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Abstract

The adjoint and minimum principle for a partially observed diffusion can
be obtained by differentiating the statement that a control v* is optimal.
Using stochastic flows the variation in the cost resulting from a change in
an optimal control can be computed explicitly. The technical difficulty is
to justify the differentiation.
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1. INTRODUCTION.

Using stochastic flows we calculate below the change in the cost due to a ‘strong’
variation of an optimal control. Differentiating this quantity enables us to identify the
adjoint, or co-state variable, and give a partially observed minimum principle. If the drift
coefficient is differentiable in the control variable the related result of Bensoussan (2] follows

from our theorem. Full details will appear in [1]. The method appears simpler than that

employed in Haussman [4].

2. DYNAMICAL EQUATIONS.

Suppose the state of a stochastic system is described by the equation
dEt - f(tv Etv U.)dt + g(ta Et)dwt:

&eRr, &=z, 0<t<T (2.1)

The control variable u will take values in a compact subset U of some Euclidean space R*.

We shall assume
A 14 € R is given.
Ay f 1 ]0,T] x R* x U — R? is Borel measurable, continuous in u for each (t.r).

continuously differentiable in z for each (¢,u) and
(L4 J2)) Iz u)] + 12 (6 z,u)| € K

Ag: ¢:]0,T]x RY - RY®R"™ is a matrix valued function, Borel measurable, continuously

differentiable in z, and for some K,:
lg(t, )| + gz (¢, )| < K.
The observation process is defined by
dy; = h(&)dt + dv, (2.2)

Yy €RT, Yo =0, 0<t<T.
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In (2.1) and (2.2) w = (w',...,w") and v = (¥},...,v™) are independent Brownian

notions defined on a probability space (1, F, P).
Furthermore, we assume

Ay he R% — R™ is Borel measurable, continuously differentiable in z and
th(t, )| + |ho (t,2)] < K3.

REMARK 2.1. These hypotheses can be weakened to those discussed by Hauss-

man [4]. See [1].

Write P for the Wiener measure on C{[0,T],R™) and p for the Wiener measure on
c(lo,T},R™).
N=c(o,T),R") x C([0, T}, R™)

and the coordinate functions in 2 will be denoted (z,,y,). Wicner measure P> on (1 is

P(dz,dy) = P(dz)u(dy).
DEFINITION 2.2. Y = {Y;} will be the right continuous, complete filtration on
C(l0,T], R™) generated by

YtO =o{ys : s <t}

The set of admissible control functions U will be the Y-predictable functions defined on

10,T] x C(|0, T}, R™) with values in U.

Forue U and z € RY, £ ,(z) will denote the strong solution of (2.1) corresponding
to u with £, = .
Define
1

22,() = exp ([ hles (2 dur - 3 [ hle, @) ar). 23)

Note a version of Z defined for every trajectory y can be obtained by integrating the

stochastic integral in the exponential by parts.
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If a new probability measure P* defined on {1 by putting

dp*

—p = Zo,r(%o),

under P* (E(')"t(xo),yt) is a solution of the system (2.1) and (2.2). That is, under P*,
I (zg) remains a strong solution of (2.1) and there is an independent Brownian motion
v such that y, satisfies (2.2).

Because of hypothesis A,, for 0 <t < T easy applications of Burkholder’s and Gron-

wall’s inequalities show that

E[(Z(';“(IL‘O))?] < o0 (2.1)

forallu e U and all p, 1 < p < oo.

COST 2.3. We shall suppose the cost is purely terminal and equals

c(£5.1 (%0))
where ¢ is a bounded, differentiable function. If control v ¢ U7 is used the expected cost is

J(u) = F,

C(€g|7'(I()))}‘

With respect to P, under which y, i1s a Brownian motion

to
i
—

J(u) = E(Z% 1 (z0)e(&8 1 (x0))' (2

A control u* € U 1s optimal if

J(u') < J(u)

for all v € U. We shall suppose there is an optimal control u” .



3. FLOWS.

For u & U and z € R* consider the strong solution

¢ t
E:,t(x) :I+/ f(r)“‘f:,r(x)vur)dr’*‘/ g(r, E:’,(x))dw,. (31)

We wish to consider the behaviour of £ ,(z) for each trajectory y of the observation

process. In fact the results of Bismut [3] and Kunita [6] extend and show the map
u d d
RN A

is. almost surely, a diffeomorphism for each y ¢ C({0, T}, R™).
Write

1€ (zo)lle = sup [&5 (o)
0<s<t

/A

o0}

)

Then, using Gronwall’s and Jensen’s inequalities, for any p, 1 < p -

T
€ ()l < €1+ fmal + | [ alne?, Gzl

almost surely, for some constant C.

Using A; and Burkholder’s inequality
1€ (o)l € LP for 1 <p < oo.

Suppose u* is an optimal control, and write

&, () for £, ()

. 3 . . . .
The Jacobian ;‘z' is the matrix solution C; of the equation

dCy = fo(t, € ,(2),u")Crdt + 3 gl (2, €5, (2)) s} (3.2)

1=1

with C, = I.



Here ¢(*) is the #*! column of ¢ and I is the n x n identity matrix. Writing ||Cl|; =

Supg< < |Cs| and using Burkholder’s, Jensen’s and Gronwall’s inequalities we see (|C i =

LP, 1 <p<oo.

Consider the matrix valued process D defined by

t
D, =1~/ Dy fo(r, €., (2), ) )dr

—Z/ Drg) (r, €0 () duw +Z/ L) (3)

1=1 1=1

Then as in [5] or [6] d(D,C;) = 0 and D,;C, = I so

Furthermore, {|D|; € L?, 1 < p < co.

