the molecule. As we will show, the small barrier to linearity in

the X̃ state affects significantly the collisional propensity toward changes in the

projection quantum number.

Along with rotational relaxation we need, to be complete, to consider vibra-

tional relaxation. In this chapter, we investigate the latter process by including the
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interaction between rotational levels in different bending vibrational manifolds.

In Sec. 5.2, we summarize the ab initio determination of, and the subsequent

fit to, the CH2(X̃)–He potential energy surface (PES). The inelastic scattering cal-

culations based on this fitted PES are described in Sec. 5.3. State-to-state and total

removal cross sections, as well as removal rate constants, are presented and com-

pared in Sec. 5.4. Finally, in Sec. 5.5 we compare the predicted rotational inelasticity

of CH2 in the X̃ state with our earlier calculations on the CH2–He systems and also

with available experimental data from Sears, Hall, and co-workers [12, 14,102].

5.2 Potential Energy Surface

The coordinate system used to describe the CH2–He system is identical to that

used in our earlier study of the CH2(ã)–He system. [17] For a CH bond length fixed

at its equilibrium value in the X̃ state [2.031 bohr (Ref. [31])], the dependence of

the CH2 energy on the HCH bond angle is shown in Fig. 5.2 for both the X̃ and ã

states

The most significant difference between the ã and X̃ states of CH2 is the

dependence of the energy on the bending angle. The barrier to linearity in the ã

state is so large (> 10, 000 cm−1) that the molecule can be treated as rigid with a

fixed HCH angle of γ = 101.77o [32]. By contrast, the barrier to linearity in the

X̃ state of CH2 is dramatically smaller (∼ 2000 cm−1). Indeed, as seen in Fig. 5.2,

even moderately excited vibrational levels in the X̃ state lie higher than the barrier.

Consequently, to take into account the floppy nature of the CH2 molecule in the
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Figure 5.2: (Left-hand panel) The dependence on the bending angle of the energies of
the ã 1A1 (red curve) and the X̃ 3B1 (blue curve) states of CH2. In both cases the CH2

bond lengths are frozen at their equilibrium values [2.031 bohr (Ref. [31])] for the X̃ state
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the vibrational levels, designated (va,vb,vs) where the subscripts a, b, and a denote the
antisymmetric stretch, the bend, and the symmetric stretch modes, respectively. (Right-
hand panel). The dependence of the bending probability (the square of the bending
wavefunction) on the bending angle ρ is displayed for CH2(X̃) vibrational states (0,0,0)
(red) and (0,3,0) (blue). For consistency with the earlier work of Bunker, Hougen, and
Johns [105] the abscissa ρ is the supplement of the bending angle γ.

X̃ state, we determined (as described below) the CH2(X̃)−He PES over a range of

bending angles and then averaged the PES over this angle, weighted by the square

of the wave function for this bending motion.

To determine the bending vibrational wave function for a bending triatomic

with fixed bond lengths, we adopted the method developed by Hougen, Bunker,

and Johns, [105] as implemented for symmetric triatomics by Bunker and Lands-
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berg. [106] The expression for the wave function they derive is

ψb(ρ) = [I0ρρ]
1/2φb(ρ) (5.1)

where the function φb(ρ) satisfies the one-dimensional Schrodinger equation

− ~2

2I0ρρ

∂2

∂ρ2
φb(ρ) =

{
~2

2I0ρρ
f1(ρ) + V0(ρ)− Eb

}
φb(ρ) (5.2)

The moment of inertia I0ρρ is a function of ρ, the supplement of the bending angle

ρ = π − γ, namely

I0ρρ = mHr
2 [mC + 2mH sin(ρ/2)] /2M (5.3)

where r is the CH bond length, mH and mC are the H and C masses, respectively,

and M = mC + 2mH. The function f1(ρ) in Eq. (5.2) depends on both I0ρρ as well

as the other moments of inertia. [105,106]

We utilized a coupled-cluster ab initio calculation (described in the next para-

graph) to determine the CH2(X̃) bending potential V0(ρ). We then used Numerov

integration to solve Eq. (5.2), matching the log-derivative of the inward and outward

solutions. At small ρ (linear geometry) an explicit power-series solution of Eq. (5.2)

was used to initiate the Numerov propagation, as described by Bunker and Lands-

berg. [106] The square of the bending wave functions for vb = 0 and vb = 3 are

shown in the right-hand panel in Fig. 5.2. We see that for ρ > 100◦ (γ < 80◦), the

probability densities approach zero very quickly.

The ab initio bending potentials of the ã and X̃ states of CH2 shown in Fig. 5.2,
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as well as the full CH2(X̃)–He PES, were determined by spin-restricted coupled

cluster calculations with inclusion of single, double and (perturbatively) triple ex-

citations [RCCSD(T)] [107, 108], carried out with the MOLPRO 2010.1 program

suite. [51]. We use a correlation-consistent avqz basis [58] with the addition of a

set of bond functions [59, 60] at the mid-point of the Jacobi vector ~R connecting

the He atom with the center of mass of the CH2 molecule. The CH bond length

was fixed at 2.031 bohr [31]. To determine the dependence on γ of both the CH2

bending potential energy curve and the CH2–He PES, we performed calculations at

bond angles γ ranging from 80◦ to 180◦ with a step size of 10◦, as well as a few

more points near linearity (179◦ and 179.9◦). Since we assume fixed bond lengths,

the present ab initio calculations provide no information on the dependence of the

CH2–He PES on the stretching modes.

Due to the dramatically increased expense engendered by the substantial grid

in bending angles, we used ab initio grids in R and the two CH2–He orientation

angles that were coarser than in our previous study of the CH2(ã)–He PES. [17]

The complete grid was delineated by 19 values of R (3.5 to 10 in steps of 0.5, 11,

12, 13, 15, and 20 bohr), 4 values of the He–CH2 polar angle θ (0, 30, 60, and 90◦),

and 13 values of the He–CH2 azimuthal angle φ (0 to 180 in steps of 15◦), and, as

mentioned above, 13 values of the CH2 bond angle γ. The total number of ab initio

points was 12,844.

At each Jacobi distance R and CH2 bond angle, the ab initio grid included

4×13 = 52 distinct points. The energies at these points were fitted by an expansion

in spherical harmonics. Following our earlier work (see also Sec. 3.3 of this disserta-
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tion), we expand around the principal axis of rotation [97], rather than around the

C2 symmetry axis. [63] We have [see also Eq. (4.1)]

V (R, θ, φ) =
∑
λ,µ

vλµ(R)(1 + δµ0)
−1 [Yλµ(θ, φ) + (−1)µYλ,−µ(θ, φ)] . (5.4)

In last chapter for the CH2(ã)–He PES we used 12 terms in the comparable expan-

sion. For the CH2(X̃), we increased this to 20 terms, making sure to eliminate all

linear dependencies. [109]

The global minimum of the CH2(X̃)–He PES [averaged over the (0,3,0) bend-

ing vibrational wave function] occurs in a coplanar arrangement (φ = 0) with the

He atom located at θ = 16.3◦ and R = 6.95 bohr. The binding energy is 20.07

cm−1, much less than the CH2(ã)–He binding energy of 134 cm−1. [17] Figure 5.3

compares the dependence on the orientation of the He atom for the CH2(X̃)–He

and CH2(ã)–He PES’s, with the He–CH2 distance held at the value corresponding

to the global minima on the two PES’s. The lower contour plot has been presented

in last chapter (see Fig. 4.1). Additional slices of the CH2(X̃)−He PES are shown

in Ref. [110].

As anticipated in the Introduction to this Chapter (5.1), when the He atom is

displaced around the CH2 molecule in a plane perpendicular to the symmetry axis

(θ = 90◦, φ = 0→ 180◦) the anisotropy of the CH2–He PES is substantially greater

for the ã state, where the out-of-plane 2p orbital on the C atom is unoccupied and

the in-plane 2p orbital doubly occupied, as compared to that for the X̃ state, where

these two orbitals are each singly occupied. This is seen in Fig. 5.4. Here, the two
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Figure 5.3: Contour plot (cm−1) of the dependence on the orientation of the He atom
of the CH2(X̃)–He (upper panel) and CH2(ã)–He (lower panel) PES’s. In both cases the
CH2–He distance is frozen at the value corresponding to the global minimum: R = 6.95
bohr for the X̃ state and R = 4.58 bohr for the ã state. Negative contours are indicated
in blue, positive in red. The lower panel is reproduced from Fig. 4.1.

panels compare, for three different values of R, the variation in potential energy as

the He atom moves in the xy plane (θ = 90◦).

Figure 5.5 presents the dependence of the largest vλµ expansion coefficients

on the He–CH2(X̃ ) distance. At short distance, the largest anisotropic terms are

v31(R) and v20(R). At very small R (< 5 bohr) , the v20(R) term dominates (not
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Figure 5.4: Dependence of potential energies on φ when θ = 90◦ (motion in xy plane) for
the CH2(X̃)–He (left panel) and CH2(ã)–He (right panel) systems.

shown). The λ = 2, µ = 0 term in Eq. (5.4) depends on the angle θ only:

v20(R, θ, φ) ∼ 3 cos2 θ − 1. (5.5)

Since this term has no dependence on φ (because µ = 0), we would expect the

repulsive wall of the CH2(X̃) PES to show little dependence on the motion of the

He atom around the CH2 molecule in the bisector plane (the xy plane in Fig. 4.1).

Figure 5.4 compares the angular dependence of the CH2(X̃)–He and the CH2(ã)–

He PES’s for a He distance corresponding to the global minimum. In the former

case, this occurs at rather large He distances, where the PES is globally attractive.

As seen, for example, in Fig. 5.4, at shorter He distances the potential becomes re-

pulsive. [111] The most repulsive regions on the CH2(X̃)–He PES occur for θ = 30◦

or 150◦ and φ = 180◦. These coordinates correspond to the location of the two

hydrogen atoms. As stated in Eq. (4.3), the angular dependence of the λ = 3, µ = 1

term has a maximum at these two sets of angular coordinates. Hence, the v20(R)

term is responsible for the overall repulsion of the CH2(X̃)–He interaction while
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the v31(R) term is responsible for the corrugation in the repulsive wall due to the

presence of the two H atoms. In contrast with the CH2(ã)–He PES, [17] the v22(R)

term is quite small here.
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Figure 5.5: Dependence of the largest expansion coefficients vλµ on the atom-molecule
distance R. Over this range the dominant anisotropic terms are v31(R) and v20(R).

The rotational wave functions for levels in different ka manifolds differ in their

dependence on the azimuthal angle φ (the rotation around the principal axis, see

Fig. 4.1). Consequently, the important v20(R) term, which is independent of φ,

will couple only levels within the same ka manifold. Thus we might anticipate that

the inelastic scattering will be dominated by ∆ka = 0 transitions. The second

most important term, v31(R), will couple rotational levels in which the body-frame

projection quantum number changes by ±1. Since ∆ka = +1 corresponds to an

endoergic transition, while ∆ka = −1 corresponds to an exoergic transition, we

anticipate that the second most important inelastic transitions will correspond to

those for which ∆ka = −1. [112]

To calculate the potential energy surfaces appropriate to the coupling between
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rotational levels in two vibrational levels, we need the off-diagonal terms between

the two bending wave functions [see Eq. (3.18)]

Vv′b,vb(R, θ, φ) = 〈v′b(γ)|V (R, θ, φ, γ)|vb(γ)〉, (5.6)

where |vb(γ)〉 is the bending wave function for the (0,vb,0) level. Again, we expand

the interaction in 20 spherical harmonics terms, as shown in Eq. (5.4).
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Figure 5.6: Contour plot of the interaction potential between the bending vibrational
levels (0,0,0) and (0,1,0) of CH2(X̃) with He at a He−CH2 distance of 6.5 bohr.

