The Conditional Adjoint Process

bу

J.S. Baras, R.J. Elliott, and M. Kohlmann

The Conditional Adjoint Process

John S. Baras¹
Systems Research Center
University of Maryland
College Park MD 20742 USA

Robert J. Elliott²
Department of Statistics and Applied Probability
University of Alberta
Edmonton, AB T6G 2G1 Canada

Michael Kohlmann³
Fakultāt fur Wirtschaftswissenschaften und Statistik
Universitāt Konstanz
D-7750, Konstanz, F. R. Germany

Abstract

The adjoint and minimum principle for a partially observed diffusion can be obtained by differentiating the statement that a control u^* is optimal. Using stochastic flows the variation in the cost resulting from a change in an optimal control can be computed explicitly. The technical difficulty is to justify the differentiation.

¹ Partially supported by US Army contract DAAL03-86-C-0014 and by NSF grant CDR-85-00108

² Partially supported by the Natural Sciences and Engineering Research Council of Canada under grant A-7964 and the Air Force Office of Scientific Research, United States Air Force, under grant AFOSR-86-0332.

³ Partially supported by the Natural Sciences and Engineering Research Council of Canada under grant A-7964.

1. INTRODUCTION.

Using stochastic flows we calculate below the change in the cost due to a 'strong' variation of an optimal control. Differentiating this quantity enables us to identify the adjoint, or co-state variable, and give a partially observed minimum principle. If the drift coefficient is differentiable in the control variable the related result of Bensoussan [2] follows from our theorem. Full details will appear in [1]. The method appears simpler than that employed in Haussman [4].

2. DYNAMICAL EQUATIONS.

Suppose the state of a stochastic system is described by the equation

$$d\xi_t = f(t, \xi_t, u)dt + g(t, \xi_t)dw_t,$$

$$\xi_t \in \mathbb{R}^d, \qquad \xi_0 = x_0, \qquad 0 < t < T. \tag{2.1}$$

The control variable u will take values in a compact subset U of some Euclidean space R^k . We shall assume

 A_1 : $x_0 \in \mathbb{R}^d$ is given.

 A_2 : $f: [0,T] \times \mathbb{R}^d \times U \to \mathbb{R}^d$ is Borel measurable, continuous in u for each (t,x), continuously differentiable in x for each (t,u) and

$$(1+|x|)^{-1}|f(t,x,u)|+|f_x(t,x,u)| \leq K_1.$$

 A_3 : $g:[0,T]\times \mathbb{R}^d\to\mathbb{R}^d\otimes\mathbb{R}^n$ is a matrix valued function, Borel measurable, continuously differentiable in x, and for some K_2 :

$$|g(t,x)|+|g_x(t,x)|\leq K_2.$$

The observation process is defined by

$$dy_t = h(\xi_t)dt + d\nu_t \tag{2.2}$$

$$y_t \in \mathbb{R}^m$$
, $y_0 = 0$, $0 \le t \le T$.

In (2.1) and (2.2) $w = (w^1, ..., w^n)$ and $\nu = (\nu^1, ..., \nu^m)$ are independent Brownian notions defined on a probability space (Ω, F, P) .

Furthermore, we assume

 A_4 : $h: \mathbb{R}^d \to \mathbb{R}^m$ is Borel measurable, continuously differentiable in x and

$$|h(t,x)|+|h_x(t,x)|\leq K_3.$$

REMARK 2.1. These hypotheses can be weakened to those discussed by Haussman [4]. See [1].

Write \hat{P} for the Wiener measure on $C([0,T],R^n)$ and μ for the Wiener measure on $C([0,T],R^m)$.

$$\Omega = C([0,T],R^n) \times C([0,T],R^m)$$

and the coordinate functions in Ω will be denoted (x_t,y_t) . Wiener measure P on Ω is

$$P(dx,dy) = \hat{P}(dx)\mu(dy).$$

DEFINITION 2.2. $Y = \{Y_t\}$ will be the right continuous, complete filtration on $C([0,T],R^m)$ generated by

$$Y_t^0 = \sigma\{y_s : s \le t\}.$$

The set of admissible control functions \underline{U} will be the Y-predictable functions defined on $[0,T]\times C([0,T],R^m)$ with values in U.

For $u \in \underline{U}$ and $x \in \mathbb{R}^d$, $\xi^u_{s,t}(x)$ will denote the strong solution of (2.1) corresponding to u with $\xi^u_{s,s} = x$.

