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Chapter 0

Introduction

The object of study in this thesis is a certain projective Zp-scheme Mloc, called

a local model, and the nearby cycles complex RΨ(Q`) on Mloc
Fp

, a certain complex of

étale `-adic sheaves.

The purpose of local models is to give étale-local descriptions of various Shimura

varieties in a way that uses only module-theoretic language and makes some ques-

tions and computations more tractable. A major step in computing the Hasse-Weil

zeta function of a Shimura variety is the computation of the trace of the Frobe-

nius element considered as a linear map on the stalks of the nearby cycles complex

RΨ(Q`) on Mloc
Fp

. In this thesis, I prove that the nearby cycles complexes on a

certain class of local models coming from unitary-type division algebras are central

with respect to a convolution product of étale `-adic sheaf complexes. A corollary is

that the trace function associated to the Frobenius element as above is a specific, ef-

fectively computable basis element in the center of the corresponding Iwahori-Hecke

algebra. This is known as Kottwitz’s conjecture. A description of the local models

considered and a precise statement of the theorem appears below.

Let Af be the finite adeles over Q. Let G be a linear algebraic group defined

over Q, let h : C× → GR be an algebraic cocharacter and let K ⊂ G(Af) be a

compact open subgroup. The triple (G, h,K) (under certain additional hypothe-
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ses) is called a Shimura datum and can be used to construct a Shimura variety Sh.

This Shimura variety is defined over some number field E, called the reflex field.

Some Shimura varieties, for example those whose datum comes from a PEL datum

(in particular, the case considered in this thesis), have an integral model, i.e. a

scheme Sh over OE such that ShE is the original Shimura variety Sh. The fibers

over primes p ⊂ OE of such an integral model Sh are sometimes smooth (in which

case Sh is said to have good reduction at p) and sometimes non-smooth (in which

case Sh is said to have bad reduction at p). I now fix a prime p and consider only

PEL (“polarization, endomorphisms, level-structure”) Shimura varieties with para-

horic level-structure at p. Rapoport and Zink [30] constructed local models of many

integral Shimura varieties Sh within an axiomatic framework. In some cases, the

objects constructed by [30] were found to be unsatisfactory; some examples where

Mloc is not a flat scheme were provided by Pappas [23] in the ramified unitary case

and Genestier in the even-dimensional orthogonal case. Modifications were made by

Pappas and Rapoport in subsequent papers [24], [25], and [27], and evidence that

these modifications produce flat models is supplied by Smithling’s recent papers

[35], [33] and [34], which specifically address both of the problematic examples pre-

viously mentioned. Nonetheless, it follows from [10] that the local models I consider

(described below) are flat.

The Hasse-Weil zeta function Z(s, Sh) is defined as a product over all primes

p ⊂ E of local factors Zp(s, Sh), each of which is an alternating product of determi-

nants involving a lift Frob to Qp of the Frobenius automorphism acting on ShQp
.

More precisely, one selects an arbitrary preimage Frob ∈ Gal(Qp/Ep) of the Frobe-
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nius element in Gal(Fp/Fp) and, via its action on ShQp
, Frob induces an action on

the inertia-fixed-points of the global étale `-adic cohomology of ShQp
.

I now briefly discuss the nearby cycles construction RΨ. Let X be a Zp-

scheme and let XQp

p−→ X
q←− XFp and XQp

c−→ XQp be the canonical maps.

Then the nearby cycles complex RΨ(Q`) on XFp
is defined to be the derived complex

q∗(Rp∗(c
∗(Q`))) (in the étale context), where Q` represents the constant étale `-adic

sheaf on XQp . The nearby cycles construction is a tool to transform the problem

of calculating cohomology of XQp
into the problem of calculating cohomology of

XFp
: if X is a proper Zp-scheme, then H•(XQp

; c∗(Q`)) = H•(XFp
; RΨ(Q`)), and

the action by Gal(Qp/Qp) on the left is consistent with the action by Gal(Fp/Fp) on

the right. This equality is a corollary of base change for proper morphisms (noting

the trivial nature of the nearby cycles construction on the diagram Spec(Qp) →

Spec(Zp)← Spec(Fp)).

If Sh is proper over OE then the previous paragraph and the Grothendieck-

Lefschetz trace formula show that the local factor Zp(s, Sh) of the Hasse-Weil zeta

function can be calculated by knowing the trace of all powers of Frob on the cohomol-

ogy stalks over Sh(Fp) of RΨ(Q`). By the étale-local equivalence mentioned above,

it is the same to calculate that trace on Mloc(Fp) instead. The alternating sum of

these traces defines a function τ : Mloc(Fp) → Q`. The inertia-fixed-points oper-

ation makes the trace function τ difficult to understand in general, and Rapoport

suggests replacing τ by a similar function τ ss, called the semisimple trace function.

Assuming Deligne’s weight-monodromy conjecture, τ can be reconstructed from τ ss.

See §2 of [29] for details of this reconstruction. It is important to note that the

3



determination of τ ss (but not the local factor Zp(s, Sh) as a whole) is trivial in

the case of good reduction, since the nearby cycles complex is the constant sheaf.

See Lemma 8.6 and the summary Theorem 10.1 of properties of the nearby cycles

functor in [14] for more details.

Haines and Ngô [15] consider the split groups GL and GSp and the standard

local models corresponding to these groups. They prove an instance of Kottwitz’s

conjecture, that the semisimple trace function τ ss in this situation is essentially the

Bernstein basis function zµ in the center of the corresponding Iwahori-Hecke algebra

(here µ is a certain cocharacter occurring in the precise definition of the local model,

which is omitted here). In fact, [15] proves more–that every member of a family of

functions, each of which is defined similarly to τ ss, is a specific linear combination

of Bernstein basis functions; see Theorem 11 in [15] for a precise statement. The

strategy of the proof is:

1. Construct an ind-scheme M over Zp, which contains Mloc as a closed sub-

scheme and whose extension to Qp, resp. to Fp, is the is the affine Grassman-

nian, resp. full affine flag variety. This requires finding alternate descriptions

of Mloc that are more compatible with the usual definitions of affine flag vari-

eties as unions of sets of lattice-chains.

2. Via the embedding of Mloc
Fp

into the full affine flag variety, prove that the

semisimple trace function τ ss is an element of the Iwahori-Hecke algebra H

and construct products ∗Qp
and ∗Fp of complexes of étale `-adic sheaves on

MQp
and MFp

such that (via the sheaf-function dictionary) ∗Fp categorifies
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the convolution product in H.

3. Show that the nearby-cycles functor RΨ is a “homomorphism” with respect

to these two products and that the product of the relevant complexes on MQp

is commutative. It follows that the product on Mloc
Fp

of the relevant complexes

is also commutative.

On the other hand, Gaitsgory [9] proves a similar result (albeit not in the

context of Shimura varieties) for split connected reductive Fp((t))-groups G. One of

the objects occurring in [9] is an ind-scheme FlX , reportedly due to Beilinson, defined

over a smooth curve X such that one fiber is the full affine flag variety for G and

every other fiber is essentially the affine Grassmannian for G; see Proposition 3 of

[9] for a precise statement. The main result of [9] is that the nearby cycles functor

on FlX induces the isomorphism (the composition of the Satake and Bernstein

isomorphisms) from the special parahoric Hecke algebraH(G(Fp((t)));G(Fp[[t]])) to

the center of the Iwahori-Hecke algebra; see Theorem 1 in [9] for a precise statement.

I now describe the specific contents of this thesis. The Shimura data that I

consider are similar to those occuring in Kottwitz [20], except I consider Iwahori

level structure rather than hyperspecial maximal level structure. Let F ⊃ Q be an

imaginary quadratic extension with ring of integers O. Let D be a central division

F -algebra and suppose that D has a unitary (2nd kind) involution ∗. To this pair

(D, ∗) is attached a certain similitude group G defined over Q. Let 2 6= p ∈ Z be a

prime for which G = GQp is quasi-split and split over Qp
unr. Since the case when p

splits in O is known (see Haines [14]), I assume that p is inert in O. After selecting
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a minuscule cocharacter µ, one can define the local model Mloc, an OE-scheme for a

certain extension E/Qp which is called the reflex field and depends on the G(Qp)-

conjugacy class of µ. By inertness, Fp = F ⊗Q Qp is a field, the completion of F at

p, and D⊗Q Qp = Md(Fp). It follows that G is a unitary similitude group (possibly

not quasi-split) and is quasi-split if and only if the involution ∗p is isomorphic to the

standard one. See §1.2.2 for more details. Moreover, the reflex field E must be either

Fp or Qp, and since Fp is also the splitting field of G, the case of E = Fp reduces to

the case of GL and I may assume without loss of generality that E = Qp. This also

implies that the dimension d is even and that the signature of µ is (d/2, d/2). See

§1.2.3 for more details.

Görtz’s idea that Mloc can frequently be embedded into an appropriate affine

flag variety holds in this case and the semisimple trace function τ ss on Mloc(Fp)

can therefore be interpreted as an element of the Iwahori-Hecke algebra H of GUd.

Kottwitz’s conjecture is that this element of H is a certain scalar multiple of the

Bernstein basis function zµ associated to µ. By Haines’s characterization (Theorem

5.8 in [13]) of minuscule Bernstein basis functions, Kottwitz’s conjecture (in the case

at hand) follows from the main theorem of this thesis:

Main Theorem. Suppose 2 6= p ∈ Z is inert in O and let Mloc be the local model

over Zp associated to the unitary-type division algebra datum (D, ∗, µ) as above, and

suppose that the similitude group attached to (D, ∗) is quasi-split.

Then Mloc is isomorphic to the standard local model corresponding to the (un-

ramified) unitary similitude group GUd associated to the extension Fp/Qp and the
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nearby cycles complex RΨ(Q`) on Mloc
Fp

, considered as a complex on the full affine

flag variety F`aff
Fp

of GUd, is central with respect to the convolution product ∗ of sheaf

complexes, i.e. RΨ(Q`) ∗ C• ∼= C• ∗ RΨ(Q`) naturally for every perverse Iwahori-

equivariant complex of étale `-adic sheaves C• on F`aff
Fp

.

Via the sheaf-function dictionary, the associated semisimple trace function τ ss

is therefore a central element of the Iwahori-Hecke algebra of GUd.

Kottwitz’s conjecture, whenever it holds, allows τ ss to be computed explicitly:

the Bernstein basis functions can be computed in a systematic way using only some

well-known information about linear algebraic groups and Coxeter groups. This can

be done on a computer or even by hand, in low rank cases.

Upon completion of this thesis, Pappas and Zhu released a preprint [28] which

proves Kottwitz’s nearby cycles conjecture in all cases where the group is unramified.

This includes the unitary group cases considered in this thesis. This thesis and [28]

constitute the first proofs of Kottwitz’s conjecture in the non-split case.

I now give an outline of the thesis.

In Chapter 1, I choose the objects that will eventually be used to construct

the local models, set some conventions, and recall various classical results about

simple algebras, hermitian forms, involutions, etc. I recall and also prove some

commutative algebra lemmas that are used throughout the thesis.

In Chapter 2, I recall the definition of the local model as it appears in [30] and

rephrase parts of the definition in equivalent ways that are more obviously related

to affine flag varieties. I analyze what happens to these conditions after applying
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Morita equivalence to change the target categories of Mloc from Md(O)-Modules to

O-Modules. I define an ind-scheme M, prove some basic properties about it, and

prove that it is a degeneration from the affine Grassmannian over Qp to the full

affine flag variety over Fp. I define an ind-group J which acts on M and which is

similarly an interpolation between the special parahoric over Qp to the Iwahori over

Fp. I prove that the subgroups comprising J are smooth, which is critical in order

for the semisimple trace function to be an element of the Iwahori-Hecke algebra. I

also give Schubert cell decompositions for the subschemes comprising M.

In Chapter 3, I set notation and conventions for the sheaf theory I will use, I

recall the precise definition for the semisimple trace function τ ss that is the subject

of this thesis, and I verify that τ ss can be interpreted as an element of the Iwahori-

Hecke algebra for GUd. I then restate (without proof) the main theorem, prove

that Mloc is a flat scheme (using [10]), and show how Kottwitz’s conjecture follows

from the centrality of the nearby cycles complexes. Following a well-known general

recipe from [22], I define several objects and morphisms, the totality of which is

commonly referred to as a “convolution diagram”, and prove various properties

(representability, finite-type, etc.) about those objects and morphisms. I define an

ind-group J̃, similar in spirit to J, which acts on some objects in the convolution

diagram, and I prove several critical and non-trivial facts about the action of J̃ on the

objects in the convolution diagram. I also mention some important simplifications

that occur over Qp and Fp. Finally, I use the convolution diagram to define a

product operation between complexes of étale `-adic sheaves, and I explain why this

product induces the usual convolution product in the Hecke algebra.
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In Chapter 4, I use the material from Chapter 3 to prove the main theorem.

The main difficulties in this proof occur in §2.5 and §3.3. A collection of

properties (involving connectedness, smoothness, and transitivity) related to the

groups J and J̃ are necessary in order to construct the convolution product and

needed to be proved from scratch.
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Chapter 1

Notations, conventions, and preliminary setup

1.1 Notation and conventions

Let F be a totally imaginary quadratic number field. Let O be the ring of

integers in F . Let D be a central division F -algebra such that dimF (D) = d2. Let

∗ : D → D be a unitary (or “2nd kind”) involution. Let p ∈ Z be a prime that

is inert in O. Denote by Fp the finite field with p elements. Fix field embeddings

Q ↪→ C and Q ↪→ Qp. I frequently use the following simple and related facts:

• Fp
def
= F ⊗Q Qp is an unramified quadratic extension of Qp and the automor-

phism of Fp induced by the non-trivial element of Gal(F/Q) is the same as

that of the non-trivial element of Gal(Fp/Qp).

• Dp
def
= D ⊗Q Qp = D ⊗F Fp is a central simple Fp-algebra, and ∗ induces a

unitary involution ∗p on Dp.

• F
def
= Fp ⊗Z O is the residue field of Fp, and the automorphism of F induced

by the non-trivial element of Gal(F/Q) is the same as that of the non-trivial

element of Gal(F/Fp).

All rings are assumed to have 1. I denote by Ga and Gm the additive and

multiplicative algebraic groups R 7→ (R,+) and R 7→ (R×, ·). If R is any ring, the

category of commutative R-algebras is denoted R-Algebras. I call any R-algebra that
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is also a field an “R-field”. By a “geometric point” of an R-scheme X, I mean a K-

point where K is a separably-closed R-field. I usually make no distinction between

a morphism of schemes and its associated functor-of-points. In the later portion of

this paper, I frequently use the trivial observation that, for a (commutative) ring R,

any property that holds “Zariski-locally on Spec(R)” holds, period, if R is a local

ring.

Let K/k be a separable quadratic field extension with non-trivial Galois au-

tomorphism x 7→ x. The standard involution X 7→ X
tr

on K-matrices is sometimes

called ∗std. A function φ : Kd × Kd → K is a “K/k-hermitian form” if and only

if it is k-bilinear and satisfies φ(xv, w) = xφ(v, w) = φ(v, xw) for all v, w ∈ Kd,

x ∈ K. I frequently denote by id∨ the “anti-identity” matrix, the matrix with 1

in the anti-diagonal entries and 0 in all other entries, with dimension implied by

context.

Assumption. p 6= 2.

Remark. This assumption is used in the proof of Proposition 1.2.2.2 (page 15) and

Proposition 2.5.2.2 (page 74)

1.2 Description of the PEL datum

1.2.1 The global PEL datum

The starting point is to form a global PEL datum (B, ι, V, ψ) using the pair

(D, ∗). Consider the following data:
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• finite-dimensional simple Q-algebra B
def
= Dopp

• positive involution ι : B → B defined by

ι(b)
def
= ξ · b∗ · ξ−1

for certain ξ ∈ D satisfying ξ∗ = −ξ (see §5.2 of [14] for existence of such an

element)

• finite-dimensional left B-module V
def
= D withB acting by right-multiplication:

b ? v
def
= vb

• alternating Q-bilinear form ψ : V × V → Q defined by

ψ(v, w)
def
= Trred

D/Q(v · ξ · w∗)

which automatically satisfies ψ(b ? v, w) = ψ(v, ι(b) ? w).

Remark. Two different products D ×D → Q as above can induce the same invo-

lution ι on B, due to the fact that ψ induces an involution on EndF -lin(D), of which

B is only a proper subalgebra.

From this data one can define an affine algebraic group G: for any (commu-

tative) Q-algebra R, set

G(R)
def
= {g ∈ D ⊗Q R | ∃c(g) ∈ R×such that ψR(g−, g−) = c(g)ψR(−,−)}

(the “D” used to define G is really EndB-lin(V ) = D, i.e. D acting by left-

multiplication on V = D; this action is B = Dopp-linear because of associativity of

multiplication in D)
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By definition of ψ (noting the previous parenthetical comment), another de-

scription of G is

G(R) = {x ∈ D ⊗Q R | g∗⊗id · g ∈ R×}

I select also an R-algebra homomorphism

h : C→ EndB-lin(V )⊗Q R = D ⊗Q R

and require that h satisfies

• h(z) = h(z)∗⊗id

• B ⊗Q R→ B ⊗Q R defined by b 7→ h(i)−1 · b∗⊗id · h(i) is a positive involution

Any h satisfying the first property can be used to define a cocharacter

µ = µh : Gm
C → GC.

See §1.2.3 (page 21) for details. Set Bp
def
= B ⊗Q Qp and similarly for D, V, ∗, ι, ψ.

Let OB ⊂ B = Dopp be a maximal order such that OB ⊗Z Zp is a maximal order

OBp in Bp.

Assumption. ιp(OBp) = OBp .

This standard assumption guarantees that if Λ is an OBp-submodule of Vp,

then the dual module

Λ̂
def
= {x ∈ Vp | ψp(Λ, x) ⊂ Zp}

is again an OBp-module. I also use this assumption in the proof of Proposition

1.2.2.2 (page 15).
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I will also need to select a certain chain (· · · ⊂ Λ0 ⊂ Λ1 ⊂ · · · ) of OBp-lattices

in Vp = Dp. See §2.1.1 (page 28) for more details.

The datum used to define the local model is the tuple

(B, ι, V, ψ, µ,OB, F, {Λi}i∈Z)

1.2.2 Theorems about unitary involutions, hermitian forms, etc.

Proposition 1.2.2.1. The central simple Fp-algebra Dp is split, i.e. Dp
∼= Md(Fp)

as Fp-algebras.

Proof. By Wedderburn’s theorem, the central simple Fp-algebra Dp is a matrix

algebra over some central division Fp-algebra. Since Dp has a unitary involution,

Corollary 8.8.3 on page 306 of [31] states that this division algebra has a unitary

involution also. But Albert’s theorem (Theorem 10.2.2(ii) on page 353 of [31]) states

that, over a local field, the only division Fp-algebra with a unitary involution is Fp

itself.

Remark. This result is explicitly part of Landherr’s theorem (Theorem 10.2.4 on

page 355 of [31]). In the above proof, the assumption that p is inert guarantees that

D ⊗Q Qp is a simple algebra.

This means that GQp is always a unitary similitude group, although depending

on ∗, perhaps GQp is not quasi-split.

Using Proposition 1.2.2.1, fix some isomorphism Dp
∼= Md(Fp), and consider

∗p and ιp as unitary involutions on Bp = Md(Fp)
opp via this isomorphism.

In §2.2.2 (page 35), I will use the following proposition:
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Proposition 1.2.2.2. There exists an Fp-algebra automorphism (necessarily inner

by Skolem-Noether) of Bp = Md(Fp)
opp that identifies ιp with ∗std and OBp with

Md(OFp)
opp.

Proof. This is actually just Theorem 10.2.5 on page 355 of [31] but it is not clear

just from the statement (“almost all primes”), so I make some additional comments.

Let K/k be a quadratic extension of global fields with non-trivial Galois au-

tomorphism x 7→ x. Let A be a central simple K-algebra (dimK(A) = n2), and I a

unitary involution on A. The assertion of Theorem 10.2.5 is that for all but finitely

many primes p of k, there is a K-algebra isomorphism A ⊗K Kp
∼= Mn(Kp) such

that I becomes identified to ∗std.

A careful reading of the proof shows that, for a particular p, such an isomor-

phism exists provided that:

1. p is non-archimedean

2. char(Ok/p) 6= 2

3. p is not ramified in K

4. A⊗Q Qp is split, i.e. a matrix algebra

5. I stabilizes a maximal order in A⊗Q Qp

The key point is that the initial setup of this proof is unnecessarily restrictive: [31]

chooses a single global order Λ ⊂ A, creates the I-stable order Λ ∩ I(Λ), considers

only those p for which the completion at p of this new I-stable order is maximal,

and notes that there are only finitely many exceptions. Really, all that is needed is
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that for each p (with only finitely many exceptions), there is some Ip-stable maximal

order (possibly depending on p).

My situation assumes (1) and (3), I have explicitly assumed (2) and (5), and

Proposition 1.2.2.1 provides (4), so the first part of the proposition is proven.

It is obvious from the proof that the isomorphism sends the I-stable maximal

order to Md(OFp).

Fix an isomorphism

(Bp, ιp,OBp) ∼= (Md(Fp)
opp, ∗std,Md(OFp)

opp)

as in Proposition 1.2.2.2.

Recall the following classification theorem for unitary involutions:

Classification of Unitary Involutions (Theorem 8.7.4 on pages 301-302 of [31]).

Let K/k be a quadratic extension with non-trivial Galois automorphism x 7→ x. Let

A be a central simple K-algebra and fix a K/k-unitary involution I.

1. if b ∈ A× satisfies b = I(b), then the function Inn(b) ◦ I is a K/k-unitary

involution

2. if J : A → A is a K/k-unitary involution, then there is an b ∈ A× satisfying

b = I(b) such that J = Inn(b) ◦ I, and this b is unique up to scalar in k×

3. there exists an isomorphism (A, Inn(a) ◦ I)
∼−→ (A, Inn(b) ◦ I) if and only if

there exists c ∈ A and α ∈ K such that b = α(c · a · I(c))

Recall also the correspondence between unitary involutions and hermitian
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forms in the split-algebra case (by Proposition 1.2.2.1 (page 14), this is the case

of interest):

Correspondence between Unitary Involutions and Hermitian Forms. Let

K/k be a quadratic extension with non-trivial Galois automorphism x 7→ x and let

φH : Kd ×Kd → K be the (necessarily K/k-hermitian) form defined by

φH(v, w)
def
= vtr ·H · w

and let ∗H : Md(K) → Md(K) be the (necessarily K/k-unitary) involution defined

by

X∗H
def
= H ·Xtr ·H−1

Assertion:

1. any K/k-hermitian form Kd ×Kd → K is can be written as φH for some H

satisfying H
tr

= H

2. any K/k-unitary involution Md(K)→ Md(K) can be written as ∗H for some

H satisfying H
tr

= H

3. the involution induced by φH on Md(K) is exactly ∗H

4. the function φH 7→ ∗H descends to a bijection between isometry classes of

K/k-hermitian forms

Kd ×Kd −→ K

and K/k-unitary involutions

Md(K) −→Md(K)
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Assertions (1) and (3) are trivial. Assertion (2) is a special case of the “Clas-

sification of Unitary Involutions”. To verify (4), first note that if the vector space

Kd is transformed by A ∈ GLd(K) then the hermitian form φH is transformed into

(v, w) 7−→ (A(v))tr ·H · A(w) = vtr · (Atr ·H · A) · w

In other words, φH is transformed into φAtr·H·A. Second, note that if Md(K) is

transformed by Inn(A), then the involution ∗H is transformed into

X 7−→ A(H(A−1XA)trH−1)A−1 = (AHA
tr

)X
tr

(AHA
tr

)−1

In other words, ∗H is transformed to into ∗
A·H·Atr . This proves that the function

φH 7→ ∗H descends to a function from isometry classes of hermitian forms to isomor-

phism classes of unitary involutions. By parts (2) and (3) of this Correspondence,

the function is surjective. By part (3) of the “Classification of Unitary Involutions”,

it is injective: if two hermitian forms induce two involutions that are isomorphic,

then part (3) of the Classification guarantees a certain element “c”, and this element

can be applied to Kd in order to transform one hermitian form into the other.

