
The InsTITuTe for sysTems research

Isr develops, applies and teaches advanced methodologies of design and
analysis to solve complex, hierarchical, heterogeneous and dynamic prob-
lems of engineering technology and systems for industry and government.

Isr is a permanent institute of the university of maryland, within the
a. James clark school of engineering. It is a graduated national science

foundation engineering research center.

www.isr.umd.edu

Physically Constrained Design Space Modeling for
3D CPUs

Caleb Serafy

Isr TechnIcal rePorT 2015-06

Physically Constrained Design Space Modeling for 3D
CPUs

Caleb Serafy, Ankur Srivastava and Donald Yeung
University of Maryland
College Park, MD, USA

{cserafy1, ankurs, yeung}@umd.edu

ABSTRACT
Design space exploration (DSE) is becoming increas-
ingly complex as the number of tunable design parame-
ters increases in cutting edge CPU designs. The advent
of 3D integration compounds the problem by expanding
the architectural design space, causing intricate links
between memory and logic behavior and increasing the
interdependence between physical and architectural de-
sign. Exhaustive simulation of an architectural design
space has become computationally infeasible, and pre-
vious work has proposed fast DSE methodologies using
modeling or pseudo-simulation.
Modeling techniques can be used to predict design

space properties by regression fitting. However in the
past such techniques have only been applied to opti-
mization metrics such as performance or energy effi-
ciency while physical constraints have been ignored. We
propose a technique to apply spline modeling on a 3D
CPU design space to predict optimization metrics and
physical design properties (e.g., power, area and tem-
perature). We use these models to identify optimal 3D
CPU architectures subject to physical constraints while
drastically reducing simulation time compared to ex-
haustive simulation. We show that our technique is able
to identify design points within 0.5% of the global opti-
mal while simulating less than 5% of the design space.

1. INTRODUCTION
Design space exploration (DSE) involves the evalu-

ation of a multitude of design choices before detailed
implementation. Such a technique is necessary to make
optimal design choices and perform educated tradeoff
analysis of conflicting objectives. In its simplest form
DSE can be performed by exhaustively simulating the
entire design space and choosing the optimal design.
However as CPU designs become ever more complex
in the pursuit of Moore’s law performance scaling, the
DSE problem has become increasingly intractable as the
design space becomes exponentially large. It is simply
no longer computationally feasible to exhaustively sim-
ulate the cross product of all design variables.
Past work has attempted to overcome the computa-

tional infeasibility of exhaustive simulation in two ways.

One is to reduce simulation time by orders of magnitude
using techniques such as host-compiled simulation [1]
or statistical simulation [2]. Although these approaches
can make exhaustive simulation possible, the accuracy
of such fast simulation techniques is reduced, and the
applicability of the techniques is limited in scope. An-
other approach to the DSE problem is to simulate only
a small subset of the full design space and use model-
ing techniques to predict the properties of unsimulated
designs. Modeling approaches [3, 4, 5, 6, 7] have shown
promising results on large architectural design spaces.
Vertical integration of circuits (3D ICs) is an up-

and-coming technology that shows great potential to-
wards improving circuit power and performance as well
as facilitating new CPU architecture paradigms such
as stacked memory and highly connected on-chip net-
works. However 3D ICs also bring new challenges, chief
among them thermal management. Moreover, past work
[8, 9] has shown that 3D-CPU architectural design choices
have a profound impact on physical properties such as
power, area and temperature and significant portions of
the 3D CPU design space can be infeasible due to phys-
ical constraint violations. 3D integration significantly
complicates the DSE problem as follows:

• 3D integration brings many new architectural op-
portunities that significantly compound the intractabil-
ity of exhaustive simulation.

• 3D ICs are more thermally sensitive to architec-
tural changes than equivalent 2D chips due to their
physical structure.

• 3D ICs can eliminate communication bottlenecks
that are inherent in 2D ICs, making performance
and power more sensitive to architectural changes.

• Ad hoc fixes late in the design cycle to fix infeasible
or suboptimal architectural design choices choices
can be more costly in 3D ICs due to a higher inter-
connectivity and density of circuit components.

Physical awareness during DSE is becoming more im-
portant, especially in the context of 3D ICs. Past work
[10, 9] has examined the effect of physical constraints

on DSE, but has only done so with exhaustive simu-
lation of a small design space. Previous work on de-
sign space modeling [3, 4, 5] has simply attempted to
predict high performance or energy efficient architec-
tural designs with no consideration as to whether such
designs were physically feasible. In this paper we in-
troduce a spline regression modeling technique for 3D
CPUs which models physical properties (e.g., power,
area and temperature) along with traditional optimiza-
tion metrics such as instructions per second or energy-
delay-product. Our models are able to predict the per-
formance and temperature of a diverse 3D CPU design
space and leads us to identify a thermally feasible solu-
tion within 0.5% of the optimal solution while simulat-
ing less than 5% of the design space.
The rest of this paper is organized as follows. In the

remainder of this section we give a detailed overview
of related work and enumerate the contributions this
work makes to the research effort. Section 2 explains
our simulation framework which is used to evaluate the
performance, power, temperature and area of 3D CPU.
Section 3 introduces our modeling approach for estimat-
ing optimization metrics and physical properties of the
entire design space while only simulating a small sub-
section of the space. Such an approach is necessary to
make the physically constrained DSE problem compu-
tationally feasible. Section 4 explains the experimental
setup of our study, and Section 5 presents the results
which demonstrate the effectiveness and accuracy of our
DSE modeling algorithm. Finally, Section 6 concludes
the paper.