Figure 5.6 shows the contour plot of the 〈v′b = 0|vb = 1〉 interaction potential

at R = 6.5 bohr. Compared to the upper panel of Fig. 5.3, the vibrational coupling

potential is considerably weaker and less anisotropic. Therefore, we expect much

smaller cross sections for transitions between different (v′ 6= v) bending vibrational

levels. The potential maximizes at φ = 180◦ and θ = 30◦/150◦, corresponding to the

locations of two hydrogens in the molecular plane. The minimum of the potential
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is near φ = 90◦, also in the molecular plane. This corresponds to He approaching

from the carbon side (see the middle right panel in Fig. 5.1).

In our studies (Chapter 4 and the earlier sections of the present Chapter) of

purely rotational relaxation of CH2 in the ã and X̃ states, we attempted to correlate

the size of the inelastic cross sections to the relative magnitude of individual terms

in the expansion of Vv′v(R, θ, φ) PES [Eq. (5.6)]. For ro-vibrationally inelastic tran-

sitions, which are much smaller in magnitude, the direct coupling between different

v, j levels will be masked by the much stronger couplings within the initial and final

vibrational manifolds.

5.3 Scattering Calculations

Using the fitted CH2(X̃)–He PES, we carried out full close-coupling scattering

calculations of inelastic cross sections for collisions of selected rotational levels of

CH2(X̃ ) in the (0,vb,0) bending vibrational manifolds (vb = 0 − 3) with He. The

HIBRIDON [45] suite of programs was utilized. In these calculations, only one

bending level was included at a time, so that we obtain no information on transitions

which are inelastic in the bending vibration. Collisions of rotational levels in the

(0,2,0) and (0,3,0) manifolds were studied for a number of collision energies, but were

limited to a single collision energy of 300 cm−1 for the (0,0,0) and (0,1,0) manifolds.

The CH2(X̃) rotational energies are not at all well described by the standard

rotational energy formulas because of the low barrier to linearity. Bunker and Jensen

have developed a Morse oscillator-rotational bender internal dynamics Hamiltonian
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(MORBID) to describe such semirigid molecules and have fit the parameters in this

model to experimental measurements in order to compute CH2(X̃) rovibrational

energies. [19,113] We have used the energies determined by the MORBID code [114]

for the asymptotic energies of the various channels in our scattering calculations.

Jensen [115] has kindly provided us with these energies for rotational angular mo-

menta [116] n up to 14. We extrapolated these energies to estimate energies of

higher rotational levels.

The rotational basis in the scattering calculations included levels with energies

as high as 2800 cm−1 and CH2 rotational angular momentum n up to 30. Up to

300 values of the total CH2He total angular momentum J were included at the

higher collision energies. Because the effective A rotational constant is very large,

especially for the (0,2,0) and (0,3,0) vibrational manifolds, [19, 113] the rotational

wave functions are well approximated by symmetric top wave functions, and this

was assumed for the calculation of the potential coupling of the rotational levels.

Finally, since the spin and hyperfine splittings are small in CH2, [37] the scattering

calculations were carried out with a spin-free method.

5.4 Results

5.4.1 Rotational Energy Transfer

In discussing the results of the scattering calculations, we will probe how the

magnitudes of the individual state-to-state cross sections are reflective of the features

of the underlying PES and the relative positions of the individual vibration-rotation
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levels of the CH2 molecule. Figure 5.7 illustrates the energies of the rotational levels

in the (0,0,0) and (0,3,0) vibrational manifolds.
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Figure 5.7: Lower rotational levels of the ortho (dashed blue) and para (solid red) nu-
clear spin modifications of CH2(X̃) in the (0,0,0) and (0,3,0) vibrational manifolds. Each
individual level is labelled nkakc , where n is the rotational angular momentum with ka its
(nominal) projection along the principal axis and kc, its (nominal) projection along the
prolate axis.

The para and ortho nuclear spin modifications differ in their nuclear permu-

tation symmetries and will not be coupled by the interaction with 4He, which has

zero nuclear and electronic spin. For the ka = 0 stack, the levels with even (odd)

values of n are ortho (para). For the other ka stacks, two levels exist for each n.

For odd n the ortho level is lower, which reverses for even n. Compared to CH2 in
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the ã state (see Fig. 4.5), the energy splitting between the ka stacks is considerably

larger. This is a consequence of the more linear character of CH2 in the X̃ state

(see Fig. 5.2). Because the ka stacks are farther apart in the (0,3,0) manifold, we

would expect smaller cross sections for ka changing transitions than was observed

for collisions of CH2(ã) with He.

5.4.1.1 State-to-State Rotationally Inelastic Collision In The (0,2,0)

and (0,3,0) Vibrational Manifolds

Bley and Temps [10] found that rotational levels associated with these two

vibrational levels of the X̃ state play a significant role in relaxation of CH2(ã).

Experimental work on relaxation of the CH2 radical has been restricted so far to

studies of the excited ã state in its lowest vibrational level (0,0,0). For these two

reasons, we focus our attention here on the collisional relaxation of the 3rd and 4th

bending vibrational levels (vb = 2 and 3).

Figure 5.8 presents bar plots of the state-to-state inelastic cross sections for

transitions from the n = 4 and 5 levels of the ka = 1 stack for ortho and para

CH2(X̃)(0, 3, 0) at a collision energy of 300 cm−1. [117] For transitions from both

initial levels [n = 4 and 5, ka = 1], the most probable transition is ∆ka = 0,∆n = −2

for both ortho and para CH2. This is easily understood. As seen in Fig. 5.5 and in

our discussion in Sec. 5.2, the v20(R) term is the largest anisotropic term at short

range and the second largest term at large range. This term will couple directly

transitions for which ∆ka = 0 and ∆n = ±2. The transitions for which ∆n = +2
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Figure 5.8: Bar plot of the cross sections for rotationally inelastic scattering of the n =
4 and 5, ka=1 levels in the (0,3,0) vibrational manifold of para (left figures) and ortho
(right figures) CH2(X̃) by collision with He at a collision energy of 300 cm−1. Red marks
the initial state.

are unfavored, relative to those for which ∆n = −2, because of the larger density of

translational phase space points for the exoergic (∆n = −2) process.

In collisions of He with CH2 in the ã state, [17] we found that for ka conserving

transitions with ka = 1, the cross sections showed a monotonic decrease as ∆n

increased, for all initial states investigated. In contrast, in collisions of the X̃ state

we do not observe a similar monotonic decrease.

Transitions in which the projection quantum number ka changes can be directly

coupled only by terms in the expansion of the CH2–He PES for which µ 6= 0. Of

these, the largest is the v31(R) term (see Fig. 5.5). The only nuclear permutation

allowed transitions that can be directly coupled by this term are those with ∆n = ±1

or ±3. For the ka = 1 → ka = 0 transitions with n = 4 or 5 (∆ka = −1), all
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the computed cross sections are small with the exception of those for the ∆n =

+3 transitions from the n = 4 level of the para and the n =5 level of the ortho

isotopomers. The ∆n = ±3 selection rule for direct coupling through the v31(R)

term would allow transitions from n = 4, ka = 1 to n = 7, ka = 0 and n = 5, ka = 1

to n = 8, ka = 0. Since the n = 7 level in the ka = 0 manifold exists only for

para-CH2 and the n = 8 level, only for ortho CH2, we conclude that the v31(R)

term will couple directly the 4 → 7,∆ka = −1 transition in para CH2 and the

5→ 8,∆ka = −1 transition in ortho CH2. These are exactly the strong ∆ka = −1

transitions which appear in Fig. 5.8.

5.4.1.2 Total Cross Sections and Rate Constants

A more averaged measure of the degree of inelasticity is the total removal

cross section, which is the sum, over all energetically accessible final states, of the

rotational-state resolved cross sections, namely

σ
(R)
nka

(Ec) =
∑
n′,k′a

σnka,n′k′a(Ec)

Total removal cross sections are listed in Table 5.1 for collisions with CH2(X̃) in the

n = 4 and 5, ka = 1 rotational levels of the (0,3,0) vibrational manifold. We also

list the average change in the rotational quantum number n and its projection ka,

weighted by the state-to-state cross sections [see Eq. (4.5)].

When we compare these with the identical quantities for relaxation of CH2 in

the ã state (see Table 4.1), we observe that all three measures of the inelasticity
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Table 5.1: Total removal cross sections out of the n = 4 and 5, ka = 1 levels in the
(0,3,0) vibrational state of para and ortho CH2(X̃) by collision with He at a collision
energy of 300 cm−1.

ortho para

Quantity n = 4 n = 5 n = 4 n = 5

σ(R)/Å
2

4.9 5.0 5.0 4.8

< |∆n| > 1.79 2.14 1.97 1.92

< |∆ka| > 0.10 0.31 0.22 0.13

are substantially smaller for collisions of He with CH2 in its ground (X̃) state.

Because of the differing electron occupancy, the electronic anisotropy of the ã state is

greater (see Fig. 5.1). Consequently, as suggested in the Introduction, the rotational

inelasticity is smaller.

The total removal cross sections are ∼ 5 Å
2
, roughly 3 times smaller than

the total removal cross sections for collisions of He with CH2(ã). Again, this is

a manifestation of the smaller electronic anisotropy in the X̃ state of CH2. The

average changes in n and ka are also small. The change in n is slightly larger than

observed for collisions of He with CH2 in the excited ã state, while the change in

ka is slightly smaller. The latter effect is probably a result of the larger energy

splitting between the ka = 0 and ka = 1 stacks in the X̃ state, due to the more

linear character of this state.

There is very little (if any) variation with n of these total removal cross sec-

tions, contrary to what we observed earlier in collisions of He with CH2(ã). There is
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Figure 5.9: Total removal cross sections for CH2(X̃)–He collisions at 300 cm−1 for
molecules in different ka = 1 states (para in red and ortho in blue) in the (0,3,0) vi-
brational manifold. The highest group is for transitions from ka = 1 stack to both ka = 0
and 1 levels. The upper set of curves represents the total removal cross section for tran-
sitions into both the ka = 0 and ka = 1 stacks.

a much more pronounced variation with n of the removal cross sections resolved by

final ka [but still less than the variation observed for collisions of He with CH2(ã)].

Note that the modulation depth of these alternations is significantly reduced com-

pared to what we observed for collisions of He with CH2(ã). Finally, we observe

that the alternation in the ka = 1→ 0 cross sections is canceled by the alternation

in the ka = 1→ 1 cross sections.