When k = Qp′ (including p′ = 2), these classifications can be made much more

specific and it is well-known (see §10.6.5 of [31]) that for each dimension there are

exactly 2 isometry classes of hermitian forms, and if that dimension is even (as in

my situation), then these hermitian forms yield 2 non-isomorphic unitary similitude

groups, only one of which is quasi-split (if the dimension is odd, then the unitary

groups associated to the two hermitian forms are isomorphic and quasi-split). It is

clear that whether or not GQp is quasi-split depends on ∗p. I address this question

at the end of this subsection.
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I recall a correspondence between certain bilinear forms occurring frequently

in the theory of PEL local models and certain hermitian forms. Fix an element

ζ ∈ K such that ζ = −ζ. Let 0ψ : Kd ×Kd → k be an alternating k-bilinear form.

I call such a 0ψ internally hermitian if and only if for all A ∈Md(K) and v, w ∈ Kd

it is true that

0ψ(A(v), w) = 0ψ(v, A
tr

(w))

I use the following correspondence in §2.3 (page 45):

Extraction of Hermitian Forms. The function

0φ 7−→ {(v, w) 7→ TrK/k(ζ · 0φ(v, w))}

is a bijection between K/k-hermitian forms Kd×Kd → K and internally-hermitian

alternating k-bilinear forms Kd ×Kd → k. The inverse function is

0ψ 7−→
{

(v, w) 7→ ζ−1 · 0ψ(v, w) + 0ψ(ζ−1 · v, w)

2

}

Fix such a hermitian form 0φ. Note that the involution 0∗ induced by 0φ on

Md(K) is the same as the one induced by 0ψ.

Let 0G be the usual similitude group associated to 0∗, the functor assigning to

each (commutative) k-algebra R the group

0G(R)
def
= {g ∈Md(K ⊗k R) | g0∗⊗ id · g ∈ R×}

The following lemma will be used in §2.3 (page 45) to simplify and concretize the

description of certain lattice-chains:

Lemma 1.2.2.3. Consider the following 4 statements:
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1. 0G is quasi-split

2. there is a K-algebra automorphism of Md(K) transforming 0∗ into the standard

unitary involution X 7→ X
tr

3. there is a K-linear automorphism of Kd transforming 0φ into the standard

K/k-hermitian form (v, w) 7→ vtr · w

4. the involution 0∗ on Md(K) stabilizes a maximal order

When k = Qp′ and p′ 6= 2, these are equivalent.

Proof. (1) ⇐ (2) This is obvious from the definition of 0G. (2) ⇔ (3) This is

immediate from the above “Correspondence between Unitary Involutions and Her-

mitian Forms”. (2) ⇒ (4) This is trivial: by the Skolem-Noether theorem, 0∗

stabilizes the maximal order H ·Md(O) ·H−1 for some H. (1) ⇒ (3) This follows

from the discussion following the above “Classification of Unitary Involutions”: in

the case of k = Qp′ , the isomorphism class of the quasi-split unitary similitude group

corresponds to the isometry class of the standard hermitian form. (2) ⇐ (4) This

is just Proposition 1.2.2.2 (page 15).

Remark. Of course, several of the implications in the lemma are true without one

or both assumptions.

Because of this lemma, the following assumption will simplify the description

of the local model considerably:

Assumption. GQp is quasi-split.
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Remark. This is a contextual assumption; see the introduction. See §2.3 (page 45)

for the application of this assumption and the lemma.

1.2.3 Determining the reflex field

Let DC
def
= D⊗Q C and let D+ and D− be the +i and −i eigenspaces in DC of

the linear operator h(i). Since h is R-linear, the minimal polynomial of h(i) divides

T 2 + 1 and so DC = D+ ⊕ D−. Note that acting by h(z) on DC is the same as

acting by (z, z) on D+ ⊕D−.

Define hC : C×C→ DC to be the composite

C×C
∼−→ C⊗R C

h⊗id−→ (D ⊗Q R)⊗R C = DC

Note that h(z) ∈ G(R) and hC(z, 1) ∈ G(C) for z ∈ C×.

Define µ(z)
def
= hC(z, 1). As an operator on DC, this µ(z) acts by z on D+ and

by 1 on D−. In particular, µ is minuscule. The set of all µ coming from all the h in

a G(R)-conjugacy class is a G(C)-conjugacy class of cocharacters Gm
C → GC, and

this conjugacy class is defined over some finite extension E ⊃ Q, called the reflex

field.

On the other hand, if ε, ε are the two embeddings F ↪→ C

DC
∼−→ (D ⊗ε C)× (D ⊗ε C)opp

d⊗ z 7−→ (d⊗ z, d∗ ⊗ z)

(as C-algebras) and of course each of these D ⊗F C is isomorphic as an R-algebra

to Md(C), with the C-action depending on which embedding is used.
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Recalling that G(C) ∼= GLd(C)×C×, I can choose within the conjugacy class

of cocharacters one whose image is in the diagonal torus. Using this cocharacter,

the eigenspace D+ is, with respect to the decomposition

DC = Md(C)×Md(C)opp,

the subspace consisting of the entries making up the top r rows (this is the definition

of r) of the Md(C) factor together with the entries making up the bottom s := d− r

rows of the Md(C)opp factor. Then

rd = dimC(D+ ∩ (D ⊗ε C)) = dimC(D− ∩ (D ⊗ε C)opp)

sd = dimC(D− ∩ (D ⊗ε C)) = dimC(D+ ∩ (D ⊗ε C)opp)

By page 274 in [30], one way to construct E is to adjoin to Q the traces

TrC(x;D−) for all x ∈ D. Pick x ∈ D and, recalling the classification of involutions

over an algebraically-closed field, let (X,X
tr

) be the image of x under

D −→ DC = Md(C)×Md(C)opp

With an appropriate choice of basis, the C-linear operation of x on D is given by

the matrix

X ⊕ · · · ⊕X (d times)

on Md(C) ↪→ DC and by the matrix

X
tr ⊕ · · · ⊕Xtr

(d times)

on Md(C)opp ↪→ DC. By the choice of µ and the corresponding representation of

D+ and D−,

TrC(x;D−) = sTrC(X) + rTrC(X
tr

) = sTrC(X) + rTrC(X)
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Since x ∈ D, X ∈ Md(F ) ⊂ Md(C) and so E ⊂ F . It follows that if r = s then

TrC(x;D−) ∈ Q and E = Q. Conversely, if r 6= s then there are certainly x ∈ D

for which TrC(x;D−) /∈ Q, and E = F . Note that the assumption E = Q forces d

even.

Assumption. E = Q.

Remark. This assumption is justified because the case of E = F can be reduced to

the case of GL, which is known by [15]; see the proof of Lemma 3.1.4.1 (page 89).

By using the embedding Q ↪→ Qp, the cocharacter µ defines a cocharacter

Gm
Qp
→ GQp

. The G(Qp)-conjugacy class of this µ is (at least) defined over the

completion E (still called the reflex field) of E at the prime corresponding to E ↪→

Qp. The cocharacter µ itself is split by some (possibly non-trivial) extension E ′ ⊃ E

and defines a similar weight decomposition

Md(Fp)⊗Qp E
′ = Md(Fp)+ ⊕Md(Fp)−

as above.

1.3 Some commutative algebra lemmas

I will use the following several times:

Local Criteria for Projectivity (Theorem 1 on page 109 of [4]). Let R be a

commutative ring and let M be an R-module. The following are equivalent:

1. M is finitely-generated and projective.

23



2. M is finitely-generated and for every prime p ⊂ R, the module of fractions

Mp is a free finite-rank Rp-module and the function

Spec(R) −→ N

p 7−→ rankRp(Mp)

is locally constant with respect to the Zariski topology.

3. There are s1, . . . , sn ∈ R generating the trivial ideal R such that each principal

module of fractions Msi is a free finite-rank Rsi-module.

I frequently refer to the function in (2) as the “projective rank function” of

M . I frequently express the property in characterization (3) by saying that M is

“Zariski-locally on Spec(R)” a free and finite-rank R-module or something similar.

Permanence of Finite-Presentedness (Lemma 9 on page 21 of [4]). Let A be a

(commutative) ring and

0→ N →M → Q→ 0

an exact sequence of A-modules. If M is finitely-generated and Q is finitely-presented,

then N is finitely-generated.

In other words, any finite set of generators of a finitely-presented module is

automatically a finite-presentation.

The following handles a slight complication special to the case of an unramified

unitary group (see the proof of Proposition 2.4.6.1 (page 63)):

Lemma 1.3.0.1. Let A and B be commutative rings, f : A→ B a ring homomor-

phism, and M a B-module. Regard all B-modules as A-modules via f .
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If (1) B is a finitely-generated A-module, (2) M is a finitely-generated A-

module, (3) M is a projective A-module, and (4) f is faithfully flat, then M is a

projective B-module.

Proof. It is equivalent (see Corollary 2 on page 111 of [4]) to prove that M is a flat

and finitely-presented B-module. Projective modules are flat so by (3) and (4), M

is then B-flat. By (2) and the definition of the A-action, M is finitely-generated

over B. Let Bk � M be a B-module presentation and let N be the kernel (a

B-module). By (1), Bk is finitely-generated over A. Finitely-generated projective

modules are finitely-presented, so by “Permanence of Finite-Presentedness” N is

finitely-generated over A. As before, this means that N is finitely-generated over

B. This means that M is a finitely-presented B-module.

Localization of Hom-Sets (Proposition 2.10 on page 68 of [8]). Let A be a (com-

mutative) ring, p ⊂ A a prime, and M and N two A-modules. If M is finitely-

presented then the natural Ap-linear map

HomA-lin(M,N)p −→ HomAp-lin(Mp, Np)

f

s
7−→

{
m

t
7→ f(m)

st

}
is an isomorphism.

More generally, if A′ is an A-algebra which is flat as an A-module and M is

a finitely-presented A-module, then

HomA-lin(M,N)⊗A A′ −→ HomA′-lin(M ⊗A A′, N ⊗A A′)

is an A′-linear isomorphism. If M is free, then the flatness hypothesis is (obviously)

25



unnecessary.

In many papers local models, a submodule is sometimes assumed to be “Zariski-

locally a direct summand” (or something similar). Actually, this assumption is usu-

ally equivalent to the assumption that the submodule be a direct summand, period:

Lemma 1.3.0.2. Let A be a (commutative) ring and let

0→ N →M → Q→ 0

be a short-exact-sequence of R-modules. Assume that Q is finitely-presented. As-

sertion: the sequence splits if and only if for every prime p ⊂ A the localized

sequence

0→ Np →Mp → Qp → 0

also splits.

In particular, if M is free and finite-rank, and if N is finitely-generated, then

N ⊂M is a direct summand if and only if it is a direct summand Zariski-locally on

Spec(A) (any Zariski-local property implies the corresponding local property).

Proof. ⇒ This is trivial. ⇐ The short-exact-sequence is split if and only if the

induced homomorphism HomA-lin(Q,M)→ HomA-lin(Q,Q) is surjective. Since sur-

jectivity is a local property, this homomorphism is surjective if and only if all the

localized homomorphisms HomA-lin(Q,M)p → HomA-lin(Q,Q)p are surjective. By

Localization of Hom-Sets, the localized homomorphisms are really the same as the

induced homomorphisms HomAp-lin(Qp,Mp) → HomAp-lin(Qp, Qp). The hypothesis

is exactly that these localized homomorphisms are surjective.
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Remark. This lemma can also be proved using the “Local Criteria for Projectivity”.

I do this implicitly in §2.1.3 (page 31).

I frequently use the following extremely useful consequence of Nakayama’s

lemma:

Linear Independence of Minimal Generating Sets (Exercise 15 in Chapter

3 of [1]). Let A be a (commutative) ring and let M be a rank n free A-module. If

x1, . . . , xn generates M then it is automatically a basis.
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Chapter 2

Local models and affine flag varieties

2.1 Definition of the local model

Recall that I have identified

B ⊗Q Qp = Md(Fp)
opp

OB ⊗Z Zp = Md(OFp)
opp

ιp = ∗std

Now that the relationship between (D, ∗) and G is clear and I have restricted atten-

tion to E = Qp, I will no longer refer to the global objects. For simplicity of notation,

refer to Fp,OFp , ∗p, ψp etc. simply as F,O, ∗, ψ etc. I will now use r = s = d/2 with-

out warning.

2.1.1 The base lattice chain

I need to fix a chain (· · · ⊂ Λ0 ⊂ Λ1 ⊂ · · · ) of OB-lattices in V , i.e. a chain

of left Md(O)opp-submodules of Md(F ), each of which spans Md(F ) as an F -vector

space. I further require that:

• The chain is “periodic”, in the sense that for any Λ in the chain, pΛ is also in

the chain.
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• The chain is “ψ-self-dual”, in the sense that for every Λ in the chain, Λ̂ (see

§1.2, page 11) is also in the chain.

See Definition 3.1 on page 69-70 and Definition 3.18 on page 77-78 of [30]. I will

define a particularly convenient such lattice chain in §2.3 (page 45). For now, assume

that such a lattice chain exists.

2.1.2 Definition of the local model

Here I recall the definition of the local model Mloc : Zp-Algebras→ Sets. The

fact that the domain is Zp-Algebras is due to the fact that E = Qp, which implicitly

depends on the cocharacter µ.

The following comment is needed to make sense of the definition of a PEL

local model.

Let R be a (commutative) ring, let M be a finitely-generated projective R-

module, and let T : M →M be an R-linear endomorphism. Recall from the “Local

Projectivity Criteria” (page 23) that M is Zariski-locally free. If S ⊂ R is a mul-

tiplicative subset such that S−1M is a free S−1R-module, then the endomorphism

S−1T : S−1M → S−1M induced by T has a determinant,

detS−1R(S−1T ;S−1M) ∈ S−1R.

Covering Spec(R) by multiplicative subsets S as above gives a collection of deter-

minants which patch together into a global determinant

detR(T ;M) ∈ R.
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Definition: The Original Local Model (Definition 3.27 on page 89 of [30]).

Define the functor

Mloc : Zp-Algebras→ Sets

by assigning to each (commutative) Zp-algebra R the set of commutative diagrams

· · · inc⊗ id−→ Λ0 ⊗Zp R
inc⊗ id−→ Λ1 ⊗Zp R

inc⊗ id−→ · · · inc⊗ id−→ Λd ⊗Zp R
inc⊗ id−→ · · ·

· · · ↓ ↓ · · · ↓ · · ·

· · · −→ T0 −→ T1 −→ · · · −→ Td −→ · · ·

of Md(O ⊗Zp R)opp-modules satisfying:

1. OLM1

For each i, if pΛi = Λj, then the isomorphism − · p : Λi
∼−→ Λj descends to

an isomorphism Ti
∼−→ Tj

2. OLM2

each Λi ⊗Zp R→ Ti is surjective

3. OLM3

each Ti is Zariski-locally on Spec(R) a free finite rank R-module

4. OLM4

for each i, detR(b;Ti) = detE′(b;Md(F )−) for all b ∈Md(O).

(Recall that E ′ acts on Md(F )− since it is a submodule of Md(F )⊗Qp E
′.)

5. OLM5

For each Λ = Λi, the composite

T∨Λ −→ (Λ⊗Zp R)∨ ∼= Λ̂⊗Zp R −→ TΛ̂
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is the 0 map. (here ∨ = HomR-lin(−, R))

2.1.3 Changing from quotients to kernels

Notice that in the definition of Mloc, specifying the object Ti is the same as

specifying the kernel Ki of Λi ⊗Zp R � Ti. To more closely match the description

of affine flag varieties, I need to express the points of Mloc using the Ki instead of

the Ti. I need to determine what conditions equivalent to OLM must be imposed

on the Ki.

Changing OLM3 By the “Local Projectivity Criteria”, OLM3 is equivalent

to finitely-generated projectivity, so each inclusion Ki ⊂ Λi ⊗Zp R has an R-linear

splitting. Conversely, if Ki ⊂ Λi ⊗Zp R splits R-linearly, then Λi ⊗Zp R � Ti does

also, Ti is projective, and by the “Local Projectivity Criteria”, OLM3 holds.

Changing OLM4 It is clear from the definition that

detE′(b;Md(F )) = detE′(b;Md(F )−) · detE′(b;Md(F )+)

detR(b; Λi ⊗Zp R) = detR(b;Ti) · detR(b;Ki)

so OLM4 is equivalent to

detR(b;Ki) = detE′(b;Md(F )+)

Changing OLM5 An element of T∨Λ is the same as anR-linear map f : Λ→ R

whose kernel contains KΛ. Since Λ is a lattice, any such functional f is of the form

ψR(−, λ) for some λ ∈ Λ̂⊗Zp R. Define

K⊥Λ
def
= {λ ∈ Λ̂⊗Zp R | ψR(KΛ, λ) = 0}.
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Then the requirement that KΛ ⊂ ker(f) is equivalent to the requirement that λ ∈

K⊥Λ . The last condition in Mloc is therefore equivalent to the statement that KΛ̂ ⊃

K⊥Λ . The reverse inclusion KΛ̂ ⊂ K⊥Λ will follow from:

Lemma 2.1.3.1. There exists a short-exact-sequence

0 −→ HomR-lin(KΛ, R) −→ Λ̂⊗Zp R
s−→ K⊥Λ −→ 0

of R-modules such that s is a splitting of K⊥Λ ⊂ Λ̂⊗Zp R.

In particular, K⊥Λ is R-projective and has the same projective rank function as

KΛ̂.

Note that the short-exact-sequence only proves that the projective ranks of KΛ

and K⊥Λ are complementary, but the projective rank of KΛ is always 1
2

rankZp(Λ).

Proof. Let pT be the composition

Λ⊗Zp R � TΛ ↪→ Λ⊗Zp R,

using R-projectivity of TΛ. Interpreting f ∈ Λ̂ ⊗Zp R as an R-linear functional

Λ⊗Zp R→ R, the composition f ◦ pT is 0 on KΛ and so the function

f 7→ f ◦ pT

defines an R-linear map

Λ̂⊗Zp R −→ K⊥Λ (2.1)

It is immediate from the definition that (2.1) is an R-linear splitting of K⊥Λ ⊂ Λ̂⊗ZpR

(in particular, (2.1) is surjective).
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Let pK be the splitting

Λ⊗Zp R � KΛ

and define an R-linear map

HomR-lin(KΛ, R) −→ Λ̂⊗Zp R (2.2)

by the rule f 7→ f ◦ pK . Since pK is a splitting of the inclusion, (2.2) is injective. It

remains to show middle-exactness. Obviously, pK ◦ pT = 0. On the other hand, if

f ∈ Λ̂ ⊗Zp R and f ◦ pT = 0, then precomposing with the splitting TΛ ↪→ Λ ⊗Zp R

gives that f |TΛ
= 0 also, and so f is the inflation along pK of a functional on KΛ.

By Lemma 2.1.3.1, (Λ̂⊗Zp R)/K⊥Λ is R-projective and has the same projective

rank function as (Λ̂ ⊗Zp R)/KΛ̂. Localizing and using “Linear Independence of

Minimal Generating Sets”, the canonical surjection

(Λ̂⊗Zp R)/K⊥Λ � (Λ̂⊗Zp R)/KΛ̂

is an isomorphism. A typical “five-lemma” argument then shows that K⊥Λ = KΛ̂.

Therefore, Mloc(R) can be expressed as all those commutative diagrams

· · · inc⊗ id−→ Λ0 ⊗Zp R
inc⊗ id−→ Λ1 ⊗Zp R

inc⊗ id−→ · · · inc⊗ id−→ Λd ⊗Zp R
inc⊗ id−→ · · ·

· · · ↑ ↑ · · · ↑ · · ·

· · · −→ K0 −→ K1 −→ · · · −→ Kd −→ · · ·

of Md(O ⊗Zp R)-modules satisfying:

• For each i, if pΛi = Λj, then the isomorphism − · p : Λi
∼−→ Λj restricts to an

isomorphism Ki
∼−→ Kj
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• Each Ki → Λi ⊗Zp R is injective

• Each Ki ↪→ Λi ⊗Zp R splits R-linearly

• For each i, detR(b;Ki) = detE′(b;Md(F )+) for all b ∈Md(O)

• KΛ̂ = K⊥Λ for each Λ = Λi.

2.2 Compressing the local model with Morita equivalence

The definition of the local model is a somewhat bloated. My goal in this section

is to use Morita equivalence to work within O-Modules instead of Md(O)-Modules.

The conditions OLM4 and OLM5 are not directly digestible by Morita equivalence,

so it is not completely trivial to determine what conditions should be imposed in

their place after the equivalence has been applied.

2.2.1 Recalling the Morita equivalence

Let R be a (commutative) ring. I only need the simplest case of Morita

equivalence, where the “progenerator” is Rd. Morita equivalence is the statement

that the functor

MrtaR
def
= HomR-lin(Rd,−) : R-Modules→ (right)Md(R)-Modules

is an equivalence of categories (the action of Md(R) is by precomposition). An

explicit quasi-inverse to Morita equivalence is the functor

Mrta−1
R

def
= −⊗Md(R) Rd
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I want to replace the local model by the functor

Zp-Algebras −→ Sets

R 7−→ {Mrta−1
O⊗ZpR

(∆) | all ∆ ∈Mloc(R)}

Obviously, it will be necessary to know the following:

Lemma 2.2.1.1. Let Λ ⊂ F d be an O-lattice. Then

MrtaO(Λ)⊗Zp R = MrtaO⊗ZpR
(Λ⊗Zp R)

Proof. This is the trivial case of “Localization of Hom-Sets”.

2.2.2 Morita equivalence and bilinear products

Let R be a commutative Zp-algebra and S a (commutative) R-algebra. Let

s 7→ s be an involution on S such that r = r for all r ∈ R. Let ι : Md(S)→ Md(S)

be an involution (assumed to be multiplication-reversing) such that ι(s) = s for all

s ∈ S.

LetM andM ′ be right Md(S)-modules (or equivalently, left Md(S)opp-modules).

Let ψ : M ×M ′ → R be an R-bilinear form such that ψ(x · b, y) = ψ(x, y · ι(b)) for

all b ∈Md(S) and x, y ∈M .

Suppose M = MrtaS(N) and M ′ = MrtaS(N ′), for S-modules N,N ′. I want

to construct an R-bilinear product 0ψ : N ×N ′ → R naturally corresponding to ψ.

It is equivalent to construct the corresponding R-linear map N → HomR-lin(N ′, R).

Give HomR-lin(M ′, R) a right-Md(S)-module structure by the rule

(F · b)(m′) def
= F (m′ · ι(b))
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Then the R-linear adjoint map

ψad : M −→ HomR-lin(M ′, R) (2.3)

induced by ψ is automatically right-Md(S)-linear:

Fm·b(m
′)

def
= ψ(m · b,m′) = ψ(m,m′ · ι(b)) def

= Fm(m′ · ι(b)) = (Fm · b)(m′)

Give HomR-lin(N ′, R) an S-module structure by the rule

(s · g)(n′)
def
= g(sn′)

Give HomR-lin(HomS-lin(Sd, N ′), R) a right Md(S)-module structure by the rule

(F · b)(ϕ)
def
= F (ϕ ◦ btr

)

The following lemma says roughly that MrtaS(N∨) = MrtaS(N)∨, where in both

cases ∨ = HomR-lin(−, R):

Lemma 2.2.2.1. Using the above actions, the function

HomS-lin(Sd,HomR-lin(N ′, R)) −→ HomR-lin(HomS-lin(Sd, N ′), R) (2.4)

f 7−→ Ff
def
=

{
ϕ 7→

d∑
i=1

f(ei)[ϕ(ei)]

}

is a right-Md(S)-linear isomorphism.