1.1 Previous Work
As CPU design space has become increasingly large,

exhaustive simulation has become computationally in-
feasible. Methodologies to facilitate large scale DSE
have taken two orthogonal approaches: drastically re-
duce simulation time or produce models of unsimulated
design points using simulation data from a small subset
of the design space. The work by Genbrugge and Eeck-
hout [2] attempts to massively reduce simulation time
with statistical simulation, which entails constructing
a short code sequence that is representative of a full
workload. Other work by Gandhi et al. [1] uses host-
compiled simulation, which natively executes workloads
that have been annotated with performance and power
data generated offline using system models. Both tech-
niques massively reduce simulation time, but at the cost
of reduced accuracy and limited applicability.
Design space modeling likewise trades off accuracy

for increased simulation time by omitting simulation of
certain design points and estimating those points using
modeling techniques. However, a significant advantage
of modeling approaches over statistical or host compiled
simulation is the ability to maintain accuracy in regions
of interest in the design space (e.g., close to the opti-
mal design) by clustering more simulation data in that
region. This is important because it is often the case
that accuracy of the simulations is only important in
a small subset of the design space: the region around

the optimal points. Different modeling techniques have
been proposed to accurately estimate the properties of a
design. Early work by Joseph et al. used linear regres-
sion to model instructions per cycle (IPC) across a 23-
variable CPU design space. However only two factors of
each variable were considered, and the accuracy of the
generated models was not reported. Later that year two
similar works by Lee and Brooks [6] and İpek et al. [5]
applied spline regression and artificial neural network
models to similar problems, yielding average errors less
than 10%, although maximum error was around 50%.
More recent work by Jia et al. [4] and Wang [3] ap-
plied spline regression to GPUs and multi-core CPUs
respectively. These techniques reduced maximum error
to around 15% and had average errors in the single-
digits range.
A limitation on most of the previous work on design

space modeling is that it only presents models for per-
formance. Exceptions to this trend are [6] and [3] which
also model power and energy respectively. However the
power and energy estimates in those papers are simply
used to generate Pareto optimal tradeoff curves and are
not used to model physical constraints on the system.
Much past work has demonstrated the interaction be-

tween performance and physical feasibility. An early
work by Cong et al. [11] demonstrated the need for
simultaneous consideration of both architectural (e.g.,
cycles per instruction) and physical (e.g., critical path
delay) design metrics to accurately judge performance.
Subsequent work by Li et al. [10] and Serafy et al. [9]
showed that the imposition of physical constraints on
a CPU design space significantly affected feasible per-
formance and substantially changed the nature of the
optimal architecture.
However, these studies illustrated the need for physi-

cally aware DSE using exhaustive simulation of a small
design space. To the best of our knowledge no previous
work has presented a technique for modeling the phys-
ical feasibility region in a realistic many-dimensional
design space. Moreover to the best of our knowledge
no previous work has done modeling-based DSE for 3D
CPUs. In this paper we present a modeling approach
to estimate optimization metrics and the physical prop-
erties of a 3D CPU design space, and show that only
with such models can one identify architectural design
points that are optimal subject to physical constraints.

1.2 Contributions
This paper makes the following contributions:

• We propose a design space modeling technique that
builds regression models to predict optimization
metrics and physical properties of an entire archi-
tectural design space while only simulating a small
subset of the space.

• To the best of our knowledge our work is the first
to apply design space modeling techniques to 3D
CPUs.

• To the best of our knowledge our work is the first
to apply design space modeling to physical proper-

2

Architecture
Parameters

Multi2Sim McPAT Floorplan
Thermal
Model

Leakage
Model

Performance
Dynamic
Power

Temperature
Leakage
Power

Netlist

Power

Map
Thermal
Map

Leakage Profile

Performance

Dynamic

Power

Area

Floorplan
Topology

NOC Topology and Latency

Area

Figure 1: 3D CPU simulation flow

ties such as temperature to predict the feasibility
region of a design space.

• We show that physical constraints fundamentally
change the nature of the optimal design point, and
without proper models of these constraints infea-
sible designs would be deemed optimal.

2. 3D CPU SIMULATION FLOW
The simulation flow used to evaluate power, perfor-

mance, area and temperature of a specific 3D CPU ar-
chitecture is shown in Figure 1. The details of each
component of the simulation flow are explained in the
following subsections.

2.1 Performance Simulation
Performance simulation is performed by Multi2Sim

(M2S) [12], a cycle accurate CPU simulator. Archi-
tectural definitions are passed to the simulator through
configuration files that describe parameters such as: num-
ber of cores, number of function units within cores,
pipeline width, buffer and queue lengths, register file
size, cache size and associativity, cache latency, network-
on-chip (NOC) topology and latency, branch predictor
size and type etc. Cache and table (e.g., register file,
register alias table (RAT) and branch target buffer) la-
tencies are determined using CACTI [13] to provide re-
alistic architectural setups to the simulator. DRAM
latency is calculated using the model proposed in [8].
NOC topology and latency is calculated as explained in
Section 2.3.1. M2S simulates the execution of a pro-
vided x86 binary file on the described CPU. The sim-
ulator outputs a list of performance statistics such as
IPC, DRAM and cache reads, writes, hits and misses,
branch prediction rate, number of instructions that ac-
cess each type of execution unit, reads and writes to
buffers, queues and RAT etc. The specific architectural
configurations and software workloads simulated for this
study are discussed in Section 4.

2.2 Power and Area Estimation
Power and area estimation is performed by McPAT

[14], a multi-core power, area and timing estimation
tool. Based on the architectural definition, the area and
energy per access of each CPU component is estimated

I$

BTBBpred

FetchQ Decode Rename D$LSQ

RF

EX

IQ

ROB

ROUTER MCL2 MMU

65 943

21
8

7

10

12

11

16151413

Figure 2: Core component netlist

for a selected technology node. Using the performance
statistics generated by M2S, the power dissipation of
each CPU component can be estimated by multiplying
energy per access by number of accesses.
Note: CPU components such as cache may have dif-

ferent types of accesses (e.g., read and write) which use
different amounts of energy. Different types of accesses
are given unique energy estimates by McPAT and re-
ported separately by M2S.

2.3 Floorplan
Each core is partitioned into a set of components

(e.g., data cache, RAT, branch predictor, instruction
queue and execution unit) which are interconnected by
the abstract netlist shown in Figure 2. Detailed descrip-
tions of each component can be found in [14]. A gen-
eral floorplan (FP) topology was generated offline which
minimizes the wirelength between connected compo-
nents. The general FP topology is shown in figure Fig-
ure 3.
FP topologies are represented using transitive clo-

sure graphs (TCGs) [15] which define a unique floorplan
when combined with area and aspect ratio data for each
component (components are assumed to be rectangu-
lar). Areas of each component are unique to a given
architectural design point, and are generated by Mc-
PAT (Section 2.2). Aspect ratio is optimized for each
design using a simulated annealing scheme that mini-
mizes core area and wirelength. Core width and height
are denotated as widthcore and heightcore respectively.