Define

$$Z_{s,t}^{u}(x) = \exp\left(\int_{s}^{t} h(\xi_{s,r}^{u}(x))' dy_{r} - \frac{1}{2} \int_{s}^{t} h(\xi_{s,r}^{u}(x))^{2} dr\right). \tag{2.3}$$

Note a version of Z defined for every trajectory y can be obtained by integrating the stochastic integral in the exponential by parts.

If a new probability measure P^u defined on Ω by putting

$$\frac{dP^u}{dP}=Z^u_{0,T}(x_0),$$

under P^u $(\xi_{0,t}^u(x_0), y_t)$ is a solution of the system (2.1) and (2.2). That is, under P^u , $\xi_{0,t}^u(x_0)$ remains a strong solution of (2.1) and there is an independent Brownian motion ν such that y_t satisfies (2.2).

Because of hypothesis A_4 , for $0 \le t \le T$ easy applications of Burkholder's and Gronwall's inequalities show that

$$E[(Z_{0,t}^u(x_0))^p] < \infty \tag{2.4}$$

 $\text{ for all } u \in \underline{U} \text{ and all } p, \ 1 \leq p < \infty.$

COST 2.3. We shall suppose the cost is purely terminal and equals

$$c(\xi_{0,T}^{u}(x_0))$$

where c is a bounded, differentiable function. If control $u \in U$ is used the expected cost is

$$J(u) = E_u[c(\xi_{0,T}^u(x_0))].$$

With respect to P, under which y_t is a Brownian motion

$$J(u) = E[Z_{0,T}^{u}(x_0)c(\xi_{0,T}^{u}(x_0))]. \tag{2.5}$$

A control $u^* \in \underline{U}$ is optimal if

$$J(u^*) \leq J(u)$$

for all $u \in \underline{U}$. We shall suppose there is an optimal control u^* .

3. FLOWS.

For $u \in \underline{U}$ and $x \in R^d$ consider the strong solution

$$\xi_{s,t}^{u}(x) = x + \int_{s}^{t} f(r, \xi_{s,r}^{u}(x), u_{r}) dr + \int_{s}^{t} g(r, \xi_{s,r}^{u}(x)) dw_{r}.$$
 (3.1)

We wish to consider the behaviour of $\xi_{s,t}^u(x)$ for each trajectory y of the observation process. In fact the results of Bismut [3] and Kunita [6] extend and show the map

$$\xi^u_{s,t}: R^d \to R^d$$

is, almost surely, a diffeomorphism for each $y \in C([0,T], \mathbb{R}^m)$.

Write

$$\|\xi^{u}(x_{0})\|_{t} = \sup_{0 \leq s \leq t} |\xi^{u}_{0,s}(x_{0})|.$$

Then, using Gronwall's and Jensen's inequalities, for any $p, \ 1 \le p < \infty$

$$\left\| \left| \left| \left| \xi^{m{u}} \left(x_0
ight)
ight|_T^p \le C \Big(1 + |x_0|^p + \Big| \int_0^T g(r, \xi^{m{u}}_{0,r}(x_0)) dw_r \Big|^p \Big)$$

almost surely, for some constant C.

Using A_3 and Burkholder's inequality

$$\|\xi^{u}(x_0)\|_T \in L^p$$
 for $1 \leq p < \infty$.

Suppose u^* is an optimal control, and write

$$\xi_{s,t}^*(\cdot)$$
 for $\xi_{s,t}^{u^*}(\cdot)$.

The Jacobian $\frac{\partial \xi_{t,t}^*}{\partial x}$ is the matrix solution C_t of the equation

$$dC_t = f_x(t, \xi_{s,t}^*(x), u^*)C_t dt + \sum_{i=1}^n g_x^{(i)}(t, \xi_{s,t}^*(x))C_t dw_t^i.$$
 (3.2)

with $C_s = I$.

Here $g^{(i)}$ is the i^{th} column of g and I is the $n \times n$ identity matrix. Writing $\|C\|_T = \sup_{0 \le s \le t} |C_s|$ and using Burkholder's, Jensen's and Gronwall's inequalities we see $\|C\|_T \in L^p$, $1 \le p < \infty$.

Consider the matrix valued process D defined by

$$D_{t} = I - \int_{s}^{t} D_{r} f_{x}(r, \xi_{s,r}^{*}(x), u_{r}^{*}) dr$$

$$- \sum_{i=1}^{n} \int_{s}^{t} D_{r} g_{x}^{(i)}(r, \xi_{s,r}^{*}(x)) dw_{r}^{i} + \sum_{i=1}^{n} \int_{s}^{t} D_{r} (g_{x}^{(i)}(r, \xi_{s,r}^{*}(x)))^{2} dr \qquad (3.3)$$

Then as in [5] or [6] $d(D_tC_t) = 0$ and $D_sC_s = I$ so

$$D_t = C_t^{-1} = \left(\frac{\partial \xi_{s,t}^*}{\partial x}\right)^{-1}.$$

Furthermore, $||D||_t \in L^p$, $1 \le p < \infty$.