Proof. It is easy to verify that the function is a group isomorphism. The linearity
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is proved by letting bi,j ∈ S be the entries of b and checking directly:

Ff ·b(ϕ)
def
=

d∑
i=1

(f · b)(ei)[ϕ(ei)]

=
d∑
i=1

f

(
d∑
j=1

bj,iej

)
[ϕ(ei)]

(because f is S-linear) =
d∑
i=1

(
d∑
j=1

(bj,i · f(ej))[ϕ(ei)]

)

(S acting on HomR-lin(N ′, R)) =
d∑
i=1

(
d∑
j=1

f(ej)[bj,i · ϕ(ei)]

)

(because ϕ is S-linear) =
d∑
j=1

f(ej)

[
ϕ

(
d∑
i=1

bj,iei

)]

=
d∑
j=1

f(ej)[ϕ(b
tr

(ej))]

= Ff (ϕ ◦ b
tr

)

def
= (Ff · b)(ϕ)

Because of Proposition 1.2.2.2 (page 15), I may assume for my applications

that ι(b) = b
tr

. In that case, the codomains of (2.3) and (2.4) are identical as

right-Md(S)-modules, and composing (2.3) with the inverse of (2.4) produces the

right-Md(S)-linear map

HomS-lin(Sd, N) −→ HomS-lin(Sd,HomR-lin(N ′, R)) (2.5)

Because MrtaS = HomS-lin(Sd,−) is fully-faithful, (2.5) is the image of a

unique S-linear map

N → HomR-lin(N ′, R)
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By definition of the action of S on HomR-lin(N ′, R), the product

0ψ : N ×N ′ → R

induced by N → HomR-lin(N ′, R) is R-bilinear and satisfies

0ψ(sn, n′) = 0ψ(n, sn′)

for all s ∈ S and n ∈ N , n′ ∈ N ′.

Note that the only non-canonical input was the original product ψ. Because

MrtaS is exact, the adjoint map m 7→ ψ(m,−) is injective or surjective if and only

if n 7→ 0ψ(n,−) is, so ψ is non-degenerate or perfect if and only if 0ψ is.

2.2.3 Morita equivalence and lattices

Let

0ψ : F d × F d −→ Qp

be the Qp-bilinear form guaranteed by the previous subsection for the choices

R = Qp

S = F

(R→ S) = (Qp ⊂ F )

M,M ′ = Md(F )

ι = the usual ι : Md(F )→Md(F )

ψ = the usual ψ : Md(F )×Md(F )→ Qp
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Let Λ be an Md(O)opp-lattice in Md(F ). Set

0Λ
def
= Mrta−1

O (Λ)

Consider F d also as an O-module, consider Md(F ) as a left-Md(O)opp-module, fix

permanently an identification MrtaO(F d) = Md(F ), and use the embedding 0Λ ↪→

F d that is the image under Mrta−1
O of the inclusion Λ ⊂Md(F ). Define

0̂Λ
def
= {x ∈ F d | 0ψ(0Λ, x) ⊂ Zp}

(note that I need an inclusion 0Λ ↪→ F d in order to make the preceding definition)

Proposition 2.2.3.1. MrtaO(0̂Λ) = Λ̂.

Proof. This is true simply because MrtaO is an equivalence of categories and the

dual lattices can be expressed categorically. In more detail, by definition Λ̂ is the

image of the Md(O)opp-linear map

HomZp-lin(Λ,Zp)
extend−→ HomQp-lin(Md(F ),Qp) ∼= Md(F ) (2.6)

(the ‘extend’ map uses the fact that Λ spans Md(F ), and the isomorphism is that

induced by the perfect form ψ).

Similarly, by definition 0̂Λ is the image of the O-linear map

HomZp-lin(0Λ,Zp)
extend−→ HomQp-lin(F d,Qp) ∼= F d (2.7)

(the ‘extend’ map uses the fact that Λ spans Md(F ), and the isomorphism is that

induced by the necessarily perfect form 0ψ).
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Equation (2.4) in the previous subsection applied to the case of

R = Zp

S = O

(R→ S) = (Zp ⊂ O)

and a slightly different version

HomO-lin(Od,HomQp-lin(F d,Qp))
∼−→ HomQp-lin(HomO-lin(Od, F d),Qp)

of that same isomorphism together with the fact that MrtaO(0ψ) = ψ (in the sense

of the previous subsection) imply that if you apply MrtaO = HomO-lin(Od,−) to

(2.7) then you get (2.6). The fact that MrtaO is an equivalence of categories means

that the images, MrtaO(0̂Λ) on the one hand and Λ̂ on the other, correspond.

2.2.4 Translating the PEL duality condition

Let Λ be an Md(O)opp-lattice in Md(F ). In this subsection, redefine

0ψ : 0Λ× 0Λ̂ −→ Zp

to be the Zp-bilinear form guaranteed by §2.2.2 for the choices

R = Zp

S = O

(R→ S) = (Zp ⊂ O)

ι = the restriction to Md(O) of the usual ι

ψ = the restriction to Md(O)×Md(O) of the usual ψ
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(here is another appearance of the assumption on ι). Note that by Proposition

2.2.3.1 0ψ is the same as the restriction to 0Λ× 0Λ̂ of the 0ψ defined in §2.2.3.

Let R be a commutative Zp-algebra and set R := O⊗ZpR. Let KΛ ⊂ Λ⊗ZpR

be an Md(R)opp-submodule and set

0KΛ
def
= Mrta−1

R (KΛ)

Define

0K⊥Λ
def
= {λ ∈ 0Λ̂⊗Zp R | 0ψR(0KΛ, λ) = 0}.

Proposition 2.2.4.1. MrtaR(0K⊥Λ ) = K⊥Λ .

Proof. Taking into account Proposition 2.2.3.1 (page 39), this is true simply because

MrtaR is an equivalence of categories (and therefore commutes with the kernel

operator) and the operation KΛ 7→ K⊥Λ can be expressed as

K⊥Λ = ker(Λ̂ −→ HomZp-lin(Λ,Zp))

and similarly for 0KΛ 7→ 0K⊥Λ .

2.2.5 Translating the determinant condition

Let R be a (commutative) Zp-algebra and for simplicity of notation, set R :=

O ⊗Zp R. Choose a point {Ki}i∈Z ∈ Mloc(R). Condition OLM4 certainly forces

the projective rank function associated to each Ki to be the constant function

Spec(R) −→ N

p 7−→ d(2s) = d2
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I claim that this rank requirement is sufficient, i.e. that any Md(R)opp-submodule

Ki of Λi ⊗Zp R with constant projective rank function p 7→ d2 automatically has

the required generic determinant. This answers the question in §2.2.1 since a rank

requirement is easily translated by Morita equivalence.

In fact, a general statement including the above claim can be proven:

Proposition 2.2.5.1. Let R be a (commutative) O-algebra. Let M and N be left-

Md(R)-modules that are projective as R-modules. If M and N have the same

projective rank functions Spec(R)→ N then for any b ∈Md(R),

detR(b;M) = detR(b;N)

To prove the above claim using this proposition, let i be arbitrary, set M = Ki

and N = Rd ⊕ · · · ⊕ Rd (d/2 times) and use Lemma 1.3.0.1 (page 24) to supply

the projectivity hypothesis on M . This proposition implies that for b ∈ Md(O),

detR(b;Ki) is just the product of d/2 copies of the “ordinary” O-valued determinant

of b. One can easily compute detE′(b;Md(F )+) and see that the two are equal.

Proof. Let M ′ and N ′ be R-modules such that MrtaR(M ′) = M and MrtaR(N ′) =

N . Since M = M ′ ⊕ · · · ⊕M ′ and N = N ′ ⊕ · · · ⊕N ′ as R-modules, it is true that

M ′ and N ′ are also projective as R-modules. Let S ⊂ R be a multiplicative subset

such that S−1M ′ and S−1N ′ are both free. The hypothesis implies that

rankS−1R(S−1M ′) = rankS−1R(S−1N ′)

(since Mrta multiplies ranks by d), so S−1M ′ and S−1N ′ are isomorphic as S−1R-

modules. This means that S−1M and S−1N are isomorphic as right-Md(S
−1R)-
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modules, hence also as right-Md(R)-modules (via restriction-of-scalars). Therefore,

for any b ∈Md(R),

detS−1R(b;S−1M) = detS−1R(b;S−1N)

Varying S to get an open cover of Spec(R), and patching the generic determinants

together finishes the proof.

Remark. The claim can also be proven by a short matrix computation.

2.2.6 Morita equivalence and similitude groups

Consider the vector space F d and the Qp-bilinear form 0ψ : F d × F d → Qp as

in §2.2.3 (page 38). Since ψ is non-degenerate and perfect, 0ψ is also and therefore

induces an involution

0∗ : EndF -lin(F d) −→ EndF -lin(F d)

In this subsection, I prove that the similitude group GQp defined in §1.2 (page 11)

can be expressed using only the data F d, 0ψ, 0∗, etc. rather than Md(F ), ψ, ∗, etc.

Recall from §1.2 (page 11) that Md(F ) acts by left-multiplication on V =

Md(F ) and the involution induced by ψ on this left-acting Md(F ) is none other

than ∗, i.e. ψ(bx, y) = ψ(x, b∗y) for all b, x, y ∈ Md(F ). If b ∈ Md(F ) is considered

as an F -linear map F d → F d, then MrtaF (b) is a right-Md(F )-linear map Md(F )→

Md(F ), and this map is none other than multiplication by b on the left of Md(F )

(linearity follows from associativity of multiplication in Md(F )).
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A careful inspection of the construction of 0ψ shows that ψ can be expressed

using 0ψ in a very simple way: if x, y ∈Md(F ), then

ψ(x, y) =
d∑
i=1

0ψ(xi, yi)

where xi and yi are the ith columns of the matrices x, y. This is verified as follows.

Writing a matrix x ∈ Md(F ) = MrtaF (F d) as a d-tuple (x1, . . . , xd) of column

vectors corresponds to writing MrtaF (F d) = HomF -lin(F d, F d) as the d-fold product

of HomF -lin(F, F d) ∼= F d. Denote by

0ψad : F d −→ HomQp-lin(F d,Qp)

the morphism induced by 0ψ. Writing all matrices as d-tuples of column vectors as

above, and considering the isomorphism from Lemma 2.2.2.1 (page 36), the map

ψad : Md(F ) −→ HomQp-lin(Md(F ),Qp)

induced by ψ is written as

ψad(x1, . . . , xd) =

(
(y1, . . . , yd) 7−→

d∑
i=1

0ψad(xi)[yi]

)

Since 0ψad(xi)[yi] is just another way to write 0ψ(xi, yi), the claim is proved.

The preceding relationship trivially implies the following: if x, y ∈ F d, and

if X, Y ∈ Md(F ) are the matrices whose ith columns are x, y (respectively) and

0 in all other entries, then ψ(X, Y ) = 0ψ(x, y). A consequence of this is that the

involution 0∗ induced by 0ψ on EndF -lin(F d) = Md(F ) is identical to the involution

∗ induced by ψ on Md(F ). A further consequence of this is that the group GQp

introduced in §1.2 (page 11) can also benefit from the simplification afforded by
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Morita equivalence: GQp can also be described as the the functor assigning to any

(commutative) Qp-algebra R the group

GQp(R) = {g ∈ EndF -lin(F d)⊗Qp R | g
0∗⊗ id · g ∈ R×}

Remark. One of the reasons for expressing GQp using 0∗ rather than ∗ is that it is

not obvious that the assumption of quasi-splitness implies anything convenient about

ψ (this is related to the remark made in §1.2 (page 11) that ι does not determine

ψ). However, once the above simplification is made, Lemma 1.2.2.3 (page 19) can

be used.

Now that I no longer need to refer to the objects ψ, ∗, φ, etc. I abuse notation

by dropping the superscript “0” from 0ψ, 0∗, 0φ, etc.

2.3 Most simplified description of the local model

I make three final simplifications before stating the most condensed definition

of the local model.

Because of Lemma 1.2.2.3 (page 19), the assumption made on page 20, and

the description of GQp in the previous subsection, I know that GQp is the similitude

group of the hermitian form defined by the identity matrix. I claim that I can

replace this hermitian form by the the hermitian form defined by the anti -identity

matrix. This is possible because, by the classification of hermitian forms over local

fields, an isomorphism class of hermitian forms is determined (see 1.6(ii) on page

351 in [31]) by its dimension (which is the same for both), and the image of its

determinant (meaning the determinant of the Gram matrix defining the form) in
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the norm class group Q×p /NF/Qp(F
×). The determinant of the anti-identity matrix

is ±1 and for unramified extensions the norm map NF/Qp : O× → Z×p is surjective,

so both these hermitian forms are in the same class. I now use φ to refer to the

hermitian form defined by the anti-identity matrix.

The second simplification is to notice that all concepts of duality and orthog-

onality can be rewritten to use φ instead of ψ. The explicit correspondence between

alternating forms like ψ and hermitian forms φ on page 19 implies that

Λ̂ = {w ∈ F d | φ(Λ, w) ⊂ O}

K⊥Λ = {λ ∈ Λ̂⊗Zp R | φR(KΛ, λ) = 0}

where Λ is an O-lattice in F d, R is a (commutative) Zp-algebra, and KΛ is an

(O ⊗Zp R)-submodule of Λ⊗Zp R.

Because of the previous two simplifications, I can fulfill my promise from §2.1.1

(page 28) to construct a self-dual chain of left-Md(O)opp-lattices in Md(F ). Because

φ is defined by the anti -identity matrix, extending

Λi = p−1Oi ⊕Od−i (0 ≤ i ≤ d)

periodically produces periodic φ-self-dual lattice-chain in F d (this is the usual lattice-

chain used for local models associated to unitary groups). By Proposition 2.2.3.1,

applying MrtaO to {Λi}i∈Z gives the lattice-chain I promised in §2.1.1 (although I

no longer care about that lattice chain, provided that it exists).

Remark. One reason to change to the hermitian form defined by the anti-identity

matrix is that the construction of a periodic self-dual lattice chain is obvious.
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The third simplification is to replace each point

· · · inc⊗ id−→ Λ0 ⊗Zp R
inc⊗ id−→ Λ1 ⊗Zp R

inc⊗ id−→ · · · inc⊗ id−→ Λd ⊗Zp R
inc⊗ id−→ · · ·

· · · ↑ ↑ · · · ↑ · · ·

· · · −→ K0 −→ K1 −→ · · · −→ Kd −→ · · ·

of Mloc(R) with the finite diagram

Λ0 ⊗Zp R
inc⊗ id−→ Λ1 ⊗Zp R

inc⊗ id−→ · · · inc⊗ id−→ Λd/2 ⊗Zp R

↑ ↑ · · · ↑

K0 −→ K1 −→ · · · −→ Kd/2

The original diagram can be reconstructed from this by the properties

Λ−i = Λ̂i

Λi = pΛi+d

K−i = K⊥i

Ki = pKi+d

The only requirements that survive on the finite diagram are

K0 = K⊥0

K⊥d/2 = K−d/2 (= pKd/2)

So, the most condensed description of my local model is:

Definition: The Simplified Description of the Local Model. The functor

Mloc can also be described as assigning to each (commutative) Zp-algebra R the set
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of all commutative diagrams

Λ0 ⊗Zp R −→ Λ1 ⊗Zp R −→ · · · −→ Λd/2−1 ⊗Zp R −→ Λd/2 ⊗Zp R

↑ ↑ · · · ↑ ↑

K0 −→ K1 −→ · · · −→ Kd/2−1 −→ Kd/2

of (O ⊗Zp R)-modules such that

1. SLM1

each Ki → Λi ⊗Zp R is injective

2. SLM2

each inclusion Ki ↪→ Λi ⊗Zp R splits R-linearly

3. SLM3

the projective rank function Spec(R)→ N associated to each Ki is the constant

function p 7→ d

(note that projectivity follows from SLM2 and that rankR(Λi) = 2d)

4. SLM4

K⊥0 = K0 and K⊥d/2 = pKd/2 with respect to the restrictions Λ0 ×Λ0 → O and

Λd/2 × pΛd/2 → O of φ.
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2.4 Definition of the enlarged models

2.4.1 Alternate description of the local model using a single base

lattice

This subsection rephrases the definition of Mloc so that its points consist of

submodules of the single lattice Λ0 and it will then be easier to see how to enlarge

the models satisfactorily to a degeneration of the affine Grassmannian to the full

affine flag variety.

For i = 1, . . . , d, let αi : F d → F d be the F -linear map

(x1, . . . , xd) 7→ (x1, . . . , xi−1, pxi, xi+1, . . . , xd)

Then αi induces an O-module isomorphism Λi
∼−→ Λi−1. Define

α[i]
def
= αi ◦ · · · ◦ α1

Then α[i] induces an O-module isomorphism Λi
∼−→ Λ0. Define

α[i] def
= αd ◦ · · · ◦ αd−i+1

Pick a (commutative) Zp-algebra R, and consider a point

Λ0 ⊗Zp R −→ Λ1 ⊗Zp R −→ · · · −→ Λd/2 ⊗Zp R

∪ ∪ · · · ∪

K0 −→ K1 −→ · · · −→ Kd/2

of Mloc(R).
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Specifying Ki ⊂ Λi ⊗Zp R is the same as specifying α[i](Ki) ⊂ Λ0 ⊗Zp R, so

define

Li
def
= α[i](Ki)

(note that L0 = K0). The condition that Λi ⊗Zp R → Λi+1 ⊗Zp R restrict to

Ki → Ki+1 is equivalent to the condition that αi+1(Li) ⊂ Li+1 (note that αi+1◦α[i] =

α[i+1]). So, a point of Mloc(R) is equivalent to a tuple (L0, . . . , Ld/2) satisfying

αi+1(Li) ⊂ Li+1 for each 0 ≤ i < d/2 and the implicit equivalents of SLM.

For SLM2, note that if s is an R-linear splitting of Ki ↪→ Λi ⊗Zp R then

α−1
[i] ◦ s ◦α[i] is an R-linear splitting of Li ⊂ Λ0⊗Zp R, so that condition is identical:

require that each inclusion Li ⊂ Λ0 ⊗Zp R split R-linearly. It is obvious that the

projective rank condition SLM3 is the same for the Ki as for the Li.

For SLM4, note that the condition K⊥0 = K0 is equivalent to the condition

L⊥0 = L0 tautologically. The fact that

φ(α[i](x), y) = φ(x, α[i](y))

and

α[d/2] ◦ α[d/2] = p

suggests the following:

Lemma 2.4.1.1. K⊥d/2 = pKd/2 (⊂ pΛd/2) with respect to φ : Λd/2 × pΛd/2 → O if

and only if L⊥d/2 = Ld/2 with respect to φ : Λ0 × Λ0 → O.

Proof. ⇒ ⊂ If y ∈ Λ0 then α[d/2](y) ∈ pΛd/2, and since

φR(Ld/2, y) = φR(α[d/2](Kd/2), y) = φR(Kd/2, α
[d/2](y)),
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the fact that φ(Ld/2, y) = 0 implies that α[d/2](y) ∈ K⊥d/2 = pKd/2. This means that

py = α[d/2](α
[d/2](y)) ∈ α[d/2](pKd/2) = pLd/2

and so y ∈ Ld/2. ⊃ This is easy to verify: if x ∈ Ld/2 then x = α[d/2](x
′) for some

x′ ∈ Kd/2 so

φR(Ld/2, x) = φR(α[d/2](Kd/2), α[d/2](x
′)) = pφR(Kd/2, x

′) = 0

and so x ∈ L⊥d/2. ⇐ ⊂ If y ∈ pΛd/2 is such that φR(Kd/2, y) = 0 then write y = py′

for some y′ ∈ Λd/2 so that

φR(Ld/2, α[d/2](y
′)) = φR(Kd/2, α

[d/2](α[d/2](y
′))) = φR(Kd/2, y) = 0

using the same ideas as before. Since α[d/2](y
′) ∈ Λ0, the hypothesis gives α[d/2](y

′) ∈

Ld/2 and so y′ ∈ Kd/2. ⊃ This is similar.

Definition: The Alternate Description of the Local Model. According to

the previous subsection, the functor Mloc can also be described as assigning to each

(commutative) Zp algebra R, the set of all tuples (L0, L1, . . . , Ld/2) of (O ⊗Zp R)-

submodules of Λ0 ⊗Zp R satisfying:

1. ALM1

αi+1(Li) ⊂ Li+1 for all i

2. ALM2

each inclusion Li ⊂ Λ0 ⊗Zp R splits R-linearly

3. ALM3

the projective rank function Spec(R)→ N associated to each Li is the constant

function p 7→ d
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4. ALM4

L⊥0 = L0 and L⊥d/2 = Ld/2 with respect to the restriction φ : Λ0 × Λ0 → O.

This description is the key to constructing larger schemes analogous to Mloc.

2.4.2 Definition of the larger models

In this subsection, I will define a family of functors

M(m,n) : Zp-Algebras→ Sets

over all m,n ∈ N such that M(0,1) = Mloc, and such that the generic (resp. special)

fibers form an increasing and exhaustive filtration of the affine Grassmannian (resp.

full affine flag variety). Fix m,n ∈ N.

The anti-identity matrix id∨ induces a non-degenerate hermitian Zp[t]-bilinear

form

φ :
t−mO[t]d

tnO[t]d
× t−mO[t]d

tnO[t]d
−→ t−2mO[t]

tn−mO[t]

by the rule (v, w) 7→ vtr · id∨ ·w, where w 7→ w is induced by the non-trivial element

of Gal(F/Qp). For an R[t]-submodule L ⊂ t−mR[t]d/tnR[t]d define L⊥ in the usual

way:

L⊥
def
= {v ∈ t−mR[t]d/tnR[t]d | φR(L, v) = 0}

(note that “0” here refers to the zero-element of the codomain t−2mO[t]/tn−mO[t])

Note that when (m,n) = (0, 1) this recovers “φ : Λ0 × Λ0 → O” and the

concept of “⊥” from the previous subsection via the identification O[t]d/tO[t]d = Λ0.

Therefore, the abuse of notation is acceptable.
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The rule

(x1, . . . , xd) 7→ (x1, . . . , xi−1, (t+ p)xi, xi+1, . . . , xd)

induces an O[t]-linear map

αi :
t−mO[t]d

tnO[t]d
−→ t−mO[t]d

tnO[t]d

When (m,n) = (0, 1), this map is the restriction to Λ0 of the “αi” from the previous

subsection via the identification O[t]d/tO[t]d = Λ0, so the abuse of notation is

acceptable. As before, define

α[i]
def
= αi ◦ · · · ◦ α1

The following definition is based on ALM and is strongly analogous to the sym-

plectic case in [15]:

Definition: The Enlarged Model (preliminary). Define the functor

M(m,n) : Zp-Algebras→ Sets

by assigning to each (commutative) Zp-algebra R the set (for simplicity of notation,

set R := O⊗ZpR) of tuples (L0, L1, . . . , Ld/2) of R[t]-submodules of t−mR[t]d/tnR[t]d

satisfying:

• αi+1(Li) ⊂ Li+1 for all 0 ≤ i < d/2

• each inclusion Li ⊂ t−mR[t]d/tnR[t]d splits R-linearly

• the projective rank function Spec(R)→ N associated to each Li is the constant

function p 7→ d(m+ n)

(note that rankR(t−mR[t]d/tnR[t]d) = 2d(m+ n))
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• L⊥0 = L0 and L⊥d/2 = Ld/2 with respect to φR.

It is clear that M(0,1) = Mloc.

Remark. I will later embed M
(m,n)
Fp

into a full affine flag variety F`aff
Fp and the

freedom of two parameters m,n is necessary in order to exhaust F`aff
Fp.

I now reformulate the definition of M(m,n) so that it is more obviously a de-

generation from the affine Grassmannian over Qp to the full affine flag variety over

Fp. Now that the variable t and the parameters m,n have been introduced, I am in

a sense returning to the point of view used for SLM.

Define V = O[t, t−1, (t+ p)−1]d and submodules

V0 = O[t]d

V1 = (t+ p)−1O[t]⊕O[t]d−1

...

Vd−1 = (t+ p)−1O[t]d−1 ⊕O[t]

Vd = (t+ p)−1O[t]d

Note that the α[i], as O[t]-linear maps of V , induce isomorphisms

α[i] :
t−mVi
tnVi

∼−→ t−mO[t]d

tnO[t]d
(2.8)

(these are the generalizations of the isomorphisms “α[i] : Λi
∼−→ Λ0” from §2.4.1)

LetR be a (commutative) Zp-algebra and consider (L0, L1, . . . , Ld/2) ∈M(m,n)(R).

