
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the

University of Maryland and the Institute for Systems Research. This document is a technical report in
the CSHCN series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

MASTER’S THESIS

Database Models and Architectures for Hybrid Network
Management

by J. Valluri
Advisor: J. Baras

CSHCN M.S. 96-1
(ISR M.S. 96-2)

Abstract

Title of Thesis: Database Models and Architectures for

Hybrid Network Management

Name of degree candidate: Jaibharat Valluri

Degree and year: Master of Science, 1996

Thesis directed by: Professor John Baras

Department of Electrical Engineering

As the complexity of communication networks increases, there should be

commensurate advancements in the tools used to manage these networks. A

Management Information Base (MIB) is a repository for information on all the

network resources, services and customers and forms the heart of any Network

Management System. Unfortunately the existing data models for networks are

not powerful enough to represent all the heterogeneous resources available to-

day, and at the same time capture all the network management functionality

in a uni�ed fashion. A related problem is that no model exists for storing sen-

sor data collected from the network. Hence even though large amounts of data

are collected from the network today, they aren't used to improve network per-

formance. In this work we have developed data models for both of the above

mentioned problems. Another issue that is of growing importance is the absence

of an architecture for the interoperability of heterogeneous database systems.

Several companies would like to protect their investments in independent net-

work management applications built on diverse platforms, and at the same time

be able to integrate them. In this work we present an architecture for database

integration. By developing a Con�guration Management application on such a

testbed, we demonstrate the ability of this architecture to perform the role of a

\middleware".

Database Models and Architectures for

Hybrid Network Management

by

Jaibharat Valluri

Thesis submitted to the Faculty of the Graduate School
of The University of Maryland in partial ful�llment

of the requirements for the degree of
Master of Science

1996

Advisory Committee:

Professor John Baras, Chairman/Advisor
Professor Michael Ball
Professor Nick Roussopoulos

c
 Copyright by

Jaibharat Valluri

1996

Acknowledgments

I would like to express my deep regard for Dr.John Baras to whom

I am extremely grateful. He has been a source of inspiration. He

allowed me the liberty of exploring my areas of interest and his con-

tinued faith in my work granted me this excellent opportunity of

being a part of a challenging research environment. His thrust on

Systems Integration broadened my focus and exposed me to research

problems in a wide variety of areas from Manufacturing to Speech

and Image processing.

I would also like to thank Dr.Michael Ball and Dr.Nick Roussopoulos

for always being available to discuss research issues and for consenting

to be on my thesis defense committee.

Dr.Ramesh Karne, Steve Kelley and Sandeep Gupta were always

approachable to discuss day to day problems and I would like to thank

them for that. Kap Jang was extremely helpful with any problems

in Graphical User Interface development.

ii

This material is based on work supported by the NASA Center

for Satellite and Hybrid Communications Networks under grant no.

NAGW-27775, Hughes Network Systems/MIPS under grant no. MIPS

1122.23 and Loral/MIPS under grant no. MIPS 1316.25. I am also

grateful to Mr. Richard Stanley of GTE Laboratories for o�ering me

an internship for the summer of 1995. This intership was valuable

industry experience.

Most of all I would like to thank my family without whom this work

would not have been possible. They have been a source of constant

support and encouragement. Finally I would like to thank all my

friends.

iii

Table of Contents

Section Page

List of Tables vii

List of Figures viii

1 Introduction 1

2 Object-oriented modeling for Network Management 6

2.1 Object Oriented Modeling concepts : : : : : : : : : : : : : : : : : 8

2.2 Modeling for Network Management : : : : : : : : : : : : : : : : : 10

2.2.1 Con�guration Management : : : : : : : : : : : : : : : : : 10

2.2.2 Performance Management : : : : : : : : : : : : : : : : : : 11

2.2.3 Fault Management : 16

2.2.4 Security Management : 18

2.2.5 Accounting Management : : : : : : : : : : : : : : : : : : : 19

2.2.6 Management Layers : 19

2.3 Requirements : 20

2.4 Notation : 23

iv

2.5 Data Types : 24

2.6 Data Model : 27

2.6.1 Class description : 28

2.7 Summary and innovative concepts : : : : : : : : : : : : : : : : : : 42

3 Performance Management Models 47

3.1 Introduction : 47

3.2 Model : 49

3.3 Summary and innovative concepts : : : : : : : : : : : : : : : : : : 61

4 Database Integration Methodology and Implementation 64

4.1 Introduction : 64

4.2 Architecture : 66

4.3 Approach : 68

4.3.1 Features : 70

4.4 Implementation : 72

4.4.1 server : 73

4.4.2 is modules : 76

4.4.3 sql command : 77

4.4.4 rs creSBR : 78

4.4.5 rs insSBR : 79

4.4.6 rs droSBR : 80

4.4.7 rs delSBR : 81

4.4.8 rs creSEL : 82

4.4.9 rs updSEL : 83

4.4.10 rs droSEL : 84

v

4.4.11 rs creJOI : 85

4.4.12 rs updJOI : 86

4.4.13 rs droJOI : 88

4.4.14 rs creIND : 88

4.4.15 rs rmvIND : 89

4.4.16 rs updCAT : 89

4.4.17 rs creSCJOI : 90

4.4.18 rs updSCJOI : 92

4.4.19 rs droSCJOI : 93

4.4.20 rs creSSJOI : 94

4.4.21 rs updSSJOI : 96

4.4.22 rs droSSJOI : 97

4.5 Summary and innovative concepts : : : : : : : : : : : : : : : : : : 98

5 Con�guration Management over Heterogeneous Databases 100

5.1 Network Con�guration : 100

5.2 Network Model : 103

5.3 Graphical User Interface Design : : : : : : : : : : : : : : : : : : : 106

5.4 Implementation : 108

5.5 Summary and innovative concepts : : : : : : : : : : : : : : : : : : 115

6 Conclusions and Future work 118

vi

List of Tables

Number Page

3.1 Summary of issues and alternatives : : : : : : : : : : : : : : : : : 56

vii

List of Figures

Number Page

2.1 A typical Network Management System scenario : : : : : : : : : : 21

2.2 Rumbaugh notation for depicting a class : : : : : : : : : : : : : : 23

2.3 Rumbaugh notation for depicting relationships : : : : : : : : : : : 24

2.4 Rumbaugh notation for depicting Inheritance : : : : : : : : : : : 25

2.5 Rumbaugh notation for depicting Aggregation : : : : : : : : : : : 25

2.6 Managed Object Inheritance hierarchy : : : : : : : : : : : : : : : 27

2.7 Specialization of Events : 28

2.8 Specialization of support objects : : : : : : : : : : : : : : : : : : : 29

2.9 Relationships for the Customer class : : : : : : : : : : : : : : : : 30

2.10 Specialization of the Log class : 31

2.11 Specialization of the Reactive class : : : : : : : : : : : : : : : : : 32

2.12 Specialization of the Network Element class : : : : : : : : : : : : 33

2.13 Relationship between Nodes, Links, Hardware Components and

Statistics : 34

2.14 Specialization of the Node class : : : : : : : : : : : : : : : : : : : 35

2.15 part/whole relationship between various Nodes : : : : : : : : : : : 45

2.16 Specialization of the Link class : : : : : : : : : : : : : : : : : : : 46

viii

2.17 Relationship between Logical and Physical Link classes : : : : : : 46

3.1 View object performance model : : : : : : : : : : : : : : : : : : : 57

3.2 Integrated performance model : 58

4.1 Database Integration Architecture : : : : : : : : : : : : : : : : : : 67

4.2 Client modules : 69

5.1 Entity-Relationship diagram for Con�guration Management : : : 104

5.2 Con�guration Management Architecture : : : : : : : : : : : : : : 110

5.3 Con�guration Management Main Panel : : : : : : : : : : : : : : : 111

5.4 Treeemap Display : 111

5.5 Treebrowser Display : 112

ix

Database Models and Architectures for
Hybrid Network Management

Jaibharat Valluri

February 17, 1996

This comment page is not part of the dissertation.

Typeset by LATEX using the dissertation class by Pablo A. Straub, University of

Maryland.

0

Chapter 1

Introduction

As we move into the Information Age, there is an increasing emphasis on hav-

ing an e�cient communications infrastructure. A wide range of products and

services is now available from a slew of vendors. These products and services

operate on di�erent technologies like ATM, Cellular, PCS, Satellites etc. Many

of the services are driven by the ever growing entertainment industry.

Communication networks are developed around the di�erent technologies.

ATM networks are terrestrial and operate over diverse physical media such as

�ber optic cables, coaxial cables and twisted pair copper wires. ATM is used both

for Wide Area Networks (WAN), in order to develop high bandwidth backbones,

as well as for Local Area Networks (LAN) within campuses etc. These networks

are capable of carrying multimedia tra�c. The cellular and PCS industries are

driven by the need for wireless voice and data communication. There are already

large subscriber bases for cellular services in most developing countries, and the

demand in continually growing. Satellites serve as an ideal broadcast medium

and have been widely used in the entertainment industry. They have also been

used for long distance telephony. Satellites also have the ability to provide com-

1

munication facilities to areas that don't have a good terrestrial communications

infrastructure or where terrestrial communication may not be an economically

viable alternative. These are only a few examples of where Satellites are used.

Each of the technologies described above is driven by di�erent factors and

will continue to grow. Hybrid networks and services that combine two or more

di�erent modes of communication are already being deployed. As the existing

technologies mature and consumer demands become more complex, there will be

a growth in hybrid networking. Consider the case of video conferencing, where

some of the parties involved may have wireless terminals, while others may be

located in remote areas without any terrestrial lines. Such an application would

require a hybrid network. For many user applications such as reading news

or accessing large information databases, the communication requirements are

essentially asymmetric. A Terrestrial-Satellite hybrid network can be used to

meet such demands, where the user requests are sent terrestrially and the reverse

channel is through the satellite.

Current Network Management tools and techniques aren't capable of man-

aging such hybrid networks. Network Management Systems are organized hier-

archically in layers, as will be seen in a later chapter. One of the layers in an

Element Management layer. This layer is responsible for managing a speci�c

portion of the network. For example all multiplexers or PBXs may be managed

by this. Alternately, all elements within an administrative domain could be

managed by such a system. The Central Management System or the Manager

of Managers System is developed at the highest layer. This manages the entire

network. A Management Information Base (MIB) which is a repository for all

the information about the network is central to the development of Network

2

Management Systems. Before any data can be stored in the database however, a

model has to be developed for storing this data. Existing models are inadequate

and cannot capture the growing complexities of hybrid networks.

OSI has identi�ed �ve di�erent functional areas under Network Management:

Fault Management, Con�guration Management, Accounting Management, Per-

formance Management and Security Management. A large number of Network

Management Systems that exist today do not address all these functional areas.

Even if the di�erent areas are covered, they are typically managed by indepen-

dent applications that may not interact. The di�erent applications may not even

have the same model for the network.

A �rst step to developing an Integrated Network Management System, en-

compassing all the NM functional areas is, interoperability between the di�erent

applications. All the management applications must use the same model for

the network. This is especially important in the case of hybrid networks. The

Satellite and ATM sub components may be managed separately at a lower man-

agement layer but at a higher layer, a Manager of Manager System is developed

that has to manage the entire network. Hence, there must be a uni�ed data

model that addresses all the NM functional areas. This model is implemented

on a central or distributed database system and all the di�erent management

applications should interact with this same database. This database then main-

tains all the information about the network, the services and the customers. In

this work we attempt to develop such a uni�ed data model.

Performance Management is an area where the focus has been very limited.

Performance statistics are collected from various network elements in the net-

work. These vast amounts of data pour into the network control center, but

3

currently very little is done with this data. Quite often this data isn't even

stored in a database and is stored in
at �les instead. Many network managers

don't know what to do with the data, since much of the data may not be in a

meaningful form and even if it is, they can't associate it with the appropriate

network elements. Hence it is essential to store this data in such a way that they

can easily be associated to their corresponding network elements. Performance

data is potentially huge and it is very important to provide an e�cient storage

model for this data, so that little time is wasted in navigating through irrelevant

data and operator queries can be answered as quickly as possible. It may also

be necessary to map the incoming data to something that is more meaningful to

the operator. No model exists for this currently. We address this issue in this

work. To improve the management e�ciency, it is important that the storage

model be e�cient and at the same time be integrated with the Con�guration

Management model.

An important consideration while developing the Integrated Network Man-

agement System is, the interoperability between the lower level management

systems. It is possible that the network management systems for the terrestrial

and Satellite sub components of a hybrid network were developed on two dif-

ferent database platforms. Hence the interoperability of databases becomes an

important issue. This is also an issue for plain terrestrial networks as well. This

problem is of interest to several companies today. They have developed di�er-

ent Network Management applications for their networks on diverse database

platforms. Now they would like to develop an Integrated Network Management

System for their network. But this is a di�cult problem since the database

platforms on which the applications were built aren't interoperable, hence the

4

di�erent applications cannot interact. The naive solution is to have all the data

transferred to one database. This is however not acceptable since the amounts

of data are vast and it isn't a scalable solution. There is no existing model or

architecture that can achieve this interoperability e�ciently.

To summarize, two of the main problems being faced while trying to develop

Integrated Network Management Systems are:

� the absence of a uni�ed data model encompassing all the network manage-

ment functionality

� the issue of interoperability between various commercial database systems

We have addressed both these problems in this work, and attempt to provide

solutions for them. In addition to the above problems we have also developed a

data model for the sensor data collected from the network.

This thesis is organized as follows: Chapter 2 discusses the bene�ts of the

object oriented approach to modeling, gives a brief introduction to the Network

Management functional areas, outlines the NMmodeling requirements and devel-

ops an object-oriented data model for hybrid networks. Chapter 3 proposes two

di�erent Performance Management models and compares their relative merit.

Chapter 4 presents an architecture for the integration of heterogeneous database

platforms and an implementation of the architecture. Chapter 5 develops a

Con�guration Management Application on the Integrated Database platform

and exhibits the usefulness of such an architecture. Chapter 6 presents the

conclusions and opportunities for future work.

5

Chapter 2

Object-oriented modeling for Network

Management

The Object oriented concept evolved from the programming language domain

where it has led to signi�cant e�ciency in software development. It is now being

widely adopted in other disciplines like databases and distributed computing.

Object orientation provides a methodology to abstract elements from the

problem domain and model them as objects. Most often each object has a direct

correspondence with a physical real world entity.

As mentioned earlier the networks of today are large and heterogeneous,

with equipment from a large number of vendors. The object oriented modeling

technique can prove to be very useful in reducing the exploding complexity of

these systems.

Before discussing the various aspects of object oriented modeling it is useful

to consider the various modeling paradigms, as de�ned by Wegner [15]:

1. Object based modeling: This paradigm requires that every element of the

problem domain be an abstracted and encapsulated object. Each object

6

has a state, re
ected by a set of attributes and a behavior, all together in

one module. In addition there should be a well de�ned interface through

which the rest of the system can interact with this object.

2. Class based modeling: In this paradigm all elements are modeled as ob-

jects, and in addition, all objects that are considered \similar" are said to

belong to a certain class or type. Every object must belong to a certain

class. A class can be considered a template for objects that are similar.

All objects are instances of a particular class with speci�c values for their

attributes. Object belonging to the same class share common properties.

3. Object oriented modeling: This is the richest paradigm and includes all

features of the above two paradigms. In this paradigm, in addition to de�n-

ing classes of di�erent types, an inheritance is de�ned between classes. In

other words, a new class called the child class can be created by inheriting

the attributes and behavior of another class, which is called the parent

class.

Hence given a group of classes, we could extract the common properties

from the di�erent classes and create a new class, called superclass from

which all the given classes could inherit. This process is called Gener-

alization and is used while using a bottom-up approach to modeling.

The reverse process called Specialization is also possible, where child

classes are created by inheriting the properties of a parent class and adding

new properties of their own. To see how this could be of use to us we

consider an example. Consider a generic ATM Switch class. We also

need to model ATM switches from speci�c vendors, for which we might

7

create Fore Systems ATM Switch and Cisco ATM Switch classes.

These two switch classes have many attributes in common with the generic

ATM Switch. In fact, each has all the properties of the ATM Switch and

adds on some special properties of its own. Hence instead of replicating all

the information in the two vendor speci�c switches we could just inherit

that from the generic switch. This is an example of specialization. De-

pending on whether our approach to modeling is top-down or bottom-up

we would use either specialization or generalization respectively. These

would be specializations of the ATM Switch class.