5.4.1.3 Variation with Bending Level

Figure 5.2 reveals that with a smaller degree of vibrational excitation in the

bending mode, the CH2 molecule in the X̃ state becomes more confined to bent
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Table 5.2: Energy gaps for ∆n = −1 and −2 transitions out of the ortho-CH2(X̃) n
= 4, ka = 1 (413) level in the (vs, vb, va=0,0,0), (0,1,0), (0,2,0) and (0,3,0) vibrational
manifolds.a

transitions final level (0,0,0) (0,1,0) (0,2,0) (0,3,0)

∆ka = 0
∆n = −2 211 –113.7 –113.5 –114.4 –116.5

∆n = −1 313 –72.1 –72.4 –74.1 –77.3

∆ka = −1
∆n = 0 404 –69.8 –162.1 –361.2 –525.5

∆n = 2 606 –100.8 7.3 191.6 352.6

a A negative value for the energy gap indicates that the final level lies lower in energy
than the 413 level.

geometry. In this case, the effective A rotational constant becomes smaller, and

the ka stacks become closer in energy as the bending quantum number decreases.

This is revealed clearly in Table 5.2, which lists the values of the energy gaps for

∆n = −1(−2) transitions for the CH2(X̃) molecule initially in the 413 level (see

Fig. 5.7). The energy gaps for ka = 1 → 0 transitions decrease dramatically, while

the energy gaps within the ka = 1 manifold are little changed.

In Fig. 5.10, we compare the state-to-state inelastic cross sections out of n = 4,

ka = 1 (413) level of ortho CH2(X̃) in the (0,0,0), (0,1,0), and (0,2,0) vibrational

manifolds at a collision energy of 300 cm−1. These plots should be juxtaposed with

the similar plot for the (0,3,0) vibrational manifold, which is the upper right panel

of Fig. 5.8.

We observe in Figs. 5.8 and 5.10 that for the transitions within the ka = 1

manifold (∆ka = 0) the overall magnitude increases as vb increases, although the
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(0,2,0) vibrational manifolds (from top to bottom) by collision with He at a collision energy
of 300 cm−1. Red marks the initial level.

relative dependence on the final rotational quantum number is little changed. By

contrast, overall the ka = 1 → 0 cross sections decrease as as vb increases. This

behavior is a reflection of the changing ka = 0 → 1 energy gap, whose magnitude

increases dramatically as vb increases (see Table 5.2).

As shown in Table 5.3, overall, the total removal cross sections for collisions
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of He with CH2(X̃) in the n = 4, ka = 1 rotational level of the (0, vb, 0) vibrational

manifold gradually decrease as vb increases for the ortho states but increase for the

para states. This differing dependence on vb is likely a subtle consequence of en-

ergy gaps between the ka = 1 and ka = 0 rotational levels for these two nuclear

spin modifications. Most noticeably, the average collisional change in the projec-

tion quantum number decreases dramatically as the vibrational quantum number

increases. This is a direct consequence of the increasing energy gap between the

ka = 0 and ka = 1 rotational manifolds. In particular, we see in Table 5.2 that the

energy gap for the na = 4, ka = 1→ 6, 0 transition is accidentally very small in the

(0,1,0) vibrational manifold. The corresponding cross section is much larger than

for the identical transition in the other bending vibrational manifolds.

We also see in Fig. 5.14 that the total removal cross sections for the ã state are

much larger than those for the X̃ state. This is consistent with the more pronounced

electronic anisotropy in the ã state (see Fig. 5.1) and the resulting larger anisotropy

in the CH2(ã)–He PES.
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Table 5.3: Overall inelastic cross sections for transitions out of the n = 4, ka = 1 level
of ortho and para CH2(X̃), and out of the j = 4, ka = 1 level of the (0,0,0) manifold
of CH2(ã) by collision with He at a collision energy of 300 cm−1.a

Quantity
ã(0,0,0)a

X̃

(0,0,0) (0,1,0) (0,2,0) (0,3,0)

ortho n=4

σR/Å
2

14.2 7.7 7.5 6.1 4.9

< |∆n| > 1.1 1.32 1.59 1.80 1.79

< |∆ka| > 0.71 0.65 0.54 0.31 0.10

para n=4

σR/Å
2

22.9 3.5 2.8 5.9 5.0

< |∆n| > 1.1 1.62 1.81 2.07 1.97

< |∆ka| > 0.73 0.80 0.75 0.39 0.22

a In the singlet ã state, the total molecular rotational angular momentum j is equal
to the rotational angular momentum of the nuclei n. The comparison here is with
relaxation out of the j = 4, ka = 1 rotational level of CH2 in the (0,0,0) vibrational
manifold of the ã state.
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5.4.2 Vibrational Energy Transfer

5.4.2.1 State-to-State Ro-vibrational Transitions

In principle, one can expand the dependence on the bending coordinate of the

interaction potential [Eq. (3.8)] as a power series

V (Q) ≡ V (R, θ, φ, qb) ≈ V (R, θ, φ, q
(e)
b ) +

∂V (R, θ, φ, qb)

∂qb

∣∣∣∣
q
(e)
b

(qb − q(e)b )

+
∂2V (R, θ, φ, qb)

∂q2b

∣∣∣∣
q
(e)
b

(qb − q(e)b )2 + · · · (5.7)

where qb is the bending coordinate and q
(e)
b its value at equilibrium. Thus

〈v′|V (Q) |v〉 ≈ V (R, θ, φ, q
(e)
b )〈v′|v〉+∂V

q
(e)
b
〈v′| (qb−q(e)b ) |v〉+∂2V

q
(e)
b
〈v′| (qb−q(e)b )2 |v〉

(5.8)

Here we have used a obvious notational simplification for the derivatives evaluated

at q
(e)
b .

Because of the vibrational wave functions are orthogonal, the first term van-

ishes. In the harmonic limit, the second term also vanishes when v′ 6= v±1. Further,

we expect the second derivative term to be smaller than the first derivative term,

since the dependence on qb will probably be slowly varying. Thus, we anticipate

that the v → v ± 1 coupling will be stronger than that for v → v ± 2. In other

words, we anticipate the strongest transitions will occur for ∆v = ±1. Also, again

in the harmonic limit, the 〈v|(r − re)|v + 1〉 matrix element scales linearly with v,

so that we anticipate the vb = 2 → 1 cross sections will be larger than those for
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vb = 1→ 0.

Figure 5.11 presents a confirmation of these qualitative predictions. Here we

show bar plots of state-to-state cross sections for transitions from the 515 (n =

5, ka = 1) rotational level in various bending vibrational manifolds to rotational

levels in a nearby bending vibrational manifold, at a collisional energy of 300 cm−1.

The vb = 2 → 0 state-to-state cross sections (top panel) are extremely small (<

1 × 10−4Å2). The two lower panels show rotationally-resolved vb = 1 → 0 and

vb = 2→ 1 cross sections, again out of the 515 level in both cases. These ∆v = −1

cross sections are roughly two orders of magnitude larger than the ∆v = −2 cross

sections shown in the top panel, but still of more than two orders of magnitude

smaller than the rotational inelastic cross sections within a vibrational manifold as

shown in Fig. 5.8. Finally, we see that the vb = 2 → 1 cross sections are roughly

twice as large as those for the vb = 1→ 0 transition.

The strongest transitions out of the 515 level for both vb = 1 → 0 and for

vb = 2→ 1 are those with ∆n = 4 and ∆ka = 2, as shown in the middle and bottom

panels of Fig. 5.11. However, as we mentioned earlier, since the interaction between

the vibrational levels is very weak, compared to the much larger pure rotational

couplings, it is impossible to attribute the strength of this transition to a particular

term in the expansion of the vλµ expansion term.

In Fig. 5.12 we plot the dependence of the vb = 1 → 0 cross sections on

the energy gap. Although, overall, the largest cross sections have relatively small

energy gaps, this is clearly not the only determinant factor. The propensity for ro-

vibrational transitions must be a subtle function of the energy gap, the strength of
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the coupling, and the unseen influence of the much larger propensities for transitions

within both the initial and the final rotational levels.
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5.4.2.2 Overall Vibrational Relaxation

In addition, we computed the total vibrational relaxation cross sections out of

the 515 level in various vibrational levels to nearby vibrational levels, namely

σvib(515, vb → v′b) =
∑
n′,k′a

σ515(0,vb,0)→n′k′a(0,v
′
b,0)
, (5.9)

as well as the average values of |∆n| and |∆ka|, defined earlier in Eq. (4.5). The re-

sults are listed in Table 5.4. The first column of data, which was already included in

Table 5.1, refers to pure rotational relaxation and is included here from comparison

with the data for ro-vibrational transitions in columns 3, 4, and 5. The largest σvib,

for (0,2,0)→(0,1,0) relaxation, is about 1% in magnitude of the total removal cross
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Table 5.4: Total vibrational relaxation cross sections out of the 515 level in various
bending vibrational levels to a nearby vibrational level of ortho CH2(X̃) by collision
with He at a collision energy of 300 cm−1.

Initial Level / (0,3,0) (0,2,0) (0,1,0) (0,2,0)

Final Level (0,3,0) (0,1,0) (0,0,0) (0,0,0)

σvib/Å
2 5.0 5.9× 10−2 2.3× 10−2 1.2× 10−4

< |∆n| > 2.14 2.92 2.93 5.09

< |∆ka| > 0.31 1.80 1.78 2.17

section within the (0,3,0) vibrational level. Both |∆n| and |∆ka| are larger due to

the large number of available final states in a lower vibrational level.

In Fig. 5.13 we plot the total cross sections for other initial rotational levels:

σvib(nkakc , vb → v′b) =
∑
n′,k′a

σnkakc (0,vb,0)→n′k′a(0,v
′
b,0)
. (5.10)

The magnitudes of the vibrational relaxation cross sections are all comparable in

magnitude to those shown in Fig. 5.11, namely ∼ 10−4, 10−2 and 10−2 Å2 for,

respectively, the vb = 2 → 0, 1 → 0 and 2 → 1 transitions. In general, the cross

sections out of the ka = 0 levels are slightly larger than those out of levels with

ka > 0.

5.5 Discussion

In last chapter, we compared the calculated total removal rate constants out

of the ka = 1 levels of ortho CH2(ã) with the corresponding values measured by
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various initial rotational levels of ortho CH2(X̃), by collision with He at a collision energy
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Hall, Sears, and co-workers. This comparison is reproduced here in Fig. 5.14. The

calculated rate constants are about 20% higher than experiment, except for the

n = 8 level, [118] where the experimental values are reduced by ∼70%.

We plot in blue the relaxation rate constants out of the n = 1−8, ka = 1 ortho
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rotational levels in the CH2(X̃) (0,3,0) vibrational manifold. One spin component of

the n = 9, ka = 3 level of the CH2(X̃) (0,2,0) vibrational manifold is mixed strongly

with the n = 8, ka = 1 level of the CH2(ã) (0,0,0) manifold. [10] The experimentally

determined relaxation rate of the two mixed states are labelled in the figure “S”

(primarily singlet but with ∼ 25 % triplet character) and “T” (primarily triplet,

but with ∼ 25% singlet character). Because the X̃-state component in both mixed

states has a much smaller relaxation rate, the overall relaxation of both mixed states

will be substantially slower than that of levels of pure ã electronic character.
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In the present chapter we have not considered any mixing between the X̃ and

ã states. This will be explored later in Chap. 6. However, to give some credence

to this discussion and comparison with experiment, we also plot in Fig. 5.14 the

calculated rate constant for the overall relaxation of the pure X̃-state 937 rotational

level of the (0,2,0) bending manifold. As we might anticipate, this relaxation rate

lies slightly below (but close to) the experimentally measured rate for the n = 8

levels of the ã state.