Let Li be the submodule of t−mVi/tnVi such that α[i](Li) = Li. Let Li be the sub-

module of V(R) satisfying

tnVi(R) ⊂ Li ⊂ t−mVi(R) (2.9)
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which corresponds to Li. The requirement that αi+1(Li) ⊂ Li+1 for all 0 ≤ i < d/2

is equivalent to the requirement that L0 ⊂ L1 ⊂ · · · ⊂ Ld/2.

The requirement that each inclusion Li ⊂ t−mR[t]d/tnR[t]d split R-linearly

is equivalent to the requirement that each inclusion Li ⊂ t−mVi(R)/tnVi(R) split

R-linearly.

The anti-identity matrix id∨ defines a non-degenerate hermitian Zp[t, t
−1, (t+

p)−1]-bilinear product

φ : V × V −→ O[t, t−1, (t+ p)−1]

by the rule (v, w) 7→ vtr · id∨ ·w, where w 7→ w is induced by the non-trivial element

of Gal(F/Qp). Since this φ induces (restrict and descend) the previously defined φ,

this abuse of notation is acceptable.

For 0 ≤ i ≤ d/2, define

φ[i] : V × V −→ O[t, t−1, (t+ p)−1]

by φ[i](x, y)
def
= φ(α[i](x), α[i](y)). Note that φ[d/2] = (t+ p)φ.

For 0 ≤ i ≤ d/2, define

L̂i
def
= {x ∈ V(R) | φ[i]

R (Li, x) ∈ tn−mR[t]}

(I am abusing notation: the concept of duality here depends on i). This concept of

duality is specifically designed to match up with the concept of “⊥” above:

Lemma 2.4.2.1. 1. L⊥0 = L0 if and only if L̂0 = L0, and

2. L⊥d/2 = Ld/2 if and only if L̂d/2 = Ld/2.
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Proof. case (1) ⇒ For λ ∈ t−mV0(R), denote by λ the image in t−mV0(R)/tnV0(R) =

t−mR[t]d/tnR[t]d. ⊂ Suppose λ ∈ L̂0, i.e. suppose that λ ∈ V(R) satisfies

φ
[0]
R (L0, λ) ∈ tn−mR[t]. Since L0 satisfies containments (2.9), so does L̂0 and so

λ ∈ t−mR[t]d. Altogether, λ ∈ L⊥0 (the previous containment shows that λ is in

the domain of the hermitian form defining “L⊥0 ”). By hypothesis, λ ∈ L0 and so

λ ∈ L0. ⊃ This is obvious: if λ ∈ L0 then λ ∈ L0 and by hypothesis φR(L0, λ) = 0

so φ
[0]
R (L0, λ) ∈ tn−mR[t] since both hermitian forms use the same Gram matrix. ⇐

⊂ Suppose λ ∈ L⊥0 , i.e. suppose that λ ∈ t−mR[t]d/tnR[t]d satisfies φR(L0, λ) = 0.

Let λ ∈ L0 be any representative of λ. Then φ
[0]
R (L0, λ) ∈ tn−mR[t] and by hypothe-

sis, λ ∈ L0 so λ ∈ L0. ⊃ This is obvious: if λ ∈ L0 then λ ∈ L0 and by hypothesis

φ
[0]
R (L0, λ) ∈ tn−mR[t] so φR(L0, λ) = 0 since both hermitian forms use the same

Gram matrix. case (2) This proof is nearly identical.

The previous discussion proves the following:

Definition: The Enlarged Model (final). The functor M(m,n) can also be de-

scribed as assigning to each (commutative) Zp-algebra R the set of tuples

(L0,L1, . . . ,Ld/2)

of (O ⊗Zp R)[t]-submodules of V(R) satisfying

1. ELM1

L0 ⊂ L1 ⊂ · · · ⊂ Ld/2

2. ELM2

tnVi(R) ⊂ Li ⊂ t−mVi(R) for all i
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3. ELM3

each inclusion Li/tnVi(R) ↪→ t−mVi(R)/tnVi(R) splits R-linearly.

4. ELM4

the projective rank function Spec(R)→ N associated to each

Li/tnVi(R)

is the constant function p 7→ d(m+ n)

(note that rankR(t−mVi(R)/tnVi(R)) = 2d(m+ n))

5. ELM5

L̂0 = L0 and L̂d/2 = Ld/2

(these concepts of duality were defined on page 55)

For future use, define

Vinf = tnO[t]d

Vsup = t−m(t+ p)−1O[t]d

Vsup = Vsup/Vinf

V i = Vi/Vinf

The first two are the largest (resp. smallest) modules contained in (resp. containing)

all the modules used in ELM2.

57



2.4.3 The enlarged models are projective schemes

For each 0 ≤ i ≤ d/2, let

Gri : Zp-Algebras→ Sets

denote the (ordinary) Grassmannian of direct summands of

t−mVi/tnVi ∼= Z2d(m+n)
p

with constant projective rank function d(m+ n). Then ELM3 and ELM4 yield a

closed embedding

M(m,n) ↪→ Gr0 × · · · ×Grd/2

Take (L0,L1, . . . ,Ld/2) ∈ M(m,n)(R). Consider another pair m′, n′ ∈ N. If

(L0,L1, . . . ,Ld/2) ∈M(m′,n′)(R), then necessarily m−n = m′−n′ since L0 can only

be self-dual with respect to tNφ for one N . On the other hand, if m′ ≥ m and

n′ ≥ n, then requirement ELM2 for M(m′,n′)(R) trivially follows from requirement

ELM2 for M(m,n)(R).

These 2 requirements on m,n,m′, n′ already imply that M(m,n) ⊂ M(m′,n′):

the R-linear splitting of the short-exact-sequence

0→ tnVi(R)/tn
′Vi(R)→ Li/tn

′Vi(R)→ Li/tnVi(R)→ 0
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shows that ELM3 is satisfied, and this sequence also shows that

rankR(Li/tn
′Vi(R)) = rankR(tnVi(R)/tn

′Vi(R)) + rankR(Li/tnVi(R))

= 2(n′ − n)d+ (m+ n)d

= (m′ −m)d+ (n′ − n)d+ (m+ n)d

= (m′ + n′)d

(the “2” here comes from the fact that the coefficients of the polynomials are in R

and rankR(R) = 2)

In summary, for each ∆ ∈ Z, the set of (m,n) ∈ N×N such that n−m = ∆

is totally-ordered and

M(0,∆) ⊂M(1,1+∆) ⊂M(2,2+∆) ⊂ · · ·

Remark. In §2.4.6 (page 63), I will embed M
(m,n)
Fp

into an affine flag variety, and

from that perspective, the chain associated to a particular ∆ ∈ Z exhausts the cor-

responding connected component of the affine flag variety. See Theorem 5.1 in [26]

for a way to calculate the component group of an affine flag variety in the non-split

case.

Notice that if m = n then the trivial tuple (V0(R), . . . ,Vd/2(R)) satisfies all the

conditions necessary for membership in M(m,m)(R), the assumption being required

for the rank. From the point of view of the affine flag variety, this is because the

identity component of the affine flag variety is indexed by ∆ = 0.
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2.4.4 Equivalent characterizations of Zariski-lattices

The description of the functor-of-points of an affine flag variety uses a certain

definition of lattice, but other characterizations are needed to embed local models

into affine flag varieties. The following list of characterizations is summarized as:

Equivalent Characterizations of Lattices (Lemma 2.11 in [11]). Let R be a

commutative ring and let M ⊂ R((t))d be an R[[t]]-submodule. The following 4 sets

of conditions are equivalent:

1. (a) there is some N such that tNR[[t]]d ⊂M ⊂ t−NR[[t]]d

(b) as an R-module, the quotient M/tNR[[t]]d is projective

2. (a) the product M ⊗R[[t]] R((t))→ R((t))d is an isomorphism

(b) as an R[[t]]-module, M is finitely-generated and projective

(c) the projective rank function Spec(R[[t]]) → N associated to M is the

constant function p 7→ d

3. (a) the product M ⊗R[[t]] R((t))→ R((t))d is an isomorphism

(b) Zariski-locally on Spec(R), M is a free R[[t]]-module

4. (a) the product M ⊗R[[t]] R((t))→ R((t))d is an isomorphism

(b) fpqc-locally on Spec(R), M is a free R[[t]]-module

I call such an M a “Zariski-lattice”.

Conditions (3b) and (4b) require some clarification. Condition (3b) means

that there are elements r1, . . . , rn generating the trivial ideal R (i.e. a system of
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principal open sets covering Spec(R)) such that each fraction module M [r−1
i ] is a

free Rri [[t]]-module. A similar comment holds for (4b).

2.4.5 The full affine flag variety over Fp

The setup here is: I use the unramified quadratic extension Fp((t)) ⊂ F((t)),

the vector space F((t))d, and the standard hermitian form Φ : F((t))d × F((t))d →

F((t)) defined by the anti-identity matrix. Note that Φ induces φ from previous

sections.

Definition: The Affine Flag Variety. The full affine flag variety over Fp is

the functor F`aff that assigns to any (commutative) Fp-algebra R (for simplicity of

notation, set R := R ⊗Fp F) the set of all tuples (Fi)i∈Z of R[[t]]-submodules of

R((t))d satisfying:

1. AFV1

it is periodic, in the sense that Fi = t · Fi+d for all i

2. AFV2

it forms a chain, · · · ⊂ Fi ⊂ Fi+1 ⊂ · · ·

3. AFV3

each Fi is a Zariski-lattice

4. AFV4

Zariski-locally on Spec(R), each quotient Fi+1/Fi ∼= R as R-modules
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5. AFV5

Zariski-locally on Spec(R), there exists u(t) ∈ R((t))× such that

F−i = u(t) · F̂i

for all i ∈ N. Here

F̂ def
= {w ∈ R((t))d : ΦR(F , w) ⊂ R[[t]]d}

For a commutative ring homomorphism R→ S, the function

F`aff(R)→ F`aff(S)

is the application of the completed tensor product −⊗̂RS, which is designed so that

R[[t]]⊗̂RS = S[[t]] etc.

Remark. Note that in AFV5, the Zariski-local cover of Spec(R) and the corre-

sponding similitudes are independent of i.

As in §2.3, a point (Fi)i∈Z ∈ F`aff(R) is completely determined by the finite

chain F0 ⊂ · · · ⊂ Fd/2 as follows: recover the Zariski-local cover of Spec(R) and the

common degree k of the similitudes in AFV5 by comparing F0 to F̂0, define F−i for

0 < i < d/2 Zariski-locally by F−i
def
= tkF̂i, and extend periodically. It is automatic

from the definition that · · · ⊂ F−2 ⊂ F−1 ⊂ F0. Using the finite chain, AFV1

disappears and the only part of AFV5 that survives is: there exists Zariski-locally

on Spec(R) a u(t) ∈ R((t))× such that

F0 = u(t) · F̂0

Fd/2 = t−1u(t) · F̂d/2
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2.4.6 The special fibers are subschemes of the full affine flag variety

Let R be an Fp-algebra. Consider (L0,L1, . . . ,Ld/2) ∈M(m,n)(R). First, note

that

V(Fp) = F[t, t−1]d ⊂ F((t))d

V0(Fp) = F[t]d

V1(Fp) = t−1F[t]⊕ F[t]d−1

...

Vd−1(Fp) = t−1F[t]d−1 ⊕ F[t]

Vd(Fp) = t−1F[t]d

So each Li is an R[t]-submodule of V(R) ⊂ R((t))d satisfying

tnR[t]d = Vinf(R) ⊂ Li ⊂ Vsup(R) = t−(m+1)R[t]d (2.10)

Such modules are in canonical bijection with R[[t]]-submodules Fi of R((t))d satis-

fying

tnR[[t]]d ⊂ Fi ⊂ t−(m+1)R[[t]]d (2.11)

Let F0,F1, . . . ,Fd/2 be the modules satisfying equation (2.11) corresponding

to the modules L0,L1, . . . ,Ld/2 in equation (2.10).

Proposition 2.4.6.1. (F0,F1, . . . ,Fd/2) ∈ F`aff(R).

Once this is proven, it is obvious that M(m,n)(R) → F`aff(R) is injective. By

§2.4.3 (page 58), M(m,n) is a proper Zp-scheme, so M(m,n) ↪→ F`aff is a proper

morphism. By Corollary 12.92 of [12], M(m,n) ↪→ F`aff is a closed embedding.
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Proof. AFV2 This is automatic. AFV3 For this, it is obviously most convenient

to use characterization (1) of Zariski-lattices (page 60). Equation (2.11) gives part

(a) of the characterization. Now notice that the coefficient ring of the power series

here is R = R ⊗Fp F, not R. This means that in this situation, condition (b)

actually requires Li to be a projective as an R-module, but ELM3 and ELM4

together imply only projectivity over R, but since R → R makes R a finitely-

generated R-module and a faithfully-flat R-algebra, Lemma 1.3.0.1 (page 24) says

that Li is in fact a projective R-module. AFV4 By construction, it suffices to

prove the same fact for the quotient Li+1/Li. It is easy to prove but the notation

becomes truly oppressive. For clarity, I prove this as a lemma following the end of

the current proof. AFV5 I claim that F̂0 = tm−nF0 and F̂d/2 = tm−n+1Fd/2. This

is clear because the products used in ELM5 for L0 and Ld/2 are just the standard

ones multiplied by tm−n and tm−n(t+p), and the concept of duality is the same.

Remark. Note that the need for Lemma 1.3.0.1 (page 24) does not occur in the case

of a ramified unitary group, since in that case the coefficient ring does not change

(the uniformizer changes).

Lemma 2.4.6.2. Consider an R-module diagram

L1 ⊂ V1

∩ ∩

L2 ⊂ V2

If

1. both quotients V1/L1 and V2/L2 are finitely-generated projective R-modules
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2. the projective rank functions of V1/L1 and V2/L2 are constant on Spec(R) and

the two constants are equal

3. the quotient V2/V1 is a free R-module of rank 1.

then L2/L1 is a projective R-module with constant projective rank function 1.

To use this in the proof of Proposition 2.4.6.1, use the diagram

Li ⊂ t−mVi(R)

∩ ∩

Li+1 ⊂ t−mVi+1(R)

from ELM2. The vertical inclusion on the right is valid (i.e. there are no problems

due to non-flatness) because Vi ⊂ Vi+1 can be written as the obvious inclusion

ON ⊂ ON ⊕O.

Hypothesis (1) in this lemma is implied by ELM3 and hypothesis (2) follows

from ELM4. Hypothesis (3) is obvious from the definition of the Vi.

Proof. By hypothesis (1), the short-exact-sequence

0→ (L2/L1)→ (V2/L1)→ (V2/L2)→ 0

of R-modules splits R-linearly. By hypothesis (3), the short-exact-sequence

0→ (V1/L1)→ (V2/L1)→ (V2/V1)→ 0

of R-modules splits R-linearly. These splittings produce an R-module isomorphism

(L2/L1)⊕ (V2/L2) ∼= (V1/L1)⊕ (V2/V1) (2.12)

65



By hypotheses (1) and (3), the right-hand-side of equation (2.12) is a projective

R-module, which shows that L2/L1 is a projective R-module. By Lemma 1.3.0.1,

L2/L1 is a projective R-module. Counting projective ranks over R on both sides

of equation (2.12) and using hypothesis (2) shows that the projective rank function

Spec(R)→ N of L2/L1 is the constant function p 7→ rankR(V2/V1). Hypothesis (3)

finishes the proof (use rankR(R) = 2).

2.4.7 The special fibers exhausts the full affine flag variety

Let R be a (commutative) Fp-algebra and setR := O⊗ZpR. Choose (Fi)i∈Z ∈

F`aff(R). Let u(t) ∈ Fp((t)) be the similitude for (Fi)i∈Z occurring in AFV5.

Denote by ∆ the degree of u(t). From the verification of AFV5 in the previous

subsection I know that ∆ will be the future value of m − n. So, let m,n ∈ N be

such that m− n = ∆ and such that

tnλi(R) ⊂ Fi ⊂ t−mλi(R) (2.13)

for all i = 0, . . . , d/2. From the discussion in §2.4.3 (page 58), I know that there is

no danger in choosing m,n too large.

By passing through the quotient, define Li to be the R[t]-module satisfying

tnVi(R) ⊂ Li ⊂ t−mVi(R)

corresponding to Fi for each i = 0, . . . , d/2. It is obvious that L0 ⊂ · · · ⊂ Ld/2. For

each i, I have the short-exact-sequence of F[[t]]-modules

0→ Fi+1/Fi → t−mR[[t]]d/Fi → t−mR[[t]]d/Fi+1 → 0
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By AFV3 and AFV4,

rankR(t−mR[[t]]d/Fi) = rankR(t−mR[[t]]d/Fi+1) + 1

which implies that

rankR(Li/tnVi(R)) = rankR(Li+1/t
nVi+1(R))

(note that the quotient on the right is by a slightly larger module than on the left)

To verify ELM4, it now suffices to show that the projective rank function

Spec(R)→ N of F0/t
nλ0(R) is the constant function d(m+ n). Dualizing equation

(2.13) yields

tmλ0(R) ⊂ F̂0 ⊂ t−nλ0(R)

The quotient t−nλ0(R)/F̂0 is a projective R-module and has the same (constant)

projective rank function as F0/t
nλ0(R). This means that

rankR(F0/t
nλ0(R)) = rankR(t−nλ0(R)/F̂0)

= rankR(t−mλ0(R)/tn−mF̂0) = rankR(t−mλ0(R)/F0)

The first and last ranks are equal and must sum to d(m+n), so the claim is proven

(recall that rankR(R) = 2).

It is automatic that ELM5 is satisfied.

2.4.8 The affine Grassmannian over Qp

For the affine Grassmannian, the setup is: I use the unramified quadratic

extension Qp((t)) ⊂ F ((t)), the vector space F ((t))d, and the standard hermitian

form Φ : F ((t))d × F ((t))d → F ((t)) defined by the anti-identity matrix.
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Definition: The Affine Grassmannian. The affine Grassmannian Graff is the

functor that assigns to any (commutative) Qp-algebra R (for simplicity of notation,

set R := R⊗Qp F ) the set of all R[[t]]-submodules F of R((t))d satisfying:

1. AG1

F is a Zariski-lattice

2. AG2

Zariski-locally on Spec(R), there exists u(t) ∈ R((t))× such that

F = u(t) · F̂ .

2.4.9 The generic fibers are subschemes of the affine Grassmannian

Let R be a (commutative) Qp-algebra. Consider a point (L0,L1, . . . ,Ld/2) ∈

M(m,n)(R). As before, note that

V(Qp) = F [t, t−1, (t+ p)−1]d ⊂ F ((t))d

V0(Qp) = F [t]d

V1(Qp) = (t+ p)−1F [t]⊕ F [t]d−1

...

Vd−1(Qp) = (t+ p)−1F [t]d−1 ⊕ F [t]

Vd(Qp) = (t+ p)−1F [t]d

Since t + p is a unit in Qp[[t]], the discussion in §2.4.2 (page 52) implies that

over Qp the “chain” L0 ⊂ L1 ⊂ · · · ⊂ Ld/2 collapses and I may ignore all of them

except one, say L := L0.
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Using a similar argument as in §2.4.6, notice that passing through the isomor-

phism of quotients

t−m(t+ p)−1R[t]d

tnR[t]d
∼−→ t−mR[[t]]d

tnR[[t]]d

(this uses the fact that t+p is a unit in Qp[[t]]) associates to L an R[[t]]-submodule

F of R((t))d satisfying

tnR[[t]]d ⊂ F ⊂ t−mR[[t]]d

I claim that L 7→ F defines an injective function M(m,n)(R) ↪→ Graff
Qp

and that

the collection over all Qp-algebras R of these functions defines a natural transfor-

mation M
(m,n)
Qp

→ Graff
Qp

.

Proof of AG1 The proof here is the same as the proof of AFV3 (page 61):

apply Lemma 1.3.0.1 (page 24) to R→ R⊗Qp F .

Proof of AG2 The proof here is exactly the same as the proof of AFV5

(page 61), noticing that t+ p is a unit in Qp[[t]] etc.

2.4.10 The generic fibers exhaust the affine Grassmannian

The proof of the fact that the schemes M
(m,n)
Qp

exhaust Graff
Qp

is nearly identical

to the case of the special fibers exhausting the full affine flag variety, noticing as

usual that t+ p is a unit in Qp[[t]] etc.
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2.5 An automorphism group for the enlarged models

2.5.1 Definition

Define the functor

J(m,n) : Zp-Algebras→ Groups

by assigning to any (commutative) Zp-algebra R the group of all R[t]-linear auto-

morphisms g of the quotient Vsup(R) that stabilize each of the subspaces V i(R) and

are similitudes with respect to the product

φR : Vsup(R)× Vsup(R) −→ t−2m(t+ p)−2R[t]

tn−m(t+ p)−1R[t]

with multiplier c(g) ∈ R[t] representing an element of (R[t]/tm+n(t + p)R[t])×. In

particular, c(g) ∈ R[[t]]× and c(g)(0) ∈ R×.

Remark. The “precision” tm+n(t+ p) for c(g) is sufficient because the codomain of

φ is isomorphic as an R[t]-module to R[t]/tm+n(t+ p)R[t].

Lemma 2.5.1.1. This functor J(m,n) is a finite-type affine group Zp-scheme and the

rule

(L0,L1, . . . ,Ld/2) 7−→ (g(L0), g(L1), . . . , g(Ld/2))

defines an action of J(m,n) on M(m,n).

Proof. affine The condition that any g ∈ J(m,n) must stabilize the filtration V i to-

gether with the condition that it be a similitude present J(m,n) as a closed subscheme

of AutO[t]-lin(Vsup). The condition that g ∈ AutO[t]-lin(Vsup) beO[t]-linear rather than

70



simply O-linear presents AutO[t]-lin(Vsup) as a closed subscheme of GL2d(m+n) (this

condition is the same as requiring that g commute with the operator t). finite-type

This is obvious from the proof of affine-ness. action Let R be a (commutative) Zp-

algebra and set R := O ⊗Zp R. Take (Li)d/2i=0 ∈ M(m,n)(R) and take g ∈ J(m,n)(R).

It is obvious from the definition that (g(Li))d/2i=0 satisfies ELM1, ELM2, ELM3

and ELM4. To prove ELM5, note that restricting the above φ to t−mR[t]d/tnR[t]d

agrees with the φ used in §2.4.2 (page 52). Also note that the image of L0 in

t−mR[t]d/tnR[t]d is identical to what was called L0 in §2.4.2 (page 52). Therefore,

by Lemma 2.4.2.1 (page 55), I need to show that φR(g(L0), x) = 0 if and only if

x ∈ g(L0). ⇒ Since 0 = φR(g(L0), x) = c(g)φR(L0, g
−1(x)), the definition of c(g)

implies that φR(L0, g
−1(x)) = 0 also. So g−1(x) ∈ L0 and x ∈ g(L0). ⇐ This is

trivial since c(g) ∈ R[t]. The case of Ld/2 is similar.

It is trivial that this is a group action and that these actions form a natural

transformation J(m,n) ×M(m,n) →M(m,n).

This J(m,n) is a degeneration of the special parahoric K over Qp[[t]] to the

Iwahori subgroup I over Fp[[t]], much in the same way that M(m,n) degenerates

the affine Grassmannian Graff over Qp to the full affine flag variety F`aff over Fp:

as verified above, the generic and special fibers of M(m,n) are subschemes of Graff

and F`aff respectively, and the generic and special fibers of J(m,n) are essentially the

quotients one gets by restricting K and I to these subschemes.
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2.5.2 The automorphism group is smooth

In this subsection, I prove that J(m,n) is a smooth Zp-scheme. This is necessary

to connect the equivariant sheaf theory of M
(m,n)
Qp

to the equivariant sheaf theory on

M
(m,n)
Fp

. More precisely, it is needed in order to apply base-change for pullbacks.

By Lemma 2.5.1.1 (page 70), J(m,n) is finite-type, so to show that

J(m,n) −→ Spec(Zp)

is smooth, it suffices to verify the “infinitesimal lifting property” (formal smooth-

ness):

J(m,n) → Spec(Zp) is formally smooth if and only if for each (commutative)

Zp-algebra R and each nilpotent ideal I ⊂ R (equivalently, one satisfying I2 = 0),

the group homomorphism J(m,n)(R)→ J(m,n)(R/I) is surjective.