We will use the object-oriented paradigm in all our modeling.

2.1 Object Oriented Modeling concepts

� Abstraction: This is a mechanism by which, given a problem domain,

only the properties of interest are extracted to form a model. Hence only

the \essential" attributes and behavior are captured. For example, if we

are modeling a Workstation for the purposes of Network Management, we

wouldn't include as part of our model, the architectural attributes of a

Workstation. e.g processor bus width or processor cache size.

� Encapsulation: This is a method of separating the internal representation

and implementation of a class from the external view of the class. All

interaction between this class and any other class takes place through a

clean and well de�ned interface. This allows the internal representation of

the object to be modi�ed without a�ecting the rest of the system, given

that the external interface of the object is kept the same. A class then

8

includes all static and dynamic attributes along with the operations that

can be performed on and by that class.

Encapsulation is also used in the layering of networking protocols. Each

layer has a well de�ned interface to its adjoining layers. Hence each layer

forms a module that can be modi�ed without a�ecting the rest of the

layers.

Encapsulation is a very powerful construct, since once the external interface

of a class is de�ned, the implementation of that class is not important.

� Relationships: Relationships can be de�ned between two di�erent classes.

This construct is very useful in the modeling of networks. For example,

consider a Node class and a Link class. A Link in the network is either a

point-to-point link or a multi drop Link. To model this we de�ne a many-

many relationship between the Node and Link classes. The relationship is

many-many because each Link could be connected to several Nodes and

vice versa.

Note: The object oriented programming language used for implementa-

tion, may not support Relationships. In such cases relationships are imple-

mented by storing embedded pointers to the conjugate class object. This

results in a pair of conjugate pointers that need to be managed together

i.e if one is modi�ed the other also needs to be suitably modi�ed.

� Inheritance: As discussed earlier, this is a method by which objects of one

class can inherit attributes and behavior of another class. Inheritance is

a special relationship called the is-a relationship. A child class is-a class

of type parent. Using multiple inheritance one class can inherit properties

9

of many classes simultaneously. Inheritance and relationships can be used

to provide a meaningful and well structured abstraction of the problem

domain.

� Aggregation: This is also a special relationship and is also known as the

part-whole relationship. A larger object is composed by aggregating

smaller objects. This allows the creation of complex systems from simple

systems. This concept is especially useful in manufacturing where complex

components need to be modeled in terms of their parts.

In networks a part-whole relationship exists between a line card inside

a PBX and also between Line Interface Modules (LIM) and Data Port

Clusters (DPC) in a Satellite subsystem.

2.2 Modeling for Network Management

There are various functional areas of Network Management. A more detailed

description of the Network Management functional areas can be found in [11, 7].

2.2.1 Con�guration Management

This is the most fundamental network management functional area. This man-

agement function is responsible for maintaining a record of all network elements

in the network. It should also provide the operator with the ability to stati-

cally or dynamically con�gure any network element. In addition, the operator

should have the capability to create new and delete existing \Managed Objects".

Con�guration changes may be necessary during installation of new components,

resource reallocation or in the case of network faults.

10

The structural aspects of Network Elements are modeled as part of this func-

tional area. For example a typical attribute for a modem card class would be

the baud rate. The Node class would have a set of ports, location etc. The

Link class would have set of nodes connected to it, capacity etc. We will see the

details of these classes later.

It is evident how the notion of inheritance can prove to be very useful for

modeling network elements. Speci�c nodes like ATM Node and Router will

inherit from the generic Node class discussed above.

2.2.2 Performance Management

Performance Management deals with Monitoring and Control of Network Ele-

ments in order to guarantee the Quality of Service (QoS) requirements of various

customers.

� Monitoring: This involves gathering data from the various network ele-

ments in order to evaluate their performance. From the modeling perspec-

tive this would mean that each Network Element class must have oper-

ations that report the status of that network element, to a Management

Application. This status reporting can be:

{ periodic reporting

{ reporting when polled

� Analysis: The raw data gathered from the network elements needs to be

converted into a more meaningful form, so that it can be used as a measure

of the quality of service. Typically a network element reports the total

11

number of packets received or the total number of packets in er-

ror since a �xed reference time. These numbers have to converted into

quantities like utilization or error rate.

� Control: On the basis of the above analysis certain thresholds or parame-

ters on the network elements may need to be modi�ed in order to maintain

satisfactory service. Hence certain operations must be available corre-

sponding to each network element, that allow an operator to set or modify

certain parameters for that element.

Modeling performance related properties of resources

Certain generic performance related quantities are often of interest to typical

Performance Management functions. Depending on the resource to which they

are applicable, they take on di�erent names. Some of the quantities that are

considered are:

� Throughput: It is essential to measure throughput both for short term

as well as long term performance management. In the short term, if the

operator notices that the throughput is low, then it could mean that there

is a bottleneck somewhere in the network, and the operator could try to

rectify the problem. The history of throughput values is stored and is used

for appropriate resource allocation in the long term.

� Utilization: Utilization is also useful for short term and long term manage-

ment. It is basically a measure of the work load on the various resources.

It can help the operator detect overloaded conditions in the short term.

Similar to throughput, the history of utilization values are also used for

12

long term resource allocation.

� Delay: Delay has several components, including transmission delay, bu�er-

ing delay at intermediate nodes etc. From the user's perspective, end-to-

end delay and connection establishment delay are important. However it

would be in the interest of the service provider to determine the major

component of end-to-end delay, and to keep it within tolerable limits, so

that the desired Quality of Service may be maintained.

� Error Rate: It is imperative to monitor error rate and ensure that it is

within tolerable limits. Di�erent kinds of connections have di�erent limits

on the error they can tolerate. Voice connections can typically tolerate

higher error rate as compared to data connections.

The parameters identi�ed above are meant to be generic and can be applied

to di�erent entities. While modeling the performance of protocols like TCP/IP

or X.25, the above identi�ed quantities would translate to:

� Request rate: Most protocols have counters for number of connection

requests, number of successful connections & number of unsuc-

cessful connections. The request rate can be determined from these

counters.

� Utilization: There is also a counter for number of active connections,

and each protocol has a limit on the maximum number of connections it

can have open at any given time. The utilization is determined using these

values.

13

� Error rate: Many protocols monitor the number of interrupted con-

nections. This is used to determine the error rate.

While modeling connections the quantities would translate to:

� Throughput: Each connection has a counter specifying the number of

bytes transmitted or number of packets transmitted. The through-

put is determined using this counter.

� Utilization: Utilization is usually determined for a link by dividing the

tra�c carried on the link by the capacity of the link. However in the case

of ATM networks, where a certain amount of bandwidth may be allocated

for a connection, Virtual Circuit (VC) or Virtual Path (VP), it may be

useful to monitor the utilizations of these \Logical Links".

� Error rate: There are counters associated with the number of error-

ed packets and the average number of retransmissions per packet.

These are used to give a measure of the error rate.

It is worth noting that the OSI Network Management model does not specify

any performance related information in the classes it speci�es for the various

\Managed Objects".

The existing Network Management systems using standard protocols like

SNMP and CMIP monitor and store raw data in the form of 'counters' or 'gauges'

mentioned above. It is left to the Performance Management applications to com-

pute the above identi�ed generic performance related quantities. The ultimate

goal of performance management is to ensure that the QoS requirements are

met. The quantities of interest for this purpose would utilization, throughput,

14

error rate, delay etc. The various counters and gauges have to be mapped to

these quantities.

The networks in future will be very heterogeneous with multi vendor equip-

ment and supporting a slew of protocols. There would be one Integrated Network

Management Systems managing the network. The onus of computing QoS met-

rics from the various counters should not be on the main Network Management

Application. Instead the Network Elements should include operations that re-

turn utilization, throughput, error rate etc, instead of returning just the counter

values. In a true object oriented manner the network elements could just be ob-

jects returning these values. Di�erent network elements have di�erent counters

or gauges depending on the protocols they are using. The Network Management

Application should not have to keep track of the mapping between the counters

and the QoS metrics for the various network elements. These operations that

return QoS metrics would be \virtual" i.e the implementation would be di�erent

for each network element. In this manner the various heterogeneous NEs would

present a uniform interface to the Network Management Application.

It is important to realize that quantities like utilization, throughput and error

rate represent the Quality of Service for a \connection". The overall availability

of the system is also a QoS measure but has a di�erent time scale and would

relate to a particular customer. It is useful to put into perspective the di�erent

QoS metrics. We can distinguish 3 time scales for which QoS may be monitored:

� per connection: This is a short period, typically of the order of a few sec-

onds or minutes. It is easy to quantify the QoS metrics for each connection,

as discussed above.

15

� per customer: This is what the customer perceives of a particular service.

Typical examples of QoS measures are:

1. overall availability of the system

2. mean time to rectify faults

3. cost to satisfaction ratio (satisfaction quanti�ed in a particular man-

ner)

4. average time to talk to a customer service representative

5. number of complaints about billing statements

These are more important from a business perspective.

� per service: This is measured over the entire lifetime of a service and

represents the overall \satisfaction" of the customers with that service.

These measures are largely qualitative.

We will concentrate on modeling the QoS metrics on a per connection basis.

2.2.3 Fault Management

This management function deals with maintaining the network elements and the

network as a whole, in a state of operation. In the case of a fault the following

steps may be necessary:

� Fault detection: When a fault occurs many Alarms get reported to the

operator. The operator has to sift through this information to determine

the source of a fault. Certain intelligent techniques to correlate alarms

using prior knowledge, may be used to not only reduce the amount of

16

information presented to the operator but also make it more meaningful.

If the source of the fault isn't known the operator may perform tests on the

NEs. Each NE should have operations that allow the operator to conduct

tests and gather more information. The Alarms or Noti�cations are also

generated by the NEs in response to certain network events.

� Fault isolation: Once the fault has been detected, the faulty portion of the

network has to be isolated. An operator would recon�gure the network to

render at-least part of the network operational.

� Fault recti�cation: This could be done remotely by an operator or o�-line

by a service representative. It may be just a matter of altering certain

thresholds which the operator should be able to do from his management

station.

� Restoration of service: Once the fault has been recti�ed the operator would

restore the network to its original state.

Hence each network element should be capable of issuing 'Noti�cations' or

'Alarms' to the operator in response to 'Events'. The operator should also be

able to invoke various operations on the NEs as described above.

An 'Event' class would model the generic attributes of any network event.

Typical attributes would be:

� event name

� source of event

� noti�cation to be issued to the operator in response to the event

17

Speci�c Events would inherit from this generic Event class. Similarly we

would have a generic 'Alarm' class and speci�c Alarms would inherit from this

class. Typical attributes of the generic Alarm would be:

� name of the alarm

� event/list of events causing the alarm

� probable set of alarms that may be triggered along with this alarm

� action to be taken or noti�cation to be issued in response to this alarm

2.2.4 Security Management

This functional area is responsible for providing all the security related features

such as:

� Authorized access: Only authorized users should be allowed access to var-

ious systems and services. Typically users have to enter some form of

identi�cation, like a password, that is veri�ed against a password �le, be-

fore being granted access to a system. Within the system itself certain �les

or services may be restricted to a certain set of users. For example only a

superuser can modify the contents of a password �le. An Access Control

List (ACL) may be used to list the authorized users. In addition, each

user may have a speci�c priority level that would determine his/her access

privileges.

� Authentication: The recipient, of a message coming across the network

may want to verify that the message originated at an authentic source.

18

Authentication is a service that the service provider may choose to o�er.

Digital signatures are sometimes used to provide authentication.

� Encryption: The users of a network may require secure transmission of

data. Encryption is used to guarantee this. The original message is en-

crypted before being transmitted and decrypted at the receiver. Hence

even if an unauthorized party does get access to the message, the actual

contents of the message will not be compromised. There are certain al-

gorithms like the DES algorithm that are used for this purpose. These

algorithms require 'key' management which must be provided by the secu-

rity management system.

2.2.5 Accounting Management

This functional area is responsible for maintaining a record of the usage of net-

work resources by the customers. Each customer's usage must be monitored

and the customer's billing record updated accordingly. Billing statements have

to be periodically sent to the customers. This system should have a record of

the tari�s for the di�erent services. The tari�s for di�erent services may vary

depending on the time of day.

2.2.6 Management Layers

Orthogonal to the Network Management functional areas, there are conceptual

layers into which a Network Management System is partitioned. Each layer uses

the services provided by the lower layers.

19

1. Service Management Layer: This is the topmost layer. This layer man-

ages the services provided by the service provider to the customers and

ensures that the service agreements between the provider and customer

are honored.

2. Network Management Layer: This layer is responsible for managing the

network as a whole. In a typical scenario as shown in �gure 2.1, the

'Manager' would be part of this layer. The details of the NEs are hidden

from this layer. However relevant information may be requested from the

NEs. On the side of the NE, the 'Agent' responds to the queries. This

layer provides services to the Service Management layer by monitoring the

QoS of the various customer connections.

3. Network Element Layer: This layer is concerned only with the manage-

ment of a particular network element. The details of the NEs are managed

at this layer. An Agent can only interact with a Manager and not with

other Agents. Hence unlike the Network Management Layer this layer has

no global functionality.

2.3 Requirements

Before doing the analysis and design of the data model it is useful to summarize

all of our requirements.

� The network operator may need to con�gure the network. This may be

necessary while adding or deleting network elements or while modifying

20

Network

Agent

Network Element

MIB
Manager

MIB

NM Application

queries
operations

notifications
alarms

responses

Figure 2.1: A typical Network Management System scenario

the current parameter settings on any NE. The operator may need to view

the current settings of parameters on any NE.

� The operator monitors the performance of various network elements. As

discussed earlier each network element should have the capability to report

the generic performance related quantities identi�ed earlier. However the

operator may also wish to view the actual 'counter' or 'gauge' (SNMP

parlance) values. Based on reports from various NEs, the operator may

notice bottlenecks or \hot spots" in the network, which need attention.

This may require some resource reallocation or changes in the con�guration

of the network.

� Historical records or Logs must be maintained for the performance statis-

tics of all the network elements. Based on the historical performance statis-

tics the operator may wish to recon�gure the network or add additional

resources.

21

� The various 'Events' occuring in the network need to be monitored and

recorded. Hence a Log is kept for all the Events that occur. Each entry in

the log will have a time stamp associated with it. When a fault occurs in

the network the operator may wish to see the sequence of events that could

have led to the fault, for future reference. If later, the operator notices the

same sequence of events he may act early and preempt a fault or potential

bottleneck. This process could be automated also.

� Certain events can cause 'Alarms' that must be reported to the operator.

There are numerous di�erent kinds of alarms. The reaction of the operator

to alarms is described in an earlier section.

� Once the fault has been detected the operator may wish to isolate the faulty

part of the network for which appropriate operations must be provided on

the NEs.

� After the fault is recti�ed the operator needs to restore the network to its

original state.

� Customer records need to be maintained. Customers access certain services

and have billing records. They may also have an access priority or level.

The operator may wish to view the customer records.

� A record of the various services o�ered by the service provider needs to be

maintained. Each service had a list of customers using that service.

Apart from the requirements described above, we �nd that implementation

details dictate that we model certain support classes.

22

� The graphical representation of the network to the operator is very impor-

tant and should not be underestimated. Hence the network layout needs to

be modeled. Both the Graphical User Interface (GUI) and the persistent

store should use the same model for the network.

� The operator may have certain \views" of the network, that combine in-

formation from di�erent \Managed Objects". Though it is more of an

implementation issue, it may be useful to model some of the typical views.

2.4 Notation

The Rumbaugh notation as described in [9], is used to depict the object model.

In the Rumbaugh notation a class is depicted as shown in �gure 2.2. The top-

most rectangle is used for the class name. The attributes are represented in the

middle rectangle and the bottom rectangle is used to show the operations that

can be performed on or by the class.

class name

attributes

operations()

Figure 2.2: Rumbaugh notation for depicting a class

Figure 2.3 shows relationships between classes in the Rumbaugh notation. The

top �gure denotes a one-one relationship. The middle �gure shows a one-many

relationship and the �gure at the bottom depicts a many-many relationship.