3

1

2
3

13

6

4 5

9 11

107 8

14

1615

12

h
e
ig

h
t c

o
re

 ≈
3
 m

m

widthcore ≈ 4 mm

ID# Name Description

1 Bpred Branch Predictor
2 BTB Branch Target Buffer
3 I$ L1 Instruction Cache
4 FetchQ Fetch Queue
5 Decode Decoder
6 Rename Rename Unit
7 ROB Reorder Buffer
8 IQ Instruction Queue
9 LSQ Load-Store Queue
10 RF Register File
11 D$ L1 Data Cache
12 EX Execution Unit
13 ROUTER NOC Router
14 L2 L2 Cache
15 MMU Memory Management Unit
16 MC Memory Controller1

Figure 3: Core floorplan topology

2.3.1 Core Tiling and NOC Design
The core floorplan is replicated on an i× j × k grid

such that i · j ·k = n where n is the total number of cores.
The values i, j and k are chosen such that total area per
layer (i.e. i ·widthcore · j ·heightcore) is less than Amax and
layer aspect ratio (i.e. i ·widthcore/j ·heightcore) is close to one.
NOC topology is defined as an i× j × k 3D mesh [16]
and NOC latency is defined as the wire delay of length
max[widthcore, heightcore]. Wire delay is calculated using
the wire delay model from [17] with technology parame-
ters extracted from McPAT source code. NOC topology
and latency are fed back into the performance simulator
to get accurate inter-core communication simulations.
Note: Since floorplan generation and NOC design

only require area and not power estimates we first run
McPAT before M2S with all performance statistics set
to zero to get area estimations. Then we determine the
tiling topology and NOC latency and feed these esti-
mates into the M2S architectural description file. We
run McPAT again using the correct performance statis-
tics after running M2S to get power estimates.

2.4 Thermal Model
Once the chip floorplan has been constructed and

component power estimation is complete, we have a
power density map for each tier. Power density maps
are converted into thermal maps using our compact
thermal model [18]. A 3D grid is constructed repre-
senting the physical structure of the 3D IC. Each tier in
the chip stack is divided into four sub-layers: silicon
substrate, active silicon, interconnect and oxide cap.
Likewise the power map is discretized into a 3D grid
and the total power of each power grid is assigned to
the respective physical grid in the active silicon sub-
layer (all other sub-layers have zero power). Then each
physical grid is converted to an electrical circuit repre-

1A single memory controller can be shared amongst multiple
cores

Thermal Grid

Figure 4: Thermal grid unit cell

sentation as shown in Figure 4. Power is modeled as
a current source and thermal resistance is modeled as
electrical resistance. The voltage at the center of each
circuit grid represents the temperature of the respective
physical grid. Thermal resistances are evaluated based
on material properties and dimensions of the respective
physical grid using the technique in [18]. Material prop-
erties and dimensions of different sub-layers are listed
in Table 1.

2.4.1 Leakage Model
McPAT reports a base leakage value for each CPU

component which is estimated at a fixed temperature T0.
To obtain more accurate leakage power estimates which
take into account leakage power’s strong dependence on
temperature we iteratively solve our thermal model and
then scale leakage estimates at each grid based on the
estimated temperature of that grid after the previous
iteration. We repeat this process until the change in
temperature between two iterations is less than some
threshold (e.g., 1 ◦C). Equation (1) gives the thermal
leakage scaling equation which is extracted from Mc-
PAT source code [14] at T0 = 360K.

Pleak(T) = Pleak(T0) · (5.121(T
T0
)2 −6.013 T

T0
+1.892) (1)

4

Architectural
Design Space

Optimal Design
Evaluate
Stopping
Criteria

Analyze
Results

Build Model
performance,

temperature, power etc.

Initial
Random
Sampling

Select New Simulation

1: Predicted optimal design plus neighbors

2: High residual designs

3: Random designs

Empty
Model

Model

Evaluate models
with addition of
each 1st order
term not in
model

Add term
T with
most
positive
benefit

Evaluate models
with addition of each
2nd order term (T,J)
where J is already in

the model

Add term
(T,J) with
most
positive
benefit

While more 1st order terms available

While more 2nd order terms available

Figure 5: Modeling algorithm

Table 1: Thermal model material properties

sub-layer Thickness Material Conductivity
(µm) (Wm−1 K−1)

Top 995 Si 148
Substrate
Thinned 55 Si 148
Substrate
Active 5 Si 148
Silicon
Interconnect 15 SiO2+Cu 2.25
Oxide Cap 15 SiO2 1.4

3. MODELING ALGORITHM
In this section we introduce our modeling technique

for 3D CPU design space subject to physical constraints.
We use the smoothing spline analysis of variance (SS-
ANOVA) [19] modeling technique to build models for
each design parameters of interest (e.g., performance,
temperature and power) as a composition of cubic spline
functions evaluated on a combination of design vari-
ables. First we give some background on SS-ANOVA
modeling and then describe our algorithm for building
models of the 3D CPU architectural design space with a
limited number of simulations. Figure 5 illustrates the
overall flow of our modeling algorithm, and details are
given in the subsections below.

3.1 SS-ANOVA Modeling
A spline is a piecewise polynomial function [19]. In

this work we consider cubic splines, which are piece-
wise cubic functions. Splines are both differentiable
and continuous at the piecewise boundaries which are
called knots [19]. The smoothing spline is a technique
to smooth noisy data by fitting a spline function to the
data. Analysis of variance (ANOVA) is a statistical
technique for analyzing the underlying source of varia-

tions in a population [19]. Multi-factor ANOVA can be
used to generate models of an observed data set as a
function of some underlying properties of each observa-
tion. An observation f can be modeled as a function of
the variables x = x1,x2, . . . ,xn as shown in Equation (2)
[3]. SS-ANOVA limits the functions { f1, . . . , fn, f1,2, . . . ,
f1,2,...,n} to be spline functions which operate on some
subset of the variables in x. Each unique subset of in-
put variables is called a term, and the order of a term
is the number of members in the subset. c is the trivial
function on the 0th order term (i.e. a scalar value).

f (x) = c+∑n
j=1 f j(x j)+∑n

j=1 ∑n
k= j+1 f j,k(x j,xk)+

. . .+ f1,2,...,n(x1,x2, . . . ,xn) (2)

In this work we use the gss [20] package for the statis-
tical computing environment R [21] to generate a unique
smoothing spline model for each design property of in-
terest. To generate each model, gss takes a set of simu-
lation data for the design property to be modeled and a
set of model terms. However, choosing the appropriate
simulation points and model terms is nontrivial prob-
lem because that choice strongly affects the quality of
the model and suboptimal choices have a high cost in
terms of total simulation time and model complexity.
Our model building technique is explained in detail in
the following subsections.