Set

S
def
= R[t]/tm+n(t+ p)R[t]

Set

S
def
= (R/I)[t]/tm+n(t+ p)(R/I)[t]

For simplicity of notation, set R := O ⊗Zp R. Let I be the extension of the ideal I

in R. Set

S def
= R[t]/tm+n(t+ p)R[t]

and

S def
= (R/I)[t]/tm+n(t+ p)(R/I)[t]
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Let It be the extension of I in S and let It be the extension of I in S. I use without

warning the equalities

S = S/It

S = O ⊗Zp S

S = O ⊗Zp S = S/It

Let g ∈ J(m,n)(R/I) be arbitrary. By definition, g is an S[t]-linear automor-

phism of Vsup(R/I). I make the obvious R[t]-linear identification

Vsup(R/I) = Sd (2.14)

so that g is identified with an automorphism of Sd and the hermitian form φR/I used

in the definition (page 70) of J(m,n)(R/I) is identified with the standard hermitian

form Sd × Sd → S defined by the anti-identity matrix.

To construct a lift g ∈ J(m,n)(R), I use the following point of view: having g

is equivalent to having v1, . . . , vd ∈ Sd such that

• v1, . . . , vd is an S-module basis of Sd

• vi ∈ S i ⊕ (t+ p)Sd−i for all i.

• there is c ∈ S× such that

φR(vi, vj) =


c i+ j = d+ 1

0 i+ j 6= d+ 1
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The link between the two points of view is

vi = g(ei)

c = c(g)

Note that it is automatic from R[t]-linearity that g stabilizes each S i ⊕ (t+ p)Sd−i.

To simplify notation further, set

M :=Sd

σ:=(t+ p)

Ni:=S i ⊕ σSd−i (i = 0, . . . , d)

Let M denote M ⊗S (S/It) = M/ItM . Let N i be the image of Ni in M .

First, note that lifting is easy if the similitude condition is not involved:

Lemma 2.5.2.1. If v1, . . . , vd is an (S/It)-module basis for M such that vi ∈ N i

for all i, then there exists an S-module basis v1, . . . , vd for M such that such that

vi ∈ Ni and

v1 ≡ v1 mod ItM.

Proof. Let vi ∈ Ni be arbitrary lifts of vi. Nakayama’s lemma implies that since

v1, . . . , vd generates M , the set v1, . . . , vd generates M (to apply Nakayama’s lemma,

note that I2
t = 0 ). By “Linear Independence of Minimal Generating Sets”, v1, . . . , vd

must be a basis.

Now I extend this lemma to handle the similitude condition:
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Proposition 2.5.2.2. Let e1, . . . , ed be the standard basis for Sd and set vi := g(ei).

Assertion: There is c ∈ S× and wi ∈ Ni (i = 1, . . . , d) that form an S-module

basis for M and that satisfy

• w1 ≡ v1 mod ItM , and

• φR(wi, wj) =


c i+ j = d+ 1

0 i+ j 6= d+ 1

Proof. Let  denote the involution of S induced by the non-trivial element of Gal(F/Qp).

Note that the ideal It is -stable because it was extended from I ⊂ R. Let v1, . . . , vd

be the basis guaranteed by Lemma 2.5.2.1 and choose a representative c ∈ S× of

c(g) such that (c) = c (this is possible because c(g) ∈ S× by definition).

By assumption, the similitude condition holds modulo I, i.e.

φR/I(vi, vj) =


c(g) i+ j = d+ 1

0 i+ j 6= d+ 1

More succinctly,

φR/I(vi, vj) = c(g)δi,d+1−j

where δ is the Kronecker delta. This means that there are xi,j ∈ It such that

φR(vi, vj) = cδi,d+1−j + xi,j (2.15)
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Since c is independent of i, j and since (c) = c, it is true that xj,i = (xi,j):

xj,i = φR(vj, vi)− cδj,d+1−i

(φ is hermitian) = (φR(vi, vj))− cδj,d+1−i

(because δi,d+1−j = δj,d+1−i) = (φR(vi, vj))− cδi,d+1−j

(because (c) = c) = (xi,j)

By bi-additivity,

φR(vi +mi, vj +mj) = φR(vi, vj) + φR(mi, vj) + φR(vi,mj) + φR(mi,mj)

Because of this and the equality xj,i = (xi,j), it suffices to find m1, . . . ,md ∈ ItM

such that mi ∈ Ni and φR(mi, vj) = −1
2
xi,j and then to take wi

def
= vi + mi, since

then

φR(wi, wj) = cδi,d+1−j + xi,j −
1

2
xi,j −−

1

2
(xj,i) = cδi,d+1−j

(note that I2
t = 0 implies φR(mi,mj) = 0).

Remark. Here I have used the assumption that p 6= 2.

Note that

Nd−i = {m ∈M | φ(m,Ni) ⊂ σS} (2.16)

Fix i. Consider the S-linear functional M → S defined by vj 7→ −1
2
xi,j. Since

φR is perfect, this functional is φR(mi,−) for some mi ∈ M . In fact, mi ∈ ItM

since xi,j ∈ It. I claim that this functional automatically sends Nd−i into σS. It

then follows from inclusion “⊃” of duality (2.16) that mi ∈ Ni, and the proof will

be finished.
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Since

v1, . . . , vd−i, σvd−i+1, . . . , σvd

is an S-linear basis for Nd−i, it suffices to show that

φR(mi, vj) = −1

2
xi,j ∈ σS

for the subset 1 ≤ j ≤ d − i of indices. This inequality implies that i 6= d + 1 − j

and the defining relation (2.15) gives

φR(mi, vj) = −1

2
φR(vi, vj)

So it suffices to show that φR(vi, vj) ∈ σS. But this is just inclusion “⊂” of duality

(2.16).

Remark. This proof is a variant of Proposition A.13 from [30] extended to handle

flags.

2.5.3 Conventions for Weyl groups, cocharacters, etc.

In this subsection, I set some conventions for Weyl groups and related objects

that will be used in §2.5.5 and §2.5.7.

Consider the unitary similitude group GUd associated to the quadratic ex-

tension F((t))/Fp((t)), the vector space F((t))d, and the standard hermitian form

defined by the anti-identity matrix id∨. Let A be the usual maximally Fp((t))-split

diagonal torus of GUd. Since GUd is quasi-split, the centralizer CGUd(A) is a maxi-

mal torus T (also consisting of diagonal elements) and is defined over Fp((t)). The
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relative extended affine Weyl group of GUd with respect to A is the quotient

W̃
def
= N(Fp((t)))/T (Fp((t)))0

where N is the normalizer NGUd(A) and T (Fp((t)))0 is the unique maximal compact

open subgroup of T (Fp((t))).

Let W = N/T be the relative finite Weyl group of G with respect to A and

X∗(A) the abelian group of algebraic group homomorphisms A → Gm. The ex-

tended affine Weyl group W̃ has a semidirect product decomposition

W̃ = X∗(A) oW

and parametrizes the double cosets of GUd(Fp((t))) modulo an Iwahori subgroup

(this parametrization is called the Bruhat-Tits decomposition). Implicit in this

parametrization is the fact that elements of W̃ can be represented by Fp((t))-

points, and therefore W̃ can be considered as a subset (usually not a subgroup)

in many different ways of GUd(Fp((t))). In more detail, elements of W can be

represented by elements of GUd(Fp((t))), and I consider X∗(A) also as a subset of

A(Fp((t))) ⊂ GUd(Fp((t))) via the map λ 7→ λ(t). I fix such an inclusion

W̃ ↪→ GUd(Fp((t)))

and use it without warning from now on.

Remark. In general, the group which parametrizes the Bruhat-Tits decomposition

relative to an Iwahori subgroup is the Iwahori-Weyl group, defined completely gen-

erally in [16] using the Kottwitz homomorphism from [21]; see Definition 7, Propo-

sition 8, and Remark 9 of [16]. But since GUd here is unramified, the Iwahori-Weyl
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group coincides with what is usually called the extended affine Weyl group and the

Kottwitz homomorphism also has a more direct definition; see Remark 10 of [16],

and Lemma 3.0.1(III), Corollary 11.1.2(c), and Proposition 11.1.4 of [17].

Finally, I denote by Φaff the affine root system for GUd as described in §1.6 of

[36]. Let Waff ⊂ W̃ be the subgroup generated by reflections across the kernels of

elements of Φaff. Fix a Chevalley-Bruhat partial order ≤ and length function ` on

Waff, which I require to be consistent with the Iwahori subgroup defined in the next

subsection. I consider ` on W̃ by extending trivially.

Similar conventions are in place for the unitary similitude group associated to

the (unramified) quadratic extension F ((t))/Qp((t)).

2.5.4 Description of the Iwahori subgroup

Return to the setup of §2.4.5 (page 61), i.e. denote by GUd the unitary simil-

itude group associated to the (unramified) quadratic extension F((t))/Fp((t)), the

vector space F((t))d, and the standard hermitian form Φ defined by the anti-identity

matrix id∨. Define the “standard” periodic Φ-self-dual chain {λi}i∈Z of F[[t]]-lattices

in F((t))d by extending

λi
def
= t−1F[[t]]i ⊕ F[[t]]d−i (0 ≤ i ≤ d)

periodically. Notice that

λi ⊗Fp[[t]] Fp = Λi ⊗Zp Fp

Let

I : Fp[[t]]-Algebras→ Groups
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be the Iwahori subgroup scheme of GUd associated to the lattice chain (λi)i∈Z, in

the sense of [16] or [5], [6]. Then by Equality 8.0.1 and Remark 8.0.2 in [17]),

I(Fp[[t]]) = {g ∈ GUd(Fp((t))) | g(λi) = λi and κ(g) = 1}

(here κ is the “Kottwitz homomorphism” associated to GUd). Note that if g ∈

I(Fp[[t]]) then c(g) ∈ Fp[[t]]
× since g and g−1 both stabilize λ0 = F[[t]]d.

2.5.5 A “Bruhat-Tits decomposition” of the enlarged models

I claim that there is a group homomorphism

I(Fp[[t]]) −→ J(m,n)(Fp) (2.17)

such that acting by I(Fp[[t]]) on the image of the embedding

M(m,n)(Fp) ↪→ F`aff(Fp)

is the same as acting directly on M(m,n)(Fp) via (2.17).

If g ∈ I(Fp[[t]]) then by definition g descends to an F[t]-linear automorphism

g of the quotient

t−(m+1)F[[t]]d/tnF[[t]]d = t−(m+1)F[t]d/tnF[t]d = Vsup(Fp)

and stabilizes the subquotients

λi/Vinf(Fp) = V i(Fp)

Modulo tm+n+1, the element c(g) becomes a multiplier c(g) as in the definition of

J(m,n)(Fp). This shows that g 7→ g is a function I(Fp[[t]]) → J(m,n)(Fp). It is clear
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that this is a group homomorphism and that the actions of J(m,n)(Fp) on M(m,n)(Fp)

and I(Fp[[t]]) on F`aff(Fp) are compatible.

Let W̃ be the Iwahori-Weyl group from §2.5.3 (page 77) and recall the notation

and conventions there. For each w ∈ W̃ , there is the affine Schubert cell

Cw
def
= I(Fp[[t]]) · w · I(Fp[[t]])

These Schubert cells can be enriched to Fp-schemes: define the functor

Cw : Fp-Algebras→ Sets

to be the fpqc-sheafification of the functor that assigns to any (commutative) Fp-

algebra R the I(R[[t]])-orbit of wR in GUd(R((t)))/I(R[[t]]) (here wR denotes the

image of w under GUd(Fp((t)))→ GUd(R((t)))).

Because of (2.17), the subset M(m,n)(Fp) ⊂ F`aff(Fp) is I(Fp[[t]])-stable and

there is a Bruhat-Tits decomposition of M(m,n)(Fp):

M(m,n)(Fp) =
∐

w∈W̃ (m,n)

Cw(Fp)

for a certain finite subset W̃ (m,n) ⊂ W̃ .

Remark. In the trivial case M
(0,1)
Fp

= Mloc
Fp

, the decomposition consists of the cells

Cw for w in the “admissible set” Adm(µ), which is the closure (in the sense of the

combinatorially-defined Bruhat-Chevalley partial order) of the orbit of µ under the

finite Weyl group. See [14] for some pictures of admissible sets.
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2.5.6 Description of the special parahoric subgroup

Return to the setup of §2.4.8 (page 67), i.e. denote by GUd the unitary simil-

itude group associated to the (unramified) quadratic extension F ((t))/Qp((t)), the

vector space F ((t))d, and the standard hermitian form Φ defined by the anti-identity

matrix id∨. Define the “standard” periodic Φ-self-dual chain {λi}i∈Z of F [[t]]-lattices

in F ((t))d by extending

λi
def
= t−1F [[t]]i ⊕ F [[t]]d−i (0 ≤ i ≤ d)

periodically and let

K : Qp[[t]]-Algebras −→ Groups

be the special parahoric subgroup scheme of GUd associated to the lattice λ0. Then

K(Qp[[t]]) = {g ∈ GUd(Qp((t))) | g(λ0) = λ0 and κ(g) = 1}

(here κ is the “Kottwitz homomorphism”). As before, if g ∈ K(Qp[[t]]) then c(g) ∈

Qp[[t]]
×.

2.5.7 A “Cartan decomposition” of the enlarged models

As in §2.5.5 (page 80), I claim that there is a group homomorphism

K(Qp[[t]]) −→ J(m,n)(Qp) (2.18)

such that acting by K(Qp[[t]]) on the image of the embedding

J(m,n)(Qp) ↪→ Graff(Qp)
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is the same as acting directly on M(m,n)(Qp) via (2.18). The group homomorphism

is defined in the same way: any g ∈ K(Qp[[t]]) restricts to an automorphism g of

Vsup(Qp) which stabilizes the subquotient

λ0/Vinf(Qp) = V0(Qp)

and, because t+p is a unit in Qp[[t]], also stabilizes the other V i(Qp). The automor-

phism g automatically satisfies the similitude condition necessary for membership

in J(m,n)(Qp).

Recall the notation and conventions in §2.5.3 (page 77). Let Oλ denote the

Qp-subschemes of Graff forming the Cartan decomposition. Similar to §2.5.5, (2.18)

implies that that J(m,n)(Qp) is a K(Qp[[t]])-stable subset of Graff(Qp), so there is a

Cartan decomposition:

M(m,n)(Qp) =
∐

λ∈X(m,n)
∗

Oλ(Qp)

for a certain finite set X
(m,n)
∗ of (dominant) cocharacters λ ∈ X∗(A).

Remark. In the case of (m,n) = (0, 1), this decomposition is a singleton: M
(0,1)
Qp

=

Mloc
Qp

consists of the single cell Oµ.
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Chapter 3

The trace function and the convolution product

3.1 The trace function

3.1.1 Generalities on nearby cycles and trace functions

Let X be a separated finite-type Zp-scheme. Let C• be a complex of étale

`-adic sheaves on XQp . The pullback C• of C• along

XQp
−→ XQp

has a natural continuous action by

Γ
def
= Gal(Qp/Qp)

i.e. a collection for all γ ∈ Γ of functor isomorphisms

γ∗(C
•
)
∼−→ C•

consistent with composition (by abuse of notation, γ also denotes the induced Qp-

scheme automorphism of XQp
). Define

RΨ(C•) def
= ı∗(R∗(C

•
)),

the nearby cycles complex of étale `-adic sheaves on XFp
, where

XFp

ı−→ XZp

←− XQp
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are the structure morphisms. The complex RΨ(C•) on XFp
inherits the action by

Γ. In particular, each γ ∈ Γ induces an endomorphism of the cohomology stalk

Hi(RΨ(C•))x

for every x ∈ X(Fp) and i ∈ Z.

Grothendieck’s quasi-unipotent inertia theorem (see the Proposition in the Ap-

pendix of [32]) applies to the continuous representation of Γ on the finite-dimensional

Q`-vector space Hi(RΨ(C•))x to yield “semisimplifications”

ss(Hi(RΨ(C•))x)

on which the inertia subgroup Γ0 via a finite quotient (Γ acts on the semisimpli-

fication by acting individually on each summand). See §3 of [15] for a detailed

discussion of these semisimplifications.

The action of Γ on ss(Hi(RΨ(C•))x)Γ0 factors through Gal(Fp/Fp), and one

defines

τ ss
RΨ(C•)(x)

def
=
∑
i

(−1)i Tr(Frob; ss(Hi(RΨ(C•))x)Γ0)

for all x ∈ X(Fp). The exactness of the fixed-points functor V 7→ V G for a finite

group G makes this function more well-behaved; see for example the proof of Lemma

10 in [15].

More generally, define

τ ss
C• : X(Fp) −→ Q`

for any complex of étale `-adic sheaves C• onXFp
which has an action by Gal(Qp/Qp)

consistent with the action of Gal(Fp/Fp) on XFp
. For example, C• could be the
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pullback to XFp
of a complex on XFp with Gal(Qp/Qp) acting via the composition

Gal(Qp/Qp) −→ Gal(Qunr
p /Qp) −→ Gal(Fp/Fp)

(in which case the semisimplification is vacuous).

3.1.2 Definition of the main trace functions

Fix m,n ∈ N. Let Oλ be a cell from the Cartan decomposition of M
(m,n)
Qp

. Let

ICλ be the (perverse) étale `-adic intersection complex on Oλ (the reduced closure).

Then applying the construction from the previous subsection to this special case

yields

τ ss
λ

def
= τ ss

RΨ(ICλ) : M(m,n)(Fp) −→ Q`

By the embedding in §2.4.6 (page 63), I can extend by 0 and consider τ ss
λ to be a

function on F`aff(Fp).

3.1.3 The trace function is Iwahori-invariant

In order to show that τ ss
λ is in the Iwahori-Hecke algebraH of GU(F((t))d,Φ)(Fp((t)))

with respect to I(Fp[[t]]), I must show that it is invariant under left-translations

by I(Fp[[t]]) (invariance under right-translations is automatic from the domain of

F`aff(Fp)). Because of the group homomorphism I(Fp[[t]])→ J(m,n)(Fp) (see §2.5.5

(page 80)) and the definition of τ ss
λ , it suffices to show that RΨ(ICλ) is J

(m,n)

Fp
-

equivariant, in the sense that there is a isomorphism

ac∗
Fp

(RΨ(ICλ))
∼−→ pr∗

Fp
(RΨ(ICλ)) (3.1)
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of étale sheaf complexes subject to a “cocycle” (group action axiom) condition. Here

ac, pr : J(m,n) ×Spec(Zp) M(m,n) →M(m,n)

are the left-action (see §2.5.1.1) and projection morphisms.

By Proposition 2.5.2.2 (page 74), the morphism J(m,n) → Spec(Zp) is smooth,

so the projection, which is the morphism J(m,n) ×Spec(Zp) M(m,n) →M(m,n) supplied

by the fiber product, is also smooth (since smoothness is preserved under base-

change). It follows from “smooth base change” (the fact that pullback by a smooth

morphism commutes with (derived) pushforward in a base-change diagram), that

pr∗
Fp

(RΨ(ICλ)) ∼= RΨ(pr∗Qp
(ICλ)) (3.2)

On the other hand, the functor endomorphism of J(m,n) ×M(m,n) defined by

(g, x) 7→ (g, g(x)) is an automorphism (over Zp). Since the action morphism ac is

the composition of this automorphism with the (smooth) projection pr, this shows

that the action morphism ac is smooth, and so by the same reasoning as for pr,

ac∗
Fp

(RΨ(ICλ)) ∼= RΨ(ac∗Qp
(ICλ)) (3.3)

The intersection complex ICλ is J
(m,n)
Qp

-equivariant by definition so combining

(3.2) and (3.3) yields (3.1).

3.1.4 Statement of theorem

By the previous subsection, τ ss
µ is identified with an element of the Iwahori-

Hecke algebra H.

Main Theorem. τ ss
µ ∈ Z(H).
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The remainder of the paper develops the tools needed to prove this theorem,

and the proof of theorem itself occurs in Chapter 4 (page 138).

Remark. Although the theorem only directly concerns µ minuscule, in which case

ICµ is, up to a shift, the constant sheaf (since Oµ = Oµ), the commutativity property

involves other τ ss
λ so those parts of §3.1 concerning non-minuscule λ are not useless.

Assumption. The complement in Mloc of the Schubert cells Cw ⊂Mloc
Fp

such that

codimMloc(Cw) > 0

is a smooth Zp-scheme.

This assumption is surely already satisfied, but I have not yet verified it rig-

orously.

Corollary. τ ss
µ is the scaled Bernstein basis function (−1)`(µ)q(µ)

1
2 zµ.

The value q(µ) is defined as the index [IµI : I]. The sign (−1)`(µ) is due

to the shift by − dim(Oµ) = −`(µ) imposed on the intersection complexes to make

them perverse.

Proof. By definition, τ ss
µ : F`aff(Fp)→ Q` is supported on Mloc(Fp). By the lemma

following this proof, Mloc is flat, so the cells occurring in the Bruhat-Tits decompo-

sition for Mloc(Fp) are the admissible set Adm(µ). By the assumption immediately

before this corollary and Lemma 8.6 in [14], τ ss
µ (Cµ) = (−1)`(µ). It is clear from

the definition of the Bernstein basis functions that the value of zµ on Cµ is q(µ)−
1
2 ,

and Theorem 5.8 in [13] characterizes the (normalized) Bernstein basis functions as
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those which are central, supported on Adm(µ) and have value 1 on the dominant

cell Cµ.

Remark. At first glance, Theorem 5.8 in [13] appears to work only in the split case,

since the Hecke algebras considered use constant parameter systems. However, the

theorem holds generally.

Lemma 3.1.4.1. Mloc is a flat Zp-scheme.

Proof. If R→ S is a faithfully-flat homomorphism of (commutative) rings and M is

an R-module such that M⊗RS is a flat S-module, then M is a flat R-module. Since

flatness of a morphism of schemes is local with respect to the domain, this means

that it suffices to verify that Mloc
O is a flat O-scheme. To see this, first note that since

−⊗Zp R = (−⊗Zp O)⊗O R for any (commutative) O-algebra R, the set Mloc(R) is

the same as the R-points of the local model associated to the datum consisting of

the base field F (instead of Qp), the vector space F d ⊗Qp F , the lattices Λi ⊗Zp O,

etc. but which also satisfy the PEL condition SLM4. The function X ⊗ α 7→

(αX,αX) defines a Qp-algebra isomorphism Md(F ) ⊗Qp F
∼−→ Md(F ) × Md(F )

which transforms the involution ∗std ⊗ id into the involution (X, Y ) 7→ (Y
tr
, X

tr
),

and similar decompositions hold for F d⊗Qp F , Λi⊗ZpO, etc. These decompositions

allow each module Ki occurring in a point of Mloc(R) to be identified with a sum

K
(1)
i ⊕K

(2)
i inside (Λi⊗OR)⊕ (Λi⊗OR). Because of the definition of the hermitian

form φ and the reversal that occurs in the involution on Md(F )×Md(F ), the PEL

condition SLM4 is equivalent to the condition K
(2)
i = (K

(1)
−i )⊥ (in particular, the

modules K
(2)
i are completely determined by the modules K

(1)
i ). This means that
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Mloc
O is isomorphic to a standard GL local model, which by [10] is flat.

Remark. A similar collapsing of a PEL local model to an EL local model occurs in

§6.3.3 of [14].

3.2 The convolution diagram

3.2.1 The full affine flag variety over Zp

Here I recall the definition of the affine flag variety and Iwahori subgroup over

Zp as limits of projective Zp-schemes in a way that is compatible with the definition

of M(m,n) and J(m,n). By extending scalars, this integral affine flag variety gives the

usual affine flag varieties over Qp and Fp. The construction is just a slight variation

on the previous theme.