Suppose $z_t = z_s + A_t + \sum_{i=1}^n \int_s^t H_i dw_r^i$ is a d-dimensional semimartingale. Bismut [3] shows one can consider the process $\xi_{s,t}^*(z_t)$ and in fact:

$$\xi_{s,t}^{*}(z_{t}) = z_{s} + \int_{s}^{t} \left(f(r, \xi_{s,r}^{*}(z_{r}), u_{r}^{*}) \right) \\
+ \sum_{i=1}^{n} g_{x}^{(i)}(r, \xi_{s,r}^{*}(z_{r}), u_{r}^{*}) \frac{\partial \xi_{s,r}^{*}}{\partial x} H_{i} \\
+ \frac{1}{2} \sum_{i=2}^{n} \frac{\partial^{2} \xi_{s,r}^{*}}{\partial x^{2}} (H_{i}, H_{i}) dr \\
+ \int_{s}^{t} \frac{\partial \xi_{s,r}^{*}}{\partial x} (z_{r}) dA_{r} + \sum_{i=1}^{n} \int_{s}^{t} \left(g^{(i)}(r, \xi_{s,r}^{*}(z_{r})) + \frac{\partial \xi_{s,r}^{*}}{\partial x} (z_{r}) H_{i} \right) dw_{r}^{1}. \tag{3.4}$$

DEFINITION 3.1. For $s \in [0,T]$, h > 0 such that $0 \le s < s + h \le T$, for any $\tilde{u} \in U$, and $A \in Y_s$ consider a 'strong' variation u of u' defined by

$$u(t,w) = \left\{ egin{array}{ll} u^*(t,w) & ext{if } (t,w)
otin [s,s+h] imes A \ & & & & & & & & & & & & & & & & \end{array}
ight.$$

THEOREM 3.2. For any strong variation u of u' consider the process

$$z_{t} = x + \int_{\bullet}^{t} \left(\frac{\partial \xi_{s,r}^{*}}{\partial x} (z_{r}) \right)^{-1} \left(f(r, \xi_{s,r}^{*}(z_{r}), u_{r}) - f(r, \xi_{s,r}^{*}(z_{r}), u_{r}^{*}) \right) dr.$$
 (3.5)

Then the process $\xi_{s,t}^*(z_t)$ is indistinguishable from $\xi_{s,t}^u(x)$.

PROOF We shall substitute in (3.4), (noting $H_i = 0$ for all i). Therefore,

$$\xi_{s,t}^{\star}(z_{t}) = x + \int_{s}^{t} f(r, \xi_{s,r}^{\star}(z_{r}), u_{r}^{\star}) dr$$

$$+ \int_{s}^{t} \left(\frac{\partial \xi_{s,r}^{\star}(z_{r})}{\partial x}(z_{r})\right) \left(\frac{\partial \xi_{s,r}^{\star}(z_{r})}{\partial x}(z_{r})\right)^{-1} \left(f(r, \xi_{s,r}^{\star}(z_{r}), u_{r}) - f(r, \xi_{s,r}^{\star}(z_{r}), u_{r}^{\star})\right) dr$$

$$+ \int_{s}^{t} g(r, \xi_{s,r}^{\star}(z_{r})) dw_{r}.$$

The solution of (3.1) is unique, so $\xi_{s,t}^*(z_t) = \xi_{s,t}^u(x)$. Note $u(t) = u^*(t)$ if t > s + h so $z_t = z_{s+h}$ if t > s + h and

$$\xi_{s,t}^{*}(z_{t}) = \xi_{s,t}^{*}(z_{s+h})$$

$$= \xi_{s+h,t}^{*}(\xi_{s,s+h}^{u}(x)). \tag{3.6}$$

4. THE EXPONENTIAL DENSITY.

Consider the (d+1)-dimensional system

$$\xi_{s,t}^{*}(x) = x + \int_{s}^{t} f(r, \xi_{s,r}^{*}(x), u_{r}^{*}) dr + \int_{s}^{t} g(r, \xi_{s,r}^{*}(x)) dw_{r}$$

$$Z_{s,t}^{*}(x, z) = z + \int_{s}^{t} Z_{s,r}^{*}(x, z) h(\xi_{s,r}^{*}(x))' dy_{r}. \tag{4.1}$$