3.2 Choosing Model Terms
The number of terms (i.e. unique subsets of all model

variables) associated with n variables is 2n. However as
a rule of thumb a model is unreliable when the number
of terms is greater than s/20 [22] where s is the number
of simulated points. If too many model terms are used,
the model can suffer from over-fitting, making it very
accurate with respect to the observed data, but a poor
predictor of the unsimulated data we wish to predict.
Thus the number of model terms must be kept relatively
small in order to maintain model accuracy with a small

5

number of simulations (which is of course the intended
goal of the modeling in the first place).
The coefficient of determination (R2) is a commonly

used metric to evaluate how well a model fits the fit-
ting data [23]. However R2 monotonically increases as
new terms are added to a model [4]. Adjusted R2 (R̄2)
[24] is defined in Equation (3) and scales R2 relative to
the number of model terms, m, and the number of data
points, s. Thus if an additional model term is added
that only marginally improves R2, R̄2 will decrease, in-
dicating that the added term has reduced the quality
of the model. Separate models are built for each design
property of interest, so a separate R̄2 is calculated for
each model.

R̄2 = 1− (1−R2) · m−1
m−s−1 (3)

We use a forward selection R̄2 based technique to se-
lect the terms in the model. The model building tech-
nique is roughly the same as the one used in [4], and
is shown in the bottom half of Figure 5. Starting with
an empty model we consider each model consisting of
one first order term. We evaluate the R̄2 metric for each
model and accept the one with the largest value. We
then consider adding each remaining first order term
and accept the terms that increases the quality of the
model by at least θ . Model terms are added start-
ing with the one that offers the largest improvement
to model quality. Every time a new first order term is
added to the model, we consider all second order inter-
action terms created by combining the new first order
term with any other first order terms already in the
model. Amongst all new second order terms generated
this way we add any that cause the model quality to im-
prove by at least θ . Terms are added to the model one
at a time, and each time any term is added to the model
the R̄2 values are reevaluated. So second order terms are
added to the model starting with the term that offers
the most improvement and ending when no more im-
provement is available. The model is complete once all
first order terms have been added to the model, or when
adding any new first order terms causes an improvement
model quality less than θ . We limit our model to terms
of order two and below, although the proposed model
building approach could easily be extended to include
terms of arbitrary order. High order interactions are sel-
dom significant [19] so limiting the order of our model is
expected to reduce the complexity of the model and the
model building procedure without incurring significant
losses in accuracy.

3.3 Adding Simulation Points
Initial models are built using a random sampling of η

simulation points from the design space. After the op-
timal model terms are selected for the initial simulation
data, the error of the model is analyzed and the opti-
mal design point is predicted using a user specified ob-
jective function (e.g., performance or energy efficiency)
and set of constraints (e.g., thermal limit, power limit
and/or area constraint) evaluated on the model esti-
mates. Unsimulated design points are then chosen to

be simulated and added to the data set which is used
to rebuild the model. This procedure repeats as shown
in Figure 5 until the maximum number of simulations
has been performed.
During each iteration of the modeling algorithm esti-

mates of each design property are created for the entire
3D CPU design space. The design points that have al-
ready been simulated use the result of the simulation
as an estimate whereas the unsimulated points use the
predictions from the model. Based on these estimates,
one can estimate the optimal design point subject to
the constraints. We also identify each design point that
is a neighbor of the optimal design, where design i is
a neighbor of design j if i and j have the same value
for every design variable except one, and the difference
is at most ϕ levels (ϕ is referred to as the neighbor-
hood radius). If the predicted optimal point or any of
its neighbors have not yet been simulated, they are des-
ignated for simulation, and the model is rebuilt with
the new simulation data. The idea here is to get better
model fidelity around the predicted optimal point, and
to get real simulation data in this region to reduce the
error of our optimality prediction.
If the predicted optimal point and all its neighbors

have already been simulated, we identify the design
point with the highest error. If that point or any of
its neighbors have not yet been simulated, we simulate
them and rebuild the model. Otherwise we simulate
χ random unsimulated designs from the design space
and rebuild the model. The idea here is to improve
the model fidelity in regions with high error, and thus
reduce the maximum error of the model. If that isn’t
possible we resort to random sampling. The three cases
for choosing new simulation points is enumerated at the
top of Figure 5 in priority order.

3.4 Stopping Criteria
Our model building algorithm terminates when the

total number of simulations reaches ζ . We investigate
the tradeoff between number of simulations and opti-
mality of our selected design in Section 5.

4. EXPERIMENTAL SETUP
In this section we describe the experimental setup to

evaluate the effectiveness of the modeling technique in-
troduced in Section 3. In the following subsections we
introduce the 3D CPU design space, our objectives and
constraints for choosing an architectural design point
and the metrics we use to measure the success of our
approach. Results are presented and discussed in Sec-
tion 5.

4.1 Architectural Design Space
Out study searches the architectural design space in

Table 2. Variables with values in brackets can take on
any of the bracketed values, and the cross product of
all variable values represents the complete design space.
The architectural design space in Table 2 contains 4374
unique design points.

6

Table 2: Architectural design space (baseline architec-
tural values shown in bold).