Definition: The Integral Affine Flag Variety. Fix µ, ν ∈ N. Define the functor

Fl(µ,ν) : Zp-Algebras −→ Sets

by assigning to each (commutative) Zp-algebra R the set of all tuples (F0, . . . ,Fd/2)

of R[t]-submodules of V(R) such that

• F0 ⊂ · · · ⊂ Fd/2

• (t+ p)νVi(R) ⊂ Fi ⊂ (t+ p)−µVi(R) for each 0 ≤ i ≤ d/2

• each inclusion Fi/(t+p)νVi(R) ↪→ (t+p)−µVi(R)/(t+p)νVi(R) splits R-linearly

• the projective rank function Spec(R)→ N associated to each

Fi/(t+ p)νVi(R)
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is the constant function p 7→ d(µ+ ν)

• Zariski-locally on Spec(R), F̂0 = F0 with respect to (t + p)µ−νφR and F̂d/2 =

Fd/2 with respect to (t+ p)µ−ν+1φR.

(The duality occurring here is similar to the one occurring in ELM5: it is

required that F0 be exactly the elements x ∈ V(R) such that

φR(F0, x) ⊂ (t+ p)ν−µR[t]

and similarly for Fd/2.)

Define

Uinf
def
= (t+ p)νO[t]d

Usup
def
= (t+ p)−µ−1O[t]d

U sup
def
= Usup/Uinf

For the purpose of this subsection, redefine φ to be the hermitian Zp[t]-bilinear

form

φ : U sup × U sup −→
(t+ p)−2(µ+1)O[t]

(t+ p)ν−µ−1O[t]

defined by the anti-identity matrix, and redefine V i to be the image of Vi in U sup.

Definition: The Integral Iwahori Subgroup. Fix µ, ν ∈ N. Define the functor

Iw(µ,ν) : Zp-Algebras −→ Groups

by assigning to each (commutative) Zp-algebra R the group of all R[t]-linear auto-

morphisms g of U sup that stabilize each V i and are similitudes with respect to the

product φR with multiplier c(g) ∈ R[t] representing a unit in R[t]/(t+ p)µ+ν+1R[t].
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Like J(m,n) → Spec(Zp), each of these Iw(µ,ν) → Spec(Zp) is a smooth affine

algebraic group scheme.

These schemes have a few purposes. First, the full affine flag varieties over Qp

and Fp are just the fibers of

Flaff def
=
⋃

(µ,ν)

Fl(µ,ν),

hence the name.

Second, Flaff has a Bruhat-Tits decomposition Flaff =
∐
Cw over Zp, i.e. the

Schubert cells Cw are Zp-schemes (The abuse of notation is acceptable because the

extension to Fp of this Cw is the “Cw” from §2.5.5 (page 80)).

Third, one can define the étale `-adic intersection complex ICw on Cw and

the restrictions ICw|Flaff
Fp

and ICw|Flaff
Qp

are just the corresponding étale intersection

complexes on the affine flag varieties over Fp and Qp. Because of all this, §5.2 of

[15] shows that

ICw|Flaff
Fp

∼−→ RΨ(ICw|Flaff
Qp

)

Remark. §5.2 of [15] applies because the fields involved here are algebraically-closed:

by an argument similar to that given in the proof of Lemma 3.1.4.1 (page 89), the

schemes used here simplify to the GL case after passing to the algebraic closure.

3.2.2 Group-like schemes to act on M(m,n) and Fl(µ,ν)

Fix m,n, µ, ν ∈ N. I define two Zp-schemes, M̃(m,n) and F̃l
(µ,ν)

, and mor-

phisms M̃(m,n) →M(m,n) and F̃l
(µ,ν)
→ Fl(µ,ν). These schemes and morphisms play
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the role, in the truncated case, of the algebraic group acting on its affine flag variety

by left-multiplication.

Fix m,n, µ, ν ∈ N. Define

Wsup
def
=
t−m(t+ p)−µ−1O[t]d

tn(t+ p)νO[t]d

For this section, redefine

φ :Wsup ×Wsup −→
t−2m(t+ p)−2(µ+1)O[t]

tn−m(t+ p)ν−µ−1O[t]

be the hermitian Zp[t]-bilinear form defined by the anti-identity matrix, and redefine

V i to be the image of Vi in Wsup.

Remark. ThisWsup is designed to be a universal container for all modules occurring

in the definitions of both M(m,n) and Fl(µ,ν).

Define the functor

M̃(m,n) : Zp-Algebras −→ Sets

by assigning to each (commutative) Zp-algebra R, the set of all R[t]-linear maps

g :Wsup(R)→Wsup(R) such that

1. each Li
def
= g(t−mV i(R)) satisfies

tnV i(R) ⊂ Li ⊂ t−mV i(R)

2. each inclusion Li/tnV i(R) ↪→ t−mV i(R)/tnV i(R) splits R-linearly

3. the projective rank function Spec(R)→ N associated to each

Li/tnV i(R)
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is the constant function p 7→ d(m+ n)

4. there exists a c(g) ∈ R[t] representing a unit in R[t]/tm+n(t+p)µ+ν+1R[t] such

that

φR(g(x), g(y)) = c(g)tm+nφR(x, y)

for all x, y ∈ Wsup(R)

5. Setting

t−mṼi
def
=
t−m(t+ p)−1O[t]i ⊕ t−mO[t]d−i

tn(t+ p)µ+ν+1O[t]d

L̃i
def
=

Li
tm+n(t+ p)µ+ν+1L0

(note that L̃0 ⊂ L̃1 ⊂ · · · ), there exists Zariski-locally on Spec(R) an R[t]-

linear isomorphism

g̃ : t−mṼ0(R)
∼−→ L̃0

inducing the restriction g : t−mV0(R)→ L0 such that

g̃((t+ p)t−mṼi(R)) = (t+ p)L̃i

and such that

φR(g̃(x), g̃(y)) = c(g)tm+nφR(x, y)

for all x, y ∈ t−mṼ0(R) (by the duality condition ELM5, the ordinary product

φR is well-defined on L̃0)

(the meaning of “Zariski-locally” in the last condition is that there are multiplicative

subsets S1, . . . , Sn covering Spec(R) and S−1
i R[t]-linear isomorphisms

gi : S−1
i t−mṼ0(R) = t−mṼ0(S−1

i R)
∼−→ S−1

i L̃0
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inducing S−1
i g)

Remark. I am abusing notation by not including µ and ν in the symbol “M̃(m,n)”.

It is clear that the tuple (L0, . . . ,Ld/2) has all the properties necessary to be

the image in t−mV i(R)/tnV i(R) = t−mVi(R)/tnVi(R) of a point (L0, . . . ,Ld/2) ∈

M(m,n)(R) except possibly the duality condition ELM5. That condition follows

from the similitude condition (notice that φ here restricts, descends and retracts

to the φ from §2.4.1 (page 49)), taking into account that the factor of tm+n comes

from a normalization: tm−nφR and t2mφR send L0 × L0 and t−mV0(R)× t−mV0(R)

(respectively) into R[t], and g̃ should identify t2mφR to tm−nφR, hence the above

requirement.

Therefore, I may define

M̃(m,n)(R) −→M(m,n)(R)

g 7−→ (L0, . . . ,Ld/2)

Remark. Recall that if m = n then the trivial tuple (V0(R), . . . ,Vd/2(R)) is an ele-

ment of M(m,m)(R), so the map w 7→ tmw is a sort of “identity element” of M̃(m,m).

As before, this is related to the identity component of the affine flag varieties.

Proposition 3.2.2.1. M̃(m,n) is a finite-type Zp-scheme.

Proof. Let M̃
(m,n)
weak : Zp-Algebras → Sets be the functor defined only by conditions

(1), (2), (3) and (4). Conditions (1) and (4) obviously define a finite-type scheme,

and Lemma 18 from [15] handles conditions (2) and (3), so M̃
(m,n)
weak is a finite-type
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scheme. Now consider M̃(m,n) ⊂ M̃
(m,n)
weak . It is clear that the similitude part of

condition (5) is no problem, so I now check the Zariski-local existence statement.

Let R be a (commutative) Zp-algebra and temporarily fix g ∈ M̃
(m,n)
weak (R). The

set of possibly-non-invertible g̃ inducing g globally on Spec(R) is clearly the R-points

of a finite-dimensional affine space (choose additional matrix entries from L̃0/L0).

Let k be the dimension of this affine space. Then for fixed g, the condition of

invertibility can be expressed (by Cramer’s rule) as a polynomial equation by using

the associated k-variable determinant detg. Now I extend this to the Zariski-local

case.

Define for each n ∈ N and `1, . . . , `n,m1, . . . ,mn ∈ N the ideal I(n; {`i}; {mj})

in

Zp[W1, . . . ,Wn;X1, . . . , Xn;Y1, . . . , Yn;Z
(1)
1 , . . . , Z

(1)
k , . . . , Z

(n)
1 , . . . , Z

(n)
k ]

by the equations

W1Y1 + · · ·+WnYn = 1

Y `1
1 · (detg(Z

(1)
1 , . . . , Z

(1)
k ) ·X1 − Y m1

1 · 1) = 0

...

Y `n
n · (detg(Z

(n)
1 , . . . , Z

(n)
k ) ·Xn − Y mn

n · 1) = 0

In any R-valued solution to this system,

• the values Y1, . . . , Yn will, because of the first equation, be generators of the

trivial ideal R, i.e. a principal open cover of Spec(R) (the values Wi are
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auxiliary),

• the values Z
(i)
1 , . . . , Z

(i)
k define the (at the moment possibly-non-invertible)

Zariski-local lift of g over the principal open subset Spec(RYi), and

• the last n equations exactly express (by definition of the fraction ring RYi) that

the determinant of the Zariski-local lift is a unit, i.e. that each Zariski-local

lift is invertible.

Since M̃
(m,n)
weak is already known to be a scheme, it is clear that the above system

of equations can be extended (simply add more variables and the ideal defining

M̃
(m,n)
weak ) to eliminate the assumption that g is fixed. Taking I to be the sum of

all the above ideals in the obvious countably-generated polynomial ring, it is then

clear that the subfunctor M̃(m,n) ⊂ M̃
(m,n)
weak representable (it is the image under

the forgetful morphism (g̃, g) 7→ g of scheme defined by the ideal I). This proves

representability, and finite-type is then obvious.

Similarly, define the functor

F̃l
(µ,ν)

: Zp-Algebras −→ Sets

by assigning to each (commutative) Zp-algebra R the set of all R[t]-linear maps

g :Wsup(R)→Wsup(R) such that

• each F i
def
= g((t+ p)−µV i(R)) satisfies

(t+ p)νV i(R) ⊂ F i ⊂ (t+ p)−µV i(R)
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• each inclusion F i/(t + p)νV i(R) ↪→ (t + p)−µV i(R)/(t + p)νV i(R) splits R-

linearly

• the projective rank function Spec(R)→ N associated to each F i/(t+p)νV i(R)

is the constant function p 7→ d(µ+ ν)

• there exists a c(g) ∈ R[t] representing a unit in R[t]/tm+n(t+p)µ+ν+1R[t] such

that

φR(g(x), g(y)) = c(g)(t+ p)µ+νφR(x, y)

for all x, y ∈ Wsup(R)

• Setting

(t+ p)−µṼi
def
=

(t+ p)−µ−1O[t]i ⊕ (t+ p)−µO[t]d−i

tm+n+1(t+ p)νO[t]d

F̃i
def
=

Fi
tm+n(t+ p)µ+ν+1F0

(note that F̃0 ⊂ F̃1 ⊂ · · · ), there exists Zariski-locally on Spec(R) an R[t]-

linear isomorphism

g̃ : (t+ p)−µṼ0(R)
∼−→ F̃0

inducing the restriction g : (t+ p)−µV0(R)→ F0 such that

g̃((t+ p)−µ+1Ṽi(R)) = (t+ p)F̃i

and such that

φR(g̃(x), g̃(y)) = c(g)(t+ p)µ+νφR(x, y)

for all x, y ∈ (t + p)−µṼ0(R) (by the duality condition ELM5, the ordinary

product φR is well-defined on F̃0)
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(the meaning of the last condition is as in the case of M̃(m,n))

Remark. I am abusing notation by not including m and n in the symbol “F̃l
(µ,ν)

”.

As before,

Proposition 3.2.2.2. F̃l
(µ,ν)

is a finite-type Zp-scheme.

Proof. This is nearly identical to the proof for M̃(m,n) (page 95).

As before, I may define

F̃l
(µ,ν)

(R) −→ Fl(µ,ν)(R)

g 7−→ (g((t+ p)−µV0(R)), . . . , g((t+ p)−µVd/2(R)))

Remark. As in the case of M̃(m,n), notice that if µ = ν then Fl(µ,µ) and F̃l
(µ,µ)

have an “identity element”.

Define

p1 : M̃(m,n) × F̃l
(µ,ν)
−→M(m,n) × Fl(µ,ν)

to be the product of the above morphisms.

3.2.3 The convolution scheme

I now define a Zp-scheme Conv(m,n ;µ,ν) and a “twisted action” morphism

p2 : M̃(m,n) × F̃l
(µ,ν)
−→ Conv(m,n ;µ,ν). The purpose of this scheme Conv(m,n ;µ,ν)

is to perform the summation operation that occurs in the ordinary convolution of

functions in the Iwahori-Hecke algebra. See §3.4.2 (page 135).
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Definition: The Convolution Scheme. Define the functor

Conv(m,n ;µ,ν) : Zp-Algebras −→ Sets

by assigning to each (commutative) Zp-algebra R the set of all tuples

(L0, . . . ,Ld/2;K0, . . . ,Kd/2)

of R[t]-submodules of V(R) satisfying

• (L0, . . . ,Ld/2) ∈M(m,n)(R)

• each Ki satisfies

(t+ p)νLi ⊂ Ki ⊂ (t+ p)−µLi

• each inclusion Ki/(t+ p)νLi ↪→ (t+ p)−µLi/(t+ p)νLi splits R-linearly

• the projective rank function Spec(R)→ N associated to each

Ki/(t+ p)νLi

is the constant function p 7→ d(µ+ ν)

(note that the previous property implies R-projectivity)

• K0 is self-dual with respect to tm−n(t + p)µ−νφR and Kd/2 is self-dual with

respect to tm−n(t+ p)µ−ν+1φR

(the φ used here has domain V × V)

(The duality occurring here is similar to the one occurring in ELM5: it is

required that K0 be exactly the elements x ∈ V(R) such that

φR(K0, x) ⊂ tn−m(t+ p)ν−µR[t]
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and similarly for Kd/2.)

Similar to M(m,n) (see §2.4.3 (page 58)), this Conv(m,n ;µ,ν) is a closed sub-

scheme of a product of (ordinary) Grassmannians. In particular,

Conv(m,n ;µ,ν) → Spec(Zp)

is proper.

Define

p2 : M̃(m,n) × F̃l
(µ,ν)
−→ Conv(m,n ;µ,ν)

by

(g, h) 7−→ (g(t−mV i(R))
d/2
i=0 ; g(h(t−m(t+ p)−µV i(R)))

d/2
i=0)

(these images of g and h are technically submodules of Wsup(R), but as usual I

replace them by their corresponding submodules of V(R)).

To verify that the codomain of this morphism really is correct, note that the

1st coordinate is simply the previously verified action morphism M̃(m,n) → M(m,n)

and that by definition of h,

(t+ p)νt−mV i(R) ⊂ h(t−m(t+ p)−µV i(R)) ⊂ (t+ p)−µt−mV i(R) (3.4)

and this chain is transformed by g to the chain

(t+ p)νLi ⊂ g(h(t−m(t+ p)−µV i(R))) ⊂ (t+ p)−µLi (3.5)

Finally, I define a Zp-scheme P(m,n ;µ,ν) essentially as a target for the 2nd

projection from Conv(m,n ;µ,ν):

Definition: The Convolution Base. Define the functor

P(m,n ;µ,ν) : Zp-Algebras −→ Sets
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by assigning to each (commutative) Zp-algebra R the set of all tuples (K0, . . . ,Kd/2)

of R[t]-submodules of V(R) satisfying

• each Ki satisfies

tn(t+ p)νVi(R) ⊂ Ki ⊂ t−m(t+ p)−µVi(R)

• each inclusion Ki/tn(t+ p)νVi(R) ↪→ t−m(t+ p)−µVi(R)/tn(t+ p)νVi(R) splits

R-linearly

• the projective rank function Spec(R)→ N associated to each

Ki/tn(t+ p)νVi(R)

is the constant function p 7→ (m+ n+ µ+ ν)d

(the rank here is bigger than the rank in the definition of the convolution

scheme because the quotient here is also bigger)

• K0 is self-dual with respect to tm−n(t + p)µ−νφR and Kd/2 is self-dual with

respect to tm−n(t+ p)µ−ν+1φR

(The duality occurring here is similar to the one occurring in ELM5: it is

required that K0 be exactly the elements x ∈ V(R) such that

φR(K0, x) ⊂ tn−m(t+ p)ν−µR[t]

and similarly for Kd/2.)

Remark. Notice that if µ = ν then M(m,n) ⊂ P(m,n ;µ,µ): all the conditions are

obviously satisfied except possibly the rank condition, which is true because, Zariski-
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locally on Spec(R),

rankR(Li/tn(t+ p)νVi(R)) = (m+ n)d+ 2νd = (m+ n)d+ (µ+ ν)d.

This is related to the “identity element” 1 ∈ F̃l
(µ,µ)

: if g ∈ M̃(m,n) maps to

(L0, . . . ,Ld/2) ∈M(m,n), then considered as an element of P(m,n ;µ,µ),

(L0, . . . ,Ld/2) = m(p2(g, 1)).

Similar to M(m,n) (see §2.4.3 (page 58)), this P(m,n ;µ,ν) is a closed subscheme

of a product of (ordinary) Grassmannians. In particular, P(m,n ;µ,ν) → Spec(Zp) is

proper.

Define

m : Conv(m,n ;µ,ν) −→ P(m,n ;µ,ν)

by

(L0, . . . ,Ld/2;K0, . . . ,Kd/2) 7−→ (K0, . . . ,Kd/2)

The verification that this function has codomain P(m,n ;µ,ν) is very easy: the duality

condition is identical for both schemes, the containment relations are verified by

concatenating the containment relations satisfied by the Li (i.e. ELM2) onto those

satisfied by the Ki, and it is easy to see that the rank condition is then satisfied.

The morphism m is automatically proper due to the fact that the domain and

codomain are proper schemes.

103



3.2.4 Convolution diagram construction

Combining all the above objects and morphisms gives, at long last, the con-

volution diagram:

M(m,n) × Fl(µ,ν) p1←− M̃(m,n) × F̃l
(µ,ν) p2−→ Conv(m,n ;µ,ν) m−→ P(m,n ;µ,ν)

3.2.5 The “reversed” convolution diagram

I now construct a “reversed” convolution diagram, which is used to construct

a “reversed” convolution product product (see the end of §3.4.1 (page 130). The

statement that the convolution product of two particular functions is commutative

is equivalent to the statement that the convolution product and reversed convolution

product of the corresponding sheaf complexes are equal.

Definition: The Reversed Convolution Scheme. Fix m,n, µ, ν ∈ N. Define

the functor

revConv(µ,ν ;m,n) : Zp-Algebras −→ Sets

by assigning to each (commutative) Zp-algebra R the set of all tuples

(L0, . . . ,Ld/2;K0, . . . ,Kd/2)

of R[t]-submodules of V(R) satisfying

• (K0, . . . ,Kd/2) ∈ Fl(µ,ν)(R)

• each Li satisfies

tnKi ⊂ Li ⊂ t−mKi
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• each inclusion Li/tnKi ↪→ t−mKi/tnKi splits R-linearly

• the projective rank function Spec(R) → N associated to each Li/tnKi is the

constant function p 7→ d(m+ n)

• L0 is self-dual with respect to tm−n(t+p)µ−νφR and Ld/2 is self-dual with respect

to tm−n(t+ p)µ−ν+1φR

(the φ used here has domain V × V)

I define a morphism

revm : revConv(µ,ν ;m,n) −→ P(m,n ;µ,ν)

as in the non-reversed case by

(L0, . . . ,Ld/2;K0, . . . ,Kd/2) 7−→ (L0, . . . ,Ld/2)

(just as for m, it is easy to verify that this function has codomain P(m,n ;µ,ν)). Note

that the codomain of m and revm are identical.

I define a morphism

revp2 : F̃l
(µ,ν)
× M̃(m,n) −→ revConv(µ,ν ;m,n)

as in the non-reversed case by

(g, h) 7−→ (g((t+ p)−µV i(R))
d/2
i=0 ; g(h(t−m(t+ p)−µV i(R)))

d/2
i=0)

(notice that the 1st coordinate of revp2 is just F̃l
(µ,ν)
→ Fl(µ,ν) from before)

Substituting the new convolution object and morphisms yields a “reversed”

convolution diagram:

Fl(µ,ν) ×M(m,n) p1←− F̃l
(µ,ν)
× M̃(m,n)

revp2−→ revConv(µ,ν ;m,n)
revm−→ P(m,n ;µ,ν)
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3.3 Properties of the convolution diagram

Recall that for a point (L0, . . . ,Ld/2;K0, . . . ,Kd/2) ∈ Conv(m,n ;µ,ν)(R) it is not

the case that the tuple (K0, . . . ,Kd/2) is a point of Fl(µ,ν)(R) (indeed, that is the

whole point). However,

Lemma 3.3.0.1. Let R be a local (commutative) Zp-algebra. If

(L0, . . . ,Ld/2;K0, . . . ,Kd/2) ∈ Conv(m,n ;µ,ν)(R)

and

g ∈ M̃(m,n)(R)

is such that

M̃(m,n)(R) −→M(m,n)(R)

g 7−→ (L0, . . . ,Ld/2)

then there exists a

(F0, . . .Fd/2) ∈ Fl(µ,ν)(R)

such that g(F i) = Ki for all i.

Remark. The point of this lemma is roughly that given g ∈ M̃(m,n), one can revert

(3.5) back to (3.4) (page 101), even though an “h” may not exist. This is useful for

deriving statements about p2 from similar statements about p1.

Proof. By definition,

(t+ p)νLi ⊂ Ki ⊂ (t+ p)−µLi
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Quotient by tm+n(t+p)µ+ν+1L0 (so that the leftmost and rightmost modules involve

L̃i, in the sense of M̃(m,n)), apply g̃−1 (since R is assumed local, g̃ exists globally on

Spec(R)), scale by tm, and quotient by tn(t+ p)νR[t]d to get a module F i satisfying

(t+ p)νV i(R) ⊂ F i ⊂ (t+ p)−µV i(R) (3.6)

Because g̃ induces g, it is true that g(F i) = Ki.

Recall the conditions for membership in Fl(µ,ν)(R). The containments (3.6)

are one of those conditions. Because K0 ⊂ · · · ⊂ Kd/2, it is also true that F0 ⊂

· · · ⊂ Fd/2. The projectivity condition and rank condition are satisfied because g̃ is

an isomorphism and because of the similar properties of (K0, . . . ,Kd/2). The duality

condition is not totally obvious, but follows from the similitude property of g̃ and

the similar duality property (page 90) of (K0, . . . ,Kd/2):

φR(F0,F0) = φR(tmg̃−1(K0), tmg̃−1(K0))

= t2mt−(m+n)c(g)−1φR(K0)

= tm−nc(g)−1φR(K0,K0)

so

φR(K0,K0) ⊂ tn−m(t+ p)ν−µR[t]⇐⇒ φR(F0,F0) ⊂ (t+ p)ν−µR[t]

etc.

The following is the analogue of Lemma 19 from [15]:

Proposition 3.3.0.2. The morphisms p1 and p2 are smooth and for any Zp-field

K, the functions p1(K) and p2(K) are surjective.
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Proof. Smoothness To prove that M̃(m,n) → M(m,n) is smooth, I must show that

for

• a (commutative) Zp-algebra R

• a nilpotent ideal I ⊂ R

• (L0, . . . ,Ld/2) ∈M(m,n)(R)

• gR/I ∈ M̃(m,n)(R/I) such that

gR/I(t
−mV i(R/I)) = Li ⊗R (R/I)

for each 0 ≤ i ≤ d/2

there exists a gR ∈ M̃(m,n)(R) such that gR(t−mV i(R)) = Li for each 0 ≤ i ≤ d/2

and gR 7→ gR/I under M̃(m,n)(R) → M̃(m,n)(R/I). By the proof of Corollary 4.5 in

Chapter 1 §4 of [7], I may assume that R is local, in which case g̃R/I exists globally

on Spec(R).