23

class class

one-one relationship

class class

one-many relationship

class class

many-many relationship

Figure 2.3: Rumbaugh notation for depicting relationships

Figure 2.4 shows the Rumbaugh notation for depicting inheritance between

classes. An Aggregation or part/whole relationship is depicted in the Rumbaugh

notation as shown in �gure 2.5.

2.5 Data Types

SNMP supports extremely simple data types, while in CMIP, a Managed Object

can contain extremely complex data types. To manage large complex networks

we will need richer data types than those supported by SNMP. The di�erent

data types used in modeling the various classes are shown below:

24

parent class

child class child class

Figure 2.4: Rumbaugh notation for depicting Inheritance

class A

class B

Figure 2.5: Rumbaugh notation for depicting Aggregation

� short integer: This type supports integer values in the range

�215 <= i < 215

� long integer: A variable of this type can take values in the range

�231 <= i < 231

� real: This data type represents any
oating point value. The precision is

determined by the language and platform on which it is implemented.

� Boolean: A variable of this type can on values true or false.

25

� String: This data type is a list of bytes of arbitrary length. Each byte is a

character. It is usually used to represent text or names.

� Enumerated: This data type requires a list of values to be speci�ed. A

variable belonging to this type then take on one of the values speci�ed in

the list.

e.g Host Interface type TokenRing, 10BaseT, 10Base2, 10Base5

A particular node's interface will take on one of these values.

� record: This is a complex type and has multiple �elds. Each �eld could be

any of the types de�ned above or could itself be a record.

� List: This is a ordered collection of variables belonging to a particular data

type.

� Set: This is an unordered collection of variables of a certain type.

A class is a combination of attributes and operations. Each attribute

could belong to any of the above de�ned types or could itself be another class.

Note: As we will see in the implementation of our model, we don't have any

attributes which are themselves classes. Instead we store pointers to classes. A

pointer is just a number and is of type long integer.

Every object should have a unique identi�er so that any reference to an object

can be resolved unambiguously. The class name and the id uniquely identify

every object. For example Node:16 would refer to a Node class object with

identi�cation number 16. If we decide on having a distributed implementation

of the MIB, we would build this on top of a CORBA compliant layer. This layer

will have the task of determining the location of the object.

26

2.6 Data Model

Managed Object

Reactive

Consumers
Cons2b

Subscribe
Unsubscribe
Notify

Notifiable
Log

Trouble Ticket

time_opened
description
status
priority
probable cause

Customer
name
address
phone
access level

change_addr()
change_name()
change_level()

Operator

login_name
access_priority

change_passwd()

Support Objects

Billing record

reason
source
time_stamp
description

Event

Figure 2.6: Managed Object Inheritance hierarchy

The Management Information Base (MIB) is central to the development of a

Network Management system (e.g [1, 14, 13]). In this section we present an

object oriented data model for the MIB. An earlier e�ort was made in this

direction at Columbia University [16]. This work has been an extension of the

data model developed in [3]. The MANDATE [4] and object oriented modeling

principles [9, 2] have been followed while developing this model. The �gures

shown below represent the data model. Figure 2.6 shows the Managed Object

Inheritance hierarchy. Figure 2.7 shows the Specialization of Events. Figure 2.8

shows the specialization of Support objects. Figure 2.9 shows the relationships

27

Alarm

message
state
set_of_related_alarms

action()

Event

MO created

name
id

MO deleted

name
id

Figure 2.7: Specialization of Events

that the customer class has. Figure 2.10 shows the specialization of the Log

class. Figure 2.11 shows the specialization of the Reactive class. Figure 2.12

shows the specialization of the Network Element class. Figure 2.13 shows the

relationship between the Node, Link and Hardware Component and Statistics

classes. Figure 2.14 shows the specialization of the Node class. Figure 2.15 shows

the part/whole relationships between various types of Nodes. Figure 2.16 shows

the specialization of the Link class. Figure 2.17 shows the relationship between

Logical Links and Physical Links.

2.6.1 Class description

1. Managed Object: This class is the top of the hierarchy. It is the model

for any class that can be managed in software by the Network Management

System. All the other classes de�ned inherit from this class.

28

topology

Draw_network
Add_node
Add_link
Delete_node
Delete_link

Layout

Support Objects

View

Figure 2.8: Specialization of support objects

Attribute

class name

2. Reactive: This class inherits from the Managed Object class. This has

been modeled in order to embed constraints into the model. Details of

embedding rules into a database can be found in [5]. Any class that inherits

from this class subscribe to 'Rules' and can receive noti�cations in case of

particular 'Database Events'.

Attributes

consumers

cons2b

Operations

subscribe()

unsubscribe()

29

Customer

Service

Billing Record
has_a

uses

Figure 2.9: Relationships for the Customer class

notify()

3. Log: This class inherits from the Managed Object class. Log is meant

to be an abstract class i.e there is no instance of this class. It is always

important to maintain a historical record of di�erent items like performance

statistics, events, errors. The Log class is meant to model such a generic

record.

4. Operator: Typically a Network Management Center has many operators

who manage the network sitting at their terminals. Each operator may be

executing a di�erent network management application. Di�erent operators

may have di�erent access restrictions depending on the task assigned to

them.

Attributes

login name

30

Usage Log

Log

Error Log StatisticsEvent Log

Figure 2.10: Specialization of the Log class

access priority

Operations

change passwd()

5. Billing record: As mentioned earlier, a record of each customer's usage

of the network must be kept. This class is meant to model that record.

One Billing record is associated with each customer.

6. Customer: This class maintains a record of every customer using any

service provided by the service provider. Each customer is associated with

a billing record. Each customer also has a uses relationship with the

various Services. This is a many-many relationship as shown in �gure 2.9.

Attributes

name

address

phone

access level

31

Reactive

Consumers
Cons2b

Subscribe
Unsubscribe
Notify

Software

fn_list

Network Element

id
name
type

Isnamed
HasID
Getname
GetID
Print

description
access priority
tariff

Service

state
layer

Protocol

Figure 2.11: Specialization of the Reactive class

Operations

change name()

change address()

change level()

7. Event: This class models generic network events. Events related to faults

will result in Alarms. Other events could be the creation or deletion of

Managed Objects. Each event has a description, source and reason associ-

ated with it. It is also important to maintain the time at which the event

occured.

32

Network Element

Link

name
directionality
is_in_layer
is_attached_to
is_impl_in_terms_of

GetUtilization
GetCapacity

Hardware
Component

is_in_layer

PrintAttributes
Print

Node

name
set_of_nodes
set_of_hw
set_of_sw
is_connected_to

PrintAttributes
Print

Port
baud_rate
port_type
status
LAN_GRP

BaudRate
HasLANGroup
SetStatus
Fill
PrintAttributes

is_conn_to

Figure 2.12: Specialization of the Network Element class

Attributes

reason

source

description

time stamp

8. Trouble Ticket: Each time the operator receives a report regarding a

network fault, he opens a Trouble Ticket as a record of the fault report.

33

Link

name
directionality
is_in_layer
is_attached_to
is_impl_in_terms_of

GetUtilization
GetCapacity

Hardware
Component

is_in_layer

PrintAttributes
Print

Software

Node

name
set_of_nodes
set_of_hw
set_of_sw
is_connected_to

PrintAttributes
Print

containsco
nt

ai
ns

contains

contains

Statistics

h
a

s

has

Figure 2.13: Relationship between Nodes, Links, Hardware Components and

Statistics

Several alarms may result in a single trouble ticket since they may all refer

to the same fault. As the faults are recti�ed the trouble tickets are closed

and stored in a Log.

Attributes

time opened

description

status

priority

probable cause

9. Noti�able: This class has been created in order to model Database Events

and Rules [5]. These Rules can be dynamically subscribed to or un-

34

ATM_Node

location

IsLocated
HasLANGroup
PrintAttributes
Fill

Remote

LimSlotNum
LimMMB
LIM_func
IntModType
SoftType
PortmechInt
MaxNumSessn
OutrtSync
VirNetName
text

HDPC_LIM

GetLimMMB
PrintAttributes
Fill

RDPC_LIM

PrintAttributes
Fill

PortElecInt

Des_Type
SoftType
SoftType2
status

IsStatus
HasLANGroup
BaudRate
Utilization

DPC

ChassisNum
UPmSlotNum
ServClass
MaxOutrt_Bndwdth
HW_INSTLD
RedunGrpName
RedBusPos
days
hours
min
LAN
PrintAttributes
Fill

HDPC

PrintAttributes
Fill
GetRDPCSlotNum

RDPCSlotNum
ODLCAddr
PortCardType
RDPC_func
DataSetReady
RingInd
ClrToSend
HwType
CarrDetect
text
Tx_parms

RDPC

MAC_Addr
NumPorts

IsStatus
HasLANGroup
BaudRate
Utilization

DPC_LIM

Node

Network
Group

PrintAttributes
Fill

i/o_ports
ATM_Translation_table

ATM_Node

Router
i/o_ports
Routing_table

HasLANGroup
PrintAttributes
Fill

Subnetwork

Host
type
active_sess
applications

Figure 2.14: Specialization of the Node class

subscribed to as mentioned earlier. The occurrence of database events

causes rules to �re. Database events are di�erent from network events

described earlier. Rules and Database Events inherit from the Noti�able

class.

10. Support Objects: The importance of Support Objects was mentioned

earlier. These are not part of the network per se, but are very essential for

the implementation of the system. This is also an abstract class with no

35

instances.

11. Network Element: This class models a generic network device. It could

be a Node, Link or a Hardware Component. It inherits from the Reactive

class.

Attributes

id

name

type

Operations

Isnamed()

HasID()

Getname()

GetID()

Print()

12. Service: As mentioned earlier, the various services o�ered by the service

provider need to be modeled. This serves as a generic model for the services

o�ered. Any speci�c service would then inherit from this class. Certain

'Rules' may apply to services as well. Hence the service class inherits from

the Reactive class.

Attributes

description

access level

36

tari�

set of current customers

Operations

add customer()

delete customer()

13. Protocol: This serves as a model for a generic protocol. Speci�c protocols

like TCP/IP, X.25, ATM will inherit from this class. Each protocol is

associated with some performance statistics. There is a uses relationship

between 'Session' (which represents a user connection) and a Protocol since

every connections uses a speci�c protocol.

Attributes

state

layer

14. Hardware Component: This class inherits from the Network Element

class and is used to model simple network devices that aren't made up of

other components. Typical examples are an Ethernet card or a Modem

card.

Attributes

is in layer

Operations

Print

37

15. Node: The Node class inherits from the Network Element class. It is used

to model complex network devices that may contain other Nodes or Hard-

ware Components. Each Node has a uses relationship with the Software

class. Nodes have a many-many has links relationship with Links.

Attributes

name

set of nodes

set of hw

set of sw

is connected to

Operations

Print

16. Link: This class inherits from the Network Element class and is a model

for a generic Link. A Link is a communication path between Nodes. A

link may be physical or logical. A Physical link represents a direct path of

communication between Nodes, while Logical links themselves can contain

other Logical links or Physical links. Links have a has relationship with

Statistics.

Attributes

name

directionality

38

is in layer

is attached to

Operations

getUtilization()

getCapacity()

17. ATM Node: This class inherits from the Node class. This serves as a

model for a generic ATM Switch. Vendor speci�c ATM Nodes are created

by inheriting from this class. An ATM Node contains a translation table.

The translation table maintains routing information the entries of which

are used to switch Virtual Channels (VC) or Virtual Paths (VP) depending

on the level at which switching is taking place.

Attributes

i/o ports

translation table

switching level (VC or VP)

18. Router: Router inherits from the Node class. A router is a 'Network'

layer device in OSI 7 layer model. Each router contains a routing table the

entries of which determine the output network interface for each incoming

packet. Vendor speci�c routers inherit from this class.

Attributes

set of network interfaces

39

routing table

19. Host: The Host class inherits from the Node class. It models a generic

host. Many di�erent hosts like Workstations, X-Terminals, Mainframes,

PC's and Machintoshes are found on today's LANs. These further inherit

from the Host class.

Attributes

type

number of applications

number of active sessions

20. Physical Link: This is a model for a generic link. It inherits from the Link

class. A physical link represents a direct path of communication between

two network devices. The medium could be either wired or wireless and

the link could be a point-to-point link or a multi-drop link like a bus.

21. Terrestrial Link: This class models any generic wired physical link.

22. Fiber: This class models a �ber optic physical link.

23. Coax: This class models a co-axial cable link. It could be thin coaxial

cable or thick co-axial cable.

Attributes

impedance

40

24. Wireless Link: This class inherits from Physical Link and models any

wireless link. The wireless link could be terrestrial and in di�erent fre-

quency ranges like cellular, PCS, microwave or infrared or they could be

Satellite links. Terrestrial wireless links could be indoor or outdoor. De-

pending on the environment and frequency the propagation characteristics

vary.

Attributes

frequency range

25. Logical Link: This class inherits from the Link class and is used to model

a generic Logical Link. Logical links could contain other Logical Links

which will ultimately be implemented in terms of multiple physical links.

Hence Logical Links have a many-many is implemented by relationship

with Physical Links.

Operations

Collapse()

Expand()

26. Virtual Circuit: This inherits from the Logical Link class. The Virtual

Circuit construct was de�ned for packet switched networks. ATM networks

also used this construct sometimes under the name of Virtual Channel. A

Virtual Channel is a Logical Link de�ned between two ATM Switches or

user machines.

41

27. Virtual Path: Virtual Paths also inherit from the Logical Link class. A

Virtual Path is a construct de�ned speci�cally for ATM networks. This

was done so that bandwidth in an ATM link could be partitioned between

several connections. Bandwidth is allocated to Virtual Paths by the opera-

tor. Certain Virtual Paths are reserved for carrying signaling information.

An ATM Link could contain several Virtual Path and a Virtual Path could

contain several Virtual Channels.

28. PVC: A Permanent Virtual Circuit (PVC) is also a Logical Link. It is a

permanent connection de�ned between two ATM switches or end user ma-

chines. A PVC is de�ned by the operator in order to facilitate connection

establishment.

2.7 Summary and innovative concepts

In this chapter an Object-Oriented data model for Integrated Network Man-

agement is presented. The bene�ts of using the object oriented framework as a

modeling paradigm were presented as the �rst step. The di�erent aspects of net-

work management were discussed along with their respective functionality. The

di�erent requirements on the model were outlined. The notation used to develop

the model was described and �nally the model was presented and discussed.

The model was developed along OSI speci�ed guidelines. The object classes

can be mapped to the GDMO (Guidelines for De�nition of Managed Objects)

class templates with little e�ort. The class hierarchy structure isn't too deep,

which is an important feature. It is a uni�ed model that covers all aspects of

Network Management. In many of the networks that exist today the di�erent

42

management tasks are handled by di�erent applications that are based on dif-

ferent models. Fault and Con�guration management may be handled separately

and may be built on di�erent database systems altogether with di�erent models

of the network. In our model there is just one MIB on which the model is devel-

oped. It is left to the implementor to decide on whether he/she wants a central

MIB or a distributed MIB. The model developed is an object-oriented model.

However this can be implemented on either a Relational Database platform or

an Object-Oriented database platform or on a hybrid system.

The operator only interacts with the model/database. The operator issues

the commands to the database and does not have to be concerned with how

these get translated to actual actions on the network elements. The di�erences

between di�erent vendor equipment is shielded from the central management

system. Certain generic performance related quantities were identi�ed. The

di�erent \Agents" in the network or Mediation Devices in a TMN framework

map the di�erent counters and gauges to the generic performance quantities and

report the mapped values.

The model has support for Graphical Objects. It is very important that the

Graphical User Interface and the MIB use the same model of the network. If this

is not the case then when an graphical application is developed on top of the MIB,

a mapping has to be done between the database model and the user interface

model each time a query is executed on the database. If multiple copies of the

same application are to operate simultaneously then the state of the di�erent

user interfaces need to be made persistent in order that consistency is maintained

between the di�erent interfaces. Graphical Objects serve both these purposes.

This part of the model was developed with an eye on the implementation.

43

The operator can de�ne his/her own views of the network and make them

persistent in the database. A view may be a particular snapshot of the network.

For example, all the links carrying connections of customer B is a view that

might interest the operator. Customer B may be a valued customer and the

operator might want to ensure that proper service is provided to all customer

B connections. Each time the operator access a view, it is �rst updated and is

then made available to the operator. This ensures that the operator always gets

the most up to date information.