Variable Value(s)

Number of cores (core) {8, 16, 32}
Memory controllers core·{1/2, 1/4, 1/8}
Clock frequency {2.4, 3.0} GHz
NOC width 128 bits
L2 cache size (per core) {256, 512, 1024} kB
L2 cache associativity {4, 8, 16}
L1 cache size (per core) {16, 32, 64} kB
L1 cache associativity 1
Pipeline width {2, 4, 6}
Branch predictor Tournament
Local history table 1024 8-bit entries
Global predictor 4096 2-bit entries
BTB size 32 kB
BTB associativity 1
Reorder buffer length (rob) {96, 128, 160}
Issue queue length 0.4 · rob
Load-store queue length 0.5 · rob
Fetch queue length 64
Int architectural registers 0.67 · rob
FP architectural registers 0.33 · rob
RAT size rob 8-bit entries
DRAM size 4 GB
Cache line size 64 B
DRAM bus width 64 B

4.1.1 Stacked DRAM Architecture
This study considers 3D CPUs with stacked DRAM,

illustrated in Figure 6. By integrating the DRAM on
chip with TSVs, the core-memory bandwidth can be in-
creased drastically. Instead of having just a few mem-
ory controllers (MCs) each with an 8-byte DRAM bus,
stacked DRAM can accommodate 10s of MCs each with
a 64-byte DRAM bus (i.e. one full cache line). Larger
bus size reduces data transfer delays, and more mem-
ory controllers reduces memory queuing delay and fa-
cilitates parallel memory access [25, 8]. Stacked DRAM
is considered to be one of the primary advantages of 3D
CPUs [26, 27].

4.1.2 Software Benchmarks
Each architectural design point is simulated using a

set of software workloads from the SPLASH-2 [28] and
PARSEC [29] benchmark suites. The performance of
each design point is defined as the average normalized
performance (Section 4.1.3) across all benchmarks and
the maximum temperature for each design point is the
maximum temperature across all benchmarks. The spe-
cific benchmark programs used for this study are given
in Table 3. The inputs and parameters used for each
benchmark are the default settings recommended on the
Multi2Sim website [12].

4.1.3 Performance Normalization
Since direct averaging of raw performance gives more

weight to benchmarks with higher performance, we in-

Cores

Cache

MCs

DRAM
1GB per la

yer

Figure 6: Stacked DRAM architecture

Table 3: Simulated Workloads

SPLASH-2 PARSEC

water-nsquared blackscholes
fft fluidanimate

dedup

stead normalized the performance of each design point/
benchmark pair to the performance of a baseline ar-
chitecture (See Table 2) running the same benchmark.
Normalized performance is then averaged across all bench-
marks to provide average performance values for each
design point. This normalization approach is reasonable
because the raw performance (i.e. instructions per unit
time) is not important, but rather the relative ordering
of design points with respect to performance. Further-
more all benchmarks should contribute equally to av-
erage performance estimates, and normalization is the
only way to achieve this.

4.2 Modeling Algorithm Parameters
The modeling algorithm introduced in Section 3 can

be parametrized to make tradeoffs between simulation
time and optimality of the selected design point. In this
study we use the following parameters:

• We sample η = 40 simulation points at random
from the design space to build the initial model.

• The threshold for accepting new model terms is
R̄2

new − R̄2
current > θ = 0. θ could be increased to

reduce the model complexity while only marginally
reducing the quality of the model.

• We use a neighborhood radius of ϕ = 1.

• We iteratively simulate random design points in
increments of χ = 20.

• We use a nominal stopping criteria of ζ = 200 sim-
ulations. The tradeoff of optimality vs. number of
simulations is investigated in Section 5.

7

4.3 Optimization Objectives and Constraints
The goal of our DSE study is to identify the 3D CPU

architectural design point within the design space which
has the highest performance (instructions per unit time)
subject to thermal and area constraints. An architec-
ture is considered feasible if:

• The maximum temperature amongst all grids in
the generated thermal map (and across all software
benchmarks as explained in Section 4.1.2) is less
than Tviolation = 85 ◦C.

• The maximum area of each core layer is less than
Amax = 400mm2 and the total number of logic lay-
ers does not exceed four2.

Our modeling technique builds separate models to
predict the performance and temperature of each ar-
chitectural design point and identifies the highest per-
formance thermally feasible design.
Note: All power area and timing estimations in this

experiment are calculated for the 32 nm technology node.

4.4 Evaluation Metrics
The goal of the experiment is to identify the opti-

mal design point subject to a set of physical constraints
while minimizing the total number of simulations per-
formed. Thus the primary metrics used to evaluate the
quality of our technique will be the optimality of the
solution, the number of simulations performed and the
runtime overhead of the modeling technique. The opti-
mality of a chosen design point is defined as the normal-
ized performance of that design divided by the normal-
ized performance of the design that is truly optimal (ob-
tained by exhaustive simulation solely for the purpose
of evaluation). In general the optimality of the solution
will increase as more simulations are performed, eventu-
ally degenerating into the exhaustive simulation where
the optimal solution is known. The net speedup of our
technique consists of the reduction in total number of
simulations minus the runtime overhead of building the
models. However we will show in Section 5 that the
modeling overhead is negligible compared to the reduc-
tion in necessary simulations due to application of our
approach.
A secondary evaluation metric for our technique is

the overall accuracy of the generated models. This is
considered a secondary metric because the goal is to
identify optimal design points, and not to propose an
accurate model of the entire design space per se. In-
accuracy that does not change the relative ordering of
design points (e.g., offset bias) does not affect the qual-
ity of the DSE. Likewise inaccurate estimates of design
points that are far from optimal or far from the edge
of the feasibility region are less important since these
errors are less likely to change the prediction of opti-
mal design point. For this reason we evaluate error
statistics across the subset of design points whose per-
formance is within 20% of the truly optimal design point
2Area constraints are imposed during floorplanning. If area
constraints can not be met during floorplanning, that design
point is omitted from the design space.

2 4 6 8 10 12 14
0%

10%

20%

30%

Normalized Performance

P
er

ce
nt

All Designs
Feasible Designs

(a)

50 60 70 80 90 100 110 120
0%

10%

20%

30%

Maximum Temperature (°C)

P
er

ce
nt

(b)

Figure 7: Distribution of design properties in design
space (a) normalized performance (b) temperature (◦C).
Performance plot shows distribution of all designs and
distribution of thermally feasible designs.

and whose temperature is within 10 ◦C of the thermal
violation temperature Tviolation.