Some notation. Set

S def
= R[t]/tm+n(t+ p)µ+ν+1R[t]

and let It be the extension in S of the ideal I. I use Li,R and Li,R/I refer to Li and

Li ⊗R (R/I), and so on. Let  : S → S be the involution induced by the non-trivial

element of Gal(F/Qp).

First, a partial result:

Lemma 3.3.0.3. With R, I, (L0, . . . ,Ld/2), gR/I and the notation as above, L̃0 is

free over S and the hermitian form L̃0 × L̃0 → S induced by tm−nφR is perfect.
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Note that these assertions are not automatic because it is not known a priori

that (L0, . . . ,Ld/2) is the image of some gR.

Proof. After normalization, I can assume that the domain of g̃ is (S/It)d. Let

ṽ1, . . . , ṽd be arbitrary lifts to L̃0 of the basis g̃(e1), . . . , g̃(ed). By Nakayama’s lemma,

ṽ1, . . . , ṽd generates L̃0. Let

0 −→ K −→ Sd −→ L̃0,R −→ 0 (3.7)

be the presentation so defined. Since L0,R is R-projective by ELM5 (page 57), and

since the kernel of L̃0,R � L0,R is identified R-linearly with t−m(t+p)−µV0(R)/L0,R,

which is also R-projective by ELM5, it follows that L̃0,R is R-projective. So (3.7)

splits and

0 −→ K ⊗R R/I −→ Sd ⊗R R/I −→ L̃0,R ⊗R R/I −→ 0 (3.8)

is still exact. The middle module is just (S/It)d and, again by R-projectivity of

L̃0,R, the rightmost module is just L̃0,R/I . This means that the presentation (3.8) is

just the one given by the isomorphism g̃R/I , which means K ⊗R R/I = K/IK = 0.

By Nakayama’s lemma (note that K is finitely-generated by the splitting of (3.7)),

K = 0 and so the lift Sd −→ L̃0,R of g̃R/I is an isomorphism.

For perfection, recall that the form is perfect if and only if the associated

adjoint map

L̃0,R −→ HomS-lin(L̃0,R,S) (3.9)

is surjective. By definition of g̃R/I , the corresponding form modulo I is perfect, i.e.
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the adjoint map

L̃0,R/I −→ Hom(S/It)-lin(L̃0,R/I ,S/It)

is surjective. Since L̃0,R is a free S-module and L̃0,R/I = L̃0,R ⊗R R/I,

Hom(S/It)-lin(L̃0,R/I ,S/It) = HomS-lin(L̃0,R,S)⊗R R/I

(this is the trivial case of “Localization of hom-sets”) so Nakayama’s lemma implies

that (3.9) must also be surjective.

I return to the proof of Proposition 3.3.0.2. Let

w̃1, . . . , w̃d ∈ L̃0,R/I

be the images (necessarily a basis) under g̃R/I of the standard basis. Let

ṽ1, . . . , ṽd ∈ L̃0,R

be lifts of w̃1, . . . , w̃d such that (t+ p)ṽi ∈ (t+ p)L̃i,R (this is possible because of the

hypotheses on g̃). By Lemma 3.3.0.3, ṽ1, . . . , ṽd is a basis of L̃0,R. The normalized

hermitian form tm−nφR : L0 × L0 → R[t] descends to L̃0,R × L̃0,R and takes values

in S. By Lemma 3.3.0.3 again, it is perfect.

Now that I have the basic ingredients of freeness and perfection, I can use the

same method used to prove that J(m,n) → Spec(Zp) was smooth (page 74).

Let c ∈ S be any representative of c(gR/I). Set

CR/I
def
= tm+n(t+ p)2µ+2c(gR/I)

and

CR
def
= tm+n(t+ p)2µ+2c
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Since

φR/I(w̃i, w̃j) = CR/Iδi,d+1−j = φR/I(wi, wj)

there are xi,j ∈ It such that

φR(ṽi, ṽj) = CRδi,d+1−j + xi,j = φR(vi, vj) (3.10)

For each i, use freeness to define an S-linear functional

fi : L̃0,R −→ S

by fi(ṽj) = −1
2
xi,j. Using perfection, there is an m̃i ∈ L̃0,R such that

fi = tm−nφR(−, m̃i).

Let vi and mi be the images of ṽi and m̃i in L0. Automatically, mi ∈ ItWsup(R)

(since im(fi) ⊂ ItS). It is automatic from definition that xj,i = (xi,j) so

φR(ṽi + m̃i, ṽj + m̃j) = CRδi,d+1−j = φR(vi +mi, vj +mj)

I must verify that (t+p)mi ∈ (t+p)Li for each i. The proof will then be finished by

defining g̃R and gR to be the maps sending the respective standard bases to {ṽi+m̃i}

and {t−(µ+1)(vi +mi)}.

Since v1, . . . , vi, (t + p)vi+1, . . . , (t + p)vd generates (t + p)Li for each i, and

since ELM5 implies that

Li = {x ∈ Wsup(R) | φR(x,Ld−i) ⊂ tn−m(t+ p)S},

it suffices to show that

φR(v1, (t+ p)mi), . . . , φR(vd−i, (t+ p)mi) ∈ tn−m(t+ p)2S
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Note that the containments for φR((t + p)vj, (t + p)mi) are automatic since the

defining relation (3.10) implies that xi,j, and therefore φR(vj,mi), belongs to tn−mS.

Since 1 ≤ j ≤ d − i implies that i + j 6= d + 1, the defining equality (3.10)

implies that

φR(vj,mi) = −1

2
φR(vj, vi) j = 1, . . . , d− i

It is now automatic from the above duality that φR(vj,mi) satisfies the necessary

condition.

The proof that F̃l
(µ,ν)
→ Fl(µ,ν) is smooth is nearly identical.

Using Lemma 3.3.0.1 (recall that R is assumed local), smoothness of p2 is

essentially a formal consequence of smoothness of the individual factors of p1. Let

R be a (commutative) Zp-algebra and I ⊂ R a nilpotent ideal. I must show that

for all

• (L0, . . .Ld/2;K0, . . .Kd/2) ∈ Conv(m,n ;µ,ν)(R)

• (gR/I , hR/I) ∈ M̃(m,n)(R/I)× F̃l
(µ,ν)

(R/I)

satisfying

gR/I(−) = Li ⊗R R/I

gR/I(hR/I(−)) = Ki ⊗R R/I

there exists (gR, hR) ∈ M̃(m,n)(R)× F̃l
(µ,ν)

(R) such that

gR(−) = Li

gR(hR(−)) = Ki
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and (gR, hR) 7→ (gR/I , hR/I).

Invoke smoothness of M̃(m,n) →M(m,n) with the data
{
R, I, gR/I , (Li)

}
to get

gR. Let (F0, . . . ,Fd/2) ∈ Fl(µ,ν)(R) be the point guaranteed by Lemma 3.3.0.1 (page

106). Invoke smoothness of F̃l
(µ,ν)
→ Fl(µ,ν) with the data {R, I, hR/I , (Fi)} to get

hR. By Lemma 3.3.0.1,

gR(hR(t−m(t+ p)−µV i(R))) = Ki

so this pair (gR, hR) satisfies the requirements.

Surjectivity I now prove that M̃(m,n)(K) → M(m,n)(K) is surjective for any

Zp-field K. Suppose first that char(K) = p. Choose (L0, . . . ,Ld/2) ∈ M(m,n)(K)

and let (Fi)i∈Z be the corresponding point of F`aff(K). By AFV3 (page 61), each

Fi is a rank d free K[[t]]-submodule of K((t))d. On the other hand, each scaled

hermitian form

tm−n+1ΦK : Fi ×Fd−i → K[[t]]

is perfect : Since K[[t]] is a local principal-ideal-domain, there is a basis f1, . . . , fd of

K((t))d and n1, . . . , nd ∈ N such that tn1f1, . . . , t
ndfd is a basis for Fi. This implies

that any functional Fi → K[[t]] extends to a functional K((t))d → K((t)). This

latter functional must be evaluation at some x ∈ K((t))d (the form is obviously

perfect on the vector space K((t))d), and the self-duality AFV5 (page 61) forces

x ∈ Fd−i.

By Proposition A.43 (“every polarized chain is Zariski-locally isomorphic to

the trivial polarized chain”) on page 166 of [30] (recall that K[[t]] is already a local
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ring), there are mutually compatible K[[t]]-linear isomorphisms

gi : t−(m+1)K[[t]]i ⊕ t−mK[[t]]d−i
∼−→ Fi

such that

tm−n+1ΦK(gi(x), gi(y)) = t2m+1ΦK(x, y)

for all x, y in the domain of gi. Each gi sends K[[t]]d into tmFi, so I have

t−(m+1)K[[t]]i ⊕ t−mK[[t]]d−i/tn+µ+ν+1K[[t]]d −→ Fi/tm+n+µ+ν+1Fi (3.11)

Counting K-dimensions shows that (3.11) is a K[[t]]-linear isomorphism. As usual,

notice that the domain is canonically identified with t−mVi(K)/tn+µ+ν+1K[t]d and

the codomain with L̃i (recall the notation for M̃(m,n)). Isomorphism (3.11) induces

t−(m+1)K[[t]]i ⊕ t−mK[[t]]d−i/tn+νK[[t]]d −→ Fi/tn+νK[[t]]d

The compatible family of these maps t−mV i(K) → Li can obviously be lifted to a

single K[t]-linear map g : Wsup(K) → Wsup(K). The isomorphisms (3.11) supply

the necessary lift g̃ so g ∈ M̃(m,n)(K) and g 7→ (L0, . . . ,Ld/2).

The proof that F̃l
(µ,ν)

(K) → Fl(µ,ν)(K) is surjective is nearly identical. This

proves surjectivity for p1(K).

Using Lemma 3.3.0.1 (note that K is local), surjectivity of p2(K) is essentially

a formal consequence of the surjectivity of the individual factors of p1(K). For

(L0, . . .Ld/2;K0, . . .Kd/2) ∈ Conv(m,n ;µ,ν)(K),

invoke surjectivity of M̃(m,n)(K) → M(m,n)(K) to get g, use Lemma 3.3.0.1 (page

106) to get (F0, . . .Fd/2) ∈ Fl(µ,ν)(K), and use surjectivity of F̃l
(µ,ν)

(K)→ Fl(µ,ν)(K)
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to get h. It follows that that

p2(g, h) = (L0, . . .Ld/2;K0, . . .Kd/2).

If char(K) = 0 then use the Chinese remainder theorem as in the proof of

Lemma 3.3.2.1 (page 116) to decompose all relevant rings and modules so that in

each factor/summand, the relevant quotient involves either a power of (t) or a power

of (t+ p), but not both. In each situation, the above proof applies (the importance

of characteristic p in the above proof is only that the quotients are modulo a power

of a single prime ideal).

Remark. Applications:

• Smoothness of p1 is used in §3.4.1 (page 130) and in the proof of Lemma 23

in [15] (which I invoke).

• Smoothness of p2 is used in the proof of Lemma 21 in [15] (page 131 here) and

in the proof of Lemma 23 in [15] (which I invoke).

• The surjectivity statement for p1 is not used.

• The surjectivity statement for p2 implies that the underlying map of topological

spaces is surjective, which is used to satisfy the hypotheses of Lemma 21 in

[15] (page 131 here).

3.3.1 The special fiber of the convolution diagram

Two obvious but important simplifications occur over Fp in the convolution

diagram.
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First, if (m,n) = (µ, ν) then the definitions of M(m,n) and Fl(m,n) are equal

modulo p, i.e.

Fl
(m,n)
Fp

= M
(m,n)
Fp

Similarly,

M̃
(m,n)
Fp

= F̃l
(m,n)

Fp

J
(m,n)
Fp

= Iw
(m,n)
Fp

Second, for any m,n, µ, ν ∈ N it is immediate by looking at the definition that

P
(m,n ;µ,ν)
Fp

= F̃l
(m+µ,n+ν)

Fp

These observations are important for understanding why the convolution prod-

uct of sheaf complexes (not yet defined) induces the convolution product of functions.

3.3.2 The generic fiber of the convolution diagram

The following result (an almost identical copy of Lemma 24 from [15]) is unique

to the generic fiber, because of the fact that (t) and (t+ p) are comaximal in Qp[t]

and therefore the Chinese remainder theorem can be applied.

Lemma 3.3.2.1. The extended morphisms mQp and revmQp are isomorphisms, and

there are isomorphisms i, revi such that the square formed by these 4 morphisms is

commutative:

M
(m,n)
Qp

× Fl
(µ,ν)
Qp

i←− Conv
(m,n ;µ,ν)
Qp

revi ↑ ◦ ↓ m

revConv
(µ,ν ;m,n)
Qp

revm−→ P
(m,n ;µ,ν)
Qp
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(I mean the non-trivial commutativity you get by allowing these morphisms to be

inverted)

Proof. Because the ideals (t) and (t+p) are comaximal in F [t], the Chinese remain-

der theorem implies that the F [t]-module Wsup(Qp) can be written as the direct

sum

Wsup(Qp) ∼=
t−mF [t]d

tnF [t]d
⊕ (t+ p)−µ−1F [t]d

(t+ p)νF [t]d
(3.12)

Similarly decompose each V i(Qp) into

V i(Qp) ∼= V
(t)

i (Qp)⊕ V
(t+p)

i (Qp)

Let R be a (commutative) Qp-algebra. Take

(L0, . . . ,Ld/2;K0, . . . ,Kd/2) ∈ Conv(m,n ;µ,ν)(R).

Denote by Li and Ki the images in Wsup(R). In particular,

tnV i(R) ⊂ Li ⊂ t−mV i(R) (3.13)

(t+ p)νLi ⊂ Ki ⊂ (t+ p)−µLi (3.14)

Decompose each

Li ∼= L
(t)

i ⊕ L
(t+p)

i

Ki ∼= K
(t)

i ⊕K
(t+p)

i

Since the images under the 2nd projection from (3.12) of tkV i(R) is the same, always

equal to ((t+ p)−1R[t]/R[t])i, regardless of k ∈ Z, the inclusions in (3.13) force

L(t+p)

i = V(t+p)

i (R) (3.15)
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Similarly, applying the 1st projection of from (3.12) to the inclusions in (3.14) shows

that

K(t)

i = L(t)

i (3.16)

In other words, the function

mR(L0, . . . ,Ld/2;K0, . . . ,Kd/2) = (K0, . . . ,Kd/2)

is injective. Conversely, for any (K0, . . . ,Kd/2) ∈ P(m,n ;µ,ν)(R), defining (L0, . . . ,Ld/2)

by (3.15) and (3.16) yields a point of Conv(m,n ;µ,ν)(R). So mR is an isomorphism

for any (commutative) Qp-algebra R.

Take (L0, . . . ,Ld/2;K0, . . . ,Kd/2) ∈ Conv(m,n ;µ,ν)(R). Using the preceding

argument, write (K0, . . . ,Kd/2) as

(L(t)
0 ⊕K

(t+p)
0 , . . . ,L(t)

d/2 ⊕K
(t+p)
d/2 )

I claim that the chain K(t+p)

i (i.e. discarding the 1st summand from each Ki) is an

element of Fl(µ,ν)(R). This is clear by applying the 2nd projection from (3.12) to the

inclusions in (3.14) and then using the equality in (3.15) (this shows that K(t+p)

i has

the necessary bounds, and the other properties are automatic from the definitions).

I claim that the function

iR : Conv(m,n ;µ,ν)(R) −→M(m,n)(R)× Fl(µ,ν)(R)

(L0, . . . ,Ld/2;K0, . . . ,Kd/2) 7−→
(

(L(t)

0 , . . . ,L(t)

d/2), (K(t+p)

0 , . . . ,K(t+p)

d/2 )
)

is a bijection. Injectivity is obvious because the discarded summand L(t)
i in Ki is

not truly discarded by i: it is retained by the 1st coordinate. Surjectivity is also
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obvious for the same reason: for any ((Li), (F i)) ∈ M(m,n)(R) × Fl(µ,ν)(R), simply

supply the respective missing summands V(t+p)

i (R) and L(t)

i .

The proof for revmQp and revi is nearly identical, and the fact that the square

commutes is then obvious.

3.3.3 An automorphism group for the convolution diagram

I also need a Zp-group J̃(m,n ;µ,ν) that acts on both M̃(m,n) and F̃l
(µ,ν)

and fac-

tors through both J(m,n) and Iw(µ,ν). The definition is a straightforward enlargement

of the definition of J(m,n) plus a lifting condition: define the functor

J̃(m,n ;µ,ν) : Zp-Algebras −→ Sets

by assigning to each (commutative) Zp-algebra R the set of all R[t]-linear automor-

phisms γ of Wsup(R) satisfying:

• γ(V i(R)) = V i(R) for all i

• there exists a unit c(g) ∈ R[t]/tm+n(t+ p)µ+ν+1R[t] such that

φR(γ(x), γ(y)) = c(g)φR(x, y)

for all x, y ∈ Wsup(R).

• γ is induced Zariski-locally on Spec(R) by some R[t]-linear automorphism γ̃

of

t−m(t+ p)−µ−1R[t]d/tm+n(t+ p)µ+νR[t]d (3.17)

(of which Wsup(R) is a quotient)
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(the meaning of “Zariski-locally” in the last condition is as in M̃(m,n))

Notice that any γ ∈ J̃(m,n ;µ,ν)(R) restricts and descends from Wsup(R) to

R[t]-linear automorphisms γV of Vsup(R) and γU of U sup(R). It is clear that these

induced automorphisms γV , γU are similitudes for the appropriate forms φR, and

the multiplier c(γ) specified from J̃(m,n ;µ,ν)(R) is also appropriate, so γ 7→ γV and

γ 7→ γU define morphisms

J̃(m,n ;µ,ν) −→ J(m,n)

J̃(m,n ;µ,ν) −→ Iw(µ,ν)

of Zp-group schemes.

Remark. The purpose of this group is to express equivariance properties of sheaves

uniformly regardless of which object in the convolution diagram supports the sheaves.

By the exact same process used in §2.5.5 (page 80) to define I(Fp[[t]]) →

J(m,n)(Fp), one has a group homomorphism

I(Fp[[t]]) −→ J̃(m,n ;µ,ν)(Fp)

(note that the existence of “γ̃” is trivial) such that the composition

I(Fp[[t]])→ J̃(m,n ;µ,ν)(Fp)→ J(m,n)(Fp)

is exactly the group homomorphism from §2.5.5.

To define the convolution product, I will need two group actions of

J̃(m,n ;µ,ν) × J̃(m,n ;µ,ν)
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on

M̃(m,n) × F̃l
(µ,ν)

one tailored to p1 and one tailored to p2.

Take g ∈ M̃(m,n)(R). Since any γ ∈ J̃(m,n ;µ,ν)(R) is a similitude of Wsup(R)

and stabilizes all V i, it is clear that g ◦ γ satisfies all the conditions of M̃(m,n)(R)

except possibly the lifting property (the existence of a certain “g̃ ◦ γ”). For this,

note that

t−m(t+ p)−µ−1R[t]d/tm+n(t+ p)µ+νR[t]d

is a subquotient of the domain of γ̃, and define the desired lift of g ◦γ by composing

g̃ with the automorphism induced by γ̃ on that subquotient. By a nearly identical

argument, h ◦ γ ∈ F̃l
(µ,ν)

(R) for any h ∈ F̃l
(µ,ν)

(R) and γ ∈ J̃(m,n ;µ,ν)(R).

I define the 1st action α1 by the rule

α1(γ, η; g, h)
def
= (g ◦ γ−1, h ◦ η−1)

Because elements J̃(m,n ;µ,ν) stabilize all V i, this action stabilizes p1-fibers.

I define the 2nd action α2 by the rule

α2(γ, η; g, h)
def
= (g ◦ γ−1, γ ◦ h ◦ η−1)

This action stabilizes p2-fibers for the same reason, since the 2nd coordinate of p2

uses (g ◦ γ−1) ◦ (γ ◦ h ◦ η−1) = g ◦ h ◦ η−1.

Proposition 3.3.3.1. J̃(m,n ;µ,ν) is a finite-type Zp-scheme.

Proof. The proof is nearly identical (in fact easier since the codomain of the Zariski-

local lifts is not varying) to that given for M̃(m,n) (page 95).
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3.3.4 The automorphism group is smooth

Proposition 3.3.4.1. J̃(m,n ;µ,ν) → Spec(Zp) is smooth.

Proof. Let J̃
(m,n ;µ,ν)
weak be the Zp-group scheme defined using only the 1st and 2nd

conditions (i.e. excluding the Zariski-local lifting condition). It is obvious that

J̃
(m,n ;µ,ν)
weak is finite-type, so to show that J̃

(m,n ;µ,ν)
weak is smooth, it suffices to verify

the infinitesimal lifting property (formal smoothness), and for this, the proof that

J(m,n) → Spec(Zp) is smooth, Proposition 2.5.2.2 (page 74), works almost verbatim:

for a (commutative) Zp-algebra R and an ideal I ⊂ R satisfying I2 = 0, simply use

• M :=Wsup(R)

• S := R[t]/tm+n(t+ p)µ+ν+1R[t]

• φ to be the product on Wsup

• continue to use σ := (t+ p)

and define all ideals and submodules as before using the new objects just listed.

This proves that J̃
(m,n ;µ,ν)
weak → Spec(Zp) is smooth. By Proposition 3.3.3.1, J̃(m,n ;µ,ν)

is finite-type, so it again suffices to verify the infinitesimal lifting property. Suppose

γR/I ∈ J̃(m,n ;µ,ν)(R/I)

Since J̃(m,n ;µ,ν)(R/I) ⊂ J̃
(m,n ;µ,ν)
weak (R/I), smoothness implies that there is

γR ∈ J̃
(m,n ;µ,ν)
weak (R)

such that γR 7→ γR/I . By the proof of Corollary 4.5 in Chapter 1 §4 of [7], I may

assume that R is local, in which case, to show that in fact γR ∈ J̃(m,n ;µ,ν)(R), I

122



must show the existence of γ̃R globally on Spec(R). Let γ̃R be an arbitrary lift

of γR to an R[t]-linear endomorphism of t−m(t + p)−µ−1R[t]d/tm+n(t + p)µ+νR[t]d.

Since γR/I ∈ J̃(m,n ;µ,ν)(R/I) (note that γ̃R/I exists globally on Spec(R)), Nakayama’s

lemma implies that γR/I is surjective, and since the domain and codomain are the

same rank d free module, “Linear independence of minimal generating sets” then

implies that γR/I is an automorphism.

3.3.5 Properties of the actions on the convolution diagram

The following is the analogue of Lemma 20 from [15]:

Proposition 3.3.5.1. The action α1 (resp. α2) is transitive on the fibers of p1

(resp. p2) over K-points for any Zp-field K. The stabilizer subscheme under the

action α1 (resp. α2) of any K-point is smooth for any Zp-field K. If K is separably-

closed, then the stabilizer subscheme under the action α1 (resp. α2) of a K-point of

M̃(m,n) × F̃l
(µ,ν)

is also connected.

For the 1st coordinate of the action α1, the stabilizers in question are defined

as follows: for any Zp-algebra A, choose g ∈ M̃(m,n)(A) and define

Stabg : A-Algebras −→ Groups

to be the functor assigning to any A-algebra R the subgroup of all γ ∈ J̃(m,n ;µ,ν)(R)

such that gR ◦ γ−1 = gR, where gR is the image of g under M̃(m,n)(A)→ M̃(m,n)(R).