Structural data which is relatively static is modeled as Con�guration objects.

Sensor data which is more dynamic is modeled as Statistics objects. There is

an association between the Con�guration and Statistics objects. However it is

left to the implementor to implement these in the most e�cient way, so as to

maximize the availability of data to answer queries and minimize the query time.

Logs are modeled to maintain historical data.

The model provides support for embedding rules. These rules can be �red

to perform appropriate actions if certain gauge thresholds are exceeded. This

is very useful for automating network management. Rules can also be �red in

response to database events. Parameter and other control settings in the network

can also be automatically modi�ed without operator intervention.

44

RDPC_LIM

PrintAttributes
Fill

PortElecInt

location

IsLocated
HasLANGroup
PrintAttributes
Fill

Remote

PrintAttributes
Fill
GetRDPCSlotNum

RDPCSlotNum
ODLCAddr
PortCardType
RDPC_func
DataSetReady
RingInd
ClrToSend
HwType
CarrDetect
text
Tx_parms

RDPC

Port

LimSlotNum
LimMMB
LIM_func
IntModType
SoftType
PortmechInt
MaxNumSessn
OutrtSync
VirNetName
text

HDPC_LIM

GetLimMMB
PrintAttributes
Fill

ChassisNum
UPmSlotNum
ServClass
MaxOutrt_Bndwdth
HW_INSTLD
RedunGrpName
RedBusPos
days
hours
min
LAN
PrintAttributes
Fill

HDPC

Port

Hub

Network Group

network

Figure 2.15: part/whole relationship between various Nodes

45

DPCName
LimMMB
HubPortNum
RemName
RDPCSlotNum
RDPCPortNum
HODLCAddr
HubSessnNum
RODLCNum
RemSessnNum
BrdCstAddr
SessionType
Text

Session

dynamic_con

ATM_LinkTerrestrial
Link

Collapse
Expand

Logical
LinkLink

Physical

Virtual
Circuit

Virtual
Path

PVC

Out_route

In_route

Link

Fiber Coax

Link
Wireless

Figure 2.16: Specialization of the Link class

Logical Link Physical Link
is_implemented_by

contains

Figure 2.17: Relationship between Logical and Physical Link classes

46

Chapter 3

Performance Management Models

3.1 Introduction

In the competitive communications market of today it is important to ensure that

optimum use of network resources is made. To this end, it is �rst necessary to

periodically monitor the state of network resources. This information is used by

network operators to adjust parameters and resource con�gurations to improve

network performance. The functional area of Network Management which is

responsible for this, is called Performance Management.

There are three major tasks involved in Performance Management.

� Monitoring: This task involves gathering the performance or state data

from all the network elements in the network. Most network elements

monitor the amount of incoming tra�c, outgoing tra�c, tra�c lost to

errors etc. These numbers are stored as counters. The outgoing tra�c

counter is incremented each time a packet is successfully transmitted. Ex-

ample of such counters for ATM are successfullyTransmittedCells or

discardedCells.

47

� Analysis: This data gathered from the network elements needs to be an-

alyzed in order to determine if the Quality of Service (QoS) requirements

of customer connections are being met. It is also possible that adequate

service is being provided to existing connections, but the over all service

isn't satisfactory because other connections are being blocked. The over

all performance may be improved by modifying the resource con�gurations

or allocations.

� Control: Based on the analysis performed on the data from the network,

certain parameters or resources are modi�ed to improve network perfor-

mance. It is possible to have certain automated processes that perform this

task. These are the kinds of systems that are envisioned for the future.

Most systems today however, require the operator to analyze the data and

perform the necessary modi�cations.

The data collected from the various network elements is also used for long

term planning and resource allocation. It is apparent from the above discussion,

that there is a need to store both the current values as well as a history for

network performance statistics. A database called the Management Information

Base (MIB) is used to store this information. In our integrated model developed

earlier we have an integrated MIB for all aspects of Network Management. Be-

fore the data can be stored a model is required. The intent here is to provide

an e�cient model for storing performance data, so that this data can be expedi-

tiously retrieved to answer operator queries. The model being developed is for

the central MIB.

48

3.2 Model

The Integrated Network Management model developed earlier, identi�ed a statis-

tics class. Statistics are associated with Nodes as well as Links. The statistics

class is used to maintain the performance data collected for the network element.

Each node monitors parameters such as successfullyTransmittedCells,

discardedCells and stores them as counter values in a local database. The

period between successive updates typically varies between 1 second and a 10

seconds. Every update is not reported to the central MIB. The counter value

would be reported to the central MIB at 5 to 15 minute intervals during normal

operation. The central management system then has to compute from these

counters, information on throughput, utilization, error rate etc. For example, if

a Node A reports the bytesTransmitted counter value to be P1 at time t1 and

P2 at time t2, then the throughput is computed as follows:

throughput =
P2 � P1

t2 � t1

Other quantities may be computed similarly.

There are two modes of data collection:

� element reporting: In this mode the network elements periodically report

data to the central network management system.

� polling: In this mode the central management system periodically polls

the network elements for performance data. The network elements only

send noti�cations in case of faults or abnormal conditions.

49

The central management system can choose to store the raw data i.e the

counter values or can map these to more meaningful quantities like throughput,

error rate etc and store them. The counter values are meaningless to the operator

who wants to monitor performance. A typical operator query would be

� show the throughput of a certain link at a particular time.

Hence ultimately the counter values have to be mapped to other quantities. The

only issue is whether the mapping should be done at the time the operator query

is issued or at the time the data arrives. There is a trade-o� involved in this

process. If the counter values are themselves stored then no processing is required

when the data arrives, however there is processing delay before an operator query

can be answered. This delay may be signi�cant if the operator wishes to see

for example, the utilizations of all links lying in a particular subnetwork. If the

mapping is done prior to storing the data, then a signi�cant amount of processing

is required since there are a large number of network elements in the network.

Most of this processing may not be necessary since the operator may query only

a small fraction of all the values stored. However the operator query is processed

much faster in this case. We can tolerate some extra processing before storage,

and since our priority is answering the operator query in real time, we choose

the latter approach in our model. In our model utilization, delay and error rate

are stored as statistics for each network element.

Note: Network Elements from separate vendors and those supporting di�erent

protocols have di�erent counters to maintain statistics. Some might store the

number of packets transmitted while others may store the number of bytes trans-

mitted. The packets may be �xed sized like in ATM or may vary in size. Hence

the mapping of the counters to generic performance quantities will be di�erent

50

for di�erent network elements. Protocols like SNMP have only the capability

of reporting the counter values, but with the more complex TMN framework, it

may be possible to have the network elements themselves report throughput or

error rate. This will shield the di�erences between the di�erent network elements

from the central Network Management System.

There are two kinds of user queries:

� Queries on single objects: These queries need to process data only from a

single object. Typical queries are:

1. utilization of a Link A at time ti

2. average throughput and error rate for Link B in the time interval tj

to tk

3. bu�er capacity of Node L at time ti

� Queries across objects: These queries are more complex and involve at-

tributes of several objects. A typical query would be:

1. error rates on all Links lying in SubNetwork K and connected to Nodes

with loads > 80%

Both the above kind of queries can refer to either a

� snapshot: or view of the network at a speci�c time instant

� time interval: some statistic of a performance quantity over a time interval.

For snapshot queries the value for the time instant requested may not be avail-

able. Interpolation may be used to obtain the required value or the value at the

closest time instant to the one requested, may be reported. For all user queries

we would like to satisfy the following conditions:

51

� Coherency: Values reported as a result of any query should have been

recorded at approximately the same time instant. For example, if the user

requests the utilization of all links connected to Node A at time t1, it

wouldn't be meaningful if we reported the utilization for Link 1 at t1-50

and Link 2 at t1. Some interpolation would be necessary in this case.

� Recency: It is important to report values recorded as close in time as

possible to the one requested by the user.

Note: It is worth noting that there are two di�erent time instants that can be

used as time stamps. One is the time at which the value was recorded in the

network. The other is the time at which the values is actually stored in the

database. The time at which the value was actually recorded is more important

and is used as the time stamp.

The operator may wish to view the performance data recorded prior to a

fault or a network performance degradation. This might give the operator some

insight into the nature of the fault and can also be helpful in preempting future

performance bottlenecks. Performance data is also useful for long term planning

purposes and to predict the future demand for resources. However, as the data

gets older it gets less valuable. Hence from a storage standpoint it would be

useful to aggregate some of the older data and store fewer values. This could

also help improve the query performance since the data sets on which the queries

have to be executed will be smaller.

In our model, we propose to use 3 di�erent levels of precision or granularity.

Updates arrive from the network typically every 5 minutes for each network ele-

ment. This will constitute the highest level of precision or the �nest granularity.

The most recent data is stored at this precision in a high precision list. Slightly

52

\older" data is aggregated and stored in a medium precision list. Even \older"

data is aggregated further and stored in a low precision list. The concept of

\old" and \older" data is ambiguous since there is no quantitative method of

determining this. The experience of network operators and the kind of infor-

mation they require for managing network performance gives some insight into

what we may de�ne as \old" and \older". This is a method of determining how

much data needs to be stored at each level of precision.

The next question that arises is, how much data should be aggregated at each

level. One method of determining this, is by computing the correlation between

the recorded data values. All values having a correlation above a certain �xed

threshold can be aggregated into 1 value. The disadvantage of this approach is

that additional processing is required to determine the correlation. Depending

on the data we have we may conclude that 10 values can be aggregated to 1.

Alternatively, for very uniform data 20 values could be aggregated into 1 or for

non-uniform data only 5. The additional processing overhead of determining

the correlations may not be acceptable. In our model we assume that at the

highest precision, a data point is recorded at �ve minute intervals. The medium

precision list has data for every 1 hour and the low precision list has data for

every 24 hours. These numbers are parameters that the operator should be able

to specify, so we provide a mechanism to allow the operator to specify these

numbers. The default values are those that are speci�ed above.

When the high precision data is aggregated or compressed, N values recorded

at K minute intervals are taken from the high precision list. Some statistics for

these values are computed. The maximum, minimum and average are examples

of statistics used. The time stamp in the high precision list is a single number.

53

This gets converted into a time range with start and end times. The statistics

computed from these N values are inserted into the medium precision list along

with a time range and those N values are dropped from the high precision list.

Hence N values are aggregated into 1 entry. The default values for N and K

in the high precision to medium precision case are N = 12 and K = 5. A

similar procedure is carried out to aggregate values from the medium precision

list and put them in the low precision list. The maximum to average ratio does

give a measure of the variation of data. However we may choose to compute

the variance also in addition to the maximum, minimum and average, while

aggregating data.

Note: This will be implemented as three di�erent processes. Each process will

handle inserting values into 1 list. This will involve accessing values from higher

precision lists, aggregating them and storing them in the next lower precision

list.

The model proposed above is a simplistic model where N values get com-

pressed to 1. Network tra�c variation has patterns depending on the time of

day. There are certain peak hours of network usage during the working hours. A

recent study at GTE Laboratories showed that, cellular phone usage varies sig-

ni�cantly depending on the time of day and reaches its peak during the 5pm to

7pm period. Hence a more complex model to aggregate data is more appropriate.

This means that the value of N varies depending on the time of day.

We would like our system to operate in real time. However the central MIB

may be overwhelmed by the large number of updates from a large network. To

alleviate this problem, we might consider storing the current updates in memory

and doing a block of updates to the database rather than doing an update each

54

time a value is reported. This is a block of appends and not updates. A database

append should be more e�cient than an update since an append only adds new

values and does not modify existing values. In case of a system crash the values

that are lost can be recovered from the respective network elements themselves.

Another option to reduce the amount of data stored is not to record a value

in the database unless the new value di�ers from the previous value by more

than p%. Interpolation is used to answer an operator's query for time instants

that are not recorded in the database.

A summary of the issues and alternatives discussed, is shown in Table 3.1.

The data model for Con�guration management already contains a model for

Network Elements. The statistics are related to the Network Elements. Since

the statistics can be potentially very large it would not be practical to store the

performance information with the con�guration information (structural object)

which is more static. Some form of concurrency control would be required every

time the statistics are accessed and if they are stored along with the structural

objects then the structural objects will be unnecessarily locked and may not be

accessible to answer queries. The two should be stored separately but a link

(or pointer) should be maintained between the two in order to associate the

structural object with its statistics object.

We propose two di�erent models for storing the statistics:

1. In this model there is one object for each performance parameter. In our

case we have 3 di�erent paramters i.e Utilization, Error Rate and Delay.

Each object contains the data for all the network elements and is called

a \View" object. For example the Utilization Stat view object contains a

list of Individual Utilization structures as shown in �gure 3.1. The Rum-

55

Issues/Alternatives Advantages Disadvantages

Map counter values to

utilization, error rate

etc., prior to storing in

the database

Operator queries can

be answered with

smaller delay, which is

extremely important

Requires signi�cant pro-

cessing prior to storing

data and hence may not

be able to operate in

real time

Store counter values in

the database and com-

pute utilization, error

rate etc., when the op-

erator query is issued

No processing is re-

quired prior to storing

the data

There may be a sig-

ni�cant processing de-

lay when the operator

query is issued

Keep a few sensor up-

dates in memory and do

a block of appends to

the database

The system is not over-

whelmed by the large

amounts of data pour-

ing in

Memory requirement

may become very large.

Also in case of a system

crash large amounts

of data may have to

be retrieved from the

network elements

Do not store an update

in the database unless a

performance parameter

value changes by more

than p%

Fewer updates required

to the database reduc-

ing the overhead

Table 3.1: Summary of issues and alternatives

56

contains

time
value

High_precision

Individual_Utilization

obj_id
high_pr
med_pr
low_pr

id
name
performance

Utilization_Stat

Medium_precision

time_range
min
max
average

Low_precision

time_range
min
max
average

contains a list of

Figure 3.1: View object performance model

57

Network Element

id
name
type

Isnamed
HasID
Getname
GetID
Print

High precision

Utilization
error rate
delay

time

Medium precision

time_range

min
max
avg

Delay

min
max
avg

Error rate

min
max
avg

Utilization

min
max
avg

Utilization

min
max
avg

Error rate

min
max
avg

Delay

time_range

Low precision

contains

contains

contains

contains

contains
contains

performance_of

performance_of

performance_of

Figure 3.2: Integrated performance model

58

baugh notation described earlier is used to depict this. Each instance of

the Individual Utilization structure refers to one Network Element. Each

instance of the structure contains a network element identi�cation number

(or pointer) and 3 di�erent lists to maintain the data at the 3 levels of pre-

cision. The high precision list contains a list of < timestamp; value >

pairs. The medium precision and low precision lists contain a list of

< timerange;maximum;minimum; average > 4 tuples.

The motivation behind having such a structure is to be able to e�ciently

answer queries across objects. Such queries, as described earlier, need to

access data from multiple network elements. Hence if the data for all

the network elements is clustered together then the query performance

should improve. This is much like the present system where there is a

loose coupling between the performance data and the corresponding net-

work elements. The only way to associate network elements and their

corresponding performance statistics is by the Network Element id.

This structure however comes with a price. The network elements send

their updates as a block reporting all the performance data together. With

the present structure the block received from each network element has

to be parsed and we require as many updates as there are view objects,

for each network element. In our model we would require updates to 3

objects per network element. This is quite a signi�cant overhead and may

prevent the updates from being processed in real time. If we wanted to

add another statistic or view object then a separate list would have to be

created and the number of updates would increase. This object can become

potentially very large and it will slow down the query performance. To

59

alleviate this problem we could split each performance object, based on a

certain grouping for the NEs. All NEs in a subnetwork or administrative

domain can be grouped together.

2. In this model all the performance statistics associated with a network ele-

ment are stored together. The structure for this, in the Rumbaugh notation

is shown in �gure 3.2. Each network element has pointers to 3 lists cor-

responding to the 3 levels of precision. The high precision list contains a

time stamp along with all the performance data. The medium precision

and low precision lists contain a time range and the minimum, maximum

and average values of all performance data for that time range.

All the performance parameters of a network element are reported together

and since they are all being stored together, only a single list needs to be

updated each time. Hence this will be signi�cantly faster than the previous

model. If an operator issues a query across objects then several lists have

to be visited, one for each object involved in the query. This might require

many disk accesses and might perform worse than the previous model. In

cases of faults or performance bottlenecks the operator might want to see all

the performance data related to a particular network element. This model

performs better than the previous model for such queries. This model

is also well suited for distributed implementation. All the performance

data for a particular network element can be migrated to another server if

necessary.