Suppose 2, = z, + A, + 3| f: H.dw} is a d-dimensional semimartingale. Bismut

|3] shows one can consider the process £! ,(z) and in fact:

" . ag;,
“ng)(raéa r(‘“T) ur) 1_‘ ‘Hx
1=1
-—L (H, 11))4
83:
1=2
td&sr ()E:r
: rJdA, r,é,  (20)) 4 - (), Y dued
1L/.« Jz +Z‘/ Sa ) ()1:( ) 1>(u

1=1 (3"1)
DEFINITION 3.1. Fors € [0,T], h > Osuchthat0 <s<s+h<T, foranvia< U, and

A €Y, consider a ‘strong’ variation v of u' defined by
u'(t,w) if(t,w)g[s,s+h]x A
u(t,w) =
u(t,w) if (t,w) € [s,s+ h| x A
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THEOREM 3.2. For any strong variation u of u* consider the process

t (’)6‘;Vr —l . . * -
it T X + / ( 81;—(:')) (f(r1 és,r (Zf)vuf) - f(r’ Es,r(z")’ur))dr' (3))
Then the process ¢! ,(z,) is indistinguishable from ¢¥ ,(z).
PROOF We shall substitute in (3.4), (noting H; = 0 for all 1). Thercfore,

t
f;,t(zt):IT/ flr & (2 ), u) )dr

L ) (5 ) e () - S (20 et
.\ Jdz

dzx
t
+ / glr, & (2 ))dw, .

The solution of (3.1) is unique, so &; () = &, (z). Note u(t) = u'(t) if t > s+ h so

zp =z, 5 it > 5+ hand

€;,t(3t) = f;,t(ZJJrh)

= &t (& a (7)) (3.6)

4. THE EXPONENTIAL DENSITY.

Consider the (d + 1)-dimensional system

t t
€ () =zt / F(r €, (=), ul)dr + / o(r €3, (2))dus

Zil5,2) = o+ [ 2,05, 9h(E,(2) dyr. (1.1

That is, we are considering an augmented flow (¢, Z) in R**1! in which Z* has a variable
initial condition z € R. Note:
Zt

st

(z,2) = zZ, ((z).
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The map (z,z) — (] ,(z), Z; ,(z, 2)) is, almost surely, a diffeomorphism of R3*1. Clearly,
¢, af dg
—2t —9, L=o0 d Z=o.
9z 3z M Bz
The Jacobian of this augmented map is represented by the matrix
ae,
= az't 0
Ct = .
8z,;, az;,
3z 3z
In particular, from (4.1), for 1 <1 < d
0z, , Ok afk . A az; ,

_ M Ohar (e o) BV e
Zl/; s,r I Z afk 8.’1:‘ + Sg,r(I)) (31' >( U ( )
j=

We are interested in solutions of (4.1) and (4.2) only when = 1. =0 as above we write

(z) for Z;,(z,1) et

LEMMA 4.1.

92, , : a¢,
e Zs,l(I)(/ ha (€ (2)) - —,”‘d“')

dz Jz /
where, as in (2.2), dv, = dy, — h(€; ,(z))dt.

PROOF From (4.2)

Az, , t, 3z, . i . Jd&
9z :/3 ( } (fs,r(r)) + /’s,r(I)hI(ES.'(I” J ,>(1y"

Write

Then




The mintmum cost is
J(w") = B(Z5 1 (20)e(&5 1 (%0))]
= B(Z; ,(20)Z; 1 (2)¢(€] 7 (2)))-
Also,
J(v) = B\, ,(z0) 22 (2)e(€" 1 ()
= B2y, (20) 2; p (zes )e(€] (202 1))]

by (3.6) and (4.5). Recall Z! () and ¢(¢; T()) are differentiable almost surely, with

continuous and uniformly integrable derivatives. Consequently, writing

Do) = 25, (20) 20 1 (o) {ec (€ 1 () == (20)

bl e ([ heeo e 20 ) (P8 ()

for s <r < s+ h, we have

J{u) = J(u") = Bl1Z5 (zo){Z] (zesn)e(&) (204 n) = Z] 2 (2)e(€] 1 (£))}]

s+t h
_ P[/q Ps, 2 )(F(r €5 (2 ) ue) = T(r 60 (), u)))dr | -

This formula describes the change in the expected cost arising from the perturbation u of
the optimal control. However, J(u) > J(u*) for all u ¢ U/ so the right hand side of (5.1)
is non-negative for all A > 0. We wish to divide by A > 0 and let & -+ 0. This requires
some careful arguments using the uniform boundedness of the random variables and the
monotone class theorem. It can be shown that there is a set S [0, T} of zero Lebesgue

measure such that if s¢ S

fa
to
P

BN (s, 7)(£(5,€5., (z0),w) = (s, €., (o)) ] > 0 (5.
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forany v € U and A € Y,.
Details of this argument can be found in [1]. Define

%,

po(z) = B [ee (6.7 (%) —2

where = £ (zy) and E° is the expectation under P* = &

In (5.2) we have established the following:
THEOREM 5.1. ps(z) is the adjoint process for the partially observed optimal control
problem. That is, if u* € U is optimal there is a set S C [0, T) of zero Lebesgue measure

such that for s+ S

1
[S)
—

E'p,(z)f(s,z,u") | Yy} > E*[ps(z)f(s,z,u) | Y,] as. | (5.

so the optimal control u* almost surely minimizes the conditional Hamiltonian.

If z = & (7o) has a conditional density g,(z) under P*, and if f is differentiable

in u, (5.3) implies

._k af
Y (u(s) - uf(s))/ [(s,z) =— (s,z,u")q(z)dz > 0.
1 ' R Jdu,
This is the result of Bensoussan [2].
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