We have also investigated the dependence on final rotational level of cross

sections for rotationally inelastic collisions of CH2(X̃), in particular in the (0,2,0)

and (0,3,0) bending vibrational manifolds. We observe an alternation of the cross

sections with the parity of the initial rotational quantum number, but much less

pronounced than observed earlier in relaxation of the ã state (see Chap. 4). This

reduction in the degree of alternation, as well as in the magnitude of the inelastic

cross sections, is due to the reduced degree of electronic anisotropy in the X̃ state,

where both the 3a1 and 1b1 orbitals are singly occupied, as compared to the ã state,

in which the 1b1 orbital is unoccupied.

The barrier to linearity in the X̃ state of CH2 is not as large as that in the ã

state, so that with a modest degree of bending excitation the molecule significantly

explores near-linear geometries. To take this into account when determining the po-

tential energy surface, we performed ab initio calculations for a range of HCH bond

angles γ, and then averaged over these, weighted by the bending vibrational wave

function determined under the assumption that the CH distance remained fixed. [31]

In principle, a next step would be the investigation of how this approximation of a
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rigid bond affects the CH2(X̃)–He PES.

We also showed that the variation in state-to-state cross sections for the four

lowest bending vibrational levels in the CH2(X̃) state is due to differences in the

energy gaps between the ka stacks. The increasing degree of linearity with increas-

ing vibrational excitation implies that the inter ka stack energy gaps increase with

bending vibration. Consequently, the cross sections for transitions inelastic in ka

decrease in magnitude as vb increases.

In this chapter we also examined vibrationally inelastic scattering of CH2(X̃),

in a manner similar to that being used by Ma and Dagdigian [119,120] for collisions

of the methyl radical (CH3) with He. Investigation of the efficiency of vibrationally

inelastic, as compared to purely rotationally inelastic, relaxation of CH2, is of con-

siderable importance in the complete modeling of the collisional relaxation of this

important radical in non-equilibrium environments.

We have found that the ro-vibrational relaxation is about two orders of magni-

tude less efficient than rotational relaxation within a particular bending vibrational

level. Thus, in the study, contained in Chap. 6 on collision-induced electronic energy

transfer between the ã and the X̃ states of CH2, we can reasonably ignore the vi-

brational relaxation within the X̃ state and assume that the CH2 molecule remains

in a particular bending vibrational level, in which the singlet-triplet gateway (see

Sec. 2.2.4) occurs.

The present chapter, taken together with our previous study of CH2 in Chap. 4,

demonstrates that the overall efficiency and the detailed state-to-state pathways of

rotational relaxation are very dependent on the electronic state. The extent of this
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difference is larger than one might anticipate from a consideration of the relaxation

of a diatomic molecule, where the anisotropy of the electronic charge distribution

in the allowable valence states is very similar. In the case of CH2, the difference is

due to a remarkable, but easily understandable, variation in the anisotropy of the

charge distribution. More generally, one should expect similar variations in other

open-shell triatomic (and polyatomic) molecules. Thus, in modeling the kinetics of

different excited states of these molecules, one should not uncritically adopt a single

set of parameters which are independent of electronic state.
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Chapter 6: Collision-Induced Intersystem Crossing between CH2(ã)

and CH2(X̃)

6.1 Brief Introduction

As discussed in Sec. 2.2.4, the reactivity of the ground triplet and first excited

singlet states of CH2 are dramatically different. Collisions with other molecules

(H2, N2, H2O, CO2, CH4) or atoms (He, Ar) [9] can lead to electronic inelasticity,

relaxing CH2(ã) to its ground triplet state. Collision-induced intersystem crossing

(CIISC) [16] is of key importance in the relaxation kinetics of CH2.

In Chap. 2 we introduced the mixed state model for intersystem crossing, de-

veloped initially by Freed and co-workers. [43] In this model transitions between

different electronic states are facilitated by accidental degeneracies between the ro-

tational levels in the two states. In the particular case of CH2 these degeneracies

involve the ground vibrational level of the ã state and the vb = 2 and 3 bending

vibrational levels of the X̃ state, as shown in Fig. 5.2. Rotational levels in the

ã(0,0,0) and in the X̃(0,2,0) and (0,3,0) vibrational manifolds which are nearly de-

generate and, further, have the same total angular momentum, are mixed by the

small spin-orbit coupling between the ã and X̃ electronic states.
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These mixed levels are called “gateway” states. Because the rotational level

spacing is large in a hydride molecule, there are only a small number of nearly

degenerate X̃, ã pairs with the same value of j. Bley and Temps have identified

these, experimentally. [10] These pairs are shown in high resolution in Fig. 2.7. The

relevant quantum numbers, and the degree of mixing, are enumerated in Tab. 2.2.

As discussed in Sec. 2.2.4, in the mixed-state model inter-electronic-state tran-

sitions can be simulated by pairwise mixing of the pure-state T-matrix elements.

Chapters 4 and 5, [17, 18] describe our quantum scattering studies of scattering

within, separately, the ã and the X̃ states. Here, we assumed no electronic state

mixing. We compared in Figs. 4.10 and 5.14 calculated total removal rate constants

for some ka = 1 rotational levels of CH2(ã) with experimental results from Kom-

misarov, Hall, Sears and their co-workers. [12, 14] As shown in Figs. 4.10 and 5.14,

for most levels, our results are about 20% larger than the experimental results.

This is not the case for the (0,0,0)818 level of the ã state, which forms a mixed

pair with the (0,2,0)937 level of the X̃ state (see Tab. 2.2). The calculated removal

rate constant for the united 818 state is about 70% larger than the experimental

rate constant for the nominally ã (singlet) component of the mixed pair, while the

calculated removal rate constant for the unmixed 937 level is about 10% smaller

than the experimental rate constant for the nominally X̃ (triplet) component of

the mixed pair. The difference between our theoretical results, calculated under

the assumption of no state mixing, and the experimental observations shows the

importance of the mixing between the ã and X̃ states.

In this chapter we investigate collision-induced intersystem crossing between
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the ã and the X̃ states of CH2, still in collision with He. The next subsection

summarizes the mixed-state quantum scattering calculations. In subsection 6.3 we

introduce a simple kinetic model for the relaxation kinetics in the presence of two

coupled electronic states. We follow this with a full solution of the relaxation master

equation for both states simultaneously. Here, we include also the three-fold spin

degeneracy for the ground triplet state. For each mixed pair, only one of the spin

triplets will be coupled with an ã state rotational level. In last subsection of this

chapter, we compare our mixed-state rate constants with Hall and Sears’ experimen-

tal results and summarize what we have learned about collision-induced intersystem

crossing in CH2.

6.2 Scattering Calculations

As discussed earlier in subsection 2.2.4, in the presence of the weak spin-orbit

mixing between the X̃ and ã states, the mixed-state model allows us to calculate

elements of the two-state T matrix from the T matrix for collisions of He with,

separately, CH2(ã) and CH2(X̃). These we have already determined.

We will further assume that the gateway process occurs through only one

mixed-pair at a time. In other words, we ignore interference between two different

gateways. We concentrate on pairs in which the mixing is> 10%, and with rotational

energies < 2000 cm−1, above the lowest rotational level of the (0,2,0) vibrational

level of the X̃ state. There are only 4 pairs which satisfy these criteria, all four in

the ground (0,0,0) vibrational manifold of the ã state. For para-CH2, we have the ã
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state rotational levels 431 and 633 and their mixed partners, (0,3,0)312 and (0,3,0)616.

For ortho-CH2, we have the ã state rotational levels 716 and 818, with their X̃ state

mixed partners (0,3,0)615 and (0,2,0)937. All four pairs are listed in Table 2.2.

Scattering calculations at a collision energy of 300 cm−1 for these four pairs

were carried out with the HIBRIDON suite of programs (see Chaps. 4 and 5 and

Ref. [45]). Additional scattering calculations at various collision energies (up to

1300 cm−1) for the 818 − 937 pair were carried out to compute the rate constants

for transitions involving this mixed pair. This was done by numerical integration of

Eq. (3.31) using repeated trapezoidal integration on a grid of collision energies (Ec)

of width 20 cm−1 extending up to 2500 cm−1.

6.3 Relaxation Kinetics

6.3.1 A Simplistic Model

We will first consider a simplistic model for the relaxation of a mixed pair,

in which collisions can transfer population between these levels as well as into two

separate baths consisting of all the other ã and X̃ rotational levels. Population will

not be allowed to return from the bath to the mixed pair. We designate the two

mixed-state levels with, respectively, nominal ã and nominal X̃ character as “A”

and “X”. These levels will be interconnected and coupled to the two baths by 6 rate

constants, as illustrated in Fig. 6.1.

With a realistic choice of rate constants, determination the time dependence

of the populations in the “X” and “A” levels will give us qualitative insight into the
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Figure 6.1: A simple model for the relaxation of a pair of mixed levels and two baths
made up of all singlet and, respectively, all triplet levels, exclusive of the pair of levels
which are mixed. Return of population from the baths to the mixed levels is not allowed.

relaxation kinetics of a mixed level system. The master equation for relaxation of

the populations in these two levels is

dnA
dt

= ρ[−kAXnA − kASnA − kATnA + kXAnX ] = ρ[−kAnA + kXAnX ] (6.1)

and

dnX
dt

= ρ[−kXAnX − kXSnX − kXTnX + kAXnA] = ρ[kAXnA − kXnX ] (6.2)

where ρ is the number density of the buffer gas,

kA = kAX + kAS + kAT , (6.3)

and

kX = kXA + kXS + kXT (6.4)
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Since the gateway states have the same rotational quantum number and have

nearly the same energy (see Table 2.2), we assume kAX = kXA. The 2 × 2 symmetric

rate matrix

K =

−kA kAX

kAX −kX

 (6.5)

can be diagonalized with an orthogonal transformation D, so that

DTKD = λ

where λ is a diagonal matrix with elements λ1 and λ2. The master equation can be

rewritten in matrix notation as

d

dt

DT

nA
nX


 = ρ

(
DTKD

)DT

nA
nX


 , (6.6)

or more simply,

d

dt

NA
NX

 = ρ

λ1 0

0 λ2


NA
NX

 . (6.7)

where the vector N is the product of matrix DT and the vector n. These transfor-

mations lead to a master equation which is uncoupled. Thus, the time-dependence

of NA and NX is

Ni(t) = exp (ρλit)Ni(t = 0) = exp (ρλit)N (0)
i (6.8)

119



From our prior calculations on the unmixed X̃ and ã states, one can esti-

mate reasonable values for rate constants which appear in the model rate matrix of

Eq. (6.5). We obtain

K =

−7.15 5.26

5.26 −6.78

 (6.9)

in units of 10−10molecule·cm−3 · s−1. The eigenvectors D and eigenvalues λ are

D =

−0.719 0.695

−0.695 −0.719

 and λ =

−12.228

−1.702

 . (6.10)

Again, the units of λ are 10−10molecule·cm−3 · s−1. Thus the populations of the

mixed states are

nA = −0.719NA − 0.695NX

= −0.719N (0)
A exp (−12.228τ)− 0.695N (0)

X exp (−1.702τ)

(6.11)

and

nX = 0.695NA − 0.719NX

= 0.695N (0)
A exp (−12.228τ)− 0.719N (0)

X exp (−1.702τ)

(6.12)

Here, τ is time in units of 1010cm3·molecule−1 · ρ−1 · s

Figure 6.2 shows the time dependence of the populations in the two mixed

levels A and X under initial conditions of: (Left Panel) initial population in the

A level; (Middle Panel) initial population in the X level; and (Right Panel) A/X
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Figure 6.2: Time dependence of the populations of the two mixed levels in Fig. 6.1
with (left panel) initial population solely in the nominally singlet state (designated “A”),
(middle panel) solely in the nominally triplet state (designated “X”), and (right panel)
distributed 3:1 between singlet and triplet.

initially populated in a 3:1 ratio. Under all three initial conditions, the population

of the level with higher initial population decreases rapidly while the population of

the other level increases relatively slower, but still quickly. Once the populations of

the two levels are equal, the two relax at the same rate.