The performance of this model can be improved by maintaining an extra

object. This object is like the view object of the �rst model and maintains

60

information on the statistics of all network elements. However instead of

storing entire statistics objects we just stores pointers to the high precision,

medium precision and low precision lists of each network element. Since

we are maintaing just pointers the overhead isn't very much.

Another improvement that can be made is to cluster the statistics objects

of those network elements that have a high probability of being queried

together. If we assume that geographical proximity plays the greatest role

in network elements being queried together, then we can use that as a basis

to cluster the statistics objects of di�erent network elements.

So to determine the relative performance of these models we need to model a

cost for executing each type of query on both the systems. We also need to know

what percentage of queries belong to each type. The task of modeling a cost

for queries across objects isn't an easy one since the cost would be a function of

how many disk accesses are required. The number of disk accesses depends on

the clustering algorithm used and also the size of the objects themselves.

3.3 Summary and innovative concepts

In this chapter we have tried to develop a performance management model, which

is integrated with the con�guration management model. This performance data

model is meant to capture sensor data that is reported from the network. Ev-

ery network element periodically reports its state along with other performance

parameters to the central management system. A record of this must be main-

tained in the central MIB and is used for post-mortem analysis of faults and for

long term resource planning.

61

Most network management systems of today monitor the state of the network

but don't use this data. One of the reasons for this, is that no model exists to

store this data. Quite often the data is stored in
at �les. Unless the performance

data is stored in the same database along with the structural data the network

operator will not be able to associate statistics with a particular network element.

As information gets older it becomes less valuable. Hence we need not store

all of it. Older data should be aggregated and only certain statistics computed

from the data are stored instead of the entire data. Examples of statistics that

can be stored are minimum, maximum, mean, etc. We propose to have 3 levels

of precision to store performance data. In other words, all of the \recently"

reported data is stored as it is. \Older" data is aggregated over a short interval

and \even older" data is aggregated over a much longer interval. This leads to

a tremendous saving in memory. A simple calculation can illustrate this fact.

Consider 5 values being reported for each network element every 5 minutes.

If each value occupies 5 bytes, and we stored all the data for one week, then

we would require about 170K bytes for each network element. Now consider

our model where we store all the data only for the last 3 hours. This requires

around 3K bytes. The data for the remaining hours in the day is aggregated

over 1 hour intervals. This means we store only 20 bytes of information for

each hour for the previous 21 hours, requiring a total of 420 bytes. The data

for the remaining 6 days of the week is aggregated over 12 hour intervals which

results in only 12 values or 240 bytes. Hence with our model we require a total

of 4K bytes compared to 170K bytes if all the data is stored. For a network

with 1000 network elements this results in a saving of about 165M bytes, for

statistics collected over a week. Not only is there a saving in memory, the query

62

performance also improves since fewer blocks of data have to be transferred

between main memory and the disk.

This is one of the �rst e�orts made in developing an integrated performance

data model. We propose two di�erent models for storing the data. Di�erent

models may be better for di�erent types of queries. One model creates an object

for each parameter monitored and contains the data for all the network elements.

On the other hand, the other model has all the parameters for each network

element in an object and there is a tight coupling between this object and the

network element. Both models have the 3 levels of granularity. Certain more

complex models such as varying the amount of aggregation based on patterns in

the data have also been discussed.

63

Chapter 4

Database Integration Methodology and

Implementation

4.1 Introduction

Database systems have been in operation since the 1960's. A database is a repos-

itory of data which is managed by a Database Management System (DBMS).

The data in a database is logically organized according to a data model. The ear-

liest databases were developed using the Hierarchical and Network data models.

Further progress in database technology led to the development of the Relational

model, which is used by a large number of databases today e.g Ingres, Oracle,

Sybase, Informix. Developments in database technology in the last decade have

led to the Object-oriented data model and Object Oriented Database Manage-

ment Systems (OODBMS).

It is clear from the above discussion that there exist many database systems

with diverse data models. Even the databases based on the same model are

implemented quite di�erently and may have slight di�erences in their query

languages.

64

Most applications developed so far operate over a single DBMS, and all the

database systems from the various vendors were developed with such applications

in mind. With advances in networking technology there is an increasing interest

in distributed database systems. In a distributed database the management

system is distributed and the data is split over many physical locations but the

entire system is still supplied by the same vendor and there is no heterogeneity.

Till recently there was no need to address the issue of interoperability between

heterogeneous database systems since all systems operated in isolation. It is

necessary today to interconnect some applications that have been built over

di�erent database systems. Current and future needs dictate that it should

be possible to develop complex applications that access data transparently and

e�ciently from di�erent diverse databases. The naive solution to this problem is

to convert and transfer data from one database to another. It is easy to see that

this solution is not scalable since a \bridge" must be built between every pair of

existing systems and adding a new system would require a bridge between the

new system and every existing system.

This problem is very relevant to Network Management as well. Consider the

example of one company that has developed a Con�guration Management Sys-

tem for its network using an Object oriented database system. A Fault Manage-

ment system was developed independently on another platform. The company

would now like to integrate these systems into an Integrated Network Manage-

ment System. This would require interoperability between the two applications

and consequently the two databases. It is evident that the problem of interop-

erability has to be addressed since it isn't practical to transfer the tremendous

amount of network management data from one database to another.

65

No generalized model exists to achieve the interoperability between hetero-

geneous databases. Bene�ts of integration:

� It will permit data sharing in a transparent manner.

� It will facilitate integration of existing applications without the need for

data replication.

� It will shield heterogeneity and promote Systems Integration in general.

4.2 Architecture

This section describes an architecture for database integration. The architecture

is as shown in �gure 4.1

Any application should be able to access data from multiple databases in

a transparent manner. The databases themselves could be present on diverse

hardware platforms with di�erent operating systems and supporting di�erent

data models. Transparency has several facets:

� The application should be able to access data without knowledge of the

physical locations of the data.

� The data should be uniquely identi�able across various systems, by using

a common nomenclature.

� The access should be platform, operating system and data model indepen-

dent and the details of these should be shielded from the application.

The architecture is based on the client-server paradigm. This is the same

paradigm on which the multi-user single database systems are based. The client

66

Local
Database

Database

Server

DBMS

Database

Server

DBMS

Database

Server

DBMS

Client

Application

Local
DBMS

Figure 4.1: Database Integration Architecture

67

in the multi-database architecture is much more powerful and is capable of in-

teracting with multiple databases. The client consists of three modules as shown

in �gure 4.2.

� Query Parser module: This module receives the queries and commands

issued by the application. The command is parsed and the location of

the operands is determined. The operands could be local or remote. The

appropriate command is then sent to the command module.

� Command module: This module receives the command to be executed

along with the location of execution. It is then responsible for sending the

commands to the appropriate servers and receiving the results from them.

� Result module: Any results returned on execution of the command are sent

to this module by the Command module. This module converts the results

to the required format and passes them to the requesting application.

Note: Any reference to a client or server refers to our client or server and does

not refer to any part of the DBMS.

4.3 Approach

Before addressing the more general issue of integration across heterogeneous

hardware platforms and operating systems we have tried to develop a testbed

for integrating Relational database systems on a UNIX platform, based on ar-

chitectures proposed in [8, 10]. The same approach can be extended to solve the

more general problem. External Data Representation (XDR) can be used for a

common data representation format.

68

Query parser module Result module

Command module

Client

Application

Server

Figure 4.2: Client modules

69

As part of earlier work, ADMS a relational database system was integrated

with Ingres and Oracle [17]. This is being extended to integrate ADMS with

Illustra. Illustra is an Object-Relational database system with an enhanced SQL

(Structured Query Language) query language. To start with only the relational

capabilities of Illustra and being integrated.

ADMS is the client system which connects to the other servers. The same

client can interact with all the servers. The ADMS client already exists so only

a server module needs to be developed on the Illustra side.

4.3.1 Features

1. The client maintains a list of all Shared Base Relations (SBR) along with

their locations as part of the shared database catalog. An SBR is essentially

a relational table. However some additional information is maintained for

each SBR, since it has to be shared between the client and the servers.

2. Each transaction is logged in a log �le along with a time stamp. This

information is useful in case of a crash so that the appropriate rollback can

be performed.

3. The server maintains a time stamp value for each tuple in every SBR.

4. Every server maintains some information tables in addition to the appli-

cation tables.

� SBRS: This table maintains information regarding the SBRs at the

server. Each row corresponds to one SBR. The name of the SBR, the

last time of modi�cation and the current number of views of this SBR

are the �elds of each row.

70

� INS SBRS: This table maintains information on all the SBRs created

at the server. The name of the SBR and the time of creation is the

information maintained.

� DEL SBRS: This table stores information on the SBRs deleted from

the server. The name of the SBR and the time of deletion are main-

tained.

� BINDS: This table stores bindings for selections and joins. A binding

is a view of one table or a combination of tables. A client typically

may store one or more views of a table in its local database.

5. Whenever a remote SBR is queried by the application, the client creates

a view of the SBR based on the query and stores the view in its local

database. If the view already exists then it is updated, and the query

processed. Each subsequent time the application sends the same query,

the view created by the query is updated from the server and the query

processed. A binding is created for the query at the server. The view for

the binding is updated by the servers by sending the tuples that have been

added to the SBR since the last update.

6. There are two ways in which queries can be processed.

� The entire table can be down loaded from the server and the client

could process the query locally.

� The client can send the query over to the server which processes the

query and returns the results.

We use the latter approach. By using this approach the processing gets

71

distributed to the servers instead of the being done only at the client. Down

loading entire tables over the network can be an expensive operation, since

tables can be very large. Quite often the queries relates to a small fraction

of tuples in the entire table.

The client caches the results of the query from the server in a view. Hence

for subsequent queries, the server only needs to process the query on the

tuples that have been added since the last query. The server also informs

the client of any tuples that may have been deleted since the last query.

7. Even though all the servers have SQL as the query language, the exact

syntax may vary. For example, the SQL copy command that copies a �le

into a table, requires a format speci�cation in Ingres but does not require

the format speci�cation in Illustra. When the more generalized problem

of integration is addressed the query language also may not be the same

for the di�erent servers. Hence the actual command itself isn't sent from

the client to the server. Instead the client sends a code which the server

interprets to be a certain operation. The appropriate arguments are sent

depending on the operation. For example for the select operation the

selection condition needs to be sent. This ensures that the details of the

server query language are shielded from the client. Hence the addition of

another server does not require any changes on the client side.

4.4 Implementation

The server and client are started as two separate processes. The server is created

on the machine on which the DBMS it represents, is present. The client can be

72

present on any machine. As only the server was implemented as part of this work

only the server modules are discussed in detail. The various server modules are

described below.

4.4.1 server

This is the main server module. The user is prompted for a login name. Once the

login name is veri�ed the server is started. The name of the database is passed

as an argument to this module. A catalog �le is read to verify that the database

the user wants to access is indeed a \shared" database i.e it contains Shared

Base Relations (SBR). If the database isn't a shared database the program exits

with an error message.

The next step is to complete all initialization necessary to accept a TCP/IP

socket request from the client. Each server has a speci�c TCP port associated

with it. The client knows the TCP port for each server. A TCP stream socket

is set up using the 'socket' system call. The local address is bound to a speci�c

value using the 'bind' system call. If the address is successfully bound, the

server issues the 'listen' system call to wait for client connections. Any request

coming in on the socket is accepted using the 'accept' system call. The server

is a concurrent server i.e it can accept new connections while there are existing

connections with other clients. Hence as soon as a client connection is accepted

the server spawns another process. The new process handles the new client

connection while the existing process waits for other connections.

Certain ADMS speci�c initializations are necessary for all servers. Once the

initializations are completed a connection is set up with the Illustra DBMS for

the database speci�ed by the user using a call to the Illustra function 'mi open'.

73

This call returns a pointer to an Illustra connection, which must be passed as

an argument to any command issued to Illustra. The server is now ready to

process any client commands. As mentioned earlier the client sends a code to

refer to a particular command. In this implementation the code is simply a 'C'

enumerated data type. The di�erent codes available are:

� IS CRE SBR NUM: This command creates a new Shared Base Relation

(SBR) by calling the 'is creSBR' module.

� IS DRO SBR NUM: This command deletes an existing SBR by calling the

'is droSBR' module.

� IS INS SBR NUM: This command inserts tuples into an existing SBR by

calling the 'is insSBR' module.

� IS DEL SBR NUM: This command deletes tuples satisfying a particular

condition, from an existing SBR by calling the 'is delSBR' module.

� IS ALT SBR NUM: This command is used to alter tuples in an SBR by

calling the 'is altSBR' module.

� IS CRE SEL NUM: This command selects tuples satisfying a given condi-

tion from an SBR, by calling the 'is creSEL' module.

� IS UPD SEL NUM: Whenever the client selects tuples from an SBR, it

creates a view in its local database corresponding to that selection. This

command updates that client view of the SBR by sending only those tuples

that have been added since the last update by calling the 'is updSEL'

module.

74

� IS DRO SEL NUM: This command drops a selection binding from the

BINDS table by calling the 'is droSEL' module.

� IS CRE JOI NUM: This command computes a join between two SBRs by

calling the 'is creJOI' module.

� IS UPD JOI NUM: This command updates the client view (join binding)

by calling the 'is updJOI' module.

� IS DRO JOI NUM: This command drops a join binding from the server

BINDS table by calling the 'is droJOI' module.

� IS UPD CAT NUM: This command updates the client catalog by calling

the 'is updCAT' module.

� IS CRE IND NUM: This command creates an index on an SBR by calling

the 'is creIND' module.

� IS RMV IND NUM: This command deletes an index created on an SBR

by calling the 'is rmvIND' module.

� IS CRE SSJOI NUM: This command is used to create a join between ta-

bles on two di�erent servers. This is handled by the 'is creSSJOI' module.

� IS UPD SSJOI NUM: This command updates the server-server join bind-

ing by calling the 'is updSSJOI' module.

� IS DRO SSJOI NUM: This command drops the server-server join binding

from the BINDS table by calling the 'is droSSJOI' module.

� IS CRE SCJOI NUM: This command is used to create a join between a

client table and a server table. This is handled by the 'is creSSJOI' module.

75

� IS UPD SCJOI NUM: This command updates the server-server join bind-

ing by calling the 'is updSCJOI' module.

� IS DRO SCJOI NUM: This command drops the server-server join binding

from the BINDS table by calling the 'is droSCJOI' module.

4.4.2 is modules

Each client command is handled by a module whose name starts with 'is '.

These modules are responsible for reading all the parameters necessary for the

command, from the socket. Each 'is ' module then calls another module to

handle all the interaction with the database. Hence the 'is ' modules have no

database speci�c code and can be used for all the servers. These modules were

developed earlier for the Ingres and Oracle servers and the same ones are used

for the Illustra server as well. The name of the module called by an 'is ' module

is constructed as follows: the su�x remains the same and 'is ' is replaced by

'rs '. For example is creSBR calls rs creSBR, is creSEL calls rs creSEL.

Examples of parameters read in from the socket are:

� SBR name

� Transaction number

� Client host name

� Select condition for the 'select' command

� Join condition for the 'join' command

Note In each 'rs ' module a transaction number is one of the arguments. This is

used to log all the operations performed in the module in a log �le.

76

4.4.3 sql command

This module is the dynamic SQL command handler. This module takes an SQL

command, an Illustra connection, a �eld delimiter and a socket as arguments.

This module handles the task of executing an SQL command and sending the

results of the command back to the client on the socket.

DBMSs like Ingres provide the 'EXEC SQL' statement which can be used

to issue SQL commands from a 'C' program and get the results directly into

program variables. Since Illustra is an Object-Relational system and supports

richer data types it isn't easy to provide such a mechanism. The only way

to execute an SQL command from a 'C' program is to use the Illustra library

function 'mi exec', which takes an Illustra connection and an SQL command as

arguments and sends the command to the server to be executed. However it

does not return the results of the command.

To get the results, the Illustra function 'mi get results' needs to be called.