4.5 Comparison to Other Techniques
The rudimentary technique to which our technique

shall be compared is exhaustive simulation. This en-
tails simply comparing the number of simulations per-
formed and the quality of the selected design point to
the simulation of all design points and the true optimal
design point. However one can conceive of a less rig-
orous approach to DSE in which some portion of the
solution space is sampled at random and the best de-
sign amongst the sampled designs is selected. We call
this approach the random sampling technique. Both
our proposed technique and the random sampling tech-
nique present a tradeoff between number of simulations
and quality of chosen design. Exhaustive simulation
is simply a degenerative case of the random sampling
technique where the entire solution space is sampled.
We compare the trade off curves of simulation count
vs. quality for our proposed technique and the random

8

0 5 10 15
50

60

70

80

90

100

110

120

Normalized Performance

M
ax

im
um

 T
em

pe
ra

tu
re

 (
°C

)

Optimal Solution
Subject to

Thermal Constraint

Figure 8: Temperature vs. performance of design space.
Optimal solution circled in black. Yellow [shaded] re-
gion contains all points within 20% of optimal perfor-
mance and within 10 ◦C of Tviolation.

sampling technique and demonstrate the superiority of
our technique.

4.5.1 Dealing with Randomness
Both our proposed technique and the random sam-

pling technique involve randomness. In some cases the
optimal solution could be chosen as the first point to
simulate, leading to 100% optimality with only one sim-
ulation. Alternatively it is possible that the optimal
solution is not chosen until the very last simulation,
requiring exhaustive simulation in order to gain 100%
optimality (however this is much less likely using our
proposed modeling technique than using the random
sampling technique). In order to characterize the qual-
ity of both techniques we replicate them multiple times
and investigate the mean and standard deviations of the
results. We show that our technique has significantly
better average behavior and significantly less variance.
We replicate the random sampling technique 100 times
on our data set. Due to the runtime overhead (See
Section 5.3.1) of our proposed modeling technique, we
replicate it only 8 times.

5. RESULTS

5.1 Design Space Characterization
We begin by examining the properties of the design

space. Exhaustive simulation was performed for the
purpose of evaluation, as the optimal solution must be
identified before the quality of either the proposed mod-
eling technique or the random sampling technique can
be evaluated. Exhaustive simulation took weeks to per-
form using university servers, further motivating the
strong need for techniques such as the one proposed
in this paper in order to reduce simulation time signifi-
cantly below that of exhaustive design space simulation.

Table 4: Truly-optimal and predicted-optimal 3D CPU
design parameters.

Variable Value
Optimal Our Method

Number of cores 32
Memory controllers 8
Clock frequency 3.0 GHz
NOC width 128 bits
L2 cache size (per core) 1024 kB
L2 cache associativity 16 4
L1 cache size (per core) 32 kB 64 kB
L1 cache associativity 1
Pipeline width 6
Branch predictor Tournament
Local history table 1024 8-bit entries
Global predictor 4096 2-bit entries
BTB size 32 kB
BTB associativity 1
Reorder buffer length 128 160
Issue queue length 51 64
Load-store queue length 64 80
Fetch queue length 64
Int architectural registers 85 107
FP architectural registers 43 54
RAT sets 128 160
RAT entry size 8-bit
DRAM size 4 GB
Cache line size 64 B
DRAM bus width 64 B
NOC topology 4×4×2
NOC delay 3 cycles
Normalized performance 9.87 9.85
Max temperature 84 ◦C 83 ◦C
Area per layer 298.6mm2 299.2mm2

Number of core layers 2

We provide some statistics of the design space proper-
ties in order to give context for the results of this study.
Figure 7a shows the distribution of normalized per-

formance across all architectural design points. We can
see that the design space is biased heavily towards the
low-performance region and the subset of only thermally
feasible designs is even more heavily biased. This im-
plies that random sampling is not a very good tech-
nique since the probability of randomly sampling a high-
performance design point is low. The more biased the
performance distribution in a design space is towards
low-performance design points, the less effective random
sampling will be. Since our proposed modeling tech-
nique builds models to predict the high-performance de-
sign points and direct simulations towards that region,
we expect the solution quality produced by our tech-
nique to be much less dependent on the distribution of
the design space.
Note: Performance was the design objective for this

work, however other objective functions such as energy
efficiency could be used equally well since our modeling

9

0% 5% 10% 15% 20% 25%

85%

90%

95%

100%

Number of Simulations

O
pt

im
al

ity
 o

f S
ol

ut
io

n
(µ

)

Random Sampling
Modeling

(a)

0% 5% 10% 15% 20% 25%

5%

10%

15%

Number of Simulations

O
pt

im
al

ity
 o

f S
ol

ut
io

n
(σ

)

Random Sampling
Modeling

(b)

99.5%99%98%95%90%
0%

10%

20%

30%

Optimality Target

R
eq

ui
re

d
S

im
ul

at
io

ns
 (

µ)

Random Sampling
Modeling

(c)

99.5%99%98%95%90%

5%

10%

15%

Optimality Target

R
eq

ui
re

d
S

im
ul

at
io

ns
 (

σ)

Random Sampling
Modeling

(d)

Figure 9: (a,b) Optimality of predicted solution vs. number of simulations (c,d) Required simulations vs. target
solution optimality. Plots show mean (µ) and standard deviation (σ) across repeated applications of the techniques.

techniques can be applied to any quantifiable design
property.
Likewise Figure 7b shows the distribution of temper-

ature in the design space. Similar to performance, our
technique uses modeling to predict the temperature of
each design point, and directs simulations towards those
points predicted to be both high performance and ther-
mally feasible.
Finally, Figure 8 shows a scatter plot of the perfor-

mance and temperature of each design point in the de-
sign space. The thermal feasibility constraint Tviolation is
shown as a dotted line and the optimal solution point
is circled. The region within 20% of the performance
of the optimal solution and within 10 ◦C of the ther-
mal constraint is highlighted in yellow [shaded]. Design
points in this region are used to evaluate the accuracy of
the model in the region of interest (Section 5.4). We can
see that identification of the optimal solution without
exhaustive simulation is non-trivial as there are many
other design points that have similar performance but
vary heavily in temperature, or likewise that have simi-
lar temperature and vary heavily in performance. More-
over the correlation between performance and tempera-
ture is weak, motivating the need for independent mod-
els of each design property.