Equations (6.11) and (6.12) show that the population evolution is governed by

the two values of λ. As an illustration, Fig. 6.3 displays the contribution of the two

terms in these equations to the population evolution of the A and X states with an

initial 3:1 population distribution. This corresponds to the right panel of Fig. 6.2.

The term corresponding to the large eigenvalue (shown in cyan) is responsible for

the rapid population change at short time (τ < 0.25), but then rapidly drops to

zero. For τ > 0.25 the second term (shown in red) dominates and describes the

overall relaxation of the two states. We anticipate, then, that this picture - the

populations in the mixed pair rapidly equilibrate and then relax in concert – will
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Figure 6.3: Contribution of the two terms in Eqs. (6.11) and (6.12) to the time evolution
of the populations in the two levels of the mixed-state model. The initial distribution with
an initial 3:1 A:X distribution.

remain valid when all the rotational levels are included.

6.3.2 The Full Master Equation for Relaxation

In the simplistic model (Fig. 6.1) we treat all the unperturbed singlet and

triplet levels as two separate baths and further assume that the population lost to

baths does not return. A more accurate picture includes transitions into and out of

all levels. For a system with p rotational levels in the ã state and q rotational levels

in the triplet X̃ state, relaxation is governed by a master equation of dimensionality

p + q. Following Section 3.4, we write the master equation in matrix notation as

[Eq. 3.32)]

dN

dt
= ρKN (6.13)
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Here N is a column vector of the populations in the p + q levels, namely (here we

save space by giving the transpose of this column vector)

NT =
[
Ns1 · · · NA · · ·Nsp Nt1 · · ·NX · · · Ntq

]

The ijth element of the matrix of rate constants K is the rate constant, at temper-

ature T for a transition between level i and level j.

In the absence of mixing, the rate constant matrix is block diagonal in the

electronic state index, namely

K =

 Ka 0

0 KX

 (6.14)

where Ka and KX are the full p × p and q × q matrices of the rate constants for

transitions within, respectively, the ã and X̃ states. We will treat, separately, each

pair of mixed levels. These two levels we designate, as in the simplistic model, “A”

and “X”. As discussed formally in Sec. 2.2.4, levels A and X will couple with all

levels, in both electronic states. Thus, the rate constant matrix will be modified

from the block-diagonal form of Eq. (6.14) by changing the rows and columns cor-

responding to the indices of the A and X levels into full columns and full rows. This

is illustrated, schematically, in Fig. 6.4.

Each rate constant is an integral over collision energy of the appropriate cross

section [see Eq. (3.31)]. To simply the problem, the upper triangle of the rate matrix

were computed with a scattering calculation, while the lower triangle were computed
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Figure 6.4: Schematic of the rate constant matrix for a pair of mixed levels. (Left matrix)
the K matrix in the absence of mixing, block-diagonal in the multiplicity (singlet or triplet)
[see Eq. (6.14)]. (Right matrix) In the presence of spin-orbit coupling the two rows and
two columns (indicated by orange stripes) corresponding the the A/X mixed pair, now
extend across both the singlet and triplet levels.

by detailed balance

gi exp (−Ei/kBT )ki→j = gj exp (−Ej/kBT )kj→i, (6.15)

where gi is the degeneracy of the ith level, kB is the Boltzmann constant and E is

the internal energy of the level.

For transitions between two unperturbed levels, the rate constants are identical

to those calculated for purely ã and X̃ states, described in Chaps. 4 and 5 and in

our previously published articles. [17, 18] Thus we only need to determine the two

modified rows and two modified columns which correspond to the transitions to and

from the two mixed levels (shown schematically in yellow in Fig. 6.4).

To solve the master equation set, we adopted the method presented by Alexan-

der, Hall and Dagdigian in a recent paper, [48] as we did for the simple model. Unlike

the simple model, in this simulation the rate matrix is not symmetric but the off-
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diagonal elements are related by detailed balance [Eq. (6.15)]. Following Eqs. 8–13

of Ref. [48], we transform the rate matrix K to a symmetric matrix

K̃ = (Π1/2)−1KΠ1/2, (6.16)

Here Π is a diagonal matrix whose elements are the Boltzmann populations in each

level, [48] namely

Πij = δijgj exp(−Ej/kBT )/Z

where Z, the partition function is the sum of this factor over all values of j.

This results in a modified master equation

dñ/dt = ρK̃ñ, (6.17)

where ñ = (Π1/2)−1n and the square root of a diagonal matrix is a diagonal matrix

of the square roots of the diagonal elements. Now, following the same procedure

as in the simple model (Sec. 6.3.1), we can diagonalize K̃ and solve for the time

evolution of all rotational levels in both the ã and X̃ states.

6.3.3 Triplet Multiplet Levels

In Chap. 5 we ignored the spin-splitting of each rotational level of the X̃ state,

since the splitting is only a fraction of a wavenumber, [37] treating the molecule as

a singlet with the same rotational level structure. Since the interaction potential

does not explicitly depend on the spin, one can use the spin-free T -matrix elements
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to generate those for transitions between the spin-resolved multiplets. [121,122]

For simplicity, here, as in Sec. 3.2, we will first assume that the CH2 molecule

is a symmetric top. In the spin-free approximation, we determine T -matrix elements

between the |nklJM〉 states defined in Eq. (3.14). If spin is included, then we need to

first vector couple the spin-free CH2 rotational states (|nkmn〉) with the spin-states

|SMS〉, with S = 1 for a triplet. We have then

|nkSjmj〉 =
∑

mn,MS

(nmnSMS|jmj)|nkmn〉|SMS〉

where j is the total molecular angular momentum (rotational plus spin) with space-

fixed projection MS. These states are then coupled with the orbital angular mo-

mentum states |lml〉 corresponding to the rotation of the He atom in the same way

|nkSjlJM〉 =
∑
mj ,ml

(jmjlml|JMJ )|nkSjmj〉|lml〉 (6.18)

=
∑
mj ,ml

∑
mn,MS

(jmjlml|JMJ )(nmnSMS|jmj)|nmnk〉|SMS〉|lml〉

Here, J is the total angular momentum of the atom + molecule (including spin)

and MJ is its space-frame projection.

Now, from the orthogonality properties of the Clebsch-Gordon coefficients, [123]

we can reverse Eq. (3.14), obtaining

|lml〉|nmnk〉 =
∑
JM

(nmnlml|JM)|nklJM〉
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Inserting this result in Eq. (6.18) we find

|nkSjlJM〉 =
∑
mj ,ml

∑
mn,MS

∑
JM

(jmjlml|JMJ )(nmnSMS|jmj)

×(nmnlml|JM)|nklJM〉|SMS〉 (6.19)

Thus, a matrix element of the T operator in the basis [Eq. (6.18)] containing the

spin is

〈n′k′S ′j′l′JM|T̂ |nkSjlJM〉 ≡ TJMn′k′S′j′l′,nkSjl =
∑

mj ,ml,mn,MS ,J,M
mj′ ,ml′ ,mn′ ,MS′ ,J ′,M ′

(jmjlml|JMJ )

×(j′mj′l
′ml′|JMJ )(nmnSMS|jmj)(n

′mn′S ′MS′ |j′mj′)(nmnlml|JM)(n′mn′l′ml′ |J ′M ′)

×〈n′k′l′J ′M ′|〈S ′MS′ |T̂ |SMS〉|nklJM〉 (6.20)

Now, if we neglect spin-orbit coupling, the T operator is independent of spin (since

the interaction potential does not depend on the spin) so that

〈S ′MS′ |T̂ |SMS〉 = δS′SδMS′MS
T̂

Further, the matrix elements of the T operator in the |nklJM〉 (the basis we used

for the spin-free scattering calculations) is diagonal in the total angular momentum

J (in the spin-free treatment) and its projection M , so that

〈n′k′l′J ′M ′|T̂ |nklJM〉 = δJ ′JδM ′MT
JM
n′k′l′,nkl
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Thus, Eq. (6.20) simplifies to

TJMn′k′S′j′l′,nkSjl = δSS′

∑
mj ,ml,mn,MS ,J,M
mj′ ,ml′ ,mn′

(jmjlml|JMJ )(j′mj′l
′ml′|JMJ ) (6.21)

×(nmnSMS|jmj)(n
′mn′SMS|j′mj′)(nmnlml|JM)(n′mn′l′ml′|JM)T JMn′k′l′,nkl

Thus, we see that the T -matrix elements in the S = 1 basis can be written

as sums, multiplied by vector coupling coefficients, of the T -matrix elements in the

spin-free basis, which we have already calculated in Chap. 5. In reality, of course,

the rotational states of the asymmetric top CH2 are linear combinations of the |nk〉

symmetric top functions. Thus, the T -matrix elements between the asymmetric top

states will be a double sum (over k′ and k) of the TJMn′k′S′j′l′,nkSjl matrix elements.

6.4 Results

6.4.1 Cross Sections and Rate Constants

As shown in Eq. (3.25), inelastic cross sections can be determined as sums

over the total angular momentum J of the absolute value squared of T -matrix

elements between individual nkl states. In the presence of the spin-orbit mixing,

the individual T matrix elements, for transitions between a mixed level and an

unperturbed level are modified as described in Eqs. (2.22), (2.23), (2.24), and (2.25).

Similarly, the T matrix elements between the two mixed states are modified as

described in Eqs. (2.26), (2.27), and (2.28).

All the necessary T matrix elements were determined in the single-electronic-
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state calculations described in Chaps. 4 and 5. In this part, we will attempt to probe

the changes of inelastic and elastic cross sections for collision-induced rotational

transitions within the CH2(ã) and CH2(X̃) after including the spin-orbit coupling

in the scattering calculations. Moreover, we aim at examining the time evolution of

the collision kinetics by analyzing the state-to-state cross sections.

In Tab. 6.1, we list several integral cross sections out of the four levels of o-

CH2 which constitute the two ortho pairs in Tab. 2.2. The cross sections were first

computed (upper three rows in Tab. 6.1) without including the spin-orbit mixing

between the two electronic states. Thus, these cross sections are identical to those

published earlier. [17,18] Then, we recomputed the same cross sections after includ-

ing the coupling between the first pair, and, in a separate calculation, the second

pair of states.

The mixed-pair provides the “gateway” between the singlet and triplet man-

ifolds. The collisional coupling between these two gateway states is of particular

interest. As discussed in Sec. 2.2.4, this coupling will be large, since the cross sec-

tions “borrow” strength from the scattering amplitudes for elastic transitions of the

unmixed levels [see also Eq. (2.28)]:

TAX = cos θ sin θ(Ttt − Tss), (6.22)

while the elastic transitions are weaker after including the mixing effect [see also

129



Table 6.1: Elastic, total removal and the largest state-to-state cross sections for transitions

from selected levels of o-CH2: ã, 818 and X̃, 937(0, 2, 0) as well as ã, 716 and X̃, 615(0, 3, 0),

by collision with He at a collision energy of 300 cm−1. In the mixed-state model these

two pairs of levels (818/937 and 716/615) are “gateways”. We list cross sections computed

first by neglecting, and then including (in the mixed-state model) the spin-orbit mixing

between these pairs of gateway levels.