That is, we are considering an augmented flow (ξ, Z) in \mathbb{R}^{d+1} in which Z^* has a variable initial condition $z \in \mathbb{R}$. Note:

$$Z_{s,t}^{\bullet}(x,z)=zZ_{s,t}^{\bullet}(x).$$

The map $(x,z) \to (\xi_{s,t}^*(x), Z_{s,t}^*(x,z))$ is, almost surely, a diffeomorphism of R^{d+1} . Clearly,

$$\frac{\partial \xi_{s,t}^*}{\partial z} = 0, \qquad \frac{\partial f}{\partial z} = 0 \qquad \text{and} \qquad \frac{\partial g}{\partial z} = 0.$$

The Jacobian of this augmented map is represented by the matrix

$$\tilde{C}_{t} = \begin{pmatrix} \frac{\partial \, \xi_{\bullet,t}^{\bullet}}{\partial \, x} & 0 \\ \\ \frac{\partial \, Z_{\bullet,t}^{\bullet}}{\partial \, x} & \frac{\partial \, Z_{\bullet,t}^{\bullet}}{\partial \, z} \end{pmatrix}.$$

In particular, from (4.1), for $1 \le i \le d$

$$\frac{\partial Z_{s,t}^{\bullet}}{\partial x_{i}} = \sum_{j=1}^{m} \int_{s}^{t} \left(Z_{s,r}^{\bullet}(x,z) \sum_{k=1}^{n} \frac{\partial h^{j}}{\partial \xi_{k}} \cdot \frac{\partial \xi_{k,s,r}^{\bullet}}{\partial x_{i}} + h^{j} \left(\xi_{s,r}^{\bullet}(x) \right) \frac{\partial Z_{s,r}^{\bullet}}{\partial x_{i}} \right) dy_{r}^{j}. \tag{4.2}$$

We are interested in solutions of (4.1) and (4.2) only when z=1, so as above we write

$$Z_{s,t}^*(x)$$
 for $Z_{s,t}^*(x,1)$ etc.

LEMMA 4.1.

$$\frac{\partial Z_{s,t}^{\bullet}}{\partial x} = Z_{s,t}^{\bullet}(x) \left(\int_{s}^{t} h_{x} \left(\xi_{s,t}^{\bullet}(x) \right) \cdot \frac{\partial \xi_{s,r}^{\bullet}}{\partial x} d\nu_{r} \right)$$

where, as in (2.2), $d\nu_t=dy_t-h(\xi_{s,t}^*(x))dt$.

PROOF From (4.2)

$$\frac{\partial Z_{s,t}^{\bullet}}{\partial x} = \int_{s}^{t} \left(\frac{\partial Z_{s,r}^{\bullet}}{\partial x} h'(\xi_{s,r}^{\bullet}(x)) + Z_{s,r}^{\bullet}(x) h_{x}(\xi_{s,r}^{\bullet}(x)) \frac{\partial \xi_{s,r}^{\bullet}}{\partial x} \right) dy. \tag{4.3}$$

Write

$$L_{s,t}(x) = Z_{s,t}^*(x) \Big(\int_s^t h_x \cdot \frac{\partial \xi_{s,r}^*}{\partial x} d\nu_r \Big).$$

Then

$$Z_{s,t}^*(x) = 1 + \int_s^t Z_{s,r}^*(x)h'(\xi_{s,r}^*(x))dy_r$$

and the product rule gives

$$L_{s,t}(x) = \int_{s}^{t} L_{s,r}(x)h'(\xi_{s,r}^{*}(x))dy_{r}$$

$$+ \int_{s}^{t} Z_{s,r}^{*}(x)h_{x} \cdot \frac{\partial \xi_{s,r}^{*}}{\partial x}dy_{r}.$$

The minimum cost is

$$J(u^*) = E[Z_{0,T}^*(x_0)c(\xi_{0,T}^*(x_0))]$$

$$= E[Z_{0,s}^*(x_0)Z_{s,T}^*(x)c(\xi_{s,T}^*(x))].$$

Also,

$$J(u) = E[Z_{0,s}^{*}(x_{0})Z_{s,T}^{u}(x)c(\xi_{s,T}^{u}(x))]$$

$$= E[Z_{0,s}^{*}(x_{0})Z_{s,T}^{*}(z_{s+h})c(\xi_{s,T}^{*}(z_{s+h}))]$$

by (3.6) and (4.5). Recall $Z_{s,T}^*(\cdot)$ and $c(\xi_{s,T}^*(\cdot))$ are differentiable almost surely, with continuous and uniformly integrable derivatives. Consequently, writing