If row values are available from the database then another module called 'out-

put tuples' is called to read the results and write them to the socket so that they

can be read by the client. The 'output tuples' module calls the Illustra func-

tion 'mi get row desc without row' to get a description of what is contained in

a row. The return value of the above function is used to determine the number

of columns present in a row. A row pointer is obtained by calling the Illustra

function 'mi next row'. This function is called repeatedly until there are no more

rows to fetch. To get the actual values of the columns of any row the function

'mi value' is called. The columns are fetched in a loop. Illustra only returns

values as character strings. It is left to the user to convert these strings to actual

data types. The tuples are written to a bu�er with each column value being

77

delimited by the �eld delimiter. This bu�er is then written to the socket.

It is necessary to issue certain local SQL commands as well. The results of

these commands are required for local processing and don't have to be sent to

the client. The same procedure described above is used to process local SQL

statements. However instead of writing tuples out on a socket the results are

returned in a result bu�er. For our application the local SQL statements request

only one or two values from a row in a table hence the above mechanism will

su�ce. Rows of tuples for which a cursor is required are never requested. It may

be necessary at a later stage to improve on this mechanism.

4.4.4 rs creSBR

A transaction number, the client host name, the SBR name and a socket de-

scriptor are passed as arguments to this module. This module is responsible

for creating a new SBR in the Illustra database. The following operations are

performed in this module.

� An SBR is a shared table. Every table must have a schema according to

which it is created. A schema is just a list of �elds with their corresponding

data types. The client sends the schema �le over the socket.

� The function 'tcp read �le' is called to read the �le from the socket and

store it in the database directory under the same name as the SBR.

� The list of �eld names with their types must be read in from the schema

�le so that the SBR can be created. The function 'readsch for illustra' is

called to read the schema �le. This function returns in a bu�er the �eld

78

names followed by their data type in a format that can be understood by

Illustra.

� Another �eld, the time stamp, an integer, is prepended to the schema and

an insertions table is created in accordance with the schema. Correspond-

ing to every SBR there are two tables created. One is the insertions table

and the other is the deletions table. The insertions table name is obtained

by prepending 'ins ' to the SBR name and it contains all the tuples cur-

rently in the SBR.

� The deletions table name is obtained by prepending 'del ' to the SBR name

and it contains information on the tuples dropped from the SBR. It has

two �elds. One is a time stamp and the other is the condition based on

which tuples were dropped from the SBR. This table is also created.

� A tuple is added in the SBRS table corresponding to this SBR. Recall

that the SBRS is a table containing information on all the Shared Base

Relations existing at the server.

� A tuple is added in the INS SBRS table also. Recall that the INS SBRS is

a table containing information on all Shared Base Relation created at the

server.

4.4.5 rs insSBR

This module is responsible for inserting tuples into an SBR. This takes as argu-

ments the SBR name, a transaction number, the client host name and a socket

descriptor. The following operations are performed in this module.

79

� The SBRS table is queried to determine if an Shared Base Relation exists

on the server with the above speci�ed name. If no such table exists an

error message is printed.

� The last time stamp value for this table is retrieved from the SBRS table.

� The tuples that are to be inserted into the Shared Base Relation must be

sent by the client. The client sends the tuple �le over the socket. This

tuple �le has to be read in. Illustra SQL has a 'copy' command that can

directly load the contents of a �le into a table. However this requires that

the �le have each tuple on a separate line and each �eld of a tuple must be

separated by a TAB character. This is not the format in which the client

sends the �le. Hence the �le must be read in from the socket and stored

in a bu�er. While in the bu�er the necessary changes in format must be

made and then this bu�er should be written to a �le. All this functionality

is provided by a function called 'tcp server read and convert �le'. This

function reads the tuple �le from the socket and stores it in a UNIX �le in

the proper format.

� The SQL 'copy' command is then issued to copy this tuple �le into a table.

� The last time stamp value for this Shared Base Relation is then modi�ed

in the SBRS table.

4.4.6 rs droSBR

This module is responsible for dropping an SBR from the database. It takes as

arguments an SBR name, a transaction number, and a client host name. The

following operations are performed in this module.

80

� It is �rst ensured that the insertions table and the deletions table corre-

sponding to the SBR are indeed present in the database. If either of those

tables is absent an error message is printed and the module terminates.

� The SBRS table is queried to determine if a tuple corresponding to the

Shared Base Relation exists.

� If the number of views derived from this table are non zero then this table

cannot be dropped.

� If there are no views derived from this table the tuple corresponding to

this SBR is dropped from the SBRS table and the INS SBRS table.

� The insertions and deletions tables of the SBR are dropped from the

database.

� A tuple containing the SBR name and time stamp is inserted into the

DEL SBRS table for this Shared Base Relation.

4.4.7 rs delSBR

This module is responsible for deleting tuples from an SBR given a certain

deletion condition. It takes as arguments an SBR name, a transaction number

and a deletion condition. The following operations are performed in this module.

� The SBRS table is queried to ensure that an SBR with the given name

exists in the database. If no SBR exists an error message is printed and

the module returns.

� The last time stamp value for the SBR is retrieved from the SBRS table.

81

� The tuples corresponding to the deletion condition are inserted into the

deletions table of the SBR.

� The tuples corresponding to the deletion condition are deleted from the

insertions table of the Shared Base Relation.

� The last time stamp value for the Shared Base Relation is updated in the

SBRS table.

4.4.8 rs creSEL

This module executes the select operation on a given SBR. It also creates a

selection binding for the given selection condition. A selection binding is a view

of the SBR. This module takes as arguments the operand SBR, the transaction

number, the client host name, the selection condition and the socket descriptor.

The following operations are performed in this module.

� The SBRS table is queried to ensure that the operand SBR exists in the

database.

� The last time stamp value for the SBR is determined from the SBRS table.

� The tuple in the SBRS table corresponding to this SBR is updated by

incrementing the number of derivations �eld. A derivation is a view of the

SBR.

� The BINDS table stores all the currently active bindings (views) for all the

Shared Base Relations. This table is queried to determine if any binding

already exists corresponding to the given selection condition.

82

� If a binding exists then the BINDS table is update to increment the usage

of the binding by one.

� If no binding already exists then a new binding is created for the selection

condition.

� The binding name and time stamp value are returned to the client by

writing them to the socket.

� The Illustra SQL 'select' command is created from the selection condition.

� This SQL command is executed by invoking the 'sql command' module

which executes the SQL command and returns the results to the client.

4.4.9 rs updSEL

For every selection binding the client creates a table in its local database that

serves as a view on an SBR. Every time that view is queried or used at the client

it must be updated �rst since more tuples may have been added to the SBR since

the last update. This module is responsible for updating the selection binding. It

takes as arguments an SBR name, a selection condition, a transaction number,

a binding name, the previous time stamp value and a socket descriptor. The

following operations are performed in this module.

� The SBRS table is queried to verify that the Shared Base Relation exists

in the database.

� The last time stamp value is retrieved from the SBRS table for the given

Shared Base Relation. This time stamp represents the last time, tuples

were added to the Shared Base Relation and is called the new time stamp.

83

� If the old time stamp value is equal to the new time stamp value then it

implies that the client view of the SBR is up to date, hence nothing further

needs to be done.

� If the new time stamp is greater than the old time stamp value, then the

new time stamp is returned to the client for future reference.

� Some tuples may have been deleted from the SBR since the last update. An

SQL command is executed by invoking the 'sql command' module. This

command returns to the client from the deletions table of the SBR, the

tuples that were deleted since the last update.

� An SQL 'select' command is invoked on the insertions table of the SBR

to select those tuples that satisfy the selection condition and have a time

stamp value greater than the time stamp of the client. These tuples are

returned to the client by the 'sql command' module. Hence only the new

tuples satisfying the selection condition are returned to the client.

4.4.10 rs droSEL

This module is responsible for dropping a selection binding. It takes as argu-

ments an SBR name, a transaction number, a client host name and a binding

name. The following operations are performed in this module.

� The BINDS table is queried to ensure that a binding of the given name

exists.

� If the usage of the binding is 1, then it implies that only one view exists

and hence this binding can be dropped from the BINDS table.

84

� The SBRS table is updated to decrement the number of derivations (views)

corresponding to the given Shared Base Relation.

� If the usage of the binding is greater than 1 then the BINDS table is

updated to decrement the usage of the binding.

4.4.11 rs creJOI

This module is responsible for executing a 'join' on two SBRs and creating a

binding corresponding to the join. The client stores the results of the join in a

table in its local database. This serves as a view on the two SBRs. This module

takes as arguments two SBR names, a transaction number, a join condition and

a socket descriptor as arguments. The following operations are performed in this

module.

� The SBRS table is queried to ensure that both the Shared Base Relations

exist at the server. If they don't an error message is printed and the module

returns.

� The last time stamp values for both the SBRs are determined from the

SBRS table.

� The SBRS table is updated to increment the number of derivations for

both the Shared Base Relations.

� The BINDS table is queried to determine if any binding already exists

corresponding to the given join condition.

� If a binding already exists then the BINDS table is updated by increment-

ing the usage of the binding.

85

� If no binding exists then a new binding is created for the join condition in

the BINDS table.

� The binding name and the last time stamp values of the two SBRs are

returned to the client for future reference.

� The Illustra SQL 'join' command is composed from the join condition.

� The 'sql command' module is invoked to execute the command and return

the results of the join to the client.

4.4.12 rs updJOI

As mentioned above, the client stores the results of a join in a table in its local

database. Whenever this table is used or queried, it must �rst be updated by

the server. This module is responsible for updating the client view of the join. It

takes as arguments two SBR names, the old time stamp values for the SBRs, a

join binding name, a join condition, a transaction number and a socket descriptor

as arguments. The following operations are performed in this module.

� The SBRS table is queried to determine if the two Shared Base Relations

speci�ed exist at the server. If they don't exist then an error message is

printed and the module returns.

� The last time stamp values are retrieved for the two Shared Base Relations

from the SBRS table. These time stamps represent the last time these

SBRs were modi�ed. These now represent the new time stamps.

� If both the new time stamp values are equal to the corresponding old time

stamp values then the client view is up to date and no further processing

86

is needed.

� If however any one of the new time stamp values is greater than the corre-

sponding old time stamp values then some processing is needed to update

the client view.

� The new time stamp values are returned to the client for future reference.

� Some tuples may have been dropped from the SBRs since the last client

update. The tuples that have been dropped from each SBR are returned

to the client by executing an SQL 'select' on the deletions tables of the

SBRs.

� We needn't recompute the entire join. We only need to update the client

view. So for this some temporary tables are required. If the new time

stamp of SBR1 is greater than its old time stamp then a temporary table

is created by selecting only the new tuples from SBR1. The same procedure

is carried out for SBR2 as well. If any one of the new time stamps is equal

to the old time stamps, then only one temporary table is required.

� A join is computed between the temporary SBR1 table and the entire

SBR2 table. These results are returned to the client. However this isn't

the complete updated join.

� A join is computed between the temporary SBR2 table and the tuples in

the SBR1 table, that have a time stamp less than or equal to the old time

stamp for SBR1. This is done to avoid duplicating tuples. The results of

this join are returned to the client.

� The temporary tables are then dropped.

87

4.4.13 rs droJOI

This module is responsible for dropping a join binding. It takes as arguments

the two SBR names, a transaction number, a client host name and a binding

name. The following operations are performed in this module.

� The BINDS table is queried to ensure that a binding of the given name

exists.

� If the usage of the binding is 1, then it implies that only one view exists

and hence this binding can be dropped from the BINDS table.

� The SBRS table is updated to decrement the number of derivations (views)

for both the operand Shared Base Relations.

� If the usage of the binding is greater than 1 then the BINDS table is

updated to decrement the usage of the binding.

4.4.14 rs creIND

This module creates an index on an SBR on a speci�c attribute. It takes as

arguments an SBR name, an attribute name and a transaction number. The

following operations are performed in this module.

� The SBRS table is queried to ensure that an SBR with the given name is

indeed present in the database.

� The index name is not returned to the client. Hence the only way the

client can refer to an index on an SBR is by specifying the SBR name and

the attribute name. The index name is constructed as follows: All index

88

names start with 'i '. This is concatenated with the SBR name followed

by an ' ' followed by the attribute name. As an example consider an SBR

called person which has an attribute called person name. The name of

the index on this attribute would be 'i person person name'.

� The 'create index' SQL command is constructed and executed.

4.4.15 rs rmvIND

This module removes an index on an SBR on a speci�c attribute. This module

takes as arguments an SBR name, an attribute name and a transaction number.

The following operations are performed in this module.

� The SBRS table is queried to ensure that an SBR with the given name is

indeed present in the database.

� The index is constructed from the SBR name and the attribute name as

explained above.

� The 'drop index' SQL command is constructed and executed.

4.4.16 rs updCAT

This module updates the client catalog. It is invoked each time the client starts

a new session with this server. It takes as arguments a transaction number,

the old time stamp value read in from the client and a socket descriptor. The

following operations are performed in this module.

� The server has the new time stamp value, which is compared with the old

time stamp. If they are equal then the client catalog is up to date and

89

nothing further needs to be done.

� If the new time stamp is greater than the old time stamp then the names

of Shared Base Relations that have been added and deleted since the last

update must be sent to the client.

� The 'sql command' module is invoked to send to the client the names of

Shared Base Relations that have been deleted since the last client update.

This information is retrieved from the DEL SBRS table.

� The names of Shared Base Relations added since the last update are also

sent to the client. This information is retrieved from the INS SBRS table.

The schema �les for the new SBRS are also sent to the client.

4.4.17 rs creSCJOI

This module is responsible for computing a join between a client table and a

server SBR. It takes as arguments an SBR name (SBR1), a client SBR name

(SBR2), a join condition, a transaction number and a socket descriptor as argu-

ments. The following operations are performed in this module.

� The SBRS table is queried to ensure that SBR1 is indeed present at the

server. If it isn't present an error message is printed and the module

returns.

� The last time stamp value for SBR1 is determined from the SBRS table.

� The SBRS table is updated by incrementing the number of derivations for

SBR1.

90

� The BINDS table is queried to determine if any join binding exists for the

given join condition on the two SBRs. If a join binding exists then the

usage of the binding is incremented by one.

� If no binding exists then a new server-client join binding is created for the

join condition and the two SBRs.

� The new time stamp value for SBR1 and the scjoin binding name is re-

turned to the client.

� To create a join with a client table the client table must be present on the

server. Hence a temporary table has to be created on the server.

� The schema �le for the client table is sent by the client and is read from

the socket.

� The projection of the client table on the join attributes is also read from

the socket and converted into a format that Illustra requires.

� The schema for the client table is read in from the schema �le and the

client table is created.

� The Illustra SQL 'copy' command is executed to copy the tuples from a

�le into the client table.

� The SQL 'join' command is constructed from the join condition. This

command is executed and the results are returned to the client.

� The temporary client table is dropped from the server database.

91

4.4.18 rs updSCJOI

The client view of a server-client join must be updated each time, before it can

be used. This module is responsible for this task. It takes as arguments a server

SBR name (SBR1), a client SBR name (SBR2) their respective old time stamps,

a binding name, a transaction number, a join condition and a socket descriptor.

The following operations are performed in this module.

� The SBRS table is queried to ensure that SBR1 is present in the server

database. If it isn't present an error message is printed and the module

returns.

� The SBRS table is queried to determine the new time stamp value for

SBR1.

� The client sends the new time stamp value for its client table.

� If both the new time stamp values are equal to the respective old time

stamps, then nothing further needs to be done and the module returns.

� The new time stamp of SBR1 is returned to the client.

� The updated join has to be computed at either the server or the client.

ADMS has a method of optimizing the join site based on the table sizes.

The updated server-client join is computed in two parts similar to the plain

join. One part is computed at the client and the other part is computed

at the server.

� If the new time stamp of SBR1 is greater than the old time stamp, then

the changes to the table need to be sent to the client. The deletions and

92

the insertions to the server SBR since the last time stamp, are selected

and sent to the client. If the client is the join site then it computes the

join between the new server SBR tuples and its entire client table. If the

server is the join site then the client only computes the join between the

new server SBR tuples and the old tuples in the client SBR.

� If the client table has been modi�ed since the last update then the new

tuples are read in from the client and copied into a temporary table. The

client makes the adjustment locally for tuples that may have been deleted

from its table since the last update. If the server is the join site then the

server computes the join between the new client tuples and its entire table.

If the client is the join site then the server only computes a join between

the new client tuples and the old server tuples. The server sends the results

of its join back to the client.