5.2 Quality of Chosen Solution
We compare the architectural design point selected

by our proposed technique to the true optimal solution
for a representative run of our algorithm using simula-
tion constraint ζ = 200. The comparison is shown in
Table 4 with the optimal solution on the left and the

solution predicted by our proposed DSE methodology
on the right. The design point chosen by our approach
is identical to the optimal design in most variables. The
main difference between the chosen solution and the op-
timal is the L2 cache associativity, L1 cache size and re-
order buffer (ROB) length (along with the RF size and
queue lengths which are a fixed multiple of the ROB
length). The optimal solution scales down the size of
the L1 cache and the length of the ROB in order to
accommodate a more highly associative L2 cache. The
performance of the chosen design is within 0.2% of the
optimal performance, and the difference in temperature
and area is negligible. Both designs use the same NOC
topology and latency.

5.3 Simulation Time and Design Quality
There exists a fundamental tradeoff between the num-

ber of simulations and the quality of the identified so-
lution. We compare the random sampling technique
to our proposed modeling technique and show that our
technique is far better both in terms of quality of trade-
off and the reliability of the approach.
We track the optimality of the proposed solution as

the algorithm iteratively adds additional simulation points
and compare this to the solution quality produced by
the random sampling technique as number of random
samples is increased. Both techniques are repeatedly
evaluated on the data set and the average trends and
standard deviation in solution quality are reported in
Figures 9a and 9b respectively. We observe that on
average our technique does much better than the ran-
dom sampling technique when the number of samples

10

is greater than 2% (roughly 90 simulations). When the
number of simulations are less there is not enough data
to build proper models, and overfitting occurs causing
bad predictions of the optimal design point. Simulating
around 2% of the design space allows both techniques to
predict a solution within 10% of the optimal solution,
but both techniques have very large variance. How-
ever as more simulations are added and our proposed
technique is able to build proper models, the optimality
of our predicted solution quickly approaches 100% and
the variance reduces tremendously. Alternatively the
quality and variance of the random sampling technique
improves much more slowly.
We also examine the data from the perspective of the

number of simulations required to reach an optimality
target. The mean and standard deviation in number
of required simulations to meet a given optimality tar-
get are show in Figures 9c and 9d respectively. An
interesting result is that if 90% optimality is acceptable
for the application at hand the modeling approach is
unnecessary as random sampling will find a sufficient
solution just as quickly. However as the optimality tar-
get is increased the number of solutions required for
the random sampling technique increases very quickly
towards exhaustive search, whereas our proposed tech-
nique requires only marginal increases in number of
samples. Moreover the variance in number of simula-
tions required to meet a given optimality target is in-
dependent of that target when applying our proposed
modeling technique, whereas the variance of the ran-
dom sampling technique increases exponentially as the
optimality target is increased. Our proposed technique
is on average able to find a solution within 0.5% of the
optimal while simulating less than 5% of the solution
space.

5.3.1 Overhead of modeling approach
There is obviously some runtime overhead for build-

ing the model in the proposed modeling approach. We
observed that the time consumed building models was
less than the time consumed to simulate a single de-
sign point (< 0.025% of the design space). Figure 9c
clearly shows that for high optimality targets (> 90%)
this overhead is negligible compared to the savings in
number of required simulations.

5.4 Model Accuracy
We examine the distribution of model errors in the

region around the optimal solution (yellow [shaded] re-
gion in Figure 8) for our performance (Figure 10a) and
temperature (Figure 10b) model. We examine percent
error in the performance model, and absolute error in
the temperature model. The error distributions fit well
to a normal distribution with a distribution mean close
to zero, which implies an unbiased model. Both root-
mean-square (RMS) and maximum error are reasonably
low. We reiterate that model accuracy is not a primary
goal of the proposed modeling technique. Section 5.3
slows the high quality of our approach at achieving its
primary objective: discovering good design solutions

−10% −5% 0% 5% 10% 15%
0%

10%

20%

Residual

P
er

ce
nt

RMS Error = 3.8%
Max Error = 12.5%
Mean Error = 0.5%
STD Error = 3.8%

(a)

−8° −4° 0° 4° 8°
0%

10%

20%

30%

Residual

P
er

ce
nt

RMS Error = 2.9°C
Max Error = 9.5°C
Mean Error = 1.1°C
STD Error = 2.7°C

(b)

Figure 10: Model error distribution (a) normalized per-
formance (b) temperature (◦C).

subject to physical constraints while using very few sim-
ulations.

6. CONCLUSIONS
In this paper we propose a technique for design space

exploration of a 3D CPU architectural design space sub-
ject to physical constraints. We apply smoothing spline
regression modeling to direct our simulations by pre-
dicting optimization metrics and physical design prop-
erties of unsimulated architectures. We perform an ex-
periment which searches for the design point with maxi-
mum performance subject to a thermal constraint. Our
technique is able to select a thermally feasible design
point within 0.5% of the globally optimal solution while
simulating less than 5% of the design space.

7. REFERENCES

[1] D. Gandhi, A. Gerstlauer, and L. John, “Fastspot:
Host-compiled thermal estimation for early design space
exploration,” in Quality Electronic Design (ISQED), 2014
15th International Symposium on, pp. 625–632, IEEE,
2014.

11

[2] D. Genbrugge and L. Eeckhout, “Chip multiprocessor
design space exploration through statistical simulation,”
Computers, IEEE Transactions on, vol. 58, no. 12,
pp. 1668–1681, 2009.

[3] H. Wang, Z. Zhu, J. Shi, and Y. Su, “An accurate acosso
metamodeling technique for processor architecture design
space exploration,” in Design Automation Conference
(ASP-DAC), 2015 20th Asia and South Pacific,
pp. 689–694, IEEE, 2015.

[4] W. Jia, K. Shaw, M. Martonosi, et al., “Stargazer:
Automated regression-based gpu design space exploration,”
in Performance Analysis of Systems and Software
(ISPASS), 2012 IEEE International Symposium on,
pp. 2–13, IEEE, 2012.

[5] E. İpek, S. A. McKee, R. Caruana, B. R. de Supinski, and
M. Schulz, Efficiently exploring architectural design spaces
via predictive modeling, vol. 40. ACM, 2006.