$$\Gamma(s, z_r) = Z_{0,s}^{\bullet}(x_0) Z_{s,T}^{\bullet}(z_r) \Big\{ c_{\xi}(\xi_{s,T}^{\bullet}(z_r)) \frac{\partial \xi_{s,T}^{\bullet}}{\partial x} (z_r) + c(\xi_{s,T}^{\bullet}(z_r)) \Big(\int_{s}^{T} h_{\xi}(\xi_{s,\sigma}^{\bullet}(z_r)) \frac{\partial \xi_{s,\sigma}^{\bullet}}{\partial x} (z_r) d\nu_{\sigma} \Big) \Big\} \Big(\frac{\partial \xi_{s,r}^{\bullet}}{\partial x} (z_r) \Big)^{-1}$$

for $s \le r \le s + h$, we have

$$J(u) - J(u^{*}) = E[Z_{0,s}^{*}(x_{0})\{Z_{s,t}^{*}(z_{s+h})c(\xi_{s,t}^{*}(z_{s+h})) - Z_{s,T}^{*}(x)c(\xi_{s,T}^{*}(x))\}]$$

$$= E\Big[\int_{s}^{s+h} \Gamma(s,z_{r})(f(r,\xi_{s,r}^{*}(z_{r}),u_{r}) - f(r,\xi_{s,r}^{*}(x),u_{r}^{*}))dr\Big].$$
(5.1)

This formula describes the change in the expected cost arising from the perturbation u of the optimal control. However, $J(u) \geq J(u^*)$ for all $u \in \underline{U}$ so the right hand side of (5.1) is non-negative for all h > 0. We wish to divide by h > 0 and let $h \to 0$. This requires some careful arguments using the uniform boundedness of the random variables and the monotone class theorem. It can be shown that there is a set $S \subset [0,T]$ of zero Lebesgue measure such that if $s \notin S$

$$E[\Gamma(s,x)(f(s,\xi_{0,s}^{\bullet}(x_0),u)-f(s,\xi_{0,s}^{\bullet}(x_0),u_s^{\bullet}))I_A] \ge 0$$
 (5.2)

for any $u \in U$ and $A \in Y_s$.

Details of this argument can be found in [1]. Define

$$p_{s}(x) = E^{*} \left[c_{\xi}(\xi_{0,T}^{*}(x_{0})) \frac{\partial \xi_{s,T}^{*}}{\partial x}(x) + c(\xi_{0,T}^{*}(x_{0})) \left(\int_{s}^{T} h_{\xi}(\xi_{0,\sigma}^{*}(x_{0})) \frac{\partial \xi_{s,\sigma}^{*}}{\partial x}(x) d\nu_{\sigma} \right) \middle| Y_{s\vee}\{x\} \right]$$

where $x = \xi_{0,s}^*(x_0)$ and E^* is the expectation under $P^* = P^{u^*}$.

In (5.2) we have established the following:

THEOREM 5.1. $p_s(x)$ is the adjoint process for the partially observed optimal control problem. That is, if $u^* \in \underline{U}$ is optimal there is a set $S \subset [0,T]$ of zero Lebesgue measure such that for $s \notin S$

$$E^*[p_s(x)f(s,x,u^*) \mid Y_s] \ge E^*[p_{\bar{s}}(x)f(s,x,u) \mid Y_s] \quad \text{a.s.}$$
 (5.3)

so the optimal control u° almost surely minimizes the conditional Hamiltonian.

If $x = \xi_{0,s}^*(x_0)$ has a conditional density $q_s(x)$ under P^* , and if f is differentiable in u, (5.3) implies

$$\sum_{i=1}^{k} \left(u_{i}(s) - u_{i}^{*}(s)\right) \int_{R^{d}} \Gamma(s,x) \frac{\partial f}{\partial u_{i}} \left(s,x,u^{*}\right) q_{s}(x) dx \geq 0.$$

This is the result of Bensoussan [2].

REFERENCES

- 1. J. Baras, R.J. Elliott and M. Kohlmann, The partially observed stochastic minimum principle. University of Alberta Technical Report, 1987, submitted.
- 2. A. Bensoussan, Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions, Stochastics, 9(1983), 169-222.
- 3. J.M. Bismut, A generalized formula of Ito and some other properties of stochastic flows. Zeits. fur Wahrs. 55(1981), 331-350.
- 4. U.G. Haussmann, The maximum principle for optimal control of diffusions with partial information. S.I.A.M. Jour. Control and Opt. 25(1987), 341-361.

- 5. N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes. North Holland Publishing Co., Amsterdam, Oxford, New York, 1981.
- 6. H. Kunita, The decomposition of solutions of stochastic differential equations. Lecture Notes in Math., 851(1980), 213-255.