� These two joins ensure that all the tuples are covered and the updated join

is available. The temporary client table is then dropped.

4.4.19 rs droSCJOI

This module is responsible for dropping a server-client join binding. It takes as

arguments a server SBR name (SBR1), a client SBR name (SBR2), a binding

name and a transaction number. The following operations are performed in this

module.

� The BINDS table is queried to ensure that a binding with the speci�ed

name exists in the server database.

93

� If the usage of the binding is 1, it is dropped from the BINDS table. The

SBRS table is updated by decrementing the number of derivations for the

server SBR.

� If the usage of the binding is greater than 1, then it cannot be dropped.

The BINDS table is then updated by decrementing the usage for the given

binding.

4.4.20 rs creSSJOI

This module is responsible for computing a join between a local server SBR and

a remote server SBR. It takes as arguments a local SBR name (SBR1), a remote

SBR name (SBR2), a join condition, a transaction number, the join site and a

socket descriptor as arguments. The following operations are performed in this

module.

� The SBRS table is queried to ensure that SBR1 is indeed present at the

server. If it isn't present an error message is printed and the module

returns.

� The last time stamp value for SBR1 is determined from the SBRS table.

� The SBRS table is updated by incrementing the number of derivations for

SBR1.

� The BINDS table is queried to determine if any join binding exists for the

given join condition on the two SBRs. If a join binding exists then the

usage of the binding is incremented by one.

94

� If no binding exists then a new server-server join binding has to be created

for the join condition. If the join site is local, then a new binding is created

in the BINDS table and the name is returned to the remote server. If the

join site is remote, then the new binding name is read in from the socket

and a new entry in created in the BINDS table.

� The new time stamp value for SBR1 is returned to the other server.

� To create a join with a remote server table, the server SBR must be present

on the server. Hence a temporary table has to be created on the server.

� The projection of the local SBR on the join attribute is computed and the

results are sent to the client.

� The schema �le for the remote server table is sent by the other server and

is read from the socket. The schema �le is actually sent from the other

server to the client which forwards it.

� The projection of the remote server table on the join attributes is also read

from the socket and converted into a format that Illustra requires.

� The projection schema for the remote server table is read in from the

schema �le and the temporary table is created.

� The Illustra SQL 'copy' command is executed to copy the tuples from a

�le into the temporary table.

� The SQL 'join' command is constructed from the join condition. This

command is executed and the results are returned to the client.

� The temporary table is dropped from the server database.

95

4.4.21 rs updSSJOI

The client view of a server-server join must be updated each time, before it can

be used. This module is responsible for this task. It takes as arguments a server

SBR name (SBR1), a remote server SBR name (SBR2) their respective old time

stamps, a binding name, a transaction number, a join condition and a socket

descriptor. The following operations are performed in this module.

� The SBRS table is queried to ensure that SBR1 is present in the server

database. If it isn't present an error message is printed and the module

returns.

� The SBRS table is queried to determine the new time stamp value for

SBR1.

� The client sends the new time stamp value for the remote SBR.

� If both the new time stamp values are equal to the respective old time

stamps, then nothing further needs to be done and the module returns.

� The new time stamp of SBR1 is returned to the client, which then forwards

it to the other server.

� The updated join has to be computed at either the local server or the

remote server. ADMS has a method of optimizing the join site based on

the table sizes. The updated server-server join is computed in two parts

similar to the plain join. One part is computed at each server.

� If the new time stamp of SBR1 is greater than the old time stamp then

the changes to the table need to be sent to the client which then forwards

96

them to the other server. The deletions and insertions to the local SBR

since the last time stamp, are selected and sent to the client.

� If the other server table has been modi�ed since the last update, then the

changes to the table are read in from the client and copied into a temporary

table.

� Depending on the join site, one server computes the join between the re-

mote server's new tuples and its entire table, and the other server computes

a join between the new remote tuples and its old tuples.

� The results of both joins are forwarded to the client. These two joins

ensure that all the tuples are covered and the updated join is available.

Temporary tables are dropped from both servers.

4.4.22 rs droSSJOI

This module is responsible for dropping a server-server join binding. It takes

as arguments a local server SBR name (SBR1), a remote server SBR name

(SBR2), a binding name and a transaction number. The following operations

are performed in this module.

� The BINDS table is queried to ensure that a binding with the speci�ed

name exists in the server database.

� If the usage of the binding is 1, it is dropped from the BINDS table. The

SBRS table is updated by decrementing the number of derivations for the

local server SBR.

97

� If the usage of the binding is greater than 1, then it cannot be dropped.

The BINDS table is then updated by decrementing the usage for the given

binding.

4.5 Summary and innovative concepts

In this chapter an architecture and model for integrating heterogeneous databases

was presented. This methodology has been implemented and the implementa-

tion details and features were discussed. There is a growing need for integration

of heterogeneous database both for network management and other applications.

Applications can now transparently access data from multiple database systems.

The architecture is not a plain client-server architecture. The clients are

more powerful and handle some of the processing overhead. Since memory is

relatively cheap the memory at the client side is enhanced. The clients have

a local DBMS. The client caches some of the data it receives from the servers.

Client caching is a very useful concept and signi�cantly improves performance.

Relational database tables are potentially extremely large. It is very ine�cient to

download large tables of data each time an application at the client side requests

some data. Instead the �rst time the data is requested it is stored as a table

in the client's local database. Each time that table needs to be accessed the

client �rst updates its view of the table from the server and then it is available

for query processing. By the use of time stamps for all tuples in each table

the server only sends the new tuples added to the table instead of sending the

entire table again. This signi�cantly reduces the amount of data that needs

to be transferred making query processing much faster. This is the method

98

of incremental updates. In cases where joins need to be computed between

two relational tables the processing is distributed between the client and the

server or between two servers. This parallel processing of queries also leads to

signi�cant improvement in performance. The same principles apply to clients

keeping views of server tables. As a result of using techniques such as client

caching, incremental updates and distributed query processing the performance

of this system is extremely good. As we saw in the chapter on modeling for

Network Management, views are always maintained by network operators.

Another very important feature is that a whole new query language did not

have to be developed for this. The query language used here is just an enhanced

version of SQL. It would be relatively easy to take existing SQL applications

and make them operate over this system. The architecture is very scalable. If a

new server has to added no modi�cations are necessary to the client or to any

of the other servers. The client does not transmit actual queries to the server

but in fact sends only a codeword. This ensures that even systems with slightly

di�erent versions of SQL can be integrated easily and the client need not be

concerned with the di�erences in the query languages at the servers. It should

be possible to integrate Object oriented and Object-Relational Database systems

using this architecture. However in that case the client itself should have some

object-oriented or object-relational capability.

99

Chapter 5

Con�guration Management over

Heterogeneous Databases

In the previous chapter a model for integrating heterogeneous databases and

it's implementation were described. This chapter discusses a prototype Con-

�guration Management System that was developed on the integrated database

platform.

5.1 Network Con�guration

The various functions performed by the Con�guration Management functional

module, were dealt with in detail in chapter 2. A one line description of Con�gu-

ration Management functionality is, de�ning, monitoring and controlling of net-

work resources and data. The network that is considered in this work is a Satellite

Telecommunications Network operated by Hughes Network Systems(HNS). It is

a wide area star network.

The network consists of a Satellite, a central Hub and several Remotes. There

are many geographically dispersed Remotes. A Remote is a satellite dish along

100

with some equipment. Each Remote station is what is called a Personal Earth

Station by HNS and is typically connected to some user equipment (e.g LAN).

A lot of di�erent equipment can be connected to a single Remote through the

Remote ports. Each customer can have several Remotes. All communication

between customer Remotes must go through a centrally locatedHub. All tra�c

between any two Remotes �rst goes up to the satellite and then down to the Hub

and then up to the satellite again and �nally down to the destination Remote.

Along with the hub there is a systems control center (SCC) that manages the

network. The SCC handles the entire Network Management functionality. All

satellite links into the Hub are called inroutes and the outgoing ones are called

outroutes.

The Con�guration Management system for this network handles two tasks:

� Session setup: Consider a customer connection between Remote A and

Remote B. Due to certain faults in some part of the network this connection

may have to be taken down. Once the fault is recti�ed the operator is

responsible for setting up the connection once again. Another example

is customer wanting a permanent connection established between two of

his/her Remote stations. In either case the network operator has to set up

the session and should have a good tool that would aid him in his task.

� Con�guration: Each time a new customer Remote station is installed the

operator is responsible for con�guring it and creating a new Remote object,

in the database that contains all the con�guration data. This information

is useful later on for setting up sessions and in isolating faults etc.

There is just one Hub that is shared by all the customers. The Hub is

101

hierarchically organized into the following:

� Network Groups: The Hub is usually partitioned into many disjoint Net-

work Groups. Usually customers with a large number of Remotes are

assigned a single Network Group. Each Network Group may be assigned

a database of its own. Each Network Group is partitioned into many Net-

works.

� Network: There could be up to 7 disjoint Networks in any Network Group.

A Network is a further partitioned into Data Port Clusters.

� DPC: A Data Port Cluster (DPC) is a chassis containing a collection

of hardware cards. A Network could have up to 12 DPCs. A DPC is

partitioned into many shelves. Each shelf is called a Line Interface Module.

� LIM: A Line Interface Module (LIM) is a shelf containing many slots, into

which hardware cards are inserted. Each DPC can contain up to 3 LIMs.

� Ports: A hardware card typically contains one port. Each LIM can contain

up to 8 ports. A Port is where any equipment is ultimately connected.

Hence though a piece of equipment may be logically connected to a Network

or DPC it is ultimately connected to a port.

A Remote also contains a similar hierarchy. A Remote however has no Net-

works. A Remote is partitioned into many Data Port Clusters (DPC). Each DPC

is then subdivided into Line Interface Modules (LIM) and �nally LIMs contain

Ports. Customer LANs or workstations are connected to these Remote Ports.

Typical customers are Petroleum companies. A gas station would be installed

102

with a remote to check credit card information or down load billing information.

Each message transmitted usually tends to be short.

5.2 Network Model

In order to manage the above network the con�guration information has to be

stored in a database or databases in our case. Before this can be accomplished

a model has to be developed for the network. (As part of previous work [6], a

Con�guration Management System has been developed for this network based

on an object oriented data model and using ObjectStore, an object-oriented

database, to store the data.) Since we are dealing with relational databases in

this application, we have developed an E-R model for this network. Figure 5.1

illustrates the Entity-Relationship diagram that was developed to model this

network.

The following Entities were identi�ed.

� Network: This is the Network described in the previous section. It has

the following attributes. The id is the primary key.

Attributes

id

name

� DPC: This is the Data Port Cluster entity described in the previous sec-

tion. The id is the primary key.

Attributes

103

Network

Remote

DPC

LIM

Port

Session

DPC_LIM

Hub
DPC

Remote
 DPC

LIM_Port

status
chassis number

id name

state

baud rate

utilization

location

NumPorts

MAC_Addr

LAN_Group

id name

id name

name

name

id

id

Figure 5.1: Entity-Relationship diagram for Con�guration Management

104

id

name

status

chassis number

� Remote: This is the Remote entity described earlier. The id is the primary

key.

Attributes

id

name

location

� LIM: This is the Line Interface Module entity described earlier. The id is

the primary key.

Attributes

id

name

MAC Address

NumPorts

� Port: This is the Port entity described earlier.

Attributes

105

id

name

state

baud rate

utilization

LAN Group

The following Relationships have been identi�ed between the entities.

� There is a one to many contains relationship between a Network and DPCs.

It is called HubDPC.

� There is a one to many contains relationship between a Remote and DPCs.

It is called RemoteDPC.

� There is a one to many contains relationship between a DPC and LIMs.

It is called DPC LIM.

� There is a one to many contains relationship between a LIM and Ports. It

is called LIM Ports.

� There is a one to one relationship between ports. This is called a Session.

Typically one hub port is connected to one remote port.

5.3 Graphical User Interface Design

It is very important that the operator has a good Graphical Interface that allows

him/her to interact with the database easily and at the same presents the infor-

106

mation to him in a meaningful manner. Current Network Management Systems

make the operator �ll out a large number of forms. The operator console is

cluttered with forms and it becomes di�cult for the operator to concentrate on

the task at hand. It is also di�cult for the operator to remember which forms

have been �lled and which ones have not. Our aim is to provide the operator

with a simple and easy to use interface. A checklist of tasks completed by the

operator is also provided so that the operator does not have to remember how

many tasks he still needs to complete.

From the description of the network being managed it is evident that there

is a hierarchy on both the hub side as well as the remote side. Earlier work

[12] has shown that for hierarchically organized data two visualization tools, the

Treemap and the Treebrowser are especially good.

� Treemap: The Treemap is a tool that maps hierarchical information in

2-dimensions. At the top level the screen is split vertically to show the

subdivisions of the top level. As the hierarchy is traversed the screen splits

horizontally and vertically alternately to show all the subdivisions. It has

been shown in earlier work that this tool is capable of displaying an order

of magnitude more data than traditional tools.

� Treebrowser: This is also a good visualization tool for viewing hierar-

chical data. This just draws the logical tree structure on the screen. This

cannot represent as much information as the Treemap and is a good tool

if the data set isn't extremely large. Usually a scroll bar is provided for

the user to be able to scroll through and view the entire tree, since there

are limits to what can be displayed on a screen.

107

In addition to these visualization tools another scroll bar is provided so that

the operator can execute a dynamic query on the database. The user can also

update the database through the user interface.

5.4 Implementation

Recall that the integrated database platform was developed by integrating sev-

eral Relational databases. Hence the E-R model developed is converted into

Relational tables to be stored in these Relational databases. Each entity iden-

ti�ed corresponds to one relational table, with the attributes mentioned earlier.

In addition, one table is required for each relationship. The attributes of ta-

bles corresponding to the relationships are just the primary keys of the entities

involved in the relationship. The tables created are:

� Network - id, name

� Remote - id, name, location

� DPC - id, name, status, chassis number

� LIM - id, name, MAC-Addr, NumPorts

� Port - id, name, state, baud rate, utilization, LAN Group

� HubDPC - network id, dpc id

� RemoteDPC - remote id, dpc id

� DPC LIM - dpc id, lim id

� LIM Port - lim id, port id

108

� Session - port1 id, port2 id

Figure 5.2 shows the architecture of the system. Plus-Minus (+/-) [8] is the

name of the Integrated Database Architecture developed in the previous chapter.

The client developed at the ADMS end is called ADMS Minus. Each of the

servers developed is called a Plus. For this application we only use Illustra Plus,

ADMS Plus and Ingres Plus. Illustra Plus was developed as part of this work.

Ingres Plus [17] and ADMS Plus were developed earlier. ADMS Plus is a local

server. Recall that these servers are built on top of the supporting DBMS. The

Graphical User Interface interacts with ADMS Minus. ADMS Minus processes

the client queries and determines where the tables being queried are located

and sends the query to the respective Plus server. The results of the query are

returned to ADMS Minus which then returns them to the application.

The code is written in C and X/Motif is used to develop the graphical user

interface. The Treemap, Treebrowser and Range widgets are not standard Motif

widgets. They were developed as part of earlier work and are reused in this

application. The interaction with the database is through C function calls that

have SQL commands embedded in them. A C function is called to issue queries to

the database and return the results. The results are processed by the application.

The actual location of the tables is transparent to the application. This is one

of the most important features of this application.

The purpose of this system is to allow an operator to view the elements

available in the network. The operator can specify a certain parameter and then

dynamically query the database to search for ports lying with the range speci�ed

for the parameter. The operator can then select a port from the query result

and con�gure a session.

109

Graphical User
 Interface
 (GUI)

ADMS_Minus

Ingres_Plus

ADMS_Plus

Illustra_Plus

ADMS
DBMS

Ingres
DBMS

Illustra
DBMS

Configuration
 Manager

DB DB

DB

Figure 5.2: Con�guration Management Architecture

110

Figure 5.3: Con�guration Management Main Panel

Figure 5.4: Treeemap Display

111

Figure 5.5: Treebrowser Display

112

Figure 5.3 shows the main panel of the User Interface. It has 5 buttons. The

�rst button is a Network Group button. If the operator clicks this button a

treemap is brought up on the screen showing only the Networks present within

that Network Group. When the button is pressed a database query is sent

out that will read from the database all the Networks present in the Network

Group. The application has a tree data structure that is used to store the

hierarchical information. The results for the Network, �ll the �rst level of the

tree. The Treemap widget is created from the application tree data structure,

and is displayed on the screen. For simplicity buttons for displaying DPCs and

LIMs are not provided. Moreover the operator will not be looking for DPCs and

LIMs but will be looking for Ports. The present interface shows all the Ports

present inside a Network Group. The buttons for displaying DPCs and LIMs

can be added later without much e�ort.