Transitions
Cross Sections / Å2

ã 818 X̃ 937(0,2,0) ã 716 X̃ 615(0,3,0)

without spin-orbit coupling

Elastic 65.3 73.0 65.3 73.9

Total removal 16.0a 5.7a 18.4 4.7

Largest state-to-state cross section 4.3b 1.3c 1.5d 2.3e

with spin-orbit coupling

Elastic 35.0 38.2 30.5 31.2

To the other mixed-pair level 32.7 32.5 38.8 38.7

Removal to all other singlet levels 11.3a 4.7a 9.9 8.5

Removal to all other triplet levels 1.6a 4.0a 2.2 2.5

Largest state-to-state cross section 3.1b 0.9c 0.8d 1.2e

a The sum of the two total removal cross sections in blue in the upper table are
equal to the sum of the four removal cross sections in red in the lower table.

b ã 818 → ã 734.
c X̃ 937(j = 8)→ X̃ 835(j = 7).
d ã 716 → ã 707.
e X̃ 615(j = 7)→ X̃ 413(j = 5).

Eqs. (2.26) and (2.27) ]:

Taa = cos2 θ Tss + sin2 θ Ttt

TXX = sin2 θ Tss + cos2 θ Ttt. (6.23)
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The results in the lower portion of Tab. 6.1 show, that the elastic cross sections

are smaller after including the mixing, for all four initial levels. On the other hand,

the cross sections for transitions to the other perturbed state(818 ←→ 937, 716 ←→

615), are significantly larger than all the other inelastic cross sections. In particular,

for the 716 and 615 pair, where the mixing is nearly maximal (∼ 50%), the cross

sections to the other perturbed level are even larger than the elastic cross sections,

due to the maximized mixing angle. To a good approximation, in the presence of

mixing the elastic flux is partitioned among the purely elastic transition (A → A

and X → X) and the inter-pair transitions (X → A and A→ X).

Also, as revealed by Eqs. (2.22) and (2.24), the cross sections from the mixed

singlet level to the other singlet levels, and from the mixed triplet level to the other

triplet level is reduced by a factor of | cos θ|2. But, Eqs. (2.23) and (2.25) show

that this loss is partially compensated for by the addition of transitions from the

nominally singlet component of the mixed pair to the triplet rotational levels and,

vice-versa, from the nominally triplet component of the mixed pair to the singlet

rotational levels, both of which appear with an intensity factor of | sin θ|2. Thus,

since cos θ2+sin θ2 = 1, the sum of the removal cross sections out of the two unmixed

levels of the nearly-degenerate pair are very close in magnitude to the sum of the

removal cross sections to the rotational manifolds of both the ã and X̃ states out of

these same levels when they are mixed. This is seen by comparing the sum of the

two blue entries in the upper section of Tab. 6.1 with the sum of the four red entries

in the lower section.

Figure 6.5 shows graphically the crosss section tabulated in the lower section of
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Tab. 6.1. These cross sections are at a collision energy of 300 cm−1. Notwithstand-
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Figure 6.5: Bar plot of cross sections for transitions from both components of the two
mixed pairs: 818(ã) and 937(X̃, vb = 2) as well as 716(ã) and 615(X̃, vb = 3), to the other
component of the mixed level, to all other 1ã levels and to all other 3X̃ levels, by collision
with He at a collision energy of 300 cm−1.

ing, we can use the results shown in Tab. 6.1 and Fig. 6.5 to make a few qualitative

predictions about the relaxation of a non-equilibrium sample of CH2 in the two elec-

tronic states. Relaxation between two mixed states will be the most rapid process.

Since the two states in a mixed pair have the same j and nearly the same energy,

their thermal distributions will be equal. Thus, the fastest relaxation process will

be the restoration of equal populations in the two mixed levels. Subsequently, these

two levels will relax to the other unperturbed ã state levels. However, the largest

state-to-state cross sections for this process (3.1 Å2), is an order of magnitude slower

than those for equilibration of population between the two mixed levels. Finally,

transitions to other unperturbed X̃ state levels will be somewhat slower.

Since the (0,2,0) bending vibrational level of the X̃ state lies more than

1300 cm−1 lower than the (0,0,0) vibrational level of the ã state (see Fig. 5.2),
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for calculations in which the collision energy in the ã state is ∼ 1000 cm−1, the

comparable collision energy for the levels of the X̃(0,2,0) state will be greater than

2000 cm−1. To simplify the computational requirements, we carried out scattering

calculations for collision energies only up to 1300 cm−1 and set cross sections for

collision energies greater than 1300 cm−1 equal to the value at that energy. Because

the Boltzmann weighting in Eq. (3.31) [Ec exp(−Ec/kBT )] decreases rapidly at high

collision energy, test calculations indicate that the error in the room temperature

rate constants introduced by this extrapolation will be at most 1%.

The mixed pair involves only one j, n multiplet of the X̃ state. Since the

interaction potential is independent of the spin, it is possible, as outlined in Sec. 6.3.3

to determine T -matrix elements for transitions between the spin-multiplets |jnk〉

from the T -matrix elements in the spin-free (|nk〉) basis; see Eq. (6.22). Table 6.2

presents cross sections for transitions out of the nominally triplet component of the

818/937 mixed pair, the |jnkakc〉 = |8937〉 level, into (a) the other two n = 9 levels

(j = 9 and j = 10) and (b) into the three spin-multiplets of the n = 7 level.

We see a strong propensity for transitions where ∆j = ∆n. Initially, ~S and ~n

are coupled to form ~j. The collision affects only ~n. After the collision ~n′ recouples

with ~S. Because ~S is unaffected, in this recoupling the relative orientation of ~S and

~n′ is preserved. This has been seen before in studies of spin-resolved transitions

of O2 in its 3Σ− states (which, with a triplet coupled π1
xπ

1
y electron occupancy, is

comparable to linear CH2 in the 3X̃ state). [124] A similar effect is found in collisional

coupling of molecular hyperfine levels. [125]

This ∆j = ∆n propensity is seen in transitions both elastic in n (j = n−1, n→
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j = n, n and j = n+ 1, n), and inelastic (n = 9→ 7). Cross sections for transitions

which do not obey this rule are 3 orders of magnitude smaller, comparable to the

vibrationally inelastic cross sections examined in Sec. 5.4.2.

When spin is included, one n → n′ transition in the spin-free limit becomes

partitioned into nine j, n → j′, n′ transitions. We see from Tab. 6.2 that to a very

good approximation, the spin-resolved cross sections obey a simple conservation rule

σ
(spin−free)
n→n′ ≈ 1

2S + 1

n+1∑
j=n−1

n′+1∑
j′=n′−1

σj,n→j′,n′

Table 6.2: Cross sections for transfer between the spin multiplets of the X̃ state.

Transitions Cross Sections / Å2

Multiplet
ignored

Multiplet included

Elastic 73.09 73.04

Total removal 5.61 5.66

to other 937

levels
73.09

j = 8 j = 9 j = 10

73.04 4.23×10−2 5.55×10−4

to 735 levels 1.09
j = 6 j = 7 j = 8

1.05 3.73×10−2 6.92×10−4
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6.4.2 Master Equation Simulation

Making use of our calculated rate constants, we wrote a MATLAB script to

solve the relaxation master equation [Eq. (6.13)]. This allows us to explore the time

dependence of the populations of rotational levels in both the ã and X̃ states. In

these simulations, we include 48 rotational levels in the (0,0,0) vibrational manifold

of the 1ã state and 160 rotational levels in the (0,2,0) vibrational manifold of the

3X̃ state. The three fine-structure components for each triplet nkakc level [with

j = n− 1, n, n+ 1] are included as distinct levels.

We ignore relaxation of the bending mode, consistent with the results of

Chap. 5 in which we concluded that for CH2 vibrational relaxation is at least of

two orders of magnitude slower. Thus, for mixing between the 818 level of the ã

state and the 937(0, 2, 0) level of the X̃ state, both in o-CH2, we included only

rotational levels in the (0,2,0) manifold of the X̃ state.

In Chaps. 4 and 5, we have seen that the ∆ka = 0,∆n = ±1 and ∆ka =

2,∆n = 0 transitions make the dominant contribution to the total removal cross

sections out of a single rotational level of the ã state. Similarly the ∆ka = 0,∆n =

−1/ − 2 and ∆ka = −1,∆n = 2 transitions are the strongest for relaxation of the

X̃(0,2,0) state. For the 818/937(0, 2, 0) pair, these strong transitions lead to ã state

final levels of 716, 918 and, in the X̃ state, the final levels 836 and 835, 735 and 112,10.

All these levels, and also some at higher energy, are included in the simulation.

We set both the translation and rotational temperature to 300 K and the

bath pressure to 2 Torr. These values are consistent with ongoing experimental
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Figure 6.6: Rotational distribution of selected singlet and triplet levels at various times.
Initial population in the 818 component of the mixed pair.
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investigation. [14] We assume that both T and p do not change. The pressure

affects the number density of the collision partners ρ in Eq. (3.32), but not the rate

matrix. By varying the initial distribution of rotational levels, we can access the

time dependence of rotational populations at different initial conditions. Especially,

we are interested in starting from one particular rotational level, and observing the

time evolution of the re-distribution process.

Our MATLAB script allows us to visualize the entire time evolution, as a his-

togram of changing populations. The first example is the evolution of the population

subsequent to initial population in the nominal 818 (nominal ã) component of the

818/937 mixed pair. Figure 6.6 presents three snapshots, following initial population

of the 818 level, the nominally ã level of the particular mixed-pair of o-CH2 under

study at Brookhaven. [12, 46] In the top panel, we plot the positions of some of

the nearby rotation levels in both the ã (blue) state and the X̃ (green) states. For

the triplet levels we include both the other mixed pair (937) and the 735 level. The

937 → 735 transition is one of the strongest relaxation pathways in the X̃ state. We

show explicitly each of the three fine-structure components of these two rotational

levels (these are degenerate to within the resolution of the figure). For the ã state

we include more final rotational states, covering transitions with ∆ka = [0, 1, 2],

∆n = [−3,−2,−1, 0, 1], and ∆E = −200 ∼ 200 cm−1.

The four lower panels of Fig. 6.6 display bar histogram plots of the initially

normalized populations at three different times (chosen on a logarithmic scale).

Two square empty boxes are plotted for each of the ã state levels, of which the

black one represents the Boltzmann population including all ã and X̃ levels, while
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the blue empty box represents the relative Boltzmann population among the ã levels

in the absence of coupling to the X̃ state. The lower panels present populations of

these selected levels at different times. By 90 ns (middle panel), the populations

in the two mixed levels, 818 and 937(j = 8) have already equilibrated, considerably

before significant population is seen in any of the other levels. This immediate re-

distribution between the mixed levels is consistent with the large size of the cross

section for transitions between the two mixed levels, which borrows intensity from

the elastic scattering amplitudes in the two states [see Eq. (2.28)].