[6] B. C. Lee and D. M. Brooks, “Accurate and efficient
regression modeling for microarchitectural performance and
power prediction,” in ACM SIGPLAN Notices, vol. 41,
pp. 185–194, ACM, 2006.

[7] P. Joseph, K. Vaswani, and M. J. Thazhuthaveetil,
“Construction and use of linear regression models for
processor performance analysis,” in High-Performance
Computer Architecture, 2006. The Twelfth International
Symposium on, pp. 99–108, IEEE, 2006.

[8] C. Serafy, A. Srivastava, and D. Yeung, “Unlocking the true
potential of 3d cpus with micro-fluidic cooling,” in
Proceedings of the 2014 International Symposium on Low
Power Electronics and Design, ISLPED ’14, (New York,
NY, USA), pp. 323–326, ACM, 2014.

[9] C. Serafy, A. Srivastava, A. Bar-Cohen, and D. Yeung,
“Design space exploration of 3d cpus and micro-fluidic
heatsinks with thermo-electrical-physical co-optimization,”
in Proceedings of the ASME 2015 International Technical
Conference and Exhibition on Packaging and Integration of
Electronic and Photonic Microsystems, ASME, 2015.

[10] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron, “Cmp
design space exploration subject to physical constraints,” in
High-Performance Computer Architecture, 2006. The
Twelfth International Symposium on, pp. 17–28, IEEE,
2006.

[11] J. Cong, A. Jagannathan, G. Reinman, and M. Romesis,
“Microarchitecture evaluation with physical planning,” in
Proceedings of the 40th annual Design Automation
Conference, pp. 32–35, ACM, 2003.

[12] R. Ubal, J. Sahuquillo, S. Petit, and P. Lopez, “Multi2sim:
A simulation framework to evaluate
multicore-multithreaded processors,” in Computer
Architecture and High Performance Computing, 2007.
SBAC-PAD 2007. 19th International Symposium on,
pp. 62–68, 2007.

[13] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated
cache timing, power, and area model,” tech. rep., Technical
Report 2001/2, Compaq Computer Corporation, 2001.

[14] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “Mcpat: an integrated power,
area, and timing modeling framework for multicore and
manycore architectures,” in Microarchitecture, 2009.
MICRO-42. 42nd Annual IEEE/ACM International
Symposium on, pp. 469–480, IEEE, 2009.

[15] J.-M. Lin and Y.-W. Chang, “Tcg: a transitive closure
graph-based representation for non-slicing floorplans,” in
Design Automation Conference, 2001. Proceedings,
pp. 764–769, 2001.

[16] B. Feero and P. Pande, “Performance evaluation for
three-dimensional networks-on-chip,” in VLSI, 2007.
ISVLSI ’07. IEEE Computer Society Annual Symposium
on, pp. 305–310, March 2007.

[17] R. H. J. M. Otten and R. K. Brayton, “Planning for
performance,” in Proceedings of the 35th Annual Design
Automation Conference, DAC ’98, (New York, NY, USA),
pp. 122–127, ACM, 1998.

[18] B. Shi, A. Srivastava, and P. Wang, “Non-uniform
micro-channel design for stacked 3d-ics,” in Proceedings of
the 48th Design Automation Conference, DAC ’11, (New
York, NY, USA), pp. 658–663, ACM, 2011.

[19] C. Gu, Smoothing spline ANOVA models, vol. 297.
Springer Science & Business Media, 2013.

[20] C. Gu, “Smoothing spline anova models: R package gss,”

[21] B. D. Ripley, “The r project in statistical computing,”
MSOR Connections, vol. 1, no. 1, pp. 23–25, 2001.

[22] F. E. Harrell, Regression modeling strategies: with
applications to linear models, logistic regression, and
survival analysis. Springer Science & Business Media, 2013.

[23] M. H. Kutner, C. Nachtsheim, and J. Neter, Applied linear
regression models. McGraw-Hill/Irwin, 2004.

[24] H. Theil, “Economic forecasts and policy,” 1958.

[25] J. Meng, K. Kawakami, and A. Coskun, “Optimizing
energy efficiency of 3-d multicore systems with stacked
dram under power and thermal constraints,” in Design
Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, pp. 648–655, June 2012.

[26] D. H. Kim, K. Athikulwongse, M. Healy, M. Hossain,
M. Jung, I. Khorosh, G. Kumar, Y.-J. Lee, D. Lewis, T.-W.
Lin, C. Liu, S. Panth, M. Pathak, M. Ren, G. Shen,
T. Song, D. H. Woo, X. Zhao, J. Kim, H. Choi, G. Loh,
H.-H. Lee, and S. K. Lim, “3d-maps: 3d massively parallel
processor with stacked memory,” in Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2012
IEEE International, pp. 188–190, Feb 2012.

[27] G. H. Loh, “3d-stacked memory architectures for multi-core
processors,” in Proceedings of the 35th Annual
International Symposium on Computer Architecture, ISCA
’08, (Washington, DC, USA), pp. 453–464, IEEE Computer
Society, 2008.

[28] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The splash-2 programs: Characterization and
methodological considerations,” in Proceedings of the 22Nd
Annual International Symposium on Computer
Architecture, ISCA ’95, (New York, NY, USA), pp. 24–36,
ACM, 1995.

[29] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec
benchmark suite: Characterization and architectural
implications,” in Proceedings of the 17th International
Conference on Parallel Architectures and Compilation
Techniques, PACT ’08, (New York, NY, USA), pp. 72–81,
ACM, 2008.

12

	Introduction
	Previous Work
	Contributions

	3D CPU Simulation Flow
	Performance Simulation
	Power and Area Estimation
	Floorplan
	Core Tiling and NOC Design

	Thermal Model
	Leakage Model

	Modeling Algorithm
	SS-ANOVA Modeling
	Choosing Model Terms
	Adding Simulation Points
	Stopping Criteria

	Experimental Setup
	Architectural Design Space
	Stacked DRAM Architecture
	Software Benchmarks
	Performance Normalization

	Modeling Algorithm Parameters
	Optimization Objectives and Constraints
	Evaluation Metrics
	Comparison to Other Techniques
	Dealing with Randomness

	Results
	Design Space Characterization
	Quality of Chosen Solution
	Simulation Time and Design Quality
	Overhead of modeling approach

	Model Accuracy

	Conclusions
	References