The next button is used to display all ports that lie within the given Net-

work Group. Figure 5.4 shows a screen dump of the Treemap display. For this

application we consider only 1 Network Group. When this button is pressed a

database query is issued that �rst reads the DPCs from the database. These

DPCs are inserted as children of the appropriate Networks. Then the LIMs are

read in from the database and inserted as children of their respective DPCs and

�nally the Ports are read in from the database and the tree is completely �lled.

The Treemap widget created earlier is �lled with the data from the application

tree structure and all the ports lying within the Network Group are displayed.

The color of the ports is determined by their current utilization values. A color

legend is displayed below the Treemap to show the ranges corresponding to the

di�erent colors. Currently only utilization is used to determine the color of the

113

Ports. This can be enhanced to provide a choice to the operator so that the

color can be made to re
ect other attributes also.

A Range widget with two sliders is also provided below the Treemap. An

option menu is provided alongside so that the operator can select the attribute

he/she wants to query on. Currently the operator can query Ports only on the

basis of Utilization and Baud Rate. Each time the slider is moved by the operator

a dynamic query is issued to the database. The attribute on which the query is

being executed is passed along with the minimum and maximum values of the

query range. A database query is constructed from these values and executed.

Only those Ports that satisfy the operator query remain colored while the others

get grayed out. Based on the results of the query the operator selects a Port.

This completes the selection of a Hub Port and this makes the Network Group

and Hub Port buttons turn green indicating to the operator that these tasks

have been completed.

The next task for the operator is to select a Remote. When the Remote

button is pressed a query is sent out to the database requesting the names of

all the Remotes that exist in the database. When the results are returned, a

scrolled list of Remote names appears on the screen. The operator can then

select one of those Remotes. This makes the Remote button turn green.

The operator presses the Remote Port button to see all the ports present

in the Remote just selected by the operator. When this button is pressed a

query is sent out to the database that reads all the Ports present inside the

selected Remote. Similar to the Hub side the DPCs are read in �rst, then the

LIMs and �nally the Ports. The application tree structure is created from this

data. The Treebrowser widget is created from the application tree data structure.

114

Figure 5.5 shows a screen dump of the treebrowser. A Remote typically has fewer

ports than a Hub or Network Group so a Treebrowser can be used to display the

Remote Ports. Remote Ports can have three states: used, unused and unde�ned.

The three types of ports are shown in di�erent colors. The operator selects an

unde�ned port. This causes a form to pop up on the screen. The baud rate

for this port has to be �lled in by the operator. The baud rate entered by the

operator is returned to the database and the relevant tuple in the Port table is

updated. Once that is completed the Remote Port button also turns green.

The �nal task is actually setting up the Session. For this the operator presses

the Session button which is the �fth button on the main panel. This brings up

a form with all the information on the Hub and Remote Ports selected. The

operator can ensure that the Ports selected are satisfactory and enter a Session

name. This creates a new Session and a database update is sent to add a tuple

to the Session table. The Remote Port is also marked as used in the database.

5.5 Summary and innovative concepts

In this chapter we developed a Con�guration Management application for a

Satellite network. This application has already been developed over an object-

oriented database in previous work. The purpose of this e�ort was to demon-

strate the same application running over the Integrated Database Platform. A

brief description of the network being managed was given. A model was de-

veloped for the network and was illustrated by an E-R diagram. The di�erent

Graphical User Interface techniques used were discussed and �nally the imple-

mentation was described.

115

A large number of organizations today, are faced with the problem of hav-

ing many isolated applications running on di�erent systems, which they now

want to integrate. A properly implemented client/server middleware infrastruc-

ture can help them meet their needs. The middleware should provide seamless

technical integration of disparate systems. By seamless we mean the di�erences

between the environments should not be visible to the applications programmer

and the communication should be transparent to the application. Performance

and scalability are critical to the success of such an architecture. Performance is

especially critical for applications such as Network Management where certain

operations may have to be performed in real time. The important issue is that

communication between the client and server should not become the bottleneck.

In the earlier chapter we discussed the implementation of a client-server ar-

chitecture that can serve the purpose of a middleware. In this chapter we demon-

strated through an application, the ability of the above architecture to perform

the functions of a middleware. This is the �rst application to be developed

over this integrated database platform and demonstrates how an application can

transparently access data from remote disparate databases. The performance

of this application was very satisfactory. The di�erent tables required by this

application could be present on any of the databases for which a \plus server"

(as described in the previous chapter) exists. The syntax of the queries written

to access the data is independent of the actual location of the data. This insu-

lates the application from the di�erences in the query syntaxes of the di�erent

database systems. The use of client caching, incremental updates and the dis-

tribution of processing between the client and the servers signi�cantly improve

performance. The application interacts with the client so every time the appli-

116

cation access a table it is not necessary to access the data from the respective

server. To ensure that the client has a consistent view of the data, each time a

table is accessed by the application, the client is noti�ed by the respective server,

of any changes that may have been made to the server table. This is also the

case for a table that may have formed as the result of a 'join' between two server

tables or a server table and a client table.

Based on these ideas more complex Network Management Systems can be

developed. It is also possible to take existing applications and modify them for

this platform. Organizations can protect their investments in di�erent appli-

cations, if they don't have to rewrite the applications each time they want to

change the database platform on which the applications were developed. The

purpose that such a platform serves is that the query syntax doesn't have to be

made database speci�c and entire databases don't have to be transferred between

di�erent systems. As long as a Plus server exists for a DBMS it can be made

to interoperate with other systems. Since the methodology for developing Plus

servers exists very little e�ort is required to develop a Plus server for a DBMS.

117

Chapter 6

Conclusions and Future work

With technological advancement and increase in the complexity of telecommu-

nication networks, it is imperative that there be commensurate advances in the

tools and techniques used to manage these networks. However, as discussed ear-

lier, today's network management tools haven't been able to keep abreast with

the new networks and services being deployed. One of the main areas where

development is required is in the modeling of the networks for management pur-

poses, and the implementation of these models on database platforms. A large

number of network management systems that exist today, don't cover all the

network management functional areas or have completely independent applica-

tions to manage di�erent functional areas. In this work we have developed an

object oriented data model for hybrid network management. Our model is an

integrated model covering all network management functional areas.

We have implemented our model on ObjectStore, an object oriented database

system, to form the Management Information Base (MIB) of an Integrated Net-

work Management System. We have developed Con�guration and Performance

Management modules based on this model. A simulation was developed to set up

118

connections between various nodes in the network and then vary the tra�c over

these connections. The simulation periodically reports performance statistics

that are stored in the MIB.

Performance statistics have a utility in both the short term as well as the long

term management. However, as the data gets older some form of compression

can be tolerated. Based on this concept we proposed to have three levels of

precision for storing performance data. This is e�ective in reducing the amount

of storage required for this data. Since the number of network elements is very

large, the total reduction in storage is signi�cant. This also improves query

performance.

We proposed two di�erent models for storing performance data. These mod-

els were integrated with the structural or relatively static con�guration manage-

ment data. This is in itself a step forward from the way current systems handle

performance statistics. The operator can now associate performance data with

a particular network element. Since all the data is in the same database the

operator can also issue complex queries that combine structural and statistics

attributes. The relative merits of the two models were compared and one of the

models was implemented and used to store performance statistics reported by

the simulation.

Extensive experiments and simulations need to be undertaken to get a more

complete comparison of the two performance data models. We implemented the

simplest model as part of our work. Some complex extensions of these simple

models like having di�erent amounts of compression depending on the time of

day, that were discussed in chapter 3 can also be implemented and their per-

formance studied. An optimal strategy for the physical clustering of data in a

119

database also needs to be determined if one exists at all. The network operator

uses performance statistics to study performance degradations and also for pre-

dicting the long term usage of network resources. Compression of data results in

lower precision data. The e�ects of compression on prediction of resource usage

hasn't been studied in this work. The time intervals over which data was to be

compressed was ad hoc in our work. The time intervals could be chosen such

that prediction isn't adversely a�ected. This can be studied as part of future

work.

In the next step we would like to develop a Fault Management module.

The simulation can be modi�ed to arti�cially generate \faults" or performance

degradations in the network. Certain patterns can be observed from performance

data collected prior to faults. We might even try to automate certain fault

management functions. Intelligence can be incorporated into the system so as to

predict faults based on observations of performance statistics. We have modeled

Alarms in our model but this hasn't been actually implemented in the MIB.

Alarm correlation is another area where there are interesting problems to be

solved. In response to a single fault all the network elements that are a�ected

in some way, generate an Alarm. All these alarms are reported to the central

network control center. The operator has to sift through these alarms to actually

determine the source of the fault. The system itself should have certain alarm

correlation features built in, so that the onus is no longer on the operator. The

system should be able to determine the actual source of the fault from all the

alarms that are reported. There has been a lot of interest in this area and many

studies have been conducted. An expert system or neural network may also be

used for such purposes.

120

In chapter 4 we presented an architecture for the integration of heterogeneous

database systems, and its implementation. We successfully developed a Con�g-

uration Management system on this platform. This demonstrated the ability of

such a platform to perform the functions of a \middleware". The architecture

is scalable and provided a very satisfactory performance. Hence it provides a

\middleware" that can be used to integrate many network management appli-

cations that have already been developed over heterogeneous DBMSs. The MIB

is the heart of any network management system and hence database interoper-

ability is an important issue that has to be resolved before there can seamless

integration of network management applications. This is very signi�cant e�ort

made in direction of database interoperability. There are certain products like

ODBC that are available in the market today, but they lack many of the perfor-

mance advantages that we have in our system which we obtained by using client

caching, incremental updates etc.

The client-server architecture developed had its client on ADMS, and had

servers for Ingres, Oracle and Illustra. All of these are relational database

systems. (Even though Illustra is Object-Relational only the relational part

has been used here.) The next step would be to integrate object-oriented and

object-relational database systems into this integrated database system. The

same methodology could be used to achieve this integration. However, the client

would have to be developed on a system that has both object as well as rela-

tional capabilities. Most object-oriented DBMSs that are in the market today

don't have relational capabilities. This makes an Object-Relational system such

as Illustra, an ideal candidate system for the development of a client.

There are many challenges in developing here. In our implementation, a

121

relational tuple was the unit of tranfer. Each tuple had simple data types that are

supported by all relational systems. However it isn't clear what the unit of tranfer

will be when dealing with complex user de�ned data types. We may choose to

transfer the entire object or only an object pointer. Returning object pointers

has the disadvantage that client server communication is required every time the

object is referenced. The advantages of client caching are lost. Communication

overhead is increased and so is the processing at the servers. Objects contain

pointers some of which may be pointers to other objects. This makes matters

more di�cult if entire objects are transferred. Also the OODBMSs available

today don't conform to any standard and have di�erent object models.

So far our network management system has been developed entirely on a

centralized database system. As part of future work we would like to extend

this development to a distributed database system. There are several interesting

issues such as object migration, maintaining consistency between various replicas

of an object etc. Recently there has been a growing interest in Distributed Object

Management Systems. CORBA is an industry standard for the development

of distributed object management applications. We would like to extend our

object model and make in completely CORBA compatible. This would facilitate

integration with a wide variety of systems.

Relational database systems have proved to be very useful for commercial

business applications and are commonplace in �nancial and business data pro-

cessing applications. They however don't have support for the requirements of

advanced applications such as network management. Network management sys-

tems require to de�ne many complex data types and require persistent storage

for instances of such data types. This requirement has been clearly demon-

122

strated in the work presented in earlier chapters. The object model developed

in chapter 2 can implemented on either a relational or object-oriented DBMS. If

a relational DBMS is used, then it is the programmer's responsibility to
atten

out the object hierarchy and map the objects into relational tables. The ad-

vantages of inheritance and polymorphism are also lost. The mapping between

objects and tables and vice versa results is computational overhead and degrades

performance. This is due to the inability of relational DBMSs to directly store

user de�ned data types. Joins between relational tables is required to determine

the relationship between two objects. In an OODBMS this is achieved by simple

pointer chasing.

On the other hand OODBMSs aren't the panacea for network management

applications either. Most OODBMSs available in the market today don't con-

form to the ODMG speci�cations for OODBMSs developed recently. The \en-

gines" on which these DBMSs are developed are di�erent. This makes inter-

operability di�cult. Each of these DBMSs has limitations of its own. In our

experience with ObjectStore we encountered certain scalability issues. Certain

prelimnary experiments have shown that a relational DBMS may perform better

for data that is essentially tabular. All performance statistics are basically tabu-

lar. Hence it might be more e�cient to store this data in a relational DBMS. An

OODBMS would be used to store the structural data. Hence a database having

both relational as well as object oriented capabilities may be a better platform

for the MIB.

The recent ODMG speci�cations for object oriented databases have tried to

incorporate most of the features provided by relational systems. The query lan-

guage OQL, has many of the features provided by SQL. Simultaneously, ANSI

123

and the ISO SQL standardization committees have been extending SQL by

adding the capability to support user de�ned abstract data types and other

object oriented capabilities such as inheritance and polymorphism. There is also

a possibility that these standards may merge some time in the future. Recently

there has been a growing interest in another class of systems called Object-

Relational database systems (ORDBMS) such as Illustra and UniSQL. These

systems are \SQLish" and have a relational engine on top of which object ori-

ented features have been added. So they provide all the features of a relational

system. The query language is a extension of SQL. Sets and collections for user

de�ned types are also provided and can be queried. They sacri�ce atomicity to

provide object oriented features. Here an element of a tuple can be one of the

simple data types or a user de�ned data type.

Using an ORDBMS as a MIB and studying it's performance is one of the

directions in which the current work can progress. The object oriented features

can be used for the development of the relatively static structural data model

while the relational part can be used for sensor data. Once we have successfully

integrated object oriented and relational database systems we may even be able

to split the development of our data model over two di�erent database systems.

124

Bibliography

[1] S. Bapat. OSI Management Information Base Implementation. In Integrated

Network Management II, pages 817{831. North Holland, 1991.

[2] S. Bapat. Object-Oriented Networks: models for architecture, operations

and management. Prentice Hall, 1994.

[3] A. Datta. A data model for Object-Oriented Network Management. April

1994.

[4] J. Haritsa, M. Ball, N. Roussopoulos, J. Baras, and A. Datta. Design of

the MANDATE MIB. In Integrated Network Management III, pages 85{96.

North Holland, 1993.

[5] J. Haritsa, S.K. Goli, and N. Roussopoulos. ICON: A System for Imple-

menting Constraints in Object-based Networks. April 1994.

[6] Systems Integration Lab. Network Con�guration Management System De-

sign Document. April 1994. Hughes Network Systems and University of

Maryland.

[7] E.H. Mamdani, R. Smith, and J. Callaghan. The Management of Telecom-

munication Networks. Ellis Horwood Limited, 1993.

125

[8] N. Roussopoulos and H. Kang. Principles and Techniques in the Design of

ADMS+-. December 1986.

[9] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-

Oriented Modeling & Design. Prentice Hall, 1991.

[10] D. Shen. Network Database Internet Draft. June 1991.

[11] W. Stallings. SNMP, SNMPv2 and CMIP: The practical guide to Network

Management Standards. Addison-Wesley, 1993.

[12] M. Teittinen, C. Plaisant, H. Kumar, and B. Shneiderman. Visual Informa-

tion Management for Network Con�guration. March 1994.

[13] K. Terplan. Communication Networks Management. Prentice Hall, 1992.

[14] R. Valta. Design Concepts for a Global Network Management Database. In

Integrated Network Management II, pages 777{788. North Holland, 1991.

[15] P. Wegner. Dimensions of Object-based Language Design. In SIGPLAN

Notices, volume 22(12), pages 168{182. 1987.

[16] O. Wolfson, A. Dupuy, S. Sengupta, and Y. Yemini. Design of the NET-

MATE Network Management System. IEEE Network, March 1991.

[17] Z. Yao. Ingres Server using TCP/IP and Heterogeneous Database Join

Method. April 1993.

126