In the fourth panel of the figure, at t = 900 ns, the blue boxes for the ã state

levels are almost fully filled. By this time rotational relaxation within the ã state

has reached equilibrium. From this point the population of all ã state levels decay

at the same rate. Since the 818 level lies ∼ 1900 cm−1 above the lowest level in the

simulation [the 000(j = 1) rotational level in the (0,2,0) vibrational manifold of the

X̃ state], at 300 K, eventually all the population will have decayed out of the levels

considered explicitly in this figure.

At t = 900 ns, the populations of the X̃ state levels (except the X̃ component in

the mixed pair) are still low, as their black boxes for the Boltzmann distribution are

still empty. This is true even for the 735 level, which is relatively strongly correlated

with the mixed-pair level 937. Note that even after evolving from 60 (middle panel)

to ∼ 900 ns (fourth panel), the populations of the two mixed levels remain equal,

even though the population in both has decreased from ∼0.25 to ∼0.1.

Finally, the bottom panel shows the population distribution when relaxation

among the levels displayed is essentially complete (t = 180, 000 ns).
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Figure 6.7: Time dependence of the (normalized) populations of the mixed singlet, the
mixed triplet, an unperturbed level, all unperturbed singlet levels and all unperturbed
triplet levels. Initial population was solely in the mixed singlet 818 level. The left and
right panels correspond to two different time ranges.

In Fig. 6.7 we show the evolution of some rotational populations over two

different time scales. We include the two mixed states(818 and 937), one unperturbed

level 616 as well as the total population in all singlet [designated S(total)] and all

triplet [designated T(total)] unperturbed levels. This figures shows again that the

two mixed states merge quickly to the same depletion rates within 50 ns. The ã

state population then maximizes (at t ≈ 1000 ns) only to diminish at longer time,

as population recedes into the rotational levels of the energetically lower X̃ state in

its (0,2,0) vibrational manifold.

In conclusion, for initial population in the singlet component of one of the

mixed pairs, the relaxation process is composed of three major steps: very fast

energy transfer to the mixed partner (818 → 937 in this case), the relatively fast

rotational re-distribution within the ã state (900 ns), and the longer-time rotational

re-distribution within the X̃ state.

Population confined initially not to one of the mixed-state levels but to a near
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Figure 6.8: Rotational distribution of selected singlet and triplet levels at various times.
The system was initially populated to the 616 unperturbed level.
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by unperturbed level, for example ã 616, provides an interesting contrast. This is

shown in Fig. 6.8.

Here the initial relaxation is slower, corresponding to redistribution of popula-

tion among the other rotational levels of the ã state. We see, though, evidence of the

strong mixing between the 818 and 937 levels. As population appears in the 818 level,

it shows up simultaneously in the other mixed-pair. The prompt re-distribution be-

tween the two mixed-state levels is not as obvious in this simulation because there

the mixed levels are initially empty. However, once population is transferred into

one, it appears in the other. Their populations are already equal at t = 100 ns.

By t = 900 ns, the relative populations are very similar to those shown in

Fig. 6.6. Once population has equilibrated in the ã state levels, the subsequent

population evolution is independent of which ã state level was populated initially.

This is true both for the relative and absolute populations.

6.5 Discussion

As discussed in Chaps. 4 and 5, for most of ka = 1 levels of CH2(ã) if we ignore

mixing with the X̃ state, the calculated total removal rate constants are about 20%

higher than the experimental observations by Hall and Sears. Surprisingly, for the

818 level, the discrepancy between the calculated and experimental total removal

rate constants, is much larger, about 70% [see Figs. 4.10 and 5.14]. In this chapter,

we applied the mixed-state model to the CH2He system, concentrating on 818 as the

ã “gateway” level. Table 6.1 shows that inclusion of the spin-orbit coupling leads to
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a significant decrease in the total removal cross sections of 12.9 Å2 for transitions

from the mixed 818 level to all unperturbed singlet and triplet levels. This should be

compared to our earlier estimate of 16.0 Å2 in the absence of spin-orbit coupling of

CH2 . Similarly, our estimate for the total removal rate out of the other component

of the mixed pair [X̃ 937(0, 2, 0)] is larger (8.7 as compared to 5.7 Å2) when spin-

orbit coupling is included. By ignoring spin-orbit coupling, we overestimate the

total removal cross sections for the 818 level but underestimate the it for the 937

level.

The comparison in Tab. 6.1 refers to cross sections at a fixed collision energy.

The total removal thermal rate constants at 300 K are 1.89×10−10 cm3·molecule−1·s

for the 818 level and 1.36 × 10−10 (in the same units) for the 937 level. These two

numbers should be compared with the points marked, respectively, “S” and “T”

in Fig. 4.10. They are in considerably better agreement with experiment than

the calculated rates under the approximation of neglect of spin-orbit coupling [see

Fig. 4.10)] but still ≈ 30% higher for the singlet and ≈ 10% higher for the triplet.

The overall relaxation from the mixed 937 level is lower than that of the 818 level,

since the latter possesses greater singlet character. The degree of disagreement with

experiment is comparable to what we have found for other ka = 1 levels. This

confirms the accuracy of the mixed-state model for CH2.

In this Chapter we presented a simplistic and more complete simulation of

relaxation involving the ground and the first-excited states of CH2, by collisions with

He. In the simplistic model, we treated all unperturbed singlet and triplet levels as

two large baths. The predicted time evolution of the populations of the two mixed
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levels was double exponential: a rapid equilibration of these two levels at short time

followed by a slower overall relaxation. The complex simulation reproduced this

double-exponential behavior [Fig. 6.7] for the two mixed levels.

We ignored vibrationally inelastic processes, which we believe, based on our

work in Chap. 5, will be totally unimportant. In addition, we only included one

mixed-pair. The next level of complexity would be to include both (and, even

higher) pairs of mixed levels for either of the nuclear-spin modifications of CH2,

see Tab. 2.2. For o-CH2 we would need to add the 716/615 pair, which are mixed

nearly completely. Thus, this more complete relaxation simulation will involve two

simultaneous gateways.

We now have a better understanding of 1ã→3 X̃ relaxation in CH2. Whatever

the initial conditions, the populations in both components of the mixed pair rapidly

equilibrate, and then decay at the same rate. The next most efficient process, is

rotational relaxation within the ã state, which is ≈ 3 times faster than within the

X̃ state. Eventually, the bulk of the population transfers to the X̃ state, not only

because of the threefold greater degeneracy of this latter, but because the zero-point

levels of both the (0,2,0) and (0,3,0) vibrational manifolds lie lower than the origin

of the ã state, as seen in Fig 5.2.
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Chapter 7: Global Conclusions and Future Work

Our research goal was to investigate, theoretically, energy transfer within and

between the triplet ground state and the singlet first excited state of CH2, in colli-

sions with the helium atom. To do so we first calculate the CH2(ã/X̃)+He potential

energy surfaces and then carried out scattering calculations separately for each of

the two states. We then investigated purely rotational relaxation within each elec-

tronic state, and, in the case of the X̃ state, rovibrational relaxation involving the

vb = 0, 1, 2 CH2 bending vibrational states. We then included the spin-orbit coupling

and explored the electronic energy transfer within the mixed-state model.

For the interaction of He with CH2(ã), ab initio calculations were conducted

on a grid of 19 R values and 190 (θ, φ) combinations, for a total of 3610 points.

The presence of a filled lone pair in the orbital along the molecular axis as well

as the total hole in the empty orbital perpendicular to the molecular plane, leads

to a significant anisotropy in the potential energy surfaces. At short-range, the

largest terms in the expansion of the PES reflect this electronic asymmetry and the

repulsion of the He by the two hydrogens.

Again for collisions involving CH2(ã), at a collision energy of 300 cm−1 the

largest state-to-state cross sections are for transitions with ∆ka = 0, ∆n = ±1 and
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∆ka = 2, ∆n = 0. Here too, we found no correlation between the magnitude of

the cross sections and the the energy gap between the initial and final states. For

collisions out of levels in the ka = 1 stack, we found strong even-odd alternation

in the dependence of the total removal cross sections and room temperature rate

constants on the initial CH2 rotational angular momentum. This propensity is

reversed for ortho (as compared with para) CH2. This propensity is related to the

strong variation in the energy gaps in the ka = 1 stack, which is a consequence of

the rotational asymmetry of the CH2 molecule.

Chapter 5 summarizes out ab initio calculations for CH2(X̃)–He PES. Because

of the low barrier to linearity in this electronic state, we treated the molecule as a

semi-rigid bender with a fixed bond length and a variable bending angle. The grid

of ab initio calculations was defined by 19 CH2–He distances, 52 (θ, φ) orientation

combinations and additional 13 values of the CH2 bond angle γ, for a total of 12,844

points. We determined the potential energy surface for use in the scattering calcula-

tion by averaging the bending-dependent potential weighted by the the square of the

bending wave function (in the case of transitions within a vibrational manifold) or

by the product of the vibrational wave functions (in the case of transitions inelastic

in the bending vibration). Since the 3a1 and 1b1 orbitals are each singly occupied in

the X̃ state, the strongest anisotropy of CH2(X̃)–He PES corresponds to rotation of

the He in a plane perpendicular to the molecular plane, and, also, to the repulsion

with the two H atoms, as the He rotates around in the plane of the molecule.

Because CH2 in the X̃ is much less strongly bent (much more linear) the

energy splitting between the ka stacks of the CH2(X̃) is considerably larger than
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that CH2(ã). Thus, the rotational inelasticity is primarily confined to a single ka

stack. The largest cross sections at a collision energy of 300 cm−1 belong to the

transitions with ∆ka = 0 and ∆n = −2. This transition is directly coupled by the

strongest term in the expansion of the anisotropy of the PES.

Because the PES is less anisotropic (compared to that for CH2(ã)+He), the

state-to-state cross sections, as well as the room temperature rate constants, are

much smaller. In addition, there is a weaker even-odd alternation with n in the

magnitude of the total removal cross sections. This is the affect of a cancellation

between an alternation in the ka = 1→ 0 cross sections and a reversed alternation

in the ka = 1→ 1 cross sections.

For collisions of CH2(X̃) the relative magnitudes of the state-to-state rota-

tional cross sections within a particular bending vibration manifold vary with the

bending vibrational quantum number. For example, for transitions out of the 414

level of the ortho CH2(X̃), the largest cross sections belong to different transitions

in different (0,vb,0) vibrational manifolds. This difference in cross sections is again

due to the distinction in the energy splitting between the ka stacks. To fully under-

stand the vibrational energy transfer of the X̃ state, we calculated the interaction

between rotational levels in different vibrational manifolds and carried out scattering

calculations for the ro-vibrational relaxation within the X̃ state. The ro-vibrational

relaxation, is found to be at least of two order of magnitude smaller than the rota-

tional relaxation in a single vibrational manifold of the X̃ state. We then concluded

that the vibrational relaxation for CH2 after collisions with He is ignorable in most

circumstances.
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For collisions of CH2(ã) with He, we compared the total removal rate constants

calculated from our scattering calculations to the experimental results reported by

Hall and Sears, for transitions out of the n = 2, 4, 5, 6 levels of ortho CH2(ã) in the

ka = 1 stack. The calculated removal rate constants were only ≈ 20% higher than

the experimental estimates. In particular, the even-odd alternation seen experimen-

tally corresponded identically to our predictions. However, the predicted removal

rate for the n = 8, ka = 1 level is ≈ 70% greater than the experimental estimate.