The stabilizers used for the 2nd coordinate of α1 and the action α2 have similar

definitions.
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Proof. Transitivity I now show that for any Zp-field K, the action by J̃(m,n ;µ,ν)(K)

is transitive on fibers of M̃(m,n)(K)→M(m,n)(K). Suppose g, h ∈ M̃(m,n)(K) are in

the same fiber. Since K is local, the isomorphisms g̃ and h̃ exist globally on Spec(K),

and both have the same codomain so h̃−1 ◦ g̃ is a K[t]-linear automorphism of

t−mK[t]d/tn(t+ p)µ+νK[t]d

Let γ̃ be an arbitrary K[t]-linear endomorphism of

t−m(t+ p)−µ−1K[t]d/tm+n(t+ p)µ+νK[t]d

inducing h̃−1 ◦ g̃. Since h̃−1 ◦ g̃ is injective, γ̃ is also injective, and since γ̃ is in

particular a K-linear operator on a finite-dimensional K-vector space, it is a K[t]-

linear automorphism. This γ̃ induces a K[t]-linear automorphism of the quotient

Wsup(K) and by construction, g ◦ γ−1 = h. It is obvious that γ stabilizes the chain

V i(K) from the fact that g, h are in the same fiber, so to show γ ∈ J̃(m,n ;µ,ν)(K), I

must only verify the similitude condition:

φK(γ(v), γ(w)) = c(h)−1t−(m+n)c(g)tm+nφK(v, w) = c(h)−1c(g)φK(v, w)

i.e. c(γ) = c(h)−1c(g).

A nearly identical proof shows that J̃(m,n ;µ,ν)(K) is transitive on fibers of

F̃l
(µ,ν)

(K)→ Fl(µ,ν)(K). This proves the statement for α1 and p1.

The proof for α2 and p2 is a formal consequence. If

(g1, g2), (h1, h2) ∈ M̃(m,n)(K)× F̃l
(µ,ν)

(K)

are such that

p2(g1, g2) = p2(h1, h2)
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then I need

(γ, η) ∈ J̃(m,n ;µ,ν)(K)× J̃(m,n ;µ,ν)(K)

such that

g1 ◦ γ−1 = h1

γ ◦ g2 ◦ η−1 = h2

Use the previously-proved transitivity of J̃(m,n ;µ,ν)(K) on fibers of

M̃(m,n)(K)→M(m,n)(K)

to get γ ∈ J̃(m,n ;µ,ν)(K) such that

g1 ◦ γ−1 = h1.

Then form γ−1 ◦ h2 ∈ F̃l
(µ,ν)

(K) and use the previously-proved transitivity of

J̃(m,n ;µ,ν)(K) on fibers of

F̃l
(µ,ν)

(K)→ Fl(µ,ν)(K)

to get η ∈ J̃(m,n ;µ,ν)(K) such that

g2 ◦ η−1 = γ−1 ◦ h2.

Connectedness I now show that for any separably-closed Zp-field K, the stabi-

lizer subscheme (a K-scheme) in J̃(m,n ;µ,ν) of an element of M̃(m,n)(K) is connected.

First assume that char(K) = p and set N := m+n+µ+ ν + 1. Fix g ∈ M̃(m,n)(K)

and define

Tg : K-Algebras −→ Sets
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to be the functor assigning to any (commutative) K-algebra R the set of all R[[t]]-

linear mapsR[[t]]d → R[[t]]d that induce gR after identifyingWsup(R) = R[t]d/tNR[t]d.

Any h ∈ Tg(R) can be written as a d× d matrix with entries in R[[t]]. The require-

ment that h induce gR simply specifies the first N terms of each entry, and there are

no requirements whatsoever on the remaining terms. This means that Tg is affine

space over K with countable dimension.

Let R be a local (commutative) K-algebra with maximal ideal m. Let h ∈

Tg(R) be arbitrary and consider it as an R((t))-linear map h((t)) : R((t))d → R((t))d.

I claim that h((t)) is invertible. By ELM2 (page 56), there is some k < N such that

im(gR) contains the submodule tkR[t]d/tNR[t]d. Since R[[t]] is local with maximal

ideal (= Jacobson radical) m + (t), and since h induces gR, Nakayama’s lemma

implies that im(h) contains the submodule tkR[[t]]d. Since t is a unit in R((t)), h((t))

must be surjective. By “Linear Independence of Minimal Generating Sets”, it is

invertible.

For any h, k ∈ Tg(R), consider the R((t))-linear map γ
def
= h−1

((t))◦k((t)). The fact

that both h and k induce gR implies that γ stabilizes R[[t]]d. The same is true for

the reversed composition k−1
((t)) ◦ h((t)) so γ restricts to a R[[t]]-linear automorphism

of R[[t]]d. It therefore induces an R[t]-linear automorphism γ of Wsup(R) and by

construction γ ∈ Stabg(R) (in particular, c(γ) = 1).

Altogether, for any local (commutative) K-algebra R, I have the function

Tg(R)× Tg(R) −→ Stabg(R)

(h, k) 7−→ γ
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which is obviously functorial whenever it can be. It is easy to see that each of these

functions is surjective: for any γ ∈ Stabg(R), let h, k : R[[t]]d → R[[t]]d be arbitrary

lifts of gR, gR◦γ ∈ M̃(m,n)(R) (recall from the beginning of this section that J̃(m,n ;µ,ν)

acts on the right of M̃(m,n)) so by definition h, k ∈ Tg(R) and (h, k) 7→ γ.

Now, assume thatK is separably-closed. It then suffices to show that Stabg(K)

is a connected algebraic variety (recall that such a stabilizer is a closed subscheme of

J̃
(m,n ;µ,ν)
K , which itself is a locally-closed subscheme of finite-dimensional affine space

by the same argument used in Lemma 2.5.1.1 (page 70)). But by the surjection from

the previous paragraph, this is true.

This proves connectivity for the 1st coordinate of the action α1. The proof for

the 2nd coordinate is nearly identical.

The proof for the α2-action is essentially a formal consequence. By definition,

(γ, η) ∈ J̃(m,n ;µ,ν)(K) × J̃(m,n ;µ,ν)(K) fixes (g, h) ∈ M̃(m,n)(K) × F̃l
(µ,ν)

(K) under

the α2 action if and only if

g ◦ γ−1 = g

η ◦ h ◦ γ−1 = h

so define Tg and Th as before and define

Tg(K)× Tg(K)× Th(K)× Th(K) −→ α2-Stab(g,h)(K)

(g1, g2;h1, h2) 7−→ (g−1
2 ◦ g1 ; h2 ◦ (g−1

2 ◦ g1) ◦ h−1
1 )

(some notation, similar to the proof for α1, is suppressed here: on the right, “−1”

means as K((t))-linear automorphisms and the resulting maps are really those in-

duced on Wsup(K)).
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As before, the domain is the set of K-points of affine space of countable di-

mension and the function is a surjection: for γ, η ∈ α2-Stab(g,h)(K) take

g1, g2, h1, h2 : K[[t]]d −→ K[[t]]d

to be arbitrary lifts of

g ◦ γ, g, η−1 ◦ h ◦ γ, h

If char(K) = 0 then use the Chinese remainder theorem as in the proof of

Lemma 3.3.2.1 (page 116) to decompose all relevant rings and modules so that in

each factor/summand, the relevant quotient involves either a power of (t) or a power

of (t+ p), but not both. In each situation, the above connectivity proof applies (the

importance of characteristic p in the above proof is only that the quotients are

modulo a power of a single prime ideal).

Smoothness I now show that for any Zp-field K, the stabilizer subscheme in

J̃(m,n ;µ,ν) of an element of M̃(m,n)(K) is a smooth K-scheme. Fix g ∈ M̃(m,n)(K).

By Proposition 3.2.2.1 (page 95), M̃(m,n) is finite-type, so Stabg is also finite-type

and it suffices to verify the infinitesimal lifting property (formal smoothness) for

Stabg → Spec(K). Let R be a K-algebra and I ⊂ R a nilpotent ideal. By the proof

of Corollary 4.5 in Chapter 1 §4 of [7], I may assume that R is local. In that case,

there is the commutative square

Tg(R)× Tg(R) → Stabg(R)

↓ ◦ ↓

Tg(R/I)× Tg(R/I) → Stabg(R/I)

From the connectedness proof, both horizontal arrows are surjections. Since Tg
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is affine space over K with countable dimension, it obviously has the infinitesi-

mal lifting property, so the left vertical arrow is a surjection. This means that

Stabg(R)→ Stabg(R/I) must be surjective.

This proves smoothness for the 1st coordinate of the α1 action. The proof for

the 2nd coordinate is nearly identical. The proof for the α2 action is essentially a

formal consequence.

Remark. Applications:

• The transitivity statement for α1 is used in §3.4.1 (page 130).

• The transitivity statement for α2 is used in the proof of Lemma 21 of [15]

(page 131 here).

• The connectivity statement for α1 is not used.

• The connectivity statement for α2 is used in the proof of Lemma 21 of [15]

(page 131 here).

• The smoothness statement for α1 is not used.

• The smoothness statement for α2 is used in the proof of Lemma 21 of [15]

(page 131 here).

All of this section’s results involving p2 and m are also true of revp2 and revm:

• revp2 is smooth

• revp2(K) is surjective for any Zp-field K
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• the action via α2 stabilizes fibers of revp2, and is transitive on fibers over K-

points for any Zp-field K

• revm is proper

3.4 The convolution product of sheaf complexes

3.4.1 Construction of the convolution product

I use the following general Proposition 4.2.5 on page 109 of [2]

Beilinson-Bernstein-Deligne Proposition 4.2.5. If f : X → Y is a smooth

morphism of schemes with relative dimension n and the fibers of f over geometric

points are connected, then the shifted pullback f ∗[n] is a fully-faithful functor from

perverse sheaves on Y to perverse sheaves on X.

Fix a Zp-field K and pairs m,n ∈ N and µ, ν ∈ N.

Let A be a perverse J
(m,n)
K -equivariant `-adic sheaf on M

(m,n)
K and B a per-

verse Iw
(µ,ν)
K -equivariant `-adic sheaf on Fl

(µ,ν)
K . Because of the morphisms from

§3.3.3 (page 119), I can unify these equivariance properties by saying that both are

J̃
(m,n ;µ,ν)
K -equivariant.

The external tensor product A�K B (ordinary derived tensor product of the

pullbacks along both projections) is another perverse J̃
(m,n ;µ,ν)
K -equivariant `-adic

sheaf on M
(m,n)
K × Fl

(µ,ν)
K . By Proposition 3.3.0.2 (page 107), p1 is smooth.

The action by J̃
(m,n ;µ,ν)
K comes from the loop group R 7→ P(R[[t]]) of a para-

horic P (depending on char(K)), which is connected, so by the transitivity statement
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of Proposition 3.3.5.1 (page 123) the geometric fibers of p1 are connected. By Propo-

sition 4.2.5 of [2], the pullback p∗1(A�K B) is a perverse `-adic sheaf.

Since the action of J̃(m,n ;µ,ν)× J̃(m,n ;µ,ν) by α1 stabilizes p1-fibers, p∗1(A�K B)

is trivially α1-equivariant: p1 ◦α1 = p1 ◦ pr already. Since the difference between α1

and α2 is the action

J̃(m,n ;µ,ν) × (M̃(m,n) × F̃l
(µ,ν)

) −→ (M̃(m,n) × F̃l
(µ,ν)

)

(γ, (g, h)) 7−→ (g, γ ◦ h)

the initial assumption that A and B were J̃(m,n ;µ,ν)-equivariant implies that p∗1(A�K

B) is α2-equivariant.

I use the following general Lemma 21 from [15]:

Haines-Ngô Lemma 21. Let π : X → Y be a morphism of finite-type Zp-schemes.

Let G be a Zp-group scheme. Let aX : G ×X → X a group action over Spec(Zp).

Let G act trivially on Y . Let F be a perverse aX-equivariant étale `-adic sheaf on

X.

Assume that π is smooth and surjective on the level of topological spaces, that

G is smooth, that for any Zp-field K the action of G on X is transitive on fibers

of π over K-points, GK is connected, the stabilizer subscheme of a K-point of X

is a smooth subgroup of GK, and that if K is separably-closed, then those stabilizer

subschemes are also connected. Conclusion: There is a unique perverse `-adic

sheaf G on Y such that F ∼= π∗(G).

A supplement to the original proof. The morphism “a : GY → X” occurring in [15]
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is the composition

G× Y id×s−→ G×X aX−→ X

where “s” in [15] is assumed temporarily to be a section of π.

Let

prX : G×X → X

be the projection. To get the isomorphism

“a∗π∗s∗(F) ∼= a∗(F)”

in [15], take the assumed equivariance isomorphism a∗X(F) ∼= pr∗X(F), apply the

functor (id×s)∗, and note that

s ◦ π ◦ aX ◦ (id×s) = prX ◦(id×s)

since G stabilizes π-fibers:

a∗F = (aX ◦ (id×s))∗F

∼= (prX ◦(id×s))∗F

= (s ◦ π ◦ aX ◦ (id×s))∗F

= a∗π∗s∗F

The proof relies on the fact that both a and π ◦a satisfy the 2 requirements of

Proposition 4.2.5 in [2]. It is easy to see that the fiber of π◦a over any R-point y ∈ Y

is simply GR × {y}, which is connected by hypothesis when R is a separably-closed

Zp-field. It is similarly easy to see that the fiber of a over any R-point x ∈ X is the

coset StabG(x)g for any g ∈ G satisfying g · s(π(x)) = x. This is again connected
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by hypothesis when R is a separably-closed Zp-field. Since π is assumed smooth, it

only remains to verify that a is smooth. By Proposition 8 in §2.4 of [3], it suffices

to check that a is a flat morphism and that its fibers over K-points are smooth for

all Zp-fields K. As before, the fiber of a over a point x is the coset StabG(x)g for

any g satisfying g · s(π(x)) = x, and by assumption this is smooth whenever R is a

Zp-field.

Now I verify that a is flat. Since π ◦ a is flat (it is just the projection pr2 :

G × Y → Y ), Corollary 14.25 of [12] implies that it is sufficient to verify that

all the morphisms ay induced by a between fibers over y ∈ Y (via π ◦ a = pr2

and π, respectively) are flat. In more detail, if K is an arbitrary Zp-field and

y : Spec(K)→ Y is an arbitrary K-point, I must show that the morphism

ay : Gy
def
= (G× Y )×Y Spec(K) −→ X ×Y Spec(K)

def
= Xy

over Spec(K) induced by the fiber product is flat. Since Gy is a group and flatness of

a morphism is local with respect to the domain, Corollary 10.85 of [12] (“sufficiently

finite morphisms to integral schemes are flat almost everywhere”) implies that I must

only show that Xy is an integral K-scheme, i.e. that it is reduced and irreducible.

That the π-fiber Xy is reduced is trivial since π is smooth by assumption. By the

transitivity hypothesis, ay is surjective on the level of topological spaces, so it suffices

to show that Gy is irreducible. But this is obvious since Gy is simply GK × {y},

which is smooth and connected by hypothesis.

The sheaf G is, in the global section case, s∗(F). The general proof is accom-

plished by using the topological surjectivity hypothesis to cover Y by étale local
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sections (see Proposition 14 on page 43 of [3] for existence of these), using the

previous global result, and patching the complexes together.

To apply this to my case, use

X = M̃(m,n) × F̃l
(µ,ν)

Y = Conv(m,n ;µ,ν)

G = J̃(m,n ;µ,ν) × J̃(m,n ;µ,ν)

π = p2

aX = α2

F = p∗1(A�K B)

The assumption on π is provided by Proposition 3.3.0.2. The assumptions on G are

provided by Proposition 3.3.4.1 (page 122) and the discussion in §3.4.1. The two

assumptions on aX are provided by Proposition 3.3.5.1 (page 123). The assumption

on F was verified in the discussion at the beginning of this subsection.

In my case, denote the object G from the lemma by

A�K B

Note that Proposition 3.3.0.2 (page 107) and Lemma 3.3.2.1 (page 116) together

imply that p1 and p2 have the same relative dimension over each component of

Conv(m,n ;µ,ν) and M(m,n)×Fl(µ,ν): smoothness of p1 and p2 imply constant relative

dimension, but at the same time Conv
(m,n ;µ,ν)
Qp

∼= M
(m,n)
Qp

×Fl
(µ,ν)
Qp

. This means that

A�K B is already perverse (i.e. no shift is needed).
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At long last, define the convolution product ∗K by

A ∗K B
def
= Rm!(A�K B)

Note thatA∗KB is a complex of `-adic sheaves on P
(m,n ;µ,ν)
K . Note also that m∗ = m!

since m is a proper morphism.

Repeating the above discussion using the reversed convolution diagram from

§3.2.5 (page 104) produces the product B �K A on revConv(µ,ν ;m,n), and the “re-

versed” convolution product B ∗K A on P
(m,n ;µ,ν)
K is defined by

B ∗K A
def
= R(revm!)(B �K A)

There is no ambiguity between the original and reversed convolution products be-

cause the complexes A and B have different bases.

3.4.2 The convolution product of sheaf complexes categorifies the

convolution product of functions

It is natural to ask exactly how the convolution product of sheaf complexes

is related to the convolution product of functions in the Hecke algebra. This is

apparently well-known, but since I have not seen it in print, I explain it.

Let m,n, µ, ν ∈ N be arbitrary. Let A and B be (bounded, constructible) com-

plexes of `-adic sheaves on M
(m,n)

Fp
and Fl

(µ,ν)

Fp
equipped with actions of Gal(Qp/Qp)

that are consistent with the action of Gal(Fp/Fp) on M
(m,n)

Fp
and Fl

(µ,ν)

Fp
. Then

A ∗Fp B is a (bounded, constructible) complex of `-adic sheaves on P
(m,n ;µ,ν)

Fp
with

all the same properties.
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By §3.3.1 (page 115),

Fl
(µ,ν)
Fp

= M
(µ,ν)
Fp

P
(m,n ;µ,ν)
Fp

= M
(m+µ,n+ν)
Fp

so the associated trace functions under consideration are:

τ ss
A : Fl(m,n)(Fp) −→ Q`

τ ss
B : Fl(µ,ν)(Fp) −→ Q`

τ ss
A∗B : Fl(m+µ,n+ν)(Fp) −→ Q`

Let x ∈ Fl(m+µ,n+ν)(Fp) be arbitrary and set

f
def
= {y ∈ Fl(m,n)(Fp) | (y, x) ∈ Conv(m,n ;µ,ν)(Fp)}

(f is essentially the fiber m(Fp)
−1(x) ⊂ Conv(m,n ;µ,ν)(Fp))

Because of the semisimplification done in §3.1.2 (page 86), the Γ0-invariants

operation is exact, and the following general Proposition 10 from [15] results:

Haines-Ngô Proposition 10. Let f : X → Y be a morphism of Fp-schemes and

let C be a complex of `-adic sheaves on X with an action Gal(Qp/Qp) compatible

with that on X(Fp). Then for any y ∈ Y (Fp),

τ ss
f!(C)(y) =

∑
x∈X(Fp)
f(x)=y

τ ss
C (x)

This implies that

τ ss
A∗B(x) =

∑
y∈f

τ ss
A�B(y, x)
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For any y ∈ f, if (h, k) ∈ F̃l
(m,n)

(Fp) × F̃l
(µ,ν)

(Fp) is such that p2(h, k) =

(y, x) (such elements exist by Proposition 3.3.0.2 (page 107))) then setting (y, z) :=

p1(h, k) (recall that the first coordinates p1 and p2 are the same), it is true that

τ ss
A�B(y, x) = τ ss

A (y) · τ ss
B (z)

(this follows from general sheaf theory: the way the operations � (external tensor

product), p∗1 and p∗2 interact with stalks)

Let e ⊂ Fl(µ,ν)(Fp) be the set of all z occurring in this way. Then the above

sum can be rewritten

τ ss
A∗B(x) =

∑
y∈f
z∈e

τ ss
A (y) · τ ss

B (z)

To see this as a convolution, inflate τ ss
A and τ ss

B to F̃l
(m,n)

(Fp) and F̃l
(µ,ν)

(Fp)

and recall the “twisting” that occurs in the 2nd coordinate of p2. Then for any

x ∈ Fl(m+µ,n+ν)(Fp),

τ ss
A∗B(x) =

∑
h∈F̃l

(m,n)
(Fp)

k∈F̃l
(µ,ν)

(Fp)
h(k(−))=x

τ ss
A (h) · τ ss

B (k)

(so h plays the role of “y” and k plays the role of “y−1x” in the expression “(f ∗

g)(x) =
∑

y f(y)g(y−1x)”)
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Chapter 4

Proof of the main theorem

Let w ∈ W̃ be arbitrary. There exists µ, ν ∈ N (infinitely many, all with the

same difference ∆ = µ−ν) such that the Schubert variety Cw is contained in Fl
(µ,ν)

Fp
.

Let ICw be the (perverse) étale `-adic intersection complex associated to the cell Cw

in the Bruhat-Tits decomposition of Fl
(µ,ν)

Fp
. The function

τ ss
ICw

: Fl(m,n)(Fp) −→ Q`

is also an element of the Iwahori-Hecke algebra H. By the main theorems of [18]

and [19], the set of these functions τ ss
ICw

for all w ∈ W̃ forms a vector-space basis for

H .

Therefore, to show that τ ss
µ ∈ Z(H), it suffices to show that

τ ss
µ ∗ τ ss

ICw

?
= τ ss

ICw
∗ τ ss

µ

(ordinary convolution of functions) for every w ∈ W̃ .

Remark. Notice that none of the Zp-schemes M(m,n) are genuinely needed in the

proof except the support M(0,1) = Mloc of τ ss
µ (all Fl(µ,ν) are needed, however). But

it is not much harder to prove things for a general M(m,n) than for M(0,1), and it is

interesting in any case to have such a degeneration in the unramified unitary case.

For similar applications to trace functions τ ss
λ for non-minuscule λ, as is the case

in [15], the larger schemes M(m,n) really are necessary.
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Recall from §3.2.1 (page 90) that if ICw is the (perverse) étale `-adic intersec-

tion complex associated to the cell Cw in the Bruhat-Tits decomposition of F`aff
Qp

(note the base field here), then ICw
∼−→ RΨ(ICw). Recall from §3.1.2 (page 86) that

by definition if ICµ is the (perverse) étale `-adic intersection complex associated to

the cell Oµ in the Cartan decomposition of Graff
Qp

then τ ss
µ = τ ss

RΨ(ICµ). Using these

two identities, it suffices to prove that

τ ss
RΨ(ICµ) ∗ τ ss

RΨ(ICw)
?
= τ ss

RΨ(ICw) ∗ τ ss
RΨ(ICµ)

By §3.4.2 (page 135), the convolution product of sheaves induces the convolution

product of functions, so it suffices to show that

RΨ(ICµ) ∗Fp RΨ(ICw)
?
= RΨ(ICw) ∗Fp RΨ(ICµ)

Remark. Note that the reversed convolution product occurs on the right-hand-side

here.

By the general Lemma 23 of [15] (“nearby cycles commutes with convolution

product”), this equality is equivalent to the equality

RΨ(ICµ ∗Qp ICw)
?
= RΨ(ICw ∗Qp ICµ) (4.1)

Remark. Lemma 23 of [15] applies because the fields involved here are algebraically-

closed: by an argument similar to that given in the proof of Lemma 3.1.4.1 (page

89), the schemes used here simplify to the GL case after passing to the algebraic

closure.

Remark. Lemma 23 in [15] uses “smooth base-change” for p1 and p2, and therefore

requires the appropriate analogue of Proposition 3.3.0.2 (page 107).
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The following lemma implies that this last isomorphism (4.1) is true.

Lemma 4.0.2.1. Recall the isomorphisms from Lemma 3.3.2.1 (page 116):

M
(m,n)
Qp

× Fl
(µ,ν)
Qp

i←− Conv
(m,n ;µ,ν)
Qp

revi ↑ ◦ ↓ m

revConv
(µ,ν ;m,n)
Qp

revm−→ P
(m,n ;µ,ν)
Qp

Assertion: if A and B are complexes of J̃
(m,n ;µ,ν)
Qp

-equivariant `-adic sheaves

on M
(m,n)
Qp

and Fl
(µ,ν)
Qp

respectively, then

i∗(A�Qp B)
∼−→ A�Qp B

revi∗(A�Qp B)
∼−→ B �Qp A

Applying Rm! and R(revm!) to these isomorphisms and using commutativity of the

above square implies that

A ∗Qp B ∼= B ∗Qp A.

Proof. The proof is nearly identical to the one occurring for the 2nd part of Lemma

24 in [15], replacing the objects and morphisms used there by the slightly modified

objects and morphisms used in this paper for Lemma 3.3.2.1 (page 116).
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