This level forms a nearly degenerate with the 937(j = 8) level in the (0,2,0)

vibrational manifold of the X̃ state. These two levels are mixed by the weak spin-

orbit coupling. They form a degenerate pair: each level has both singlet and triplet

character. This mixed pair can then form a “gateway” for energy transfer between

the ã state and the triplet rotational levels.

In Chap. 6 we included the mixing between this degenerate pair (818/937). The

cross sections and removal rates of these two mixed levels are strongly effected. The

disagreement with experiment drops to ≈ 30% higher (calculation as compared to

experiment) for the mixed-pair level of nominal singlet character and only ≈ 10%

higher for the level of nominal triplet character.

In the same chapter 6, we solved the full relaxation master equation assuming

only one pair of mixed states: 818 and 937. We can then simulate the kinetic re-

laxation of all the rotational levels of the ã state and the (0,2,0) manifold of the X̃

state. The populations of the two mixed states merge immediately to the same de-

cay rate, and perform double-exponential behaviors as we have predicted using the

simple model simulation. At short time the mixed states rapidly achieve an equality
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of population. Rotational relaxation then occurs to the other levels of the ã state,

and, on a somewhat slower timescale, to the other levels of the X̃ state. At very

long times, equilibration occurs between the spin-multiplets of the X̃ states. The

cross sections for this process are very small, comparable to those for vibrational

relaxation.

To sum up, then, in one paragraph, in this dissertation we reported accurate

potential energy surfaces, state-to-state and overall removal cross sections, and room

temperature rate constants for collisions of He with CH2, in both its ground and

first excited electronic states. We investigated intersystem crossing between the

two electronic states by including the small spin-orbit coupling of pairs of gateway

states. In addition, we initiated a detailed simulation on relaxation kinetics of

CH2 by solving the relaxation master equation, to help in understanding collisional-

induced electronic energy transfer in small molecules like CH2. This work is the

first investigation of rotational-electronic relaxation in collisions of a polyatomic

molecule.

In future work, we can extend the scattering calculation for energy transfer

between the ã and the X̃ rotational levels by including both [818/937(0, 2, 0)] and

[716/615(0, 3, 0)] gateway pairs of ortho CH2, in a single calculation. In Sec. 2.2.4

we demonstrated how to calculate the two-state (with one gateway pair) T -matrix

elements from the T -matrix elements for collisions of He with, separately, CH2(ã)

and CH2(X̃). For a system with both gateway pairs, the equations in Sec. 2.2.4 are

still valid in calculating the T -matrix elements for transitions between an unmixed

level and a gateway state, as well as for transitions between two paired gateway
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states.

The calculation for the T -matrix elements for transitions between gateway

pairs (for example, 818 → 716), which is not discussed in detail in this dissertation,

will be more complicated. As the wave functions of both pairs can be written as

linear combinations of the pure singlet and triplet states, the transition between two

unpaired gateway states will involve two mixing angles. It will be of interest and

challenge to explore these transitions. The total removal rate constant for the ã 818

level is expected to be even closer to the experimental result.

Once determine the cross sections for transitions between unpaired gateway

states, we can calculate the corresponding rate constants. The master equation sim-

ulation can then be expanded by including the interference between two different

gateways ([818/937(0, 2, 0)] and [716/615(0, 3, 0)] for o-CH2). This proposed simula-

tion will involve three vibrational manifolds: both (0,2,0) and (0,3,0) of the X̃ state

as well as (0,0,0) of the ã state.

In this dissertation, we used a fixed collisional partner, He. Further inves-

tigation can be carried out using another collider, for example, Ar. We can then

evaluate the dependence of the efficiency of the gateway on collision partners and

compare the results with Gannon and Seakin’s experiment (see Sec. 2.3).
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Appendix A: Symmetry of CH2 Wave Functions (with respect to In-

terchange of the Two H Nuclei)

This Appendix draws heavily from some earlier, unpublished notes by Dr. Paul

Dagdigian.

Fermi-Dirac statistics apply to electrons, but also to protons, neutrons, and,

in general, nuclei with odd mass numbers. Nuclei with even mass numbers obey

Bose-Einstein statistics. [16]

The total wave function of a molecule can be written, formally, as

Φtot = Φel Φvib Φrot Φns, (A.1)

where Φel, Φvib, Φrot and Φns are, respectively, the wave functions for the electronic,

vibrational, rotational and nuclear spin degrees of freedom. The CH2 molecule has

two H atoms. Since these are fermions, Φtot must be anti-symmetric with respect

to the interchange of the two hydrogens.

In the coordinate system we are using in this dissertation, [Fig. 2.5], the in-

terchange of the two hydrogens in CH2 is equivalent to a rotation of 180◦ around

the x axis, the C2 axis for the molecule. Thus the total wavefunction must be
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anti-symmetric with respect to this operation:

Ĉ2(x) Φtot = −Φtot. (A.2)

The symmetry of the rotational wavefunction of a asymmetric top around the

b axis (also x axis in our coordinate system) is given by [34]

Ĉ2(x) |njkakc〉 = (−1)ka−kc |njkakc〉. (A.3)

Although the bending vibrational wavefunction is always symmetric with respect to

Ĉ2, the electronic wavefunctions in the ã and X̃ states have different symmetries.

a) The 3X̃ ground state

The overall symmetry of the electronic wave function in the 3X state is B1. As

shown in Table 2.1,

Ĉ2(x) |B1〉 = −|B1〉. (A.4)

Thus the electronic wavefunction is anti-symmetric with respect to this operation.

Just as in the H2 molecule, in the ortho nuclear spin species the nuclear spin

wavefunction is symmetric with respect to exchange of the two H atoms. Conse-

quently, the symmetry of the total wavefunction for CH2 in its ground electronic

state is

Ĉ2(x) Φ
(o),B1

tot = (−1)ka−kc+1 Φ
(o),B1

tot , (A.5)

here the superscript (o) designates ortho. Comparing this equation to Eq. (A.2),
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we see that the only allowed rotational levels for the ortho nuclear spin species

are those for which ka + kc = even (ka and kc must be both even or both odd).

Similarly, in the para species, the nuclear spin wave function is antisymmetric

with respect to exchange of the two H atoms. Thus,

Ĉ2(x) Φ
(p),B1

tot = (−1)ka−kc Φ
(p),B1

tot , (A.6)

which tells us that for p-CH2 the only rotational levels allowed are those for which

ka + kc = odd.

b) The ã state

The only difference between the ã state and the X̃ state CH2 of relevance to the

discussion here is the symmetry of the electronic wavefunction with respect to

the interchange of the two hydrogens. The overall symmetry of the ground state

is A1, where,

Ĉ2(x) |A1〉 = +|A1〉, (A.7)

which is opposite to the symmetry of the ground state. Thus the attribution of

rotational levels to the ortho and para nuclear spin species is reversed in the ã

state: odd values of ka + kc are associated with the ortho species, while even

values of ka + kc are associated with the para species.
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Appendix B: Spin-orbit Coupling in the X̃ 3B1 state of CH2

This appendix, originally written by Dr. Millard Alexander, but unpublished,

is included in this dissertation for completeness.

B.1 Linear Molecules

For a molecule with π2 electron occupancy, as, for example NH, OH+, or linear

CH2 and linear H2O
+, there are three valence electronic states: 3Σ−, 1∆, and 1Σ+.

Their Slater determinantal wave functions are:

∣∣3Σ−,MS = 1
〉

= |π1π−1|

then, by application of the operator S− = s1− + s2−,

∣∣3Σ−,MS = 0
〉

= 2−1/2 (|π1π̄−1|+ |π̄1π−1|)

and ∣∣3Σ−,MS = −1
〉

= |π̄1π̄−1|
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Also ∣∣1∆,ML = 2
〉

= |π1π̄1|

and ∣∣1∆,ML = −2
〉

= |π−1π̄−1|

Finally, since the 1Σ+ and 3Σ−,MS = 0 states are orthogonal, we have

∣∣1Σ+
〉

= 2−1/2 (|π1π̄−1| − |π̄1π−1|)

As Hund’s rules [16] predict, the lowest state energetically is 3Σ−, followed by 1∆

and, successively, by 1Σ+.

If we neglect spin-other-orbit terms, then the spin-orbit coupling can be rep-

resented as a one electron operator

ĥso = a

[
l̂z ŝz +

1

2

(
l̂+ŝ− + l̂−ŝ+

)]

where a is a constant. The spin-orbit operator for the two-electron system is

Ĥso(1, 2) = ĥso(1) + ĥso(2)

The only non-vanishing elements of Ĥso are between the 1Σ+ and the MS = 0

component of the 3Σ− state. Specifically, these are coupled by the l̂z ŝz term. We

find 〈
1Σ+

∣∣ Ĥso

∣∣3Σ−〉 = a
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B.2 Molecules with C2v Symmetry

When a triatomic linear molecule bends, the electronic states take on one of the

C2v symmetry characters. Specifically, the 1Σ+ state (x2 + y2 in character) and the

x2−y2 component of the 1∆ state become states of 1A1 symmetry, the xy component

of the 1∆ state becomes a state of 1B1 symmetry, and the 3Σ− state becomes a state

of 3B1 symmetry. The two states of 1A1 symmetry mix, substantially so as the

bending increases. In a 3-state model, one can write the wave functions at any HCH

angle θ as ∣∣1A1 〉 = cos γ
∣∣1∆x2−y2

〉
+ sin γ

∣∣1Σ+
〉

and ∣∣2A1 〉 = − sin γ
∣∣1∆x2−y2

〉
+ cos γ

∣∣1Σ+
〉

where the “mixing angle” γ vanishes in linear geometry. Thus, the matrix of the

spin-orbit operator is

Ĥso =



11A1 21A1
3B1(MS = 0)

11A1 0 0 a sin γ

21A1 0 0 a cos γ

3B1(MS = 0) a sin γ a cos γ 0


so that

γ = arctan
(〈

11A1

∣∣ Ĥso

∣∣3B1

〉
/
〈
21A1

∣∣ Ĥso

∣∣3B1

〉)
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B.3 Results for the CH2 Molecule

We carried out a three-state CASSCF calculation on the CH2 molecule as a

function of the HCH angle, using the MOLPRO program suite. [51] The results,

with an avtz basis, are presented in Fig. B.1. We see that the spin-orbit coupling is

60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8
x 10

4

theta / degree

e
n

e
rg

y
 /
 w

a
v
e

n
u

m
b

e
r

60 80 100 120 140 160 180
−25

−20

−15

−10

−5

0

theta / degree

S
p

in
−

o
rb

it
 c

o
u

p
lin

g
 /
 w

a
v
e

n
u

m
b

e
r

21A
1

11A
1

1B
1

3B
1

3Σ–

1Σ+

1Δ

21A
1

11A
1

Figure B.1: (Left panel) Energies of the CH2 molecule as a function of the HCH
angle; avtz basis, CASSCF, 4,1,1 active space. (Right panel) Spin-orbit coupling
matrix elements between the 3B1 state and the 11A1 and 21A1 states.

on the order of 10’s of wave numbers.

In reality, the coupling must be averaged over the product of the vibrational

wave functions of the 3B1 and the 11A1 states. Since the former is much less bent

than the latter, the Franck-Condon overlap will be substantially less than unity, so

that these matrix elements will be reduced, resulting in spin-orbit coupling on the

order of a few wave numbers, as reported by Bley and Temps. [10]
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